JP2504176B2 - Ferroelectric composition containing lead oxide and piezoelectric element using the same - Google Patents

Ferroelectric composition containing lead oxide and piezoelectric element using the same

Info

Publication number
JP2504176B2
JP2504176B2 JP1086043A JP8604389A JP2504176B2 JP 2504176 B2 JP2504176 B2 JP 2504176B2 JP 1086043 A JP1086043 A JP 1086043A JP 8604389 A JP8604389 A JP 8604389A JP 2504176 B2 JP2504176 B2 JP 2504176B2
Authority
JP
Japan
Prior art keywords
porcelain
geo
sample
ferroelectric
pbo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1086043A
Other languages
Japanese (ja)
Other versions
JPH02263761A (en
Inventor
篤史 佐野
敏夫 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP1086043A priority Critical patent/JP2504176B2/en
Publication of JPH02263761A publication Critical patent/JPH02263761A/en
Application granted granted Critical
Publication of JP2504176B2 publication Critical patent/JP2504176B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は鉛酸化物含有強誘電性磁器組成物、特に、電
気機械結合係数が大きく、低温焼結可能な鉛酸化物含有
強誘電性磁器組成物およびそれを利用した圧電素子に関
する。
TECHNICAL FIELD The present invention relates to a lead oxide-containing ferroelectric ceramic composition, and in particular, a lead oxide-containing ferroelectric ceramic having a large electromechanical coupling coefficient and capable of low temperature sintering. The present invention relates to a composition and a piezoelectric element using the same.

(従来技術) 一般に、磁器圧電材料は、加工性,量産性および特性
に優れていることから、フィルター,圧電ブザー,ある
いはバイモルフ等の圧電素子に応用されている。この種
の圧電材料としては、チタン酸鉛系強誘電性磁器,チタ
ン酸ジルコン酸鉛系強誘電性磁器およびチタン酸バリウ
ム系強誘電性磁器が実用に供されている。
(Prior Art) Generally, porcelain piezoelectric materials are applied to piezoelectric elements such as filters, piezoelectric buzzers, and bimorphs because they are excellent in workability, mass productivity, and characteristics. As this type of piezoelectric material, lead titanate-based ferroelectric porcelain, lead zirconate titanate-based ferroelectric porcelain, and barium titanate-based ferroelectric porcelain are put to practical use.

しかし、これらの強誘電性磁器は、焼結温度が1100℃
以上と高温であることから、金属板等の基板と一体化し
た複合体を得ることができなかった。
However, these ferroelectric porcelains have a sintering temperature of 1100 ° C.
Due to the above high temperatures, a composite integrated with a substrate such as a metal plate could not be obtained.

また、強誘電性磁器が鉛酸化物含有強誘電性磁器であ
る場合、その成分として揮発性のPbを含むため、焼成時
にPbOの一部が組成から失われ易く、特性の再現性およ
び均一性を図ることが困難であった。
In addition, when the ferroelectric porcelain is a lead oxide-containing ferroelectric porcelain, since Pb is contained as a component thereof, part of the PbO is easily lost from the composition during firing, so that the reproducibility and uniformity of the characteristics can be improved. It was difficult to achieve.

さらに、これらの強誘電性磁器を、発振子(共振子)
用として利用する場合、電気機械結合係数が大きいため
フィルターの帯域幅が広くなく、使用に際し一部安定性
に欠けていた。
Furthermore, these ferroelectric porcelains are used as oscillators (resonators).
When it is used as a filter, the electromechanical coupling coefficient is large, so that the bandwidth of the filter is not wide and partly lacks stability in use.

このため特開昭58−204579号公報にて、圧電セラミッ
クにケイ酸ガラス化合物、ソーダガラス化合物、あるい
は鉛ガラス化合物を1〜30wt%添加させることにより、
フィルターの帯域幅を狭くし、安定度を向上させた化合
物入り圧電磁器が提案されている。
Therefore, in JP-A-58-204579, by adding 1 to 30 wt% of a silicate glass compound, a soda glass compound, or a lead glass compound to a piezoelectric ceramic,
A compound-containing piezoelectric ceramic has been proposed which has a narrow filter bandwidth and improved stability.

(従来技術の問題点) しかしながら、前記ガラス化合物入り圧電磁器は、ガ
ラス化合物の添加により電気機械結合係数が著しく低下
するため、エネルギー変換効率が低下するという問題が
あった。
(Problems of Prior Art) However, the piezoelectric ceramic containing a glass compound has a problem that the energy conversion efficiency is lowered because the electromechanical coupling coefficient is remarkably lowered by the addition of the glass compound.

また、従来の強誘電性磁器組成物を広がり振動モード
のセラミック共振子に適応した場合、厚み縦振動である
スプリアス振動に起因する異常発振を生ずるという問題
もあった。
In addition, when the conventional ferroelectric ceramic composition is applied to a ceramic resonator in a spreading vibration mode, there is a problem that abnormal oscillation occurs due to spurious vibration that is thickness longitudinal vibration.

(問題点を解決するための手段) 本発明の鉛酸化物含有強誘電性磁器組成物は、主成分
である鉛酸化物含有強誘電性磁器に対して、Pbの酸化物
とGeの酸化物がそれぞれ添加含有され、Pbの酸化物をPb
Oに換算し、Geの酸化物をGeO2に換算し、PbOとGeO2のモ
ル比を一般式:xPbO・yGeO2として表したときx,yがそれ
ぞれx=1〜6,y=1〜3であり、かつ添加、含有され
たPbOとGeO2の合計量が0.01〜30重量%であることを特
徴とする。
(Means for Solving Problems) The lead oxide-containing ferroelectric ceramic composition of the present invention is a Pb oxide and a Ge oxide with respect to the lead oxide-containing ferroelectric ceramics as the main component. Is added to each, and Pb oxide is added to Pb
In terms of O, converting the oxides of Ge to GeO 2, the general formula the molar ratio of PbO and GeO 2: when expressed as xPbO · yGeO 2 x, y, respectively x = 1~6, y = 1~ 3 and the total amount of PbO and GeO 2 added and contained is 0.01 to 30% by weight.

また、本発明の圧電素子は、上述の鉛酸化物含有強誘
電性磁器組成物からなる板状の強誘電性磁器板と、この
強誘電性磁器板の両主表面に形成された電極と、からな
ることを特徴とする。
Further, the piezoelectric element of the present invention, a plate-shaped ferroelectric porcelain plate made of the above-mentioned lead oxide-containing ferroelectric porcelain composition, and electrodes formed on both main surfaces of the ferroelectric porcelain plate, It is characterized by consisting of.

さらに、本発明の圧電素子は、上述の鉛酸化物含有強
誘電性磁器組成物からなる仮焼粉末を含有する厚膜ペー
ストが金属製の基板上に塗布,焼き付けられて一体化さ
れ、この焼き付けによって形成された強誘電性磁器層の
表面に電極が形成されたことを特徴とする。
Furthermore, in the piezoelectric element of the present invention, a thick film paste containing a calcined powder made of the above-described lead oxide-containing ferroelectric ceramic composition is applied on a metal substrate and baked to be integrated, and this baking is performed. An electrode is formed on the surface of the ferroelectric porcelain layer formed by.

本発明の鉛酸化物含有強誘電性磁器組成物の主成分で
ある強誘電性磁器としては、チタン酸鉛系強誘電性磁
器,チタン酸ジルコン酸鉛系強誘電性磁器,メタニオブ
酸鉛系強誘電性磁器および鉛含有複合ペロブスカイト系
磁器が代表的なものとして挙げられるが、これらに限定
されるものではない。
Ferroelectric porcelain which is the main component of the lead oxide-containing ferroelectric porcelain composition of the present invention includes lead titanate-based ferroelectric porcelain, lead zirconate titanate-based ferroelectric porcelain, and lead metaniobate-based ferroelectric porcelain. Representative examples include dielectric porcelain and lead-containing composite perovskite porcelain, but the present invention is not limited to these.

チタン酸鉛系強誘電性磁器とは、真性および変性チタ
ン酸鉛を意味し、変性チタン酸鉛には、単純酸化物であ
るCr2O3,Nb2O5,Ta2O5,Bi2O3,MnO2など金属酸化物を
添加したもの、PbサイトをMg,Ca,Sr,BaやLa2O3,Nd
2O3,Y2O3等の希土類で置換したもの、およびPbTiO3
一部を後述の一般式(I)〜(VI)で示される少なくと
も一種の複合ペロブスカイト化合物で置換した2成分
系,3成分系その他の多成分系磁器あるいはこれらの組合
せたものが含まれる。
The lead titanate-based ferroelectric porcelain means intrinsic and modified lead titanate, and modified lead titanate includes simple oxides such as Cr 2 O 3 , Nb 2 O 5 , Ta 2 O 5 , and Bi 2. Metal oxides such as O 3 and MnO 2 added, Pb sites containing Mg, Ca, Sr, Ba and La 2 O 3 , Nd
2 O 3 , Y 2 O 3 substituted with rare earths, and a two-component system in which a part of PbTiO 3 is substituted with at least one complex perovskite compound represented by the following general formulas (I) to (VI), Includes ternary and other multi-component porcelain or combinations of these.

また、チタン酸ジルコン酸鉛系強誘電性磁器とは、真
性および変性チタン酸ジルコン酸鉛を意味し、変性チタ
ン酸ジルコン酸鉛には、Pb(Ti,Zr)O3にCr2O3,Nb2O5,T
a2O5,Bi2O3,MnO2など金属酸化物を添加したもの、Pb
サイトをMg,Ca,Sr,Ba等のアルカリ土類金属やLa2O3,Nd
2O3,Y2O3等の希土類で置換したもの、およびPb(Ti,Zr)
O3の一部を後述の一般式(I)〜(VI)で示される少な
くとも一種の複合ペロブスカイト化合物で置換した3成
分系,4成分系その他の多成分系磁器あるいはこれらの組
合せたものが含まれる。
Further, the lead zirconate titanate-based ferroelectric porcelain means intrinsic and modified lead zirconate titanate, and modified lead zirconate titanate includes Pb (Ti, Zr) O 3 and Cr 2 O 3 , Nb 2 O 5 , T
Metal oxides such as a 2 O 5 , Bi 2 O 3 and MnO 2 added, Pb
The site is replaced with alkaline earth metals such as Mg, Ca, Sr, Ba and La 2 O 3 , Nd.
Substituted with rare earth such as 2 O 3 , Y 2 O 3 and Pb (Ti, Zr)
Includes three-component, four-component and other multi-component porcelains in which a part of O 3 is substituted with at least one compound perovskite compound represented by the following general formulas (I) to (VI), or a combination thereof. Be done.

さらに、メタニオブ酸鉛系強誘電性磁器とは、真性お
よび変性メタニオブ酸鉛を意味し、変性メタニオブ酸鉛
には、単純酸化物であるCr2O3,Nb2O5,Ta2O5,Bi2O3
MnO2など金属酸化物を添加したもの、Pbの一部をMg,Ca,
Sr,Ba等のアルカリ土類金属やLa2O3,Nd2O3,Y2O3等の
希土類で置換したもの、およびメタニオブ酸鉛に後述の
一般式(I)〜(VI)で示される少なくとも一種の複合
ペロブスカイト化合物で添加した2成分系,3成分系その
他の多成分系磁器が含まれる。
Furthermore, the lead metaniobate-based ferroelectric porcelain means intrinsic and modified lead metaniobate, and modified lead metaniobate includes simple oxides such as Cr 2 O 3 , Nb 2 O 5 , Ta 2 O 5 , and Bi 2 O 3 ,
Metal oxides such as MnO 2 added, Pb part of Mg, Ca,
Substituted with an alkaline earth metal such as Sr or Ba or a rare earth such as La 2 O 3 , Nd 2 O 3 or Y 2 O 3 , and lead metaniobate are represented by the following general formulas (I) to (VI). Included are two-component, three-component and other multi-component porcelains added with at least one compound perovskite compound.

鉛含有複合ペロブスカイト系磁器には、後述の一般式
(I)〜(VI)で示される鉛含有複合ペロブスカイト化
合物の他、それらの2種以上のもしくはそれらの少なく
とも1種と他の複合ペロブスカイト化合物とからなる2
成分系、2成分系その他の多成分系磁器が含まれる。た
とえば、 Pb(Fe2/3W1/3)O3,Pb(Fe1/2Nb1/2)O3等の1成分系、 Pb(Fe1/2Nb1/2)O3−Pb(Fe2/3W1/3)O3等の2成分系、 Pb(Mn1/3Nb2/3)O3−Pb(Fe1/2Nb1/2)O3− Pb(Fe2/3W1/3)O3, Pb(Zn1/3Nb2/3)O3−Pb(Fe1/2Nb1/2)O3− Pb(Fe2/3W1/3)O3等の3成分系複合ペロブスカイト化合
物等が挙げられる。
The lead-containing composite perovskite-based porcelain contains, in addition to the lead-containing composite perovskite compounds represented by the general formulas (I) to (VI) described below, two or more of them or at least one of them and another composite perovskite compound. Consisting of 2
Includes component-based, two-component, and other multi-component porcelain. For example, one-component system such as Pb (Fe 2/3 W 1/3 ) O 3 and Pb (Fe 1/2 Nb 1/2 ) O 3 , Pb (Fe 1/2 Nb 1/2 ) O 3 −Pb Binary system such as (Fe 2/3 W 1/3 ) O 3 , Pb (Mn 1/3 Nb 2/3 ) O 3 −Pb (Fe 1/2 Nb 1/2 ) O 3 − Pb (Fe 2 / 3 W 1/3 ) O 3 , Pb (Zn 1/3 Nb 2/3 ) O 3 −Pb (Fe 1/2 Nb 1/2 ) O 3 − Pb (Fe 2/3 W 1/3 ) O ternary complex perovskite compounds such as 3.

前記複合ペロブスカイト化合物の代表的なものとして
は、 一般式(I):A2+(B2+ 1/3B5+ 2/3)O3で示される化合
物、たとえば、 Ba(Zn1/3Nb2/3)O3,Ba(Cd1/3Nb2/3)O3, Ba(Mg1/3Nb2/3)O3,Sr(Cd1/3Nb2/3)O3, Pb(Mg1/3Nb2/3)O3,Pb(Ni1/3Nb2/3)O3, Pb(Mn1/3Nb2/3)O3,Pb(Mg1/3Ta2/3)O3, Pb(Ni1/3Ta2/3)O3,Pb(Cd1/3Nb2/3)O3; 一般式(II):A2+(B3+ 1/2B5+ 1/2)O3で示される化合
物、たとえば、 Ba(Fe1/2Nb1/2)O3,Ba(Sc1/2Nb1/2)O3, Ca(Cr1/2Nb1/2)O3,Pb(Fe1/2Nb1/2)O3, Pb(Fe1/2Ta1/2)O3,Pb(Sc1/2Nb1/2)O3, Pb(Sc1/2Ta1/2)O3,Pb(Yb1/2Nb1/2)O3, Pb(Yb1/2Ta1/2)O3,Pb(Lu1/2Nb1/2)O3, Pb(In1/2Nb1/2)O3; 一般式(III):A2+(B2+ 1/2B6+ 1/2)O3で示される化合
物、たとえば、 Pb(Cd1/2W1/2)O3,Pb(Mn1/2W1/2)O3, Pb(Zn1/2W1/2)O3,Pb(Mg1/2W1/2)O3, Pb(Co1/2W1/2)O3,Pb(Ni1/2W1/2)O3, Pb(Mg1/2Te1/2)O3,Pb(Mn1/2Te1/2)O3, Pb(Co1/2Te1/2)O3; 一般式(IV):A2+(B3+ 2/3B6+ 1/3)O3で示される化合
物、たとえば、 Pb(Fe2/3W1/3)O3; 一般式(V):A2+(B2+ 1/2B4+ 1/2)O3で示される化合
物、たとえば、 Pb(Sn1/2Sb1/2)O3,La(Mg1/2Ti1/2)O3, Nb(Mg1/2Ti1/2)O3;および、 一般式(VI):A+ 1/2A3+ 1/2)B4+O3で示される化合
物、たとえば、 (Na1/2La1/2)TiO3,(K1/2La1/2)TiO3, (Na1/2Ce1/2)TiO3,(Na1/2Nd1/2)TiO3, (Nd1/2Bi1/2)TiO3,(K1/2Bi1/2)TiO3 などが挙げられる。
A typical compound perovskite compound is a compound represented by the general formula (I): A 2+ (B 2+ 1/3 B 5+ 2/3 ) O 3 , for example, Ba (Zn 1/3 Nb 2/3 ) O 3 , Ba (Cd 1/3 Nb 2/3 ) O 3 , Ba (Mg 1/3 Nb 2/3 ) O 3 , Sr (Cd 1/3 Nb 2/3 ) O 3 , Pb (Mg 1/3 Nb 2/3 ) O 3 , Pb (Ni 1/3 Nb 2/3 ) O 3 , Pb (Mn 1/3 Nb 2/3 ) O 3 , Pb (Mg 1/3 Ta 2 / 3 ) O 3 , Pb (Ni 1/3 Ta 2/3 ) O 3 , Pb (Cd 1/3 Nb 2/3 ) O 3 ; General formula (II): A 2+ (B 3+ 1/2 Compounds represented by B 5+ 1/2 ) O 3 , such as Ba (Fe 1/2 Nb 1/2 ) O 3 , Ba (Sc 1/2 Nb 1/2 ) O 3 , Ca (Cr 1/2 Nb 1/2 ) O 3 , Pb (Fe 1/2 Nb 1/2 ) O 3 , Pb (Fe 1/2 Ta 1/2 ) O 3 , Pb (Sc 1/2 Nb 1/2 ) O 3 , Pb (Sc 1/2 Ta 1/2 ) O 3 , Pb (Yb 1/2 Nb 1/2 ) O 3 , Pb (Yb 1/2 Ta 1/2 ) O 3 , Pb (Lu 1/2 Nb 1 / 2 ) O 3 , Pb (In 1/2 Nb 1/2 ) O 3 ; general formula (III): a compound represented by A 2+ (B 2+ 1/2 B 6+ 1/2 ) O 3 , For example, Pb (Cd 1/2 W 1/2 ) O 3 , Pb (Mn 1/2 W 1/2 ) O 3 , Pb (Zn 1/2 W 1/2 ) O 3 , Pb (Mg 1/2 W 1/2 ) O 3 , Pb (Co 1/2 W 1/2 ) O 3 , Pb (Ni 1/2 W 1/2 ) O 3 , Pb (Mg 1/2 Te 1/2 ) O 3 , Pb (Mn 1/2 Te 1/2 ) O 3 , Pb (Co 1/2 Te 1/2 ) O 3 ; general formula (IV): a compound represented by A 2+ (B 3+ 2/3 B 6+ 1/3 ) O 3 , for example, Pb (Fe 2 / 3 W 1/3 ) O 3 ; a compound represented by the general formula (V): A 2+ (B 2+ 1/2 B 4+ 1/2 ) O 3 , for example, Pb (Sn 1/2 Sb 1 / 2 ) O 3 , La (Mg 1/2 Ti 1/2 ) O 3 , Nb (Mg 1/2 Ti 1/2 ) O 3 ; and general formula (VI): A + 1/2 A 3 + 1 / 2 ) B 4+ O 3 compound, for example, (Na 1/2 La 1/2 ) TiO 3 , (K 1/2 La 1/2 ) TiO 3 , (Na 1/2 Ce 1/2 ) TiO 3 , (Na 1/2 Nd 1/2 ) TiO 3 , (Nd 1/2 Bi 1/2 ) TiO 3 , (K 1/2 Bi 1/2 ) TiO 3 and the like.

(作用) 本発明は、主成分のチタン酸鉛系,チタン酸ジルコン
酸鉛系,メタニオブ酸鉛系および鉛含有複合ペロブスカ
イト系等の強誘電性磁器に、副成分として、Pbの酸化物
をPbOに換算し、Geの酸化物をGeO2に換算し、PbOとGeO2
のモル比を一般式:xPbO・yGeO2として表したときx,yが
それぞれx=1〜6,y=1〜3となるように添加,含有
させて焼成すると、液相焼結により異相セラミックバル
クを生成させることによって、主成分のチタン酸鉛系,
チタン酸ジルコン酸鉛系,メタニオブ酸鉛系および鉛含
有複合ペロブスカイト系等の強誘電性磁器が本来有する
電気機械結合係数を低下させることなく850〜1000℃の
低温で焼結させることを可能にし、それによって、従
来、不可能であった金属製の基板との一体焼結を可能に
したものである。
(Function) The present invention is applied to a ferroelectric ceramic such as a lead titanate-based, lead titanate zirconate-based, lead metaniobate-based, and lead-containing composite perovskite-based ferroelectric porcelain as a sub-component containing PbO as a subcomponent. Converted into GeO 2 and converted into GeO 2 and converted into PbO and GeO 2
When the molar ratio of xPbO · yGeO 2 is expressed as xPbO · yGeO 2 , when x and y are added and contained so that x = 1 to 6 and y = 1 to 3 respectively, and fired, liquid phase sintering causes heterophase ceramics. By producing bulk, lead titanate-based
Enables sintering at a low temperature of 850 to 1000 ° C without lowering the electromechanical coupling coefficient originally possessed by ferroelectric porcelains such as lead zirconate titanate, lead metaniobate and lead-containing composite perovskite. As a result, it is possible to perform integral sintering with a metal substrate, which has been impossible in the past.

また、本発明に係る鉛酸化物含有強誘電性磁器は、ス
クリーン印刷法,塗布法,プレス成形法,押出し成形
法,シート成形法,ホットプレス法等の任意の方法で成
形あるいは加工でき、たとえば、厚膜ペーストをスクリ
ーン印刷法により金属製の基板の表面に印刷し、焼結さ
せることにより、一体焼結型の圧電素子を得ることがで
きる。
Further, the lead oxide-containing ferroelectric porcelain according to the present invention can be molded or processed by any method such as a screen printing method, a coating method, a press molding method, an extrusion molding method, a sheet molding method and a hot press method. By printing the thick film paste on the surface of the metal substrate by the screen printing method and sintering the paste, an integrally sintered piezoelectric element can be obtained.

副成分としてPbの酸化物とGeの酸化物がそれぞれ添加
含有され、Pbの酸化物をPbOに換算し、Geの酸化物をGeO
2に換算し、PbOとGeO2のモル比を一般式:xPbO・yGeO2
して表したときx,yがそれぞれx=1〜6,y=1〜3であ
り、かつ添加,含有されたPbOとGeO2の合計量が0.01〜3
0重量%としたのは、0.01重量%未満ではその効果がさ
ほど期待されず、また、30重量%を超えると、焼結温度
は低くなるが、電気機械結合係数の低下が目立つように
なるからである。特に、添加,含有されたPbOとGeO2
合計量を0.1〜10重量%にすると、焼結温度が低く、か
つ、電気機械結合係数が大きな鉛酸化物含有強誘電性磁
器組成物が得られる。また、x,yの値をx=1〜6,y=1
〜3としたのは、低温での焼結を可能とするために、Pb
の酸化物およびGeの酸化物で、その融点が850℃以下と
なるものを選んだ。さらに、本発明に係る鉛酸化物含有
強誘電性磁器組成物は、高抗折強度を示すようになる。
これは、主成分中の酸化鉛と副成分中の酸化鉛との間に
化学的結合力が生じ、粒界での機械的強度が高められる
からであると考えられる。
Pb oxide and Ge oxide are added and contained as sub-components, respectively, and the Pb oxide is converted to PbO.
When converted to 2 , the molar ratio of PbO and GeO 2 is represented by the general formula: xPbO · yGeO 2 , where x and y are x = 1 to 6 and y = 1 to 3, respectively, and PbO added and contained. And the total amount of GeO 2 is 0.01-3
If the amount is less than 0.01% by weight, the effect is not so expected, and if it exceeds 30% by weight, the sintering temperature becomes low, but the decrease in the electromechanical coupling coefficient becomes conspicuous. Is. Particularly, when the total amount of PbO and GeO 2 added and contained is 0.1 to 10% by weight, a lead oxide-containing ferroelectric ceramic composition having a low sintering temperature and a large electromechanical coupling coefficient can be obtained. . In addition, the value of x, y is x = 1 to 6, y = 1
The reason for setting ~ 3 is that Pb is used to enable sintering at low temperature.
Oxides and Ge oxides whose melting points are below 850 ° C were selected. Furthermore, the lead oxide-containing ferroelectric ceramic composition according to the present invention exhibits high bending strength.
It is considered that this is because a chemical bonding force is generated between the lead oxide in the main component and the lead oxide in the sub-component, and the mechanical strength at the grain boundary is increased.

以下に、本発明の実施例について説明する。 Hereinafter, examples of the present invention will be described.

(実施例1) 原料としてPb3O4,TiO2,ZrO2およびNb2O5を用い、こ
れらをPbTi0.48Zr0.52O31.0wt%Nb2O5の組成を有する主
成分となる強誘電性磁器が得られるように秤量するとと
もに、副成分の原料としてPb3O4およびGeO2を用い、Pb3
O4をPbOに換算し、GeO2をGeO2に換算し、PbOとGeO2のモ
ル比を一般式:xPbO・yGeO2として表したときx,yがそれ
ぞれx=1〜6,y=1〜3となるように、第1表に示す
割合で添加,含有し、20時間湿式混合して混合物を得
た。
Example 1 Pb 3 O 4 , TiO 2 , ZrO 2 and Nb 2 O 5 were used as raw materials, and these were used as a main component having a composition of PbTi 0.48 Zr 0.52 O 3 1.0 wt% Nb 2 O 5 together weighed as sexual porcelain is obtained, using a Pb 3 O 4, and GeO 2 as subcomponent materials, Pb 3
O 4 was converted to PbO, converting the GeO 2 into GeO 2, the general formula the molar ratio of PbO and GeO 2: when expressed as xPbO · yGeO 2 x, y, respectively x = 1~6, y = 1 In order to obtain ~ 3, it was added and contained in the ratio shown in Table 1, and wet mixed for 20 hours to obtain a mixture.

次に、この混合物を脱水,乾燥し、850℃で2時間仮
焼した後、粉砕し、仮焼粉末を得た。
Next, this mixture was dehydrated, dried, calcined at 850 ° C. for 2 hours, and then pulverized to obtain a calcined powder.

次に、得られた仮焼粉末に樹脂と溶剤からなる有機バ
インダを10重量%混合して厚膜ペーストを調製した。
Next, the obtained calcined powder was mixed with 10% by weight of an organic binder composed of a resin and a solvent to prepare a thick film paste.

次に、調製した厚膜ペーストを直径20mm,厚さ0.1mmの
耐熱性金属、たとえばNi−Cr系の金属製の基板の上に直
径18mmの円としてスクリーン印刷した後、第1表に示す
焼成温度で焼成して、50μm厚の一体焼結型の複合体を
得た。
Next, the prepared thick film paste was screen-printed as a circle having a diameter of 18 mm on a substrate made of a heat-resistant metal having a diameter of 20 mm and a thickness of 0.1 mm, for example, a Ni-Cr-based metal, and then fired as shown in Table 1. It was fired at a temperature to obtain a 50 μm thick integrally sintered type composite body.

次に、この得られた複合体のセラミック表面に焼付け
法により銀電極を形成し、銀電極と金属製の基板の間に
80℃で3〜4KV/mmの直流電圧を印加して30分間分極処理
を行い、磁器圧電体の試料(試料番号1〜6)を得た。
Next, a silver electrode is formed on the ceramic surface of the obtained composite by a baking method, and the silver electrode is formed between the silver electrode and the metal substrate.
A DC voltage of 3 to 4 KV / mm was applied at 80 ° C. and polarization treatment was performed for 30 minutes to obtain a sample of a porcelain piezoelectric material (sample numbers 1 to 6).

各試料について、比誘電率(εr)および円板の屈曲
振動の電気機械結合係数(Kv)を測定し、この結果を第
1表に示した。
For each sample, the relative permittivity (εr) and the electromechanical coupling coefficient (Kv) of the flexural vibration of the disk were measured, and the results are shown in Table 1.

なお、第1表には、比較例として副成分のPb3O4およ
びGeO2を添加していない試料(試料番号7)、PbTi0.48
Zr0.52O3−1.0wt%Nb2O5の仮焼粉末に副成分としてPbO
・B2O3・SiO2系ガラス化合物を0.1wt%を添加して調製
した厚膜ペーストを用いて作製した試料(試料番号
8)、および PbTi0.48Zr0.52O3−1.0wt%Nb2O5の仮焼粉末に副成分と
してNa2O・B2O3・SiO2系ガラス化合物を5wt%を添加し
て調製した厚膜ペーストを用いて作製した試料(試料番
号9)についても同様の測定を行い、その結果をあわせ
て示している。
In Table 1, as a comparative example, a sample (Sample No. 7) in which Pb 3 O 4 and GeO 2 as secondary components were not added, PbTi 0.48
Zr 0.52 O 3 −1.0 wt% Nb 2 O 5 calcined powder with PbO
・ Sample (Sample No. 8) prepared using a thick film paste prepared by adding 0.1 wt% of B 2 O 3・ SiO 2 glass compound, and PbTi 0.48 Zr 0.52 O 3 -1.0 wt% Nb 2 O The same applies to the sample (Sample No. 9) prepared by using the thick film paste prepared by adding 5 wt% of Na 2 O ・ B 2 O 3・ SiO 2 glass compound as a subcomponent to the calcined powder of 5 The measurement was performed and the results are also shown.

(実施例2) まず、副成分の原料としてPb3O4とGeO2を用い、Pb3O4
をPbOに換算し、GeO2をGeO2に換算し、PbOとGeO2のモル
比を一般式:xPbO・yGeO2として表したときx,yがそれぞ
れx=5,y=3とするとともに、主成分に対しては、第
2表に示すような配合比で添加,含有させた以外は、実
施例1と同様にして仮焼粉末得た。
(Example 2) First, Pb 3 O 4 and GeO 2 were used as raw materials for the subcomponents, and Pb 3 O 4 was used.
The terms of PbO, converting the GeO 2 into GeO 2, the general formula the molar ratio of PbO and GeO 2: when expressed as xPbO · yGeO 2 x, with y is respectively x = 5, y = 3, A calcined powder was obtained in the same manner as in Example 1 except that the main component was added and contained at the compounding ratio shown in Table 2.

次に、得られた仮焼粉末に有機バインダを2〜3重量
%加え、20時間混合して造粒し、プレス成型して1〜1.
5mm×10mm×20mmの角板を形成し、この角板を第2表に
示す温度で2時間焼成して磁器角板の試料(試料番号10
〜16)を得た。
Next, 2-3 wt% of an organic binder is added to the obtained calcined powder, and the mixture is mixed for 20 hours, granulated, and press-molded for 1-1.
A square plate of 5 mm x 10 mm x 20 mm is formed, and this square plate is fired at the temperature shown in Table 2 for 2 hours to obtain a sample of a porcelain square plate (Sample No. 10
~ 16) was obtained.

各試料について3点曲げ試験法(支持点間距離:11m
m)により抗折強度(kg/cm2)を測定し、その結果を第
2表に示した。
3-point bending test method for each sample (distance between supporting points: 11 m
The bending strength (kg / cm 2 ) was measured by m) and the results are shown in Table 2.

なお、試料番号10,13,16は、本発明の範囲外である。 The sample numbers 10, 13, 16 are out of the scope of the present invention.

(実施例3) まず、原料としてPb3O4,TiO2,ZrO2,SnO2,Sb2O3
よびMnO2を用い、0.05Pb(Sn1/2Sb1/2)O3−0.47PbTiO3
−0.48PbZrO3−0.7wt%MnO2の組成を有する強誘電性磁
器が得られるように秤量し、仮焼温度を900℃とした以
外は、実施例1と同様にして仮焼粉末を得た。なお、第
3表には、PbOとGeO2のモル比、およびPbOとGeO2との合
計量の主成分に対する添加量(wt%)を示している。
(Example 3) First, using a Pb 3 O 4, TiO 2, ZrO 2, SnO 2, Sb 2 O 3 and MnO 2 as a raw material, 0.05Pb (Sn 1/2 Sb 1/2) O 3 -0.47PbTiO 3
-0.48PbZrO 3 were weighed so as ferroelectric ceramics having a composition of -0.7wt% MnO 2 is obtained, except that the calcining temperature was 900 ° C., to obtain a calcined powder in the same manner as in Example 1 . Note that Table 3 shows the molar ratio of PbO and GeO 2, and PbO and amount to the total amount of the main component of the GeO 2 a (wt%).

次に、得られた仮焼粉末に有機バインダを6〜7wt%
加えて20時間混合した後、ドクターブレード法によりシ
ート成型し、パンチングして直径20mm,厚さ0.1mmの円板
を形成し、この円板を第3表に示す焼成温度で2時間焼
成して磁器円板を得た。次に、 得られた磁器円板の両主表面に銀電極を焼付け、両電
極間に80℃で3〜4KV/mmの直流電圧を印加して30分間分
極処理を行い、磁器圧電体の試料(試料番号18〜22)を
得た。
Next, an organic binder is added to the obtained calcined powder in an amount of 6 to 7% by weight.
In addition, after mixing for 20 hours, a sheet was formed by the doctor blade method and punched to form a disc having a diameter of 20 mm and a thickness of 0.1 mm, and the disc was fired at the firing temperature shown in Table 3 for 2 hours. I got a porcelain disc. Next, silver electrodes were baked on both main surfaces of the obtained porcelain disk, a DC voltage of 3-4 KV / mm was applied between both electrodes at 80 ° C, and polarization treatment was performed for 30 minutes to obtain a porcelain piezoelectric sample. (Sample Nos. 18 to 22) were obtained.

各試料について、比誘電率(εr)および円板の拡が
り振動の電気機械結合係数(Kp)を測定し、その結果を
第3表に示した。
The relative permittivity (εr) and the electromechanical coupling coefficient (Kp) of the expansion vibration of the disk were measured for each sample, and the results are shown in Table 3.

なお、第3表には比較例として副成分のPb3O4およびG
eO2を添加していない試料(試料番号17)、0.05Pb(Sn
1/2Sb1/2)O3−0.47PbTiO3−0.48PbZrO3−0.7wt%MnO2
仮焼粉末に副成分としてPbO・B2O3・SiO2系ガラス化合
物を5wt%を添加して実施例3と同様にして作製した試
料(試料番号24)、および0.05Pb(Sn1/2Sb1/2)O3−0.47
PbTiO3−0.48PbZrO3−0.7wt%MnO2の仮焼粉末に副成分
としてNa2O・B2O3・SiO2系ガラス化合物を0.1wt%を添
加して実施例3と同様にして作製した試料(試料番号2
5)についても同様の測定を行い、その結果をあわせて
示している。
In addition, in Table 3, as a comparative example, Pb 3 O 4 and G which are sub-components are included.
Sample without addition of eO 2 (Sample No. 17), 0.05Pb (Sn
1/2 Sb 1/2 ) O 3 −0.47PbTiO 3 −0.48PbZrO 3 −0.7 wt% To the calcined powder of MnO 2 , 5 wt% of PbO ・ B 2 O 3・ SiO 2 glass compound was added as an accessory component. And a sample prepared in the same manner as in Example 3 (Sample No. 24), and 0.05Pb (Sn 1/2 Sb 1/2 ) O 3 −0.47
Prepared in the same manner as PbTiO 3 -0.48PbZrO 3 -0.7wt% MnO Na 2 as calcined powder subcomponent 2 O · B 2 O 3 · a SiO 2 -based glass compound by adding 0.1 wt% Example 3 Sample (Sample No. 2
The same measurement was performed for 5), and the results are also shown.

また、第3表中の試料番号23は、本発明の範囲外であ
る。
Moreover, the sample number 23 in Table 3 is outside the scope of the present invention.

(実施例4) まず、副成分の原料としてPb3O4とGeO2を用い、Pb3O4
をPbOに換算し、GeO2をGeO2に換算し、PbOとGeO2のモル
比を一般式:xPbO・yGeO2として表したときx,yがそれぞ
れx=5,y=3とするとともに、主成分に対しては、第
4表に示すような配合比で添加,含有させた以外は、実
施例3と同様にして仮焼粉末を得た後、実施例2と同様
の方法で磁器角板の試料(試料番号26〜32)を得た。
Example 4 First, Pb 3 O 4 and GeO 2 were used as raw materials for the subcomponents, and Pb 3 O 4 was used.
The terms of PbO, converting the GeO 2 into GeO 2, the general formula the molar ratio of PbO and GeO 2: when expressed as xPbO · yGeO 2 x, with y is respectively x = 5, y = 3, After the calcined powder was obtained in the same manner as in Example 3 except that the main component was added and contained at the compounding ratio shown in Table 4, the porcelain angle was obtained in the same manner as in Example 2. Plate samples (Sample Nos. 26-32) were obtained.

各試料について3点曲げ試験法(支持点間距離:11m
m)により抗折強度(kg/cm2)を測定し、その結果を焼
成温度とともに、第4表に示した。
3-point bending test method for each sample (distance between supporting points: 11 m
The bending strength (kg / cm 2 ) was measured by m), and the results are shown in Table 4 together with the firing temperature.

なお、試料番号26,29,32は、本発明の範囲外である。 The sample numbers 26, 29 and 32 are out of the scope of the present invention.

(実施例5) まず、原料としてPb3O4,TiO2,ZrO2,MnO2およびNb2
O5を用い0.05Pb(Mn1/3Nb2/3)O3−0.45PbTiO3−0.50PbZ
rO3の組成を有する強誘電性磁器を得られるように秤量
した以外は、実施例3と同様にして仮焼粉末を得た。な
お、第5表には、PbOとGeO2のモル比、およびPbOとGeO2
との合計量の主成分に対する添加量(wt%)を示してい
る。
Example 5 First, as raw materials, Pb 3 O 4 , TiO 2 , ZrO 2 , MnO 2 and Nb 2 were used.
Using O 5 0.05Pb (Mn 1/3 Nb 2/3 ) O 3 −0.45PbTiO 3 −0.50PbZ
A calcined powder was obtained in the same manner as in Example 3 except that the ferroelectric porcelain having the composition of rO 3 was weighed so as to obtain the porcelain. Note that Table 5, the molar ratio of PbO and GeO 2, and PbO and GeO 2
And the addition amount (wt%) with respect to the main component of the total amount.

次に、得られた仮焼粉末に有機バインダを2〜3wt%
加えて20時間混合した後、造粒し、プレス成形して直径
15mm,厚さ1mmの円板を形成し、この円板を第5表に示す
焼成温度で2時間焼成して磁器円板を得た。
Next, the obtained calcined powder is mixed with an organic binder in an amount of 2 to 3% by weight.
In addition, after mixing for 20 hours, granulate, press mold and
A disc having a thickness of 15 mm and a thickness of 1 mm was formed, and the disc was fired at the firing temperature shown in Table 5 for 2 hours to obtain a porcelain disc.

次に、得られた磁器円板の両主表面に銀電極を焼付
け、80℃中で両電極間に3〜4KV/mmの直流電圧を印加し
て30分間分極処理を行い、磁器圧電体の試料(試料番号
34−38)を得た。
Next, silver electrodes were baked on both main surfaces of the obtained porcelain disc, and a DC voltage of 3 to 4 KV / mm was applied between both electrodes at 80 ° C to perform polarization treatment for 30 minutes to obtain a porcelain piezoelectric material. Sample (Sample number
34-38) was obtained.

各試料について、比誘電率(εr)および円板の拡が
り振動の電気機械結合係数(Kp)を測定し、その結果を
第5表に示した。
With respect to each sample, the relative permittivity (εr) and the electromechanical coupling coefficient (Kp) of the expansion vibration of the disk were measured, and the results are shown in Table 5.

なお、第5表には比較例として副成分のPb3O4およびG
eO2を添加していない試料(試料番号33)、0.05Pb(Mn
1/3Nb2/3)O3−0.45PbTiO3−0.50PbZrO3の仮焼粉末に副
成分としてPbO・B2O3・SiO2系ガラス化合物を0.1wt%を
添加して実施例5と同様にして作製した試料(試料番号
40)、および 0.05Pb(Mn1/3Nb2/3)O3−0.45PbTiO3−0.50PbZrO3の仮焼
粉末に副成分としてNa2O・B2O3・SiO2系ガラス化合物を
5wt%を添加して実施例5と同様にして作製した試料
(試料番号41)についても同様の測定を行い、その結果
をあわせて示している。
In Table 5, as a comparative example, Pb 3 O 4 and G which are sub-components are used.
Sample without addition of eO 2 (Sample No. 33), 0.05Pb (Mn
1/3 Nb 2/3 ) O 3 −0.45PbTiO 3 −0.50PbZrO 3 calcination powder with PbO / B 2 O 3 / SiO 2 system glass compound 0.1 wt% added as a sub-component Samples prepared in the same way (sample number
40), and 0.05Pb (Mn 1/3 Nb 2/3 ) O 3 −0.45PbTiO 3 −0.50PbZrO 3 calcined powder with Na 2 O ・ B 2 O 3・ SiO 2 based glass compound as an accessory component.
The same measurement was performed on a sample (Sample No. 41) manufactured by adding 5 wt% in the same manner as in Example 5, and the results are also shown.

また、第5表中の試料番号39は、本発明の範囲外であ
る。
Moreover, the sample number 39 in Table 5 is outside the scope of the present invention.

(実施例6) まず、実施例5で0.05Pb(Mn1/3Nb2/3)O3−0.45PbTiO3
−0.50PbZrO3の組成となるように秤量するとともに、副
成分の原料としてPb3O4とGeO2を用い、Pb3O4をPbOに換
算し、GeO2をGeO2に換算し、一般式:xPbO・yGeO2のモル
比ををx=5,y=3とするとともに、主成分に対して、
第6表に示すような配合比で添加,含有させた以外は、
実施例5と同様にして仮焼粉末を得た後、実施例2と同
様にして磁器角板の試料(試料番号42〜48)を得た。
Example 6 First, in Example 5, 0.05Pb (Mn 1/3 Nb 2/3 ) O 3 −0.45PbTiO 3
Together weighed so as to have the composition of -0.50PbZrO 3, using a Pb 3 O 4 and GeO 2 as a subcomponent material, converts the Pb 3 O 4 to PbO, converting the GeO 2 into GeO 2, the general formula The molar ratio of: xPbO · yGeO 2 is x = 5, y = 3, and
Except that it was added and contained at the compounding ratio shown in Table 6,
After obtaining the calcined powder in the same manner as in Example 5, samples of the porcelain square plates (Sample Nos. 42 to 48) were obtained in the same manner as in Example 2.

各試料について3点曲げ試験法(支持点間距離:11m
m)により抗折強度(kg/cm2)を測定し、その結果を焼
成温度とともに、第6表に示した。
3-point bending test method for each sample (distance between supporting points: 11 m
The bending strength (kg / cm 2 ) was measured by m), and the results are shown in Table 6 together with the firing temperature.

なお、試料番号42,45,48は、本発明の範囲外である。 Note that sample numbers 42, 45, and 48 are outside the scope of the present invention.

(実施例7) まず、原料としてPb3O4,TiO2,La2O3およびMnO2を用
い、Pb0.85La0.10TiO3−0.7wt%MnO2の組成を有する強
誘電性磁器が得られるように秤量し、仮焼温度を950℃
とした以外は、実施例1と同様にして仮焼粉末を得た。
なお、第7表には、PbOとGeO2のモル比、およびPbOとGe
O2との合計量の主成分に対する添加量(wt%)を示して
いる。
Example 7 First, a ferroelectric ceramic having a composition of Pb 0.85 La 0.10 TiO 3 −0.7 wt% MnO 2 is obtained by using Pb 3 O 4 , TiO 2 , La 2 O 3 and MnO 2 as raw materials. The calcination temperature at 950 ℃
A calcinated powder was obtained in the same manner as in Example 1 except that
Table 7 shows the molar ratio of PbO and GeO 2 , and PbO and GeO 2.
The addition amount (wt%) to the main component of the total amount with O 2 is shown.

次に、得られた仮焼粉末に、有機バインダを4〜5wt
%加えて20時間混合した後、押出し成形してグリーンシ
ートを得、これをパンチングして直径10mm,厚さ0.5mmの
円板を形成し、この円板を第7表に示す焼成温度で2時
間焼成して磁器円板を得た。
Next, the obtained calcined powder is mixed with 4 to 5 wt% of an organic binder.
% And mixed for 20 hours, then extrusion-molded to obtain a green sheet, which is punched to form a disc having a diameter of 10 mm and a thickness of 0.5 mm, and the disc is baked at a firing temperature shown in Table 7. It was fired for a time to obtain a porcelain disc.

次に、得られた磁器円板の両主表面に銀電極を焼付
け、両電極間に80℃中で3〜4KV/mmの直流電圧を印加し
て30分間分極処理を行い、磁器圧電体の試料(試料番号
50〜54)を得た。
Next, silver electrodes were baked on both main surfaces of the obtained porcelain disk, and a DC voltage of 3 to 4 KV / mm was applied between both electrodes at 80 ° C to perform polarization treatment for 30 minutes to obtain a porcelain piezoelectric material. Sample (Sample number
50-54) was obtained.

各試料について、比誘電率(εr)および円板の厚み
方向の振動の電気機械結合係数(Kt)を測定し、この結
果を第7表に示した。
The relative permittivity (εr) and the electromechanical coupling coefficient (Kt) of vibration in the thickness direction of the disk were measured for each sample, and the results are shown in Table 7.

なお、第7表には比較例として副成分のPb3O4およびG
eO2を添加していない試料(試料番号49)、Pb0.85La
0.10TiO3−0.7wt%MnO2の仮焼粉末に副成分としてPbO・
B2O3・SiO2系ガラス化合物を1wt%を添加して実施例7
と同様にして作製した試料(試料番号56)、およびPb
0.85La0.10TiO3−0.7wt%MnO2の仮焼粉末に副成分とし
てNa2O・B2O3・SiO2系ガラス化合物を10wt%を添加して
実施例7と同様にして作製した試料(試料番号57)につ
いても同様の測定を行い、その結果をあわせて示してい
る。
In Table 7, as comparative examples, Pb 3 O 4 and G which are sub-components are used.
Sample without eO 2 addition (Sample No. 49), Pb 0.85 La
0.10 TiO 3 −0.7 wt% MnO 2 calcined powder with PbO
Example 7 in which 1 wt% of B 2 O 3 .SiO 2 glass compound was added
Sample (Sample No. 56) prepared in the same manner as in, and Pb
Sample prepared in the same manner as in Example 7 by adding 10 wt% of Na 2 O · B 2 O 3 · SiO 2 based glass compound as a subcomponent to a calcined powder of 0.85 La 0.10 TiO 3 −0.7 wt% MnO 2. The same measurement was performed for (Sample No. 57), and the results are also shown.

また、第7表中の試料番号55は、本発明の範囲外であ
る。
Moreover, the sample number 55 in Table 7 is outside the scope of the present invention.

(実施例8) まず、実施例7でPb0.85La0.10TiO3−0.7wt%MnO2
組成となるように秤量した主成分に対して、副成分の原
料としてPb3O4とGeO2を用い、Pb3O4をPbOに換算し、GeO
2をGeO2に換算し、一般式:xPbO・yGeO2のモル比ををx
=5,y=3とするとともに、第8表に示すような配合比
で添加,含有させた以外は、実施例2と同様にして磁器
角板の試料(試料番号58〜64)を得た。
(Example 8) First, the weighed main component so as to have the composition of Pb 0.85 La 0.10 TiO 3 -0.7wt% MnO 2 in Example 7, the Pb 3 O 4 and GeO 2 as a subcomponent material Using Pb 3 O 4 converted to PbO, GeO
2 is converted to GeO 2 and the molar ratio of the general formula: xPbO · yGeO 2 is x
= 5, 5 and y = 3, and samples (sample numbers 58 to 64) of porcelain square plates were obtained in the same manner as in Example 2 except that the compounding ratios shown in Table 8 were added and contained. .

各試料について3点曲げ試験法(支持点間距離:11m
m)により抗折強度(kg/cm2)を測定し、その結果を焼
成温度とともに、第8表に示した。
3-point bending test method for each sample (distance between supporting points: 11 m
The bending strength (kg / cm 2 ) was measured by m), and the results are shown in Table 8 together with the firing temperature.

なお、試料番号58,61,64は、本発明の範囲外である。 The sample numbers 58, 61 and 64 are out of the scope of the present invention.

第1表〜第8表の結果から明らかなように、本発明に
係る鉛酸化物含有強誘電性磁器組成物は、副成分を含ま
ない鉛酸化物含有強誘電性磁器よりも100℃〜400℃低い
焼成温度で焼結することができ、しかもそれとほぼ同程
度の電気機械結合係数および比誘電率を示している。
As is clear from the results of Tables 1 to 8, the lead oxide-containing ferroelectric ceramic composition according to the present invention is 100 ° C. to 400 ° C. higher than the lead oxide-containing ferroelectric ceramic containing no subcomponents. It can be sintered at a firing temperature as low as 0 ° C., and exhibits almost the same electromechanical coupling coefficient and relative permittivity.

また、本発明に係る鉛酸化物含有強誘電性磁器組成物
は、xPbO・yGeO2(x=1〜6,y=1〜3)のモル比とな
るように添加する副成分となるPb3O4およびGeO2の量の
増加とともに、電気機械結合係数および比誘電率が低下
するが、その度合は、PbO・B2O3・SiO2系ガラス化合物
やNa2O・B2O3・SiO2系ガラス化合物を添加した場合と比
較して著しく少ない。
Further, the lead oxide-containing ferroelectric ceramic composition according to the present invention is Pb 3 which is an auxiliary component added so as to have a molar ratio of xPbO · yGeO 2 (x = 1 to 6, y = 1 to 3). The electromechanical coupling coefficient and the relative permittivity decrease with the increase of the amounts of O 4 and GeO 2 , but the degree of the decrease depends on the amount of PbO ・ B 2 O 3・ SiO 2 glass compound or Na 2 O ・ B 2 O 3・. Remarkably less than in the case of adding a SiO 2 glass compound.

(実施例9) まず、原料としてPb3O4,TiO2,ZrO2,MnO2およびNb2
O5を用い、 0.1Pb(Mn1/3Nb2/3)O3−0.52PbTiO3−0.38PbZrO3の組成
を有する強誘電性磁器を得られるように秤量し、副成分
の原料としてPb3O4とGeO2を用い、Pb3O4をPbOに換算
し、GeO2をGeO2に換算し、一般式:xPbO・yGeO2のモル比
をx=5,y=3とするとともに、主成分に対して、第9
表に示すような配合比で添加,含有させた以外は、実施
例3と同様にして仮焼粉末を得た。
Example 9 First, as raw materials, Pb 3 O 4 , TiO 2 , ZrO 2 , MnO 2 and Nb 2 were used.
Using O 5 , weighed so as to obtain a ferroelectric porcelain having a composition of 0.1Pb (Mn 1/3 Nb 2/3 ) O 3 −0.52PbTiO 3 −0.38PbZrO 3 , and used Pb 3 as a raw material for the subcomponent. using O 4 and GeO 2, converts the Pb 3 O 4 to PbO, converting the GeO 2 into GeO 2, the general formula: the xPbO · yGeO molar ratio of 2 with an x = 5, y = 3, the main 9th component
A calcined powder was obtained in the same manner as in Example 3 except that the compounding ratios shown in the table were added and contained.

次に、得られた仮焼粉末に有機バインダを2〜3wt%
加えて20時間混合した後、造粒し、プレス成形して角板
を形成し、この角板を第9表に示す焼成温度で2時間焼
成して、一辺が5mmで厚さ0.5mmの磁器角板を得た。
Next, the obtained calcined powder is mixed with an organic binder in an amount of 2 to 3% by weight.
In addition, after mixing for 20 hours, it is granulated, press-formed to form a square plate, and this square plate is baked at the baking temperature shown in Table 9 for 2 hours to obtain a porcelain piece with a side of 5 mm and a thickness of 0.5 mm. I got a square plate.

次に、得られた磁器角板の両主表面に銀電極を焼付
け、80℃中で両電極間に3〜4KV/mmの直流電圧を印加し
て30分間分極処理を行い、面内に垂直方向に分極された
発振子(共振子)の試料(試料番号71〜78)を得た。
Next, silver electrodes are baked on both main surfaces of the obtained porcelain square plate, a DC voltage of 3 to 4 KV / mm is applied between both electrodes at 80 ° C, and polarization treatment is performed for 30 minutes to make it perpendicular to the plane. Samples (sample numbers 71 to 78) of oscillators (resonators) polarized in the directions were obtained.

各試料を第1図の発振回路にそれぞれ接続し、発振周
波数455KHzで発振させた。図中、1は発振子、IC1は反
転増幅器、R1は抵抗、CL1,CL2はコンデンサである。そ
して、各試料について、この発振回路で100回動作さ
せ、この100回のうち、発振周波数が455KHzから4.5MHz
への異常発振が発生した回数を第9表に示した。
Each sample was connected to the oscillation circuit of FIG. 1 and oscillated at an oscillation frequency of 455 KHz. In the figure, 1 is an oscillator, IC 1 is an inverting amplifier, R 1 is a resistor, and CL 1 and CL 2 are capacitors. Then, for each sample, operate the oscillator circuit 100 times, and the oscillation frequency is 455KHz to 4.5MHz out of 100 times.
Table 9 shows the number of occurrences of abnormal oscillation in the.

なお、第9表中の試料番号71,73,75,77は、本発明の
範囲外である。
The sample numbers 71, 73, 75, 77 in Table 9 are out of the scope of the present invention.

第9表の結果から明らかなように、本発明に係る鉛酸
化物含有強誘電性磁器組成物を用いた発振子では、異常
発振が全く認められなかったが、副成分を含まない本発
明の範囲外のものでは、第2図に示すように、厚み縦振
動のスプリアスが生じ4.5MHz付近での異常発振が認めら
れた。
As is clear from the results shown in Table 9, in the oscillator using the lead oxide-containing ferroelectric ceramic composition according to the present invention, no abnormal oscillation was observed, but according to the present invention containing no subcomponents. Outside the range, as shown in Fig. 2, spurious of thickness longitudinal vibration occurred and abnormal oscillation near 4.5MHz was observed.

これは、強誘電性磁器に添加した副成分が結晶粒界の
強度を高めるだけでなく、発振子として利用した場合、
主振動に悪影響を与えることなく、厚み縦振動のスプリ
アスを低下させるためであると考えられる。
This is because when the accessory component added to the ferroelectric porcelain not only enhances the strength of the crystal grain boundary, but is also used as an oscillator,
It is considered that this is to reduce the spurious of the thickness longitudinal vibration without adversely affecting the main vibration.

したがって、本発明に係る鉛酸化物含有強誘電性磁器
組成物は、基本発振周波数より高い振動の減衰に有利で
ある。なお、このような効果は、拡がり振動を利用した
発振子だけでなく、辺振動を利用する発振子等の材料と
しての鉛酸化物含有強誘電性磁器組成物についても認め
られた。
Therefore, the lead oxide-containing ferroelectric ceramic composition according to the present invention is advantageous for damping vibrations higher than the fundamental oscillation frequency. It should be noted that such an effect was observed not only in the oscillator using the spreading vibration but also in the lead oxide-containing ferroelectric ceramic composition as a material of the oscillator using the side vibration.

(実施例10) まず、原料としてPb3O4,Fe2O3,Nb2O5およびWO3を用
い、 0.70Pb(Fe1/2Nb1/2)O3−0.30Pb(Fe2/3W1/3)O3の組成を
有する強誘電性磁器が得られるように秤量し、副成分の
原料としてPb3O4とGeO2を用い、Pb3O4をPbOに換算し、G
eO2をGeO2に換算し、一般式:xPbO・yGeO2のモル比をを
x=5,y=3とするとともに、主成分に対して、第10表
に示すような配合比で添加,含有させた以外は、実施例
3と同様にして仮焼粉末を得た。
(Example 10) First, Pb 3 O 4 , Fe 2 O 3 , Nb 2 O 5 and WO 3 were used as raw materials, and 0.70Pb (Fe 1/2 Nb 1/2 ) O 3 −0.30Pb (Fe 2 / 3 W 1/3 ) O 3 was weighed so as to obtain a ferroelectric porcelain, Pb 3 O 4 and GeO 2 were used as raw materials for the subcomponents, and Pb 3 O 4 was converted to PbO.
Converting eO 2 to GeO 2 , the molar ratio of the general formula: xPbO · yGeO 2 is set to x = 5, y = 3, and added to the main component in the compounding ratio as shown in Table 10, A calcined powder was obtained in the same manner as in Example 3 except that the calcined powder was added.

次に、得られた仮焼粉末に、有機バインダを2〜3wt
%加えて20時間混合して造粒した後、プレス成形して円
板を形成し、これを第10表に示す焼成温度で2時間焼成
して、直径10mm,厚さ1.0mmの磁器円板を得た。
Next, add 2-3 wt% of organic binder to the obtained calcined powder.
%, Mixed and granulated for 20 hours, press-molded to form a disk, which was then baked at the baking temperature shown in Table 10 for 2 hours to obtain a porcelain disk with a diameter of 10 mm and a thickness of 1.0 mm. Got

次に、得られた磁器円板の両主表面に銀電極を焼き付
けてコンデンサの試料(試料番号79〜84)を得た。
Next, silver electrodes were baked on both main surfaces of the obtained porcelain disk to obtain capacitor samples (sample numbers 79 to 84).

各試料について、比誘電率(εr)および抗折強度
(kg/cm2)を測定し、その結果を第10表に示した。
The relative permittivity (εr) and bending strength (kg / cm 2 ) of each sample were measured, and the results are shown in Table 10.

なお、試料番号79,81,83は、本発明の範囲外である。 The sample numbers 79, 81 and 83 are out of the scope of the present invention.

(実施例11) まず、原料としてPb3O4,ZnO,Nb2O5,Fe2O3,WO3を用
い、これらを0.16Pb(Zn1/3Nb2/3)O3−0.48Pb(Fe1/2Nb
1/2)O3−0.36Pb(Fe2/3W1/3)O3の組成を有する強誘電体
磁器が得られるように秤量し、実施例3と同様にして仮
焼粉末を得た。
(Example 11) First, Pb 3 O 4, ZnO, and Nb 2 O 5, Fe 2 O 3, WO 3 is used as a raw material, these 0.16Pb (Zn 1/3 Nb 2/3) O 3 -0.48Pb (Fe 1/2 Nb
1/2) O 3 -0.36Pb (Fe 2/3 W 1/3) were weighed so as ferroelectric ceramics having a composition of O 3 is obtained, to obtain a calcined powder in the same manner as in Example 3 .

次に、得られた仮焼粉末に、有機バインダを2〜3wt
%加えて20時間混合して造粒した後、プレス成形して円
板を成形し、これを第11表に示す焼成温度で2時間焼成
して、直径10mm,厚さ1.0mmの磁器円板を得た。
Next, add 2-3 wt% of organic binder to the obtained calcined powder.
%, Mixed and granulated for 20 hours, press-molded to form a disc, which was then fired at the firing temperature shown in Table 11 for 2 hours to give a porcelain disc with a diameter of 10 mm and a thickness of 1.0 mm. Got

次に、得られた磁器円板の両主表面に銀電極を焼き付
けてコンデンサの試料(試料番号85−88)を得た。
Next, silver electrodes were baked on both main surfaces of the obtained porcelain disk to obtain a capacitor sample (Sample No. 85-88).

各試料について、比誘電率(εr)および抗折強度
(kg/cm2)を測定し、その結果を第11表に示した。
The relative permittivity (εr) and bending strength (kg / cm 2 ) of each sample were measured, and the results are shown in Table 11.

なお、第11表中の試料番号85,87は、本発明の範囲外
である。
The sample numbers 85 and 87 in Table 11 are out of the scope of the present invention.

第10表および第11表の結果から明らかなように、酸化
鉛を含む複合ペロブスカイト系のコンデンサ材料につい
てもPbの酸化物をPbOに換算し、Geの酸化物をGeO2に換
算し、PbOとGeO2のモル比を一般式:xPbO・yGeO2(x=
1〜6,y=1〜3)として、これらを副成分として0.01
〜30重量%添加、含有させたことにより、比誘電率およ
び抗折強度を向上させることができる。
As is clear from the results in Tables 10 and 11, for the composite perovskite-based capacitor material containing lead oxide, the oxide of Pb was converted to PbO, the oxide of Ge was converted to GeO 2 , and PbO The molar ratio of GeO 2 is expressed by the general formula: xPbO · yGeO 2 (x =
1-6, y = 1-3), and 0.01
Addition of up to 30% by weight makes it possible to improve the relative dielectric constant and flexural strength.

(発明の効果) 以上の説明から明らかなように、本発明によれば、85
0〜1000℃の低い焼成温度で焼結し、しかも、電気機械
結合係数が大きく、比誘電率が大きい鉛酸化物含有強誘
電性磁器が得られるので、エネルギー変換効率が高い圧
電素子を製造できる。
(Effects of the Invention) As apparent from the above description, according to the present invention, 85
It is possible to manufacture a piezoelectric element with high energy conversion efficiency because it is possible to obtain a lead oxide-containing ferroelectric porcelain having a large electromechanical coupling coefficient and a large relative dielectric constant, which is sintered at a low firing temperature of 0 to 1000 ° C. .

また、焼結温度が低いことから金属製の基板との一体
焼結が可能となり、一体焼結型のブザーやバイモルフ等
の電歪素子を製造できるだけではなく、焼成時、PbO雰
囲気調整が不要となり、匣や焼成炉の延命化、および省
エネルギー化を図ることができるなど優れた効果が得ら
れる。
In addition, since the sintering temperature is low, it is possible to integrally sinter with a metal substrate, not only can an electrostrictive element such as an integrally sintered buzzer or bimorph be manufactured, but also PbO atmosphere adjustment is not required during firing. It is possible to obtain excellent effects such as prolonging the life of the box and the firing furnace and saving energy.

さらに、抗折強度を低下させることがなく、しかも、
発振子に利用した場合に、スプリアスの発生を防止する
ことができる。
Furthermore, without lowering the bending strength,
When used as an oscillator, it is possible to prevent spurious emission.

【図面の簡単な説明】[Brief description of drawings]

第1図はセラミック発振子を含む発振回路を示す回路
図、第2図は第1図の発振回路での主振動である拡がり
振動とスプリアス振動の厚み縦振動を示す図である。 1…セラミック発振子 IC1…反転増幅器 R1…抵抗 CL1,CL2…コンデンサ。
FIG. 1 is a circuit diagram showing an oscillation circuit including a ceramic oscillator, and FIG. 2 is a diagram showing thickness vibrations of spreading vibration and spurious vibration which are main vibrations in the oscillation circuit of FIG. 1 ... Ceramic oscillator IC 1 ... Inverting amplifier R 1 ... Resistors CL 1 , CL 2 ... Capacitors.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C04B 35/00 J H01L 41/18 101J ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location C04B 35/00 J H01L 41/18 101J

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】主成分である鉛酸化物含有強誘電性磁器に
対して、副成分としてPbの酸化物とGeの酸化物がそれぞ
れ添加含有され、Pbの酸化物をPbOに換算し、Geの酸化
物をGeO2に換算し、PbOとGeO2のモル比を一般式:xPbO・
yGeO2として表したときx,yがそれぞれx=1〜6,y=1
〜3であり、かつ添加、含有されたPbOとGeO2の合計量
が0.01〜30重量%であることを特徴とする鉛酸化物含有
強誘電性磁器組成物。
1. A Pb oxide and a Ge oxide are added as sub-components to a lead oxide-containing ferroelectric porcelain, which is the main component, and the Pb oxide is converted to PbO. of oxide in terms of GeO 2, the general formula the molar ratio of PbO and GeO 2: xPbO ·
When expressed as yGeO 2 , x and y are x = 1 to 6 and y = 1, respectively.
The lead oxide-containing ferroelectric ceramic composition is characterized in that the total amount of PbO and GeO 2 added is 0.01 to 30% by weight.
【請求項2】請求項(1)に記載の鉛酸化物含有強誘電
性磁器組成物からなる板状の強誘電性磁器板と、この強
誘電性磁器板の両主表面に形成された電極と、からなる
ことを特徴とする圧電素子。
2. A plate-shaped ferroelectric porcelain plate made of the lead oxide-containing ferroelectric porcelain composition according to claim 1, and electrodes formed on both main surfaces of the ferroelectric porcelain plate. And a piezoelectric element.
【請求項3】請求項(1)に記載の鉛酸化物含有強誘電
性磁器組成物からなる仮焼粉末を含有する厚膜ペースト
が金属製の基板上に塗布,焼き付けられて一体化され、
この焼き付けによって形成された強誘電性磁器層の表面
に電極が形成されたことを特徴とする圧電素子。
3. A thick film paste containing a calcined powder made of the lead oxide-containing ferroelectric ceramic composition according to claim 1 is applied and baked on a metal substrate to be integrated,
A piezoelectric element having an electrode formed on the surface of a ferroelectric ceramic layer formed by this baking.
JP1086043A 1989-04-04 1989-04-04 Ferroelectric composition containing lead oxide and piezoelectric element using the same Expired - Fee Related JP2504176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1086043A JP2504176B2 (en) 1989-04-04 1989-04-04 Ferroelectric composition containing lead oxide and piezoelectric element using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1086043A JP2504176B2 (en) 1989-04-04 1989-04-04 Ferroelectric composition containing lead oxide and piezoelectric element using the same

Publications (2)

Publication Number Publication Date
JPH02263761A JPH02263761A (en) 1990-10-26
JP2504176B2 true JP2504176B2 (en) 1996-06-05

Family

ID=13875650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1086043A Expired - Fee Related JP2504176B2 (en) 1989-04-04 1989-04-04 Ferroelectric composition containing lead oxide and piezoelectric element using the same

Country Status (1)

Country Link
JP (1) JP2504176B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1578179A3 (en) * 2004-03-16 2006-05-03 E.I. du Pont de Nemours and Company Thick-film dielectric and conductive compositions
JP4537212B2 (en) 2005-01-11 2010-09-01 日本碍子株式会社 Method for manufacturing piezoelectric / electrostrictive element

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4158219A (en) * 1977-11-01 1979-06-12 University Of Illinois Foundation Heterophasic ceramic capacitor
JPS6359362U (en) * 1986-10-06 1988-04-20
JP2504158B2 (en) * 1989-01-26 1996-06-05 株式会社村田製作所 Ferroelectric porcelain
JP2753311B2 (en) * 1989-03-10 1998-05-20 ティーディーケイ株式会社 Dielectric ceramic composition for temperature compensation

Also Published As

Publication number Publication date
JPH02263761A (en) 1990-10-26

Similar Documents

Publication Publication Date Title
JP3991564B2 (en) Piezoelectric ceramic composition and piezoelectric element
JP3570294B2 (en) Piezoelectric ceramic material and piezoelectric ceramic sintered body obtained using the same
JP3198906B2 (en) Piezoelectric porcelain composition
JP4529301B2 (en) Piezoelectric ceramic
JP2504176B2 (en) Ferroelectric composition containing lead oxide and piezoelectric element using the same
JP2682022B2 (en) Ferroelectric porcelain composition and piezoelectric element using the same
JP4636222B2 (en) Piezoelectric ceramic
JP3613140B2 (en) Piezoelectric ceramic composition and piezoelectric ceramic element using the same
JPH09132456A (en) Piezoelectric porcelain
US6391223B1 (en) Piezoelectric ceramic composition and piezoelectric ceramic element using the same
JP3791300B2 (en) Piezoelectric ceramic composition and piezoelectric ceramic element using the same
JP4467168B2 (en) Piezoelectric ceramic and piezoelectric element
JP4798898B2 (en) Piezoelectric ceramic composition, piezoelectric resonator, and multilayer piezoelectric element
JP3097217B2 (en) Piezoelectric ceramic composition
JP2910338B2 (en) Piezoelectric porcelain composition
JP3228648B2 (en) Piezoelectric ceramic composition
JP3106507B2 (en) Piezoelectric porcelain composition
JP3389947B2 (en) Dielectric ceramic composition and thick film capacitor using the same
JP3761970B2 (en) Piezoelectric ceramic composition
JP3106508B2 (en) Piezoelectric porcelain composition
JP3266483B2 (en) Piezoelectric ceramic composition
JP3318480B2 (en) Piezoelectric ceramic composition
JPH02197181A (en) Ferroelectric porcelain body
JP3550918B2 (en) Piezoelectric ceramic composition
JPH09142931A (en) Piezoelectric ceramic composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees