JP2024009744A - Hard coat film for molding and molding using the same, and manufacturing method of insert molding - Google Patents

Hard coat film for molding and molding using the same, and manufacturing method of insert molding Download PDF

Info

Publication number
JP2024009744A
JP2024009744A JP2023004222A JP2023004222A JP2024009744A JP 2024009744 A JP2024009744 A JP 2024009744A JP 2023004222 A JP2023004222 A JP 2023004222A JP 2023004222 A JP2023004222 A JP 2023004222A JP 2024009744 A JP2024009744 A JP 2024009744A
Authority
JP
Japan
Prior art keywords
molding
hard coat
coat film
base material
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2023004222A
Other languages
Japanese (ja)
Other versions
JP7361962B1 (en
Inventor
晴彦 間瀬
Haruhiko Mase
正章 熊谷
Masaaki Kumagai
秀俊 佐藤
Hidetoshi Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aica Kogyo Co Ltd
Original Assignee
Aica Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aica Kogyo Co Ltd filed Critical Aica Kogyo Co Ltd
Priority to JP2023004222A priority Critical patent/JP7361962B1/en
Application granted granted Critical
Publication of JP7361962B1 publication Critical patent/JP7361962B1/en
Publication of JP2024009744A publication Critical patent/JP2024009744A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D65/00Designing, manufacturing, e.g. assembling, facilitating disassembly, or structurally modifying motor vehicles or trailers, not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Transportation (AREA)
  • Combustion & Propulsion (AREA)
  • Paints Or Removers (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Laminated Bodies (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Polymerisation Methods In General (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hard coat film which has abrasion resistance and chemical resistance, has high elongation at break and good moldability even in a large size, has such excellent weather resistance as to be durable to outdoor use, and is suitable for molding application, a molding using the same, and a manufacturing method of an insert molding.
SOLUTION: A hard coat film has a curable layer of a photocurable resin composition on a composite base material of a polycarbonate base material and an acrylic base material, in which the photocurable resin composition contains urethane acrylate having such a structure that pentaerythritol triacrylate is further reacted with diisocyanate obtained by reaction of ethylene glycol with isophorone diisocyanate, a photostabilizer, and a photopolymerization initiator, a weight average molecular weight of the urethane acrylate is 2,000-12,000, and ΔE before and after irradiation with UVB (0.55 W/m2), 60°C and for 1,000 hours of the composite base material is 1.0 or less.
SELECTED DRAWING: None
COPYRIGHT: (C)2024,JPO&INPIT

Description

本発明は成形性及び耐候性に優れた成形用ハードコートフィルム、更にはそれを用いた成形品とインサート成形品の製造方法に関する。 The present invention relates to a hard coat film for molding having excellent moldability and weather resistance, and further to a method for producing molded products and insert molded products using the same.

近年、自動車の内外装部品、情報端末の外装部品、家電用部品などは軽量化を目的に、樹脂成形体の使用が進んでおり、その表面の装飾(加飾)には、様々な手法が用いられている。中でも、成形体の最表面を、フィルムを用いて加飾する方法は、スプレー塗装のような塗料を用いた場合と比較して、意匠の自由度を高めることができると共に、三次元的な凹凸形状を有する表面に対しても加飾が容易であり、また生産性にも優れる点から幅広く採用されている。 In recent years, resin moldings have been increasingly used for the purpose of reducing the weight of interior and exterior parts of automobiles, exterior parts of information terminals, and parts for home appliances, and various methods are being used to decorate their surfaces. It is used. Among these methods, the method of decorating the outermost surface of the molded body using a film increases the degree of freedom in design compared to the use of paints such as spray painting, and also allows for the creation of three-dimensional irregularities. It is widely used because it is easy to decorate a shaped surface and has excellent productivity.

これらフィルムによる成形方法としては、フィルム表面に絵柄を印刷後、加熱により軟化させた状態で3次元成形を行い、その後金型にセットして射出成型を行うインサート成形が良く知られている。特に自動車のインパネ、コンソール等の内装部品については、従来主流であった水圧転写が、排水の問題やVOC(揮発性有機化合物)の問題で敬遠される傾向があり、その代替え工法としても増えつつある。更に最近では、フロントグリルやルーフ等の外装用途についても、EV化によるパーツ軽量化が一段と求められ樹脂化が進むと共に、環境対応の点で樹脂部品への塗装が忌避され始めた関係で、フィルム成形の導入が進みつつある。 A well-known method for molding these films is insert molding, in which a pattern is printed on the surface of the film, the film is softened by heating and then three-dimensionally molded, and then the film is set in a mold and injection molded. In particular, for interior parts such as automobile instrument panels and consoles, hydraulic transfer, which has traditionally been mainstream, tends to be avoided due to drainage problems and VOC (volatile organic compounds) problems, and it is increasingly being used as an alternative method. be. Furthermore, in recent years, the use of resin for exterior applications such as front grills and roofs has become increasingly popular due to the growing demand for lighter parts due to the shift to EVs, and as coatings on resin parts have begun to be avoided for environmental reasons, films are being used. The introduction of molding is progressing.

インサート成形で用いる成形フィルムには、表面の硬度や耐擦傷性を向上させる目的で、ハードコート層を設ける場合があるが、ハードコート樹脂層を硬くすると、立体形状に加工する際に曲面においてマイクロクラックが入り、成形がしにくくなるという問題があった。そのため過去に出願人は、インサート成形用のハードコート樹脂として、トリアジン環含有(メタ)アクリレートプレポリマーと平均一次粒子径が80~500nmの有機微粒子を含むハードコート剤を発明している(特許文献1)。このハードコート剤は膜厚が1~10μmで十分な柔軟性と表面物性が両立可能な優れるものであった。 Molded films used in insert molding are sometimes provided with a hard coat layer for the purpose of improving surface hardness and scratch resistance, but if the hard coat resin layer is hardened, microscopic particles may appear on curved surfaces when processed into three-dimensional shapes. There was a problem that cracks appeared and it became difficult to mold. Therefore, in the past, the applicant has invented a hard coat agent for insert molding that contains a triazine ring-containing (meth)acrylate prepolymer and organic fine particles with an average primary particle size of 80 to 500 nm (Patent Document 1). This hard coating agent had a film thickness of 1 to 10 μm and was excellent in that both sufficient flexibility and surface properties could be achieved.

しかしながら、自動車の外装用途では、従来からの要求特性である成形性や耐摩耗性、耐薬品性等に加え、大きなサイズでの安定した成形性や、紫外線や気温の寒暖差に耐えうる十分な耐候性及び耐久性が求められ、こうした要求に対応できるようなハードコート層を有する成形用フィルムがなかった。そのため自動車の外装用途でも使用が可能な、十分な成形性、耐薬品性、耐候性、耐久性を有する成形用ハードコートフィルムが求められていた。 However, in automotive exterior applications, in addition to the traditional requirements of moldability, abrasion resistance, chemical resistance, etc., stable moldability in large sizes and sufficient properties to withstand ultraviolet rays and temperature differences are required. Weather resistance and durability are required, and there has been no moldable film with a hard coat layer that can meet these requirements. Therefore, there has been a need for a hard coat film for molding that has sufficient moldability, chemical resistance, weather resistance, and durability and can be used for automotive exterior applications.

特許第4848200号Patent No. 4848200

本発明の課題は、耐摩耗性や耐薬品性を有し、破断伸度が高く大きなサイズでも成形性が良好であると共に、屋外での使用にも耐えうる優れた耐候性を有する成形用途に適したハードコートフィルムと、それを用いた成形品、並びにインサート成形品の製造方法を提供することにある。 The object of the present invention is to provide molding applications that have wear resistance and chemical resistance, high elongation at break, good moldability even in large sizes, and excellent weather resistance that can withstand outdoor use. An object of the present invention is to provide a suitable hard coat film, a molded article using the same, and a method for manufacturing an insert molded article.

上記の課題を解決するため、請求項1記載の発明は、ポリカーボネート基材及びアクリル基材の複合基材上に光硬化性樹脂組成物の硬化層を有することを特徴とするハードコートフィルムであって、前記光硬化性樹脂組成物が、エチレングリコールとイソホロンジイソシアネートを反応させたジイソシアネートに、ペンタエリスリトールトリアクリレートを更に反応させた構造を有するウレタンアクリレート(A)と、光安定剤(B)と、光重合開始剤(C)と、反応性官能基を有するフッ素系シリコーン化合物と、を含み、前記(A)の重量平均分子量が3,500~12,000であり、前記複合基材のUVB(0.55W/m)、60℃、1000時間照射前後のΔEが1.0以下であり、自動車の外装用途であることを特徴とする成形用ハードコートフィルムを提供する。(以下m2とは、mを意味するものとする。) In order to solve the above problems, the invention according to claim 1 provides a hard coat film characterized by having a cured layer of a photocurable resin composition on a composite base material of a polycarbonate base material and an acrylic base material. The photocurable resin composition includes a urethane acrylate (A) having a structure in which pentaerythritol triacrylate is further reacted with a diisocyanate obtained by reacting ethylene glycol and isophorone diisocyanate, and a light stabilizer (B). It contains a photopolymerization initiator (C) and a fluorine-based silicone compound having a reactive functional group, the weight average molecular weight of the above (A) is 3,500 to 12,000, and the UVB ( Provided is a hard coat film for molding, which has a ΔE of 1.0 or less before and after irradiation at 0.55 W/m 2 ) at 60° C. for 1000 hours, and is used for automobile exteriors. (Hereinafter, m2 shall mean m 2. )

請求項2の発明は、前記(B)として、ラジカル捕捉剤(b1)及び紫外線吸収剤(b2)を含み、(b1)の配合量が固形分全量に対し1~10重量%であり、(b2)の配合量が0.3~5重量%であることを特徴とする請求項1記載の成形用ハードコートフィルムを提供する。 The invention according to claim 2 is characterized in that (B) includes a radical scavenger (b1) and an ultraviolet absorber (b2), and the blending amount of (b1) is 1 to 10% by weight based on the total solid content, ( There is provided a hard coat film for molding according to claim 1, characterized in that the blending amount of b2) is 0.3 to 5% by weight.

請求項3の発明は、前記反応性官能基を有するフッ素系シリコーン化合物の配合量が、固形分全量に対し0.1~3重量%であることを特徴とする請求項1又は2いずれか記載の成形用ハードコートフィルムを提供する。 The invention according to claim 3 is characterized in that the amount of the fluorine-based silicone compound having a reactive functional group is 0.1 to 3% by weight based on the total solid content. Provides hard coat films for molding.

請求項4の発明は、前記成形用ハードコートフィルムがインサート成形用又はアウトモールド成形用であることを特徴する請求項1~3いずれか記載の成形用ハードコートフィルムを提供する。 The invention according to claim 4 provides the hard coat film for molding according to any one of claims 1 to 3, characterized in that the hard coat film for molding is used for insert molding or out molding.

請求項5の発明は、請求項1~3いずれか記載の成形用ハードコートフィルムを、金型を用いて賦形後、光硬化性樹脂硬化層とは反対側から溶融樹脂を射出して樹脂成形品を形成することを特徴とするインサート成形品の製造方法を提供する。 The invention according to claim 5 is a method of forming the hard coat film for molding according to any one of claims 1 to 3 using a mold, and then injecting molten resin from the side opposite to the photocurable resin cured layer. Provided is a method for manufacturing an insert molded product, which comprises forming a molded product.

請求項6の発明は、前記溶融樹脂が着色されていることを特徴とする請求項5記載のインサート成形品の製造方法を提供する。 A sixth aspect of the invention provides the method for manufacturing an insert molded product according to the fifth aspect, wherein the molten resin is colored.

請求項7の発明は、請求項1~3いずれか記載の成形用ハードコートフィルムを用いたインサート成形品又はアウトモールド成形品を提供する。 The invention of claim 7 provides an insert molded product or an out-mold molded product using the hard coat film for molding according to any one of claims 1 to 3.

本発明のハードコートフィルム(以下HCフィルムという)は、耐摩耗性や耐薬品性を有し、破断伸度が高く成形性が良好であると共に優れた耐候性を有するため、屋外で使用する、例えば自動車の外装用途のようなインサート成形品やアウトモールド成形品に用いる材料として有用である。 The hard coat film (hereinafter referred to as HC film) of the present invention has abrasion resistance and chemical resistance, high elongation at break, good moldability, and excellent weather resistance, so it can be used outdoors. For example, it is useful as a material for insert-molded products and out-molded products such as those used for automobile exteriors.

本発明で使用されるHC樹脂組成物の構成は、エチレングリコールとイソホロンジイソシアネート)以下IPDIという)を反応させたジイソシアネートに、ペンタエリスリトールトリアクリレート(以下PETAという)を更に反応させた構造を有するウレタンアクリレート(A)と、光安定剤(B)と、光重合開始剤(C)を含む。なお本明細書において(メタ)アクリレートとは、アクリレートとメタクリレートとの双方を包含する。 The composition of the HC resin composition used in the present invention is a urethane acrylate having a structure in which pentaerythritol triacrylate (hereinafter referred to as PETA) is further reacted with a diisocyanate obtained by reacting ethylene glycol and isophorone diisocyanate (hereinafter referred to as IPDI). (A), a light stabilizer (B), and a photopolymerization initiator (C). In this specification, (meth)acrylate includes both acrylate and methacrylate.

前記(A)の合成で使用する脂環式ジイソシアネートのIPDIは、黄変が無く耐候安定性に優れると同時に剛性が高く、硬化物の硬度を上げることができる。炭素鎖が非常に短いエチレングリコールと反応させることで、分子内のウレタン結合濃度を高くすることが可能となり、耐薬品性に優れた剛性の高い直鎖構造の主骨格を形成できる。エチレングリコールの代わりにポリエチレングリコールを用いると、ウレタン結合の濃度が低くなり耐薬品性が低下する傾向がある。 The alicyclic diisocyanate IPDI used in the synthesis of (A) has no yellowing and excellent weather resistance stability, and at the same time has high rigidity and can increase the hardness of the cured product. By reacting with ethylene glycol, which has a very short carbon chain, it is possible to increase the concentration of urethane bonds within the molecule, forming a main skeleton with a highly rigid linear chain structure that has excellent chemical resistance. When polyethylene glycol is used instead of ethylene glycol, the concentration of urethane bonds tends to decrease, resulting in a decrease in chemical resistance.

前記(A)の合成方法としては特に制限はなく、公知の方法を用いることができる。反応は無溶媒下でも良いが、(A)の分子量が大きくなるにつれて攪拌が困難となる場合があるため、ブタノン等のケトン類、キシレン等の芳香族不活性溶媒などを用いても良い。またエチレングリコール及びPETAの水酸基と、イソシアネート基との反応には、触媒を用いることが好ましい。その場合の例としては、ジブチルスズジラウレート等の錫系、ナフテン酸コバルト等の金属アルコキシド系が挙げられる。反応温度は適宜設定可能であるが40~120℃が好ましく、60~100℃が更に好ましい。 There are no particular limitations on the method for synthesizing (A), and known methods can be used. The reaction may be carried out without a solvent, but as the molecular weight of (A) increases, stirring may become difficult, so ketones such as butanone, aromatic inert solvents such as xylene, etc. may be used. Further, it is preferable to use a catalyst for the reaction between the hydroxyl groups of ethylene glycol and PETA and the isocyanate groups. Examples in this case include tin-based materials such as dibutyltin dilaurate, and metal alkoxide-based materials such as cobalt naphthenate. The reaction temperature can be set as appropriate, but is preferably 40 to 120°C, more preferably 60 to 100°C.

前記(A)の重量平均分子量(以下Mwという)は2,000~12,000であり、2,500~11,000が好ましく、3,000~10,000が更に好ましく、3,500~9,800が特に好ましい。2,000未満では破断伸度が低くなるため十分な成形性を確保することが難しくなり、12,000超では耐摩耗性が低下し、また作業性の良い粘度に調整しにくくなる。(A)のMwは、反応させるエチレングリコールとIPDIのモル比により調整が可能で、エチレングリコールに対するIPDIのモル比を近づけると、Mwは大きくなる傾向がある。なおMwは、ゲル浸透クロマトグラフィーにより、スチレンジビニルベンゼン基材の充填剤を用いたカラムでテトラハイドロフラン溶離液を用いて、標準ポリスチレン換算の分子量を測定、算出した。 The weight average molecular weight (hereinafter referred to as Mw) of the above (A) is 2,000 to 12,000, preferably 2,500 to 11,000, more preferably 3,000 to 10,000, and 3,500 to 9 ,800 are particularly preferred. If it is less than 2,000, the elongation at break becomes low, making it difficult to ensure sufficient formability, and if it exceeds 12,000, the abrasion resistance decreases, and it becomes difficult to adjust the viscosity to a value that provides good workability. The Mw of (A) can be adjusted by changing the molar ratio of ethylene glycol and IPDI to be reacted, and as the molar ratio of IPDI to ethylene glycol approaches, the Mw tends to increase. Note that Mw was calculated by measuring the molecular weight in terms of standard polystyrene by gel permeation chromatography using a column using a styrene divinylbenzene-based packing material and using a tetrahydrofuran eluent.

前記(A)の配合量は、固形分全量に対し55~95重量%が好ましく、65~92重量%が更に好ましく、70~90重量%が特に好ましい。55重量%以上とすることで十分な破断強度と耐薬品性を確保することができ、95重量%以下とすることで十分な耐候性を確保することができる。 The blending amount of (A) is preferably 55 to 95% by weight, more preferably 65 to 92% by weight, and particularly preferably 70 to 90% by weight based on the total solid content. By setting the content to 55% by weight or more, sufficient breaking strength and chemical resistance can be ensured, and by setting the content to 95% by weight or less, sufficient weather resistance can be ensured.

本発明に使用される光安定剤(B)は、屋外で使用した場合の紫外線暴露や、輻射熱による硬化膜の劣化防止を目的に配合する。例えば、紫外線により光劣化したポリマーから生ずるアルキルラジカルやパーオキシラジカルを効率よくトラップするラジカル捕捉剤(b1)や、吸収した紫外線のエネルギーを熱エネルギーなどに変換することにより、ポリマーの分解を抑制する紫外線吸収剤(b2)などが挙げられる。(b1)と(b2)は併用することが好ましい。 The light stabilizer (B) used in the present invention is blended for the purpose of preventing deterioration of the cured film due to exposure to ultraviolet rays and radiant heat when used outdoors. For example, radical scavengers (b1) that efficiently trap alkyl radicals and peroxyl radicals generated from polymers photodegraded by ultraviolet rays, and suppress the decomposition of polymers by converting the energy of absorbed ultraviolet rays into thermal energy, etc. Examples include ultraviolet absorbers (b2). It is preferable to use (b1) and (b2) together.

本発明に使用されるラジカル捕捉剤(b1)としては、例えばヒンダードアミン系(以下HALS系と言う)やヒンダードフェノール系、芳香族アミン系等が挙げられ、単独あるいは2種類以上を組み合わせて使用することができる。これらの中では、低濃度でもラジカル補足効率が高いHALS系が好ましい。 Examples of the radical scavenger (b1) used in the present invention include hindered amine type (hereinafter referred to as HALS type), hindered phenol type, aromatic amine type, etc., and they may be used alone or in combination of two or more types. be able to. Among these, HALS systems are preferred because they have high radical scavenging efficiency even at low concentrations.

前記(b1)の配合量は、固形分全量に対し1~10重量%が好ましく、2~8重量%が更に好ましく、3~6重量%が特に好ましい。この範囲とすることで、十分な光安定性を確保することが出来る。HALS系の市販品としてはTinuvin123及びTinuvin249(商品名:BASFジャパン社製)等が挙げられる。 The blending amount of (b1) is preferably 1 to 10% by weight, more preferably 2 to 8% by weight, and particularly preferably 3 to 6% by weight based on the total solid content. By setting it as this range, sufficient photostability can be ensured. Examples of commercially available HALS products include Tinuvin 123 and Tinuvin 249 (trade name: manufactured by BASF Japan).

本発明に使用される紫外線吸収剤(b2)は、エネルギーが高い有害な紫外線領域に吸収帯域を持つラジカル連鎖開始阻止剤であり、前記(b1)との併用により、耐候性をより向上及び安定させることが可能となる。例えばベンゾトリアゾール系、トリアジン系、ベンゾフェノン系等が挙げられ、単独あるいは2種類以上を組み合わせて使用することができる。これらの中では紫外線の長波長部を強く吸収することが可能なヒドロキシフェニルトリアジン系が好ましい。 The ultraviolet absorber (b2) used in the present invention is a radical chain initiation inhibitor that has an absorption band in the harmful ultraviolet region with high energy, and when used in combination with the above (b1), it further improves and stabilizes weather resistance. It becomes possible to do so. Examples include benzotriazole type, triazine type, benzophenone type, etc., which can be used alone or in combination of two or more types. Among these, hydroxyphenyltriazine-based materials are preferred because they can strongly absorb long-wavelength ultraviolet rays.

前記(b2)の配合量は、固形分全量に対し0.3~5重量%が好ましく、0.5~3.0重量%が更に好ましく、0.6~1.5重量%が特に好ましい。この範囲とすることで、十分な紫外線吸収特性を確保することが出来る。また前記(b1)と(b2)を合計した(B)の配合量は、固形分全量に対し1.0~12重量%が好ましく、1.5~10重量%が更に好ましく、4.0~8.0重量%が特に好ましい。1.0重量%以上とすることで耐候性の向上が期待でき、12重量%以下とすることで過剰配合とならず、基材との十分な密着性を確保できる。(b2)の市販品としてはTinuvin460及び477(商品名:BASFジャパン社製)等が挙げられる。 The blending amount of (b2) is preferably 0.3 to 5% by weight, more preferably 0.5 to 3.0% by weight, and particularly preferably 0.6 to 1.5% by weight based on the total solid content. By setting it as this range, sufficient ultraviolet absorption characteristics can be ensured. Further, the blending amount of (B), which is the sum of (b1) and (b2), is preferably 1.0 to 12% by weight, more preferably 1.5 to 10% by weight, and more preferably 4.0 to 12% by weight based on the total solid content. Particularly preferred is 8.0% by weight. When the content is 1.0% by weight or more, weather resistance can be expected to improve, and when the content is 12% by weight or less, it is not excessively blended and sufficient adhesion to the base material can be ensured. Commercially available products of (b2) include Tinuvin 460 and 477 (trade name: manufactured by BASF Japan).

本発明に使用される光重合開始剤(C)は、紫外線や電子線などの照射でラジカルを生じ、そのラジカルが重合反応のきっかけとなるもので、ベンジルケタール系、アセトフェノン系、フォスフィンオキサイド系等汎用の光重合開始剤が使用できる。重合開始剤の光吸収波長を任意に選択することによって、紫外線領域から可視光領域にいたる広い波長範囲にわたって硬化性を付与することができる。具体的にはベンジルケタール系として2.2-ジメトキシ-1.2-ジフェニルエタン-1-オンが、α-ヒドロキシアセトフェノン系として1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン及び2-ヒドロキシ-1-{4-[4‐(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]-フェニル}-2-メチル-プロパン-1-オンが、α-アミノアセトフェノン系として2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オンが、アシルフォスフィンオキサイド系として2.4.6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド及びビス(2.4.6‐トリメチルベンゾイル)‐フェニルフォスフィンオキサイド等があり、単独または2種以上を組み合わせて使用できる。 The photopolymerization initiator (C) used in the present invention generates radicals when irradiated with ultraviolet rays or electron beams, and these radicals trigger the polymerization reaction, and include benzyl ketal, acetophenone, and phosphine oxide types. General-purpose photopolymerization initiators can be used. By arbitrarily selecting the light absorption wavelength of the polymerization initiator, curability can be imparted over a wide wavelength range from the ultraviolet region to the visible light region. Specifically, 2,2-dimethoxy-1,2-diphenylethan-1-one is a benzyl ketal type, and 1-[4-(2-hydroxyethoxy)-phenyl]-2-hydroxy is an α-hydroxyacetophenone type. -2-Methyl-1-propan-1-one and 2-hydroxy-1-{4-[4-(2-hydroxy-2-methyl-propionyl)-benzyl]-phenyl}-2-methyl-propane-1 -one is α-aminoacetophenone, 2-methyl-1-(4-methylthiophenyl)-2-morpholinopropan-1-one, and acylphosphine oxide is 2.4.6-trimethylbenzoyl-diphenyl. -phosphine oxide and bis(2.4.6-trimethylbenzoyl)-phenylphosphine oxide, which can be used alone or in combination of two or more.

これらの中では、黄変しにくいα-ヒドロキシアセトフェノン系を含むことが好ましく、市販品としてはOmnirad127D、184及び2959(商品名:IGM Resins社製)等が挙げられる。前記(C)のラジカル重合性分100重量部に対する配合は2~12重量部が好ましく、3~10重量部が更に好ましい。 Among these, it is preferable to include α-hydroxyacetophenone, which is resistant to yellowing, and commercially available products include Omnirad 127D, 184, and 2959 (trade name: manufactured by IGM Resins). The content of the radically polymerizable component (C) is preferably 2 to 12 parts by weight, more preferably 3 to 10 parts by weight.

本発明で用いられるHC樹脂組成物(以下本組成物という)には、性能を損なわない範囲で必要に応じて架橋剤、レベリング剤、密着促進剤、酸化防止剤、ブルーイング剤、顔料、消泡剤、増粘剤、沈澱防止剤、帯電防止剤、防曇剤、抗菌剤、ワックス、つや消し剤、親水剤、撥水剤、無機フィラー、有機微粒子等を添加してもよい。 The HC resin composition used in the present invention (hereinafter referred to as the present composition) may contain crosslinking agents, leveling agents, adhesion promoters, antioxidants, bluing agents, pigments, erasers, etc. as necessary to the extent that performance is not impaired. Foaming agents, thickeners, anti-settling agents, antistatic agents, antifogging agents, antibacterial agents, waxes, matting agents, hydrophilic agents, water repellents, inorganic fillers, organic fine particles, etc. may be added.

上記架橋剤としては、低粘度で(A)との相溶性に優れる点で、多官能(メタ)アクリレートを用いることが好ましい。例えば2官能では(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、ジシクロペンタニルジアクリレートが、3官能ではトリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレートが、4官能でジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスルトールテトラ(メタ)アクリレート、ジグリセリンテトラ(メタ)アクリレートが、5官能ではジペンタエリスリトールペンタ(メタ)アクリレートが、6官能ではジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられ、単独あるいは2種類以上を組み合わせて使用することができる。これらの中では、反応性が良好で成形性を低下させにくい点でジペンタエリスリトールヘキサアクリレート(以下DPHAという)が好ましい。 As the crosslinking agent, polyfunctional (meth)acrylate is preferably used because it has low viscosity and excellent compatibility with (A). For example, difunctional compounds include (poly)ethylene glycol di(meth)acrylate, (poly)propylene glycol di(meth)acrylate, and dicyclopentanyl diacrylate; trifunctional compounds include trimethylolpropane tri(meth)acrylate, pentaerythritol tri( meth)acrylate is tetrafunctional, such as ditrimethylolpropane tetra(meth)acrylate, pentaerythritol tetra(meth)acrylate, diglycerine tetra(meth)acrylate, and pentafunctional, dipentaerythritol penta(meth)acrylate, 6 Examples of functional substances include dipentaerythritol hexa(meth)acrylate, which can be used alone or in combination of two or more types. Among these, dipentaerythritol hexaacrylate (hereinafter referred to as DPHA) is preferred because it has good reactivity and does not easily deteriorate moldability.

前記架橋剤の配合量としては、(A)100重量部に対し30重量部以下が好ましく、25重量部以下が更に好ましい。30重量部以下とすることで、十分な成形性を確保しつつ反応性を向上させることが出来る。また固形分全量に対する配合比率としては20重量%以下が好ましく、10重量%以下が更に好ましい。 The amount of the crosslinking agent blended is preferably 30 parts by weight or less, more preferably 25 parts by weight or less, per 100 parts by weight of (A). By setting the amount to 30 parts by weight or less, reactivity can be improved while ensuring sufficient moldability. The blending ratio relative to the total solid content is preferably 20% by weight or less, more preferably 10% by weight or less.

前記レベリング剤は、塗膜表面に生ずる表面張力の不均一に対し、レベリング剤自身が塗膜表面に薄い膜状に広がることで表面張力の均一化を図り、塗膜形成前に欠陥を修復させる効果がある。例えばシリコーン系、フッ素系、フッ素系シリコーン、アクリル系等が挙げられるが、硬化後の皮膜からブリード等により経時的に欠落することが無く効果を長期的に持続できる点で、バインダー樹脂と重合して硬化塗膜を形成できる反応性官能基を有することが好ましく、特にフッ素系シリコーン化合物が好ましい。 The leveling agent spreads itself into a thin film on the surface of the coating film, thereby making the surface tension uniform, and repairing defects before the coating film is formed. effective. Examples include silicone-based, fluorine-based, fluorine-based silicone, acrylic, etc., but they do not polymerize with the binder resin because they do not come off from the cured film due to bleeding over time and maintain their effects over a long period of time. It is preferable to have a reactive functional group that can form a cured coating film, and fluorine-based silicone compounds are particularly preferable.

前記レベリング剤の配合量としては、固形分全量に対し0.1~3重量%が好ましく、0.3~1重量%が更に好ましい。この範囲とすることで、塗工時に十分なレベリング性を確保することができる。市販品としてはX-71-1203M(商品名:信越化学工業社製、アクリロイル基含有フッ素系シリコーン化合物)等が挙げられる。 The blending amount of the leveling agent is preferably 0.1 to 3% by weight, more preferably 0.3 to 1% by weight based on the total solid content. By setting it as this range, sufficient leveling property can be ensured at the time of coating. Commercially available products include X-71-1203M (trade name: manufactured by Shin-Etsu Chemical Co., Ltd., acryloyl group-containing fluorine silicone compound).

本組成物が塗布される基材は、優れた耐衝撃性と共に高い耐熱性を有するポリカーボネート(以下PCという)基材と、高い透明性と共に硬度を有するアクリル基材の複合基材である。ここでPC基材とアクリル基材の複合基材(以下、本複合基材という)とは、PC系樹脂層の少なくとも一方の面にアクリル系樹脂層を有する樹脂積層体を意味する。PC系樹脂とアクリル系樹脂を積層する方法は共押出成形法であることが好ましい。 The substrate to which the present composition is applied is a composite substrate of a polycarbonate (hereinafter referred to as PC) substrate that has excellent impact resistance and high heat resistance, and an acrylic substrate that has high transparency and hardness. Here, the composite base material of a PC base material and an acrylic base material (hereinafter referred to as the present composite base material) means a resin laminate having an acrylic resin layer on at least one side of a PC resin layer. The method of laminating the PC resin and the acrylic resin is preferably a coextrusion molding method.

前記本複合基材に対し、UVB(0.55W/m2)で60℃、1000時間照射した前後のΔEは1.0以下であり、0.8以下が好ましく、0.5以下が更に好ましい。1.0超の場合は、透過した紫外線による加飾層へのダメージが大きくなり、特に加飾層で耐UV性が劣る赤や青色を用いている場合は、経時的な変色が大きくなりやすい。 The ΔE of the present composite base material before and after irradiation with UVB (0.55 W/m2) at 60° C. for 1000 hours is 1.0 or less, preferably 0.8 or less, and more preferably 0.5 or less. If it exceeds 1.0, the damage to the decorative layer caused by the transmitted ultraviolet rays will increase, and especially if the decorative layer uses red or blue colors with poor UV resistance, discoloration over time is likely to increase. .

本組成物を本複合基材に塗工する際には、塗工特性を向上させるため溶剤で希釈してもよい。例えばエタノール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール、ジアセトンアルコール等のアルコール系溶媒、アセトン、メチルエチルケトン(以下MEKという)、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤、酢酸エチル、酢酸ブチル等のエステル系溶媒、プロピレングリコールモノメチルエーテル(以下PGMという),ジエチルエーテル、ジイソプロピルエーテル等のエーテル系溶媒、シクロヘキサン、メチルシクロヘキサン等の炭化水素系溶媒等があげられ、単独あるいは2種類以上を組み合わせて使用できる。希釈する場合の固形分としては10~70%が例示されるが、特に指定は無く、塗工しやすい粘度となるように適宜設定可能である。 When applying the present composition to the present composite substrate, it may be diluted with a solvent in order to improve coating properties. For example, alcohol solvents such as ethanol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, and diacetone alcohol, ketone solvents such as acetone, methyl ethyl ketone (hereinafter referred to as MEK), methyl isobutyl ketone, and cyclohexanone, and ethyl acetate. , ester solvents such as butyl acetate, ether solvents such as propylene glycol monomethyl ether (hereinafter referred to as PGM), diethyl ether, diisopropyl ether, hydrocarbon solvents such as cyclohexane, methylcyclohexane, etc., and these solvents may be used singly or in combination. Can be used in combination. The solid content when diluting is exemplified as 10 to 70%, but there is no particular specification and it can be set as appropriate so as to provide a viscosity that is easy to coat.

本組成物を塗工する方法は、特に制限はなく、公知のスプレーコート、ロールコート、ダイコート、エアナイフコート、ブレードコート、スピンコート、リバースコート、グラビアコート、ワイヤーバーなどの塗工法またはグラビア印刷、スクリーン印刷、オフセット印刷、インクジェット印刷などの印刷法により形成できる。塗工する膜厚は乾燥時で1μm~10μmが例示できるが、これに限定されるものではない。 The method for applying the present composition is not particularly limited, and there are known coating methods such as spray coating, roll coating, die coating, air knife coating, blade coating, spin coating, reverse coating, gravure coating, and wire bar coating, or gravure printing, It can be formed by printing methods such as screen printing, offset printing, and inkjet printing. The thickness of the coated film is, for example, 1 μm to 10 μm when dry, but is not limited thereto.

本組成物を硬化させる際に用いる紫外線照射の光源としては、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、カーボンアーク灯、キセノンランプ、メタルハライドランプ、LEDランプ、無電極紫外線ランプなどがあり、また照射する雰囲気は空気中でもよいし、窒素、アルゴンなどの不活性ガス中でもよい。また紫外線照射時にバックロールの加温や、IRヒーターなどにより塗膜を加熱することで、より硬化性を上げることができる。照射条件としては照射強度500mW/cm~3000mW/cm、露光量50~400mJ/cmが例示されるが、これに限定されるものではない。 Light sources for ultraviolet irradiation used when curing the present composition include low-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, carbon arc lamps, xenon lamps, metal halide lamps, LED lamps, electrodeless ultraviolet lamps, etc. The atmosphere for irradiation may be air or an inert gas such as nitrogen or argon. Moreover, by heating the back roll or heating the coating film with an IR heater or the like during ultraviolet irradiation, the curability can be further improved. Irradiation conditions include, but are not limited to, an irradiation intensity of 500 mW/cm 2 to 3000 mW/cm 2 and an exposure amount of 50 to 400 mJ/cm 2 .

本組成物を本複合基材に塗工し硬化させたHCフィルム(以下本HCフィルムという)は、130℃雰囲気下での破断伸度が50%以上であることが好ましく、100%以上であることが更に好ましく、200%以上が特に好ましい。破断伸度を50%以上とすることで、十分な成形性が期待できる。 The HC film obtained by applying the present composition to the present composite base material and curing it (hereinafter referred to as the present HC film) preferably has a breaking elongation of 50% or more in an atmosphere of 130°C, and preferably 100% or more. More preferably, 200% or more is particularly preferable. By setting the elongation at break to 50% or more, sufficient moldability can be expected.

本HCフィルムには、必要に応じ加飾層を設けることができる。加飾する方法としては、例えば印刷や金属蒸着等が挙げられ、またこれら両方を用いて加飾しても良い。また更に射出成形樹脂との密着性を向上させるため、接着層やプライマー層を設けても良い。 This HC film can be provided with a decorative layer if necessary. Examples of the decorating method include printing, metal vapor deposition, and the like, and both of these methods may be used for decoration. Furthermore, an adhesive layer or a primer layer may be provided to further improve adhesion to the injection molding resin.

本HCフィルムには本組成物が塗布された面の保護のため、保護フィルムを貼り合わせても良い。保護フィルムを用いることで、インサート成形やアウトモールド成形プロセスでの傷つき防止ができ、歩留まり向上が期待できる。 A protective film may be attached to the HC film to protect the surface coated with the composition. By using a protective film, it is possible to prevent scratches during insert molding and out-mold molding processes, and it is expected to improve yields.

本HCフィルムをインサート成形で用いる方法としては、例えば本組成物が塗布された面を金型の内壁面に向かうよう(本組成物硬化層の反対面が成形樹脂と接するよう)に配置し、必要に応じて本HCフィルムを金型形状に追従させ予備成形し、次に金型を閉じてキャビティ―内に溶融状態の成形樹脂を射出させ、樹脂を固化させることにより樹脂成形品を形成することができる。 A method of using the present HC film in insert molding is, for example, by arranging the surface coated with the present composition so as to face the inner wall surface of the mold (so that the surface opposite to the cured layer of the present composition is in contact with the molding resin), If necessary, the HC film is preformed to follow the shape of the mold, then the mold is closed and the molten molding resin is injected into the cavity, and the resin is solidified to form a resin molded product. be able to.

上記予備成形を行う方法としては、本HCフィルムを軟化点以上に予備加熱して金型に配置し、金型に設けられた吸引孔を通じて真空吸引する方法や、射出成形用金型とは別の成形用金型を用い、真空成形や圧空成形、プレス成形等の公知の成形方法を用いることができる。またこれらの予備成形を行わず、成形樹脂による射出圧により、成形と射出樹脂との一体成形を同時に行うことも可能である。 The above preforming can be performed by preheating the HC film above its softening point, placing it in a mold, and vacuuming it through suction holes provided in the mold, or by using a separate mold for injection molding. A known molding method such as vacuum molding, pressure molding, press molding, etc. can be used using a mold for molding. It is also possible to perform molding and integral molding with the injection resin at the same time by using the injection pressure of the molding resin without performing these preliminary moldings.

上記射出成形する樹脂としては、射出成形が可能な公知の樹脂を用いることが可能である。例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ABS樹脂、AS樹脂、アクリル系樹脂、ウレタン系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、ポリフェニレンエーテル系樹脂、ポリアセタール系樹脂、ポリスルホン系樹脂等が挙げられ、単独あるいは2種類以上を組み合わせて使用することができる。自動車のボディーのようにサイズが大きい場合や、サイズが小さくても肉厚が薄い場合には、成形後の収縮率をHCフィルムのそれと近似させることで、反り等の不具合を回避することができる。 As the resin to be injection molded, any known resin that can be injection molded can be used. Examples include polyethylene resin, polypropylene resin, polystyrene resin, ABS resin, AS resin, acrylic resin, urethane resin, polyester resin, polycarbonate resin, polyphenylene ether resin, polyacetal resin, polysulfone resin, etc. They can be used alone or in combination of two or more. When the size is large, such as the body of a car, or when the wall thickness is thin even if the size is small, problems such as warping can be avoided by making the shrinkage rate after molding approximate that of HC film. .

また上記の射出成形用樹脂自体を着色することにより、HCフィルムの加飾層を無くしたり、加飾層と射出成形樹脂の色を融合させることでより深みのある外観を出すことが可能となる。更には外装を塗料により着色するような製品、例えば自動車のボディーなどをインサート成形に置き換える場合では、射出成形する樹脂を着色することにより、塗料による外形塗装を省略することが可能となる。この場合、外形塗装でしばしば発生するゆず肌やピット等の外観不良を無くすことができる。 In addition, by coloring the injection molding resin itself, it is possible to eliminate the decorative layer of the HC film, or to create a deeper appearance by merging the colors of the decorative layer and the injection molding resin. . Furthermore, when replacing a product whose exterior is colored with paint, such as the body of an automobile, by insert molding, it is possible to omit external painting with paint by coloring the injection molded resin. In this case, it is possible to eliminate appearance defects such as orange skin and pits that often occur during external painting.

更に本HCフィルムは、アウトモールド成形にも用いることができる。例えば、TOM(Three-Dimensional Overlay Method)成形に用いても良い。TOM成形は、気密ボックス内にて予め成形された基材に、真空・圧空成形にて3次元表面加飾を行うフィルム成形方法であり、本HCフィルムを用いることで基材の材質を問わず、3次元の大型製品にも対応可能である。 Furthermore, the present HC film can also be used for out-molding. For example, it may be used in TOM (Three-Dimensional Overlay Method) molding. TOM molding is a film molding method that applies three-dimensional surface decoration to a base material that has been preformed in an airtight box using vacuum/pressure molding. , it is also possible to handle large three-dimensional products.

以下、本発明について実施例、比較例を挙げて詳細に説明するが、具体例を示すものであって、特にこれらに限定するものではない。なお表記が無い場合は、室温は25℃相対湿度65%の条件下で測定を行った。また配合量は固形分換算とし重量部を示す。 Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but these are intended to be specific examples and are not particularly limited to these. Unless otherwise specified, the measurements were performed at a room temperature of 25° C. and a relative humidity of 65%. In addition, the blending amount is expressed in parts by weight in terms of solid content.

ウレアク1の調製
撹拌機、還流冷却器、滴下漏斗、及び温度計を取り付けた四つ口フラスコに、エチレングリコール200重量部とIPDI(NCO基37.5%)825重量部と触媒とMEKとを固形分50%になるように仕込み、80℃で6時間攪拌・反応させ、赤外吸収分析でイソシアネート基のピークが所定の量になった時点で反応を終了させた。次にPETA(水酸基価120mgKOH/g)438重量部を添加し、70℃で6時間攪拌・反応させた後、赤外吸収分析でイソシアネート基の消滅したことを確認し、MEKにより固形分を50%に調整して、Mw6,200で6官能のウレアク1を得た。
Preparation of Ureac 1 In a four-necked flask equipped with a stirrer, reflux condenser, addition funnel, and thermometer, 200 parts by weight of ethylene glycol, 825 parts by weight of IPDI (37.5% NCO groups), and catalyst. and MEK were charged so that the solid content was 50%, stirred and reacted at 80° C. for 6 hours, and the reaction was terminated when the peak of isocyanate groups reached a predetermined amount in infrared absorption analysis. Next, 438 parts by weight of PETA (hydroxyl value: 120 mgKOH/g) was added, and after stirring and reacting at 70°C for 6 hours, it was confirmed by infrared absorption analysis that the isocyanate groups had disappeared, and the solid content was reduced to 50% by MEK. % to obtain hexafunctional ureac 1 with Mw of 6,200.

ウレアク2の調製
撹拌機、還流冷却器、滴下漏斗、及び温度計を取り付けた四つ口フラスコに、エチレングリコール200重量部とIPDI(NCO基37.5%)930重量部と触媒とMEKとを固形分50%になるように仕込み、80℃で6時間攪拌・反応させ、赤外吸収分析でイソシアネート基のピークが所定の量になった時点で反応を終了させた。次にPETA(水酸基価120mgKOH/g)886重量部を添加し、70℃で6時間攪拌・反応させた後、赤外吸収分析でイソシアネート基の消滅したことを確認し、MEKにより固形分を50%に調整して、Mw3,200で6官能のウレアク2を得た。
Preparation of Ureac 2 In a four-necked flask equipped with a stirrer, reflux condenser, addition funnel, and thermometer, 200 parts by weight of ethylene glycol, 930 parts by weight of IPDI (NCO group 37.5%), and catalyst. and MEK were charged so that the solid content was 50%, stirred and reacted at 80° C. for 6 hours, and the reaction was terminated when the peak of isocyanate groups reached a predetermined amount in infrared absorption analysis. Next, 886 parts by weight of PETA (hydroxyl value: 120 mgKOH/g) was added, and after stirring and reacting at 70°C for 6 hours, it was confirmed by infrared absorption analysis that the isocyanate groups had disappeared, and the solid content was reduced to 50% by MEK. % to obtain hexafunctional ureac 2 with an Mw of 3,200.

ウレアク3の調製
撹拌機、還流冷却器、滴下漏斗、及び温度計を取り付けた四つ口フラスコに、エチレングリコール200重量部とIPDI(NCO基37.5%)895重量部と触媒とMEKとを固形分50%になるように仕込み、80℃で6時間攪拌・反応させ、赤外吸収分析でイソシアネート基のピークが所定の量になった時点で反応を終了させた。次にPETA(水酸基価120mgKOH/g)743重量部を添加し、70℃で6時間攪拌・反応させた後、赤外吸収分析でイソシアネート基の消滅したことを確認し、MEKにより固形分を50%に調整して、Mw3,800で6官能のウレアク3を得た。
Preparation of Ureac 3 In a four-necked flask equipped with a stirrer, reflux condenser, addition funnel, and thermometer, 200 parts by weight of ethylene glycol, 895 parts by weight of IPDI (37.5% NCO groups), and catalyst. and MEK were charged so that the solid content was 50%, stirred and reacted at 80° C. for 6 hours, and the reaction was terminated when the peak of isocyanate groups reached a predetermined amount in infrared absorption analysis. Next, 743 parts by weight of PETA (hydroxyl value: 120 mgKOH/g) was added, and after stirring and reacting at 70°C for 6 hours, it was confirmed by infrared absorption analysis that the isocyanate groups had disappeared, and the solid content was reduced to 50% by MEK. % to obtain hexafunctional ureac 3 with an Mw of 3,800.

ウレアク4の調製
撹拌機、還流冷却器、滴下漏斗、及び温度計を取り付けた四つ口フラスコに、エチレングリコール200重量部とIPDI(NCO基37.5%)808重量部と触媒とMEKとを固形分50%になるように仕込み、80℃で6時間攪拌・反応させ、赤外吸収分析でイソシアネート基のピークが所定の量になった時点で反応を終了させた。次にPETA(水酸基価120mgKOH/g)371重量部を添加し、70℃で6時間攪拌・反応させた後、赤外吸収分析でイソシアネート基の消滅したことを確認し、MEKにより固形分を50%に調整して、Mw7,800で6官能のウレアク4を得た。
Preparation of Ureac 4 In a four-necked flask equipped with a stirrer, reflux condenser, addition funnel, and thermometer, 200 parts by weight of ethylene glycol, 808 parts by weight of IPDI (37.5% NCO group), and catalyst. and MEK were charged so that the solid content was 50%, stirred and reacted at 80° C. for 6 hours, and the reaction was terminated when the peak of isocyanate groups reached a predetermined amount in infrared absorption analysis. Next, 371 parts by weight of PETA (hydroxyl value: 120 mgKOH/g) was added, and after stirring and reacting at 70°C for 6 hours, it was confirmed by infrared absorption analysis that the isocyanate group had disappeared, and the solid content was reduced to 50% by MEK. % to obtain hexafunctional ureac 4 with an Mw of 7,800.

ウレアク5の調製
撹拌機、還流冷却器、滴下漏斗、及び温度計を取り付けた四つ口フラスコに、エチレングリコール200重量部とIPDI(NCO基37.5%)790重量部と触媒とMEKとを固形分50%になるように仕込み、80℃で6時間攪拌・反応させ、赤外吸収分析でイソシアネート基のピークが所定の量になった時点で反応を終了させた。次にPETA(水酸基価120mgKOH/g)295重量部を添加し、70℃で6時間攪拌・反応させた後、赤外吸収分析でイソシアネート基の消滅したことを確認し、MEKにより固形分を50%に調整して、Mw9,800で6官能のウレアク5を得た。
Preparation of Ureac 5 In a four-neck flask equipped with a stirrer, reflux condenser, addition funnel, and thermometer, 200 parts by weight of ethylene glycol, 790 parts by weight of IPDI (37.5% NCO groups), and catalyst. and MEK were charged so that the solid content was 50%, stirred and reacted at 80° C. for 6 hours, and the reaction was terminated when the peak of isocyanate groups reached a predetermined amount in infrared absorption analysis. Next, 295 parts by weight of PETA (hydroxyl value: 120 mgKOH/g) was added, and after stirring and reacting at 70°C for 6 hours, it was confirmed by infrared absorption analysis that the isocyanate groups had disappeared, and the solid content was reduced to 50% by MEK. % to obtain hexafunctional ureac 5 with an Mw of 9,800.

上記製法に準じて、ウレアク1~5と同骨格でMw違いのウレアクA及びBと、エチレングリコールの代わりにポリエチレングリコールを用いたウレアクCを得た。
ウレアクA:PETA-IPDI-(エチレングリコール-IPDI)n-PETA骨格、
6官能、固形分50%、Mw 1,800
ウレアクB:PETA-IPDI-(エチレングリコール-IPDI)n-PETA骨格、
6官能、固形分50%、Mw 13,000
ウレアクC:PETA-IPDI-ポリエチレングリコール-IPDI-PETA骨格、 6官能、固形分50%、Mw6,000
According to the above production method, Ureac A and B having the same skeleton as Ureac 1 to 5 but different in Mw, and Ureac C using polyethylene glycol instead of ethylene glycol were obtained.
Ureac A: PETA-IPDI-(ethylene glycol-IPDI) n-PETA skeleton,
Hexafunctional, solid content 50%, Mw 1,800
Ureac B: PETA-IPDI-(ethylene glycol-IPDI) n-PETA skeleton,
Hexafunctional, solid content 50%, Mw 13,000
Ureac C: PETA-IPDI-polyethylene glycol-IPDI-PETA skeleton, hexafunctional, solid content 50%, Mw 6,000

HC樹脂組成物の評価を下記で行った。 The HC resin composition was evaluated as follows.

実施配合例1~9
前記(A)として上記で調整したウレアク1~5を、(b1)としてTinuvin249(商品名:BASFジャパン社製)を、(b2)としてTinuvin477(商品名:BASFジャパン社製)を、(C)としてOmnirad2959及び127D(商品名:IGM Resins社製)を、架橋剤としてDPHAを、レベリング剤としてX-71-1203M(商品名:信越化学工業社製、アクリロイル基含有フッ素系シリコーン化合物)を、表1記載の配合で均一に溶解・分散するまで撹拌し、更に固形分が30%となるようにPGMを加えて希釈撹拌し、実施配合例1~9のHC樹脂組成物を得た。
Practical formulation examples 1 to 9
Ureac 1 to 5 prepared above as (A), Tinuvin 249 (product name: manufactured by BASF Japan) as (b1), Tinuvin 477 (product name: manufactured by BASF Japan) as (b2), (C) Omnirad 2959 and 127D (trade name: manufactured by IGM Resins) were used, DPHA was used as a crosslinking agent, and X-71-1203M (trade name: manufactured by Shin-Etsu Chemical Co., Ltd., a fluorine-based silicone compound containing an acryloyl group) was used as a leveling agent. The mixture described in Example 1 was stirred until uniformly dissolved and dispersed, and then PGM was added and diluted to a solid content of 30% and stirred to obtain HC resin compositions of Practical Formulation Examples 1 to 9.

比較配合例1~3
上記の実施配合例で用いた材料の他、オリゴマーとして上記ウレアクA~Cを、表2記載の配合で均一に溶解・分散するまで撹拌し、更に固形分が30%となるようにPGMを加えて希釈撹拌し、比較配合例1~3のHC樹脂組成物を得た。
Comparative formulation examples 1 to 3
In addition to the materials used in the above practical formulation examples, the above-mentioned ureac A to C as oligomers were stirred until uniformly dissolved and dispersed in the formulation shown in Table 2, and then PGM was added so that the solid content was 30%. The mixture was diluted and stirred to obtain HC resin compositions of Comparative Formulation Examples 1 to 3.

表1
Table 1

HC樹脂組成物の評価方法は以下の通りとした。 The evaluation method for the HC resin composition was as follows.

樹脂組成物評価用のHCフィルム調製
実施配合例及び比較配合例で作成したHC樹脂組成物を、ユーピロンフィルム(商品名:DF02PUL、三菱ガス化学社製、厚み125μm、PMMA/PC積層フィルム)を用い、PMMA面側に乾燥膜厚で3μmとなるように光硬化性樹脂を塗布し、恒温槽で80℃×1分乾燥後、高圧水銀ランプで出力1300mW/cm2、積算光量が200mJとなる様に窒素雰囲気化で紫外線照射し、評価用HCフィルムを調製した。
HC film preparation for resin composition evaluation The HC resin compositions prepared in the practical formulation examples and comparative formulation examples were prepared using Iupilon film (trade name: DF02PUL, manufactured by Mitsubishi Gas Chemical Co., Ltd., thickness 125 μm, PMMA/PC laminated film). , Apply a photocurable resin to the PMMA side to a dry film thickness of 3 μm, dry in a constant temperature bath at 80°C for 1 minute, and then use a high-pressure mercury lamp to obtain an output of 1300 mW/cm2 and an integrated light amount of 200 mJ. An HC film for evaluation was prepared by irradiating ultraviolet light in a nitrogen atmosphere.

硬化性:HCフィルムを用い、塗膜表面の指触でもタック感を確認し、タック無しを〇、タック有りを×とした。 Curability: Using an HC film, the tackiness of the surface of the coating film was also confirmed by touching with a finger, and no tack was evaluated as ○, and tack was evaluated as ×.

密着性:JIS K 5600-5-6のクロスカット法に準拠し、塗工面に1mm間隔で10×10にマス目を作成し、セロハンテープCT-24(商品名:ニチバン社製)を貼り、上方に引っ張り剥離状況を確認し、剥離無しを〇、剥離有りを×とした。
剥離無し:100/100、剥離有り:0/100~99/100
Adhesion: Based on the cross-cut method of JIS K 5600-5-6, create 10 x 10 squares at 1 mm intervals on the coated surface, apply cellophane tape CT-24 (product name: Nichiban Co., Ltd.), The state of peeling was checked by pulling upward, and no peeling was marked as ○, and peeling was marked as x.
No peeling: 100/100, peeling: 0/100 to 99/100

耐摩耗性:スガ試験機製の摩擦試験機FR-IBSを用い、ハードコートフィルムの樹脂組成物塗布面を、試験用白綿布(カナキン3号)を取り付けた摩擦子(直径16mm)で9Nの荷重をかけて1往復/1秒の速さで100mm往復させ、20往復後の傷の有無を確認し、傷無しを○、傷有りを×とした。 Abrasion resistance: Using a friction tester FR-IBS manufactured by Suga Test Instruments, the resin composition coated surface of the hard coat film was subjected to a load of 9 N with a friction element (diameter 16 mm) attached with a white cotton cloth for testing (Kanakin No. 3). It was made to reciprocate 100 mm at a speed of 1 reciprocation/1 second, and the presence or absence of scratches was checked after 20 reciprocations.

耐薬品性:硬化皮膜にハンドクリーム、ニュートロジーナSPF45(商品名:ジョンソン・エンド・ジョンソン社製)を塗布し、80℃4時間放置させ、その後室温に戻し、拭き取ったのち表面を観察した。塗布の跡なしを○、跡ありを×とした。 Chemical resistance: A hand cream, Neutrogena SPF45 (trade name: Johnson & Johnson) was applied to the cured film, left at 80°C for 4 hours, then returned to room temperature, wiped off, and the surface was observed. No traces of coating were rated as ○, and those with marks were rated as ×.

破断伸度:HCフィルムを横25mm×縦50mmにカットし、Minebia製TechnoGraph TGI-1KNを用い、雰囲気温度130℃、引っ張り速度300mm/分で引っ張り試験を行い、目視で割れを確認し、伸び率が50%以上を○、200%以上を◎とした。
計算式:50mmを基準として何mm伸びたかで計算。
伸びた長さ(mm)/50mm×100=伸び率%
Breaking elongation: The HC film was cut into 25 mm width x 50 mm length, and a tensile test was performed using TechnoGraph TGI-1KN manufactured by Minebia at an ambient temperature of 130°C and a tensile speed of 300 mm/min, and cracks were visually confirmed. rated 50% or more as ○, and 200% or more as ◎.
Calculation formula: Calculated based on how many mm it has expanded based on 50 mm.
Stretched length (mm)/50mm x 100 = elongation rate %

配合例評価結果
表2
Formulation example evaluation results Table 2

実施配合例のHC樹脂組成物は硬化性、密着性、耐摩耗性、耐薬品性、耐候性、破断伸度全ての面で問題はなく良好であった。 The HC resin composition of the practical formulation example had no problems and was good in all aspects of curability, adhesion, abrasion resistance, chemical resistance, weather resistance, and elongation at break.

一方、Mwが下限以下の比較配合例1は破断伸度が低く、Mwが上限超の比較配合例2は耐摩耗性が劣り、ポリエチレン骨格のウレアクを用いた比較配合例3は耐薬品性が劣り、いずれも本願発明に適さないものであった。 On the other hand, Comparative Blend Example 1 with Mw below the lower limit has low elongation at break, Comparative Blend Example 2 with Mw above the upper limit has poor wear resistance, and Comparative Blend Example 3 using ureac with a polyethylene skeleton has poor chemical resistance. Both were inferior and unsuitable for the present invention.

次に、成形用フィルムの評価を下記で行った。 Next, the molding film was evaluated as follows.

実施例及び比較例
実施配合例1、4、7の樹脂組成物を用い、表3に記載した基材上に、乾燥膜厚で3μmとなるように光硬化性樹脂を塗布し、恒温槽で80℃×1分乾燥後、高圧水銀ランプで出力1300mW/cm2、積算光量が200mJとなる様に紫外線照射し、実施例1~3、及び比較例1~8の成形用フィルムを調製した。(
Examples and Comparative Examples Using the resin compositions of Practical Formulation Examples 1, 4, and 7, a photocurable resin was applied onto the substrate listed in Table 3 to a dry film thickness of 3 μm, and the resin was heated in a constant temperature bath. After drying at 80°C for 1 minute, ultraviolet rays were irradiated with a high-pressure mercury lamp at an output of 1300 mW/cm2 and an integrated light amount of 200 mJ to prepare molding films of Examples 1 to 3 and Comparative Examples 1 to 8. (

表3

(※1:ウェーブロックアドバンストテクノロジー社
Table 3

(*1: Wavelock Advanced Technology Co., Ltd.

成形フィルムの評価方法は以下の通りとした。 The evaluation method for the formed film was as follows.

基材単体のΔE:日本電色工業社製の色差測定器SD-6000を用い、JIS Z 8722に準拠して、HC樹脂を塗布していない基材単体に対し、UVB(0.55W/m2)で60℃、1000時間照射した前後の色見を測定し、その差ΔEを測定した。 ΔE of base material alone: Using a color difference measuring instrument SD-6000 manufactured by Nippon Denshoku Kogyo Co., Ltd., in accordance with JIS Z 8722, UVB (0.55 W/m2 ) The color appearance before and after irradiation at 60° C. for 1000 hours was measured, and the difference ΔE was measured.

耐候性:上記と同条件で、HC樹脂を塗布した成形フィルムのΔEを測定し、1.0未満の場合を〇、1.0超の場合を×とした。 Weather resistance: Under the same conditions as above, the ΔE of the molded film coated with the HC resin was measured, and a case of less than 1.0 was given as ○, and a case of more than 1.0 was given as ×.

成形性:成形フィルムを基材温180℃まで加熱後、真空成型機で直径30mm×4mmHの円柱型を用いて真空成形し、完全に賦形できた場合を〇、白化やクラック、賦形が不完全な場合を×とした。 Formability: After heating the formed film to a substrate temperature of 180°C, vacuum forming is performed using a vacuum forming machine using a cylindrical mold with a diameter of 30 mm x 4 mm. Incomplete cases were marked as ×.

布跡試験:成形フィルムの樹脂組成物塗布面に、50mm×50mmのガーゼを接触させ、500Kg/4cmの荷重をかけ、80℃で60分放置後に布を除去した時に布跡が残らない場合を〇、跡が残る場合を×とした。 Cloth trace test: When a 50 mm x 50 mm gauze is brought into contact with the resin composition coated surface of the molded film, a load of 500 kg/4 cm 2 is applied, and no trace remains when the cloth is removed after being left at 80°C for 60 minutes. It was marked as ○, and the case where a mark remained was marked as ×.

摩耗性:スガ試験機製の摩擦試験機FR-IBSを用い、成形フィルムの樹脂組成物塗布面を、試験用白綿布(カナキン3号)を取り付けた摩擦子(直径16mm)で1Kg/cm2の荷重をかけて1往復/1秒の速さで100mm往復させ、20往復後の傷の有無を確認し、傷無しを○、傷有りを×とした。 Abrasion property: Using a friction tester FR-IBS manufactured by Suga Test Instruments, the resin composition coated surface of the molded film was subjected to a load of 1 kg/cm2 with a friction element (diameter 16 mm) attached with white cotton cloth for testing (Kanakin No. 3). It was made to reciprocate 100 mm at a speed of 1 reciprocation/1 second, and the presence or absence of scratches was checked after 20 reciprocations.

鉛筆硬度:JISK5600-5-4(1999年版)に準拠し、東洋精機製作所製の鉛筆引掻塗膜硬さ試験機(形式P)を用いて500g荷重で測定し、H以上を〇、F以下を×とした。 Pencil hardness: Based on JISK5600-5-4 (1999 edition), measured with a 500g load using a pencil scratch coating hardness tester (type P) manufactured by Toyo Seiki Seisakusho, H or higher is ○, F or lower was marked as ×.

表4
Table 4

実施例は耐候性、成形性、布跡試験、耐摩耗性、鉛筆硬度全ての面で問題はなく良好であった。 The examples had no problems and were good in all aspects of weather resistance, moldability, cloth trace test, abrasion resistance, and pencil hardness.

一方、基材単体のΔEが1.0超のPMMA/PC基材を用いた比較例1~3は耐候性が劣り、PC基材の比較例4は耐候性を鉛筆硬度が劣っていた。またアクリル樹脂材の比較例5は布跡試験と鉛筆硬度が劣り、PET基材の比較例6は耐候性、成形性が劣っていた。更に、HC樹脂を塗布していない比較例7及び8は耐摩耗性と鉛筆硬度が劣り、特にPC基材の比較例8は耐候性も劣り、いずれも本願発明に適さないものであった。 On the other hand, Comparative Examples 1 to 3 using a PMMA/PC base material with a ΔE of more than 1.0 had poor weather resistance, and Comparative Example 4 using a PC base material had poor weather resistance and pencil hardness. Furthermore, Comparative Example 5, which was made of an acrylic resin material, was inferior in cloth mark test and pencil hardness, and Comparative Example 6, which was made of a PET base material, was inferior in weather resistance and moldability. Furthermore, Comparative Examples 7 and 8, which were not coated with HC resin, had poor abrasion resistance and pencil hardness, and in particular, Comparative Example 8, which was a PC base material, had poor weather resistance, and both were unsuitable for the present invention.

次に、射出成型の評価を下記で行った。 Next, injection molding was evaluated as follows.

射出成形品の調製
実施例1のHCフィルムを用い、射出成形の樹脂として黒色のABSを用いて実際にインサート成形を行った。
Preparation of injection molded product Using the HC film of Example 1, insert molding was actually performed using black ABS as the injection molding resin.

外観:BYK製の塗装表面性状測定機ウエーブスキャン3デュアルを用い、射出成型品のフィルム表面と、塗装鋼板の塗装面を測定し、LW(long wave)とSW(short wave)データを測定し比較した。 Appearance: Measure the film surface of the injection molded product and the painted surface of the painted steel plate using BYK's painted surface quality measuring machine WaveScan 3 Dual, measure and compare LW (long wave) and SW (short wave) data. did.

表5
Table 5

着色した樹脂を用いて射出成形したインサート成形品の外観は、塗装鋼板のようにゆず肌の外観不具合が無かった。

The appearance of the insert molded product injection molded using the colored resin did not have the appearance defect of orange peel unlike the painted steel plate.

上記の課題を解決するため、請求項1記載の発明は、材上に光硬化性樹脂組成物の硬化層を有することを特徴とするハードコートフィルムであって、前記光硬化性樹脂組成物が、エチレングリコールとイソホロンジイソシアネートを反応させたジイソシアネートに、ペンタエリスリトールトリアクリレートを更に反応させた構造を有するウレタンアクリレート(A)と、光安定剤(B)と、光重合開始剤(C)と、反応性官能基を有するフッ素系シリコーン化合物と、を含み、前記ハードコートフィルムの破断伸度が、雰囲気温度130℃、引っ張り速度300mm/分において100%以上であり、UVB(0.55W/m)、60℃、1000時間照射前後のΔEが1.0以下であることを特徴とする成形用ハードコートフィルムを提供する。(以下m2とは、mを意味するものとする。)
In order to solve the above problems, the invention according to claim 1 provides a hard coat film characterized by having a cured layer of a photocurable resin composition on a base material, the hard coat film having a cured layer of a photocurable resin composition on a base material. is a urethane acrylate (A) having a structure obtained by further reacting pentaerythritol triacrylate with a diisocyanate obtained by reacting ethylene glycol and isophorone diisocyanate, a light stabilizer (B), and a photopolymerization initiator (C), a fluorine-based silicone compound having a reactive functional group, the elongation at break of the hard coat film is 100% or more at an ambient temperature of 130° C. and a tensile speed of 300 mm/min, and a UVB (0.55 W/m 2 ), 60°C, 1000 hours irradiation before and after ΔE is 1.0 or less, to provide a hard coat film for molding. (Hereinafter, m2 shall mean m 2. )

請求項2の発明は、前記(B)として、ラジカル捕捉剤(b1)及び紫外線吸収剤(b2)を含むことを特徴とする請求項1記載の成形用ハードコートフィルムを提供する。
The invention according to claim 2 provides the hard coat film for molding according to claim 1, wherein the (B) includes a radical scavenger (b1) and an ultraviolet absorber (b2).

請求項3の発明は、自動車の外装用途であることを特徴とする請求項1又は2いずれか記載の成形用ハードコートフィルムを提供する。
The invention according to claim 3 provides the hard coat film for molding according to either claim 1 or 2, which is used for the exterior of automobiles .

請求項4の発明は、前記成形用ハードコートフィルムがインサート成形用又はアウトモールド成形用であることを特徴する請求項1又は2いずれか記載の成形用ハードコートフィルムを提供する。
A fourth aspect of the invention provides the hard coat film for molding according to any one of claims 1 and 2 , characterized in that the hard coat film for molding is used for insert molding or out molding.

請求項5の発明は、請求項4記載の成形用ハードコートフィルムを、金型を用いて賦形後、光硬化性樹脂硬化層とは反対側から溶融樹脂を射出して樹脂成形品を形成することを特徴とするインサート成形品の製造方法を提供する。
The invention according to claim 5 is a method of forming the hard coat film for molding according to claim 4 using a mold, and then injecting molten resin from the side opposite to the photocurable resin cured layer to form a resin molded product. A method for manufacturing an insert molded product is provided.

請求項7の発明は、請求項4記載の成形用ハードコートフィルムを用いたインサート成形品又はアウトモールド成形品を提供する。

The invention according to claim 7 provides an insert molded product or an out-mold molded product using the hard coat film for molding according to claim 4 .

Claims (7)

ポリカーボネート基材及びアクリル基材の複合基材上に光硬化性樹脂組成物の硬化層を有することを特徴とするハードコートフィルムであって、前記光硬化性樹脂組成物が、エチレングリコールとイソホロンジイソシアネートを反応させたジイソシアネートに、ペンタエリスリトールトリアクリレートを更に反応させた構造を有するウレタンアクリレート(A)と、光安定剤(B)と、光重合開始剤(C)と、反応性官能基を有するフッ素系シリコーン化合物と、を含み、前記(A)の重量平均分子量が3,500~12,000であり、前記複合基材のUVB(0.55W/m)、60℃、1000時間照射前後のΔEが1.0以下であり、自動車の外装用途であることを特徴とする成形用ハードコートフィルム。 A hard coat film comprising a cured layer of a photocurable resin composition on a composite substrate of a polycarbonate base material and an acrylic base material, the photocurable resin composition comprising ethylene glycol and isophorone diisocyanate. A urethane acrylate (A) having a structure obtained by further reacting pentaerythritol triacrylate with diisocyanate, a light stabilizer (B), a photoinitiator (C), and fluorine having a reactive functional group. containing a silicone compound, the weight average molecular weight of (A) is 3,500 to 12,000, and the composite base material is irradiated with UVB (0.55 W/m 2 ), 60° C., for 1000 hours. A hard coat film for molding, characterized in that it has a ΔE of 1.0 or less and is used for the exterior of automobiles. 前記(B)として、ラジカル捕捉剤(b1)及び紫外線吸収剤(b2)を含み、(b1)の配合量が固形分全量に対し1~10重量%であり、(b2)の配合量が0.3~5重量%であることを特徴とする請求項1記載の成形用ハードコートフィルム。 The above (B) contains a radical scavenger (b1) and an ultraviolet absorber (b2), the amount of (b1) is 1 to 10% by weight based on the total solid content, and the amount of (b2) is 0. The hard coat film for molding according to claim 1, characterized in that the amount is 3 to 5% by weight. 前記反応性官能基を有するフッ素系シリコーン化合物の配合量が、固形分全量に対し0.1~3重量%であることを特徴とする請求項1又は2いずれか記載の成形用ハードコートフィルム。 3. The hard coat film for molding according to claim 1, wherein the amount of the fluorine-based silicone compound having a reactive functional group is 0.1 to 3% by weight based on the total solid content. 前記成形用ハードコートフィルムがインサート成形用又はアウトモールド成形用であることを特徴する請求項1~3いずれか記載の成形用ハードコートフィルム。 The hard coat film for molding according to any one of claims 1 to 3, wherein the hard coat film for molding is used for insert molding or out-mold molding. 請求項1~3いずれか記載の成形用ハードコートフィルムを、金型を用いて賦形後、光硬化性樹脂硬化層とは反対側から溶融樹脂を射出して樹脂成形品を形成することを特徴とするインサート成形品の製造方法。 After shaping the hard coat film for molding according to any one of claims 1 to 3 using a mold, a resin molded product is formed by injecting molten resin from the side opposite to the photocurable resin cured layer. A manufacturing method for featured insert molded products. 前記溶融樹脂が着色されていることを特徴とする請求項5記載のインサート成形品の製造方法。 6. The method for manufacturing an insert molded product according to claim 5, wherein the molten resin is colored. 請求項1~3いずれか記載の成形用ハードコートフィルムを用いたインサート成形品又はアウトモールド成形品。
An insert-molded article or an out-molded article using the hard coat film for molding according to any one of claims 1 to 3.
JP2023004222A 2022-07-11 2023-01-16 Hard coat film for molding, molded products using the same, and method for producing insert molded products Active JP7361962B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023004222A JP7361962B1 (en) 2022-07-11 2023-01-16 Hard coat film for molding, molded products using the same, and method for producing insert molded products

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022110973A JP7213384B1 (en) 2022-07-11 2022-07-11 HARD COAT FILM FOR MOLDING, MOLDED PRODUCT USING IT, AND METHOD FOR MANUFACTURING INSERT MOLDED PRODUCT
JP2023004222A JP7361962B1 (en) 2022-07-11 2023-01-16 Hard coat film for molding, molded products using the same, and method for producing insert molded products

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2022110973A Division JP7213384B1 (en) 2022-07-11 2022-07-11 HARD COAT FILM FOR MOLDING, MOLDED PRODUCT USING IT, AND METHOD FOR MANUFACTURING INSERT MOLDED PRODUCT

Publications (2)

Publication Number Publication Date
JP7361962B1 JP7361962B1 (en) 2023-10-16
JP2024009744A true JP2024009744A (en) 2024-01-23

Family

ID=85035355

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2022110973A Active JP7213384B1 (en) 2022-07-11 2022-07-11 HARD COAT FILM FOR MOLDING, MOLDED PRODUCT USING IT, AND METHOD FOR MANUFACTURING INSERT MOLDED PRODUCT
JP2023001434A Active JP7293518B1 (en) 2022-07-11 2023-01-10 Hard coat resin composition for molding film for automobile exterior
JP2023004222A Active JP7361962B1 (en) 2022-07-11 2023-01-16 Hard coat film for molding, molded products using the same, and method for producing insert molded products

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2022110973A Active JP7213384B1 (en) 2022-07-11 2022-07-11 HARD COAT FILM FOR MOLDING, MOLDED PRODUCT USING IT, AND METHOD FOR MANUFACTURING INSERT MOLDED PRODUCT
JP2023001434A Active JP7293518B1 (en) 2022-07-11 2023-01-10 Hard coat resin composition for molding film for automobile exterior

Country Status (2)

Country Link
JP (3) JP7213384B1 (en)
WO (1) WO2024014053A1 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013173871A (en) 2012-02-27 2013-09-05 Mitsubishi Chemicals Corp Composition, antistatic coating agent, and antistatic laminate
JP6520301B2 (en) * 2015-03-27 2019-05-29 三菱ケミカル株式会社 Curable composition
JPWO2016199847A1 (en) * 2015-06-12 2018-03-29 株式会社カネカ Laminated film
JP2018111793A (en) * 2017-01-11 2018-07-19 アイカ工業株式会社 Ultraviolet-curable resin composition and hard coat film
KR102588774B1 (en) * 2017-09-06 2023-10-12 미츠비시 가스 가가쿠 가부시키가이샤 High-hardness molding resin sheets and molded products using them
JP2019168264A (en) * 2018-03-22 2019-10-03 豊田合成株式会社 Near-infrared sensor cover
JP2021066874A (en) * 2019-10-23 2021-04-30 アイカ工業株式会社 Photocurable resin composition and hard coat film
JP2022018764A (en) * 2020-07-16 2022-01-27 株式会社ネオス Curable composition for forming hard coat and laminate
JP7464489B2 (en) * 2020-09-29 2024-04-09 アイカ工業株式会社 After-cure type molding anti-reflective hard coat film
JP2022126018A (en) * 2021-02-18 2022-08-30 アイカ工業株式会社 Antireflection film and method for producing the same

Also Published As

Publication number Publication date
JP2024009446A (en) 2024-01-23
JP7293518B1 (en) 2023-06-19
WO2024014053A1 (en) 2024-01-18
JP7213384B1 (en) 2023-01-26
JP7361962B1 (en) 2023-10-16
JP2024009743A (en) 2024-01-23

Similar Documents

Publication Publication Date Title
KR101887722B1 (en) Decorated sheet and decorated resin molded article using same
US7713628B2 (en) Actinic radiation curable coating compositions
JP2010260905A (en) Photocurable composition
JP5573507B2 (en) Method for producing laminated sheet roll
JP6037485B2 (en) Thermal and photo-curable coating composition and coating film forming method
KR100451302B1 (en) UV Radiation Curing Paint Composition With High Operating Efficiency
JP4293886B2 (en) Photocurable resin composition, photocurable sheet using the same, and method for producing molded article using the same
JP2012017404A (en) Photocurable resin composition and photocurable coating agent using the same
JP7361962B1 (en) Hard coat film for molding, molded products using the same, and method for producing insert molded products
JP6487715B2 (en) Painted body
JP7385784B1 (en) Photocurable resin composition, hard coat film for molding, and molded products using the same
JP3819245B2 (en) Curable composition for coating, coated article, and outer skin for automobile
JP2020042199A (en) Antireflection hard coat film for molding
JP2003165178A (en) Transfer sheet and method for manufacturing resin molded article
JP2022126018A (en) Antireflection film and method for producing the same
WO2018169031A1 (en) Urethane (meth)acrylate polymer
US20160115322A1 (en) Radiation-curable coating composition
JP7492639B1 (en) Photocurable resin composition, hard coat film for molding, and molded article using the same
JP2023054872A (en) Antireflection film, method for using the same and plastic molded article using the same
JP3782670B2 (en) Curable composition for coating, coated article, outer plate for automobile, and active energy ray-curable composition
JP2023119087A (en) Photocurable resin composition, hard coat film for molding, and molded article using the same, and method for manufacturing insert-molded article
JP3984424B2 (en) Method for forming top coat film, coated article, and outer plate for automobile
JP3828398B2 (en) Painting method
KR20030078237A (en) UV curable oriental lacquer coating composition and method for preparing oriental lacquer coating using the same
JP7370835B2 (en) Curable composition and cured film thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230208

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230630

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231003

R150 Certificate of patent or registration of utility model

Ref document number: 7361962

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150