WO2024014053A1 - Hard coat resin composition for automotive exterior molding film, hard coat film for molding, method for producing insert molded product, insert molded product, and out-mold molded product - Google Patents

Hard coat resin composition for automotive exterior molding film, hard coat film for molding, method for producing insert molded product, insert molded product, and out-mold molded product Download PDF

Info

Publication number
WO2024014053A1
WO2024014053A1 PCT/JP2023/009883 JP2023009883W WO2024014053A1 WO 2024014053 A1 WO2024014053 A1 WO 2024014053A1 JP 2023009883 W JP2023009883 W JP 2023009883W WO 2024014053 A1 WO2024014053 A1 WO 2024014053A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
hard coat
molding
resin composition
molded product
Prior art date
Application number
PCT/JP2023/009883
Other languages
French (fr)
Japanese (ja)
Inventor
晴彦 間瀬
正章 熊谷
秀俊 佐藤
Original Assignee
アイカ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイカ工業株式会社 filed Critical アイカ工業株式会社
Publication of WO2024014053A1 publication Critical patent/WO2024014053A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D65/00Designing, manufacturing, e.g. assembling, facilitating disassembly, or structurally modifying motor vehicles or trailers, not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes

Definitions

  • the present disclosure relates to a hard coat resin composition for a molding film for automobile exteriors, a hard coat film for molding, a method for producing an insert molded product, an insert molded product, and an out-mold molded product.
  • resin molded bodies have been increasingly used for the interior and exterior parts of automobiles, exterior parts of information terminals, parts for home appliances, etc. for the purpose of reducing weight.
  • Various methods are used to decorate or decorate the surface of a resin molded body.
  • the method of decorating or decorating the surface of a resin molded object the method of decorating the outermost surface of the resin molded object using a film has a higher degree of freedom in design than methods that use paint such as spray painting. It has been widely adopted because it can increase the surface area, it is easy to decorate surfaces with three-dimensional unevenness, and it has excellent productivity.
  • Insert molding is a well-known molding method using film.
  • insert molding after printing a pattern on the film surface, three-dimensional molding is performed while the film is softened by heating, and then the film is set in a mold and injection molding is performed.
  • VOC volatile organic compounds
  • inserts are being used as an alternative method.
  • Molding has been introduced.
  • molding methods using films have been increasingly introduced for exterior applications such as front grilles and roofs. The reason for this is that the use of resin parts has increased due to the demand for lighter parts for EVs, and the use of paint on resin parts has begun to be avoided for environmental reasons.
  • a hard coat resin layer is sometimes provided on the molded film used in insert molding for the purpose of improving surface hardness and scratch resistance.
  • the molded film provided with the hard coat resin layer is a hard coat film for molding.
  • a hard coat film for molding if the hard coat resin layer is hardened, there is a problem in that microcracks occur in the hard coat resin layer on curved surfaces when processing it into a three-dimensional shape, making it difficult to mold.
  • the applicant has disclosed, as a hard coat resin for insert molding, a hard coat agent containing a triazine ring-containing (meth)acrylate prepolymer and organic fine particles with an average primary particle size of 80 to 500 nm (Patent Document 1) reference).
  • This hard coating agent can have both sufficient flexibility and surface properties when the film thickness is 1 to 10 ⁇ m.
  • the hard coat film for molding has properties appropriate to the application.
  • Characteristics suitable for automotive exterior use include, for example, one or more of the following: stable moldability in large sizes, chemical resistance, sufficient weather resistance to withstand ultraviolet rays and temperature differences, and durability. It will be done.
  • a hard coat resin composition for a film for molding an automotive exterior a hard coat film for molding, a method for manufacturing an insert molded product, an insert molded product, and an insert molded product having characteristics suitable for automotive exterior applications.
  • a molded article is provided.
  • One aspect of the present disclosure provides a urethane acrylate (A) having a structure in which pentaerythritol triacrylate is further reacted with a diisocyanate obtained by reacting ethylene glycol and isophorone diisocyanate, a light stabilizer (B), and a photopolymerization initiator.
  • a hard coat resin composition for a molding film for automobile exteriors which comprises an agent (C) and a fluorine-based silicone compound having a reactive functional group, and wherein the weight average molecular weight of the above (A) is 3,500 to 12,000. It is a thing.
  • a hard coat resin composition for a molding film for automobile exteriors which is one aspect of the present disclosure, has characteristics suitable for automobile exterior uses.
  • Another aspect of the present disclosure is to shape a hard coat film for molding having a base material and a cured layer on the base material using a mold, and inject molten resin from the side opposite to the cured layer.
  • This is a method for manufacturing an insert molded product, in which a resin molded product is formed.
  • the cured layer contains urethane acrylate (A) having a structure in which pentaerythritol triacrylate is further reacted with a diisocyanate obtained by reacting ethylene glycol and isophorone diisocyanate, a light stabilizer (B), and a photopolymerization initiator (C). ) and a fluorine-based silicone compound having a reactive functional group, and the resin composition of (A) has a weight average molecular weight of 3,500 to 12,000.
  • Hard coat resin composition for molding film for automobile exterior contains ethylene glycol and isophorone diisocyanate (hereinafter referred to as IPDI).
  • IPDI isophorone diisocyanate
  • (meth)acrylate in this specification means both acrylate and methacrylate.
  • the HC resin composition is used to form a hard coat layer of a moldable film. Molding films are used for molding exterior parts of automobiles.
  • IPDI used in the synthesis of (A) is an alicyclic diisocyanate.
  • IPDI has little yellowing, excellent weather resistance stability, high rigidity, and can increase the hardness of the cured product of the HC resin composition.
  • ethylene glycol which has a very short carbon chain, it is possible to increase the concentration of urethane bonds within the molecule, forming a main skeleton with a highly rigid linear structure with excellent chemical resistance.
  • polyethylene glycol is used instead of ethylene glycol, the concentration of urethane bonds tends to be low, leading to a decrease in chemical resistance.
  • the method for synthesizing (A) is not particularly limited, and any known synthesis method can be used.
  • the reaction when synthesizing (A) may be carried out without a solvent, but as the molecular weight of (A) increases, stirring may become difficult.
  • the reaction may be carried out using a group inert solvent or the like.
  • a catalyst for the reaction between the hydroxyl groups of ethylene glycol and PETA and the isocyanate groups examples include tin-based catalysts such as dibutyltin dilaurate, and metal alkoxide-based catalysts such as cobalt naphthenate.
  • the reaction temperature can be set as appropriate, but is preferably 40 to 120°C, more preferably 60 to 100°C.
  • the weight average molecular weight (hereinafter referred to as Mw) of (A) is 3,500 to 12,000, preferably 3,500 to 11,000, more preferably 3,500 to 10,000, and 3,500 to 12,000. 9,800 is particularly preferred.
  • the Mw of (A) is less than 3,500, the elongation at break of the HC resin composition will be low, making it difficult to ensure sufficient moldability.
  • the Mw of (A) exceeds 12,000, the abrasion resistance of the HC resin composition decreases, and it becomes difficult to adjust the viscosity of the HC resin composition to a viscosity that provides good workability.
  • the Mw of (A) can be adjusted by adjusting the molar ratio of ethylene glycol and IPDI to be reacted.
  • the Mw of (A) tends to increase.
  • the Mw of (A) was calculated by measuring the molecular weight in terms of standard polystyrene by gel permeation chromatography. To measure the Mw of (A), a column using a styrene divinylbenzene-based packing material and a tetrahydrofuran eluent were used.
  • the blending amount of (A) is preferably 55 to 95% by weight, more preferably 65 to 92% by weight, particularly preferably 70 to 90% by weight, based on the total solid content of the HC resin composition.
  • the blending amount of (A) is preferably 55 to 95% by weight, more preferably 65 to 92% by weight, particularly preferably 70 to 90% by weight, based on the total solid content of the HC resin composition.
  • the light stabilizer (B) used in the present disclosure is blended to suppress deterioration of the cured film of the HC resin composition due to exposure to ultraviolet rays or radiant heat when used outdoors.
  • examples of the light stabilizer (B) include (b1) and (b2).
  • (b1) is a radical scavenger that efficiently traps alkyl radicals and peroxy radicals generated from polymers photodegraded by ultraviolet rays.
  • (b2) is an ultraviolet absorber that suppresses polymer decomposition by converting absorbed ultraviolet energy into thermal energy or the like. It is preferable to use (b1) and (b2) together.
  • radical scavenger (b1) used in the present disclosure examples include hindered amine type (hereinafter referred to as HALS type), hindered phenol type, aromatic amine type, and the like. (b1) can be used alone or in combination of two or more types. Among these, HALS systems are preferred because they have high radical scavenging efficiency even at low concentrations.
  • the blending amount of (b1) is preferably 1 to 10% by weight, more preferably 2 to 8% by weight, and particularly preferably 3 to 6% by weight based on the total solid content of the HC resin composition. By setting the blending amount of (b1) within this range, sufficient photostability of the HC resin composition can be ensured.
  • HALS-based commercial products include Tinuvin 123 and Tinuvin 249 (trade name: manufactured by BASF Japan).
  • the ultraviolet absorber (b2) used in the present disclosure is a radical chain initiation inhibitor that has an absorption band in the harmful ultraviolet region with high energy.
  • (b2) and (b1) in combination, it becomes possible to further improve the weather resistance of the HC resin composition and to make the weather resistance more stable.
  • Examples of (b2) include benzotriazole, triazine, and benzophenone.
  • (b2) can be used alone or in combination of two or more types. Among these, hydroxyphenyltriazine-based materials are preferred because they can strongly absorb long-wavelength ultraviolet rays.
  • the blending amount of (b2) is preferably 0.3 to 5% by weight, more preferably 0.5 to 3.0% by weight, and more preferably 0.6 to 1.5% by weight based on the total solid content of the HC resin composition. is particularly preferred. By setting the blending amount of (b2) within this range, sufficient ultraviolet absorption characteristics of the HC resin composition can be ensured. Further, the blending amount of (B), which is the sum of (b1) and (b2), is preferably 1.0 to 12% by weight, more preferably 1.5 to 10% by weight based on the total solid content of the HC resin composition. , 4.0 to 8.0% by weight is particularly preferred.
  • (B) By setting the blending amount of (B), which is the sum of (b1) and (b2), to 1.0% by weight or more, it can be expected that the weather resistance of the HC resin composition will be improved. By setting the blending amount of (B), which is the sum of (b1) and (b2), to 12% by weight or less, (B) will not be excessively blended and will maintain sufficient adhesion between the HC resin composition and the base material. Can be secured.
  • Commercially available products of (b2) include Tinuvin 460 and 477 (trade name: manufactured by BASF Japan).
  • the photopolymerization initiator (C) used in the present disclosure generates radicals when irradiated with ultraviolet rays, electron beams, etc.
  • the generated radicals trigger a polymerization reaction.
  • general-purpose photopolymerization initiators such as benzyl ketal, acetophenone, and phosphine oxide can be used.
  • curability can be imparted over a wide wavelength range from the ultraviolet region to the visible light region.
  • a benzyl ketal type there is 2,2-dimethoxy-1,2-diphenylethan-1-one.
  • ⁇ -hydroxyacetophenone type 1-[4-(2-hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propan-1-one and 2-hydroxy-1- ⁇ 4-[4- (2-hydroxy-2-methyl-propionyl)-benzyl]-phenyl ⁇ -2-methyl-propan-1-one.
  • acylphosphine oxides include 2.4.6-trimethylbenzoyl-diphenyl-phosphine oxide and bis(2.4.6-trimethylbenzoyl)-phenylphosphine oxide. (C) can be used alone or in combination of two or more.
  • ⁇ -hydroxyacetophenone which is resistant to yellowing.
  • examples of commercially available ⁇ -hydroxyacetophenone products include Omnirad 127D, 184, and 2959 (trade name: IGM manufactured by Resins).
  • the amount of (C) to be blended per 100 parts by weight of the radically polymerizable component is preferably 2 to 12 parts by weight, more preferably 3 to 10 parts by weight.
  • the HC resin composition of the present disclosure may contain a crosslinking agent, a leveling agent, an adhesion promoter, an antioxidant, a bluing agent, a pigment, an antifoaming agent, a thickener, and an anti-settling agent as necessary within a range that does not impair performance.
  • agent, antistatic agent, antifogging agent, antibacterial agent, wax, matting agent, hydrophilic agent, water repellent, inorganic filler, organic fine particles, etc. may be added.
  • polyfunctional (meth)acrylate As the crosslinking agent, it is preferable to use polyfunctional (meth)acrylate because it has low viscosity and excellent compatibility with (A).
  • bifunctional (meth)acrylates include (poly)ethylene glycol di(meth)acrylate, (poly)propylene glycol di(meth)acrylate, and dicyclopentanyl diacrylate.
  • trifunctional (meth)acrylates examples include trimethylolpropane tri(meth)acrylate and pentaerythritol tri(meth)acrylate.
  • tetrafunctional (meth)acrylates examples include ditrimethylolpropane tetra(meth)acrylate, pentaerythritol tetra(meth)acrylate, and diglycerintetra(meth)acrylate.
  • pentafunctional (meth)acrylates examples include dipentaerythritol penta(meth)acrylate.
  • hexafunctional (meth)acrylates examples include dipentaerythritol hexa(meth)acrylate and the like.
  • Polyfunctional (meth)acrylates can be used alone or in combination of two or more types.
  • dipentaerythritol hexaacrylate hereinafter referred to as DPHA is preferable because it has good reactivity and does not easily deteriorate moldability.
  • the blending amount of the crosslinking agent is preferably 30 parts by weight or less, more preferably 25 parts by weight or less, based on 100 parts by weight of (A). By controlling the amount of the crosslinking agent to be 30 parts by weight or less, it is possible to improve the reactivity while ensuring sufficient moldability of the HC resin composition. Further, the blending ratio of the crosslinking agent to the total solid content of the HC resin composition is preferably 20% by weight or less, more preferably 10% by weight or less.
  • the leveling agent has the effect of repairing defects in the coating film before forming the coating film of the HC resin composition.
  • the reasons for repairing defects in the paint film are as follows. Non-uniform surface tension may occur on the surface of the coating film of the HC resin composition.
  • the leveling agent spreads over the coating surface in a thin film to even out the surface tension. As a result, defects in the paint film can be repaired.
  • the leveling agent examples include silicone-based, fluorine-based, fluorine-based silicone, acrylic-based, and the like.
  • the leveling agent has a reactive functional group that can polymerize with the binder resin to form a cured coating. In this case, the leveling agent is less likely to be removed from the cured film due to bleeding or the like over time, and the effect can be maintained over a long period of time.
  • a fluorine-based silicone compound is preferable.
  • the blending amount of the leveling agent is preferably 0.1 to 3% by weight, more preferably 0.3 to 1% by weight, based on the total solid content of the HC resin composition. By setting the amount of the leveling agent within this range, sufficient leveling properties can be ensured during application of the HC resin composition.
  • leveling agents include X-71-1203M (trade name: manufactured by Shin-Etsu Chemical Co., Ltd., acryloyl group-containing fluorine-based silicone compound).
  • PC polycarbonate
  • acrylic base material hereinafter referred to as PC/acrylic composite base material
  • the PC/acrylic composite base material is, for example, a resin laminate having an acrylic resin layer on at least one side of a PC resin layer.
  • the method for laminating the PC resin and the acrylic resin is preferably a coextrusion molding method.
  • the ⁇ E before and after irradiating the PC/acrylic composite substrate with UVB having an intensity of 0.55 W/m 2 at 60°C for 100 hours is preferably 1.0 or less, and 0.8 or less. It is more preferable that it is, and it is especially preferable that it is 0.5 or less.
  • ⁇ E exceeds 1.0 the damage to the decorative layer caused by the transmitted ultraviolet rays increases. In particular, when red or blue, which has poor UV resistance, is used in the decorative layer, discoloration over time tends to increase.
  • the HC resin composition When applying the HC resin composition to a substrate, the HC resin composition may be diluted with a solvent in order to improve coating properties.
  • solvents include alcoholic solvents such as ethanol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, and diacetone alcohol, and ketones such as acetone, methyl ethyl ketone (hereinafter referred to as MEK), methyl isobutyl ketone, and cyclohexanone.
  • solvents include alcoholic solvents such as ethanol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, and diacetone alcohol, and ketones such as acetone, methyl ethyl ketone (hereinafter referred to as MEK), methyl isobutyl ketone, and cyclohexanone.
  • MEK methyl ethyl ketone
  • ester solvents such as ethyl acetate and butyl acetate
  • ether solvents such as propylene glycol monomethyl ether (hereinafter referred to as PGM), diethyl ether and diisopropyl ether
  • hydrocarbon solvents such as cyclohexane and methylcyclohexane.
  • the above-mentioned solvents can be used alone or in combination of two or more.
  • the solid content of the HC resin composition after dilution is, for example, 10 to 70%, but there is no particular specification, and it can be set as appropriate so as to have a viscosity that is easy to apply.
  • a known coating method or a known printing method can be used as a method for applying the HC resin composition.
  • Known coating methods include, for example, spray coating, roll coating, die coating, air knife coating, blade coating, spin coating, reverse coating, gravure coating, wire bar, and the like.
  • known printing methods include gravure printing, screen printing, offset printing, and inkjet printing.
  • the thickness of the applied film is, for example, 1 ⁇ m to 10 ⁇ m when dry, but is not limited thereto.
  • UV irradiation As a light source for ultraviolet irradiation used when curing the coating film of the HC resin composition, low-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, carbon arc lamps, xenon lamps, metal halide lamps, LED lamps, electrodeless ultraviolet lamps, etc. There is.
  • the atmosphere in which ultraviolet rays are irradiated may be air or an inert gas such as nitrogen or argon.
  • the curability of the coating film can be further improved by heating the coating film using a back roll, an IR heater, or the like during the ultraviolet irradiation.
  • Examples of ultraviolet irradiation conditions include an irradiation intensity of 500 mW/cm 2 to 3000 mW/cm 2 and an exposure amount of 50 to 400 mJ/cm 2 , but are not limited thereto.
  • the hard coat film for molding obtained by coating and curing the HC resin composition on a base material preferably has a breaking elongation of 50% or more in an atmosphere of 130°C, and preferably 100% or more. It is more preferable that it be at least 200%, particularly preferably 200% or more. By setting the elongation at break to 50% or more, sufficient moldability can be expected.
  • a decorative layer can be provided on the HC film if necessary.
  • methods for providing the decorative layer include printing, metal vapor deposition, and the like. Further, decoration may be performed using both printing and metal vapor deposition. Further, in order to further improve the adhesion between the injection molded resin and the HC film, an adhesive layer or a primer layer may be provided on the HC film.
  • a protective film may be attached to the HC film to protect the surface coated with the HC resin composition.
  • HC film has abrasion resistance and chemical resistance, high elongation at break, good moldability, and excellent weather resistance. Therefore, HC film is suitable as a material for insert-molded products and out-mold products used outdoors. Examples of insert molded products and out molded products used outdoors include insert molded products and out molded products for automobile exterior applications.
  • Insert molded product and out-mold molded product examples include the following methods. First, an HC film is placed in a mold. At this time, it is arranged so that the surface coated with the HC resin composition faces the inner wall surface of the mold (that is, the surface opposite to the cured layer of the HC resin composition is in contact with the molding resin). If necessary, the HC film is preformed to follow the shape of the mold. Next, the mold is closed, molten molding resin is injected into the cavity, and the resin is solidified to form an insert molded product.
  • Methods for performing the above-mentioned preforming include a method in which the HC film is preheated to a temperature above its softening point, placed in a mold, and vacuum suctioned through suction holes provided in the mold; Examples include a method using a mold and a known forming method such as vacuum forming, pressure forming, press forming, etc. It is also possible to perform molding and integral molding with the injection resin at the same time by using the injection pressure of the molding resin without performing these preliminary moldings.
  • the resin to be injection molded it is possible to use a known resin that can be injection molded.
  • resins to be injection molded include polyethylene resin, polypropylene resin, polystyrene resin, ABS resin, AS resin, acrylic resin, urethane resin, polyester resin, polycarbonate resin, polyphenylene ether resin, polyacetal resin, and polysulfone resin. Examples include resin.
  • the resin for injection molding it can be used alone or in combination of two or more types. When the size is large, such as the body of a car, or when the wall thickness is thin even if the size is small, problems such as warping can be avoided by approximating the shrinkage rate of the injection molded resin after molding to the shrinkage rate of the HC film. can be suppressed.
  • the decorative layer of the HC film can be eliminated. Furthermore, the injection molding resin described above can be colored to fuse the color of the decorative layer and the color of the injection molding resin. In this case, it becomes possible to give the insert molded product a deeper appearance.
  • Insert molded products can be used instead of products whose exterior is colored with paint.
  • products whose exteriors are colored with paint include automobile bodies.
  • By coloring the injection molding resin it is possible to omit external painting with paint in insert molded products. Appearance defects such as citrus skin and pits often occur during exterior painting. If external painting is omitted, appearance defects are less likely to occur in the insert molded product.
  • HC film can also be used for out-mold forming.
  • the HC film may be used for TOM (Threee-Dimensional Overlay Method) molding.
  • TOM molding is a film molding method in which three-dimensional surface decoration is performed on a preformed base material by vacuum/pressure molding in an airtight box.
  • Ureacs A and B were obtained by a method similar to that of Ureacs 1 to 5, but having the same skeleton and different Mw as Ureacs 1 to 5.
  • Ureac C was obtained using polyethylene glycol instead of ethylene glycol by a manufacturing method similar to that of Ureacs 1 to 5.
  • the contents of Ureac A to C were as follows.
  • Ureac A PETA-IPDI-(ethylene glycol-IPDI) n-PETA skeleton, hexafunctional, solid content 50%, Mw 1,800.
  • Ureac B PETA-IPDI-(ethylene glycol-IPDI) n-PETA skeleton, hexafunctional, solid content 50%, Mw 13,000.
  • Ureac C PETA-IPDI-polyethylene glycol-IPDI-PETA skeleton, hexafunctional, solid content 50%, Mw 6,000.
  • (A) is Ureac 1 to 5.
  • (b1) is Tinuvin249 (trade name: manufactured by BASF Japan).
  • (b2) is Tinuvin477 (trade name: manufactured by BASF Japan).
  • (C) is Omnirad 2959 and 127D (trade name: manufactured by IGM Resins).
  • the crosslinking agent is DPHA.
  • the additives are X-71-1203M (trade name: manufactured by Shin-Etsu Chemical Co., Ltd., acryloyl group-containing fluorine-based silicone compound) and BYK-UV3500 (trade name: manufactured by BYK Company, polydimethylsiloxane copolymer compound).
  • X-71-1203M is a leveling agent.
  • HC film for evaluation As a base material, Iupilon film DF02PUL (trade name: manufactured by Mitsubishi Gas Chemical Co., Ltd.) was prepared. The substrate was a PMMA/PC laminate film. The thickness of the base material was 125 ⁇ m.
  • the HC resin composition was applied to the PMMA layer side of the base material to form a layer of the HC resin composition.
  • the dry film thickness of the layer of the HC resin composition was 3 ⁇ m.
  • the layer of HC resin composition was dried in a constant temperature bath at a temperature of 80° C. for 1 minute.
  • the HC resin composition layer was irradiated with ultraviolet rays in a nitrogen atmosphere to obtain an HC film for evaluation.
  • the output of the high pressure mercury lamp was 1300 mW/cm 2 .
  • the cumulative amount of ultraviolet light was 200 mJ.
  • cellophane tape CT-24 (trade name: manufactured by Nichiban Co., Ltd.) was applied to the part where the incision was made, and the cellophane tape was pulled upward.
  • the peeling status of the HC resin composition layer was confirmed.
  • the adhesion of the HC resin composition layer was evaluated according to the following criteria.
  • Among the 100 squares, there is no square in which the layer of the HC resin composition has peeled off.
  • Among 100 squares, there is one or more squares in which the layer of the HC resin composition has peeled off.
  • A is the amount of elongation (mm) of the test piece when the test piece breaks. Since the distance between the chucks is 50 mm, A is the amount of elongation of the test piece per 50 mm.
  • means an even better evaluation result than ⁇ .
  • Elongation at break is 200% or more.
  • The elongation at break is 50% or more and less than 200%.
  • Elongation at break is less than 50%.
  • the HC resin compositions of each example had good evaluation results in all of curability, adhesion, abrasion resistance, chemical resistance, and elongation at break.
  • Comparative Example 1 containing Ureac A with a small Mw had a low elongation at break.
  • Comparative Example 2 containing Ureac B having a large Mw had poor wear resistance.
  • Comparative 3 containing ureac with a polyethylene skeleton had poor chemical resistance.
  • HC resin in Tables 5 and 6 means an HC resin composition.
  • Composition in Tables 5 and 6 means the composition of the base material.
  • Manufacturer in Tables 5 and 6 means the manufacturer of the base material.
  • PMMA/PC in Tables 5 and 6 means a PC/acrylic composite base material.
  • the manufacturing method of HC films S1 to S13 was as follows.
  • the HC resin composition was applied to one side of the base material to form a layer of the HC resin composition.
  • the composition of the base material was a PC/acrylic composite base material
  • the HC resin composition was applied on the PMMA layer side to form a layer of the HC resin composition.
  • the HC resin composition was not applied to the base material.
  • the dry film thickness of the layer of the HC resin composition was 3 ⁇ m.
  • the layer of HC resin composition was dried in a constant temperature bath at a temperature of 80° C. for 1 minute.
  • the HC resin composition layer was irradiated with ultraviolet rays in a nitrogen atmosphere using a high-pressure mercury lamp to obtain an HC film.
  • the output of the high pressure mercury lamp was 1300 mW/cm 2 .
  • the cumulative amount of ultraviolet light was 200 mJ.
  • the color appearance of the base material alone was measured.
  • the base material alone was irradiated with UVB at 60° C. for 1000 hours.
  • the UVB intensity was 0.55 W/ m2 .
  • the color appearance of the base material alone was measured again. The difference between the color appearance of the base material alone before UVB irradiation and the color appearance of the base material alone after UVB irradiation was defined as ⁇ E of the base material alone.
