JP4798898B2 - Piezoelectric ceramic composition, piezoelectric resonator, and multilayer piezoelectric element - Google Patents

Piezoelectric ceramic composition, piezoelectric resonator, and multilayer piezoelectric element Download PDF

Info

Publication number
JP4798898B2
JP4798898B2 JP2001260265A JP2001260265A JP4798898B2 JP 4798898 B2 JP4798898 B2 JP 4798898B2 JP 2001260265 A JP2001260265 A JP 2001260265A JP 2001260265 A JP2001260265 A JP 2001260265A JP 4798898 B2 JP4798898 B2 JP 4798898B2
Authority
JP
Japan
Prior art keywords
piezoelectric
piezoelectric ceramic
electrodes
resonator
ceramic composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001260265A
Other languages
Japanese (ja)
Other versions
JP2003063865A (en
Inventor
知宣 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001260265A priority Critical patent/JP4798898B2/en
Publication of JP2003063865A publication Critical patent/JP2003063865A/en
Application granted granted Critical
Publication of JP4798898B2 publication Critical patent/JP4798898B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、圧電磁器組成物及び圧電共振子並びに積層型圧電素子に関し、特に、焼成温度を低温化できる圧電磁器組成物及び圧電共振子並びに積層型圧電素子に関するものである。
【0002】
【従来技術】
近年、無線通信や電気回路に用いられる周波数の高周波化が進んでおり、これに伴って、これらの電気信号に対して用いられる圧電共振子(発振子を含む概念で用いる)は高い周波数領域に対応したものが要求され、開発が行われている。最近は、特に、高い周波数領域に対応できる厚み縦振動モードや厚み滑り振動モードを利用した共振子、および周波数定数の高い圧電材料の開発が進められている。
【0003】
厚み縦振動モードや厚み滑り振動モードを利用した圧電共振子では、共振周波数は圧電磁器板の厚みにより決定される。従来から広く知られているチタン酸鉛系圧電共振子では、厚み縦振動の3倍波を用い、発振周波数33.86MHzの時圧電磁器板の厚みは約230μm、厚み滑り振動の基本波を用いた場合、発振周波数が8.0MHzの時に圧電磁器板の厚みは約180μmであり、チタン酸ジルコン酸鉛系圧電共振子では、厚み滑り振動の基本波を用いた場合、発振周波数が8.0MHzの時に圧電磁器板の厚みは約130μmであった。このように通常、16MHz以上の周波数帯域では、加工のし易さから振動モードとして、厚み縦振動の3倍波が用いられている。
【0004】
しかしながら、厚み縦振動の3倍波を使用した場合には、低周波数領域に存在する厚み縦振動モードの基本波振動や、高周波数領域に存在する5倍波振動にて発振条件を満足してしまい、誤って発振してしまうという問題があった。
【0005】
この現象は、発振条件が圧電共振子とICのゲイン及び位相により決定され、また、発振回路のICは周波数が高くなるに従いゲインが小さくなっていくために起こりうる現象で、発振回路の回路定数を最適化することで誤発振を抑制している。
【0006】
しかしながら、雰囲気温度が変化すると発振回路の回路定数も変化してしまい、誤発振することがあるため、高周波領域で使用する場合においても、基本波振動を用いることが望ましく、また、より高周波数領域の圧電共振子を得るため、薄肉化する必要があり、その際に加工歩留まりの高い圧電磁器が望まれていた。
【0007】
また、チタン酸鉛系材料では、抗電界が非常に高く、分極処理の際、高電圧を印可せざるを得ず歩留まりの点から、抗電界の低いチタン酸ジルコン酸鉛系材料が厚み滑り振動の基本波を用いた圧電共振子材料として用いられている。
【0008】
このような圧電共振子材料としては、Pb(Ti、Zr)O3のBサイトを、(Nb1/2Sb1/2)で置換し、MnO2を含有させた酸化物圧電材料が知られており、このような圧電材料は、電気機械結合係数や機械的品質係数や抗電界が高く、キュリー温度も高い上、抗折強度も高いため、圧電共振子用材料として好適に用いられてきた。
【0009】
【発明が解決しようとする課題】
しかしながら、従来のPb(Ti、Zr)O3のBサイトを、(Nb1/2Sb1/2)で置換し、MnO2を含有させた酸化物圧電材料では、機械的品質係数(Qm)や共振周波数の温度特性等の特性バラツキが大きいものであった。特に、圧電磁器では磁器厚みによって圧電素子の共振周波数が変化するため、平面研磨における加工精度を高めているが、このように圧電定数のバラツキが大きい場合、共振周波数の初期偏差が大きく、良品率が低下するという問題があった。これは、上記材料は通常1260℃以上で焼結されており、焼成時に主成分であるPbの蒸発がおこり、圧電定数のバラツキを生じさせていると考えている。
【0010】
また、上記圧電材料をAg/Pd等の内部電極と同時焼成した積層素子として用いる場合、焼成温度が高いと、電極材料のAg/Pd比率が30/70〜40/60となってしまい、Pd含有量が全金属量のうち60重量%以上と多く、コストなどの点で不利であるという問題があった。
【0011】
さらに、特開平10−231169号公報に開示された圧電磁器組成物では、圧電特性をほとんど変化させず焼成温度のみを低下させることができるとして、主成分のPZTに、副成分としてMoを含有させ、その量を主成分に対してMoO3に換算して0.06〜5.0重量%下とする提案が成されている。しかしながら、このMoO3はSiO2やBi23と同様液相焼結させるため、低温で焼結し始めるが、焼成温度の管理が微妙で結晶粒の異常粒成長を引き起こし易く、抗折強度が低下したり、圧電特性のバラツキが大きくなるという問題があった。
【0012】
本発明は、圧電特性のバラツキを低減できる圧電磁器組成物及び圧電共振子並びに積層圧電素子を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明の圧電磁器組成物は、金属元素として、Pb、Zr、Ti、Nb、Sb、Mn、Mo、Zn及びMgを含有するペロブスカイト型複合酸化物からなる圧電磁器組成物であって、原子比による組成式を、Pb[(Nb1/2Sb1/2a(Nb2/3Mn1/3b(Mo1/2 (Mg x Zn 1-x 1/2c(TidZr1-d1-a―b―c]O3と表したとき、前記a、b、c、d、xが0.0≦a≦0.0、0.0≦b≦0.0、0.0≦c≦0.035、0.50≦d≦0.55、0.25≦x≦0.75を満足するものである。
【0014】
このような圧電磁器組成物では、液相成分として働く、MoとMg及びZnを複合させ、主成分であるPZTのBサイトと同様4価として置換することで、焼成温度を低下させることができ、また異常粒成長を抑制することができるので、優れた電気特性、高い抗折強度を維持できるとともに、圧電特性のバラツキを低減できる。特に、1000〜1100℃で焼成した場合であっても、厚み滑りモードを利用した時の機械的品質係数Qmが1140以上、共振周波数の温度特性が±0.3%以内、抗折強度が97MPa以上、圧電共振子のP/Vが83dB以上の優れた特性を得ることができる。
【0015】
また、本発明の圧電共振子は、圧電磁器板の対向する面に一対の電極を形成してなる圧電共振子であって、前記圧電磁器板が、上記圧電磁器組成物からなることを特徴とする。このような圧電共振子では、圧電特性が高く圧電特性のバラツキが低減された圧電磁器板を用いることで、圧電共振子のPVが83dB以上と優れた特性を得ることができる上、周波数定数の分布を小さくでき、周波数定数の最大値および最小値を平均値に対し±0.5%以内とすることができる。
【0016】
また、本発明の積層型圧電素子は、電極と圧電磁器板とを交互に積層してなり、前記電極と前記圧電磁器板を同時焼成してなる積層型圧電素子であって、前記電極中のAg含有量が前記電極中の全金属に対して70重量%以上であるとともに、前記圧電磁器板が、上記圧電磁器組成物からなるものである。本発明の積層型圧電素子では、1100℃以下で焼成可能なため、電極として使用する全金属中のAg比率を70重量%以上とすることができ、製造コストを大幅に低減できる。
【0017】
【発明の実施の形態】
本発明の圧電磁器組成物は、原子比による組成式を、Pb[(Nb1/2Sb1/2a(Nb2/3Mn1/3b(Mo1/2 (Mg x Zn 1-x 1/2c(TidZr1-d1-a―b―c]O3と表したとき、前記a、b、c、d、xが0.0≦a≦0.0、0.0≦b≦0.0、0.0≦c≦0.035、0.50≦d≦0.55、0.25≦x≦0.75を満足するものである。
【0018】
ここで、Pb(Ti、Zr)O3のBサイトを置換する(Nb1/2Sb1/2)は、機械的品質係数と抗折強度を向上させる効果があるが、(Nb1/2Sb1/2)によるBサイトの置換量aが0.0未満では機械的強度向上効果、Qm向上効果が見られず、aが0.0より大きいと、焼成温度が1100℃を越えてしまい、焼成時におけるPbの蒸発量が多くなり、これにより圧電特性のバラツキを大きくなる。また、圧電磁器板と同時焼成する場合、電極中のPd等の貴金属が多くなり、Ag含有量が少なくなるからである。(Nb1/2Sb1/2)によるBサイトの置換量aは、低温焼成、及び機械的強度向上、機械的品質係数Qm向上という点から、0.02〜0.03である。
【0019】
また、Bサイトを置換する(Nb2/3Mn1/3)は、特に機械的品質係数Qmを向上させる効果があるが、(Nb2/3Mn1/3)によるBサイトの置換量bが0.0未満であれば、機械的品質係数Qm向上効果がなく、bが0.0を超えると、焼結不良を起こし磁器の機械的強度が低下するからである。(Nb2/3Mn1/3)によるBサイトの置換量bは、機械的品質係数Qmを向上し、焼結性を向上するという点から、0.05〜0.07である。
【0020】
また、Bサイトを置換する(Mo1/2 (MgZn) 1/2)は、低温焼成化に効果的であるが、(Mo1/2 (MgZn) 1/2)によるBサイトの置換量cが0.0未満では、1100℃以下に低温焼成化できず、0.35を超えると磁器の粗大粒成長を引き起こし、磁器の機械的強度が低下するからである。(Mo1/2 (MgZn) 1/2)によるBサイトの置換量cは、低温焼成及び機械的強度向上という点から、0.02〜0.035である。
【0021】
ここで、高温放置において機械的品質係数Qmの低下を抑制するという点から、(MgxZn1-x)と表したとき、xは0.25〜0.75であることが望ましい。さらに、この場合のBサイト置換量cは、0.25〜0.35である。
【0022】
さらに、BサイトのTi/(Ti+Zr)比は、機械的品質係数Qm、機械的強度に影響を及ぼすが、Ti/(Ti+Zr)比を示すdが0.48未満である場合、組成相境界(MPB)近傍で結晶構造が菱面体晶となるため機械的強度が低下し、dが0.60を超えた場合、温度によって共振周波数が大きく変化するからである。Ti/(Ti+Zr)比を示すdは、機械的強度向上、共振周波数の温度特性維持という点から、0.50〜0.55である。
【0024】
以上のように構成された圧電磁器組成物では、液相成分である(Mo1/2Me1/2)を導入することにより、1100℃以下で焼成しても、圧電磁器自体の抗折強度を高く維持し、緻密体であるため、機械的品質係数Qmを高く維持でき、電気特性のバラツキを低減できる。
【0025】
特に、1000℃〜1100℃で焼成した場合であっても、厚み滑りモードを利用した圧電共振子では機械的品質係数Qmが900以上、共振周波数の温度特性が±0.3%以内、抗折強度が80MPa以上の優れた特性を得ることができる。
【0026】
本発明の組成を有する圧電磁器は、例えば、次のようにして製造することができる。まず、出発原料として、PbO、TiO2、ZrO2、Nb25、Sb23、MnO2、MoO3、MgCO3、ZnOの各粉末を、原子比による組成式を、Pb[(Nb1/2Sb1/2a(Nb2/3Mn1/3b(Mo1/2 (Mg x Zn 1-x 1/2c(TidZr1-d1-a-b-c]O3と表したとき、a、b、c、d、xが上記範囲を満足するように秤量し、湿式混合する。所定の時間混合した後スラリーを排出し、乾燥後整粒を行い、Al23製坩堝等に投入し、800〜950の温度で3〜5時間仮焼し、仮焼粉を得る。
【0027】
この粉末を所定の粉体粒径となるよう湿式粉砕し、乾燥後整粒を行い粉砕粉体を得る。得られた粉砕粉体に有機バインダーを混合し、金型プレス、静水圧プレス等により所望の形状に成形した後、大気中などの酸素含有雰囲気において、1000〜1100℃で2〜5時間焼成することによって、本発明の圧電磁器組成物を得ることができる。
【0028】
なお、使用する原料粉末としては炭酸塩や酸化物だけでなく、酢酸塩または有機金属などの化合物のいずれであっても、焼成などの熱処理プロセスによって酸化物になるものであれば差し支えない。
【0029】
また、本発明の圧電磁器組成物においては、原料粉末などに微少量含まれるRbやHfなどの不可避不純物が混入する場合があるが、特性に影響のない範囲であれば何ら差し支えない。
【0030】
また、本発明の圧電共振子は、図1に示すように、上記組成を有する圧電磁器板1の対向する面に一対の電極2、3を形成してなるものである。このような圧電共振子は、次のように製造できる。上記のようにして得られた圧電磁器板に銀電極を形成した後、80℃〜250℃のシリコンオイル中で3〜5kV/mmの直流電界を30分間印加して分極処理を行う。分極後所定の厚さに研磨し、研磨された圧電磁器板1の上下面に、電極2、3を蒸着し、所定の素子寸法を有する厚み滑り振動モードの基本波を用いた圧電共振子を得ることができる。
【0031】
なお、上記圧電磁器板は、プレート状のものの他、ブロック状のものでも良く、圧電共振子に要求される所定の厚みにするための加工法は特に限定しない。
【0032】
また、本発明の積層型圧電素子は、Ag含有量が全金属に対して70重量%以上の電極と上記組成からなる圧電磁器板とを交互に積層し、電極と圧電磁器板を同時焼成してなるもので、図2に圧電トランスからなる積層型電子部品を詳細に示す。
【0033】
図2において、圧電トランスは、長方形状の圧電基板21に、その長さ方向に、第1電圧入力部A、電圧出力部B、第2電圧入力部Cが順次形成されており、これらの第1電圧入力部A、電圧出力部B、第2電圧入力部Cにおける圧電基板21の上下面には表面電極22がそれぞれ形成されている。
【0034】
電圧出力部Bにおける圧電基板21の内部には、内部電極24が形成されており、これらの内部電極24の端部が交互に圧電基板21の対向する側面に露出し、露出した内部電極24の端部が、圧電基板21の対向する側面に設けられた一対の外部電極25に交互に接続されている。
【0035】
このような圧電トランスは次のように製造できる。
【0036】
まず、各粉末を添加混合し、仮焼粉砕した粉砕粉体に、バインダー、可塑剤を添加し、有機溶剤中に分散させスラリーを作製する。得られたスラリーを用いてドクターブレード法等により所定の厚みを有するセラミックグリーンシートを作製する。
【0037】
このグリーンシートの片面に、所定の比率で配合されたAg/Pdペーストを所定の形状となるようスクリーン印刷する。印刷されたグリーンシートを積層し、これを熱間プレス等により圧着し一体化させ、400〜500℃で加熱により脱脂を行った後、1000〜1100℃の温度で2〜5時間焼成することによって積層体を得る。この後、表面電極や外部電極を形成し、分極処理を行うことで、例えば圧電トランスや圧電アクチュエータ等の積層型圧電素子を得ることができる。
【0038】
このような積層型圧電素子では、圧電磁器板を1100℃以下で焼成しても良好な特性を維持できるため、積層型圧電素子とした場合、電極として、全金属中のAg含有量を70重量%以上とすることができ、高価なPt等の貴金属使用量を低減でき大幅なコストダウンが図れる。
【0039】
本発明では、液相を形成し易いMo、Zn,Mgは、それぞれ、単独で添加するのではなく、所定の比率で合成し、Pb(Mo1/2 (MgZn) 1/2)O 3 してBサイトへ置換するように添加しているため、異常粒成長を抑制することができる。
【0040】
【実施例】
まず、出発原料として、Pb34、ZrO2、TiO2、Sb23、Nb25及びMnO2、MoO3、MgCO3、ZnOを用意し、Pb[(Nb1/2Sb1/2a(Nb2/3Mn1/3b(Mo1/2 (Mg x Zn 1-x 1/2c(TidZr1-d1-a-b-c]O3と表したとき、a、b、c、d、xが表1を満足するように、上記原料を秤量し、24時間湿式混合した。
【0041】
尚、表1中ではMg,Znの構成が、x=0.5の場合、50%Mg50%Zn、x=0.25の場合、25%Mg75%Znのように表記した。
【0042】
次いで、上述の各混合物を、それぞれ、排出、乾燥して、950℃の温度で3時間、仮焼した。当該仮焼物を再びボールミルで粉砕し、D50が0.7μm、D90が1.3μmの粒度分布で、比表面積が2.0cm2/gである粉砕粉体を得た。
【0043】
その後、この粉砕物にポリビニルアルコール(PVA)などのバインダーを混合して造粒した。得られた粉末を150MPaの圧力で幅25mm×長さ35mm×厚さ1.5mmの寸法からなる角板状にプレス成形した。この成形体を大気中において表1に示す温度で2時間焼成した。得られた磁器を0.5mmの厚みになるまで研磨した。
【0044】
さらに、この磁器を幅5mm×長さ30mm×厚み0.50mmの短冊形状に加工し、これらの端面部に銀電極を形成した後、200℃のシリコンオイル中で3〜5kV/mmの直流電界を30分間印加して分極処理を行った。この後、短冊を0.2mm(200μm)の厚さまで研磨し、それらの上下面に、銀電極を蒸着し、幅1.5mm×長さ4.5mmの厚み滑り振動モードの基本波を用いた圧電共振子を作製した。
【0045】
そして、この圧電共振子の静電容量Cf、共振周波数fr、反共振周波数fa、共振抵抗R0、反共振抵抗Raをインピーダンスアナライザーで測定し、機械的品質係数Qm、厚み滑り振動モードの基本波振動におけるP/Vを求めた。P/Vは圧電共振子の発振性能を表す指数で、機械的品質係数Qm、およびP/Vは、Qm=fr2÷[2π×R0×Cf×(fa2−fr2)]
P/V=20×Log(Ra÷R0) (単位:dB)
の式にて算出した。
【0046】
さらに、共振周波数frの温度特性fr.T.Cを、以下の式から算出した。fr.T.C=[fr(T)−fr(25 )]/fr(25 )×100 (単位:%)ここで、fr(T)はT℃で測定したfrであり、25℃に対する変化の度合いを求めた。測定は−20℃〜80℃で行い、絶対値が最も大きなものをその試料の共振周波数の温度特性とした。fr.T.Cが±0.2%以内の場合を○、±0.2%より大きく±0.3%以内を△、±0.3%より大きい場合を×とした。
【0047】
さらに、抗折強度はJISR1601に従い4点曲げ強度を評価した。また、周波数定数のバラツキに関しては、各試料100個抜き取りで周波数定数を評価し、平均値に対して、最大値および最小値のズレを算出し、バラツキが±0.3%以内の場合を○、±0.3%より大きく±0.5%以内を△、±0.5%より大きい場合を×とした。得られた結果を表1に表記した。なお、周波数定数は反共振周波数と磁器厚みから算出した。
【0048】
【表1】

Figure 0004798898
【0049】
表1から、本発明の試料では、1100℃で焼成したにも拘わらず、Qmが1140以上、共振周波数の温度特性fr.T.Cが±0.3%以内、PVが0dB以上で、周波数定数のバラツキが平均値に対して±0.%以内、抗折強度が97MPa以上であり、通常焼成温度より100℃以上低温で焼成しても高い電気特性と高い機械的強度を兼ね備えるものであることが分かる。
【0050】
特に、Mo1/2 (Mg x Zn 1-x 1/2 ,0.25≦x≦0.75を添加しない比較例の試料No.1の場合、1100℃で焼成しても、抗折強度が53MPaであったものが、本発明範囲内である例えば、試料No.5では9MPaと飛躍的に向上することが分かる。また、比較例である試料No.2では機械的品質係数Qmが670、PVが43dBであった電気特性が、試料No.5においてはQmが1140、PVが83Bの電気特性が得られた。
【0051】
一方、本発明の範囲外である試料No.3、11では低温焼成化の効果が見られず、抗折強度が68MPaより低く、Qmも850より低く、分極工程でのバラツキから周波数定数のバラツキが大きいものであった。また、試料No.7、8、12の場合Qmが小さいものであった。さらに、試料No.15では、緻密化が進まず抗折強度が低い上、Qmも低かった。また、試料No.16では、組成相境界近傍で、抗折強度が低く、試料No.20では、共振周波数の温度特性が大きいものであった。
【0052】
【発明の効果】
以上のように、本発明の圧電磁器組成物では、1100℃以下で焼成することができ、かつ、1100℃以下で焼成しても優れた圧電特性を有しており、主元素であるPbの蒸発を抑制し、電気特性、特に周波数定数のバラツキを抑えることができるとともに、内部電極材料としてAg含有量を増加でき、安価な積層型電子部品を得ることができる。
【図面の簡単な説明】
【図1】本発明の圧電共振子を示す斜視図である。
【図2】本発明の圧電トランスを示す斜視図である。
【符号の説明】
1・・・圧電磁器板
2、3、24・・・電極[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a piezoelectric ceramic composition, a piezoelectric resonator, and a laminated piezoelectric element, and more particularly to a piezoelectric ceramic composition, a piezoelectric resonator, and a laminated piezoelectric element that can lower the firing temperature.
[0002]
[Prior art]
In recent years, the frequency used for wireless communication and electric circuits has been increased, and accordingly, piezoelectric resonators (used in concepts including oscillators) used for these electric signals are in a high frequency range. The corresponding ones are required and are being developed. Recently, the development of a resonator using a thickness longitudinal vibration mode and a thickness shear vibration mode capable of dealing with a high frequency region and a piezoelectric material having a high frequency constant have been advanced.
[0003]
In a piezoelectric resonator using the thickness longitudinal vibration mode or the thickness shear vibration mode, the resonance frequency is determined by the thickness of the piezoelectric ceramic plate. Conventionally known lead titanate-based piezoelectric resonators use a third harmonic wave of thickness longitudinal vibration, and the thickness of the piezoelectric ceramic plate with an oscillation frequency of 33.86 MHz is about 230 μm, and uses the fundamental wave of thickness shear vibration. When the oscillation frequency is 8.0 MHz, the thickness of the piezoelectric ceramic plate is about 180 μm. In the lead zirconate titanate piezoelectric resonator, the oscillation frequency is 8.0 MHz when the fundamental wave of thickness shear vibration is used. At that time, the thickness of the piezoelectric ceramic plate was about 130 μm. As described above, in the frequency band of 16 MHz or higher, the third harmonic wave of the thickness longitudinal vibration is generally used as the vibration mode because of ease of processing.
[0004]
However, when the third harmonic of the thickness longitudinal vibration is used, the oscillation condition is satisfied by the fundamental vibration of the thickness longitudinal vibration mode existing in the low frequency region and the fifth harmonic vibration existing in the high frequency region. Therefore, there was a problem that it oscillated accidentally.
[0005]
This phenomenon is a phenomenon that occurs because the oscillation condition is determined by the gain and phase of the piezoelectric resonator and the IC, and the IC of the oscillation circuit decreases as the frequency increases. By optimizing, false oscillation is suppressed.
[0006]
However, if the ambient temperature changes, the circuit constants of the oscillation circuit also change, which may cause erroneous oscillation. Therefore, it is desirable to use fundamental vibration even when used in a high frequency region, and in a higher frequency region. In order to obtain a piezoelectric resonator, it is necessary to reduce the thickness, and a piezoelectric ceramic having a high processing yield has been desired.
[0007]
In addition, the lead titanate-based material has a very high coercive electric field, and a high voltage must be applied during polarization treatment. From the viewpoint of yield, lead zirconate titanate-based material with a low coercive electric field has thickness-slip vibration. It is used as a piezoelectric resonator material using the fundamental wave.
[0008]
As such a piezoelectric resonator material, an oxide piezoelectric material in which the B site of Pb (Ti, Zr) O 3 is replaced with (Nb 1/2 Sb 1/2 ) and MnO 2 is contained is known. Such a piezoelectric material has a high electromechanical coupling coefficient, mechanical quality factor, coercive electric field, a high Curie temperature, and a high bending strength. .
[0009]
[Problems to be solved by the invention]
However, in the conventional piezoelectric piezoelectric material in which the B site of Pb (Ti, Zr) O 3 is substituted with (Nb 1/2 Sb 1/2 ) and MnO 2 is contained, the mechanical quality factor (Qm) There was a large variation in characteristics such as the temperature characteristics of the resonance frequency. In particular, in piezoelectric ceramics, the resonance frequency of the piezoelectric element changes depending on the thickness of the porcelain, so the processing accuracy in surface polishing is increased. However, when the variation in piezoelectric constant is large, the initial deviation of the resonance frequency is large and the yield rate is good. There was a problem that decreased. This is because the above materials are usually sintered at 1260 ° C. or higher, and Pb, which is the main component, evaporates during firing, resulting in variations in piezoelectric constants.
[0010]
Further, when the piezoelectric material is used as a laminated element co-fired with an internal electrode such as Ag / Pd, if the firing temperature is high, the Ag / Pd ratio of the electrode material becomes 30/70 to 40/60, and Pd The content is as high as 60% by weight or more of the total metal amount, which is disadvantageous in terms of cost.
[0011]
Furthermore, in the piezoelectric ceramic composition disclosed in Japanese Patent Application Laid-Open No. 10-231169, the main component PZT contains Mo as a subcomponent because it can reduce only the firing temperature while hardly changing the piezoelectric characteristics. A proposal has been made that the amount is 0.06 to 5.0% by weight in terms of MoO 3 with respect to the main component. However, since MoO 3 is liquid phase sintered like SiO 2 and Bi 2 O 3 , it begins to sinter at low temperatures, but the firing temperature is delicately controlled and it tends to cause abnormal grain growth, resulting in bending strength. There has been a problem that there is a decrease in the piezoelectric characteristics and the variation in piezoelectric characteristics becomes large.
[0012]
An object of the present invention is to provide a piezoelectric ceramic composition, a piezoelectric resonator, and a laminated piezoelectric element that can reduce variations in piezoelectric characteristics.
[0013]
[Means for Solving the Problems]
The piezoelectric ceramic composition of the present invention, as the metal element, there in P b, Zr, Ti, Nb , Sb, Mn, M o, a piezoelectric ceramic composition comprising a perovskite-type composite oxide containing Zn及beauty M g The composition formula based on the atomic ratio is expressed as Pb [(Nb 1/2 Sb 1/2 ) a (Nb 2/3 Mn 1/3 ) b (Mo 1/2 (Mg x Zn 1-x ) 1/2 ) c (Ti d Zr 1-d ) 1-a-bc ] O 3 , a, b, c, d and x are 0.0 2 ≦ a ≦ 0.0 3 , 0.0 5 ≦ b ≦ 0.0 7 , 0.0 2 ≦ c ≦ 0.0 35 , 0. 50 ≦ d ≦ 0. 55, 0.25 ≦ x ≦ 0.75 is satisfied.
[0014]
In such a piezoelectric ceramic composition, it acts as a liquid phase component, complexed with Mo and Mg及beauty Z n, by replacing the B site similar tetravalent PZT as the main component, lowering the firing temperature In addition, since abnormal grain growth can be suppressed , excellent electrical characteristics and high bending strength can be maintained, and variations in piezoelectric characteristics can be reduced. In particular, even when fired at 1000 to 1100 ° C., the mechanical quality factor Qm when utilizing thickness shear mode 114 0 or more, the temperature characteristics of the resonance frequency is within 0.3% ±, flexural strength Excellent characteristics of 97 MPa or more and P / V of the piezoelectric resonator of 83 dB or more can be obtained.
[0015]
The piezoelectric resonator of the present invention is a piezoelectric resonator formed by forming a pair of electrodes on opposing surfaces of a piezoelectric ceramic plate, wherein the piezoelectric ceramic plate is made of the above piezoelectric ceramic composition. To do. In such a piezoelectric resonator, by using a piezoelectric ceramic plate having high piezoelectric characteristics and reduced variations in piezoelectric characteristics, it is possible to obtain excellent characteristics such as P / V of the piezoelectric resonator of 83 dB or more. The frequency constant distribution can be reduced, and the maximum and minimum frequency constants can be within ± 0.5% of the average value.
[0016]
The multilayer piezoelectric element of the present invention is a multilayer piezoelectric element formed by alternately laminating electrodes and piezoelectric ceramic plates, and simultaneously firing the electrodes and the piezoelectric ceramic plates. Ag content is 70 weight% or more with respect to all the metals in the said electrode, and the said piezoelectric ceramic board consists of the said piezoelectric ceramic composition. Since the multilayer piezoelectric element of the present invention can be fired at 1100 ° C. or lower, the Ag ratio in all metals used as electrodes can be set to 70% by weight or more, and the manufacturing cost can be greatly reduced.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The piezoelectric ceramic composition of the present invention has a composition formula based on an atomic ratio of Pb [(Nb 1/2 Sb 1/2 ) a (Nb 2/3 Mn 1/3 ) b (Mo 1/2 (Mg x Zn 1 -x) 1/2) when expressed as c (Ti d Zr 1-d ) 1-a-b-c] O 3, wherein a, b, c, d, x is 0.0 2 ≦ a ≦ 0 .0 3, 0.0 5 ≦ b ≦ 0.0 7, 0.0 2 ≦ c ≦ 0.0 35, 0. 50 ≦ d ≦ 0. 55, 0.25 ≦ x ≦ 0.75 is satisfied.
[0018]
Here, substitution of the B site of Pb (Ti, Zr) O 3 (Nb 1/2 Sb 1/2 ) has the effect of improving the mechanical quality factor and the bending strength, but (Nb 1/2 sb 1/2) in the B-site substitution amount a is 0.0 less than 2 by the not observed mechanical strength improving effect, the Qm improvement, beyond a and is 0.0 greater than 3, the firing temperature is 1100 ° C. As a result, the amount of Pb evaporated during firing increases, thereby increasing the variation in piezoelectric characteristics. Further, when firing together with the piezoelectric ceramic plate, noble metals such as Pd in the electrode increase and the Ag content decreases. Substitution amount a of the B site by (Nb 1/2 Sb 1/2) are low-temperature firing, and mechanical strength improvement, from the viewpoint of the mechanical quality factor Qm improved, Ru der 0.02-0.03.
[0019]
Further, substitution of the B site (Nb 2/3 Mn 1/3 ) is particularly effective in improving the mechanical quality factor Qm, but the substitution amount b of the B site by (Nb 2/3 Mn 1/3 ) b. If of 0.0, less than 5, no mechanical quality factor Qm improvement, if b is more than 0.07, since the mechanical strength of porcelain cause sintering failure is reduced. Substitution amount b of B site by (Nb 2/3 Mn 1/3) is to improve the mechanical quality factor Qm, from the viewpoint of improving the sinterability, Ru der 0.05 to 0.07.
[0020]
Substitution of B site (Mo 1/2 (MgZn) 1/2 ) is effective for low-temperature firing, but the substitution amount c of B site by (Mo 1/2 (MgZn) 1/2 ) c of 0.0, it is less than 2, can not be low-temperature firing of the 1100 ° C. or less, 0. This is because if it exceeds 35 , coarse grain growth of the porcelain is caused and the mechanical strength of the porcelain is lowered. Substitution amount c of B site by (Mo 1/2 (MgZn) 1/2), from the viewpoint of low-temperature sintering and mechanical strength improvement, Ru der 0.02 to 0.035.
[0021]
Here, from the viewpoint of suppressing reduction in mechanical quality factor Qm in the standing Atsushi Ko, when expressed as (Mg x Zn 1-x) , x is desirably 0.25 to 0.75. Further, the B site substitution amount c in this case is 0 . 2 5-0 . 3 5 Der Ru.
[0022]
Further, the Ti / (Ti + Zr) ratio of the B site affects the mechanical quality factor Qm and mechanical strength. When d indicating the Ti / (Ti + Zr) ratio is less than 0.48, the composition phase boundary ( This is because when the crystal structure is rhombohedral in the vicinity of (MPB), the mechanical strength is reduced, and when d exceeds 0.60, the resonance frequency changes greatly depending on the temperature. D showing the Ti / (Ti + Zr) ratio, mechanical strength improvement, in terms of temperature characteristics maintain the resonant frequency, Ru der 0.50 to 0.55.
[0024]
In the piezoelectric ceramic composition configured as described above, the bending strength of the piezoelectric ceramic itself can be obtained even by firing at 1100 ° C. or less by introducing the liquid phase component (Mo 1/2 Me 1/2 ). Therefore, the mechanical quality factor Qm can be maintained high and variations in electrical characteristics can be reduced.
[0025]
In particular, even when fired at 1000 ° C. to 1100 ° C., a piezoelectric resonator using the thickness shear mode has a mechanical quality factor Qm of 900 or more, a temperature characteristic of the resonance frequency within ± 0.3%, and bending resistance. Excellent characteristics with a strength of 80 MPa or more can be obtained.
[0026]
The piezoelectric ceramic having the composition of the present invention can be manufactured, for example, as follows. First, as starting materials, powders of PbO, TiO 2 , ZrO 2 , Nb 2 O 5 , Sb 2 O 3 , MnO 2 , MoO 3 , MgCO 3 , and ZnO are used, and the composition formula based on the atomic ratio is expressed as Pb [(Nb 1/2 Sb 1/2 ) a (Nb 2/3 Mn 1/3 ) b (Mo 1/2 (Mg x Zn 1-x ) 1/2 ) c (Ti d Zr 1-d ) 1-abc ] When expressed as O 3 , a, b, c, d , and x are weighed so as to satisfy the above range and wet-mixed. After mixing for a predetermined time, the slurry is discharged, dried and then sized, put into an Al 2 O 3 crucible or the like, and calcined at a temperature of 800 to 950 for 3 to 5 hours to obtain calcined powder.
[0027]
This powder is wet pulverized so as to have a predetermined powder particle diameter, dried and then sized to obtain a pulverized powder. The obtained pulverized powder is mixed with an organic binder, formed into a desired shape by a die press, an isostatic press, or the like, and then fired at 1000 to 1100 ° C. for 2 to 5 hours in an oxygen-containing atmosphere such as the air. Thus, the piezoelectric ceramic composition of the present invention can be obtained.
[0028]
The raw material powder to be used is not limited to carbonates and oxides, and any compound such as acetates or organic metals can be used as long as they become oxides by a heat treatment process such as firing.
[0029]
Further, in the piezoelectric ceramic composition of the present invention, inevitable impurities such as Rb and Hf contained in a very small amount may be mixed in the raw material powder or the like, but there is no problem as long as it does not affect the characteristics.
[0030]
Moreover, the piezoelectric resonator of the present invention is formed by forming a pair of electrodes 2 and 3 on opposing surfaces of a piezoelectric ceramic plate 1 having the above composition, as shown in FIG. Such a piezoelectric resonator can be manufactured as follows. After a silver electrode is formed on the piezoelectric ceramic plate obtained as described above, a 3-5 kV / mm direct current electric field is applied for 30 minutes in silicon oil at 80 ° C. to 250 ° C. for polarization treatment. After polarization, polishing to a predetermined thickness, electrodes 2 and 3 are deposited on the upper and lower surfaces of the polished piezoelectric ceramic plate 1, and a piezoelectric resonator using a fundamental wave of a thickness-shear vibration mode having a predetermined element size is provided. Obtainable.
[0031]
The piezoelectric ceramic plate may be a plate-like one or a block-like one, and the processing method for obtaining a predetermined thickness required for the piezoelectric resonator is not particularly limited.
[0032]
In the multilayer piezoelectric element of the present invention, an electrode having an Ag content of 70% by weight or more based on the total metal and a piezoelectric ceramic plate having the above composition are alternately laminated, and the electrode and the piezoelectric ceramic plate are simultaneously fired. FIG. 2 shows in detail a multilayer electronic component comprising a piezoelectric transformer.
[0033]
In FIG. 2, the piezoelectric transformer includes a rectangular piezoelectric substrate 21 in which a first voltage input unit A, a voltage output unit B, and a second voltage input unit C are sequentially formed in the length direction. Surface electrodes 22 are formed on the upper and lower surfaces of the piezoelectric substrate 21 in the voltage input unit A, voltage output unit B, and second voltage input unit C, respectively.
[0034]
Internal electrodes 24 are formed inside the piezoelectric substrate 21 in the voltage output portion B, and ends of the internal electrodes 24 are alternately exposed at the opposing side surfaces of the piezoelectric substrate 21, and the exposed internal electrodes 24 are exposed. The end portions are alternately connected to a pair of external electrodes 25 provided on opposite side surfaces of the piezoelectric substrate 21.
[0035]
Such a piezoelectric transformer can be manufactured as follows.
[0036]
First, each powder is added and mixed, and a pulverized powder obtained by calcining and pulverizing is added with a binder and a plasticizer, and dispersed in an organic solvent to prepare a slurry. Using the obtained slurry, a ceramic green sheet having a predetermined thickness is prepared by a doctor blade method or the like.
[0037]
On one side of this green sheet, Ag / Pd paste blended at a predetermined ratio is screen-printed so as to have a predetermined shape. By laminating the printed green sheets, pressing and integrating them with a hot press, etc., degreasing by heating at 400 to 500 ° C., and then baking at a temperature of 1000 to 1100 ° C. for 2 to 5 hours A laminate is obtained. Thereafter, by forming a surface electrode and an external electrode and performing a polarization treatment, for example, a stacked piezoelectric element such as a piezoelectric transformer or a piezoelectric actuator can be obtained.
[0038]
In such a laminated piezoelectric element, good characteristics can be maintained even if the piezoelectric ceramic plate is fired at 1100 ° C. or lower. Therefore, when the laminated piezoelectric element is used, the Ag content in the entire metal is 70 wt. %, The amount of expensive precious metal such as Pt used can be reduced, and the cost can be greatly reduced.
[0039]
In the present invention, Mo, Zn, and Mg that easily form a liquid phase are not added individually, but are synthesized at a predetermined ratio to obtain Pb (Mo 1/2 (MgZn) 1/2 ) O 3 and Therefore, the abnormal grain growth can be suppressed because it is added so as to replace the B site.
[0040]
【Example】
First, Pb 3 O 4 , ZrO 2 , TiO 2 , Sb 2 O 3 , Nb 2 O 5 and MnO 2 , MoO 3 , MgCO 3 , ZnO are prepared as starting materials, and Pb [(Nb 1/2 Sb 1 / 2 ) a (Nb 2/3 Mn 1/3 ) b (Mo 1/2 (Mg x Zn 1-x ) 1/2 ) c (Ti d Zr 1-d ) 1-abc ] O 3 At this time, the raw materials were weighed and wet-mixed for 24 hours so that a, b, c, d and x satisfy Table 1.
[0041]
In Table 1 , the composition of Mg, Zn is expressed as 50% Mg50 0% Zn when x = 0.5, and 25% Mg75% Zn when x = 0.25.
[0042]
Next, each of the above-described mixtures was discharged and dried, and calcined at a temperature of 950 ° C. for 3 hours. The calcined product was pulverized again with a ball mill to obtain a pulverized powder having a particle size distribution of D50 of 0.7 μm, D90 of 1.3 μm, and a specific surface area of 2.0 cm 2 / g.
[0043]
Thereafter, the pulverized material was mixed with a binder such as polyvinyl alcohol (PVA) and granulated. The obtained powder was press-molded into a square plate having a size of width 25 mm × length 35 mm × thickness 1.5 mm at a pressure of 150 MPa. This molded body was fired in the air at the temperature shown in Table 1 for 2 hours. The obtained porcelain was polished to a thickness of 0.5 mm.
[0044]
Furthermore, after processing this porcelain into a strip shape having a width of 5 mm, a length of 30 mm, and a thickness of 0.50 mm, and forming a silver electrode on these end faces, a DC electric field of 3 to 5 kV / mm in silicon oil at 200 ° C. Was applied for 30 minutes to carry out polarization treatment. Thereafter, the strips were polished to a thickness of 0.2 mm (200 μm), silver electrodes were vapor-deposited on the upper and lower surfaces thereof, and a fundamental wave of a thickness-sliding vibration mode having a width of 1.5 mm × a length of 4.5 mm was used. A piezoelectric resonator was fabricated.
[0045]
Then, the electrostatic capacitance C f of the piezoelectric resonator, the resonance frequency fr, the anti-resonance frequency fa, resonance resistance R 0, by measuring the anti-resonance resistance R a with an impedance analyzer, mechanical quality factor Q m, thickness shear vibration mode P / V in the fundamental wave vibration of was obtained. P / V is an index representing the oscillation performance of the piezoelectric resonator, the mechanical quality factor Qm, and P / V are Qm = fr 2 ÷ [2π × R 0 × C f × (fa 2 −fr 2 )]
P / V = 20 × Log (R a ÷ R 0 ) (unit: dB)
It was calculated by the following formula.
[0046]
Further, the temperature characteristics fr. T.A. C was calculated from the following equation. fr. T.A. C = [fr (T) -fr (25 ℃)] / fr (25 ℃) × 100 ( unit:%) where, fr (T) is a fr measured at T ° C., the degree of change to 25 ° C. Asked. The measurement was performed at −20 ° C. to 80 ° C., and the one having the largest absolute value was defined as the temperature characteristic of the resonance frequency of the sample. fr. T.A. The case where C was within ± 0.2% was rated as “◯”, the case where C was greater than ± 0.2% and within ± 0.3% was evaluated as Δ, and the case where C was greater than ± 0.3% was evaluated as ×.
[0047]
Furthermore, bending strength evaluated 4-point bending strength according to JISR1601. In addition, regarding the variation of the frequency constant, the frequency constant is evaluated by sampling 100 samples, the deviation between the maximum value and the minimum value is calculated with respect to the average value, and the variation is within ± 0.3%. , Greater than ± 0.3% and within ± 0.5% was marked as Δ, and greater than ± 0.5% as x. The obtained results are shown in Table 1. The frequency constant was calculated from the antiresonance frequency and the thickness of the porcelain.
[0048]
[Table 1]
Figure 0004798898
[0049]
From Table 1, the samples of the present invention, despite was calcined at 1100 ° C., Qm is 114 0 or more, the temperature characteristics fr of the resonance frequency. T.A. C is within ± 0.3%, P / V is 80 dB or more, and frequency constant variation is ± 0. Within 3 %, the bending strength is 97 MPa or more, and it can be seen that even when firing at a temperature of 100 ° C. or more lower than the normal firing temperature, it has both high electrical properties and high mechanical strength.
[0050]
In particular, Sample No. 1 for Comparative Example in which Mo 1/2 (Mg x Zn 1-x ) 1/2 , 0.25 ≦ x ≦ 0.75 was not added. In the case of No. 1, even when baked at 1100 ° C., the bending strength was 53 MPa, which is within the scope of the present invention. It can be seen that significantly improved the 2 5 In 9 7 MPa. In addition, sample No. 2 had a mechanical quality factor Qm of 670 and P / V of 43 dB. In 2 5 Qm is 1 14 0, P / V was obtained electrical characteristics of 83 d B.
[0051]
On the other hand, Sample No. which is outside the scope of the present invention. 3 and 11, the effect of low-temperature firing was not observed, the bending strength was lower than 68 MPa, the Qm was lower than 850, and the variation in the frequency constant was large due to the variation in the polarization process. Sample No. In the case of 7, 8, and 12, Qm was small. Furthermore, sample no. In No. 15, the densification did not progress and the bending strength was low, and the Qm was also low. Sample No. No. 16 has a low bending strength in the vicinity of the composition phase boundary. In No. 20, the temperature characteristic of the resonance frequency was large.
[0052]
【The invention's effect】
As described above, the piezoelectric ceramic composition of the present invention can be fired at 1100 ° C. or lower, and has excellent piezoelectric characteristics even when fired at 1100 ° C. or lower. Evaporation can be suppressed and variations in electrical characteristics, particularly frequency constant, can be suppressed, and the Ag content can be increased as an internal electrode material, so that an inexpensive multilayer electronic component can be obtained.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a piezoelectric resonator of the present invention.
FIG. 2 is a perspective view showing a piezoelectric transformer of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Piezoelectric ceramic plate 2, 3, 24 ... Electrode

Claims (3)

金属元素として、Pb、Zr、Ti、Nb、Sb、Mn、Mo、Zn及びMgを含有するペロブスカイト型複合酸化物からなる圧電磁器組成物であって、
原子比による組成式を、
Pb[(Nb1/2Sb1/2a(Nb2/3Mn1/3b(Mo1/2 (Mg x Zn 1-x 1/2c(TidZr1-d1-a-b-c]O3
と表したとき、前記a、b、c、d、x
0.0≦a≦0.0
0.0≦b≦0.0
0.0≦c≦0.035
0.50≦d≦0.55
0.25≦x≦0.75
を満足することを特徴とする圧電磁器組成物。
As the metal element, a P b, Zr, Ti, Nb , Sb, Mn, M o, a piezoelectric ceramic composition comprising a perovskite-type composite oxide containing Zn及beauty M g,
The composition formula by atomic ratio is
Pb [(Nb 1/2 Sb 1/2 ) a (Nb 2/3 Mn 1/3 ) b (Mo 1/2 (Mg x Zn 1-x ) 1/2 ) c (Ti d Zr 1-d ) 1-abc ] O 3
Where a, b, c, d , and x are 0.0 2 ≦ a ≦ 0.0 3
0.0 5 ≦ b ≦ 0.0 7
0.0 2 ≦ c ≦ 0.0 35
0. 50 ≦ d ≦ 0. 55
0.25 ≦ x ≦ 0.75
A piezoelectric ceramic composition characterized by satisfying
圧電磁器板の対向する面に一対の電極を形成してなる圧電共振子であって、前記圧電磁器板が、請求項1記載の圧電磁器組成物からなることを特徴とする圧電共振子。  A piezoelectric resonator comprising a pair of electrodes formed on opposing surfaces of a piezoelectric ceramic plate, wherein the piezoelectric ceramic plate is made of the piezoelectric ceramic composition according to claim 1. 電極と圧電磁器板とを交互に積層してなり、前記電極と前記圧電磁器板を同時焼成してなる積層型圧電素子であって、前記電極中のAg含有量が前記電極中の全金属に対して70重量%以上であるとともに、前記圧電磁器板が、請求項1記載の圧電磁器組成物からなることを特徴とする積層型圧電素子。  A laminated piezoelectric element comprising electrodes and piezoelectric ceramic plates alternately laminated, and the electrodes and the piezoelectric ceramic plates fired simultaneously, wherein the Ag content in the electrodes is reduced to all the metals in the electrodes. A laminated piezoelectric element comprising 70% by weight or more and the piezoelectric ceramic plate comprising the piezoelectric ceramic composition according to claim 1.
JP2001260265A 2001-08-29 2001-08-29 Piezoelectric ceramic composition, piezoelectric resonator, and multilayer piezoelectric element Expired - Fee Related JP4798898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001260265A JP4798898B2 (en) 2001-08-29 2001-08-29 Piezoelectric ceramic composition, piezoelectric resonator, and multilayer piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001260265A JP4798898B2 (en) 2001-08-29 2001-08-29 Piezoelectric ceramic composition, piezoelectric resonator, and multilayer piezoelectric element

Publications (2)

Publication Number Publication Date
JP2003063865A JP2003063865A (en) 2003-03-05
JP4798898B2 true JP4798898B2 (en) 2011-10-19

Family

ID=19087492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001260265A Expired - Fee Related JP4798898B2 (en) 2001-08-29 2001-08-29 Piezoelectric ceramic composition, piezoelectric resonator, and multilayer piezoelectric element

Country Status (1)

Country Link
JP (1) JP4798898B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4600650B2 (en) * 2003-11-05 2010-12-15 セイコーエプソン株式会社 Piezoelectric film, piezoelectric element, piezoelectric actuator, piezoelectric pump, ink jet recording head, ink jet printer, surface acoustic wave element, thin film piezoelectric resonator, frequency filter, oscillator, electronic circuit, and electronic equipment
JP2007204346A (en) * 2006-02-06 2007-08-16 Iai:Kk Piezoelectric porcelain composition and piezoelectric resonator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02303173A (en) * 1989-05-18 1990-12-17 Murata Mfg Co Ltd Piezoelectric porcelain composition
JPH0818873B2 (en) * 1990-02-14 1996-02-28 松下電器産業株式会社 Piezoelectric composition
JPH0437076A (en) * 1990-05-31 1992-02-07 Kyocera Corp Piezoelectric porcelain compound
JPH0558645A (en) * 1991-09-03 1993-03-09 Hitachi Metals Ltd Piezoelectric porcelain composition
JP2001058872A (en) * 1999-08-19 2001-03-06 Tokin Corp Piezoelectric ceramics material
JP2003063866A (en) * 2001-08-28 2003-03-05 Nec Tokin Corp Method for producing piezoelectric porcelain composition

Also Published As

Publication number Publication date
JP2003063865A (en) 2003-03-05

Similar Documents

Publication Publication Date Title
JP4400754B2 (en) Piezoelectric ceramic composition and piezoelectric ceramic electronic component
JP4355084B2 (en) Piezoelectric ceramic composition and piezoelectric resonator
JPH11228227A (en) Piezoelectric ceramic composition
JP2004137106A (en) Piezoelectric porcelain composition, piezoelectric element, and method of manufacturing piezoelectric element
JPH11292625A (en) Production of piezoelectric ceramic
JP4432969B2 (en) Piezoelectric ceramic composition and piezoelectric element
JP2001316182A (en) Piezoelectric ceramic and piezoelectric resonator
JP2002255644A (en) Ceramic material and piezoelectric element using the same
JP4995412B2 (en) Piezoelectric ceramic composition and piezoelectric element using the same
JP3570294B2 (en) Piezoelectric ceramic material and piezoelectric ceramic sintered body obtained using the same
JP4493226B2 (en) Piezoelectric ceramic and piezoelectric element
JP3198906B2 (en) Piezoelectric porcelain composition
JP5392603B2 (en) Method for manufacturing piezoelectric ceramic electronic component
JP4798898B2 (en) Piezoelectric ceramic composition, piezoelectric resonator, and multilayer piezoelectric element
JP5158516B2 (en) Piezoelectric ceramic composition and piezoelectric element
JP2000313662A (en) Ceramic composition
JP3830298B2 (en) Piezoelectric ceramic composition
JP4423850B2 (en) Piezoelectric ceramic composition and piezoelectric element using the same
JP4863575B2 (en) Piezoelectric ceramic composition and piezoelectric transformer
JP4467168B2 (en) Piezoelectric ceramic and piezoelectric element
JP2010180073A (en) Piezoelectric porcelain composition and oscillator
JP4841049B2 (en) Multilayer piezoelectric element and piezoelectric transformer
WO2024122087A1 (en) Piezoelectric element, piezoelectric ceramic composition, production method for piezoelectric element, and production method for piezoelectric ceramic composition
JP2009114049A (en) Piezoelectric/electrostrictive ceramic composition and piezoelectric/electrostrictive element
JP2002338351A (en) Piezoelectric ceramic composition, piezoelectric ceramic sintered compact and electronic parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees