JPH02197182A - Ferroelectric porcelain body - Google Patents

Ferroelectric porcelain body

Info

Publication number
JPH02197182A
JPH02197182A JP1017043A JP1704389A JPH02197182A JP H02197182 A JPH02197182 A JP H02197182A JP 1017043 A JP1017043 A JP 1017043A JP 1704389 A JP1704389 A JP 1704389A JP H02197182 A JPH02197182 A JP H02197182A
Authority
JP
Japan
Prior art keywords
ferroelectric
porcelain
ferroelectric porcelain
powder
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1017043A
Other languages
Japanese (ja)
Other versions
JP2504158B2 (en
Inventor
Atsushi Sano
篤史 佐野
Toshio Ogawa
敏夫 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP1017043A priority Critical patent/JP2504158B2/en
Publication of JPH02197182A publication Critical patent/JPH02197182A/en
Application granted granted Critical
Publication of JP2504158B2 publication Critical patent/JP2504158B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain ferroelectric porcelain which can be sintered not only at a low temperature but also with a metal plate in a integral structure and to enable the formation or an electrostrictive element using the ferroelectric porce lain by a method wherein a calcined substance is added to ferroelectric porcelain powder. CONSTITUTION:A Ferroelectric porcelain body of this design is composed of ferroelectric porcelain as a main component and contains 0.01-30mu by weight of a calcined substance as a secondary component represented by a general formula, xPbO.yGeO2 (x=1-6, y=1-3). The ferroelectric porcelain is calcined powder of ferroelectric porcelain and obtained in such a manner that sintered ferroelectric porcelain is ground into powder whose average grain diameter is 0.1-3.0mum and then thermally treated at a temperature of 750-950 deg.C.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は強誘電性磁器体、特に、低温で焼結しても電気
機械結合係数の大きな強誘電性磁器体に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a ferroelectric porcelain body, and particularly to a ferroelectric porcelain body that has a large electromechanical coupling coefficient even when sintered at a low temperature.

(従来技術) 一般に磁器圧電材料は加工性、ffi産性および特性に
優れていることから、フィルター、圧電ブザー、バイモ
ルフなどの圧電素子に応用されている。
(Prior Art) Porcelain piezoelectric materials generally have excellent workability, ffi productivity, and characteristics, and are therefore applied to piezoelectric elements such as filters, piezoelectric buzzers, and bimorphs.

この種の磁器圧電材料としては、チタン酸鉛系強誘電性
磁器、チタン酸ジルコン酸鉛系強誘電性磁器およびチタ
ン酸バリウム系強誘電性磁器が実用に供されている。
As this type of porcelain piezoelectric material, lead titanate-based ferroelectric porcelain, lead zirconate titanate-based ferroelectric porcelain, and barium titanate-based ferroelectric porcelain are in practical use.

しかし、これらの強誘電性磁器は、焼結温度が1100
℃以上と高温であることから、金属板等の基板と一体化
した複合体を得ることができなかった。
However, these ferroelectric ceramics have a sintering temperature of 1100
Due to the high temperature of ℃ or higher, it was not possible to obtain a composite integrated with a substrate such as a metal plate.

また、強誘電性磁器が鉛酸化物含有強誘電性磁器である
場合、その成分として揮発性のpbを含むため、焼成時
にPbOの一部が組成から失われ易く、特性の再現性お
よび均一性を図ることが困難であった。
In addition, when the ferroelectric porcelain is a ferroelectric porcelain containing lead oxide, since it contains volatile PB as a component, part of the PbO is likely to be lost from the composition during firing, resulting in poor reproducibility and uniformity of characteristics. It was difficult to achieve this goal.

このような問題点を解決するためには、焼成温度を低温
化する必要があり、本願出願人は、特願昭63−165
274号において、副成分としてゲルマン酸鉛ガラス化
合物を0.01〜30重量%添加した、低温焼結が可能
な強誘電性磁器体を提案している。
In order to solve such problems, it is necessary to lower the firing temperature, and the applicant of this application has proposed
No. 274 proposes a ferroelectric porcelain body that can be sintered at a low temperature, to which 0.01 to 30% by weight of a lead germanate glass compound is added as a subcomponent.

(従来技術の問題点) しかしながら、副成分として用いるゲルマン酸鉛ガラス
化合物は、その作製のために、ゲルマン酸鉛化合物を高
純度アルミナ坩堝に入れて875℃にて熔融させる工程
、この熔融物を純水中に投入。
(Problems with the prior art) However, in order to produce the lead germanate glass compound used as a subcomponent, the lead germanate compound is put into a high-purity alumina crucible and melted at 875°C. Pour into pure water.

急冷破砕してガラス化する工程、およびこのガラス化合
物を乳鉢と乳棒で粉砕し、325メツシユ以下の粉末に
するための微粉化工程が必要であり、大変手間がかかる
上、コストが高くついた。
This requires a step of quenching and crushing to vitrify, and a pulverization step of pulverizing this glass compound with a mortar and pestle to a powder of 325 mesh or less, which is very time-consuming and expensive.

また、ガラス化合物は非常に固く、微粉化するのが容易
ではなかった。
Furthermore, the glass compound was very hard and difficult to pulverize.

(問題点を解決するための手段) 本発明は、上述した問題点を解決する手段として、強誘
電性磁器を主成分とし、副成分である一般式: xPb
O・yGeO2(x=1〜6.y:1〜3)からなる仮
焼物を0.01〜30重量%含有してなる強誘電性磁器
体を提供するものである。
(Means for Solving the Problems) The present invention, as a means for solving the above-mentioned problems, uses ferroelectric ceramic as a main component and a subcomponent of the general formula: xPb.
A ferroelectric porcelain body containing 0.01 to 30% by weight of a calcined material of O.yGeO2 (x=1 to 6, y: 1 to 3) is provided.

また、前記主成分である強誘電性磁器は、強誘電性磁器
の仮焼粉木受ある。
Further, the ferroelectric porcelain which is the main component is a calcined powder wood holder of ferroelectric porcelain.

また、前記主成分である強誘電性磁器が、焼結済の強誘
電性磁器を平均粒径でo、i〜3.0μのに粉砕するこ
とによって得られた強誘電性磁器粉末である。
Further, the ferroelectric porcelain as the main component is a ferroelectric porcelain powder obtained by pulverizing sintered ferroelectric porcelain to an average particle size of o, i to 3.0 μm.

また、前記主成分である強誘電性磁器は鉛酸化物含有強
誘電性磁器であって1、焼結済の鉛酸化物含有強誘電性
磁器を平均粒径で0.1〜3.0μmに粉砕した後、7
50℃〜950℃で熱処理して得た強誘電性磁器粉末で
ある。
In addition, the ferroelectric porcelain that is the main component is a ferroelectric porcelain containing lead oxide. After crushing, 7
Ferroelectric porcelain powder obtained by heat treatment at 50°C to 950°C.

また、前記主成分である強誘電性磁器はチタン酸バリウ
ム系強誘電性磁器であって1、焼結済のチタン酸バリウ
ム系強誘電性磁器を平均粒径で0.1〜3.0Atmニ
粉砕シtC後、750℃以上↑熱処理シて得た強誘電性
磁器粉末である。
The ferroelectric porcelain, which is the main component, is barium titanate-based ferroelectric porcelain. This is a ferroelectric porcelain powder obtained by heat treatment at 750° C. or higher after pulverization.

主成分となる強誘電性磁器粉末および仮焼粉末としては
、チタン酸鉛系強誘電性磁器粉末、チタン酸ジルコン酸
鉛系強誘電性磁器粉末、メタニオブ酸鉛系強誘電性磁器
粉末およびチタン酸バリウム系強誘電性磁器粉末が代表
的なものとして挙げられるが、これらに限定されるもの
ではない。
The main components of ferroelectric porcelain powder and calcined powder include lead titanate-based ferroelectric porcelain powder, lead zirconate titanate-based ferroelectric porcelain powder, lead metaniobate-based ferroelectric porcelain powder, and titanate-based ferroelectric porcelain powder. A typical example is barium-based ferroelectric ceramic powder, but the material is not limited thereto.

(作用) 本発明は、主成分として強誘電性磁器の仮焼粉末、強誘
電性磁器を粉砕して得た結晶性のよい強誘電性磁器粉末
、あるいは強誘電性磁器を粉砕した後熱処理して粉砕に
より生じた結晶歪を除いた強誘電性磁器粉末に、一般式
: xPbO・yGeO2(x=1〜(3゜y=1〜3
)−t’示される仮焼物を添加するので、液相焼結によ
り異相セラミックバルクを生成することになる。
(Function) The present invention uses calcined powder of ferroelectric porcelain as a main component, ferroelectric porcelain powder with good crystallinity obtained by pulverizing ferroelectric porcelain, or heat treatment after pulverizing ferroelectric porcelain. The general formula: xPbO・yGeO2 (x=1~(3゜y=1~3
)-t' is added to produce a heterophasic ceramic bulk by liquid phase sintering.

この異相セラミックバルクな生成すると、強誘電性磁器
粉末を用いた場合、1000℃以上で焼結すると、強誘
電性磁器体が本来有する電気機械結合係数よりも大きな
強誘電性磁器体を得る事が可能となる。また、強誘電性
磁器の仮焼粉末あるいは強誘電性磁器粉末を用いた場合
、強誘電性磁器体が本来有する電気機械結合係数を低下
させることなく、850〜1000℃の低温で焼結する
ことが可能になる。
When this different-phase ceramic bulk is produced, when ferroelectric porcelain powder is used and sintered at temperatures above 1000°C, it is possible to obtain a ferroelectric porcelain body with a larger electromechanical coupling coefficient than the ferroelectric porcelain body originally has. It becomes possible. In addition, when calcined powder of ferroelectric porcelain or ferroelectric porcelain powder is used, it is possible to sinter at a low temperature of 850 to 1000°C without reducing the electromechanical coupling coefficient inherent in ferroelectric porcelain. becomes possible.

また、副成分である一般式: xPbO・yGeO2で
示される仮焼物は焼結温度を低下させるが、その含有量
を0.01〜30重量Xとしたのは、0.01重量%未
満受はその効果をさほど期待できず、30重量%を越え
ると焼結温度は低くなるが、電気機械結合係数の低下が
目立つようになるからである。
In addition, the calcined material represented by the general formula: This is because, if the content exceeds 30% by weight, the sintering temperature will be lowered, but the electromechanical coupling coefficient will be significantly lowered.

一般式: xPbO・yGe02で示される仮焼物のX
s Vの値をそれぞれx=1〜6. y=l〜3とした
のは、低温での焼結を可能とするために、PbO−Ge
0□系で、その融点が850℃以下となるものを選んだ
General formula: X of the calcined product represented by xPbO・yGe02
The value of s V is set to x=1 to 6, respectively. The reason why y=l~3 is that PbO-Ge can be sintered at low temperature.
0□ series with a melting point of 850°C or less was selected.

強誘電性磁器粉末の平均粒径10.1〜3.OAtmと
したのは、0.1μm未満では粉砕により発生する結晶
歪が増大し、3.0μmより大きい粒径では緻密な強誘
電性磁器が得られないからである。
Average particle size of ferroelectric ceramic powder: 10.1 to 3. The reason for choosing OAtm is that if the grain size is less than 0.1 μm, the crystal strain generated by crushing will increase, and if the grain size is larger than 3.0 μm, dense ferroelectric porcelain cannot be obtained.

さらに、主成分である鉛酸化物含有強誘電性磁器を粉砕
した後の熱処理温度を750〜950℃としたのは、7
50℃未満では粉砕時に発生した結晶歪が回復せず、9
50℃を越えると鉛抜けのために電気機械結合係数の低
下が目立つようになるからである。
Furthermore, the heat treatment temperature after crushing the ferroelectric porcelain containing lead oxide, which is the main component, was set at 750 to 950°C.
If the temperature is below 50°C, the crystal strain generated during pulverization will not be recovered, and the
This is because when the temperature exceeds 50° C., the drop in the electromechanical coupling coefficient becomes noticeable due to lead loss.

また、主成分であるチタン酸バリウム系強誘電性磁器を
粉砕した後の熱処理温度を750℃以上としたのは、7
50℃未満では粉砕時に発生した結晶歪が回復しないか
らである。
In addition, the heat treatment temperature after crushing the barium titanate-based ferroelectric porcelain, which is the main component, was set to 750°C or higher.
This is because if the temperature is lower than 50° C., the crystal strain generated during pulverization cannot be recovered.

以下に、本発明の実施例について説明する。Examples of the present invention will be described below.

(実施例1) 原料としてPb3O4,TiO2,ZrO2およびHb
205を用い、これらをPbTi(、、48Zr’0.
5203−1.0mm%Nb2O5の組成を有する強誘
電性磁器が得られるように秤量し、その混合物を20時
時間式混合した。この混合物を脱水、乾燥し、850℃
で2時間仮焼した後、粉砕して仮焼粉末を得、との仮焼
粉末に有機バインダーを2〜5重量%加えて20時間混
合して造粒した。
(Example 1) Pb3O4, TiO2, ZrO2 and Hb as raw materials
205 and PbTi(,,48Zr'0.
5203-1.0 mm%Nb2O5 was weighed out and the mixture was mixed for 20 hours. This mixture was dehydrated and dried at 850°C.
After calcining for 2 hours, the mixture was crushed to obtain a calcined powder, and 2 to 5% by weight of an organic binder was added to the calcined powder and mixed for 20 hours for granulation.

これをプレス成形にて厚さ1〜1.5mm簿板薄板形し
た後、この薄板を1200℃で2時間焼成して強誘電体
磁器を得た。そして、この強誘電性磁器を乳鉢と乳棒で
粉砕した後、ボットミルにて70時時間式粉砕して焼結
微粉を得た。
This was pressed into a thin plate having a thickness of 1 to 1.5 mm, and then this thin plate was fired at 1200° C. for 2 hours to obtain ferroelectric porcelain. Then, this ferroelectric porcelain was crushed with a mortar and pestle, and then crushed in a bot mill for 70 hours to obtain a sintered fine powder.

また、これとは別に、原料としてPb3O4およびGe
O2を用い、これらを一般式: xPbO・yGeO2
(x:1〜6゜y=l〜3)の組成となるように秤量し
、その混合物を16〜20時間湿式混合する。そして、
この混合物を脱水、乾燥し、650℃で3時間仮焼した
後、325メツシユのふるいに通して、一般式: xP
bO・yGe02(x=1〜6、y=1〜3)の仮焼物
を得た。
Apart from this, Pb3O4 and Ge are also used as raw materials.
Using O2, these can be converted into the general formula: xPbO・yGeO2
The mixture is weighed so as to have a composition of (x: 1 to 6 degrees and y = 1 to 3), and the mixture is wet-mixed for 16 to 20 hours. and,
The mixture was dehydrated, dried, calcined at 650°C for 3 hours, and then passed through a 325 mesh sieve to give the general formula: xP
A calcined product of bO.yGe02 (x=1-6, y=1-3) was obtained.

前記強誘電性磁器粉末を一般式: xPbO・yGe0
2(x=l〜a、 y:l〜3)の仮焼物と第1表に示
す組成比で混合し、その混合物にfM詣と溶剤からなる
有機バインダーをlO重量%混合して厚膜ペーストを調
製した。そして、との厚膜ペーストを直径2軸m、厚さ
0.1m論の耐熱性金属、たとえば、Ni−Cr系金属
板の上に直径18I1111の円としてスクリーン印刷
した後、第1表に示す温度で焼成して508℃厚の一体
焼結型の複合体を得た。そして、この複合体の強誘電性
磁器の表面に焼付法によって銀電極を形成し、この銀電
極と金属板の間に、80℃で3〜4KV/mmの直流電
圧を印加して30分間分極処理を行ない、磁器圧電体の
試料とした。
The ferroelectric ceramic powder has the general formula: xPbO・yGe0
2 (x=l~a, y:l~3) in the composition ratio shown in Table 1, and 10% by weight of an organic binder consisting of fM and a solvent was mixed into the mixture to form a thick film paste. was prepared. Then, after screen printing the thick film paste as a circle with a diameter of 18I1111 on a heat-resistant metal plate having a diameter of 2 m and a thickness of 0.1 m, for example, a Ni-Cr metal plate, the paste is shown in Table 1. An integrally sintered composite body having a thickness of 508° C. was obtained by firing at a temperature of 508° C. Then, a silver electrode was formed on the surface of the ferroelectric porcelain of this composite by a baking method, and a DC voltage of 3 to 4 KV/mm was applied between the silver electrode and the metal plate at 80°C for 30 minutes to polarize it. A sample of a porcelain piezoelectric material was obtained.

各試料について、比誘電率(Cr)、円板の屈曲振動の
電気機械結合係数(Kv)を測定し、その結果を第1表
に示した。なお、第1表には、比較例として前記仮焼物
のかわりに副成分として一般式:xPbo・yGe02
(x:1〜6.y=1〜3)のガラス化合物を添加して
調製した厚膜ペーストを用いて作製した試料(1〜6〜
1〜9)についても同一の測定を行ない、その結果もあ
わせて第1表に示した。
For each sample, the dielectric constant (Cr) and the electromechanical coupling coefficient (Kv) of the bending vibration of the disk were measured, and the results are shown in Table 1. Table 1 shows, as a comparative example, the general formula: xPbo・yGe02 as a subcomponent instead of the calcined product.
Samples (1 to 6 to
1 to 9) were also subjected to the same measurements, and the results are also shown in Table 1.

(実施例2) 原料としてPb3O4,’rio2.ZrO2,5n0
2.5b203およびMnO2を用い、これらを 0.05Pb(Sn?/2 Sbl/2)03−0.4
7PbTi03−0.48PbZr03−0、7wt%
MnO2の組成を有する強誘電性磁器が得られるように
秤量し、その混合物を20時時間式混合する。そして、
この混合物を脱水、乾燥し、900℃で2時間仮焼して
仮焼粉末を得た。
(Example 2) Pb3O4, 'rio2. ZrO2,5n0
Using 2.5b203 and MnO2, these were 0.05Pb(Sn?/2 Sbl/2)03-0.4
7PbTi03-0.48PbZr03-0, 7wt%
The mixture is weighed and mixed for 20 hours so that a ferroelectric porcelain with a composition of MnO2 is obtained. and,
This mixture was dehydrated, dried, and calcined at 900° C. for 2 hours to obtain calcined powder.

この仮焼粉末に、実施例1で調製したxPbO・yGe
02(x=1〜〇、、=1〜3)を第2表に示す割合で
添加すると共に、有機バインダーを6〜7wtχ加えて
20時間混合した後、ドクターブレード法によりシート
成形し、パンチングして直径10n+o+、厚さ0.1
mmの円板を形成し、該円板を第2表に示す温度で2時
間焼成して磁器円板を得た。そして、この磁器円板の両
面に銀電極を焼き付け、両電極間に80℃で3〜4kv
/au++の直流電圧を印加して30分間分極処理を行
い磁器圧電体を得た。
The xPbO・yGe prepared in Example 1 was added to this calcined powder.
02 (x = 1 to 0, , = 1 to 3) in the proportions shown in Table 2, and an organic binder of 6 to 7 wtχ and mixed for 20 hours, then formed into a sheet by a doctor blade method and punched. diameter 10n+o+, thickness 0.1
A porcelain disk was obtained by forming a disk having a diameter of mm and firing the disk at the temperature shown in Table 2 for 2 hours. Then, silver electrodes are baked on both sides of this porcelain disk, and a voltage of 3 to 4 kV is applied at 80°C between the two electrodes.
A DC voltage of /au++ was applied and polarization was performed for 30 minutes to obtain a porcelain piezoelectric material.

この試料について、比誘電率(Cr)および円板の拡が
り振動の電気機械結合係数(Kp)を測定し、その結果
を第2表に示した。
Regarding this sample, the relative permittivity (Cr) and the electromechanical coupling coefficient (Kp) of the spreading vibration of the disk were measured, and the results are shown in Table 2.

なお、比較例として、実施例1と同様に副成分として一
般式: xPbO・、Ge02(x=1〜6.、=1〜
3)のガラス化合物を添加してドクターブレード法によ
りシート成形した試料(2−5〜2−7)についても同
一の測定を行ない、その結果もあわせて第2表に示した
As a comparative example, as in Example 1, the general formula: xPbO., Ge02 (x=1~6., =1~
The same measurements were also carried out on the samples (2-5 to 2-7) which were formed into sheets by the doctor blade method with the addition of the glass compound of 3), and the results are also shown in Table 2.

(実施例3) 原料としてPb3O4,TiO2,ZrO2,MnO2
およびHb20.を用い、これらを0.05Pb(Mn
l/3 Nb2/3)03−0.45PbTi03−0
.50PbZr03の組成を有する強誘電性磁器が得ら
れるように秤量し、その混合物を20時時間式混合した
。この混合物を脱水、乾燥し、900℃″I?2時間仮
焼した後、粉砕して仮焼粉末を得、この仮焼粉末に有機
バインダーを2〜5重量%加えて20時間混合して造粒
した。これをプレス成形にて厚さ1〜1.5mmの薄板
に成形した後、この薄板を1240℃で2時間焼成して
強誘電性磁器を得た。そして、この強誘電性磁器を乳鉢
と乳棒で粉砕し、60メツシユのふるいに通して平均粒
径が5μmの焼結微粉(No、1)を得た。
(Example 3) Pb3O4, TiO2, ZrO2, MnO2 as raw materials
and Hb20. using 0.05Pb (Mn
l/3 Nb2/3)03-0.45PbTi03-0
.. A ferroelectric ceramic having a composition of 50PbZr03 was weighed and the mixture was mixed for 20 hours. This mixture is dehydrated, dried, calcined at 900°C for 2 hours, pulverized to obtain a calcined powder, and 2 to 5% by weight of an organic binder is added to this calcined powder and mixed for 20 hours to produce the product. After forming this into a thin plate with a thickness of 1 to 1.5 mm by press molding, this thin plate was fired at 1240°C for 2 hours to obtain ferroelectric porcelain.Then, this ferroelectric porcelain was It was ground with a mortar and pestle and passed through a 60-mesh sieve to obtain a sintered fine powder (No. 1) with an average particle size of 5 μm.

次に、この焼結微粉(No、1)をボットミルにて16
時時間式粉砕して、平均粒径が3.0μmの焼結微粉(
No、2)を得、さらに、この焼結微粉(No、2)を
70時時間式粉砕して平均粒径が0.1μmの焼結微粉
(No。
Next, this sintered fine powder (No. 1) was milled in a bot mill for 16
Sintered fine powder with an average particle size of 3.0 μm (
Further, this sintered fine powder (No. 2) was pulverized for 70 hours to obtain a sintered fine powder (No. 2) with an average particle size of 0.1 μm.

3)を得た。3) was obtained.

これらの焼結微粉(No、 1〜No、3)に、実施例
1で調製したxPbO・、Ge02(x=1.−6.、
=1〜3)を第3表に示す割合で添加すると共に、有機
バインダーを2〜3wt%加えて20時間混合した後、
造粒し、プレス成形して直径10mm5 Wさ1011
11の円板を形成し、該円板を第3表に示す温度で2時
間焼成して磁器円板を得た。そして、この磁器円板の両
面に銀電極を焼き付け、両電極間に80℃で3〜4kv
/mmの直流電圧を印加して30分間分極処理を行い、
磁器圧電体の試料を得た。
These sintered fine powders (No. 1 to No. 3) were added with xPbO., Ge02 (x=1.-6.,
= 1 to 3) in the proportions shown in Table 3, and 2 to 3 wt% of an organic binder were added and mixed for 20 hours.
Granulate and press mold to a diameter of 10 mm5 and a width of 1011 mm.
No. 11 disks were formed, and the disks were fired for 2 hours at the temperatures shown in Table 3 to obtain porcelain disks. Then, silver electrodes are baked on both sides of this porcelain disk, and a voltage of 3 to 4 kV is applied at 80°C between the two electrodes.
Polarization treatment was performed for 30 minutes by applying a DC voltage of /mm.
A sample of porcelain piezoelectric material was obtained.

この試料についても、実施例2と同様に比誘電率(εr
)および円板の拡がり振動の電気機械結合係数(Kp)
を測定し、その結果を第3表に示した。
Regarding this sample as well, as in Example 2, the relative dielectric constant (εr
) and the electromechanical coupling coefficient (Kp) of the spreading vibration of the disk.
were measured and the results are shown in Table 3.

なお、比較例として前記焼結微粉のかわりに、900℃
で仮焼して得た強誘電性磁器仮焼粉末(No、7)を用
いて作製した試料(3−1)、および実施例1と同様に
副成分として一般式: xPbO−、Ge02(x:1
〜6.。
As a comparative example, instead of the sintered fine powder, 900°C
A sample (3-1) prepared using a ferroelectric porcelain calcined powder (No. 7) obtained by calcining in :1
~6. .

=1〜3)のガラス化合物を添加してプレス成形した試
料(3−9〜3−15)についても同一の測定を行い、
この結果もあわせて第3表に示した。
The same measurements were performed on samples (3-9 to 3-15) that were press-molded with the addition of glass compounds of =1 to 3).
The results are also shown in Table 3.

(実施例4) 原料としてPb3O4,TiO2,La2O3およびM
nO2を用い、PbO1B5LaO,10Ti03−0
.7wt%MnO2の組成を有する強誘電性磁器が得ら
れるように秤量し、その混合物を20時時間式混合した
。この混合物を脱水。
(Example 4) Pb3O4, TiO2, La2O3 and M as raw materials
Using nO2, PbO1B5LaO,10Ti03-0
.. A ferroelectric ceramic having a composition of 7 wt% MnO2 was weighed and the mixture was mixed for 20 hours. Dehydrate this mixture.

乾燥し、950℃で2時間仮焼した後、粉砕して仮焼粉
末を得、この仮焼粉末に有機バインダーを2〜5ff!
ffi%加えて20時間混合して造粒した。これをプレ
ス成形にて厚さ1〜1.5mmの薄板に成形した後、こ
の薄板を1200℃で2時間焼成して強誘電性磁器を得
た。そして、この強誘電性磁器を乳鉢と乳棒で粉砕し、
60メツシユのふるいに通して平均粒径が5μmの焼結
微粉を得た。
After drying and calcining at 950°C for 2 hours, it is crushed to obtain a calcined powder, and 2 to 5 ff of an organic binder is added to this calcined powder!
ffi% was added and mixed for 20 hours for granulation. This was press-molded into a thin plate with a thickness of 1 to 1.5 mm, and then this thin plate was fired at 1200° C. for 2 hours to obtain ferroelectric porcelain. Then, this ferroelectric porcelain is crushed with a mortar and pestle.
The powder was passed through a 60-mesh sieve to obtain a sintered fine powder with an average particle size of 5 μm.

次に、この焼結微粉をボットミルにて16時時間式粉砕
して、平均粒径が3.0μmの焼結微粉を得た。
Next, this sintered fine powder was pulverized for 16 hours in a bot mill to obtain a sintered fine powder with an average particle size of 3.0 μm.

そして、この焼結微粉′!!ニア50℃、850℃、9
50℃の各温度でそれぞれ熱処理して、アニール粉(N
o、4)。
And this sintered fine powder'! ! Near 50℃, 850℃, 9
The annealed powder (N
o, 4).

アニール粉(No、5)、アニール粉(No、6)を得
た。
Annealed powder (No. 5) and annealed powder (No. 6) were obtained.

このアニール粉(No、4〜No、6)に、実施例1で
調製・したxPbo・、Ge02(x=1〜6.、=1
〜3)を第4表に示す割合で配合し、有機バインダーを
4〜5wt%加えて20時間混練した後、押出し成形し
てグリーンシートを得、これをバンチングして直径10
mm、厚さ0.5mmの円板に形成して、第4表に示す
温度で2時間焼成して磁器円板を得た。そして、この磁
器円板の両面に銀電極を焼き付け、両電極間に80℃で
3〜4kv/mmの直流電圧を印加して30分間分極処
理を行い磁器圧電体の試料を得た。
This annealed powder (No. 4 to No. 6) was added with xPbo・, Ge02 (x=1 to 6., =1) prepared in Example 1.
-3) in the proportions shown in Table 4, 4 to 5 wt% of organic binder was added and kneaded for 20 hours, extrusion molded to obtain a green sheet, which was bunched to form a green sheet with a diameter of 10.
A porcelain disk was obtained by forming the powder into a disk having a diameter of 0.5 mm and a thickness of 0.5 mm, and firing at the temperature shown in Table 4 for 2 hours. Then, silver electrodes were baked on both sides of this porcelain disk, and a DC voltage of 3 to 4 kv/mm was applied between both electrodes at 80° C. for 30 minutes to perform a polarization treatment to obtain a sample of a porcelain piezoelectric material.

この試料について、比誘電率(εr)および円板の厚み
方向の振動の電気機械結合係数(Kt)を測定し、その
結果を第4表に示した。
Regarding this sample, the relative dielectric constant (εr) and the electromechanical coupling coefficient (Kt) of vibration in the thickness direction of the disk were measured, and the results are shown in Table 4.

なお、比較例として前記アニール粉のかわりに950℃
で仮焼して得た強誘電性磁器仮焼粉末(No、7)を用
いて作製した試料(4−1)、および実施例1と同様に
副成分として一般式: xPbO・yGe02(x”l
−6*y=1〜3)のガラス化合物を添加して押出し成
形した試料(4〜10〜4−17)についても同一の測
定を行い、この結果をあわせて第4表に示した。
As a comparative example, 950°C was used instead of the annealed powder.
A sample (4-1) prepared using a ferroelectric porcelain calcined powder (No. 7) obtained by calcining in l
The same measurements were also performed on samples (4-10-4-17) which were extruded with the addition of a glass compound of -6*y=1-3), and the results are shown in Table 4.

(実施例5) 原料としてBaCO3,TiO2,CaCO3およびM
nO2を用い、これらを(Ba□、 92ca0. □
B)Ti03+0.2wt%MnO2の組成を有する強
請電性磁器が得られるように秤量し、その混合物をその
混合物を20時時間式混合する。
(Example 5) BaCO3, TiO2, CaCO3 and M as raw materials
Using nO2, these were (Ba□, 92ca0.□
B) Weigh and mix the mixture for 20 hours to obtain a reinforced porcelain with a composition of Ti03 + 0.2 wt% MnO2.

そして、この混合物を脱水、乾燥し、1100℃で2時
間仮焼して仮焼粉末を得た。
Then, this mixture was dehydrated, dried, and calcined at 1100° C. for 2 hours to obtain calcined powder.

との仮焼粉末に、実施例1で調製したXPbO・、Ge
02(x=1〜6. 、=1〜3)を第5表に示す割合
で添加すると共に、有機バインダーを6〜7wtχ加え
て20時間混合した後、ドクターブレード法によりシー
ト成形し、パンチングして直径10mn、 Wさ0.1
mmの円板を形成し、該円板を第5表に示す温度で2時
間焼成して磁器円板を得た。そして、この磁器円板の両
面に銀電極を焼き付け、両電極間に80℃で3〜4kv
/mmの直流電圧を印加して30分間分極処理を行い磁
器圧電体を得た。
XPbO,Ge prepared in Example 1 was added to the calcined powder with
02 (x = 1 to 6., = 1 to 3) in the proportions shown in Table 5, and an organic binder of 6 to 7 wtχ and mixed for 20 hours, then formed into a sheet by a doctor blade method and punched. diameter 10mm, width 0.1
A porcelain disk was obtained by forming a disk having a diameter of mm and firing the disk at the temperature shown in Table 5 for 2 hours. Then, silver electrodes are baked on both sides of this porcelain disk, and a voltage of 3 to 4 kV is applied at 80°C between the two electrodes.
A porcelain piezoelectric body was obtained by applying a DC voltage of /mm and polarizing for 30 minutes.

この試料について、比誘電率(εr)および円板の拡が
り振動の電気機械結合係数(Kp)を測定し、その結果
を第5表に示した。
Regarding this sample, the relative dielectric constant (εr) and the electromechanical coupling coefficient (Kp) of the spreading vibration of the disk were measured, and the results are shown in Table 5.

なお、比較例として、実施例1と同様に副成分として一
般式: xPbO−、Ge02(x=1〜6.、=1〜
3)のガラス化合物を添加してドクターブレード法によ
りシート成形した試料(5−5〜5−7)についても同
一の測定を行ない、 その結果もあわせて第5表に示した。
As a comparative example, similar to Example 1, the general formula: xPbO-, Ge02 (x=1~6., =1~
The same measurements were also carried out on the samples (5-5 to 5-7) which were formed into sheets by the doctor blade method with the addition of the glass compound of 3), and the results are also shown in Table 5.

(以下、余白) 第 表 ネ印は本発明の範囲外 *印は本発明の範囲外 車印は本発明の範囲外 *印は本発明の範囲外 第 表 *印は本発明の範囲外 第1表〜第4表から明らかなように、本発明の強誘電性
磁器体によれば、焼結温度を850〜1000℃として
も、ガラス化合物を添加した試料と同等の電気機械結合
係数および比誘電率が得られ、850〜1000℃の低
温で焼結可能な強誘電性磁器体を得ることができる。
(Hereinafter, blank space) Table 1: Out of the scope of the present invention *: Outside the scope of the present invention Car mark: Outside the scope of the present invention *: Outside the scope of the present invention Table 1: Outside the scope of the present invention As is clear from Tables 4 to 4, the ferroelectric ceramic body of the present invention has an electromechanical coupling coefficient and dielectric constant equivalent to those of the sample containing a glass compound even when the sintering temperature is 850 to 1000°C. A ferroelectric porcelain body that can be sintered at a low temperature of 850 to 1000°C can be obtained.

また、強誘電性磁器として、焼結微粉やアニール粉のよ
うな強誘電性磁器粉末を用いると、1000℃以上の焼
結温度では従来の強誘電性磁器体が本来有する電気機械
結合係数、比誘電率よりも大きな値を示す強誘電性磁器
体を得ることができる。
In addition, when ferroelectric ceramic powder such as sintered fine powder or annealed powder is used as ferroelectric ceramic, at a sintering temperature of 1000°C or higher, the electromechanical coupling coefficient originally possessed by conventional ferroelectric porcelain can be A ferroelectric ceramic body exhibiting a value larger than the dielectric constant can be obtained.

(発明の効果) 以上説明したように、本発明の強誘電性磁器体によれば
、850〜1000℃の低温で焼結可能な強誘電性磁器
体を得ることができることから、金属板との一体焼結が
可能となり、一体焼結型のブザーやバイモルフなどの電
歪素子が製造できる。
(Effects of the Invention) As explained above, according to the ferroelectric porcelain body of the present invention, it is possible to obtain a ferroelectric porcelain body that can be sintered at a low temperature of 850 to 1000°C. Integral sintering becomes possible, making it possible to manufacture integrally sintered buzzers, bimorphs, and other electrostrictive elements.

また、焼成時のpbo雰囲気調整が不要となり、匣や焼
成炉の延命化および省エネルギー化を図ることができる
Further, it is not necessary to adjust the pbo atmosphere during firing, and the life of the box and firing furnace can be extended and energy can be saved.

さらに、熔融工程およびガラス化工程が不要で、製造工
程を簡略化受きるとともに、コストの低減をはかること
ができる。
Furthermore, a melting process and a vitrification process are not necessary, which simplifies the manufacturing process and reduces costs.

また、強誘電性磁器として、焼結微粉やアニール粉のよ
うな強誘電性磁器粉末を用いると、1000℃以上の焼
結温度では従来の強誘電性磁器体が本来有する電気機械
結合係数、比誘電率よりも大きな値を示す強誘電性磁器
体を得ることができることから、エネルギー変換効率が
高い圧電素子を得ることができる。
In addition, when ferroelectric ceramic powder such as sintered fine powder or annealed powder is used as ferroelectric ceramic, at a sintering temperature of 1000°C or higher, the electromechanical coupling coefficient originally possessed by conventional ferroelectric porcelain can be Since it is possible to obtain a ferroelectric ceramic body that exhibits a value larger than the dielectric constant, it is possible to obtain a piezoelectric element with high energy conversion efficiency.

Claims (5)

【特許請求の範囲】[Claims] (1)強誘電性磁器を主成分とし、副成分である一般式
:xPbO・yGeO_2(x=1〜6,y:1〜3)
からなる仮焼物を0.01〜30重量%含有してなる強
誘電性磁器体。
(1) General formula with ferroelectric ceramic as the main component and subcomponents: xPbO・yGeO_2 (x=1-6, y: 1-3)
A ferroelectric porcelain body containing 0.01 to 30% by weight of a calcined material.
(2)前記主成分である強誘電性磁器が、強誘電性磁器
の仮焼粉末である請求項(1)記載の強誘電性磁器体。
(2) The ferroelectric porcelain body according to claim 1, wherein the ferroelectric porcelain as the main component is a calcined powder of ferroelectric porcelain.
(3)前記主成分である強誘電性磁器が、焼結済の強誘
電性磁器を平均粒径で0.1〜3.0μmに粉砕するこ
とによって得られた強誘電性磁器粉末である強誘電性磁
器体。
(3) The ferroelectric porcelain that is the main component is ferroelectric porcelain powder obtained by pulverizing sintered ferroelectric porcelain to an average particle size of 0.1 to 3.0 μm. Dielectric porcelain.
(4)前記主成分である強誘電性磁器は鉛酸化物含有強
誘電性磁器であって、焼結済の鉛酸化物含有強誘電性磁
器を平均粒径で0.1〜3.0μmに粉砕した後、75
0℃〜950℃で熱処理して得た強誘電性磁器粉末であ
る請求項(1)記載の強誘電性磁器体。
(4) The ferroelectric porcelain that is the main component is a ferroelectric porcelain containing lead oxide, and the sintered ferroelectric porcelain containing lead oxide has an average particle size of 0.1 to 3.0 μm. After crushing, 75
The ferroelectric porcelain body according to claim 1, which is a ferroelectric porcelain powder obtained by heat treatment at 0°C to 950°C.
(5)前記主成分である強誘電性磁器はチタン酸バリウ
ム系強誘電性磁器であって、焼結済のチタン酸バリウム
系強誘電性磁器を平均粒径で0.1〜3.0μmに粉砕
した後、750℃以上で熱処理して得た強誘電性磁器粉
末である請求項(1)記載の強誘電性磁器体。
(5) The ferroelectric porcelain that is the main component is barium titanate-based ferroelectric porcelain, and the sintered barium titanate-based ferroelectric porcelain has an average particle size of 0.1 to 3.0 μm. The ferroelectric porcelain body according to claim 1, which is a ferroelectric porcelain powder obtained by heat-treating at 750° C. or higher after pulverization.
JP1017043A 1989-01-26 1989-01-26 Ferroelectric porcelain Expired - Fee Related JP2504158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1017043A JP2504158B2 (en) 1989-01-26 1989-01-26 Ferroelectric porcelain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1017043A JP2504158B2 (en) 1989-01-26 1989-01-26 Ferroelectric porcelain

Publications (2)

Publication Number Publication Date
JPH02197182A true JPH02197182A (en) 1990-08-03
JP2504158B2 JP2504158B2 (en) 1996-06-05

Family

ID=11932969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1017043A Expired - Fee Related JP2504158B2 (en) 1989-01-26 1989-01-26 Ferroelectric porcelain

Country Status (1)

Country Link
JP (1) JP2504158B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02263761A (en) * 1989-04-04 1990-10-26 Murata Mfg Co Ltd Ferroelectric ceramic composition and piezoelectric element utilizing the same
US7425790B2 (en) 2005-01-11 2008-09-16 Ngk Insulators, Ltd. Piezoelectric/electrostrictive porcelain composition, piezoelectric/electrostrictive device, and method of piezoelectric/electrostrictive device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5556066A (en) * 1978-10-18 1980-04-24 Thomson Csf Ceramic material for low sintering temperature dielectric body
JPS5717464A (en) * 1980-07-05 1982-01-29 Univ Illinois Intergranular insulation type semiconductor composition and manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5556066A (en) * 1978-10-18 1980-04-24 Thomson Csf Ceramic material for low sintering temperature dielectric body
JPS5717464A (en) * 1980-07-05 1982-01-29 Univ Illinois Intergranular insulation type semiconductor composition and manufacture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02263761A (en) * 1989-04-04 1990-10-26 Murata Mfg Co Ltd Ferroelectric ceramic composition and piezoelectric element utilizing the same
US7425790B2 (en) 2005-01-11 2008-09-16 Ngk Insulators, Ltd. Piezoelectric/electrostrictive porcelain composition, piezoelectric/electrostrictive device, and method of piezoelectric/electrostrictive device
US7901729B2 (en) 2005-01-11 2011-03-08 Ngk Insulators, Ltd. Method of manufacturing a piezoelectric/electrostrictive device

Also Published As

Publication number Publication date
JP2504158B2 (en) 1996-06-05

Similar Documents

Publication Publication Date Title
JP3259677B2 (en) Piezoelectric ceramic composition
JP3259678B2 (en) Piezoelectric ceramic composition
KR100282599B1 (en) Piezoelectric Ceramic Composition
CN101492293B (en) Barium titanate based Y5P ceramic dielectric material and method of producing the same
EP1415960B1 (en) Method for making raw dielectric ceramic powder, dielectric ceramic and monolithic ceramic capacitor
JP2000272962A (en) Piezoelectric ceramic composition
JPH02197182A (en) Ferroelectric porcelain body
JPH11217262A (en) Piezoelectric porcelain composition
JP2570662B2 (en) Ferroelectric porcelain
JP2682022B2 (en) Ferroelectric porcelain composition and piezoelectric element using the same
JP2002348173A (en) Piezoelectric ceramic material and its manufacturing method
JP4798898B2 (en) Piezoelectric ceramic composition, piezoelectric resonator, and multilayer piezoelectric element
JP2504176B2 (en) Ferroelectric composition containing lead oxide and piezoelectric element using the same
KR20070000124A (en) Low temperature sintering pmw-pnn-pzt ceramics and manufacturing method thereof
JPH07114824A (en) Dielectric ceramic composition
JP2000143339A (en) Piezoelectric substance porcelain composition
JPH0369175A (en) Piezoelectric ceramic composition
JP2000335967A (en) Piezoelectric ceramic composition
JPH07187771A (en) Dielectric porcelain composition
JPH08119733A (en) Piezoelectric ceramic composition
JPH027166B2 (en)
CN111704461A (en) Formula and preparation method of high Curie point low temperature co-fired piezoelectric ceramic
JP3243873B2 (en) Dielectric porcelain composition
JPS6121966A (en) Low temperature sintering method for dielectric ceramic composition
JPH01264962A (en) Pyroelectric porcelain material and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees