JPH09142931A - Piezoelectric ceramic composition - Google Patents
Piezoelectric ceramic compositionInfo
- Publication number
- JPH09142931A JPH09142931A JP7311010A JP31101095A JPH09142931A JP H09142931 A JPH09142931 A JP H09142931A JP 7311010 A JP7311010 A JP 7311010A JP 31101095 A JP31101095 A JP 31101095A JP H09142931 A JPH09142931 A JP H09142931A
- Authority
- JP
- Japan
- Prior art keywords
- piezoelectric ceramic
- heat resistance
- piezoelectric
- resonance frequency
- ceramic composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 33
- 239000000203 mixture Substances 0.000 title claims description 34
- 229910052788 barium Inorganic materials 0.000 claims abstract description 7
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 7
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 7
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 7
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 6
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 6
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 6
- 229910052712 strontium Inorganic materials 0.000 claims abstract description 6
- 229910052745 lead Inorganic materials 0.000 claims abstract description 5
- 150000001875 compounds Chemical class 0.000 claims description 4
- 230000008878 coupling Effects 0.000 abstract description 19
- 238000010168 coupling process Methods 0.000 abstract description 19
- 238000005859 coupling reaction Methods 0.000 abstract description 19
- 229910052719 titanium Inorganic materials 0.000 abstract description 6
- 238000004891 communication Methods 0.000 abstract description 5
- 238000006467 substitution reaction Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 229910052573 porcelain Inorganic materials 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000013078 crystal Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- -1 Nb 2 O 5 and MnO 2 Chemical class 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 238000010019 resist printing Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、例えば、セラミッ
クフィルタ,セラミックレゾネータ,超音波応用振動
子,圧電ブザー,圧電点火ユニット,超音波モータ,圧
電ファン,圧電センサ,圧電アクチュエータ等に用いら
れる圧電磁器組成物に係わり、特に、厚み縦振動モード
を用いた通信機器用電子部品に適する圧電磁器組成物に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a piezoelectric ceramic used in, for example, a ceramic filter, a ceramic resonator, an ultrasonic transducer, a piezoelectric buzzer, a piezoelectric ignition unit, an ultrasonic motor, a piezoelectric fan, a piezoelectric sensor, a piezoelectric actuator, or the like. The present invention relates to a composition, and more particularly to a piezoelectric ceramic composition suitable for an electronic component for communication equipment using a thickness longitudinal vibration mode.
【0002】[0002]
【従来技術】従来から、圧電磁器組成物を利用した製品
としては、例えばセラミックフィルタ,セラミックレゾ
ネータ,超音波応用振動子,圧電ブザー,圧電点火ユニ
ット,超音波モータ,圧電ファン,圧電センサ,圧電ア
クチュエータ等がある。2. Description of the Related Art Conventionally, products utilizing piezoelectric ceramic compositions include, for example, ceramic filters, ceramic resonators, ultrasonic transducers, piezoelectric buzzers, piezoelectric ignition units, ultrasonic motors, piezoelectric fans, piezoelectric sensors, and piezoelectric actuators. Etc.
【0003】ここで、セラミックフィルタ,セラミック
レゾネータ等の電子部品としては、PbZrO3 −Pb
TiO3 を主成分とした磁器組成物が利用されており、
これにNb2 O5 やMnO2 等の金属酸化物、Pb(N
b2/3 Mg1/3 )O3 やPb(Nb2/3 Co1/3 )O3
等の複合ペロブスカイト型酸化物を添加したり置換する
ことにより圧電特性の向上が図られている。Here, as an electronic component such as a ceramic filter or a ceramic resonator, PbZrO 3 -Pb is used.
A porcelain composition containing TiO 3 as a main component is used,
In addition to this, metal oxides such as Nb 2 O 5 and MnO 2 , Pb (N
b 2/3 Mg 1/3 ) O 3 and Pb (Nb 2/3 Co 1/3 ) O 3
It has been attempted to improve the piezoelectric characteristics by adding or substituting a composite perovskite type oxide such as.
【0004】従来、電気機械結合係数が大きく圧電性に
優れた圧電磁器組成物として、Pb(Nb2/3 C
o1/3 )O3 −PbZrO3 −PbTiO3 系の組成物
が知られている(特公昭45−13146号公報参
照)。Conventionally, Pb (Nb 2/3 C) has been used as a piezoelectric ceramic composition having a large electromechanical coupling coefficient and excellent piezoelectricity.
o 1/3 ) O 3 -PbZrO 3 -PbTiO 3 type compositions are known (see Japanese Patent Publication No. 45-13146).
【0005】一方、近年では通信機器市場の需要が急速
に拡大し、セラミックフィルタ,セラミックレゾネータ
のような圧電部品においては、小型化、表面実装化が進
行している。具体的には基板等の表面に実装可能なよう
に種々の条件に対応できることが要求されており、この
ような圧電部品においては、部品を基板にリフロー半田
付けする際、基板に実装された部品が230℃から30
0℃程度の高温に曝されるために部品に組み込まれる圧
電素子にも高耐熱性が要求されている。On the other hand, in recent years, the demand for the communication equipment market has expanded rapidly, and piezoelectric components such as ceramic filters and ceramic resonators have been downsized and surface-mounted. Specifically, it is required to be able to meet various conditions so that it can be mounted on the surface of a board, etc.In such a piezoelectric component, when reflow soldering the component to the substrate, the component mounted on the substrate is required. From 230 ° C to 30
Since it is exposed to a high temperature of about 0 ° C., a piezoelectric element incorporated in a component is also required to have high heat resistance.
【0006】また、例えば、圧電セラミックスの厚み縦
振動を利用した数メガヘルツ帯のフィルターにおいて
は、大きな通過帯域幅、低挿入損失、大きな保証減衰
量、平坦な群遅延時間特性が必要になる。特に、通信機
器として使用する場合、信号を正確に伝達するために保
証帯域内でのフィルターの群遅延特性を安定化すること
が重要である。Further, for example, in a filter of several megahertz band using the thickness longitudinal vibration of piezoelectric ceramics, a large pass band width, a low insertion loss, a large guaranteed attenuation amount, and a flat group delay time characteristic are required. In particular, when used as a communication device, it is important to stabilize the group delay characteristics of the filter within the guaranteed band in order to transmit the signal accurately.
【0007】加えて、電子部品を搭載する電子機器との
インピーダンス整合のため素子の比誘電率を小さくする
ことも要求されている。In addition, it is also required to reduce the relative permittivity of the element for impedance matching with the electronic equipment on which the electronic component is mounted.
【0008】従って、これらのフィルター特性を満足す
るには、厚み振動縦モードの電気機械結合係数Ktが大
きく、機械的品質係数Qmが小さく、比誘電率εrが小
さく、共振周波数の温度特性が小さく、高耐熱性を有す
る材料が必要になる。Therefore, in order to satisfy these filter characteristics, the electromechanical coupling coefficient Kt of the thickness vibration longitudinal mode is large, the mechanical quality coefficient Qm is small, the relative permittivity εr is small, and the temperature characteristic of the resonance frequency is small. Therefore, a material having high heat resistance is required.
【0009】[0009]
【発明が解決しようとする課題】しかしながら、従来の
上記したPb(Nb2/3 Co1/3 )O3 −PbZrO3
−PbTiO3 系の磁器組成物は、耐熱性が低いため、
リフロー半田付け前後の圧電特性や共振周波数の変化が
大きく、実用上の問題となっていた。また、耐熱性が低
いため、熱衝撃試験後の圧電特性や共振周波数の変化も
大きく、環境変化の激しい車両搭載用通信装置などのフ
ィルター等に用いた場合、素子の特性変化によって安定
した送受信ができなくなるという問題があった。However, the above-mentioned conventional Pb (Nb 2/3 Co 1/3 ) O 3 -PbZrO 3 is used.
Since the —PbTiO 3 -based porcelain composition has low heat resistance,
The changes in the piezoelectric characteristics and the resonance frequency before and after the reflow soldering were large, which was a practical problem. In addition, due to its low heat resistance, the piezoelectric characteristics and resonance frequency change greatly after a thermal shock test, and when used as a filter for vehicle-mounted communication devices that undergo drastic environmental changes, stable transmission and reception is possible due to changes in element characteristics. There was a problem that I could not do it.
【0010】さらに、機械的品質係数Qmが大きいため
に群遅延特性が悪く、加えて比誘電率εrが1800程
度と高いために、フィルターとして使用する際、搭載す
る電子機器とのインピーダンスが不整合となるという問
題もあった。Furthermore, since the mechanical quality factor Qm is large, the group delay characteristic is poor, and the relative permittivity εr is as high as about 1800. Therefore, when used as a filter, the impedance with the electronic equipment mounted is not matched. There was also the problem that
【0011】本発明の圧電磁器組成物は、厚み縦振動モ
ードの電気機械結合係数Ktが大きく、更に機械的品質
係数Qmが小さく、比誘電率εrが小さく、共振周波数
の温度特性、耐熱性に優れた圧電磁器組成物を提供する
ことを目的とする。The piezoelectric ceramic composition of the present invention has a large electromechanical coupling coefficient Kt in the thickness longitudinal vibration mode, a small mechanical quality coefficient Qm, a small relative dielectric constant εr, and excellent temperature characteristics and heat resistance at resonance frequency. An object is to provide an excellent piezoelectric ceramic composition.
【0012】[0012]
【課題を解決するための手段】本発明者等は、少なくと
もPb、Zr、Ti、Nb、Cr、Mn、Mg、あるい
はこれらとCa,Ba,Srのうち少なくとも一種を含
む複合ペロブスカイト型化合物であって、一定の組成を
有するものは、電気機械結合係数Ktが大きく、機械的
品質係数Qmが小さく、比誘電率εrが小さく、耐熱性
および温度特性に優れた圧電磁器組成物を得ることがで
きることを知見し、本発明に至った。DISCLOSURE OF THE INVENTION The present inventors have identified a compound perovskite type compound containing at least Pb, Zr, Ti, Nb, Cr, Mn and Mg, or at least one of Ca, Ba and Sr. Thus, those having a constant composition can obtain a piezoelectric ceramic composition having a large electromechanical coupling coefficient Kt, a small mechanical quality coefficient Qm, a small relative dielectric constant εr, and excellent heat resistance and temperature characteristics. The present invention has led to the present invention.
【0013】即ち、本発明の圧電磁器組成物は、金属成
分として少なくともPb、Zr、Ti、Nb、Cr、M
n、Mgを含むペロブスカイト型化合物であって、その
組成式を (Pb1-x Mx ) a ( Nbb Crc Mnd Mg
e ) f ( Tig Zr1-g ) 1- f O3 (ここでMはSr,
Ca,Baのうち少なくとも一種)と表わした時、前記
x,a,b,c,d,e,f,gが、0≦x≦0.0
5、0.95≦a≦1.05、0.35≦b≦0.5
8、0.12≦c≦0.31、0.07≦d≦0.2
1、0.10≦e≦0.28、0.03≦f≦0.1
0、0.47≦g≦0.52、b+c+d+e=1.0
0を満足するものである。That is, the piezoelectric ceramic composition of the present invention contains at least Pb, Zr, Ti, Nb, Cr and M as metal components.
It is a perovskite type compound containing n and Mg and has a composition formula of (Pb 1-x M x ) a (Nb b Cr c Mn d Mg
e ) f (Ti g Zr 1-g ) 1- f O 3 (where M is Sr,
At least one of Ca and Ba), x, a, b, c, d, e, f, g are 0 ≦ x ≦ 0.0.
5, 0.95 ≦ a ≦ 1.05, 0.35 ≦ b ≦ 0.5
8, 0.12 ≦ c ≦ 0.31, 0.07 ≦ d ≦ 0.2
1, 0.10 ≦ e ≦ 0.28, 0.03 ≦ f ≦ 0.1
0, 0.47 ≦ g ≦ 0.52, b + c + d + e = 1.0
It satisfies 0.
【0014】[0014]
【作用】本発明の圧電磁器組成物では、PbZrO3 −
PbTiO3 系の磁器組成物のZrおよびTiの一部を
Nb、Cr、Mn、Mgで置換したり、あるいは前記置
換と併せてPbの一部をSrやBa,Caのうち少なく
とも一種で置換することにより、高い電気機械結合係数
Kt、低い機械的品質係数Qm、低い比誘電率εrを示
すとともに、共振周波数の温度特性、リフロー耐熱性を
向上することが可能となる。In the piezoelectric ceramic composition of the present invention, PbZrO 3 −
Part of Zr and Ti of the PbTiO 3 -based porcelain composition is replaced with Nb, Cr, Mn, and Mg, or part of Pb is replaced with at least one of Sr, Ba, and Ca together with the replacement. As a result, a high electromechanical coupling coefficient Kt, a low mechanical quality coefficient Qm, and a low relative permittivity εr can be exhibited, and the temperature characteristics of the resonance frequency and the reflow heat resistance can be improved.
【0015】[0015]
【発明の実施の形態】本発明の圧電磁器組成物は、組成
式を (Pb1-x Mx ) a ( Nbb Crc Mnd Mge )
f ( Tig Zr1-g ) 1-f O3 と表わした時、x,a,
b,c,d,e,f,gが所定の範囲内のものである。
ここで、a,b,c,d,e,f,gを上記の範囲に設
定した理由について説明する。BEST MODE FOR CARRYING OUT THE INVENTION The piezoelectric ceramic composition of the present invention has a composition formula of (Pb 1-x M x ) a (Nb b Cr c Mn d Mg e ).
f (Ti g Zr 1-g ) 1-f O 3 represents x, a,
b, c, d, e, f and g are within a predetermined range.
Here, the reason why a, b, c, d, e, f, g are set in the above range will be described.
【0016】Aサイトのaを0.95≦a≦1.05と
したのは、aが0.95未満の場合や1.05よりも大
きい場合には電気機械結合係数Ktが低下し、耐熱性が
低下するからである。尚、Aサイトのaは、耐熱性向上
という観点から0.99≦a≦1.02であることが特
に望ましい。The value of a of the A site is set to 0.95≤a≤1.05 because the electromechanical coupling coefficient Kt decreases when a is less than 0.95 or larger than 1.05, and This is because the sex is reduced. From the viewpoint of improving heat resistance, it is particularly desirable that a of the A site is 0.99 ≦ a ≦ 1.02.
【0017】また、Nb量のbを0.35≦b≦0.5
8としたのは、bが0.35未満では電気機械結合係数
Ktが低下し、bが0.58よりも大きい場合には電気
機械結合係数Ktが小さく、耐熱性が劣化するからであ
る。尚、Nb量bは、耐熱性向上という観点から0.4
5≦b≦0.52であることが特に望ましい。Further, the Nb amount b is 0.35 ≦ b ≦ 0.5
The reason for setting 8 is that when b is less than 0.35, the electromechanical coupling coefficient Kt decreases, and when b is greater than 0.58, the electromechanical coupling coefficient Kt is small and heat resistance deteriorates. The Nb amount b is 0.4 from the viewpoint of improving heat resistance.
It is particularly desirable that 5 ≦ b ≦ 0.52.
【0018】さらに、Cr量のcを0.12≦c≦0.
31としたのは、cが0.12未満の場合には耐熱性が
悪くなり、0.31よりも大きい場合には、機械的品質
係数Qmが高くなり、電気機械結合係数Ktが低下する
からである。Cr量のcは、機械的品質係数Qmの低下
という観点から0.17≦c≦0.21であることが特
に望ましい。Further, when the Cr content c is 0.12≤c≤0.
The reason for 31 is that when c is less than 0.12, the heat resistance is poor, and when it is greater than 0.31, the mechanical quality factor Qm is high and the electromechanical coupling factor Kt is low. Is. It is particularly desirable that the Cr content c be 0.17 ≦ c ≦ 0.21 from the viewpoint of a decrease in the mechanical quality factor Qm.
【0019】Mn量のdを0.07≦d≦0.21とし
たのは、dが0.07未満では耐熱性が劣化し、0.2
1よりも大きいと機械的品質係数Qmが高くなるからで
ある。Mn量dは、機械的品質係数Qmの低下という観
点から0.07≦d≦0.19であることが特に望まし
い。The d of the Mn amount is set to 0.07 ≦ d ≦ 0.21 because the heat resistance deteriorates when d is less than 0.07, and 0.2
This is because if it is larger than 1, the mechanical quality factor Qm becomes high. It is particularly desirable that the Mn content d be 0.07 ≦ d ≦ 0.19 from the viewpoint of a decrease in the mechanical quality factor Qm.
【0020】Mg量eを0.10≦e≦0.28とした
のは、eが0.10未満ではKtが小さくなり、0.2
8よりも大きいと比誘電率εrが高くなり、耐熱性が低
下するからである。Mg量のeは、耐熱性向上という観
点から0.12≦e≦0.20であることが特に望まし
い。The Mg content e is set to 0.10≤e≤0.28 because Kt is small when e is less than 0.10.
If it is larger than 8, the relative permittivity εr becomes high and the heat resistance is lowered. From the viewpoint of improving heat resistance, it is particularly desirable that e of Mg content be 0.12 ≦ e ≦ 0.20.
【0021】Bサイトへの置換量fを0.03≦f≦
0.10としたのは、fが0.03未満では電気機械結
合係数Ktが低下し、また0.10よりも大きいと比誘
電率εrが大きくなり、また耐熱性が急激に劣化するか
らである。Bサイトへの置換量fは、耐熱性向上という
観点から0.05≦f≦0.10であることが特に望ま
しい。The substitution amount f to the B site is 0.03 ≦ f ≦
The reason for setting it to 0.10 is that if f is less than 0.03, the electromechanical coupling coefficient Kt decreases, and if f is greater than 0.10, the relative permittivity εr increases and the heat resistance sharply deteriorates. is there. From the viewpoint of improving heat resistance, it is particularly desirable that the substitution amount f for the B site is 0.05 ≦ f ≦ 0.10.
【0022】TiのZrへの置換量gを0.47≦g≦
0.52としたのは、gが0.47未満の場合は比誘電
率εrが大きく、耐熱性が低下し、0.52よりも大き
い場合には電気機械結合係数Ktが低くなり過ぎるため
である。TiのZrへの置換量gは、電気機械結合係数
Ktの向上および機械的品質係数Qmの低下という観点
から0.48≦g≦0.50であることが特に望まし
い。The substitution amount g of Ti with Zr is 0.47 ≦ g ≦
The reason for setting 0.52 is that when g is less than 0.47, the relative permittivity εr is large and the heat resistance is lowered, and when it is larger than 0.52, the electromechanical coupling coefficient Kt becomes too low. is there. From the viewpoint of improving the electromechanical coupling coefficient Kt and decreasing the mechanical quality coefficient Qm, the substitution amount g of Ti by Zr is particularly preferably 0.48 ≦ g ≦ 0.50.
【0023】Aサイトへの置換量xを0≦x≦0.05
としたのは、xが0.05よりも大きい場合には比誘電
率εrが大きく、耐熱性も劣化するためである。Aサイ
トへの置換量xは、耐熱性向上という観点から0.00
5≦x≦0.05であることが特に望ましい。The substitution amount x to the A site is 0 ≦ x ≦ 0.05
The reason is that when x is larger than 0.05, the relative permittivity εr is large and the heat resistance is deteriorated. The amount x of substitution with the A site is 0.00 from the viewpoint of improving heat resistance.
It is particularly desirable that 5 ≦ x ≦ 0.05.
【0024】本発明の圧電磁器組成物としては、金属元
素の原子比による組成式を、 (Pb1-x Mx ) a (Nb
b Crc Mnd Mge )f ( Tig Zr1-g ) 1-f O3
(ここで、MはSr,Ca,Baのうち少なくとも一
種)と表わした時、x,a,b,c,d,e,f,g
が、0.005≦x≦0.05、0.99≦a≦1.0
2、0.45≦b≦0.52、0.17≦c≦0.2
1、0.07≦d≦0.19、0.12≦e≦0.2
0、0.05≦f≦0.10、0.48≦g≦0.50
を満足することが望ましい。As the piezoelectric ceramic composition of the present invention, the composition formula based on the atomic ratio of metal elements is expressed as (Pb 1-x M x ) a (Nb
b Cr c Mn d Mg e ) f (Ti g Zr 1-g ) 1-f O 3
(Where M is at least one of Sr, Ca, Ba), x, a, b, c, d, e, f, g
Is 0.005 ≦ x ≦ 0.05, 0.99 ≦ a ≦ 1.0
2, 0.45 ≦ b ≦ 0.52, 0.17 ≦ c ≦ 0.2
1, 0.07 ≤ d ≤ 0.19, 0.12 ≤ e ≤ 0.2
0, 0.05 ≦ f ≦ 0.10, 0.48 ≦ g ≦ 0.50
It is desirable to satisfy
【0025】そして、本発明の圧電磁器組成物は、例え
ば、原料としてPbO、ZrO2 、TiO2 、Nb2 O
5 、Cr2 O3 、MnO2 、MgCO3 とBaCO3 、
SrCO3 、CaCO3 の各原料粉末を所定量秤量し、
ボールミル等で10〜24時間湿式混合し、次いで、こ
の混合物を脱水、乾燥した後、800〜1000℃で1
〜3時間仮焼し、当該仮焼物を再びボールミル等で粉砕
する。The piezoelectric ceramic composition of the present invention is prepared, for example, by using PbO, ZrO 2 , TiO 2 , Nb 2 O as raw materials.
5 , Cr 2 O 3 , MnO 2 , MgCO 3 and BaCO 3 ,
A predetermined amount of each raw material powder of SrCO 3 and CaCO 3 is weighed,
Wet mix for 10 to 24 hours with a ball mill or the like, then dehydrate and dry this mixture, and then 1
It is calcined for 3 hours, and the calcined product is pulverized again with a ball mill or the like.
【0026】その後、この粉砕物に有機バインダーを混
合し、造粒後、所定圧力で成形して成形体を作製し、こ
れらを大気中において1200〜1350℃で0.5〜
4時間焼成することにより得られる。After that, an organic binder is mixed with this pulverized product, and after granulation, it is molded at a predetermined pressure to prepare a molded body, which is 0.5 to 0.5 at 1200 to 1350 ° C. in the atmosphere.
It is obtained by firing for 4 hours.
【0027】得られた圧電磁器では、 (Pb1-x Mx )
a (Nbb Crc Mnd Mge )f( Tig Zr1-g )
1-f O3 からなる正方晶のペロブスカイト型結晶構造を
構成している。In the obtained piezoelectric ceramic, (Pb 1-x M x )
a (Nb b Cr c Mn d Mg e) f (Ti g Zr 1-g)
It constitutes a tetragonal perovskite type crystal structure composed of 1-f O 3 .
【0028】また、本発明の圧電磁器組成物では、N
d,La,Gd,Pr,Sm等の希土類元素を添加して
も良い。この場合には、共振周波数の温度特性を向上す
ることができる。さらに本発明の圧電磁器組成物では、
SiO2 やAl2 O3 等の不可避不純物が存在すること
もある。In the piezoelectric ceramic composition of the present invention, N
Rare earth elements such as d, La, Gd, Pr and Sm may be added. In this case, the temperature characteristic of the resonance frequency can be improved. Further, in the piezoelectric ceramic composition of the present invention,
Inevitable impurities such as SiO 2 and Al 2 O 3 may be present.
【0029】さらにまた、本発明の圧電磁器組成物で
は、平均結晶粒径が2〜5μmのペロブスカイト型結晶
が存在する。Furthermore, in the piezoelectric ceramic composition of the present invention, perovskite type crystals having an average crystal grain size of 2 to 5 μm are present.
【0030】そして、本発明の圧電磁器組成物は、例え
ば、図1に示すようなフィルター装置の圧電磁器として
用いられる。図1において、符号1は入力、符号2はア
ース、符号3は出力を示す。このフィルター装置は、厚
み縦振動モードを利用しており、同一素子中に3端子フ
ィルター4,5を設け、結合容量6を接続することによ
り、広帯域、保証減衰量を有するフィルターを構成して
いる。The piezoelectric ceramic composition of the present invention is used, for example, as a piezoelectric ceramic for a filter device as shown in FIG. In FIG. 1, reference numeral 1 indicates an input, reference numeral 2 indicates a ground, and reference numeral 3 indicates an output. This filter device uses the thickness longitudinal vibration mode, and by providing three-terminal filters 4 and 5 in the same element and connecting a coupling capacitor 6, a filter having a wide band and a guaranteed attenuation amount is configured. .
【0031】[0031]
【実施例】原料粉末としてPbO、ZrO2 、Ti
O2 、Nb2 O5 、Cr2 O3 、MnO2 、MgCO3
及びSrCO3 、BaCO3 、CaCO3 のうち少なく
とも一種の酸化物の各原料粉末を、表1,2に示すよう
な組成となるように所定量秤量し、ZrO2 ボールを用
いたボールミルで12時間湿式混合し、次いで、この混
合物を脱水、乾燥した後、950℃で3時間仮焼し、当
該仮焼物を再びボールミルで粉砕した。EXAMPLES PbO, ZrO 2 , Ti as raw material powders
O 2 , Nb 2 O 5 , Cr 2 O 3 , MnO 2 , MgCO 3
And SrCO 3 , BaCO 3 and CaCO 3 raw material powders of at least one oxide were weighed in predetermined amounts so as to have the compositions shown in Tables 1 and 2, and then for 12 hours with a ball mill using ZrO 2 balls. After wet-mixing, the mixture was dehydrated and dried, and then calcined at 950 ° C. for 3 hours, and the calcined product was pulverized again with a ball mill.
【0032】[0032]
【表1】 [Table 1]
【0033】[0033]
【表2】 [Table 2]
【0034】その後、この粉砕物に有機バインダー(P
VA)を混合し、造粒した。得られた粉末を1.5t/
cm2 の圧力で長辺34mm、短辺20mm、厚さ2m
mの寸法からなる角板にプレス成形した。さらに、これ
らの成形体をMgO等からなる容器内に密閉し、大気中
1200℃で2時間の条件で焼成した。Then, an organic binder (P
VA) was mixed and granulated. 1.5 t /
With a pressure of cm 2 , the long side is 34 mm, the short side is 20 mm, and the thickness is 2 m.
It was press molded into a square plate having a size of m. Further, these molded bodies were sealed in a container made of MgO or the like and baked in the atmosphere at 1200 ° C. for 2 hours.
【0035】得られた焼結体を厚み0.2mmに研磨
し、両主面にAgとCuを蒸着して電極を形成し、80
℃のシリコンオイル中で3kv/mmの直流電圧を30
分間印加して分極処理した後、直径1mmの対向電極を
得るため、レジスト印刷、エッチング処理を施した。The obtained sintered body was ground to a thickness of 0.2 mm, Ag and Cu were vapor-deposited on both main surfaces to form electrodes, and 80
DC voltage of 3kv / mm in silicon oil at ℃ 30
After applying for a minute and polarization treatment, resist printing and etching treatment were performed to obtain a counter electrode having a diameter of 1 mm.
【0036】得られた試料において電気機械結合係数K
t,機械的品質係数Qm、共振周波数の温度特性とリフ
ロー耐熱性を評価した。また、比誘電率εrをインピー
ダンスアナライザーを用いて、測定周波数1kHz、信
号電圧1Vrmsの条件で容量を求め、この容量から計
算して求めた。The electromechanical coupling coefficient K in the obtained sample
t, mechanical quality factor Qm, temperature characteristics of resonance frequency and reflow heat resistance were evaluated. Further, the relative permittivity εr was obtained by using an impedance analyzer under the conditions of a measurement frequency of 1 kHz and a signal voltage of 1 Vrms, and was calculated from this capacitance.
【0037】電気機械結合係数Kt,機械的品質係数Q
mはインピーダンスアナライザーで測定した共振周波数
と反共振周波数の値から計算により求めた。共振周波数
の温度特性は、−30℃〜80℃の温度範囲における共
振周波数の最大値frmax と最小値frmin 、25℃に
おける共振周波数fr25の値から、frT.C.=
{(frmax −frmin )/fr25}/110×106
の式を用いて算出した変化率frT.C.で評価した。Electromechanical coupling coefficient Kt, mechanical quality coefficient Q
m was calculated from the values of the resonance frequency and the anti-resonance frequency measured with an impedance analyzer. The temperature characteristic of the resonance frequency is that the maximum value fr max and the minimum value fr min of the resonance frequency in the temperature range of −30 ° C. to 80 ° C. and the value of the resonance frequency fr 25 at 25 ° C. C. =
{(Fr max −fr min ) / fr 25 } / 110 × 10 6
The rate of change frT. C. Was evaluated.
【0038】共振周波数のリフロー特性は、260℃を
ピークとする半田リフロー炉を3回連続して通過させる
試験を行った際の、試験前の共振周波数fr1 と試験後
の共振周波数fr2 の値から、fra =|(fr2 −f
r1 )|/fr1 ×100の式を用いて算出した変化率
fra で評価し、これらの結果を表3,4に示す。The reflow characteristics of the resonance frequency are the resonance frequency fr 1 before the test and the resonance frequency fr 2 after the test when the test is carried out by passing the solder reflow furnace whose peak is 260 ° C. three times in succession. From the value, fra = | (fr 2 −f
The rate of change fra calculated using the formula r 1 ) | / fr 1 × 100 was evaluated, and the results are shown in Tables 3 and 4.
【0039】[0039]
【表3】 [Table 3]
【0040】[0040]
【表4】 [Table 4]
【0041】これらの表3,4から、本発明の圧電磁器
組成物は電気機械結合係数Ktが30%以上と大きく、
機械的品質係数Qmが500以下と低く、比誘電率は1
500以下と低く、また、耐熱試験によるfra の変化
が0.2%以下と小さい。加えて、共振周波数の温度特
性frT.C.が50ppm/℃以下と小さいことが判
る。From these Tables 3 and 4, the piezoelectric ceramic composition of the present invention has a large electromechanical coupling coefficient Kt of 30% or more,
Mechanical quality factor Qm is as low as 500 or less and relative permittivity is 1
It is as low as 500 or less, and the change in fra due to the heat resistance test is as small as 0.2% or less. In addition, the temperature characteristic of resonance frequency frT. C. Is as small as 50 ppm / ° C. or less.
【0042】[0042]
【発明の効果】以上詳述した通り、本発明によれば、P
bZrO3 −PbTiO3 系の磁器組成物のZrおよび
Tiの一部をNb、Cr、Mn、Mgで置換したり、こ
れらにより置換するとともにPbの一部をSrやBa,
Caのうち少なくとも一種で置換することにより、高い
電気機械結合係数Kt、低い機械的品質係数Qm、低い
比誘電率εrを示すとともに、耐熱性を向上することが
でき、表面実装用圧電部品などの素子として有効に用い
られる圧電磁器組成物を得ることができる。As described in detail above, according to the present invention, P
Part of Zr and Ti of the bZrO 3 —PbTiO 3 -based porcelain composition may be replaced with Nb, Cr, Mn, or Mg, or part of Pb may be replaced with Sr or Ba,
By substituting at least one of Ca, a high electromechanical coupling coefficient Kt, a low mechanical quality coefficient Qm, a low relative permittivity εr, and heat resistance can be improved. A piezoelectric ceramic composition effectively used as a device can be obtained.
【図1】フィルター装置を示す配線図である。FIG. 1 is a wiring diagram showing a filter device.
1・・・入力 2・・・アース 3・・・出力 4,5・・・3端子フィルター 6・・・結合容量 1 ... Input 2 ... Ground 3 ... Output 4,5 ... 3 terminal filter 6 ... Coupling capacitance
Claims (1)
i、Nb、Cr、Mn、Mgを含むペロブスカイト型化
合物であって、その組成式を (Pb1-x Mx ) a ( Nbb Crc Mnd Mge ) f (
Tig Zr1-g ) 1-f O3 (ここでMはSr,Ca,Baのうち少なくとも一種)
と表わした時、前記x,a,b,c,d,e,f,gが 0 ≦x≦0.05 0.95≦a≦1.05 0.35≦b≦0.58 0.12≦c≦0.31 0.07≦d≦0.21 0.10≦e≦0.28 0.03≦f≦0.10 0.47≦g≦0.52 b+c+d+e=1.00 を満足することを特徴とする圧電磁器組成物。(1) at least Pb, Zr, T
A perovskite type compound containing i, Nb, Cr, Mn, and Mg, the composition formula of which is (Pb 1-x M x ) a (Nb b Cr c Mn d Mg e ) f (
Ti g Zr 1-g ) 1-f O 3 (where M is at least one of Sr, Ca, Ba)
, X, a, b, c, d, e, f, g are 0 ≤ x ≤ 0.05 0.95 ≤ a ≤ 1.05 0.35 ≤ b ≤ 0.58 0.12 ≦ c ≦ 0.31 0.07 ≦ d ≦ 0.21 0.10 ≦ e ≦ 0.28 0.03 ≦ f ≦ 0.10 0.47 ≦ g ≦ 0.52 b + c + d + e = 1.00 is satisfied. A piezoelectric ceramic composition comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7311010A JPH09142931A (en) | 1995-11-29 | 1995-11-29 | Piezoelectric ceramic composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7311010A JPH09142931A (en) | 1995-11-29 | 1995-11-29 | Piezoelectric ceramic composition |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09142931A true JPH09142931A (en) | 1997-06-03 |
Family
ID=18012042
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7311010A Pending JPH09142931A (en) | 1995-11-29 | 1995-11-29 | Piezoelectric ceramic composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09142931A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007243154A (en) * | 2006-12-27 | 2007-09-20 | Tdk Corp | Stacked piezoelectric element |
CN110511023A (en) * | 2019-09-30 | 2019-11-29 | 海鹰企业集团有限责任公司 | A kind of novel high-stability piezoelectric material and preparation method thereof |
WO2023095450A1 (en) * | 2021-11-29 | 2023-06-01 | 株式会社村田製作所 | Ultrasonic transducer and method for manufacturing same |
-
1995
- 1995-11-29 JP JP7311010A patent/JPH09142931A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007243154A (en) * | 2006-12-27 | 2007-09-20 | Tdk Corp | Stacked piezoelectric element |
CN110511023A (en) * | 2019-09-30 | 2019-11-29 | 海鹰企业集团有限责任公司 | A kind of novel high-stability piezoelectric material and preparation method thereof |
WO2023095450A1 (en) * | 2021-11-29 | 2023-06-01 | 株式会社村田製作所 | Ultrasonic transducer and method for manufacturing same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3482394B2 (en) | Piezoelectric ceramic composition | |
KR100379202B1 (en) | Piezoelectric Ceramic Composition and Ceramic Piezoelectric Device Employing the Composition | |
JP2001316182A (en) | Piezoelectric ceramic and piezoelectric resonator | |
US20020060306A1 (en) | Piezoelectric ceramic composition and piezoelectric element containing the same | |
JP4432280B2 (en) | Piezoelectric ceramic | |
JPH09142931A (en) | Piezoelectric ceramic composition | |
JP3215013B2 (en) | Piezoelectric ceramic composition | |
JP3266483B2 (en) | Piezoelectric ceramic composition | |
KR100380109B1 (en) | Piezoelectric Ceramic Composition and Piezoelectric Ceramic Element using the Same | |
JPH09124367A (en) | Piezoelectric ceramic composition | |
JPH09142930A (en) | Piezoelectric ceramic composition | |
JP3164721B2 (en) | Piezoelectric ceramic composition | |
JP3228648B2 (en) | Piezoelectric ceramic composition | |
JP3404212B2 (en) | Piezoelectric ceramic composition | |
JPH09235159A (en) | Piezoelectric ceramics composition | |
JP3761970B2 (en) | Piezoelectric ceramic composition | |
JPH1017364A (en) | Piezoelectric ceramic composition | |
JPH10338572A (en) | Piezoelectric porcelain composition | |
JPH11292623A (en) | Piezoelectric ceramic | |
JP2892268B2 (en) | Piezoelectric ceramic composition | |
JP3318480B2 (en) | Piezoelectric ceramic composition | |
JPH09175862A (en) | Piezoelectric ceramic composition | |
JPH08231270A (en) | Piezoelectric porcelain composition | |
JPH0891927A (en) | Piezoelectric ceramic composition | |
JP3791300B2 (en) | Piezoelectric ceramic composition and piezoelectric ceramic element using the same |