JPH02263761A - Ferroelectric ceramic composition and piezoelectric element utilizing the same - Google Patents

Ferroelectric ceramic composition and piezoelectric element utilizing the same

Info

Publication number
JPH02263761A
JPH02263761A JP1086043A JP8604389A JPH02263761A JP H02263761 A JPH02263761 A JP H02263761A JP 1086043 A JP1086043 A JP 1086043A JP 8604389 A JP8604389 A JP 8604389A JP H02263761 A JPH02263761 A JP H02263761A
Authority
JP
Japan
Prior art keywords
pbo
oxide
ferroelectric
geo2
ferroelectric ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1086043A
Other languages
Japanese (ja)
Other versions
JP2504176B2 (en
Inventor
Atsushi Sano
篤史 佐野
Toshio Ogawa
敏夫 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP1086043A priority Critical patent/JP2504176B2/en
Publication of JPH02263761A publication Critical patent/JPH02263761A/en
Application granted granted Critical
Publication of JP2504176B2 publication Critical patent/JP2504176B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the composition capable of being sintered at low temp. and having a large electromechanical coupling factor and large relative permittivity by incorporating specified amts. of Pb oxide and Ge oxide as the auxiliary component into a ferroelectric ceramic as the main component. CONSTITUTION:Pb oxide and Ge oxide are respectively incorporated into the ferroelectric ceramic (e.g. barium titanate-based ferroelectric ceramic, lead titanate-based ferroelectric ceramic, etc.) as the main component. In this case, the Pb oxide is expressed in terms of PbO, the Ge oxide is expressed in terms of GeO2, and the molar ratio of PbO to GeO2 is expressed by the formula xPbO.yGeO2 where (x)=1 to 6 and (y)=1 to 3. The total content of the PbO and GeO2 is controlled to 0.01 to 30wt.%. By this method, a ferroelectric ceramic capable of being sintered at a low temp. (about 850 to 100 deg.C) and having a large electromechanical coupling factor and large relative permittivity is obtained. Consequently, a piezoelectric element having high energy conversion efficiency can be produced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は強誘電性磁器組成物、特に、電気機械結合係数
が大きく、低温焼結可能な強誘電性磁器組成物およびそ
れを利用した圧電素子に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a ferroelectric ceramic composition, particularly a ferroelectric ceramic composition that has a large electromechanical coupling coefficient and can be sintered at a low temperature, and a piezoelectric ceramic composition using the same. Regarding elements.

(従来技術) 一般に、磁器圧電材料は、加工性、量産性および特性に
優れていることから、フィルター、圧電ブザー、あるい
はバイモルフ等の圧電素子に応用されている。この種の
圧電材料としては、チタン酸鉛系強誘電性磁器、チタン
酸ジルコン酸鉛系強誘電性磁器およびチタン酸バリウム
系強誘電性磁器が実用に供されている。
(Prior Art) Porcelain piezoelectric materials are generally used in piezoelectric elements such as filters, piezoelectric buzzers, and bimorphs because of their excellent workability, mass productivity, and characteristics. As this type of piezoelectric material, lead titanate-based ferroelectric ceramics, lead zirconate titanate-based ferroelectric ceramics, and barium titanate-based ferroelectric ceramics are in practical use.

しかし、これらの強誘電性磁器は、焼結温度が1100
℃以上と高温であることから、金属板等の基板と一体化
した複合体を得ることができなかった。
However, these ferroelectric ceramics have a sintering temperature of 1100
Due to the high temperature of ℃ or higher, it was not possible to obtain a composite integrated with a substrate such as a metal plate.

また、強誘電性磁器が鉛酸化物含有強誘電性磁・器であ
る場合、その成分として揮発性のPbを含むため、焼成
時にPbOの一部が組成から失われ易く、特性の再現性
および均一性を図ることが困難であった。
In addition, when ferroelectric ceramics are lead oxide-containing ferroelectric ceramics/ceramics, since they contain volatile Pb as a component, part of the PbO is likely to be lost from the composition during firing, resulting in poor reproducibility of characteristics. It was difficult to achieve uniformity.

さらに、これらの強誘電性磁器を、発振子(共振子)用
として利用する場合、電気機械結合係数が大きいためフ
ィルターの帯域幅が広くなく、使用に際し一部安定性に
欠けていた。
Furthermore, when these ferroelectric ceramics are used for an oscillator (resonator), the electromechanical coupling coefficient is large, so the bandwidth of the filter is not wide, and there is a lack of stability in use.

このため特開昭58−204579号公報にて、圧電セ
ラミックにケイ酸ガラス化合物、ソーダガラス化合物、
あるいは鉛ガラス化合物を1〜30wt%添加させるこ
とにより、フィルターの帯域幅を狭くし、安定度を向上
させた化合物入り圧電磁器が提案されている。
For this reason, in Japanese Patent Application Laid-Open No. 58-204579, piezoelectric ceramics are made of silicate glass compounds, soda glass compounds,
Alternatively, a compound-containing piezoelectric ceramic has been proposed in which the filter bandwidth is narrowed and the stability is improved by adding 1 to 30 wt % of a lead glass compound.

(従来技術の問題点) しかしながら、前記ガラス化合物入り圧電磁器は、ガラ
ス化合物の添加により電気機械結合係数が著しく低下す
るため、エネルギー変換効率が低下するという問題があ
った。
(Problems with the Prior Art) However, the glass compound-containing piezoelectric ceramic has a problem in that the addition of the glass compound significantly reduces the electromechanical coupling coefficient, resulting in a reduction in energy conversion efficiency.

また、従来の強誘電性磁器組成物を広がり振動モードの
セラミック共振子に適応した場合、厚み縦振動であるス
プリアス振動に起因する異常発振を生ずるという問題も
あった。
Furthermore, when a conventional ferroelectric ceramic composition is applied to a ceramic resonator in a spread vibration mode, there is a problem in that abnormal oscillations occur due to spurious vibrations that are thickness longitudinal vibrations.

(問題点を解決するための手段) 本発明の強誘電性磁器組成物は、主成分である強誘電性
磁器に対して、Pbの酸化物とGeの酸化物がそれぞれ
添加含有され、Pbの酸化物をPbOに換算し、Geの
酸化物をGeO2に換算し、PboとGeO2のモル比
を一般式:xPbO・yGe02として表したときX?
yがそれぞれx=1〜a、y=x〜3であり、かつ添加
、含有されたPbOとGeO2の合計量が0.01〜3
0重量%であることを特徴とする。
(Means for Solving the Problems) The ferroelectric ceramic composition of the present invention contains an oxide of Pb and an oxide of Ge, respectively, to the ferroelectric ceramic as the main component. When the oxide is converted to PbO, the Ge oxide is converted to GeO2, and the molar ratio of Pbo and GeO2 is expressed as the general formula: xPbO・yGe02, X?
y is x = 1 ~ a, y = x ~ 3, and the total amount of added and contained PbO and GeO2 is 0.01 ~ 3
It is characterized by being 0% by weight.

また、本発明の圧電素子は、上述の強誘電性磁器組成物
からなる板状の強誘電性磁器板と、この強誘電性磁器板
の両主表面に形成された電極と、からなることを特徴と
する。
Further, the piezoelectric element of the present invention includes a plate-shaped ferroelectric ceramic plate made of the above-mentioned ferroelectric ceramic composition, and electrodes formed on both main surfaces of the ferroelectric ceramic plate. Features.

さらに、本発明の圧電素子は、上述の強誘電性磁器組成
物からなる仮焼粉末を含有する厚膜ペーストが金属製の
基板上に塗布、焼き付けられて一体化され、この焼き付
けによって形成された強誘電性磁器層の表面に電極が形
成されたことを特徴とする。
Furthermore, the piezoelectric element of the present invention is formed by applying a thick film paste containing calcined powder made of the above-mentioned ferroelectric ceramic composition onto a metal substrate and baking it into one piece. It is characterized by electrodes being formed on the surface of the ferroelectric ceramic layer.

本発明の強誘電性磁器組成物の主成分である強誘電性磁
器としては、チタン酸バリウム系強誘電性磁器、チタン
酸鉛系強誘電性磁器、チタン酸ジルコン酸鉛系強誘電性
磁器、メタニオブ酸鉛系強誘電性磁器および鉛含有複合
ペロブスカイト系磁器が代表的なものとして挙げられる
が、これらに限定されるものではない。
Examples of the ferroelectric porcelain that is the main component of the ferroelectric porcelain composition of the present invention include barium titanate-based ferroelectric porcelain, lead titanate-based ferroelectric porcelain, lead zirconate titanate-based ferroelectric porcelain, Typical examples include lead metaniobate-based ferroelectric porcelain and lead-containing composite perovskite-based porcelain, but are not limited to these.

チタン酸バリウム系強誘電性磁器には、真性および変性
チタン酸バリウム系強誘電性磁器が含まれる。
Barium titanate-based ferroelectric porcelain includes intrinsic and modified barium titanate-based ferroelectric porcelain.

チタン酸鉛系強誘電性磁器とは、真性および変性チタン
酸鉛を意味し、変性チタン酸鉛には、単純酸化物である
Cr2O3,Nb2O5,Ta205. Bi 203
. MnO2など金属酸化物を添加したもの、Pbサイ
トをMg、Ca。
Lead titanate-based ferroelectric porcelain refers to genuine and modified lead titanate, and modified lead titanate includes simple oxides such as Cr2O3, Nb2O5, Ta205. Bi 203
.. Addition of metal oxide such as MnO2, Pb site is Mg, Ca.

Sr、Ba’PLa203.Nd2O3,Y2O3等の
希土類で置換したもの、およびPbTiO3の一部を後
述の一般式(I)〜(VI)で示される少なくとも一種
の複合ペロブスカイト化合物で置換した2成分系、3成
分系その他の多成分系磁器あるいはこれらの組合せたも
のが含まれる。
Sr, Ba'PLa203. Those substituted with rare earth elements such as Nd2O3 and Y2O3, and two-component systems, three-component systems, and other various systems in which PbTiO3 is partially replaced with at least one kind of composite perovskite compound represented by general formulas (I) to (VI) described below. Includes component-based porcelain or a combination of these.

また、チタン酸ジルコン酸鉛系強誘電性磁器とは、真性
および変性チタン酸ジルコン酸鉛を意味し、変性チタン
酸ジルコン酸鉛には、Pb(Ti、 Zr)03にCr
’203. Nb2O5,Ta205. B 1203
. MnO2など金属酸化物を添加したもの、Pbサイ
トをMg、Ca、Sr、Ba等のアルカリ土類金属やL
a2O3,Nd2O3,Y2O3等の希土類で置換した
もの、およびPb(Ti、Zr)03の一部を後述の一
般式(I)〜(VI)で示される少なくとも一種の複合
ペロブスカイト化合物で置換した3成分系、4成分系そ
の他の多成分系磁器あるいはこれらの組合せたものが含
まれる。
In addition, lead zirconate titanate-based ferroelectric porcelain refers to genuine and modified lead zirconate titanates, and modified lead zirconate titanates include Cr in Pb(Ti, Zr)03.
'203. Nb2O5, Ta205. B 1203
.. Added metal oxides such as MnO2, Pb sites added with alkaline earth metals such as Mg, Ca, Sr, Ba, etc.
A three-component component in which a rare earth element such as a2O3, Nd2O3, or Y2O3 is substituted, and a part of Pb(Ti, Zr)03 is substituted with at least one kind of composite perovskite compound represented by the general formulas (I) to (VI) described below. porcelain type, four-component type, multi-component type porcelain, or a combination thereof.

さらに、メタニオブ酸鉛系強誘電性磁器とは、真性およ
び変性メタニオブ酸鉛を意味し、変性メタニオブ酸鉛に
は、単純酸化物であるCr2O3,Nb2O5゜Ta2
05.Bi2O3,MnO2など金属酸化物を添加した
もの、Pbの一部をMB、 Ca、 Sr、 Ba等の
アルカリ土類金属やLa203eNd203tY203
等の希土類で置換したもの、およびメタニオブ酸鉛に後
述の一般式(I)〜(■)で示される少なくとも一種の
複合ペロブスカイト化合物で添加した2成分系、3成分
系その他の多成分系磁器が含まれる。
Furthermore, lead metaniobate-based ferroelectric porcelain refers to both intrinsic and modified lead metaniobate, and modified lead metaniobate includes simple oxides such as Cr2O3, Nb2O5°
05. Addition of metal oxides such as Bi2O3 and MnO2, MB with a part of Pb, alkaline earth metals such as Ca, Sr, Ba, La203eNd203tY203
etc., as well as binary, ternary and other multi-component porcelains in which lead metaniobate is added with at least one kind of composite perovskite compound represented by general formulas (I) to (■) below. included.

鉛含有複合ペロブスカイト系磁器には、後述の一般式(
1)〜(Vl)で示される鉛含有複合へロブスカイト化
合物の他、それらの2種以上のもしくはそれらの少なく
とも1種と他の複合ペロブスカイト化合物とからなる2
成分系、3成分系その他の多成分系磁器が含まれる。た
とえば、 Pb (Fe2zaWxz3) 03s Pb (Fe
172Nb 1/2) 03等の1成分系、Pb(Fe
l/2Nbl/2)03−Pb(Fe2/3W1/3)
03等の2成分系、Pb (Mnx/aNJ/3) 0
s−Pb (Fe 1/2Nbl/2)03−Pb (
Fe2/aWx/3)Oat Pb(Zn1/3Nb2/3)03−Pb(Fe1/2
Nbl/2)03−Pb (Fe2/3W1/3)03
等の3成分系複合ヘロフスカイト化合物等が挙げられる
Lead-containing composite perovskite porcelain has the following general formula (
1) In addition to the lead-containing composite perovskite compounds represented by ~(Vl), 2 consisting of two or more thereof or at least one thereof and another composite perovskite compound.
Includes component type, three-component type, and other multi-component type porcelains. For example, Pb (Fe2zaWxz3) 03s Pb (Fe
One-component system such as 172Nb 1/2) 03, Pb(Fe
l/2Nbl/2)03-Pb(Fe2/3W1/3)
Two-component system such as 03, Pb (Mnx/aNJ/3) 0
s-Pb (Fe 1/2Nbl/2)03-Pb (
Fe2/aWx/3) Oat Pb(Zn1/3Nb2/3)03-Pb(Fe1/2
Nbl/2)03-Pb (Fe2/3W1/3)03
Examples include three-component composite herovskite compounds such as.

前記複合ベロアスカイト化合物の代表的なものとしては
、 一般式(1):A”(B2+1/3B”2/3)(13
で示される化合物、たとえば、 Ba(Zn1/Jb2/3)03t Ba (Cdx/
Jt)+73)03sBa(Mg1/3Nb2/3)0
3s 5r(Cd1/aNb2/3)03sPb(Mg
1/3Nb2/3)03ツPb(Ni1/3Nb2/3
)03tPb(Mg1/3Nb2/3)03j Pb 
(Mg1/3Ta2/3)03tPb(Ni t/3T
a2/3)03*Pb(Cd1/3Nb2/3)03;
一般式(11)=A”(B ”1/2B”1/2)03
で示される化合物、たとえば、 Ba(Fe1/2Nb1/2)03.Ba(Se1/2
Nb1/2)03+Ca(Cr1/2Nb1/2)03
.Pb(Fe1/2Nb1/2)03゜Pb(Fe1/
2Ta1/2)03.Pb(SC1/2Nb172)0
3゜Pb(SC1/2Ta1/2)03.Pb(Yb1
/2Nb1/2)03゜Pb(Yb172Ta1/2)
039Pb(Lu1/2Nb1/2)03IPb(In
x72Nb17z)03; 一般式(111)’A2+(B”1/2B”1/2)0
3で示される化合物、たとえば、 Pb(Cd1/2Wx/2)口3IPb(Mn1/2W
1/2)03シPb(Zn1/2胃1/2)03.Pb
(Mg1/2W1/2)03゜Pb(Cd1/2Wx/
2)03*Pb(Ni 1z2Wt/2)03sPb(
Mgt/2Tet72)03yPb(Mn1/2W1/
2)03sPb(Cd1/2Wx/2)03; 一般式(IV)=A2”(B”2/3B”1/3)03
で示される化合物、たとえば、 Pb(Fe2/3W1/3)03; 一般式(V)二A2+(B2+1/2B4+1/2)0
3で示される化合物、たとえば、 Pb(Sn1/2Sb1/2)03.La(Mg1/2
W1/2)03゜Wb(M8t/2Ti 1/2)03
;および・一般式(■戸(A”1/2A”172) B
 4+03で示される化合物、たとえば、 (Na1/2La1/2)T1039(K1/2La1
/2)Ti03p(Nat/2Cet/2)TiQ3s
 (Na17Jdt/2)TiO3’(Ndt/2Bi
 x/2)Ti03シ(K1/2Bi t/2)Ti0
3などが挙げられる。
Typical examples of the composite velorskite compound include general formula (1): A''(B2+1/3B''2/3)(13
A compound represented by, for example, Ba(Zn1/Jb2/3)03tBa(Cdx/
Jt)+73)03sBa(Mg1/3Nb2/3)0
3s 5r(Cd1/aNb2/3)03sPb(Mg
1/3Nb2/3) 03Pb(Ni1/3Nb2/3
)03tPb(Mg1/3Nb2/3)03j Pb
(Mg1/3Ta2/3)03tPb(Ni t/3T
a2/3)03*Pb(Cd1/3Nb2/3)03;
General formula (11)=A”(B “1/2B”1/2)03
A compound represented by, for example, Ba(Fe1/2Nb1/2)03. Ba(Se1/2
Nb1/2)03+Ca(Cr1/2Nb1/2)03
.. Pb(Fe1/2Nb1/2)03°Pb(Fe1/
2Ta1/2)03. Pb(SC1/2Nb172)0
3°Pb(SC1/2Ta1/2)03. Pb(Yb1
/2Nb1/2)03°Pb(Yb172Ta1/2)
039Pb(Lu1/2Nb1/2)03IPb(In
x72Nb17z)03; General formula (111)'A2+(B"1/2B"1/2)0
3, for example, Pb(Cd1/2Wx/2) IPb(Mn1/2W
1/2) 03shiPb (Zn1/2 stomach 1/2) 03. Pb
(Mg1/2W1/2)03°Pb(Cd1/2Wx/
2) 03*Pb(Ni 1z2Wt/2)03sPb(
Mgt/2Tet72)03yPb(Mn1/2W1/
2) 03sPb(Cd1/2Wx/2)03; General formula (IV)=A2''(B''2/3B''1/3)03
A compound represented by, for example, Pb(Fe2/3W1/3)03; General formula (V) 2A2+(B2+1/2B4+1/2)0
3, for example, Pb(Sn1/2Sb1/2)03. La(Mg1/2
W1/2) 03°Wb (M8t/2Ti 1/2) 03
; and General formula (■Door (A"1/2A"172) B
A compound represented by 4+03, for example, (Na1/2La1/2)T1039(K1/2La1
/2) Ti03p (Nat/2Cet/2) TiQ3s
(Na17Jdt/2)TiO3'(Ndt/2Bi
x/2) Ti03 (K1/2Bi t/2) Ti0
Examples include 3.

(作用) 本発明は、主成分のチタン酸バリウム系、チタン酸鉛系
、チタン酸ジルコン酸鉛系、メタニオブ酸鉛系および鉛
含有複合ペロブスカイト系等の強誘電性磁器に、副成分
として、Pbの酸化物をPboに換算し、Geの酸化物
をGeO2に換算し、PboとGeO2のモル比を一般
式:xPbO−yGe02として表したときx、yがそ
れぞれx=1〜6. y=l〜3となるように添加、含
有させて焼成すると、液相焼結により異相セラミックバ
ルクを生成させることによって、主成分のチタン酸バリ
ウム系、チタン酸鉛系、チタン酸ジルコン酸鉛系、メタ
ニオブ酸鉛系および鉛含有複合ペロブスカイト系等の強
誘電性磁器が本来有する電気機械結合係数を低下させる
ことなく850〜1000℃の低温で焼結させることを
可能にし、それによって、従来、不可能であった金属製
の基板との一体焼結を可能にしたものである。
(Function) The present invention adds Pb as a subcomponent to ferroelectric ceramics such as barium titanate, lead titanate, lead zirconate titanate, lead metaniobate, and lead-containing composite perovskite as main components. When the oxide of Ge is converted into Pbo, the oxide of Ge is converted into GeO2, and the molar ratio of Pbo and GeO2 is expressed as the general formula: xPbO-yGe02, x and y are respectively x=1 to 6. When added and contained so that y=l~3 and fired, a different phase ceramic bulk is generated by liquid phase sintering, and the main components barium titanate, lead titanate, and lead zirconate titanate are removed. This makes it possible to sinter ferroelectric ceramics such as lead metaniobate-based and lead-containing composite perovskite-based ceramics at a low temperature of 850 to 1000°C without reducing their inherent electromechanical coupling coefficient. This enables integral sintering with a metal substrate, which was previously possible.

また、本発明に係る強誘電性磁器は、スクリーン印刷法
、塗布法、プレス成形法、押出し成形法。
Further, the ferroelectric ceramic according to the present invention can be produced by a screen printing method, a coating method, a press molding method, or an extrusion molding method.

シート成形法、ホットプレス法等の任意の方法で成形あ
るいは加工でき、たとえば、厚膜ペーストをスクリーン
印刷法により金属製の基板の表面に印刷し、焼結させる
ことにより、一体焼結型の圧電素子を得ることがtきる
It can be formed or processed by any method such as sheet molding or hot pressing. For example, by printing a thick film paste on the surface of a metal substrate using screen printing and sintering it, you can create an integrally sintered piezoelectric. It is possible to obtain the element.

副成分としてPbの酸化物とGeの酸化物がそれぞれ添
加含有され、Pbの酸化物をPboに換算し、[reの
酸化物をGeO2に換算し、PbOとGe09のモル比
を一般式:xPbO−yGe02として表したときXy
3’がそれぞれx=1〜6. y=l〜3であり、かつ
添加、含有されたPboとGeO2の合計量が0.01
〜30重量%としたのは、0.01重量%未満ではその
効果がさほど期待されず、また、30重量%を超えると
、焼結温度は低くなるが、電気機械結合係数の低下が目
立つようになるからである。
An oxide of Pb and an oxide of Ge are added as subcomponents, and the oxide of Pb is converted to Pbo, the oxide of [re is converted to GeO2, and the molar ratio of PbO and Ge09 is determined by the general formula: xPbO -Xy when expressed as yGe02
3' are respectively x=1 to 6. y=l~3, and the total amount of added and contained Pbo and GeO2 is 0.01
-30% by weight is because if it is less than 0.01% by weight, the effect is not expected to be so great, and if it exceeds 30% by weight, the sintering temperature will be lower, but the electromechanical coupling coefficient will drop noticeably. This is because it becomes

特に、添加、含有されたPbOとGeO2の合計量を0
.1〜10重量%にすると、焼結温度が低く、かつ、電
気機械結合係数が大きな強誘電性磁器組成物が得られる
。また、×、yの値をx=1−6ty=1〜3としたの
は、低温での焼結を可能とするために、Pbの酸化物お
よびGeの酸化物で、その融点が850℃以下となるも
のを選んだ。さらに、本発明に係る強誘電性磁器組成物
は、その主成分が鉛酸化物含有強誘電性磁器である場合
に、高抗折強度を示すようになる。これは、主成分中の
酸化鉛と副成分中の酸化鉛との間に化学的結合力が生じ
、粒界での機械的強度が高められるからであると考えら
れる。
In particular, the total amount of added and contained PbO and GeO2 is reduced to 0.
.. When the amount is 1 to 10% by weight, a ferroelectric ceramic composition having a low sintering temperature and a large electromechanical coupling coefficient can be obtained. In addition, the values of x and y are set to x=1-6ty=1-3 in order to enable sintering at low temperatures. I chose the following. Furthermore, the ferroelectric ceramic composition according to the present invention exhibits high flexural strength when its main component is lead oxide-containing ferroelectric ceramic. This is thought to be because a chemical bond is generated between the lead oxide in the main component and the lead oxide in the subcomponent, increasing the mechanical strength at the grain boundaries.

以下に、本発明の実施例について説明する。Examples of the present invention will be described below.

(実施例1) 原料としてPb3O4,Ti 02. ZrO2および
Nb2O5を用い、これらをPbTi o、 48zr
0.5203−1 、0wt%Nb2O5の組成を有す
る主成分となる強誘電性磁器が得られるように秤量する
とともに、副成分の原料としてPb3O4およびGeO
2を用い、Pb3O4をPboに換算し、GeO2をG
eO2に換算し、PboとGeO2のモル比を一般式:
xPbO・yGe02として表したときX、Yがそれぞ
れx=1〜B、 y=1〜3となるように、第1表に示
す割合で添加、含有し、20時時間式混合して混合物を
得た。
(Example 1) Pb3O4, Ti 02. as raw materials. Using ZrO2 and Nb2O5, these were converted into PbTi o, 48zr
0.5203-1, 0 wt%Nb2O5 as the main component, and Pb3O4 and GeO as the raw materials for the subcomponents.
2, convert Pb3O4 to Pbo, and convert GeO2 to G
Converting to eO2, the molar ratio of Pbo and GeO2 is expressed by the general formula:
They were added and contained in the proportions shown in Table 1 so that when expressed as xPbO・yGe02, X and Y were x = 1 to B and y = 1 to 3, respectively, and mixed for 20 hours to obtain a mixture. Ta.

次に、この混合物を脱水、乾燥し、850℃で2時間仮
焼した後、粉砕し、仮焼粉末を得た。
Next, this mixture was dehydrated, dried, calcined at 850° C. for 2 hours, and then ground to obtain calcined powder.

次に、得られた仮焼粉末に樹脂と溶剤からなる有機バイ
ンダを10重量%混合して厚膜ペーストを調製した。
Next, 10% by weight of an organic binder consisting of a resin and a solvent was mixed with the obtained calcined powder to prepare a thick film paste.

次に、調製した厚膜ペーストを直径20mm、厚さ0.
1mIIIlの耐熱性金属、たとえばNi−Cr系の金
属製の基板の上に直径18m+nの円としてスクリーン
印刷した後、第1表に示す焼成温度で焼成して、50μ
III厚の一体焼結型の複合体を得た。
Next, the prepared thick film paste was coated with a diameter of 20 mm and a thickness of 0.
After screen-printing a circle with a diameter of 18m+n on a substrate made of a heat-resistant metal of 1mIIIl, such as Ni-Cr metal, it is fired at the firing temperature shown in Table 1 to form a 50μ
A monolithically sintered composite with a thickness of 1/3 was obtained.

次に、この得られた複合体のセラミック表面に焼付は法
により銀電極を形成し、銀電極と金属製の基板の間に8
0℃で3〜4KV/mmの直流電圧を印加して30分間
分極処理を行い、磁器圧電体の試料(試料番号1〜6)
t−得た。
Next, a silver electrode was formed on the ceramic surface of the obtained composite by a baking method, and an 8.
A DC voltage of 3 to 4 KV/mm was applied at 0°C and polarization was performed for 30 minutes to prepare porcelain piezoelectric samples (sample numbers 1 to 6).
t- got it.

各試料について、比誘電率(Cr)および円板の屈曲振
動の電気機械結合係数(Kv)を測定し、この結果を第
1表に示した。
For each sample, the relative dielectric constant (Cr) and the electromechanical coupling coefficient (Kv) of the bending vibration of the disk were measured, and the results are shown in Table 1.

なお、第1表には、比較例として副成分のPb3O4お
よびGeO2を添加していない試料(試料番号7)、P
bTi 0.4BZrO05203−1,0wt%Nb
2O5の仮焼粉末に副成分としてPbo:132o3−
sio2系ガラス化合物を0.1wt%を添加して調製
した厚膜ペーストを用いて作製した試料(試料番号3)
、および PbTi0.48zr0.5203=1.0wt%Nb
2O5の仮焼粉末に副成分としてMa2O・B2O3・
5i02系ガラス化合物を5wt%を添加して調製した
厚膜ペーストを用いて作製した試料(試料番号9)につ
いても同様の測定を行い、その結果をあわせて示してい
る。
In addition, Table 1 shows, as comparative examples, a sample (sample number 7) in which the subcomponents Pb3O4 and GeO2 were not added;
bTi 0.4BZrO05203-1,0wt%Nb
Pbo:132o3- as a subcomponent in the calcined powder of 2O5
Sample prepared using a thick film paste prepared by adding 0.1 wt% of sio2-based glass compound (sample number 3)
, and PbTi0.48zr0.5203=1.0wt%Nb
Ma2O, B2O3,
Similar measurements were also performed on a sample (sample number 9) prepared using a thick film paste prepared by adding 5 wt % of a 5i02-based glass compound, and the results are also shown.

(実施例2) まず、副成分の原料としてPb3O4とGeO2を用い
、Pt1sOat)’boに換算し、GeO2をGeO
2に換算し、PboとGeO’2のモル比を一般式:x
PbO・yGe02として表したときXyyがそれぞれ
x=5.y=3とするとともに、主成分に対しては、第
2表に示すような配合比で添加。
(Example 2) First, using Pb3O4 and GeO2 as raw materials for subcomponents, converting them into Pt1sOat)'bo, and converting GeO2 into GeO2
2, and the molar ratio of Pbo and GeO'2 is expressed by the general formula: x
When expressed as PbO・yGe02, Xyy is x=5. Set y to 3, and add the main ingredients at the mixing ratio shown in Table 2.

含有させた以外は、実施例1と同様にして仮焼粉末得た
A calcined powder was obtained in the same manner as in Example 1 except that the powder was added.

次に、得られた仮焼粉末に有機バインダを2〜3重量%
加え、20時時間分して造粒し、プレス成型して)4 
、5mmX10mmX20mcの角板を形成し、この角
板を第2表に示す温度で2時間焼成して磁器角板の試料
(試料番号10〜16)を得た。
Next, 2 to 3% by weight of an organic binder is added to the obtained calcined powder.
Add, granulate for 20 hours, press mold)4
, 5 mm x 10 mm x 20 mc square plates were formed, and the square plates were fired for 2 hours at the temperatures shown in Table 2 to obtain porcelain square plate samples (sample numbers 10 to 16).

各試料について3点曲げ試験法(支持点間距離:11m
m)により抗折強度(kg/cm2)を測定し、その結
果を第2表に示した。
Three-point bending test method for each sample (distance between support points: 11 m
The bending strength (kg/cm2) was measured according to M), and the results are shown in Table 2.

なお、試料番号to、13.16は、本発明の範囲外で
ある。
Note that sample number to, 13.16 is outside the scope of the present invention.

(実施例3) まず、原料としてPb3O4,TiO2,ZrO2,5
n02,5b203およびMnO2を用い、0.05P
b(Sn、、2Sb1,2)03−0、47PbTf0
3−0.48PbZr03−0.7wt%MnO2の組
成を有する強誘電性磁器が得られるように秤量し、仮焼
温度を900℃とした以外は、実施例1と同様にして仮
焼粉末を得た。なお、第3表には、PbOとGeO2の
モル比、およびPbOとGeO2との合計量の主成分に
対する添加量(wt%)を示している。
(Example 3) First, Pb3O4, TiO2, ZrO2,5 as raw materials
Using n02,5b203 and MnO2, 0.05P
b(Sn,,2Sb1,2)03-0,47PbTf0
Calcined powder was obtained in the same manner as in Example 1, except that it was weighed so as to obtain a ferroelectric porcelain having a composition of 3-0.48PbZr03-0.7wt%MnO2, and the calcining temperature was 900°C. Ta. Table 3 shows the molar ratio of PbO and GeO2, and the total amount of PbO and GeO2 added to the main components (wt%).

次に、得られた仮焼粉末に有機バインダを6〜7wt%
加えて20時間間層した後、ドクターブレード法により
シート成形し、パンチングして直径20mm、厚さ0.
1mmの円板を形成し、この円板を第3表に示す焼成温
度で2時間焼成して磁器円板を得た。次に、得られた磁
器円板の両主表面に銀電極を焼付け、両電極間に8°0
℃で3〜4KV/mmの直流電圧を印加して30分間分
極処理を行い、磁器圧電体の試料(試料番号18〜22
)を得た。
Next, 6 to 7 wt% of an organic binder is added to the obtained calcined powder.
After being layered for 20 hours, it was formed into a sheet using a doctor blade method and punched into a sheet with a diameter of 20 mm and a thickness of 0.
A 1 mm disk was formed, and this disk was fired for 2 hours at the firing temperature shown in Table 3 to obtain a porcelain disk. Next, silver electrodes were baked on both main surfaces of the obtained porcelain disk, and an 8°0
A DC voltage of 3 to 4 KV/mm was applied at ℃ to perform polarization treatment for 30 minutes, and porcelain piezoelectric samples (sample numbers 18 to 22
) was obtained.

各試料について、比誘電率(εr)および円板の拡がり
振動の電気機械結合係数(Kp)を測定し、その結果を
第3表に示した。
For each sample, the relative dielectric constant (εr) and the electromechanical coupling coefficient (Kp) of the spreading vibration of the disk were measured, and the results are shown in Table 3.

なお、第3表には比較例として副成分のPb3O4およ
びGeO2を添加していない試料(試料番号17)、0
、05Pb (Sn 172Sb 1/2) 03−0
 、47P bT 103−0.48P bZr03−
0.7wt%MnO2の仮焼粉末に副成分としてPbO
−B2O3・5i02系ガラメガラス化5wt%を添加
して実施例8と同様にして作製した試料(試料番号24
)、および0、05Pb (Sn 1/2sb 1z2
) 03−0.47PbT 1o3−0.48PbZr
03−0.7wt%MnO2の仮焼粉末に副成分として
Na204203−3i02系ガラス化合物を0.1w
t%を添加して実施例8と同様にして作製した試料(試
料番号25)についても同様の測定を行い、その結果を
あわせて示している。
In addition, Table 3 shows, as comparative examples, a sample in which the subcomponents Pb3O4 and GeO2 were not added (sample number 17),
, 05Pb (Sn 172Sb 1/2) 03-0
, 47P bT 103-0.48P bZr03-
PbO is added to the calcined powder of 0.7 wt% MnO2 as a subcomponent.
-A sample prepared in the same manner as in Example 8 with the addition of 5 wt% of B2O3.5i02-based galame vitrification (sample number 24)
), and 0,05Pb (Sn 1/2sb 1z2
) 03-0.47PbT 1o3-0.48PbZr
03-0.1w of Na204203-3i02-based glass compound as a subcomponent to 0.7wt%MnO2 calcined powder
A sample (sample number 25) prepared in the same manner as in Example 8 with the addition of t% was also subjected to similar measurements, and the results are also shown.

また、第3表中の試料番号23は、本発明の範囲外であ
る。
Moreover, sample number 23 in Table 3 is outside the scope of the present invention.

(実施例4) まず、副成分の原料としてPb3O4とGeO□を用い
、Pb3O4をPboに換算し、GeO2をGeO2に
換算し、PboとGeO2のモル比を一般式:xPbO
・yGe02として表したときX+Yがそれぞれx=5
.y=3とするとともに、主成分に対しては、第4表に
示すような配合比で添加。
(Example 4) First, Pb3O4 and GeO□ are used as raw materials for subcomponents, Pb3O4 is converted to Pbo, GeO2 is converted to GeO2, and the molar ratio of Pbo and GeO2 is determined by the general formula: xPbO
・When expressed as yGe02, each of X+Y is x=5
.. y = 3, and the main components were added at the mixing ratio shown in Table 4.

含有させた以外は、実施例3と同様にして仮焼粉末を得
た後、実施例2と同様の方法で磁器角板の試料(試料番
号26〜32)を得た。
A calcined powder was obtained in the same manner as in Example 3, except that the powder was added, and then ceramic square plate samples (sample numbers 26 to 32) were obtained in the same manner as in Example 2.

各試料について3点曲げ試験法(支持点間距離: I 
Imm)により抗折強度(kg/C111”)を測定し
、その結果を焼成温度とともに、第4表に示した。
Three-point bending test method (distance between support points: I
The bending strength (kg/C111'') was measured by Imm), and the results are shown in Table 4 along with the firing temperature.

なお、試料番号26,29.32は、本発明の範囲外で
ある。
Note that sample numbers 26, 29, and 32 are outside the scope of the present invention.

(実施例5) まず、原料としてPb3O4,TiO2,ZrO2,M
nO2およびNb2O5を用い0.05Pb(Mn1 
z3Nb273)03−0.45PbTi03−0、5
0PbZr03の組成を有する強誘電性磁器を得られる
ように秤量した以外は、実施例3と同様にして仮焼粉末
を得た。なお、第5表には、PbOとGeO2のモル比
、およびPbOとGeO2との合計量の主成分に対する
添加量(wt%)を示している。
(Example 5) First, Pb3O4, TiO2, ZrO2, M
0.05Pb (Mn1
z3Nb273)03-0.45PbTi03-0,5
A calcined powder was obtained in the same manner as in Example 3, except that the weight was weighed so as to obtain a ferroelectric ceramic having a composition of 0PbZr03. Table 5 shows the molar ratio of PbO and GeO2, and the total amount of PbO and GeO2 added to the main components (wt%).

次に、得られた仮焼粉末に有機バインダを2〜3wt%
加えて20時間間層した後、造粒し、プレス成形して直
径15mm、厚さ1mmの円板を形成し、この円板を第
5表に示す焼成温度で2時間焼成して磁器円板を得た。
Next, 2 to 3 wt% of an organic binder is added to the obtained calcined powder.
In addition, after being layered for 20 hours, it was granulated and press-molded to form a disk with a diameter of 15 mm and a thickness of 1 mm, and this disk was fired for 2 hours at the firing temperature shown in Table 5 to obtain a porcelain disk. I got it.

次に、得られた磁器円板の両主表面に銀電極を焼付け、
80℃中で両電極間に3〜4KV/mmの直流電圧を印
加して30分間分極処理を行い、磁器圧電体の試料(試
料番号34〜33)を得た。
Next, silver electrodes were baked on both main surfaces of the obtained porcelain disk,
A DC voltage of 3 to 4 KV/mm was applied between both electrodes at 80° C. to perform polarization treatment for 30 minutes to obtain porcelain piezoelectric samples (sample numbers 34 to 33).

各試料について、比誘電率(εr)および円板の拡がり
振動の電気機械結合係数(Kp)を測定し、その結果を
第5表に示した。
For each sample, the relative dielectric constant (εr) and the electromechanical coupling coefficient (Kp) of the spreading vibration of the disk were measured, and the results are shown in Table 5.

なお、第5表には比較例として副成分のPb30″4お
よびGeO2を添加していない試料(試料番号33)、
0、05Pb (t4n173Nb2y3) 03−0
.45PbTi03−0.50PbZr03の仮焼粉末
に副成分としてPbo・B2O3・S i02系ガラス
化合物をO,1wt%を添加して実施例5と同様にして
作製した試料(試料番号40)、および 0、05Pb (Mn173Nb273) 03−0.
45PbTi03−0.50PbZr03の仮焼粉末に
副成分としてNa20−B2O3・St 02系ガラス
化合物を5wt%を添加して実施例5と同様にして作製
した試料(試料番号41)についても同様の測定を行い
、その結果をあわせて示している。
Table 5 shows, as comparative examples, samples in which the subcomponents Pb30''4 and GeO2 were not added (sample number 33);
0,05Pb (t4n173Nb2y3) 03-0
.. 45PbTi03-0.50A sample (sample number 40) prepared in the same manner as in Example 5 by adding O, 1 wt% of a Pbo/B2O3/Si02-based glass compound as a subcomponent to the calcined powder of PbZr03, and 0, 05Pb (Mn173Nb273) 03-0.
Similar measurements were also performed on a sample (sample number 41) prepared in the same manner as in Example 5 by adding 5 wt% of Na20-B2O3/St02-based glass compound as a subcomponent to the calcined powder of 45PbTi03-0.50PbZr03. The results are also shown.

また、第5表中の試料番号39は、本発明の範囲外であ
る。
Moreover, sample number 39 in Table 5 is outside the scope of the present invention.

(実施例6) まず、実施例5で0.05Pb(t4nt/3Nb2z
s)O3−0.45PbTi03−0.50PbZr0
3の組成となるように秤量するとともに、副成分の原料
としてPb3O4とGeO2を用い、Pb3O4をPb
oに換算し、GeO2をGeO2に換算し、一般式: 
xPbO−yGe02のモル比ををx=5. y=3と
するとともに、主成分に対して、第6表に示すような配
合比で添加、含有させた以外は、実施例5と同様にして
仮焼粉末を得た後、実施例2と同様にして磁器角板の試
料(試料番号42〜43)を得た。
(Example 6) First, in Example 5, 0.05Pb(t4nt/3Nb2z
s) O3-0.45PbTi03-0.50PbZr0
In addition, using Pb3O4 and GeO2 as raw materials for subcomponents, Pb3O4 was
o, convert GeO2 to GeO2, general formula:
Let the molar ratio of xPbO-yGe02 be x=5. A calcined powder was obtained in the same manner as in Example 5, except that y = 3 and the main components were added and contained in the blending ratio shown in Table 6. Porcelain square plate samples (sample numbers 42 to 43) were obtained in the same manner.

各試料について3点曲げ試験法(支持点間距@=11m
m)により抗折強度(kg/Cm2)を測定し、その結
果を焼成温度とともに、第6表に示した。
Three-point bending test method for each sample (distance between support points @=11m
The bending strength (kg/Cm2) was measured by m), and the results are shown in Table 6 together with the firing temperature.

なお、試料番号42.45,4Bは、本発明の範囲外で
ある。
Note that sample numbers 42, 45, and 4B are outside the scope of the present invention.

(実施例7) まず、原料としてPb3O4,TlO2,La2O3お
よびMnO2を用い、Pbo、 55La(1,10T
i03−0.7wt%MnO2の組成を有する強誘電性
磁器が得られるように秤量し、仮焼温度を950℃とし
た以外は、実施例1と同様にして仮焼粉末を得た。なお
、第7表には、PbOとGeO2のモル比、およびPb
OとGeO2との合計量の主成分に対する添加量(wt
%)を示している。
(Example 7) First, using Pb3O4, TlO2, La2O3 and MnO2 as raw materials, Pbo, 55La (1,10T
A calcined powder was obtained in the same manner as in Example 1, except that the weight was weighed so as to obtain a ferroelectric ceramic having a composition of i03-0.7 wt% MnO2, and the calcining temperature was 950°C. In addition, Table 7 shows the molar ratio of PbO and GeO2, and the Pb
The total amount of O and GeO2 added to the main components (wt
%).

次に、得られた仮焼粉末に、有機バインダを4〜5wt
%加えて20時間間層した後、押出し成形してグリーン
シートを得、これをパンチングして直径10mm。
Next, 4 to 5 wt of organic binder is added to the obtained calcined powder.
% and layered for 20 hours, extrusion molded to obtain a green sheet, which was punched to a diameter of 10 mm.

厚さ0.5mmの円板を形成し、この円板を第7表に示
す焼成温度で2時間焼成して磁器円板を得た。
A disk with a thickness of 0.5 mm was formed, and this disk was fired at the firing temperature shown in Table 7 for 2 hours to obtain a porcelain disk.

次に1.得られた磁器円板の両主表面に銀電極を焼付け
、両電極間に80℃中で3〜4KV/mmの直流電圧を
印加して30分間分極処理を行い、磁器圧電体の試料(
試料番号50〜54)を得た。
Next 1. Silver electrodes were baked on both main surfaces of the obtained porcelain disc, and a DC voltage of 3 to 4 KV/mm was applied between the two electrodes at 80°C for 30 minutes to polarize the porcelain piezoelectric sample (
Sample numbers 50 to 54) were obtained.

各試料について、比誘電率(εr)および円板の厚み方
向の振動の電気機械結合係数(Kt)を測定し、その結
果を第7表に示した。
For each sample, the relative dielectric constant (εr) and the electromechanical coupling coefficient (Kt) of vibration in the thickness direction of the disk were measured, and the results are shown in Table 7.

なお、第7表には比較例として副成分のPb3O4およ
びGaO2を添加していない試料(試料番号49)、P
b□、 85Lao、 10TIO3−0,7wt%M
nO2の仮焼粉末に副成分としてPbO・8203・S
iO□系ガラメガラス化合物tχを添加して実施例7と
同様にして作製した試料(試料番号56)、およびPb
O,8!5LaO,t、’rto3−o、 7wt%M
nO2の仮焼粉末に副成分としてNa2O・B2O3・
5i02系ガラス化金物を10wt%を添加して実施例
7と同様にして作製した試料(試料番号57)について
も同様の測定を行い、その結果をあわせて示している。
In addition, Table 7 shows a sample (sample number 49) in which the subcomponents Pb3O4 and GaO2 are not added, and Pb3O4 and GaO2 as comparative examples.
b□, 85Lao, 10TIO3-0,7wt%M
PbO・8203・S as a subcomponent in the calcined powder of nO2
A sample prepared in the same manner as in Example 7 with the addition of iO□-based galame glass compound tχ (sample number 56), and Pb
O,8!5LaO,t,'rto3-o, 7wt%M
Na2O, B2O3,
Similar measurements were also performed on a sample (sample number 57) prepared in the same manner as in Example 7 with the addition of 10 wt % of the 5i02-based vitrified metal, and the results are also shown.

また、第7表中の試料番号55は、本発明の範囲外であ
る。
Moreover, sample number 55 in Table 7 is outside the scope of the present invention.

(実施例3) まず、実施例7でPb□、 85Lao、 1(、Ti
03−0.7wt%MnO2の組成となるように秤量し
た主成分に対して、副成分の原料としてPb3O4とG
eO2を用い、Pb3O4をPb。
(Example 3) First, in Example 7, Pb□, 85Lao, 1(, Ti
03-For the main component weighed to have a composition of 0.7 wt% MnO2, Pb3O4 and G are added as raw materials for the subcomponents.
Using eO2, Pb3O4 is Pb.

に換算し、GeO2をGeO2に換算し、一般式: x
PbO・yGeO2のモル比ををx=5.y=3とする
とともに、第8表に示すような配合比で添加、含有させ
た以外は、実施例2と同様にして磁器角板の試料(試料
番号58〜64)を得た。
Convert GeO2 to GeO2, general formula: x
The molar ratio of PbO・yGeO2 is x=5. Porcelain square plate samples (sample numbers 58 to 64) were obtained in the same manner as in Example 2, except that y was set to 3 and the ingredients were added and contained in the blending ratios shown in Table 8.

各試料について3点曲げ試験法(支持点間距離:11m
m)により抗折強度(kg/Cm2)を測定し、その結
果を焼成温度とともに、第8表に示した。
Three-point bending test method for each sample (distance between support points: 11 m
The bending strength (kg/Cm2) was measured by m), and the results are shown in Table 8 along with the firing temperature.

なお、試料番号5B、61.64は、本発明の範囲外で
ある。
Note that sample numbers 5B and 61.64 are outside the scope of the present invention.

(実施例9) まず、原料としてBaCO3,Ti02.CaCf13
およびMnO2を用い、これらを(BaO,92ca0
.06)Ti03−0.2wt%MnO2の組成を有す
る強誘電性磁器が得られるように秤量し、仮焼温度を1
100℃とした以外は、実施例1と同様にして仮焼粉末
を得た。なお、第9表には、PboとGeO2のモル比
、およびPboとGeO2との合計量の主成分に対する
添加量(wt%)を示している。
(Example 9) First, BaCO3, Ti02. CaCf13
and MnO2, these are (BaO,92ca0
.. 06) Ti03-Weighed so as to obtain ferroelectric porcelain having a composition of 0.2wt%MnO2, and set the calcination temperature to 1.
A calcined powder was obtained in the same manner as in Example 1 except that the temperature was 100°C. Table 9 shows the molar ratio of Pbo and GeO2 and the total amount of Pbo and GeO2 added to the main components (wt%).

次に、得られた仮焼粉末に、有機バインダを6〜7wt
%加えて20時間間層して厚膜ペーストを調製した。
Next, 6 to 7 wt of organic binder is added to the obtained calcined powder.
% and layered for 20 hours to prepare a thick film paste.

次に、調製した厚膜ペーストをドクターブレード法によ
りシート成形し、パンチングして直径10@釦、厚さ0
.1mmの円板を形成し、この円板を第9表に示す焼成
温度で2時間焼成して磁器円板を得た。
Next, the prepared thick film paste was formed into a sheet using a doctor blade method, and punched to a diameter of 10@button and a thickness of 0.
.. A 1 mm disk was formed, and this disk was fired for 2 hours at the firing temperature shown in Table 9 to obtain a porcelain disk.

次に、得られた磁器円板の両主表面に銀電極を焼付け、
両電極間に80℃で3〜4KV/n+mの直流電圧を印
加して30分間分極処理を行い、磁器圧電体の試料(試
料番号66〜63)を得た。
Next, silver electrodes were baked on both main surfaces of the obtained porcelain disk,
A DC voltage of 3 to 4 KV/n+m was applied between both electrodes at 80° C. to perform polarization treatment for 30 minutes to obtain porcelain piezoelectric samples (sample numbers 66 to 63).

各試料について、比誘電率(εr)および円板の拡がり
振動の電気機械結合係数(Kp)を測定し、その結果を
第8表に示した。
For each sample, the relative dielectric constant (εr) and the electromechanical coupling coefficient (Kp) of the spreading vibration of the disk were measured, and the results are shown in Table 8.

なお、第9表には比較例として副成分のPb3O4およ
びGeO2を添加していない試料(試料番号65)、(
BaO,92Ca0. oθ)’rio3−o、 2w
t%MnO2の仮焼粉末に副成分としてPbO−B2O
3・5i02系ガラメガラス化1wt%を添加して実施
例9と同様にして作製した試料(試料番号69)、およ
び(Ba□、 92Cao、o3)’r;o3−o、 
2wt%MnO3の仮焼粉末に副成分としてNa2O・
B2O3・SiO□系ガラメガラス化合物wt%を添加
して実施例9と同様にして作製した試料(試料番号70
)についても同様の測定を行い、その結果をあわせて示
している。
In addition, Table 9 shows, as comparative examples, a sample (sample number 65) in which the subcomponents Pb3O4 and GeO2 were not added;
BaO,92Ca0. oθ)'rio3-o, 2w
t%MnO2 calcined powder with PbO-B2O as an accessory component
3.5 A sample prepared in the same manner as in Example 9 with the addition of 1 wt% of i02-based galame vitrification (sample number 69), and (Ba□, 92Cao, o3)'r;o3-o,
2wt% MnO3 calcined powder with Na2O as a subcomponent.
A sample prepared in the same manner as in Example 9 by adding wt% of B2O3/SiO□-based galame glass compound (sample number 70)
) were also measured in the same way, and the results are also shown.

(以下余白) 第 表 第 表 第 表 第 表 第 表 第8表 第9表 第1表〜第9表の結果から明らかなように、本発明に係
る強誘電性磁器組成物は、副成分を含まない強誘電性磁
器よりも100℃〜400℃低い焼成温度で焼結するこ
とができ、しかもそれとほぼ同程度の電気機械結合係数
および比誘電率を示している。
(Leaving space below) As is clear from the results in Tables 1 to 9, the ferroelectric ceramic composition according to the present invention contains no subcomponents. It can be sintered at a sintering temperature 100 to 400 degrees Celsius lower than that of ferroelectric porcelain that does not contain ferroelectric porcelain, and exhibits an electromechanical coupling coefficient and relative permittivity that are approximately the same.

また、本発明に係る強誘電性磁器組成物は、xPbO・
yGe02(x=1〜6.y=1−3)のモル比となる
ように添加する副成分となるPb3O4およびGaO2
の量の増加とともに、電気機械結合係数および比誘電率
が低下するが、その度合は、PbO・B2O3・5i0
2系ガラス化合物やNa2O・B2O3・S 1−02
系ガラス化合物を添加した場合と比較して著しく少ない
Furthermore, the ferroelectric ceramic composition according to the present invention has xPbO.
Pb3O4 and GaO2 as subcomponents added to have a molar ratio of yGe02 (x=1 to 6.y=1-3)
The electromechanical coupling coefficient and dielectric constant decrease with the increase in the amount of PbO・B2O3
2-based glass compounds and Na2O・B2O3・S 1-02
It is significantly less than when a glass compound is added.

(実施例10) まず、原料としてPb3O4,TiO2,ZrO2,M
nO2およびNb2O5を用い、 0、1Pb(Mn、3Nb273)03−0.52Pb
Tt03−0.38PbZr03の組成を有する強誘電
性磁器を得られるように秤量し、副成分の原料としてP
b3O4とGeO2を用い、Pb3O4をPboに換算
し、GeO2をGeO2に換算し、一般式:*PbO・
yGe02のモル比ををx=5.y=3とするとともに
、主成分に対して、第10表に示すような配合比で添加
(Example 10) First, Pb3O4, TiO2, ZrO2, M
Using nO2 and Nb2O5, 0,1Pb(Mn,3Nb273)03-0.52Pb
Weighed so as to obtain ferroelectric porcelain having a composition of Tt03-0.38PbZr03, and added P as a raw material for the subcomponent.
Using b3O4 and GeO2, Pb3O4 is converted to Pbo, GeO2 is converted to GeO2, and the general formula: *PbO・
Let the molar ratio of yGe02 be x=5. y = 3, and added at the mixing ratio shown in Table 10 to the main ingredients.

含有させた以外は、実施例3と同様にして仮焼粉末を得
た。
A calcined powder was obtained in the same manner as in Example 3 except that it was added.

次に、得られた仮焼粉末に有機バインダを2〜3wt%
加えて20時間間層した後、造粒し、プレス成形して角
板を形成し、この角板を第10表に示す焼成温度で2時
間焼成して、−辺が5mmで厚さ0.5mmの磁器角板
を得た。
Next, 2 to 3 wt% of an organic binder is added to the obtained calcined powder.
In addition, after being layered for 20 hours, it was granulated and press-molded to form a square plate, and this square plate was fired for 2 hours at the firing temperature shown in Table 10 to form a square plate with a - side of 5 mm and a thickness of 0. A porcelain square plate of 5 mm was obtained.

次に、得られた磁器角板の両主表面に銀電極を焼付け、
80℃中で両電極間に3〜4KV/mmの直流電圧を印
加して30分間分極処理を行い、面内に垂直方向に分極
された発振子(共振子)の試料(試料番号71〜73)
を得た。
Next, silver electrodes were baked on both main surfaces of the obtained porcelain square plate,
A DC voltage of 3 to 4 KV/mm was applied between both electrodes at 80°C, and polarization treatment was performed for 30 minutes to obtain oscillator (resonator) samples (sample numbers 71 to 73) polarized in the vertical direction in the plane. )
I got it.

各試料を第1図の発振回路にそれぞれ接続し、発振周波
数455K)Izで発振させた。図中、1は発振子、I
C1は反転増幅器、R4は抵抗、CLl、Cu2はコン
デンサである。そして、各試料について、この発振回路
で100回動作させ、この100回のうち、発振周波数
が455KHzから4.5MHzへの異常発振が発生し
た回数を第10表に示した。
Each sample was connected to the oscillation circuit shown in FIG. 1, and oscillated at an oscillation frequency of 455 K)Iz. In the figure, 1 is an oscillator, I
C1 is an inverting amplifier, R4 is a resistor, and CL1 and Cu2 are capacitors. Each sample was operated with this oscillation circuit 100 times, and Table 10 shows the number of times the oscillation frequency changed from 455 KHz to 4.5 MHz out of the 100 times.

なお、第10表中の試料番号71.73,75,77は
、本発明の範囲外である。
Note that sample numbers 71, 73, 75, and 77 in Table 10 are outside the scope of the present invention.

(以下余白) 第10表 第10表の結果から明らかなように、本発明に係る強誘
電性磁器組成物を用いた発振子では、異常発振が全く認
められなかったが、副成分を含まない本発明の範囲外の
ものでは、第2図に示すように、厚み縦振動のスプリア
スが生じ4.5MHz付近での異常光iが認められた。
(Left below) Table 10 As is clear from the results in Table 10, no abnormal oscillation was observed in the oscillator using the ferroelectric ceramic composition according to the present invention, but it does not contain subcomponents. In the case outside the scope of the present invention, as shown in FIG. 2, spurious vibrations due to thickness longitudinal vibration occurred and abnormal light i around 4.5 MHz was observed.

これは、強誘電性磁器に添加した副成分が結晶粒界の強
度を高めるだけでなく、発振子として利用した場合、主
振動に悪影響を与えることなく、厚み縦振動のスプリア
スを低下させるためであると考えられる。
This is because the subcomponents added to ferroelectric porcelain not only increase the strength of grain boundaries, but also reduce spurious thickness longitudinal vibrations when used as an oscillator without adversely affecting the main vibration. It is believed that there is.

したがって、本発明に係る強誘電性磁器組成物は、基本
発振周波数より高い振動の減衰に有利である。なお、こ
のような効果は、拡がり振動を利用した発振子だけでな
く、辺振動を利用する発振子等の材料としての強誘電性
磁器組成物についても認められた。
Therefore, the ferroelectric ceramic composition according to the present invention is advantageous in damping vibrations higher than the fundamental oscillation frequency. Incidentally, such an effect was observed not only in oscillators that utilize spread vibration, but also in ferroelectric ceramic compositions used as materials for oscillators and the like that utilize edge vibration.

(実施例11) まず、原料としてPb3O4,Fe2O3,Nb2O5
およびWO3を用い、 0.70Pb(Fe172Nb172)03−0.30
Pb(Fe2z3L73)03の組成を有する強誘電性
磁器が得られるように秤量し、副成分の原料としてPb
3O4とGeO2を用い、Pb3O4をPboに換算し
、GeO2をGeO2に換算し、一般式: xPbo・
yGe02のモル比ををx=5.y=3とするとともに
、主成分に対して、第11表に示すような配合比で添加
(Example 11) First, as raw materials Pb3O4, Fe2O3, Nb2O5
and WO3, 0.70Pb(Fe172Nb172)03-0.30
Weighed so as to obtain a ferroelectric ceramic having a composition of Pb(Fe2z3L73)03, and added Pb as a raw material for the subcomponent.
Using 3O4 and GeO2, Pb3O4 is converted to Pbo, GeO2 is converted to GeO2, and the general formula: xPbo・
Let the molar ratio of yGe02 be x=5. Set y to 3 and add to the main ingredients at the mixing ratio shown in Table 11.

含有させた以外は、実施例3と同様にして仮焼粉末を得
た。
A calcined powder was obtained in the same manner as in Example 3 except that it was added.

次に、得られた仮焼粉末に、有機バインダを2〜3wt
%加えて20時間間層して造粒した後、プレス成形して
円板を成形し、これを第11表に示す焼成温度で2時間
焼成して、直径10mm、厚さ1.0市の磁器円板を得
た。
Next, 2 to 3 wt of organic binder is added to the obtained calcined powder.
% and layered for 20 hours to form granules, press-molded to form a disk, which was fired at the firing temperature shown in Table 11 for 2 hours to form a 10 mm diameter, 1.0 mm thick disk. A porcelain disc was obtained.

次に、得られた磁器円板の両主表面に銀電極を焼き付け
てコンデンサの試料(試料番号79〜84)を得た。
Next, silver electrodes were baked on both main surfaces of the obtained porcelain disk to obtain capacitor samples (sample numbers 79 to 84).

各試料について、比誘電率(εr)および抗折強度(k
g/cmりを測定し、その結果を第11表に示した。
For each sample, relative dielectric constant (εr) and bending strength (k
g/cm was measured and the results are shown in Table 11.

なお、試料番号79,81.83は、本発明の範囲外で
ある。
Note that sample numbers 79, 81, and 83 are outside the scope of the present invention.

(実施例12) まず、原料としてPb3O4,ZnO,Nb2O5,F
e2O3,WO3を用い、これらを0.16Pb(Zn
1/3Nb273)03−0、48Pb (Fe1/2
Nb17z) 03−0.36Pb(Fe2/5Wt7
3) 03の組成を有する強誘電体磁器が得られるよう
に秤量し、実施例8と同様にして仮焼粉末を得た。
(Example 12) First, Pb3O4, ZnO, Nb2O5, F as raw materials
e2O3, WO3 and 0.16Pb (Zn
1/3Nb273) 03-0, 48Pb (Fe1/2
Nb17z) 03-0.36Pb(Fe2/5Wt7
3) A calcined powder was obtained in the same manner as in Example 8 by weighing so as to obtain a ferroelectric ceramic having a composition of 03.

次に、得られた仮焼粉末に、有機バインダを2〜3wt
χ加えて20時間間層して造粒した後、プレス成形して
円板を成形し、これを第12表に示す焼成温度で2時間
焼成して、直径10mI!l、厚さ1.0mmの磁器円
板を得た。
Next, 2 to 3 wt of organic binder is added to the obtained calcined powder.
After layering and granulating χ for 20 hours, press molding was performed to form a disk, which was then fired for 2 hours at the firing temperature shown in Table 12 to give a diameter of 10 mI! A porcelain disk with a thickness of 1.0 mm was obtained.

次に、得られた磁器円板の両主表面に銀電極を焼き付け
てコンデンサの試料(試料番号85〜83)を得た。
Next, silver electrodes were baked on both main surfaces of the obtained porcelain disk to obtain capacitor samples (sample numbers 85 to 83).

各試料について、比誘電率(εr)および抗折強度(k
glc、l112)を測定し、その結果を第12表に示
した。
For each sample, relative dielectric constant (εr) and bending strength (k
glc, l112) was measured and the results are shown in Table 12.

なお、第12表中の試料番号85.87は、本発明の範
囲外である。
Note that sample number 85.87 in Table 12 is outside the scope of the present invention.

(以下余白) 第11表および第12表の結果から明らかなように、酸
化鉛を含む複合ペロブスカイト系のコンデンサ材料につ
いてもPbの酸化物をPbOに換算し、Geの酸化物を
GeO2に換算し、PbOとGeO2のモル比を一般式
:xPbO・yGe02(x=1−6. y=1〜3)
として、これらを副成分として0.01〜30重量%添
加、含有させたことにより、比誘電率および抗折強度を
向上させることが受きる。
(Left below) As is clear from the results in Tables 11 and 12, for composite perovskite capacitor materials containing lead oxide, Pb oxides are converted to PbO, and Ge oxides are converted to GeO2. , the molar ratio of PbO and GeO2 is expressed by the general formula: xPbO・yGe02 (x=1-6. y=1-3)
By adding and containing these as subcomponents in an amount of 0.01 to 30% by weight, the dielectric constant and the bending strength can be improved.

(発明の効果) 以上の説明から明らかなように、本発明によれば、85
0〜1000℃の低い焼成温度で焼結し、しかも、電気
機械結合係数が大きく、比誘電率が大きい強誘電性磁器
が得られるので、エネルギー変換効率が高い圧電素子を
製造できる。
(Effect of the invention) As is clear from the above explanation, according to the present invention, 85
Since ferroelectric porcelain can be sintered at a low firing temperature of 0 to 1000° C. and has a large electromechanical coupling coefficient and a large dielectric constant, piezoelectric elements with high energy conversion efficiency can be manufactured.

また、焼結温度が低いことから金属製の基板との一体焼
結が可能となり、一体焼結型のブザーやバイモルフ等の
電歪素子を製造できるだけではなく、焼成時、PbO雰
囲気調整が不要となり、匣や焼成炉の延命化、および省
エネルギー化を図ることができるなど優れた効果が得ら
れる。
In addition, since the sintering temperature is low, integral sintering with a metal substrate is possible, which not only makes it possible to manufacture integrally sintered buzzers and electrostrictive elements such as bimorphs, but also eliminates the need to adjust the PbO atmosphere during firing. Excellent effects can be obtained, such as prolonging the life of boxes and kilns, and saving energy.

さらに、抗折強度を低下させることがなく、しかも、発
振子に利用した場合に、スプリアスの発生を防止するこ
とができる。
Furthermore, the bending strength is not reduced, and when used in an oscillator, generation of spurious waves can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はセラミック発振子を含む発振回路を示す回路図
、第2図は第1図の発振回路での主振動である拡がり振
動とスプリアス振動の厚み縦振動を示す図である。 1・・・セラミック発振子 IC1・・・反転増幅器 R1・・・抵抗 CLl、Cl3・・・コンデンサ。
FIG. 1 is a circuit diagram showing an oscillation circuit including a ceramic oscillator, and FIG. 2 is a diagram showing the spread vibration, which is the main vibration, and the thickness longitudinal vibration, which is the spurious vibration, in the oscillation circuit of FIG. 1. 1...Ceramic resonator IC1...Inverting amplifier R1...Resistors CLl, Cl3...Capacitors.

Claims (3)

【特許請求の範囲】[Claims] (1)主成分である強誘電性磁器に対して、副成分とし
てPbの酸化物とGeの酸化物がそれぞれ添加含有され
、Pbの酸化物をPbOに換算し、Geの酸化物をGe
O_2に換算し、PbOとGeO_2のモル比を一般式
:xPbO・yGeO_2として表したときx,yがそ
れぞれx=1〜6,y=1〜3であり、かつ添加、含有
されたPbOとGeO_2の合計量が0.01〜30重
量%であることを特徴とする強誘電性磁器組成物。
(1) Pb oxide and Ge oxide are added as subcomponents to ferroelectric ceramic, which is the main component, and Pb oxide is converted to PbO, and Ge oxide is converted to Ge.
In terms of O_2, when the molar ratio of PbO and GeO_2 is expressed as the general formula: xPbO・yGeO_2, x and y are x = 1 to 6 and y = 1 to 3, respectively, and the added and contained PbO and GeO_2 A ferroelectric ceramic composition characterized in that the total amount of is 0.01 to 30% by weight.
(2)請求項(1)に記載の強誘電性磁器組成物からな
る板状の強誘電性磁器板と、この強誘電性磁器板の両主
表面に形成された電極と、からなることを特徴とする圧
電素子。
(2) Consisting of a plate-shaped ferroelectric porcelain plate made of the ferroelectric porcelain composition according to claim (1), and electrodes formed on both main surfaces of the ferroelectric porcelain plate. Features a piezoelectric element.
(3)請求項(1)に記載の強誘電性磁器組成物からな
る仮焼粉末を含有する厚膜ペーストが金属製の基板上に
塗布,焼き付けられて一体化され、この焼き付けによっ
て形成された強誘電性磁器層の表面に電極が形成された
ことを特徴とする圧電素子。
(3) A thick film paste containing a calcined powder made of the ferroelectric ceramic composition according to claim (1) is applied onto a metal substrate and baked into an integrated product, and is formed by this baking. A piezoelectric element characterized by having electrodes formed on the surface of a ferroelectric ceramic layer.
JP1086043A 1989-04-04 1989-04-04 Ferroelectric composition containing lead oxide and piezoelectric element using the same Expired - Fee Related JP2504176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1086043A JP2504176B2 (en) 1989-04-04 1989-04-04 Ferroelectric composition containing lead oxide and piezoelectric element using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1086043A JP2504176B2 (en) 1989-04-04 1989-04-04 Ferroelectric composition containing lead oxide and piezoelectric element using the same

Publications (2)

Publication Number Publication Date
JPH02263761A true JPH02263761A (en) 1990-10-26
JP2504176B2 JP2504176B2 (en) 1996-06-05

Family

ID=13875650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1086043A Expired - Fee Related JP2504176B2 (en) 1989-04-04 1989-04-04 Ferroelectric composition containing lead oxide and piezoelectric element using the same

Country Status (1)

Country Link
JP (1) JP2504176B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005303282A (en) * 2004-03-16 2005-10-27 E I Du Pont De Nemours & Co Thick-film dielectric composition and thick-film conductive composition
JP2006193351A (en) * 2005-01-11 2006-07-27 Ngk Insulators Ltd Piezoelectric/electrostrictive ceramic composition, piezoelectric/electrostrictive element and method of producing piezoelectric/electrostrictive element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5466450A (en) * 1977-11-01 1979-05-29 Univ Illinois Unhomogeneous phase ceramic condenser
JPS6359362U (en) * 1986-10-06 1988-04-20
JPH02197182A (en) * 1989-01-26 1990-08-03 Murata Mfg Co Ltd Ferroelectric porcelain body
JPH02239151A (en) * 1989-03-10 1990-09-21 Tdk Corp Dielectric porcelain composition for temperature compensation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5466450A (en) * 1977-11-01 1979-05-29 Univ Illinois Unhomogeneous phase ceramic condenser
JPS6359362U (en) * 1986-10-06 1988-04-20
JPH02197182A (en) * 1989-01-26 1990-08-03 Murata Mfg Co Ltd Ferroelectric porcelain body
JPH02239151A (en) * 1989-03-10 1990-09-21 Tdk Corp Dielectric porcelain composition for temperature compensation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005303282A (en) * 2004-03-16 2005-10-27 E I Du Pont De Nemours & Co Thick-film dielectric composition and thick-film conductive composition
JP2006193351A (en) * 2005-01-11 2006-07-27 Ngk Insulators Ltd Piezoelectric/electrostrictive ceramic composition, piezoelectric/electrostrictive element and method of producing piezoelectric/electrostrictive element
US7425790B2 (en) 2005-01-11 2008-09-16 Ngk Insulators, Ltd. Piezoelectric/electrostrictive porcelain composition, piezoelectric/electrostrictive device, and method of piezoelectric/electrostrictive device
JP4537212B2 (en) * 2005-01-11 2010-09-01 日本碍子株式会社 Method for manufacturing piezoelectric / electrostrictive element
US7901729B2 (en) 2005-01-11 2011-03-08 Ngk Insulators, Ltd. Method of manufacturing a piezoelectric/electrostrictive device

Also Published As

Publication number Publication date
JP2504176B2 (en) 1996-06-05

Similar Documents

Publication Publication Date Title
JPH11228227A (en) Piezoelectric ceramic composition
JP4466652B2 (en) Piezoelectric ceramic and piezoelectric ceramic element
JPH1129356A (en) Piezoelectric ceramic composition
JPH10297969A (en) Piezoelectric ceramic composition
KR20030056238A (en) Piezoelectric Ceramic Composition Reducing Leakage Current and Piezoelectric Device Using The Same
JP3198906B2 (en) Piezoelectric porcelain composition
JP2000272962A (en) Piezoelectric ceramic composition
JP4636222B2 (en) Piezoelectric ceramic
JPH02263761A (en) Ferroelectric ceramic composition and piezoelectric element utilizing the same
JP2682022B2 (en) Ferroelectric porcelain composition and piezoelectric element using the same
JP2002293628A (en) Piezoelectric ceramic and piezoelectric element
JP4361990B2 (en) Piezoelectric ceramic composition
JP2002338355A (en) Piezoelectric ceramic
JPH10231169A (en) Piezoelectric porcelain composition and production of piezoelectric porcelain
JP3114886B2 (en) Piezoelectric ceramics
US6391223B1 (en) Piezoelectric ceramic composition and piezoelectric ceramic element using the same
JPH0437076A (en) Piezoelectric porcelain compound
JP2737451B2 (en) Piezoelectric material
JPS6167283A (en) Piezoelectric ceramics
JPH01175218A (en) Manufacture of ceramic electronic component
JPH04188882A (en) Piezoelectric porcelain composition
JPH11292623A (en) Piezoelectric ceramic
KR910006709B1 (en) Oxide piezo-electric material
KR0137540B1 (en) Oxide piezo-electric material
JP2023069307A (en) Dielectric composition and electronic component

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees