JP2021066874A - Photocurable resin composition and hard coat film - Google Patents

Photocurable resin composition and hard coat film Download PDF

Info

Publication number
JP2021066874A
JP2021066874A JP2020170853A JP2020170853A JP2021066874A JP 2021066874 A JP2021066874 A JP 2021066874A JP 2020170853 A JP2020170853 A JP 2020170853A JP 2020170853 A JP2020170853 A JP 2020170853A JP 2021066874 A JP2021066874 A JP 2021066874A
Authority
JP
Japan
Prior art keywords
resin composition
photocurable resin
film
hard coat
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020170853A
Other languages
Japanese (ja)
Inventor
晴彦 間瀬
Haruhiko Mase
晴彦 間瀬
佐藤 秀俊
Hidetoshi Sato
秀俊 佐藤
正章 熊谷
Masaaki Kumagai
正章 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aica Kogyo Co Ltd
Original Assignee
Aica Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aica Kogyo Co Ltd filed Critical Aica Kogyo Co Ltd
Publication of JP2021066874A publication Critical patent/JP2021066874A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Abstract

To provide a photocurable resin composition that is high in wear resistance and rupture elongation and excellent in moldability and also has excellent chemical resistance, the photocurable resin composition suitable for three-dimensional molding, and a hard coat film for molding that is coated with the same.SOLUTION: A photocurable resin composition contains: urethane acrylate that is prepared by causing ethylene glycol to react with isophorone diisocyanate to yield diisocyanate, which is caused to further react with pentaerythritol triacrylate; a surface-conditioning agent; and a photopolymerization initiator. The content of the surface-conditioning agent is 0.3-3.0 wt.% relative to the total solid content.SELECTED DRAWING: None

Description

本発明は光硬化性の樹脂組成物及びその樹脂硬化層を有するハードコートフィルムに関する。 The present invention relates to a photocurable resin composition and a hard coat film having a resin cured layer thereof.

アクリル系の光硬化型樹脂は、プラスチックフィルムやプラスチック成形物表面に特別な性能を付与するために多くの分野で用いられており、例えばPET(ポリエチレンテレフタレート)フィルム上に塗布して高硬度を付与したハードコートフィルムは、タッチパネル用フィルムや成形用フィルムとして大量に使用されている。 Acrylic photocurable resins are used in many fields to impart special performance to the surface of plastic films and plastic molded products. For example, they are applied on PET (polyethylene terephthalate) films to impart high hardness. The hard coat film is used in large quantities as a touch panel film and a molding film.

これらのなかで特に成形用としては、フィルム表面に絵柄を印刷後、加熱により軟化させた状態で3次元成形を行うインサートフィルムが良く知られているが、フィルムに塗布されたハードコート樹脂層を硬くすると、立体形状に加工する際に曲面においてマイクロクラックが入りやすくなり、加工形状には制約があった。そのため過去に出願人は、表面硬度と成形性を両立させるインサート成形用のハードコート樹脂として、トリアジン環含有(メタ)アクリレートプレポリマーと平均一次粒子径が80〜500nmの有機微粒子を含むハードコート剤を発明した(特許文献1)。このハードコート剤は膜厚が1〜10μmで十分な柔軟性と表面物性が両立可能な優れるものであった。 Among these, especially for molding, an insert film in which a pattern is printed on the surface of the film and then three-dimensionally molded in a state of being softened by heating is well known, but a hard coat resin layer applied to the film is used. When it is made hard, microcracks are likely to occur on the curved surface when it is processed into a three-dimensional shape, and there are restrictions on the processed shape. Therefore, in the past, the applicant has applied a hard coat agent containing a triazine ring-containing (meth) acrylate prepolymer and organic fine particles having an average primary particle size of 80 to 500 nm as a hard coat resin for insert molding that achieves both surface hardness and moldability. Was invented (Patent Document 1). This hard coating agent had a film thickness of 1 to 10 μm and was excellent in that it had both sufficient flexibility and surface physical characteristics.

こうした成形用途に適したハードコート剤を選定することで、加工面での制約はある程度緩和されてはきたが、深い絞込みが必要とされる用途ではまだ伸び性が不足する場合があった。また頻繁に人手に触られる用途、例えば自動車の内装分野等では、手の表面についているハンドクリームがハードコートの表面皮膜を侵し、長期にわたる使用では表面皮膜がはがれると言う課題があり、良好な加工特性(伸び性)と耐薬品性を両立させるためには改善の余地があった。 By selecting a hard coating agent suitable for such molding applications, restrictions on the processing surface have been relaxed to some extent, but there are cases where the extensibility is still insufficient in applications that require deep narrowing down. In addition, in applications that are frequently touched by human hands, such as in the interior field of automobiles, there is a problem that the hand cream on the surface of the hand attacks the surface film of the hard coat, and the surface film peels off after long-term use, so good processing is performed. There was room for improvement in order to achieve both characteristics (stretchability) and chemical resistance.

特許第4848200号Patent No. 4848200

本発明の課題は、耐摩耗性や耐爪傷性を有し、破断伸度が高く成形性が良好であると共に、耐薬品性にも優れ、インモールド成形やインサート成形などに適した光硬化性樹脂組成物、及びこれを塗工した成形用ハードコートフィルムを提供することにある。 The subject of the present invention is that it has abrasion resistance and nail scratch resistance, has high breaking elongation and good moldability, and also has excellent chemical resistance, and is photocurable suitable for in-mold molding and insert molding. It is an object of the present invention to provide a sex resin composition and a hard coat film for molding coated with the same.

上記の課題を解決するため、請求項1の発明は、エチレングリコールとイソホロンジイソシアネート(以下IPDIと表記)を反応させたジイソシアネートに、ペンタエリスリトールトリアクリレート(以下PETAと表記)を更に反応させたウレタンアクリレート(A)と、表面調整剤(B)と、光重合開始剤(C)とを含み、前記(B)の配合量が全固形分に対し0.3〜3.0重量%であることを特徴とする光硬化性樹脂組成物を提供する。 In order to solve the above problems, the invention of claim 1 is a urethane acrylate obtained by further reacting pentaerythritol triacrylate (hereinafter referred to as PETA) with diisocyanate obtained by reacting ethylene glycol with isophorone diisocyanate (hereinafter referred to as IPDI). It contains (A), a surface conditioner (B), and a photopolymerization initiator (C), and the blending amount of the above (B) is 0.3 to 3.0% by weight based on the total solid content. Provided is a characteristic photocurable resin composition.

請求項2の発明は、前記(A)の重量平均分子量が1500〜30000であることを特徴とする請求項1記載の光硬化性樹脂組成物を提供する。 The invention of claim 2 provides the photocurable resin composition according to claim 1, wherein the weight average molecular weight of (A) is 1500 to 30,000.

請求項3の発明は、前記(A)の配合量が全固形分に対し65〜97重量%であることを特徴とする請求項1又は2いずれか記載の光硬化性樹脂組成物を提供する。 The invention of claim 3 provides the photocurable resin composition according to claim 1 or 2, wherein the blending amount of the above (A) is 65 to 97% by weight with respect to the total solid content. ..

請求項4の発明は、更に光安定剤(D)を含むことを特徴とする請求項1〜3いずれか記載の光硬化性樹脂組成物を提供する。 The invention of claim 4 provides the photocurable resin composition according to any one of claims 1 to 3, further comprising a light stabilizer (D).

請求項5の発明は、更に抗ウイルス剤(E)を含むことを特徴とする請求項1〜4いずれか記載の光硬化性樹脂組成物を提供する。 The invention of claim 5 provides the photocurable resin composition according to any one of claims 1 to 4, further comprising an antiviral agent (E).

請求項6の発明は、プラスチック基材上に請求項1〜5いずれか記載の光硬化性樹脂組成物の硬化層を有することを特徴とするハードコートフィルムを提供する。 The invention of claim 6 provides a hard coat film characterized by having a cured layer of the photocurable resin composition according to any one of claims 1 to 5 on a plastic base material.

請求項7の発明は、成形用フィルムであることを特徴とする請求項6記載のハードコートフィルムを提供する。 The invention of claim 7 provides the hard coat film of claim 6, characterized in that it is a molding film.

請求項8の発明は、請求項7記載のハードコートフィルムを用いたプラスチック成型品を提供する。 The invention of claim 8 provides a plastic molded product using the hard coat film according to claim 7.

本発明の光硬化樹脂組成物は、耐摩耗性や耐爪傷性を有し、破断伸度が高く成形性が良好であると共に、耐薬品性にも優れており、インモールド成形やインサート成形などに用いる成形用フィルムに塗工するハードコート樹脂として有用である。 The photocurable resin composition of the present invention has abrasion resistance and nail scratch resistance, has high breaking elongation and good moldability, and is also excellent in chemical resistance, and is in-mold molded or insert molded. It is useful as a hard coat resin to be applied to a molding film used for such purposes.

本発明の光硬化型樹脂組成物の構成は、エチレングリコールとIPDIを反応合させたジイソシアネートに、PETAを更に反応させたウレタンアクリレート(A)と、表面調整剤(B)と、光重合開始剤(C)である。なお、本明細書において(メタ)アクリレートは、アクリレートとメタクリレートとの双方を包含する。 The composition of the photocurable resin composition of the present invention is a urethane acrylate (A) obtained by further reacting PETA with a diisocyanate obtained by reacting ethylene glycol and IPDI, a surface conditioner (B), and a photopolymerization initiator. (C). In addition, in this specification, (meth) acrylate includes both acrylate and methacrylate.

前記(A)の合成で使用する脂環式ジイソシアネートのIPDIは、黄変が無く耐候安定性に優れると同時に剛性が高く、硬化物の硬度を上げることができる。炭素鎖が非常に短いエチレングリコールと反応させることで、分子内のウレタン結合濃度を高くすることが可能となり、耐薬品性に優れた剛性の高い直鎖構造の主骨格を形成できる。エチレングリコールの代わりにポリエチレングリコールを用いると、ウレタン結合の濃度が低くなり耐薬品性が低下するため不適である。 The IPDI of the alicyclic diisocyanate used in the synthesis of (A) has no yellowing and is excellent in weather resistance stability, and at the same time, has high rigidity and can increase the hardness of the cured product. By reacting with ethylene glycol having a very short carbon chain, it is possible to increase the concentration of urethane bonds in the molecule, and it is possible to form a main skeleton having a highly rigid linear structure with excellent chemical resistance. If polyethylene glycol is used instead of ethylene glycol, the concentration of urethane bonds is lowered and the chemical resistance is lowered, which is not suitable.

前記(A)の合成方法としては特に制限はなく、公知の方法を用いることができる。反応は無溶媒下でも良いが、(A)の分子量が大きくなるにつれて攪拌が困難となる場合があるため、ブタノン等のケトン類、キシレン等の芳香族不活性溶媒などを用いても良い。またエチレングリコール及びPETAの水酸基と、イソシアネート基との反応には、触媒を用いることが好ましい。その場合の例としては、ジブチルスズジラウレート等の錫系、ナフテン酸コバルト等の金属アルコキシド系が挙げられる。反応温度は適宜設定可能であるが40〜120℃が好ましく、60〜100℃が更に好ましい。 The synthesis method of (A) is not particularly limited, and a known method can be used. The reaction may be carried out in the absence of a solvent, but stirring may become difficult as the molecular weight of (A) increases. Therefore, a ketone such as butanone or an aromatic inert solvent such as xylene may be used. Further, it is preferable to use a catalyst for the reaction between the hydroxyl groups of ethylene glycol and PETA and the isocyanate group. Examples of such cases include tin-based materials such as dibutyltin dilaurate and metal alkoxide-based materials such as cobalt naphthenate. The reaction temperature can be appropriately set, but is preferably 40 to 120 ° C, more preferably 60 to 100 ° C.

前記(A)のMw.は1500〜30000が好ましく、2000〜15000が更に好ましく、3000〜10000が特に好ましい。1500以上とすることで充分な破断伸度を確保でき、30000以下とすることで作業性の良い粘度に調整しやすくなる。(A)のMwは、反応させるエチレングリコールとIPDIのモル比により調整が可能で、エチレングリコールに対するIPDIのモル比を近づけると、Mwは大きくなる傾向がある。なおMwは、ゲル浸透クロマトグラフィーにより、スチレンジビニルベンゼン基材の充填剤を用いたカラムでテトラハイドロフラン溶離液を用いて、標準ポリスチレン換算の分子量を測定、算出した。 Mw. Of the above (A). Is preferably 1500 to 30000, more preferably 2000 to 15000, and particularly preferably 3000 to 10000. When it is 1500 or more, sufficient elongation at break can be secured, and when it is 30,000 or less, it becomes easy to adjust the viscosity to have good workability. The Mw of (A) can be adjusted by the molar ratio of ethylene glycol to be reacted and IPDI, and when the molar ratio of IPDI to ethylene glycol is brought closer, Mw tends to increase. Mw was calculated by measuring and calculating the molecular weight in terms of standard polystyrene by gel permeation chromatography using a tetrahydrofuran eluent on a column using a filler based on styrenedivinylbenzene.

前記(A)の配合量は全固形分に対し65〜97重量%が好ましく、70〜94重量%が更に好ましい。65重量%以上とすることで十分な破断強度を確保することができ、97重量%以下とすることで十分な硬化性を確保することができる。 The blending amount of (A) is preferably 65 to 97% by weight, more preferably 70 to 94% by weight, based on the total solid content. Sufficient breaking strength can be ensured when the content is 65% by weight or more, and sufficient curability can be ensured when the content is 97% by weight or less.

本発明に使用される表面調整剤(B)は、硬化物表面の滑り性を向上させる目的で添加しており、その影響で摩擦係数が低下し、結果として耐擦傷性を向上させている。例えばポリエーテル変性ポリジメチルシロキサン、ポリエステル変性ポリジメチルシロキサン、アラルキル変性ポリメチルアルキルシロキサン、変性ポリエーテル、フッ素系ポリマーなどが挙げられ、単独あるいは2種以上を組み合わせて使用することができる。これらの中では、前記(A)との相溶性を向上させるため、側鎖にポリエーテル基を導入したポリジメチルシロキサンコポリマーが好ましい。 The surface conditioner (B) used in the present invention is added for the purpose of improving the slipperiness of the surface of the cured product, and the friction coefficient is lowered due to the influence thereof, and as a result, the scratch resistance is improved. Examples thereof include polyether-modified polydimethylsiloxane, polyester-modified polydimethylsiloxane, aralkyl-modified polymethylalkylsiloxane, modified polyether, and fluorine-based polymer, which can be used alone or in combination of two or more. Among these, a polydimethylsiloxane copolymer in which a polyether group is introduced into the side chain is preferable in order to improve the compatibility with the above (A).

前記(B)の配合量は全固形分に対し0.3〜3.0重量%であり、0.3〜2.0重量%が好ましく、0.4〜1.5重量%が更に好ましい。0.3%未満では、摩擦係数の上昇により耐布摩耗性や耐爪傷性が低下し、3.0重量%超ではヘイズの上昇により加飾印刷した時の色再現性が低下する。市販品としてはBYK−UV3500(商品名:BYK社製)等が挙げられる。 The blending amount of (B) is 0.3 to 3.0% by weight, preferably 0.3 to 2.0% by weight, more preferably 0.4 to 1.5% by weight, based on the total solid content. If it is less than 0.3%, the cloth abrasion resistance and the nail scratch resistance are lowered due to the increase in the coefficient of friction, and if it is more than 3.0% by weight, the color reproducibility at the time of decorative printing is lowered due to the increase in haze. Examples of commercially available products include BYK-UV3500 (trade name: manufactured by BYK).

本発明に使用される光重合開始剤(C)は、紫外線や電子線などの照射でラジカルを生じ、そのラジカルが重合反応のきっかけとなるもので、ベンジルケタール系、アセトフェノン系、フォスフィンオキサイド系等汎用の光重合開始剤が使用できる。重合開始剤の光吸収波長を任意に選択することによって、紫外線領域から可視光領域にいたる広い波長範囲にわたって硬化性を付与することができる。具体的にはベンジルケタール系として2.2-ジメトキシ-1.2-ジフェニルエタン-1-オンが、α−ヒドロキシアセトフェノン系として1−ヒドロキシ−シクロヘキシル−フェニル−ケトン及び1−[4−(2−ヒドロキシエトキシ)−フェニル]−2−ヒドロキシ−2−メチル−1−プロパン−1−オンが、α-アミノアセトフェノン系として2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オンが、アシルフォスフィンオキサイド系として2.4.6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド及びビス(2.4.6‐トリメチルベンゾイル)‐フェニルフォスフィンオキサイド等があり、単独または2種以上を組み合わせて使用できる。 The photopolymerization initiator (C) used in the present invention generates radicals by irradiation with ultraviolet rays, electron beams, etc., and the radicals trigger a polymerization reaction, and is benzylketal-based, acetophenone-based, or phosphine oxide-based. A general-purpose photopolymerization initiator can be used. By arbitrarily selecting the light absorption wavelength of the polymerization initiator, curability can be imparted over a wide wavelength range from the ultraviolet region to the visible light region. Specifically, 2.2-dimethoxy-1.2-diphenylethane-1-one as a benzyl ketal system, 1-hydroxy-cyclohexyl-phenyl-ketone and 1- [4- (2- (2- (2-)) as an α-hydroxyacetophenone system. Hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propane-1-one is a 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropane-1 as an α-aminoacetophenone system. -On includes 2.4.6-trimethylbenzoyl-diphenyl-phosphine oxide and bis (2.4.6-trimethylbenzoyl) -phenylphosphine oxide as acylphosphine oxide systems, alone or in combination of two or more. Can be used in combination.

これらの中では、黄変しにくいα−ヒドロキシアセトフェノン系を含むことが好ましく、市販品としてはOmnirad127、184、2959(商品名:IGM Resins社製)などがある。前記(B)のラジカル重合性分100重量部に対する配合は2〜12重量部が好ましく、3〜10重量部が更に好ましい。 Among these, it is preferable to contain an α-hydroxyacetophenone system that does not easily turn yellow, and commercially available products include Omnirad 127, 184, and 2959 (trade name: manufactured by IGM Resins). The composition of the above (B) with respect to 100 parts by weight of the radically polymerizable content is preferably 2 to 12 parts by weight, more preferably 3 to 10 parts by weight.

本発明の組成物には、更に光安定剤(D)を配合することが好ましい。(D)としては、紫外線吸収剤、ラジカル捕捉剤があり、前者ではベンゾトリアゾール系、ベンゾフェノン系、トリアジン系等が、後者ではヒンダードアミン系(以下HALS系)、ヒンダードフェノール系等が挙げられる。これらの中ではトリアジン系、ヒンダードアミン系が好ましく、市販品ではTinuvin400(商品名:BASFジャパン社製、ヒドロキシフェニルトリアジン系)、Tinuvin123(商品名:BASFジャパン社製、HALS系)等がある。配合量は全固形分に対し0.1〜5重量%が好ましい。 It is preferable to further add a light stabilizer (D) to the composition of the present invention. Examples of (D) include ultraviolet absorbers and radical scavengers. The former includes benzotriazoles, benzophenones, triazines and the like, and the latter includes hindered amines (hereinafter referred to as HALS) and hindered phenols. Among these, triazine-based and hindered amine-based products are preferable, and commercially available products include Tinuvin 400 (trade name: manufactured by BASF Japan, hydroxyphenyl triazine-based), Tinuvin 123 (trade name: manufactured by BASF Japan, HALS-based) and the like. The blending amount is preferably 0.1 to 5% by weight based on the total solid content.

本発明の組成物には、更に抗ウイルス剤(E)を配合することで、抗ウイルス特性を付与することが可能である。抗ウイルス特性を有する無機系材料としては銅、銀、チタン、スズ、鉄、ニッケル、亜鉛などを含む化合物が、有機系材料としてはハイドロキシアパタイト、スルホン酸基又はその塩を有する重合体などが挙げられる。 By further adding an antiviral agent (E) to the composition of the present invention, it is possible to impart antiviral properties. Examples of the inorganic material having antiviral properties include compounds containing copper, silver, titanium, tin, iron, nickel, zinc and the like, and examples of the organic material include hydroxyapatite, a polymer having a sulfonic acid group or a salt thereof and the like. Be done.

前記(F)の組成物固形分の全量に対する配合量は3〜30重量%が好ましく、5〜20重量%が更に好ましい。3重量%以上とすることで抗ウイルス特性を付与することが可能となり、30重量%以下とすることで十分な外観と塗膜性能を確保することができる。 The blending amount of the composition (F) with respect to the total solid content is preferably 3 to 30% by weight, more preferably 5 to 20% by weight. When the content is 3% by weight or more, antiviral properties can be imparted, and when the content is 30% by weight or less, sufficient appearance and coating film performance can be ensured.

本発明の組成物には、性能を損なわない範囲で必要に応じて、反応性希釈剤、紫外線吸収剤、密着促進剤、酸化防止剤、ブルーイング剤、顔料、レベリング剤、消泡剤、増粘剤、沈澱防止剤、帯電防止剤、防曇剤、抗菌剤、ワックス、つや消し剤、親水剤、撥水剤等を添加してもよい。但し、酸化シリカやアルミナ等の無機フィラーについては、耐布摩耗性を低下させる場合があるため配合しないことが好ましい。 The compositions of the present invention include reactive diluents, UV absorbers, adhesion promoters, antioxidants, brewing agents, pigments, leveling agents, defoamers, and more, as needed, to the extent that performance is not impaired. Thickeners, anti-settling agents, antistatic agents, antifoaming agents, antibacterial agents, waxes, matting agents, hydrophilic agents, water repellents and the like may be added. However, it is preferable not to mix inorganic fillers such as silica oxide and alumina because they may reduce the abrasion resistance of the cloth.

上記反応性希釈剤としては(メタ)アクリレートモノマーが好ましく、中でも多官能(メタ)アクリレートが更に好ましい。単官能(メタ)アクリレートだけを多く配合すると、硬化物の分子量が大きくならず破断伸度や耐薬品性が低下する傾向かある。配合量は全固形分に対し20重量%以下が好ましく、配合量が多いと硬化が進みすぎ破断伸度が低下する傾向かある。特に少量添加でも反応性が向上する5官能以上が好ましく、例えばジペンタエリスリトールヘキサアクリレート(以下DPHA)などが挙げられる。 As the reactive diluent, a (meth) acrylate monomer is preferable, and a polyfunctional (meth) acrylate is more preferable. If only a large amount of monofunctional (meth) acrylate is blended, the molecular weight of the cured product does not increase and the elongation at break and chemical resistance tend to decrease. The blending amount is preferably 20% by weight or less based on the total solid content, and if the blending amount is large, curing tends to proceed excessively and the elongation at break tends to decrease. In particular, pentaerythritol hexaacrylate (hereinafter referred to as DPHA) or the like is preferable, and the reactivity is improved even when added in a small amount.

プラスチック基材に塗工する際には、塗工特性を向上させるため。トルエン、イソブタノール、酢酸エチル、酢酸ブチル、ヘキサン、シクロヘキサン、シクロヘキサノン、メチルシクロヘキサノン、アセトン、メチルエチルケトン(以下MEKと表記)、メチルイソブチルケトン、プロピレングリコールモノメチルエーテル(以下PGMと表記)などの溶剤で希釈してもよい。希釈する場合の固形分としては20〜50%が例示されるが、特に指定は無く、塗工しやすい粘度となるように適宜設定可能である。 To improve coating characteristics when coating on plastic substrates. Dilute with a solvent such as toluene, isobutanol, ethyl acetate, butyl acetate, hexane, cyclohexane, cyclohexanone, methylcyclohexanone, acetone, methyl ethyl ketone (hereinafter referred to as MEK), methyl isobutyl ketone, propylene glycol monomethyl ether (hereinafter referred to as PGM). You may. An example of the solid content when diluting is 20 to 50%, but there is no particular specification, and the viscosity can be appropriately set so as to have a viscosity that is easy to apply.

光硬化性樹脂組成物が塗布されるプラスチック基材としては、ポリエステルフィルム、トリアセチルセルロースフィルム、ポリカーボネート(以下PCと表記)フィルム、ポリスルフォンフィルム、ナイロンフィルム、シクロオレフィンフィルム、アクリル(以下PMMAと表記)フィルム、ポリイミドフィルム、ABSフィルム、ポリオレフィンフィルム、PVCフィルム、PVAフィルム等を挙げることができる。なかでも耐候性、加工性、寸法安定性などの点から二軸延伸処理されたポリエステルフィルムが好ましく用いられる。更に自動車内装加飾用ではPMMAフィルムやPCフィルムが好ましく用いられ、またそれらの積層フィルムでも良い。フィルムの厚みは概ね25μm〜500μmであればよい。 Examples of the plastic base material to which the photocurable resin composition is applied include polyester film, triacetyl cellulose film, polycarbonate (hereinafter referred to as PC) film, polysulphon film, nylon film, cycloolefin film, and acrylic (hereinafter referred to as PMMA). ) Film, polyimide film, ABS film, polyolefin film, PVC film, PVA film and the like. Among them, a biaxially stretched polyester film is preferably used from the viewpoints of weather resistance, workability, dimensional stability and the like. Further, a PMMA film or a PC film is preferably used for decorating an automobile interior, and a laminated film thereof may also be used. The thickness of the film may be approximately 25 μm to 500 μm.

前記プラスチック基材は、光硬化性樹脂組成物との密着性を向上させる目的で、プライマー処理やサンドブラスト法、溶剤処理法などによる表面の凹凸化処理、あるいはコロナ放電処理、クロム酸処理、オゾン・紫外線照射処理などの表面の酸化処理などの表面処理を施すことができる。また逆に転写用途で用いるため剥離性を向上させる目的で、シリコーン系樹脂、フッ素系樹脂等の剥離剤によるプライマー処理を行っても良い。 For the purpose of improving the adhesion of the plastic base material to the photocurable resin composition, the surface is roughened by a primer treatment, a sandblasting method, a solvent treatment method, etc., or a corona discharge treatment, a chromic acid treatment, ozone. Surface treatment such as surface oxidation treatment such as ultraviolet irradiation treatment can be performed. On the contrary, since it is used for transfer purposes, primer treatment with a release agent such as a silicone resin or a fluororesin may be performed for the purpose of improving the release property.

前記組成物を塗布する方法は、特に制限はなく、公知のスプレーコート、ロールコート、ダイコート、エアナイフコート、ブレードコート、スピンコート、リバースコート、グラビアコート、ワイヤーバーなどの塗工法またはグラビア印刷、スクリーン印刷、オフセット印刷、インクジェット印刷などの印刷法により形成できる。塗工する膜厚は乾燥時で1μm〜10μmが例示できるが、これに限定されるものではない。 The method for applying the composition is not particularly limited, and is a coating method such as a known spray coat, roll coat, die coat, air knife coat, blade coat, spin coat, reverse coat, gravure coat, wire bar, or gravure printing, screen. It can be formed by a printing method such as printing, offset printing, or inkjet printing. The film thickness to be applied can be exemplified, but is not limited to 1 μm to 10 μm when dried.

前記組成物を硬化させる際に用いる紫外線照射の光源としては、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、カーボンアーク灯、キセノンランプ、メタルハライドランプ、LEDランプ、無電極紫外線ランプなどがあり、また照射する雰囲気は空気中でもよいし、窒素、アルゴンなどの不活性ガス中でもよい。また紫外線照射時にバックロールの加温や、IRヒーターなどにより塗膜を加熱することで、より硬化性を上げることができる。照射条件としては照射強度500mW/cm〜3000mW/cm、露光量50〜400mJ/cmが例示されるが、これに限定されるものではない。 Examples of the ultraviolet irradiation light source used for curing the composition include a low pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a xenon lamp, a metal halide lamp, an LED lamp, and an electrodeless ultraviolet lamp. The atmosphere to be irradiated may be air or an inert gas such as nitrogen or argon. Further, the curability can be further improved by heating the back roll at the time of ultraviolet irradiation or heating the coating film with an IR heater or the like. The irradiation condition irradiation intensity 500mW / cm 2 ~3000mW / cm 2 , the exposure amount 50~400mJ / cm 2 is illustrated, but is not limited thereto.

前記組成物をプラスチック基材に塗工し硬化させたハードコートフィルムは、130℃雰囲気下での破断伸度が100%以上であることが好ましく、150%以上が更に好ましい。破断伸度が100%未満では、深絞りのある用途で成型時にひび割れが発生する場合がある。 The hard coat film obtained by coating and curing the composition on a plastic base material preferably has a breaking elongation of 100% or more in an atmosphere of 130 ° C., more preferably 150% or more. If the elongation at break is less than 100%, cracks may occur during molding in applications with deep drawing.

以下、本発明について実施例、比較例を挙げて詳細に説明するが、具体例を示すものであって、特にこれらに限定するものではない。なお表記が無い場合は、室温は25℃相対湿度65%の条件下で測定を行った。 Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but specific examples are shown, and the present invention is not particularly limited thereto. Unless otherwise specified, the measurement was performed under the conditions of room temperature of 25 ° C. and relative humidity of 65%.

オリゴマーAの調製
エチレングリコール(以下EG)200重量部とIPDI(住化バイエルウレタン株式会社製 商品名デスモジュールI NCO基37.5%)835重量部とを、触媒と共にMEK溶剤中(固形分50%)に加え30℃で30分攪拌・反応させ、赤外吸収分析でイソシアネート基のピークが所定の量になった時点で反応を終了させた。次にPETA(日本化薬株式会社製 商品名PET30 固形分100%)230重量部を添加し、10℃で30分攪拌・反応させた後、60℃で30分攪拌・反応させ、赤外吸収分析でイソシアネート基の消滅したことを確認し、MEKにより固形分を50%に調整して、Mw.6,000の6官能のオリゴマーAを得た。
Preparation of Oligomer A 200 parts by weight of ethylene glycol (hereinafter referred to as EG) and 835 parts by weight of IPDI (trade name: Death Module INTO group 37.5% manufactured by Sumika Bayer Urethane Co., Ltd.) in MEK solvent together with a catalyst. In addition to (solid content 50%), the mixture was stirred and reacted at 30 ° C. for 30 minutes, and the reaction was terminated when the peak of the isocyanate group reached a predetermined amount in the infrared absorption analysis. Next, 230 parts by weight of PETA (trade name PET30 solid content 100% manufactured by Nippon Kayaku Co., Ltd.) was added, and the mixture was stirred and reacted at 10 ° C. for 30 minutes, then stirred and reacted at 60 ° C. for 30 minutes for infrared absorption. After confirming that the isocyanate group had disappeared by analysis, the solid content was adjusted to 50% by MEK, and Mw. 6,000 hexafunctional oligomers A were obtained.

オリゴマーBの調製
エチレングリコール(以下EG)200重量部とIPDI(住化バイエルウレタン株式会社製 商品名デスモジュールI NCO基37.5%)798重量部とを、触媒と共にMEK溶剤中(固形分40%)に加え30℃で30分攪拌・反応させ、赤外吸収分析でイソシアネート基のピークが所定の量になった時点で反応を終了させた。次にPETA(日本化薬株式会社製 商品名PET30 固形分100%)150重量部を添加し、10℃で30分攪拌・反応させた後、60℃で30分攪拌・反応させ、赤外吸収分析でイソシアネート基の消滅したことを確認し、MEKにより固形分を50%に調整して、Mw.8,000の6官能のオリゴマーBを得た。
Preparation of Oligomer B 200 parts by weight of ethylene glycol (hereinafter referred to as EG) and 798 parts by weight of IPDI (trade name: Death Module INTO group 37.5% manufactured by Sumika Bayer Urethane Co., Ltd.) in MEK solvent together with a catalyst. In addition to (solid content 40%), the mixture was stirred and reacted at 30 ° C. for 30 minutes, and the reaction was terminated when the peak of the isocyanate group reached a predetermined amount in the infrared absorption analysis. Next, 150 parts by weight of PETA (trade name PET30 solid content 100% manufactured by Nippon Kayaku Co., Ltd.) was added, and the mixture was stirred and reacted at 10 ° C. for 30 minutes, then stirred and reacted at 60 ° C. for 30 minutes for infrared absorption. After confirming that the isocyanate group had disappeared by analysis, the solid content was adjusted to 50% by MEK, and Mw. 8,000 hexafunctional oligomers B were obtained.

オリゴマーCの調製
エチレングリコール(以下EG)200重量部とIPDI(住化バイエルウレタン株式会社製 商品名デスモジュールI NCO基37.5%)922重量部とを、触媒と共にMEK溶剤中(固形分60%)に加え30℃で30分攪拌・反応させ、赤外吸収分析でイソシアネート基のピークが所定の量になった時点で反応を終了させた。次にPETA(日本化薬株式会社製 商品名PET30 固形分100%)400重量部を添加し、10℃で30分攪拌・反応させた後、60℃で30分攪拌・反応させ、赤外吸収分析でイソシアネート基の消滅したことを確認し、MEKで固形分を50%に調整して、Mw.4,200の6官能のオリゴマーCを得た。
Preparation of Oligomer C 200 parts by weight of ethylene glycol (hereinafter referred to as EG) and 922 parts by weight of IPDI (trade name: Death Module INTO group 37.5% manufactured by Sumika Bayer Urethane Co., Ltd.) in MEK solvent together with a catalyst. In addition to (solid content 60%), the mixture was stirred and reacted at 30 ° C. for 30 minutes, and the reaction was terminated when the peak of the isocyanate group reached a predetermined amount in the infrared absorption analysis. Next, 400 parts by weight of PETA (trade name PET30 solid content 100% manufactured by Nippon Kayaku Co., Ltd.) was added, and the mixture was stirred and reacted at 10 ° C. for 30 minutes, then stirred and reacted at 60 ° C. for 30 minutes for infrared absorption. After confirming that the isocyanate group had disappeared by analysis, the solid content was adjusted to 50% with MEK, and Mw. 4,200 hexafunctional oligomers C were obtained.

上記製法に準じて、以下の骨格を有するウレタンアクリレート(以下ウレアク)1〜3を得た。
ウレアク1:PETA−IPDI−ポリエチレングリコール−IPDI−PETA骨格、
6官能、固形分50%、Mw.5500
ウレアク2:PETA−IPDI−ポリカーボネートジオール−IPDI−PETA骨格、
6官能、固形分50%、Mw.22000
ウレアク3:PETA−IPDI−シクロヘキサンジオール−IPDI−PETA骨格、 6官能、固形分50%、Mw.7000
Urethane acrylates (hereinafter referred to as ureac) 1 to 3 having the following skeletons were obtained according to the above production method.
Ureaku 1: PETA-IPDI-Polyethylene glycol-IPDI-PETA skeleton,
Hexafunctional, solid content 50%, Mw. 5500
Ureaku 2: PETA-IPDI-Polycarbonate Diol-IPDI-PETA Skeleton,
Hexafunctional, solid content 50%, Mw. 22000
Ureaku 3: PETA-IPDI-cyclohexanediol-IPDI-PETA skeleton, hexafunctional, solid content 50%, Mw. 7000

実施例
前記(A)として上記で調整したオリゴマーA〜Cを、(B)としてBYK−UV3500(商品名:BYK社製)を、(C)としてOmnirad2959及び127(商品名:IGM Resins社製)を、(D)としてTinuvin400及び123(商品名:BASFジャパン社製)を、(E)としてスラニモD100(商品名:大阪ガスケミカル社製)及びアモルデンV−100JM(商品名:大和化学工業社製)及びマルカサイドV−1(商品名:大阪化成社製)を、反応性希釈剤としてDPHAを、表1記載の配合で均一に溶解・分散するまで撹拌し、更に固形分が30%となるようにPGMを加えて希釈撹拌し、実施例1〜13の光硬化性樹脂組成物を得た。なお配合表の単位は重量部とする。
Examples The oligomers A to C prepared above as (A), BYK-UV3500 (trade name: manufactured by BYK) as (B), and Omnirad 2959 and 127 (trade name: IGM) as (C). Resins), Tinuvin 400 and 123 (trade name: BASF Japan) as (D), Slanimo D100 (trade name: Osaka Gas Chemical) and Amorden V-100JM (trade name: Yamato) as (E). (Manufactured by Kagaku Kogyo Co., Ltd.) and Marcaside V-1 (trade name: manufactured by Osaka Kasei Co., Ltd.) are stirred with DPHA as a reactive diluent until they are uniformly dissolved and dispersed in the formulation shown in Table 1, and the solid content is further increased. PGM was added so as to be 30%, and the mixture was diluted and stirred to obtain the photocurable resin compositions of Examples 1 to 13. The unit of the formulation table is the part by weight.

比較例
実施例で用いた材料の他、オリゴマーとして上記ウレアク1〜3を、表2記載の配合で均一に溶解・分散するまで撹拌し、更に固形分が30%となるようにPGMを加えて希釈撹拌し、比較例1〜6の光硬化性樹脂組成物を得た。
Comparative Example In addition to the materials used in Examples, the above-mentioned ureacs 1 to 3 as oligomers were stirred with the formulation shown in Table 2 until they were uniformly dissolved and dispersed so that the solid content was 30%. PGM was added and diluted and stirred to obtain the photocurable resin compositions of Comparative Examples 1 to 6.

表1

Figure 2021066874
Table 1
Figure 2021066874

表2

Figure 2021066874
Table 2
Figure 2021066874

評価方法は以下の通りとした。 The evaluation method was as follows.

ハードコートフィルムの作成
実施例及び比較例で作成した光硬化性樹脂組成物を、PMMAフィルム505NAH(商品名:カネカ社製、厚み75μm)に乾燥膜厚で3μmとなるように光硬化性樹脂を塗布して乾燥後、高圧水銀ランプ200mJにて硬化させハードコートフィルムとした。
Preparation of hard coat film The photocurable resin composition prepared in Examples and Comparative Examples was applied to PMMA film 505 NAH (trade name: Kaneka Co., Ltd., thickness 75 μm) so that the dry film thickness was 3 μm. After being applied and dried, it was cured with a high-pressure mercury lamp 200 mJ to obtain a hard coat film.

全光線透過率、ヘイズ:JIS K7361−1に準拠し、東洋精機製作所製のHaze-GARD2を用いて測定し、全光線透過率は90%以上を○、90%未満を×、ヘイズは1.5%以下を○、1.5%超を×とした。 Total light transmittance, haze: Measured using Haze-GARD2 manufactured by Toyo Seiki Seisakusho in accordance with JIS K7361-1. Total light transmittance is 90% or more ○, less than 90% ×, haze 1. 5% or less was evaluated as ◯, and more than 1.5% was evaluated as x.

密着性:JIS K 5600−5−6のクロスカット法に準拠し、塗工面に1mm間隔で10×10にマス目を作成し、セロハンテープCT−24(商品名:ニチバン社製)を貼り、上方に引っ張り剥離状況を確認した。剥離せず:100/100、剥離あり:0/100〜99/100 Adhesion: In accordance with the cross-cut method of JIS K 5600-5-6, squares are created in 10x10 at 1 mm intervals on the coated surface, and cellophane tape CT-24 (trade name: manufactured by Nichiban Co., Ltd.) is attached. The state of peeling was confirmed by pulling upward. Without peeling: 100/100, with peeling: 0/100 to 99/100

耐布摩耗性:スガ試験機製の摩擦試験機FR−IBSを用い、ハードコートフィルムの樹脂組成物塗布面を、試験用白綿布(カナキン3号)を取り付けた摩擦子(直径16mm)で9Nの荷重をかけて1往復/1秒の速さで100mm往復させ、1000往復後の傷の有無を確認し、傷無しを○、傷有りを×とした。 Cloth wear resistance: Using the friction tester FR-IBS manufactured by Suga Test Instruments Co., Ltd., the resin composition coated surface of the hard coat film was 9N with a friction element (diameter 16 mm) to which a white cotton cloth for testing (Kanakin No. 3) was attached. A load was applied to reciprocate 100 mm at a speed of 1 reciprocation / 1 second, and the presence or absence of scratches after 1000 reciprocations was confirmed.

破断伸度:ハードコートフィルムを横25mm×縦50mmにカットし、Minebia製TechnoGraph TGI−1KNを用い、雰囲気温度130℃、引っ張り速度300mm/分で引っ張り試験を行い、目視で割れを確認し、伸び率が100%以上を○、150%以上を◎とした。
計算式:50mmを基準として何mm伸びたかで計算。
伸びた長さ(mm)/50mm×100=伸び率%
Elongation at break: A hard coat film is cut into a width of 25 mm and a length of 50 mm, and a tensile test is performed using Minebea's TechnoGraph TGI-1KN at an atmospheric temperature of 130 ° C. and a tensile speed of 300 mm / min. A rate of 100% or more was evaluated as ◯, and a rate of 150% or more was evaluated as ⊚.
Calculation formula: Calculated based on how many mm is extended based on 50 mm.
Elongated length (mm) / 50 mm x 100 = Elongation rate%

耐爪傷性:ガラス上でハードコートフィルムの樹脂組成物塗布面を任意の力で爪で引っ掻き、傷の発生有無を確認し、傷無しを○、傷有りを×とした。 Nail scratch resistance: The resin composition coated surface of the hard coat film was scratched with a nail with an arbitrary force on the glass, and the presence or absence of scratches was confirmed.

動摩擦係数:協和界面科学製の自動摩擦摩耗解析装置TribosterTS501を用い、点接触子(鋼球)にて100gの荷重をかけ、50mm幅を往復させ動摩擦係数を測定し、0.070以下を○とした。 Dynamic friction coefficient: Using the automatic friction and wear analyzer Triboster TS501 manufactured by Kyowa Interface Science, a load of 100 g is applied with a point contactor (steel ball), and the dynamic friction coefficient is measured by reciprocating 50 mm width. did.

静摩擦係数:動摩擦係数と同様の方法を用いて静摩擦係数を測定し、0.200以下を○とした。 Static friction coefficient: The static friction coefficient was measured using the same method as the dynamic friction coefficient, and 0.200 or less was marked with ◯.

耐薬品性:硬化皮膜にハンドクリーム、ニュートロジーナSPF45(商品名:ジョンソン・エンド・ジョンソン社製)を塗布し、80℃24時間放置させ、その後室温に戻し、拭き取ったのち表面を観察した。塗布の跡なしを○、跡ありを×とした。 Chemical resistance: Hand cream and Neutrogena SPF45 (trade name: manufactured by Johnson & Johnson) were applied to the cured film, allowed to stand at 80 ° C. for 24 hours, then returned to room temperature, wiped off, and then the surface was observed. No trace of application was marked with ◯, and with trace was marked with x.

抗ウイルス活性値:ISO 21702:2019のプラーク測定法によって測定した。試験ウイルスとしてはA型インフルエンザウイルスとネコカリシウイルスを用い24時間後のウイルス感染価を測定した。ブランクフィルムとのウイルス感染価の差を抗ウイルス活性値とし2.0超を○、2.0以下を×とした。 Antiviral activity value: Measured by the plaque measurement method of ISO 21702: 2019. Influenza A virus and feline calicivirus were used as test viruses, and the virus infectivity titer was measured after 24 hours. The difference in virus infectious titer from the blank film was defined as the antiviral activity value, and more than 2.0 was marked with ◯ and 2.0 or less was marked with x.

実施例評価結果
表3

Figure 2021066874
Example evaluation results Table 3
Figure 2021066874

比較例評価結果
表4

Figure 2021066874
Comparative example Evaluation result Table 4
Figure 2021066874

実施例は全光線透過率、ヘイズ、密着性、耐布摩耗性、破断伸度、耐爪傷性、動摩擦係数、静摩擦係数、耐薬品性全ての面で問題はなく良好であった。また抗ウイルス剤を配合した実施例8〜13は良好な抗ウイルス活性値を示した。 In the examples, there were no problems in all aspects such as total light transmittance, haze, adhesion, cloth abrasion resistance, elongation at break, nail scratch resistance, coefficient of dynamic friction, coefficient of static friction, and chemical resistance, which were good. In addition, Examples 8 to 13 containing an antiviral agent showed good antiviral activity values.

一方(B)を全く配合していない比較例1は摩擦係数が高くなり耐布摩耗性、耐爪傷性が悪く、下限以下の比較例2は、摩擦係数は良好であったものの高めで耐布摩耗性が悪く、上限を超えた比較例3はヘイズが高かった。またポリエチレン骨格オリゴマーを配合した比較例4、ポリオール部分が異なるオリゴマーを配合した比較例5及び6は耐薬品性が悪くなり、いずれも本願発明に適さないものであった。 On the other hand, Comparative Example 1 in which (B) was not blended had a high friction coefficient and poor cloth abrasion resistance and nail scratch resistance, and Comparative Example 2 below the lower limit had a good friction coefficient but was high in resistance. The cloth abrasion property was poor, and the haze was high in Comparative Example 3 which exceeded the upper limit. Further, Comparative Example 4 containing a polyethylene skeleton oligomer and Comparative Examples 5 and 6 containing oligomers having different polyol portions had poor chemical resistance, and none of them was suitable for the present invention.

本発明の光硬化性樹脂組成物は、高硬度で破断伸度が高く成形性が良好であると共に、耐薬品性にも優れており、インサート成形等に用いるハードコートフィルムに塗工する樹脂として有用である。



The photocurable resin composition of the present invention has high hardness, high breaking elongation, good moldability, and excellent chemical resistance, and can be used as a resin to be applied to a hard coat film used for insert molding or the like. It is useful.



Claims (8)

エチレングリコールとイソホロンジイソシアネートを反応させたジイソシアネートに、ペンタエリスリトールトリアクリレートを更に反応させたウレタンアクリレート(A)と、表面調整剤(B)と、光重合開始剤(C)とを含み、前記(B)の配合量が全固形分に対し0.3〜3.0重量%であることを特徴とする光硬化性樹脂組成物。 The diisocyanate obtained by reacting ethylene glycol with isophorone diisocyanate contains urethane acrylate (A) obtained by further reacting pentaerythritol triacrylate, a surface conditioner (B), and a photopolymerization initiator (C). ) Is 0.3 to 3.0% by weight based on the total solid content of the photocurable resin composition. 前記(A)の重量平均分子量が1500〜30000であることを特徴とする請求項1記載の光硬化性樹脂組成物。 The photocurable resin composition according to claim 1, wherein the weight average molecular weight of (A) is 1500 to 30000. 前記(A)の配合量が全固形分に対し65〜97重量%であることを特徴とする請求項1又は2いずれか記載の光硬化性樹脂組成物。 The photocurable resin composition according to claim 1 or 2, wherein the blending amount of (A) is 65 to 97% by weight based on the total solid content. 更に光安定剤(D)を含むことを特徴とする請求項1〜3いずれか記載の光硬化性樹脂組成物。 The photocurable resin composition according to any one of claims 1 to 3, further comprising a light stabilizer (D). 更に抗ウイルス剤(E)を含むことを特徴とする請求項1〜4いずれか記載の光硬化性樹脂組成物。 The photocurable resin composition according to any one of claims 1 to 4, further comprising an antiviral agent (E). プラスチック基材上に請求項1〜5いずれか記載の光硬化性樹脂組成物の硬化層を有することを特徴とするハードコートフィルム。 A hard coat film comprising a cured layer of the photocurable resin composition according to any one of claims 1 to 5 on a plastic base material. 成形用フィルムであることを特徴とする請求項6記載のハードコートフィルム。 The hard coat film according to claim 6, wherein the film is a molding film. 請求項7記載のハードコートフィルムを用いたプラスチック成型品。

A plastic molded product using the hard coat film according to claim 7.

JP2020170853A 2019-10-23 2020-10-09 Photocurable resin composition and hard coat film Pending JP2021066874A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019192376 2019-10-23
JP2019192376 2019-10-23

Publications (1)

Publication Number Publication Date
JP2021066874A true JP2021066874A (en) 2021-04-30

Family

ID=75636720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020170853A Pending JP2021066874A (en) 2019-10-23 2020-10-09 Photocurable resin composition and hard coat film

Country Status (1)

Country Link
JP (1) JP2021066874A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7213384B1 (en) 2022-07-11 2023-01-26 アイカ工業株式会社 HARD COAT FILM FOR MOLDING, MOLDED PRODUCT USING IT, AND METHOD FOR MANUFACTURING INSERT MOLDED PRODUCT
WO2023048107A1 (en) * 2021-09-21 2023-03-30 日本製紙株式会社 Hard coat film
WO2023054370A1 (en) * 2021-09-29 2023-04-06 日本製紙株式会社 Hard coat film
JP7385784B1 (en) 2023-06-13 2023-11-22 アイカ工業株式会社 Photocurable resin composition, hard coat film for molding, and molded products using the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011042770A (en) * 2009-08-24 2011-03-03 Arakawa Chem Ind Co Ltd Active energy ray-curable oligomer, active energy ray-curable resin composition, cured coating film, and plastic film
JP2012036290A (en) * 2010-08-06 2012-02-23 Showa Ink Kogyosho:Kk Curable composition
JP2014065788A (en) * 2012-09-25 2014-04-17 Dic Corp Active energy ray-curable composition, coating agent for glass, and glass member having cured coating film of the coating agent
JP2015108093A (en) * 2013-12-05 2015-06-11 三菱化学株式会社 Curable resin composition, cured article and laminate
JP2016186039A (en) * 2015-03-27 2016-10-27 三菱化学株式会社 Urethane (meth)acrylate oligomer
WO2016199847A1 (en) * 2015-06-12 2016-12-15 株式会社カネカ Layered film
JP2018111793A (en) * 2017-01-11 2018-07-19 アイカ工業株式会社 Ultraviolet-curable resin composition and hard coat film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011042770A (en) * 2009-08-24 2011-03-03 Arakawa Chem Ind Co Ltd Active energy ray-curable oligomer, active energy ray-curable resin composition, cured coating film, and plastic film
JP2012036290A (en) * 2010-08-06 2012-02-23 Showa Ink Kogyosho:Kk Curable composition
JP2014065788A (en) * 2012-09-25 2014-04-17 Dic Corp Active energy ray-curable composition, coating agent for glass, and glass member having cured coating film of the coating agent
JP2015108093A (en) * 2013-12-05 2015-06-11 三菱化学株式会社 Curable resin composition, cured article and laminate
JP2016186039A (en) * 2015-03-27 2016-10-27 三菱化学株式会社 Urethane (meth)acrylate oligomer
WO2016199847A1 (en) * 2015-06-12 2016-12-15 株式会社カネカ Layered film
JP2018111793A (en) * 2017-01-11 2018-07-19 アイカ工業株式会社 Ultraviolet-curable resin composition and hard coat film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023048107A1 (en) * 2021-09-21 2023-03-30 日本製紙株式会社 Hard coat film
WO2023054370A1 (en) * 2021-09-29 2023-04-06 日本製紙株式会社 Hard coat film
JP7213384B1 (en) 2022-07-11 2023-01-26 アイカ工業株式会社 HARD COAT FILM FOR MOLDING, MOLDED PRODUCT USING IT, AND METHOD FOR MANUFACTURING INSERT MOLDED PRODUCT
JP7293518B1 (en) 2022-07-11 2023-06-19 アイカ工業株式会社 Hard coat resin composition for molding film for automobile exterior
WO2024014053A1 (en) * 2022-07-11 2024-01-18 アイカ工業株式会社 Hard coat resin composition for automotive exterior molding film, hard coat film for molding, method for producing insert molded product, insert molded product, and out-mold molded product
JP2024009446A (en) * 2022-07-11 2024-01-23 アイカ工業株式会社 Hard coat film for molding and molding using the same, and manufacturing method of insert molding
JP7385784B1 (en) 2023-06-13 2023-11-22 アイカ工業株式会社 Photocurable resin composition, hard coat film for molding, and molded products using the same

Similar Documents

Publication Publication Date Title
JP2021066874A (en) Photocurable resin composition and hard coat film
JP2018111793A (en) Ultraviolet-curable resin composition and hard coat film
WO2011013497A1 (en) Photocurable hydrophilic coating agent, hydrophilic coating film, and hydrophilically coated article
WO2008075806A1 (en) Photo-curable coating composition comprising hyperbranched structure prepolymer, method for preparing the same and product prepared by the same
JP7033477B2 (en) Hardcourt resin composition and hardcourt film
KR20210024486A (en) Radiation curable composition
JP2007284485A (en) Ultraviolet ray-curing type coating
TWI644963B (en) Active energy ray curable resin composition and automobile headlamp lens
WO2013035263A1 (en) Member for vehicles and method for producing same
JP4539117B2 (en) UV curable antifogging composition
JP6865645B2 (en) Photocurable resin composition and sheet
KR102141376B1 (en) Active energy ray-curable resin composition, cured product and lamination body
JP7464489B2 (en) After-cure type molding anti-reflective hard coat film
JP2011074351A (en) Resin composition and molded product
WO2013099130A1 (en) Vehicle member and method for producing same
JP2020042199A (en) Antireflection hard coat film for molding
JP2023054872A (en) Antireflection film, method for using the same and plastic molded article using the same
US20150099828A1 (en) Laminate and method for producing same
JP2022159580A (en) Antiviral photocurable resin composition and hard coat film
JP5025894B2 (en) UV curable antifogging composition, cured product and molded product
JP4400364B2 (en) UV curable antifogging composition and molded article
JP2022126018A (en) Antireflection film and method for producing the same
JP2009263409A (en) Active energy ray-curing type resin composition, active energy ray-curable coating material, and molded article
JP7385784B1 (en) Photocurable resin composition, hard coat film for molding, and molded products using the same
JP2023040446A (en) Photocurable resin composition, hard coat film and plastic molding including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210201

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210201

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20210209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210305

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210907