  • ⁇ : ⁇ E of the HC film is less than 1.0.
  • ⁇ : ⁇ E of the HC film exceeds 1.0.
  • Fabric trace test A 50 mm x 50 mm gauze was brought into contact with the coated surface of the HC film under a load of 500 kg/4 cm 2 . The gauze was left under a load at 80° C. for 60 minutes. Next, the gauze was removed from the coated surface, and the coated surface was observed. The results of the cloth trace test were evaluated according to the following criteria.
  • a friction tester FR-IBS manufactured by Suga Test Instruments was used to evaluate the abrasion property.
  • a white cotton cloth for testing (Kanakin No. 3) was attached to a friction element with a diameter of 16 mm. This friction element was brought into contact with the coated surface of the HC film under a load of 1 Kg/cm 2 .
  • the friction element was made to reciprocate 20 times at a speed of 1 reciprocation/1 second. The distance of one round trip was 100 mm. After 20 reciprocations, the coated surface of the HC film was observed, and the abrasion resistance of the HC film was evaluated based on the following criteria.
  • Pencil hardness The HC film was applied under the condition of 500g load using a pencil scratch coating hardness tester (type P) manufactured by Toyo Seiki Seisakusho in accordance with JIS K5600-5-4 (1999 edition). The pencil hardness of the surface was measured. The measurement results of pencil hardness were evaluated based on the following criteria.
  • Pencil hardness is H or higher.
  • Pencil hardness is F or less.
  • S1 to S3 had good evaluation results in all of weather resistance, moldability, cloth trace test, abrasion resistance, and pencil hardness.
  • samples S4 to S6 using PMMA/PC substrates with a ⁇ E of more than 1.0 had poorer weather resistance evaluation results than samples S1 to S3.
  • S7 using a PC base material had inferior evaluation results of weather resistance and pencil hardness compared to S1 to S3.
  • S8 which uses an acrylic resin base material, had poorer cloth trace test and pencil hardness evaluation results than S1 to S3. Furthermore, S9 using a PET base material had inferior evaluation results of weather resistance and moldability compared to S1 to S3.
  • S10 to S11 to which the HC resin composition was not applied had poor evaluation results for wear resistance and pencil hardness. Further, S11 was also inferior in weather resistance evaluation results.
  • S12, in which the HC resin composition was Comparative Example 4 had poor abrasion resistance evaluation results.
  • S13 whose HC resin composition was Comparative Example 5 had poor weather resistance evaluation results.
  • the film surface of the insert-molded product had no defect in appearance due to the citron skin.
  • the painted surface of the painted steel plate had an appearance defect of citrus skin.
  • the function of one component in each of the above embodiments may be shared among multiple components, or the function of multiple components may be performed by one component. Further, a part of the configuration of each of the above embodiments may be omitted. Further, at least a part of the configuration of each of the above embodiments may be added to, replaced with, etc. in the configuration of other embodiments.
  • the present disclosure can also be realized in various forms, such as products containing the HC resin composition as a component and methods for producing the HC resin composition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Transportation (AREA)
  • Combustion & Propulsion (AREA)
  • Paints Or Removers (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Laminated Bodies (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Polymerisation Methods In General (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

This hard coat resin composition for an automotive exterior molding film comprises: a urethane acrylate (A) having a structure in which a pentaerythritol triacrylate is further reacted with a diisocyanate obtained by reacting an ethylene glycol and an isophorone diisocyanate; a light stabilizer (B); a photopolymerization initiator (C); and a fluorine-based silicone compound having a reactive functional group. The weight-average molecular weight of (A) is 3,500 to 12,000.

Description

自動車外装の成形用フィルム用ハードコート樹脂組成物、成形用ハードコートフィルム、インサート成形品の製造方法、インサート成形品、及びアウトモールド成形品Hard coat resin composition for automotive exterior molding film, hard coat film for molding, method for producing insert molded products, insert molded products, and out-mold molded products 関連出願の相互参照Cross-reference of related applications
 本国際出願は、2022年7月11日に日本国特許庁に出願された日本国特許出願第2022-110973号に基づく優先権を主張するものであり、日本国特許出願第2022-110973号の全内容を本国際出願に参照により援用する。 This international application claims priority based on Japanese Patent Application No. 2022-110973 filed with the Japan Patent Office on July 11, 2022, and is based on Japanese Patent Application No. 2022-110973. The entire contents are incorporated by reference into this international application.
 本開示は、自動車外装の成形用フィルム用ハードコート樹脂組成物、成形用ハードコートフィルム、インサート成形品の製造方法、インサート成形品、及びアウトモールド成形品に関する。 The present disclosure relates to a hard coat resin composition for a molding film for automobile exteriors, a hard coat film for molding, a method for producing an insert molded product, an insert molded product, and an out-mold molded product.
 近年、自動車の内外装部品、情報端末の外装部品、家電用部品等には、軽量化を目的として、樹脂成形体の使用が進んでいる。樹脂成形体の表面の装飾又は加飾には、様々な手法が用いられている。樹脂成形体の表面を装飾又は加飾する方法の中でも、フィルムを用いて樹脂成形体の最表面を加飾する方法は、スプレー塗装のような塗料を用いる方法と比較して、意匠の自由度を高めることができ、3次元的な凹凸形状を有する表面に対しても加飾が容易であり、また、生産性にも優れるため、幅広く採用されている。 In recent years, resin molded bodies have been increasingly used for the interior and exterior parts of automobiles, exterior parts of information terminals, parts for home appliances, etc. for the purpose of reducing weight. Various methods are used to decorate or decorate the surface of a resin molded body. Among the methods of decorating or decorating the surface of a resin molded object, the method of decorating the outermost surface of the resin molded object using a film has a higher degree of freedom in design than methods that use paint such as spray painting. It has been widely adopted because it can increase the surface area, it is easy to decorate surfaces with three-dimensional unevenness, and it has excellent productivity.
 フィルムを用いた成形方法として、インサート成形が良く知られている。インサート成形では、フィルム表面に絵柄を印刷後、加熱により軟化させた状態で3次元成形を行い、その後、金型にフィルムをセットして射出成型を行う。特に、自動車のインパネ、コンソール等の内装部品については、従来主流であった水圧転写が、排水の問題やVOC(揮発性有機化合物)の問題で敬遠される傾向があるため、その代替え工法としてインサート成形が導入されている。さらに、最近では、フロントグリルやルーフ等の外装用途についても、フィルムを用いた成形方法の導入が進んでいる。その理由は、EV化のために部品の軽量化が一段と求められたことで部品の樹脂化が進むとともに、環境対応の点で樹脂部品への塗装が忌避され始めたためである。 Insert molding is a well-known molding method using film. In insert molding, after printing a pattern on the film surface, three-dimensional molding is performed while the film is softened by heating, and then the film is set in a mold and injection molding is performed. In particular, for interior parts such as automobile instrument panels and consoles, the conventionally mainstream hydraulic transfer tends to be avoided due to problems with drainage and VOC (volatile organic compounds), so inserts are being used as an alternative method. Molding has been introduced. Furthermore, recently, molding methods using films have been increasingly introduced for exterior applications such as front grilles and roofs. The reason for this is that the use of resin parts has increased due to the demand for lighter parts for EVs, and the use of paint on resin parts has begun to be avoided for environmental reasons.
 インサート成形で用いる成形フィルムに、表面の硬度や耐擦傷性を向上させる目的で、ハードコート樹脂層を設ける場合がある。ハードコート樹脂層が設けられた成形フィルムは成形用ハードコートフィルムである。成形用ハードコートフィルムにおいて、ハードコート樹脂層を硬くすると、立体形状に加工する際に、曲面においてハードコート樹脂層にマイクロクラックが入り、成形がし難くなるという問題があった。 A hard coat resin layer is sometimes provided on the molded film used in insert molding for the purpose of improving surface hardness and scratch resistance. The molded film provided with the hard coat resin layer is a hard coat film for molding. In a hard coat film for molding, if the hard coat resin layer is hardened, there is a problem in that microcracks occur in the hard coat resin layer on curved surfaces when processing it into a three-dimensional shape, making it difficult to mold.
 出願人は、インサート成形用のハードコート樹脂として、トリアジン環含有(メタ)アクリレートプレポリマーと、平均一次粒子径が80~500nmの有機微粒子とを含むハードコート剤を開示している(特許文献1参照)。このハードコート剤は、膜厚が1~10μmの場合に、十分な柔軟性と表面物性と両立することができる。 The applicant has disclosed, as a hard coat resin for insert molding, a hard coat agent containing a triazine ring-containing (meth)acrylate prepolymer and organic fine particles with an average primary particle size of 80 to 500 nm (Patent Document 1) reference). This hard coating agent can have both sufficient flexibility and surface properties when the film thickness is 1 to 10 μm.
 自動車の外装用途の場合、成形用ハードコートフィルムは、その用途に応じた特性を備えることが望ましい。自動車の外装用途に応じた特性として、例えば、大きなサイズでの安定した成形性、耐薬品性、紫外線や気温の寒暖差に耐えうる十分な耐候性、及び耐久性等のうちの1以上が挙げられる。 In the case of automotive exterior applications, it is desirable that the hard coat film for molding has properties appropriate to the application. Characteristics suitable for automotive exterior use include, for example, one or more of the following: stable moldability in large sizes, chemical resistance, sufficient weather resistance to withstand ultraviolet rays and temperature differences, and durability. It will be done.
特許第4848200号公報Patent No. 4848200
 本開示の1つの局面では、自動車の外装用途に応じた特性を備える自動車外装の成形用フィルム用ハードコート樹脂組成物、成形用ハードコートフィルム、インサート成形品の製造方法、インサート成形品、及びアウトモールド成形品を提供することが好ましい。 In one aspect of the present disclosure, there is provided a hard coat resin composition for a film for molding an automotive exterior, a hard coat film for molding, a method for manufacturing an insert molded product, an insert molded product, and an insert molded product having characteristics suitable for automotive exterior applications. Preferably, a molded article is provided.
 本開示の1つの局面は、エチレングリコールとイソホロンジイソシアネートを反応させたジイソシアネートに、ペンタエリスリトールトリアクリレートをさらに反応させた構造を有するウレタンアクリレート(A)と、光安定剤(B)と、光重合開始剤(C)と、反応性官能基を有するフッ素系シリコーン化合物と、を含み、前記(A)の重量平均分子量が3,500~12,000である自動車外装の成形用フィルム用ハードコート樹脂組成物である。 One aspect of the present disclosure provides a urethane acrylate (A) having a structure in which pentaerythritol triacrylate is further reacted with a diisocyanate obtained by reacting ethylene glycol and isophorone diisocyanate, a light stabilizer (B), and a photopolymerization initiator. A hard coat resin composition for a molding film for automobile exteriors, which comprises an agent (C) and a fluorine-based silicone compound having a reactive functional group, and wherein the weight average molecular weight of the above (A) is 3,500 to 12,000. It is a thing.
 本開示の1つの局面である自動車外装の成形用フィルム用ハードコート樹脂組成物は、自動車の外装用途に応じた特性を備える。 A hard coat resin composition for a molding film for automobile exteriors, which is one aspect of the present disclosure, has characteristics suitable for automobile exterior uses.
 本開示の別の局面は、基材と、前記基材上の硬化層とを有する成形用ハードコートフィルムを、金型を用いて賦形し、前記硬化層とは反対側から溶融樹脂を射出して樹脂成形品を形成するインサート成形品の製造方法である。 Another aspect of the present disclosure is to shape a hard coat film for molding having a base material and a cured layer on the base material using a mold, and inject molten resin from the side opposite to the cured layer. This is a method for manufacturing an insert molded product, in which a resin molded product is formed.
 前記硬化層は、エチレングリコールとイソホロンジイソシアネートを反応させたジイソシアネートに、ペンタエリスリトールトリアクリレートをさらに反応させた構造を有するウレタンアクリレート(A)と、光安定剤(B)と、光重合開始剤(C)と、反応性官能基を有するフッ素系シリコーン化合物と、を含み、前記(A)の重量平均分子量が3,500~12,000である樹脂組成物の硬化物である。 The cured layer contains urethane acrylate (A) having a structure in which pentaerythritol triacrylate is further reacted with a diisocyanate obtained by reacting ethylene glycol and isophorone diisocyanate, a light stabilizer (B), and a photopolymerization initiator (C). ) and a fluorine-based silicone compound having a reactive functional group, and the resin composition of (A) has a weight average molecular weight of 3,500 to 12,000.
 本開示の別の局面であるインサート成形品の製造方法によれば、自動車の外装用途に応じた特性を備えるインサート成形品を製造できる。 According to the method for manufacturing an insert molded product, which is another aspect of the present disclosure, it is possible to manufacture an insert molded product with characteristics suitable for automotive exterior applications.
 本開示の例示的な実施形態について説明する。 An exemplary embodiment of the present disclosure will be described.
 1.自動車外装の成形用フィルム用ハードコート樹脂組成物
 本開示の自動車外装の成形用フィルム用ハードコート樹脂組成物(以下HC樹脂組成物とする)は、エチレングリコールとイソホロンジイソシアネート(以下IPDIとする)を反応させたジイソシアネートに、ペンタエリスリトールトリアクリレート(以下PETAとする)をさらに反応させた構造を有するウレタンアクリレート(A)と、光安定剤(B)と、光重合開始剤(C)と、反応性官能基を有するフッ素系シリコーン化合物と、を含む。
1. Hard coat resin composition for molding film for automobile exterior The hard coat resin composition for molding film for automobile exterior (hereinafter referred to as HC resin composition) of the present disclosure contains ethylene glycol and isophorone diisocyanate (hereinafter referred to as IPDI). A urethane acrylate (A) having a structure in which pentaerythritol triacrylate (hereinafter referred to as PETA) was further reacted with the reacted diisocyanate, a light stabilizer (B), a photopolymerization initiator (C), and a reactive A fluorine-based silicone compound having a functional group.
 なお、本明細書において(メタ)アクリレートとは、アクリレートとメタクリレートとの双方を意味する。HC樹脂組成物は、成形用フィルムのハードコート層を形成するために用いられる。成形用フィルムは、自動車の外装品の成形に用いられる。 Note that (meth)acrylate in this specification means both acrylate and methacrylate. The HC resin composition is used to form a hard coat layer of a moldable film. Molding films are used for molding exterior parts of automobiles.
 (A)の合成で使用するIPDIは脂環式ジイソシアネートである。IPDIは、黄変が少なく、耐候安定性に優れ、剛性が高く、HC樹脂組成物の硬化物の硬度を上げることができる。IPDIを、炭素鎖が非常に短いエチレングリコールと反応させることで、分子内のウレタン結合濃度を高くすることが可能となり、耐薬品性に優れた剛性の高い直鎖構造の主骨格を形成できる。エチレングリコールの代わりにポリエチレングリコールを用いると、ウレタン結合の濃度が低くなり、耐薬品性が低下する傾向がある。 IPDI used in the synthesis of (A) is an alicyclic diisocyanate. IPDI has little yellowing, excellent weather resistance stability, high rigidity, and can increase the hardness of the cured product of the HC resin composition. By reacting IPDI with ethylene glycol, which has a very short carbon chain, it is possible to increase the concentration of urethane bonds within the molecule, forming a main skeleton with a highly rigid linear structure with excellent chemical resistance. When polyethylene glycol is used instead of ethylene glycol, the concentration of urethane bonds tends to be low, leading to a decrease in chemical resistance.
 (A)の合成方法は特に制限されず、公知の合成方法を用いることができる。(A)を合成するときの反応は、無溶媒下で行っても良いが、(A)の分子量が大きくなるにつれて攪拌が困難となる場合があるため、ブタノン等のケトン類、キシレン等の芳香族不活性溶媒等を用いて行っても良い。 The method for synthesizing (A) is not particularly limited, and any known synthesis method can be used. The reaction when synthesizing (A) may be carried out without a solvent, but as the molecular weight of (A) increases, stirring may become difficult. The reaction may be carried out using a group inert solvent or the like.
 また、エチレングリコール及びPETAの水酸基と、イソシアネート基との反応には、触媒を用いることが好ましい。触媒として、例えば、ジブチルスズジラウレート等の錫系、ナフテン酸コバルト等の金属アルコキシド系が挙げられる。反応温度は適宜設定可能であるが、40~120℃が好ましく、60~100℃がさらに好ましい。 Furthermore, it is preferable to use a catalyst for the reaction between the hydroxyl groups of ethylene glycol and PETA and the isocyanate groups. Examples of the catalyst include tin-based catalysts such as dibutyltin dilaurate, and metal alkoxide-based catalysts such as cobalt naphthenate. The reaction temperature can be set as appropriate, but is preferably 40 to 120°C, more preferably 60 to 100°C.
 (A)の重量平均分子量(以下Mwとする)は、3,500~12,000であり、3,500~11,000が好ましく、3,500~10,000がさらに好ましく、3,500~9,800が特に好ましい。 The weight average molecular weight (hereinafter referred to as Mw) of (A) is 3,500 to 12,000, preferably 3,500 to 11,000, more preferably 3,500 to 10,000, and 3,500 to 12,000. 9,800 is particularly preferred.
 (A)のMwが3,500未満の場合は、HC樹脂組成物の破断伸度が低くなるため、十分な成形性を確保することが難しくなる。(A)のMwが12,000を超える場合は、HC樹脂組成物の耐摩耗性が低下し、また、HC樹脂組成物の粘度を作業性の良い粘度に調整し難くなる。(A)のMwは、反応させるエチレングリコールとIPDIとのモル比により調整が可能である。 If the Mw of (A) is less than 3,500, the elongation at break of the HC resin composition will be low, making it difficult to ensure sufficient moldability. When the Mw of (A) exceeds 12,000, the abrasion resistance of the HC resin composition decreases, and it becomes difficult to adjust the viscosity of the HC resin composition to a viscosity that provides good workability. The Mw of (A) can be adjusted by adjusting the molar ratio of ethylene glycol and IPDI to be reacted.
 エチレングリコールに対するIPDIのモル比を1:1に近づけると、(A)のMwは大きくなる傾向がある。なお、(A)のMwは、ゲル浸透クロマトグラフィーにより、標準ポリスチレン換算の分子量を測定し、算出した。(A)のMwの測定には、スチレンジビニルベンゼン基材の充填剤を用いたカラムと、テトラハイドロフラン溶離液とを用いた。 When the molar ratio of IPDI to ethylene glycol approaches 1:1, the Mw of (A) tends to increase. The Mw of (A) was calculated by measuring the molecular weight in terms of standard polystyrene by gel permeation chromatography. To measure the Mw of (A), a column using a styrene divinylbenzene-based packing material and a tetrahydrofuran eluent were used.
 (A)の配合量は、HC樹脂組成物の固形分全量に対し、55~95重量%が好ましく、65~92重量%がさらに好ましく、70~90重量%が特に好ましい。(A)の配合量を55重量%以上とすることで、HC樹脂組成物の十分な破断強度と耐薬品性とを確保することができる。(A)の配合量を95重量%以下とすることで、HC樹脂組成物の十分な耐候性を確保することができる。 The blending amount of (A) is preferably 55 to 95% by weight, more preferably 65 to 92% by weight, particularly preferably 70 to 90% by weight, based on the total solid content of the HC resin composition. By setting the blending amount of (A) to 55% by weight or more, sufficient breaking strength and chemical resistance of the HC resin composition can be ensured. By setting the blending amount of (A) to 95% by weight or less, sufficient weather resistance of the HC resin composition can be ensured.
 本開示で使用される光安定剤(B)は、屋外で使用した場合の紫外線暴露や輻射熱による、HC樹脂組成物の硬化膜の劣化を抑制するために配合される。例えば、光安定剤(B)として、(b1)、(b2)等が挙げられる。(b1)は、紫外線により光劣化したポリマーから生ずるアルキルラジカルやパーオキシラジカルを効率よくトラップするラジカル捕捉剤である。(b2)は、吸収した紫外線のエネルギーを熱エネルギー等に変換することにより、ポリマーの分解を抑制する紫外線吸収剤である。(b1)と(b2)とを併用することが好ましい。 The light stabilizer (B) used in the present disclosure is blended to suppress deterioration of the cured film of the HC resin composition due to exposure to ultraviolet rays or radiant heat when used outdoors. For example, examples of the light stabilizer (B) include (b1) and (b2). (b1) is a radical scavenger that efficiently traps alkyl radicals and peroxy radicals generated from polymers photodegraded by ultraviolet rays. (b2) is an ultraviolet absorber that suppresses polymer decomposition by converting absorbed ultraviolet energy into thermal energy or the like. It is preferable to use (b1) and (b2) together.
 本開示で使用されるラジカル捕捉剤(b1)としては、例えば、ヒンダードアミン系(以下HALS系とする)、ヒンダードフェノール系、芳香族アミン系等が挙げられる。(b1)は、単独で、あるいは2種類以上を組み合わせて使用することができる。これらの中では、低濃度でもラジカル補足効率が高いHALS系が好ましい。 Examples of the radical scavenger (b1) used in the present disclosure include hindered amine type (hereinafter referred to as HALS type), hindered phenol type, aromatic amine type, and the like. (b1) can be used alone or in combination of two or more types. Among these, HALS systems are preferred because they have high radical scavenging efficiency even at low concentrations.
 (b1)の配合量は、HC樹脂組成物の固形分全量に対し1~10重量%が好ましく、2~8重量%がさらに好ましく、3~6重量%が特に好ましい。(b1)の配合量をこの範囲とすることで、HC樹脂組成物の十分な光安定性を確保することが出来る。HALS系の市販品としては、Tinuvin123及びTinuvin249(商品名:BASFジャパン社製)等が挙げられる。 The blending amount of (b1) is preferably 1 to 10% by weight, more preferably 2 to 8% by weight, and particularly preferably 3 to 6% by weight based on the total solid content of the HC resin composition. By setting the blending amount of (b1) within this range, sufficient photostability of the HC resin composition can be ensured. Examples of HALS-based commercial products include Tinuvin 123 and Tinuvin 249 (trade name: manufactured by BASF Japan).
 本開示で使用される紫外線吸収剤(b2)は、エネルギーが高い有害な紫外線領域に吸収帯域を持つラジカル連鎖開始阻止剤である。(b2)と(b1)との併用により、HC樹脂組成物の耐候性をより向上させ、耐候性をより安定させることが可能となる。(b2)として、例えば、ベンゾトリアゾール系、トリアジン系、ベンゾフェノン系等が挙げられる。(b2)は、単独で、あるいは2種類以上を組み合わせて使用することができる。これらの中では紫外線の長波長部を強く吸収することが可能なヒドロキシフェニルトリアジン系が好ましい。 The ultraviolet absorber (b2) used in the present disclosure is a radical chain initiation inhibitor that has an absorption band in the harmful ultraviolet region with high energy. By using (b2) and (b1) in combination, it becomes possible to further improve the weather resistance of the HC resin composition and to make the weather resistance more stable. Examples of (b2) include benzotriazole, triazine, and benzophenone. (b2) can be used alone or in combination of two or more types. Among these, hydroxyphenyltriazine-based materials are preferred because they can strongly absorb long-wavelength ultraviolet rays.
 (b2)の配合量は、HC樹脂組成物の固形分全量に対し0.3~5重量%が好ましく、0.5~3.0重量%がさらに好ましく、0.6~1.5重量%が特に好ましい。(b2)の配合量をこの範囲とすることで、HC樹脂組成物の十分な紫外線吸収特性を確保することが出来る。また、(b1)と(b2)を合計した(B)の配合量は、HC樹脂組成物の固形分全量に対し1.0~12重量%が好ましく、1.5~10重量%がさらに好ましく、4.0~8.0重量%が特に好ましい。(b1)と(b2)を合計した(B)の配合量を1.0重量%以上とすることで、HC樹脂組成物の耐候性の向上が期待できる。(b1)と(b2)を合計した(B)の配合量を12重量%以下とすることで、(B)が過剰配合とならず、HC樹脂組成物と基材との十分な密着性を確保できる。(b2)の市販品として、Tinuvin460及び477(商品名:BASFジャパン社製)等が挙げられる。 The blending amount of (b2) is preferably 0.3 to 5% by weight, more preferably 0.5 to 3.0% by weight, and more preferably 0.6 to 1.5% by weight based on the total solid content of the HC resin composition. is particularly preferred. By setting the blending amount of (b2) within this range, sufficient ultraviolet absorption characteristics of the HC resin composition can be ensured. Further, the blending amount of (B), which is the sum of (b1) and (b2), is preferably 1.0 to 12% by weight, more preferably 1.5 to 10% by weight based on the total solid content of the HC resin composition. , 4.0 to 8.0% by weight is particularly preferred. By setting the blending amount of (B), which is the sum of (b1) and (b2), to 1.0% by weight or more, it can be expected that the weather resistance of the HC resin composition will be improved. By setting the blending amount of (B), which is the sum of (b1) and (b2), to 12% by weight or less, (B) will not be excessively blended and will maintain sufficient adhesion between the HC resin composition and the base material. Can be secured. Commercially available products of (b2) include Tinuvin 460 and 477 (trade name: manufactured by BASF Japan).
 本開示で使用される光重合開始剤(C)は、紫外線や電子線等の照射でラジカルを生じる。生じたラジカルは、重合反応のきっかけとなる。(C)として、例えば、ベンジルケタール系、アセトフェノン系、フォスフィンオキサイド系等の汎用の光重合開始剤が使用できる。 The photopolymerization initiator (C) used in the present disclosure generates radicals when irradiated with ultraviolet rays, electron beams, etc. The generated radicals trigger a polymerization reaction. As (C), for example, general-purpose photopolymerization initiators such as benzyl ketal, acetophenone, and phosphine oxide can be used.
 重合開始剤の光吸収波長を任意に選択することによって、紫外線領域から可視光領域に至る広い波長範囲にわたって硬化性を付与することができる。具体的には、ベンジルケタール系として、2.2-ジメトキシ-1.2-ジフェニルエタン-1-オンがある。α-ヒドロキシアセトフェノン系として、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン及び2-ヒドロキシ-1-{4-[4‐(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]-フェニル}-2-メチル-プロパン-1-オンがある。α-アミノアセトフェノン系として、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オンがある。アシルフォスフィンオキサイド系として、2.4.6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド及びビス(2.4.6‐トリメチルベンゾイル)‐フェニルフォスフィンオキサイド等がある。(C)は、単独で、又は2種以上を組み合わせて使用できる。 By arbitrarily selecting the light absorption wavelength of the polymerization initiator, curability can be imparted over a wide wavelength range from the ultraviolet region to the visible light region. Specifically, as a benzyl ketal type, there is 2,2-dimethoxy-1,2-diphenylethan-1-one. As α-hydroxyacetophenone type, 1-[4-(2-hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propan-1-one and 2-hydroxy-1-{4-[4- (2-hydroxy-2-methyl-propionyl)-benzyl]-phenyl}-2-methyl-propan-1-one. As an α-aminoacetophenone type, there is 2-methyl-1-(4-methylthiophenyl)-2-morpholinopropan-1-one. Examples of acylphosphine oxides include 2.4.6-trimethylbenzoyl-diphenyl-phosphine oxide and bis(2.4.6-trimethylbenzoyl)-phenylphosphine oxide. (C) can be used alone or in combination of two or more.
 これらの中では、黄変しにくいα-ヒドロキシアセトフェノン系を含むことが好ましい。α-ヒドロキシアセトフェノン系の市販品として、Omnirad127D、184及び2959(商品名:IGM Resins社製)等が挙げられる。ラジカル重合性分100重量部に対する(C)の配合量は、2~12重量部が好ましく、3~10重量部がさらに好ましい。 Among these, it is preferable to include α-hydroxyacetophenone, which is resistant to yellowing. Examples of commercially available α-hydroxyacetophenone products include Omnirad 127D, 184, and 2959 (trade name: IGM manufactured by Resins). The amount of (C) to be blended per 100 parts by weight of the radically polymerizable component is preferably 2 to 12 parts by weight, more preferably 3 to 10 parts by weight.
 本開示のHC樹脂組成物には、性能を損なわない範囲で必要に応じて架橋剤、レベリング剤、密着促進剤、酸化防止剤、ブルーイング剤、顔料、消泡剤、増粘剤、沈澱防止剤、帯電防止剤、防曇剤、抗菌剤、ワックス、つや消し剤、親水剤、撥水剤、無機フィラー、有機微粒子等を添加してもよい。 The HC resin composition of the present disclosure may contain a crosslinking agent, a leveling agent, an adhesion promoter, an antioxidant, a bluing agent, a pigment, an antifoaming agent, a thickener, and an anti-settling agent as necessary within a range that does not impair performance. agent, antistatic agent, antifogging agent, antibacterial agent, wax, matting agent, hydrophilic agent, water repellent, inorganic filler, organic fine particles, etc. may be added.
 架橋剤として、低粘度であり、(A)との相溶性に優れる点で、多官能(メタ)アクリレートを用いることが好ましい。例えば、2官能の(メタ)アクリレートとして、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、ジシクロペンタニルジアクリレートが挙げられる。 As the crosslinking agent, it is preferable to use polyfunctional (meth)acrylate because it has low viscosity and excellent compatibility with (A). For example, bifunctional (meth)acrylates include (poly)ethylene glycol di(meth)acrylate, (poly)propylene glycol di(meth)acrylate, and dicyclopentanyl diacrylate.
 3官能の(メタ)アクリレートとして、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレートが挙げられる。 Examples of trifunctional (meth)acrylates include trimethylolpropane tri(meth)acrylate and pentaerythritol tri(meth)acrylate.
 4官能の(メタ)アクリレートとして、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスルトールテトラ(メタ)アクリレート、ジグリセリンテトラ(メタ)アクリレートが挙げられる。 Examples of tetrafunctional (meth)acrylates include ditrimethylolpropane tetra(meth)acrylate, pentaerythritol tetra(meth)acrylate, and diglycerintetra(meth)acrylate.
 5官能の(メタ)アクリレートとして、ジペンタエリスリトールペンタ(メタ)アクリレートが挙げられる。 Examples of pentafunctional (meth)acrylates include dipentaerythritol penta(meth)acrylate.
 6官能の(メタ)アクリレートとして、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。多官能(メタ)アクリレートは、単独で、あるいは2種類以上を組み合わせて使用することができる。これらの中では、反応性が良好で成形性を低下させにくい点で、ジペンタエリスリトールヘキサアクリレート(以下DPHAとする)が好ましい。 Examples of hexafunctional (meth)acrylates include dipentaerythritol hexa(meth)acrylate and the like. Polyfunctional (meth)acrylates can be used alone or in combination of two or more types. Among these, dipentaerythritol hexaacrylate (hereinafter referred to as DPHA) is preferable because it has good reactivity and does not easily deteriorate moldability.
 架橋剤の配合量は、(A)100重量部に対し30重量部以下が好ましく、25重量部以下がさらに好ましい。架橋剤の配合量を30重量部以下とすることで、HC樹脂組成物の十分な成形性を確保しつつ反応性を向上させることが出来る。また、HC樹脂組成物の固形分全量に対する架橋剤の配合比率は、20重量%以下が好ましく、10重量%以下がさらに好ましい。 The blending amount of the crosslinking agent is preferably 30 parts by weight or less, more preferably 25 parts by weight or less, based on 100 parts by weight of (A). By controlling the amount of the crosslinking agent to be 30 parts by weight or less, it is possible to improve the reactivity while ensuring sufficient moldability of the HC resin composition. Further, the blending ratio of the crosslinking agent to the total solid content of the HC resin composition is preferably 20% by weight or less, more preferably 10% by weight or less.
 レベリング剤は、HC樹脂組成物の塗膜形成前に、塗膜の欠陥を修復させる効果がある。塗膜の欠陥を修復する理由は以下のとおりである。HC樹脂組成物の塗膜表面に、表面張力の不均一が生じることがある。レベリング剤が塗膜表面に薄い膜状に広がることで表面張力を均一化させる。その結果、塗膜の欠陥を修復できる。 The leveling agent has the effect of repairing defects in the coating film before forming the coating film of the HC resin composition. The reasons for repairing defects in the paint film are as follows. Non-uniform surface tension may occur on the surface of the coating film of the HC resin composition. The leveling agent spreads over the coating surface in a thin film to even out the surface tension. As a result, defects in the paint film can be repaired.
 レベリング剤として、例えば、シリコーン系、フッ素系、フッ素系シリコーン、アクリル系等が挙げられる。レベリング剤は、バインダー樹脂と重合して硬化塗膜を形成できる反応性官能基を有することが好ましい。この場合、レベリング剤は、硬化後の皮膜からブリード等により経時的に欠落することが生じ難く、効果を長期的に持続できる。バインダー樹脂と重合して硬化塗膜を形成できる反応性官能基を有するレベリング剤として、フッ素系シリコーン化合物が好ましい。 Examples of the leveling agent include silicone-based, fluorine-based, fluorine-based silicone, acrylic-based, and the like. Preferably, the leveling agent has a reactive functional group that can polymerize with the binder resin to form a cured coating. In this case, the leveling agent is less likely to be removed from the cured film due to bleeding or the like over time, and the effect can be maintained over a long period of time. As the leveling agent having a reactive functional group capable of polymerizing with the binder resin to form a cured coating film, a fluorine-based silicone compound is preferable.
 レベリング剤の配合量は、HC樹脂組成物の固形分全量に対し、0.1~3重量%が好ましく、0.3~1重量%がさらに好ましい。レベリング剤の配合量をこの範囲とすることで、HC樹脂組成物の塗布時に十分なレベリング性を確保することができる。レベリング剤の市販品として、X-71-1203M(商品名:信越化学工業社製、アクリロイル基含有フッ素系シリコーン化合物)等が挙げられる。 The blending amount of the leveling agent is preferably 0.1 to 3% by weight, more preferably 0.3 to 1% by weight, based on the total solid content of the HC resin composition. By setting the amount of the leveling agent within this range, sufficient leveling properties can be ensured during application of the HC resin composition. Examples of commercially available leveling agents include X-71-1203M (trade name: manufactured by Shin-Etsu Chemical Co., Ltd., acryloyl group-containing fluorine-based silicone compound).
 2.成形用ハードコートフィルム
 HC樹脂組成物が塗布される基材として、ポリカーボネート(以下PCとする)基材と、アクリル基材との複合基材(以下PC/アクリル複合基材とする)が好ましい。PCは、優れた耐衝撃性と、高い耐熱性とを有する。アクリル基材は、高い透明性と、高い硬度とを有する。
2. Hard Coat Film for Molding As the base material to which the HC resin composition is applied, a composite base material of a polycarbonate (hereinafter referred to as PC) base material and an acrylic base material (hereinafter referred to as PC/acrylic composite base material) is preferable. PC has excellent impact resistance and high heat resistance. Acrylic base materials have high transparency and high hardness.
 ここで、PC/アクリル複合基材は、例えば、PC系樹脂層の少なくとも一方の面にアクリル系樹脂層を有する樹脂積層体である。PC系樹脂とアクリル系樹脂とを積層する方法は、共押出成形法であることが好ましい。 Here, the PC/acrylic composite base material is, for example, a resin laminate having an acrylic resin layer on at least one side of a PC resin layer. The method for laminating the PC resin and the acrylic resin is preferably a coextrusion molding method.
 PC/アクリル複合基材に対し、60℃の下で強度が0.55W/mであるUVBを100時間照射する前後でのΔEは、1.0以下であることが好ましく、0.8以下であることがさらに好ましく、0.5以下であることが特に好ましい。ΔEが1.0を超える場合は、透過した紫外線による加飾層へのダメージが大きくなる。特に、加飾層で耐UV性が劣る赤や青色を用いている場合は、経時的な変色が大きくなり易い。 The ΔE before and after irradiating the PC/acrylic composite substrate with UVB having an intensity of 0.55 W/m 2 at 60°C for 100 hours is preferably 1.0 or less, and 0.8 or less. It is more preferable that it is, and it is especially preferable that it is 0.5 or less. When ΔE exceeds 1.0, the damage to the decorative layer caused by the transmitted ultraviolet rays increases. In particular, when red or blue, which has poor UV resistance, is used in the decorative layer, discoloration over time tends to increase.
 HC樹脂組成物を基材に塗布する際には、塗布特性を向上させるためHC樹脂組成物を溶剤で希釈してもよい。溶剤として、例えば、エタノール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール、ジアセトンアルコール等のアルコール系溶媒、アセトン、メチルエチルケトン(以下MEKとする)、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤、酢酸エチル、酢酸ブチル等のエステル系溶媒、プロピレングリコールモノメチルエーテル(以下PGMとする)、ジエチルエーテル、ジイソプロピルエーテル等のエーテル系溶媒、シクロヘキサン、メチルシクロヘキサン等の炭化水素系溶媒等が挙げられる。 When applying the HC resin composition to a substrate, the HC resin composition may be diluted with a solvent in order to improve coating properties. Examples of solvents include alcoholic solvents such as ethanol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, and diacetone alcohol, and ketones such as acetone, methyl ethyl ketone (hereinafter referred to as MEK), methyl isobutyl ketone, and cyclohexanone. Examples include ester solvents such as ethyl acetate and butyl acetate, ether solvents such as propylene glycol monomethyl ether (hereinafter referred to as PGM), diethyl ether and diisopropyl ether, and hydrocarbon solvents such as cyclohexane and methylcyclohexane. .
 溶剤として、上述した溶剤を、単独で、あるいは2種類以上を組み合わせて使用できる。溶剤で希釈する場合、希釈後のHC樹脂組成物における固形分は、例えば、10~70%が例示されるが、特に指定は無く、塗布しやすい粘度となるように適宜設定可能である。 As the solvent, the above-mentioned solvents can be used alone or in combination of two or more. When diluting with a solvent, the solid content of the HC resin composition after dilution is, for example, 10 to 70%, but there is no particular specification, and it can be set as appropriate so as to have a viscosity that is easy to apply.
 HC樹脂組成物を塗布する方法は、特に制限はない。HC樹脂組成物を塗布する方法として、公知の塗布方法、又は公知の印刷方法を使用できる。公知の塗布方法として、例えば、スプレーコート、ロールコート、ダイコート、エアナイフコート、ブレードコート、スピンコート、リバースコート、グラビアコート、ワイヤーバー等が挙げられる。公知の印刷方法として、例えば、グラビア印刷、スクリーン印刷、オフセット印刷、インクジェット印刷等が挙げられる。塗布する膜厚は、乾燥時で1μm~10μmが例示できるが、これに限定されるものではない。 There are no particular restrictions on the method of applying the HC resin composition. As a method for applying the HC resin composition, a known coating method or a known printing method can be used. Known coating methods include, for example, spray coating, roll coating, die coating, air knife coating, blade coating, spin coating, reverse coating, gravure coating, wire bar, and the like. Examples of known printing methods include gravure printing, screen printing, offset printing, and inkjet printing. The thickness of the applied film is, for example, 1 μm to 10 μm when dry, but is not limited thereto.
 HC樹脂組成物の塗膜を硬化させる際に用いる紫外線照射の光源として、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、カーボンアーク灯、キセノンランプ、メタルハライドランプ、LEDランプ、無電極紫外線ランプ等がある。紫外線を照射する雰囲気は空気中でもよいし、窒素、アルゴン等の不活性ガス中でもよい。また紫外線照射時に、バックロールの加温や、IRヒーター等により塗膜を加熱することで、塗膜の硬化性を一層向上させることができる。紫外線の照射条件として、照射強度500mW/cm~3000mW/cm、露光量50~400mJ/cmが例示されるが、これに限定されるものではない。 As a light source for ultraviolet irradiation used when curing the coating film of the HC resin composition, low-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, carbon arc lamps, xenon lamps, metal halide lamps, LED lamps, electrodeless ultraviolet lamps, etc. There is. The atmosphere in which ultraviolet rays are irradiated may be air or an inert gas such as nitrogen or argon. Moreover, the curability of the coating film can be further improved by heating the coating film using a back roll, an IR heater, or the like during the ultraviolet irradiation. Examples of ultraviolet irradiation conditions include an irradiation intensity of 500 mW/cm 2 to 3000 mW/cm 2 and an exposure amount of 50 to 400 mJ/cm 2 , but are not limited thereto.
 HC樹脂組成物を基材に塗布し硬化させた成形用ハードコートフィルム(以下HCフィルムとする)は、130℃雰囲気下での破断伸度が50%以上であることが好ましく、100%以上であることがさらに好ましく、200%以上であることが特に好ましい。破断伸度を50%以上とすることで、十分な成形性が期待できる。 The hard coat film for molding (hereinafter referred to as HC film) obtained by coating and curing the HC resin composition on a base material preferably has a breaking elongation of 50% or more in an atmosphere of 130°C, and preferably 100% or more. It is more preferable that it be at least 200%, particularly preferably 200% or more. By setting the elongation at break to 50% or more, sufficient moldability can be expected.
 HCフィルムには、必要に応じ加飾層を設けることができる。加飾層を設ける方法として、例えば、印刷や金属蒸着等が挙げられる。また、印刷と金属蒸着との両方を用いて加飾しても良い。また、射出成形樹脂とHCフィルムとの密着性をさらに向上させるため、接着層やプライマー層をHCフィルムに設けても良い。 A decorative layer can be provided on the HC film if necessary. Examples of methods for providing the decorative layer include printing, metal vapor deposition, and the like. Further, decoration may be performed using both printing and metal vapor deposition. Further, in order to further improve the adhesion between the injection molded resin and the HC film, an adhesive layer or a primer layer may be provided on the HC film.
 HCフィルムには、HC樹脂組成物が塗布された面の保護のため、保護フィルムを貼り合わせても良い。保護フィルムを用いることで、インサート成形やアウトモールド成形プロセスでの傷つきを抑制でき、歩留まり向上が期待できる。 A protective film may be attached to the HC film to protect the surface coated with the HC resin composition. By using a protective film, it is possible to suppress scratches during insert molding and out-mold molding processes, and it is expected that yields will improve.
 HCフィルムは、耐摩耗性や耐薬品性を有し、破断伸度が高く、成形性が良好であり、優れた耐候性を有する。そのため、HCフィルムは、屋外で使用されるインサート成形品やアウトモールド成形品の材料として好適である。屋外で使用されるインサート成形品やアウトモールド成形品として、例えば、自動車の外装用途のインサート成形品やアウトモールド成形品等が挙げられる。 HC film has abrasion resistance and chemical resistance, high elongation at break, good moldability, and excellent weather resistance. Therefore, HC film is suitable as a material for insert-molded products and out-mold products used outdoors. Examples of insert molded products and out molded products used outdoors include insert molded products and out molded products for automobile exterior applications.
 3.インサート成形品及びアウトモールド成形品
 HCフィルムをインサート成形で用いる方法として、例えば、以下の方法がある。まず、HCフィルムを金型に配置する。このとき、HC樹脂組成物が塗布された面が金型の内壁面に向かうように(すなわち、HC樹脂組成物の硬化層の反対面が成形樹脂と接するように)配置する。必要に応じてHCフィルムを金型形状に追従させて予備成形する。次に、金型を閉じてキャビティ―内に溶融状態の成形樹脂を射出させ、樹脂を固化させることによりインサート成形品を形成する。
3. Insert molded product and out-mold molded product Examples of methods for using HC film in insert molding include the following methods. First, an HC film is placed in a mold. At this time, it is arranged so that the surface coated with the HC resin composition faces the inner wall surface of the mold (that is, the surface opposite to the cured layer of the HC resin composition is in contact with the molding resin). If necessary, the HC film is preformed to follow the shape of the mold. Next, the mold is closed, molten molding resin is injected into the cavity, and the resin is solidified to form an insert molded product.
 上記予備成形を行う方法として、HCフィルムを軟化点以上に予備加熱して金型に配置し、金型に設けられた吸引孔を通じて真空吸引する方法や、射出成形用金型とは別の成形用金型を用い、真空成形、圧空成形、プレス成形等の公知の成形方法を用いる方法が挙げられる。また、これらの予備成形を行わず、成形樹脂による射出圧により、成形と射出樹脂との一体成形を同時に行うことも可能である。 Methods for performing the above-mentioned preforming include a method in which the HC film is preheated to a temperature above its softening point, placed in a mold, and vacuum suctioned through suction holes provided in the mold; Examples include a method using a mold and a known forming method such as vacuum forming, pressure forming, press forming, etc. It is also possible to perform molding and integral molding with the injection resin at the same time by using the injection pressure of the molding resin without performing these preliminary moldings.
 射出成形する樹脂として、射出成形が可能な公知の樹脂を用いることが可能である。射出成形する樹脂として、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ABS樹脂、AS樹脂、アクリル系樹脂、ウレタン系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、ポリフェニレンエーテル系樹脂、ポリアセタール系樹脂、ポリスルホン系樹脂等が挙げられる。射出成形する樹脂として、単独で、あるいは2種類以上を組み合わせて使用することができる。自動車のボディーのようにサイズが大きい場合や、サイズが小さくても肉厚が薄い場合は、射出成形する樹脂の成形後の収縮率をHCフィルムの収縮率と近似させることで、反り等の不具合を抑制することができる。 As the resin to be injection molded, it is possible to use a known resin that can be injection molded. Examples of resins to be injection molded include polyethylene resin, polypropylene resin, polystyrene resin, ABS resin, AS resin, acrylic resin, urethane resin, polyester resin, polycarbonate resin, polyphenylene ether resin, polyacetal resin, and polysulfone resin. Examples include resin. As the resin for injection molding, it can be used alone or in combination of two or more types. When the size is large, such as the body of a car, or when the wall thickness is thin even if the size is small, problems such as warping can be avoided by approximating the shrinkage rate of the injection molded resin after molding to the shrinkage rate of the HC film. can be suppressed.
 また、上記の射出成形用樹脂を着色することにより、HCフィルムの加飾層を無くすことができる。また、上記の射出成形用樹脂を着色し、加飾層の色と射出成形樹脂の色とを融合させることができる。この場合、インサート成形品の外観を、より深みのある外観とすることが可能となる。 Furthermore, by coloring the injection molding resin described above, the decorative layer of the HC film can be eliminated. Furthermore, the injection molding resin described above can be colored to fuse the color of the decorative layer and the color of the injection molding resin. In this case, it becomes possible to give the insert molded product a deeper appearance.
 外装を塗料により着色する製品に代えて、インサート成形品を使用することができる。外装を塗料により着色する製品として、例えば、自動車のボディー等が挙げられる。射出成形用樹脂を着色することにより、インサート成形品において、塗料による外形塗装を省略することができる。外形塗装でゆず肌やピット等の外観不良がしばしば発生する。外形塗装を省略すれば、インサート成形品に外観不良が生じ難くなる。 Insert molded products can be used instead of products whose exterior is colored with paint. Examples of products whose exteriors are colored with paint include automobile bodies. By coloring the injection molding resin, it is possible to omit external painting with paint in insert molded products. Appearance defects such as citrus skin and pits often occur during exterior painting. If external painting is omitted, appearance defects are less likely to occur in the insert molded product.
 HCフィルムは、アウトモールド成形にも用いることができる。例えば、HCフィルムを、TOM(Three-Dimensional Overlay Method)成形に用いても良い。TOM成形は、気密ボックス内にて、予め成形された基材に、真空・圧空成形にて3次元表面加飾を行うフィルム成形方法である。HCフィルムをアウトモールド成形に用いることで、基材の材質を問わず、3次元の大型製品を製造することができる。 HC film can also be used for out-mold forming. For example, the HC film may be used for TOM (Three-Dimensional Overlay Method) molding. TOM molding is a film molding method in which three-dimensional surface decoration is performed on a preformed base material by vacuum/pressure molding in an airtight box. By using HC film for out-mold molding, large three-dimensional products can be manufactured regardless of the material of the base material.
 4.実施例
 以下、本開示について実施例、及び比較例を挙げて詳細に説明するが、実施例は具体例を示すものであって、特に実施例に限定するものではない。なお、特に測定条件の表記が無い場合は、25℃、相対湿度65%の条件下で測定を行った。また、配合量は固形分換算の重量部を意味する。
4. Examples Hereinafter, the present disclosure will be described in detail with reference to Examples and Comparative Examples, but the Examples are for illustrating specific examples and are not particularly limited to the Examples. In addition, unless there is a description of the measurement conditions, the measurement was performed under the conditions of 25° C. and 65% relative humidity. Moreover, the blending amount means parts by weight in terms of solid content.
 (4-1)ウレアクの調製
 (i)ウレアク1の調製
 撹拌機、還流冷却器、滴下漏斗、及び温度計を取り付けた四つ口フラスコに、エチレングリコール200重量部とIPDI(NCO基37.5%)825重量部と触媒とMEKとを固形分50%になるように仕込み、80℃で6時間攪拌・反応させ、赤外吸収分析でイソシアネート基のピークが所定の量になった時点で反応を終了させた。
(4-1) Preparation of Ureac (i) Preparation of Ureac 1 In a four-neck flask equipped with a stirrer, reflux condenser, dropping funnel, and thermometer, 200 parts by weight of ethylene glycol and IPDI (NCO group: 37.5 %), 825 parts by weight of the catalyst, and MEK to give a solid content of 50%, stirred and reacted at 80°C for 6 hours, and when the peak of isocyanate groups reached a predetermined amount in infrared absorption analysis, the reaction was completed. was terminated.
 次に、PETA(水酸基価120mgKOH/g)438重量部を添加し、70℃で6時間攪拌・反応させた後、赤外吸収分析でイソシアネート基の消滅したことを確認した。次に、MEKにより固形分を50%に調整した。以上の工程により、Mwが6,200であり、6官能のウレアク1を得た。ウレアクとは、ウレタンアクリレートを意味する。 Next, 438 parts by weight of PETA (hydroxyl value: 120 mgKOH/g) was added, and after stirring and reacting at 70°C for 6 hours, it was confirmed by infrared absorption analysis that the isocyanate groups had disappeared. Next, the solid content was adjusted to 50% using MEK. Through the above steps, a hexafunctional ureac 1 having an Mw of 6,200 was obtained. Ureac means urethane acrylate.
 (ii)ウレアク2の調製
 撹拌機、還流冷却器、滴下漏斗、及び温度計を取り付けた四つ口フラスコに、エチレングリコール200重量部とIPDI(NCO基37.5%)930重量部と触媒とMEKとを固形分50%になるように仕込み、80℃で6時間攪拌・反応させ、赤外吸収分析でイソシアネート基のピークが所定の量になった時点で反応を終了させた。
(ii) Preparation of Ureac 2 In a four-necked flask equipped with a stirrer, reflux condenser, dropping funnel, and thermometer, add 200 parts by weight of ethylene glycol, 930 parts by weight of IPDI (NCO group 37.5%), and the catalyst. MEK was charged so that the solid content was 50%, stirred and reacted at 80° C. for 6 hours, and the reaction was terminated when the peak of isocyanate groups reached a predetermined amount in infrared absorption analysis.
 次に、PETA(水酸基価120mgKOH/g)886重量部を添加し、70℃で6時間攪拌・反応させた後、赤外吸収分析でイソシアネート基の消滅したことを確認した。次に、MEKにより固形分を50%に調整した。以上の工程により、Mwが3,200であり、6官能のウレアク2を得た。 Next, 886 parts by weight of PETA (hydroxyl value: 120 mgKOH/g) was added, and after stirring and reacting at 70°C for 6 hours, it was confirmed by infrared absorption analysis that the isocyanate groups had disappeared. Next, the solid content was adjusted to 50% using MEK. Through the above steps, a hexafunctional ureac 2 having an Mw of 3,200 was obtained.
 (iii)ウレアク3の調製
 撹拌機、還流冷却器、滴下漏斗、及び温度計を取り付けた四つ口フラスコに、エチレングリコール200重量部とIPDI(NCO基37.5%)895重量部と触媒とMEKとを固形分50%になるように仕込み、80℃で6時間攪拌・反応させ、赤外吸収分析でイソシアネート基のピークが所定の量になった時点で反応を終了させた。 
(iii) Preparation of Ureac 3 In a four-necked flask equipped with a stirrer, reflux condenser, dropping funnel, and thermometer, 200 parts by weight of ethylene glycol, 895 parts by weight of IPDI (NCO group 37.5%), and a catalyst were added. MEK was charged to give a solid content of 50%, stirred and reacted at 80° C. for 6 hours, and the reaction was terminated when the peak of isocyanate groups reached a predetermined amount in infrared absorption analysis.
 次に、PETA(水酸基価120mgKOH/g)743重量部を添加し、70℃で6時間攪拌・反応させた後、赤外吸収分析でイソシアネート基の消滅したことを確認した。次に、MEKにより固形分を50%に調整した。以上の工程により、Mwが3,800であり、6官能のウレアク3を得た。 Next, 743 parts by weight of PETA (hydroxyl value: 120 mgKOH/g) was added, and after stirring and reacting at 70°C for 6 hours, it was confirmed by infrared absorption analysis that the isocyanate groups had disappeared. Next, the solid content was adjusted to 50% using MEK. Through the above steps, a hexafunctional ureac 3 having an Mw of 3,800 was obtained.
 (iv)ウレアク4の調製
 撹拌機、還流冷却器、滴下漏斗、及び温度計を取り付けた四つ口フラスコに、エチレングリコール200重量部とIPDI(NCO基37.5%)808重量部と触媒とMEKとを固形分50%になるように仕込み、80℃で6時間攪拌・反応させ、赤外吸収分析でイソシアネート基のピークが所定の量になった時点で反応を終了させた。
(iv) Preparation of Ureac 4 In a four-necked flask equipped with a stirrer, reflux condenser, dropping funnel, and thermometer, 200 parts by weight of ethylene glycol, 808 parts by weight of IPDI (NCO group 37.5%), and the catalyst were added. MEK was charged to give a solid content of 50%, stirred and reacted at 80° C. for 6 hours, and the reaction was terminated when the peak of isocyanate groups reached a predetermined amount in infrared absorption analysis.
 次に、PETA(水酸基価120mgKOH/g)371重量部を添加し、70℃で6時間攪拌・反応させた後、赤外吸収分析でイソシアネート基の消滅したことを確認した。次に、MEKにより固形分を50%に調整した。以上の工程により、Mwが7,800であり、6官能のウレアク4を得た。 Next, 371 parts by weight of PETA (hydroxyl value: 120 mgKOH/g) was added, and after stirring and reacting at 70°C for 6 hours, it was confirmed by infrared absorption analysis that the isocyanate groups had disappeared. Next, the solid content was adjusted to 50% using MEK. Through the above steps, a hexafunctional ureac 4 having an Mw of 7,800 was obtained.
 (v)ウレアク5の調製
 撹拌機、還流冷却器、滴下漏斗、及び温度計を取り付けた四つ口フラスコに、エチレングリコール200重量部とIPDI(NCO基37.5%)790重量部と触媒とMEKとを固形分50%になるように仕込み、80℃で6時間攪拌・反応させ、赤外吸収分析でイソシアネート基のピークが所定の量になった時点で反応を終了させた。
(v) Preparation of Ureac 5 In a four-necked flask equipped with a stirrer, reflux condenser, dropping funnel, and thermometer, add 200 parts by weight of ethylene glycol, 790 parts by weight of IPDI (NCO group 37.5%), and the catalyst. MEK was charged to give a solid content of 50%, stirred and reacted at 80° C. for 6 hours, and the reaction was terminated when the peak of isocyanate groups reached a predetermined amount in infrared absorption analysis.
 次に、PETA(水酸基価120mgKOH/g)295重量部を添加し、70℃で6時間攪拌・反応させた後、赤外吸収分析でイソシアネート基の消滅したことを確認した。次に、MEKにより固形分を50%に調整した。以上の工程により、Mwが9,800であり、6官能のウレアク5を得た。 Next, 295 parts by weight of PETA (hydroxyl value: 120 mgKOH/g) was added, and after stirring and reacting at 70°C for 6 hours, it was confirmed by infrared absorption analysis that the isocyanate groups had disappeared. Next, the solid content was adjusted to 50% using MEK. Through the above steps, a hexafunctional ureac 5 having an Mw of 9,800 was obtained.
 (vi)ウレアクA~Cの調製
 ウレアク1~5の製法に準ずる製法で、ウレアク1~5と同骨格でMwが違うウレアクA及びBを得た。また、ウレアク1~5の製法に準ずる製法で、エチレングリコールの代わりにポリエチレングリコールを用いたウレアクCを得た。ウレアクA~Cの内容は以下のとおりであった。
(vi) Preparation of Ureacs A to C Ureacs A and B were obtained by a method similar to that of Ureacs 1 to 5, but having the same skeleton and different Mw as Ureacs 1 to 5. In addition, Ureac C was obtained using polyethylene glycol instead of ethylene glycol by a manufacturing method similar to that of Ureacs 1 to 5. The contents of Ureac A to C were as follows.
 ウレアクA:PETA-IPDI-(エチレングリコール-IPDI)n-PETA骨格、6官能、固形分50%、Mw1,800。 Ureac A: PETA-IPDI-(ethylene glycol-IPDI) n-PETA skeleton, hexafunctional, solid content 50%, Mw 1,800.
 ウレアクB:PETA-IPDI-(エチレングリコール-IPDI)n-PETA骨格、6官能、固形分50%、Mw13,000。 Ureac B: PETA-IPDI-(ethylene glycol-IPDI) n-PETA skeleton, hexafunctional, solid content 50%, Mw 13,000.
 ウレアクC:PETA-IPDI-ポリエチレングリコール-IPDI-PETA骨格、6官能、固形分50%、Mw6,000。 Ureac C: PETA-IPDI-polyethylene glycol-IPDI-PETA skeleton, hexafunctional, solid content 50%, Mw 6,000.
 (4-2)HC樹脂組成物の製造
 表1に記載の成分を、表1に記載の配合量で混合し、均一に溶解・分散するまで撹拌し、さらに、固形分が30%となるようにPGMを加えて希釈撹拌し、実施例1~9及び比較例1~3のHC樹脂組成物を製造した。
(4-2) Production of HC resin composition The components listed in Table 1 are mixed in the amounts listed in Table 1, stirred until uniformly dissolved and dispersed, and further adjusted to a solid content of 30%. PGM was added to the mixture, and the mixture was diluted and stirred to produce HC resin compositions of Examples 1 to 9 and Comparative Examples 1 to 3.
 また、表2に記載の成分を、表2に記載の配合量で混合し、均一に溶解・分散するまで撹拌し、さらに、固形分が30%となるようにPGMを加えて希釈撹拌し、比較例4~5のHC樹脂組成物を製造した。 In addition, the components listed in Table 2 are mixed in the amounts listed in Table 2, stirred until uniformly dissolved and dispersed, and then diluted and stirred by adding PGM so that the solid content is 30%. HC resin compositions of Comparative Examples 4 and 5 were produced.
Figure JPOXMLDOC01-appb-T000002
 表1、表2おいて、(A)は、ウレアク1~5である。(b1)は、Tinuvin249(商品名:BASFジャパン社製)である。(b2)は、Tinuvin477(商品名:BASFジャパン社製)である。(C)は、Omnirad2959及び127D(商品名:IGM Resins社製)である。架橋剤は、DPHAである。
Figure JPOXMLDOC01-appb-T000002
In Tables 1 and 2, (A) is Ureac 1 to 5. (b1) is Tinuvin249 (trade name: manufactured by BASF Japan). (b2) is Tinuvin477 (trade name: manufactured by BASF Japan). (C) is Omnirad 2959 and 127D (trade name: manufactured by IGM Resins). The crosslinking agent is DPHA.
 添加剤は、X-71-1203M(商品名:信越化学工業社製、アクリロイル基含有フッ素系シリコーン化合物)及びBYK-UV3500(商品名:BYK社製、ポリジメチルシロキサンコポリマー化合物)である。X-71-1203Mはレベリング剤である。 The additives are X-71-1203M (trade name: manufactured by Shin-Etsu Chemical Co., Ltd., acryloyl group-containing fluorine-based silicone compound) and BYK-UV3500 (trade name: manufactured by BYK Company, polydimethylsiloxane copolymer compound). X-71-1203M is a leveling agent.
 (4-3)HC樹脂組成物の評価方法
 各実施例及び各比較例のHC樹脂組成物を以下の方法で評価した。
(4-3) Evaluation method of HC resin composition The HC resin composition of each Example and each Comparative Example was evaluated by the following method.
 (i)評価用HCフィルムの調製
 基材として、ユーピロンフィルムDF02PUL(商品名:三菱ガス化学社製)を用意した。この基材は、PMMA/PC積層フィルムであった。基材の厚みは125μmであった。
(i) Preparation of HC film for evaluation As a base material, Iupilon film DF02PUL (trade name: manufactured by Mitsubishi Gas Chemical Co., Ltd.) was prepared. The substrate was a PMMA/PC laminate film. The thickness of the base material was 125 μm.
 基材のPMMA層の側にHC樹脂組成物を塗布して、HC樹脂組成物の層を形成した。HC樹脂組成物の層の乾燥膜厚は3μmであった。次に、HC樹脂組成物の層を、恒温槽において、80℃の温度で1分間乾燥させた。次に、高圧水銀ランプを用い、窒素雰囲気化でHC樹脂組成物の層に紫外線を照射し、評価用HCフィルムを得た。高圧水銀ランプの出力は1300mW/cmであった。紫外線の積算光量は200mJであった。 The HC resin composition was applied to the PMMA layer side of the base material to form a layer of the HC resin composition. The dry film thickness of the layer of the HC resin composition was 3 μm. Next, the layer of HC resin composition was dried in a constant temperature bath at a temperature of 80° C. for 1 minute. Next, using a high-pressure mercury lamp, the HC resin composition layer was irradiated with ultraviolet rays in a nitrogen atmosphere to obtain an HC film for evaluation. The output of the high pressure mercury lamp was 1300 mW/cm 2 . The cumulative amount of ultraviolet light was 200 mJ.
 (ii)硬化性の評価
 評価用HCフィルムのうち、HC樹脂組成物を塗布した面(以下塗布面とする)に指で触り、タックの有無を判断した。以下の基準で、HC樹脂組成物の層の硬化性を評価した。○は、×よりも優れた評価結果であることを意味する。
(ii) Evaluation of curability Among the HC films for evaluation, the surface coated with the HC resin composition (hereinafter referred to as the coated surface) was touched with a finger to determine the presence or absence of tack. The curability of the HC resin composition layer was evaluated based on the following criteria. ○ means that the evaluation result is better than ×.
 ○:タックが無い。 ○: No tack.
 ×:タックが有る。 ×: There is a tack.
 (iii)密着性の評価
 密着性の評価は、JIS K 5600-5-6のクロスカット法に準拠して行った。評価用HCフィルムの塗布面に、切込み工具を用いて、格子状の切込みを形成した。格子は、10×10のマス目を有していた。切込みの間隔は1mmであった。
(iii) Evaluation of adhesion Evaluation of adhesion was performed in accordance with the cross-cut method of JIS K 5600-5-6. A grid-like cut was formed on the coated surface of the evaluation HC film using a cutting tool. The grid had 10 x 10 squares. The spacing between the cuts was 1 mm.
 次に、切込みを形成した部分に、セロハンテープCT-24(商品名:ニチバン社製)を貼り、セロハンテープを上方に引っ張った。HC樹脂組成物の層の剥離状況を確認した。以下の基準により、HC樹脂組成物の層の密着性を評価した。 Next, cellophane tape CT-24 (trade name: manufactured by Nichiban Co., Ltd.) was applied to the part where the incision was made, and the cellophane tape was pulled upward. The peeling status of the HC resin composition layer was confirmed. The adhesion of the HC resin composition layer was evaluated according to the following criteria.
 ○:100のマス目の中に、HC樹脂組成物の層の剥離したマス目は無い。 ○: Among the 100 squares, there is no square in which the layer of the HC resin composition has peeled off.
 ×:100のマス目の中に、HC樹脂組成物の層の剥離したマス目が1以上有る。 ×: Among 100 squares, there is one or more squares in which the layer of the HC resin composition has peeled off.
 (iv)耐摩耗性の評価
 耐摩耗性の評価には、スガ試験機製の摩擦試験機FR-IBSを用いた。直径16mmの摩擦子に試験用白綿布(カナキン3号)を取り付けた。この摩擦子を、評価用HCフィルムの塗布面に9Nの荷重をかけて接触させた。摩擦子を、1往復/1秒の速さで、20往復させた。1往復の距離は100mmであった。20往復の後、評価用HCフィルムの塗布面を観察し、以下の基準により、HC樹脂組成物の層の耐摩耗性を評価した。
(iv) Evaluation of wear resistance For evaluation of wear resistance, a friction tester FR-IBS manufactured by Suga Test Instruments was used. A white cotton cloth for testing (Kanakin No. 3) was attached to a friction element with a diameter of 16 mm. This friction element was brought into contact with the coated surface of the HC film for evaluation under a load of 9N. The friction element was made to reciprocate 20 times at a speed of 1 reciprocation/1 second. The distance of one round trip was 100 mm. After 20 reciprocations, the coated surface of the HC film for evaluation was observed, and the wear resistance of the HC resin composition layer was evaluated based on the following criteria.
 ○:傷は無い。 ○: No scratches.
 ×:傷が有る。 ×: There are scratches.
 (v)耐薬品性の評価
 評価用HCフィルムの塗布面にハンドクリームを塗布し、80℃で4時間放置した。ハンドクリームは、ニュートロジーナSPF45(商品名:ジョンソン・エンド・ジョンソン社製)であった。次に、評価用HCフィルムの温度を室温に戻し、ハンドクリームを拭き取った。ハンドクリームを拭き取った表面を観察し、以下の基準により、HC樹脂組成物の層の耐薬品性を評価した。
(v) Evaluation of chemical resistance A hand cream was applied to the coated surface of the HC film for evaluation, and the film was left at 80° C. for 4 hours. The hand cream was Neutrogena SPF45 (trade name: Johnson & Johnson). Next, the temperature of the HC film for evaluation was returned to room temperature, and the hand cream was wiped off. The surface on which the hand cream was wiped off was observed, and the chemical resistance of the HC resin composition layer was evaluated based on the following criteria.
 ○:ハンドクリームを塗布した跡が無い。 ○: There is no trace of hand cream application.
 ×:ハンドクリームを塗布した跡が有る。 ×: There are traces of hand cream application.
 (vi)破断伸度の評価
 評価用HCフィルムを、横25mm、縦110mmの長方形の形状にカットし、試験片を作成した。試験片に対し、Minebia製TechnoGraph TGI-1KNを用い、雰囲気温度130℃、引っ張り速度300mm/分で引っ張り試験を行った。引っ張り試験においてチャック間距離は50mmであった。引っ張り試験を行っているとき、目視で試験片の割れの有無を確認した。以下の式(1)により、破断伸度X(%)を算出した。
(vi) Evaluation of breaking elongation The HC film for evaluation was cut into a rectangular shape measuring 25 mm in width and 110 mm in length to prepare a test piece. A tensile test was performed on the test piece using Minebia's TechnoGraph TGI-1KN at an ambient temperature of 130° C. and a tensile speed of 300 mm/min. In the tensile test, the distance between chucks was 50 mm. During the tensile test, the presence or absence of cracks in the test piece was visually confirmed. The elongation at break X (%) was calculated using the following formula (1).
 式(1) X=(A/50)×100
 式(1)においてAは、試験片が破断したときの試験片の伸び量(mm)である。チャック間距離は50mmであるので、Aは試験片の50mm当たりの伸び量である。
Formula (1) X=(A/50)×100
In formula (1), A is the amount of elongation (mm) of the test piece when the test piece breaks. Since the distance between the chucks is 50 mm, A is the amount of elongation of the test piece per 50 mm.
 以下の基準により、評価用HCフィルムの破断伸度を評価した。◎は、○よりもさらに良い評価結果を意味する。 The elongation at break of the HC film for evaluation was evaluated according to the following criteria. ◎ means an even better evaluation result than ○.
 ◎:破断伸度が200%以上である。 ◎: Elongation at break is 200% or more.
 ○:破断伸度が50%以上、200%未満である。 ○: The elongation at break is 50% or more and less than 200%.
 ×:破断伸度が50%未満である。 ×: Elongation at break is less than 50%.
 (4-4)HC樹脂組成物の評価結果
 HC樹脂組成物の評価結果を表3、表4に示す。
(4-4) Evaluation results of HC resin compositions Tables 3 and 4 show the evaluation results of HC resin compositions.
Figure JPOXMLDOC01-appb-T000004
 各実施例のHC樹脂組成物は、硬化性、密着性、耐摩耗性、耐薬品性、及び破断伸度の全てで良好な評価結果であった。
Figure JPOXMLDOC01-appb-T000004
The HC resin compositions of each example had good evaluation results in all of curability, adhesion, abrasion resistance, chemical resistance, and elongation at break.
 Mwが小さいウレアクAを含む比較例1では破断伸度が低かった。Mwが大きいウレアクBを含む比較例2では耐摩耗性が劣っていた。ポリエチレン骨格のウレアクを含む比較3では耐薬品性が劣っていた。X-71-1203Mを含まない比較例4では、耐摩耗性が劣っていた。X-71-1203Mに代えてBYK-UV3500を含む比較例5は、それを用いて成形用フィルムを製造した場合に、成形用フィルムの耐候性が劣る。このことは、後述するHCフィルムの評価において示す。 Comparative Example 1 containing Ureac A with a small Mw had a low elongation at break. Comparative Example 2 containing Ureac B having a large Mw had poor wear resistance. Comparative 3 containing ureac with a polyethylene skeleton had poor chemical resistance. Comparative Example 4, which did not contain X-71-1203M, had poor wear resistance. Comparative Example 5, which includes BYK-UV3500 in place of X-71-1203M, has poor weather resistance when a molding film is produced using it. This will be shown in the evaluation of the HC film described below.
 (4-5)HCフィルムの製造
 表5又は表6に示すHC樹脂組成物及び基材を用いて、HCフィルムS1~S13を製造した。
(4-5) Production of HC films HC films S1 to S13 were produced using the HC resin compositions and base materials shown in Table 5 or Table 6.
Figure JPOXMLDOC01-appb-T000006
 表5における「WAT」とは、ウェーブロックアドバンストテクノロジー社を意味する。表5及び表6における「HC樹脂」とは、HC樹脂組成物を意味する。表5及び表6における「組成」とは、基材の組成を意味する。表5及び表6における「メーカー」とは、基材のメーカーを意味する。表5及び表6における「PMMA/PC」は、PC/アクリル複合基材を意味する。
Figure JPOXMLDOC01-appb-T000006
"WAT" in Table 5 means Wavelock Advanced Technology, Inc. "HC resin" in Tables 5 and 6 means an HC resin composition. "Composition" in Tables 5 and 6 means the composition of the base material. "Manufacturer" in Tables 5 and 6 means the manufacturer of the base material. "PMMA/PC" in Tables 5 and 6 means a PC/acrylic composite base material.
 HCフィルムS1~S13の製造方法は以下のとおりであった。基材の一方の面にHC樹脂組成物を塗布して、HC樹脂組成物の層を形成した。基材の組成がPC/アクリル複合基材である場合は、PMMA層の側にHC樹脂組成物を塗布して、HC樹脂組成物の層を形成した。ただし、S10~S11では、基材にHC樹脂組成物を塗布しなかった。 The manufacturing method of HC films S1 to S13 was as follows. The HC resin composition was applied to one side of the base material to form a layer of the HC resin composition. When the composition of the base material was a PC/acrylic composite base material, the HC resin composition was applied on the PMMA layer side to form a layer of the HC resin composition. However, in S10 to S11, the HC resin composition was not applied to the base material.
 HC樹脂組成物の層の乾燥膜厚は3μmであった。次に、HC樹脂組成物の層を、恒温槽において、80℃の温度で1分間乾燥させた。次に、高圧水銀ランプを用い、窒素雰囲気化でHC樹脂組成物の層に紫外線を照射し、HCフィルムを得た。高圧水銀ランプの出力は1300mW/cmであった。紫外線の積算光量は200mJであった。 The dry film thickness of the layer of the HC resin composition was 3 μm. Next, the layer of HC resin composition was dried in a constant temperature bath at a temperature of 80° C. for 1 minute. Next, the HC resin composition layer was irradiated with ultraviolet rays in a nitrogen atmosphere using a high-pressure mercury lamp to obtain an HC film. The output of the high pressure mercury lamp was 1300 mW/cm 2 . The cumulative amount of ultraviolet light was 200 mJ.
 (4-6)HCフィルムの評価方法
 HCフィルムS1~S13を以下の方法で評価した。
(4-6) Evaluation method of HC films HC films S1 to S13 were evaluated by the following method.
 (i) 基材単体のΔE
 HC樹脂組成物を塗布していない基材単体のΔEを測定した。ΔEの測定方法は、JIS Z 8722に準拠した。ΔEの測定には、日本電色工業社製の色差測定器SD-6000を用いた。ΔEの具体的な測定方法は以下のとおりであった。
(i) ΔE of base material alone
The ΔE of the base material alone to which the HC resin composition was not applied was measured. The method for measuring ΔE was based on JIS Z 8722. For the measurement of ΔE, a color difference measuring instrument SD-6000 manufactured by Nippon Denshoku Kogyo Co., Ltd. was used. The specific method for measuring ΔE was as follows.
 基材単体にUVBを照射する前に、基材単体の色見を測定した。次に、基材単体に、60℃の下で、UVBを1000時間照射した。UVBの強度は0.55W/mであった。次に、基材単体の色見を再度測定した。UVBを照射する前の基材単体の色見と、UVBを照射した後の基材単体の色見との差を、基材単体のΔEとした。 Before irradiating the base material alone with UVB, the color appearance of the base material alone was measured. Next, the base material alone was irradiated with UVB at 60° C. for 1000 hours. The UVB intensity was 0.55 W/ m2 . Next, the color appearance of the base material alone was measured again. The difference between the color appearance of the base material alone before UVB irradiation and the color appearance of the base material alone after UVB irradiation was defined as ΔE of the base material alone.
 (ii)耐候性
 基材単体のΔEの測定方法と同様にして、HCフィルムのΔEを測定した。以下の基準により、HCフィルムの耐候性を評価した。
(ii) Weather resistance The ΔE of the HC film was measured in the same manner as the method for measuring ΔE of the base material alone. The weather resistance of the HC film was evaluated according to the following criteria.
 ○:HCフィルムのΔEは1.0未満である。 ○: ΔE of the HC film is less than 1.0.
 ×:HCフィルムのΔEは1.0を超える。 ×: ΔE of the HC film exceeds 1.0.
 (iii)成形性
 HCフィルムを、基材の温度が180℃になるまで加熱した。次に、HCフィルムを、真空成型機において、直径30mm、高さ4mmの円柱型を用いて真空成形した。以下の基準により、HCフィルムの成形性を評価した。
(iii) Formability The HC film was heated until the temperature of the base material reached 180°C. Next, the HC film was vacuum formed using a cylindrical mold with a diameter of 30 mm and a height of 4 mm in a vacuum forming machine. The moldability of the HC film was evaluated based on the following criteria.
 ○:完全に賦形できた。 ○: Complete shaping was possible.
 ×:白化やクラックが生じた。あるいは、賦形が不完全であった。 ×: Whitening and cracks occurred. Or, the excipient was incomplete.
 (iv)布跡試験
 HCフィルムの塗布面に、50mm×50mmのガーゼを、500Kg/4cmの荷重をかけて接触させた。ガーゼに荷重をかけた状態で、80℃の下で60分間放置した。次に、塗布面からガーゼを除去し、塗布面を観察した。以下の基準により、布跡試験の結果を評価した。
(iv) Fabric trace test A 50 mm x 50 mm gauze was brought into contact with the coated surface of the HC film under a load of 500 kg/4 cm 2 . The gauze was left under a load at 80° C. for 60 minutes. Next, the gauze was removed from the coated surface, and the coated surface was observed. The results of the cloth trace test were evaluated according to the following criteria.
 ○:塗布面に布跡が残らない。 ○: No cloth marks remain on the coated surface.
 ×:塗布面に布跡が残る。 ×: Cloth marks remain on the coated surface.
 (v)摩耗性
 摩耗性の評価には、スガ試験機製の摩擦試験機FR-IBSを用いた。直径16mmの摩擦子に試験用白綿布(カナキン3号)を取り付けた。この摩擦子を、HCフィルムの塗布面に、1Kg/cmの荷重をかけて接触させた。摩擦子を、1往復/1秒の速さで、20往復させた。1往復の距離は100mmであった。20往復の後、HCフィルムの塗布面を観察し、以下の基準により、HCフィルムの摩耗性を評価した。
(v) Abrasion property A friction tester FR-IBS manufactured by Suga Test Instruments was used to evaluate the abrasion property. A white cotton cloth for testing (Kanakin No. 3) was attached to a friction element with a diameter of 16 mm. This friction element was brought into contact with the coated surface of the HC film under a load of 1 Kg/cm 2 . The friction element was made to reciprocate 20 times at a speed of 1 reciprocation/1 second. The distance of one round trip was 100 mm. After 20 reciprocations, the coated surface of the HC film was observed, and the abrasion resistance of the HC film was evaluated based on the following criteria.
 ○:傷は無い。 ○: No scratches.
 ×:傷が有る。 ×: There are scratches.
 (vi)鉛筆硬度
 JIS K5600-5-4(1999年版)に準拠し、東洋精機製作所製の鉛筆引掻塗膜硬さ試験機(形式P)を用い、500g荷重の条件で、HCフィルムの塗布面の鉛筆硬度を測定した。以下の基準で、鉛筆硬度の測定結果を評価した。
(vi) Pencil hardness The HC film was applied under the condition of 500g load using a pencil scratch coating hardness tester (type P) manufactured by Toyo Seiki Seisakusho in accordance with JIS K5600-5-4 (1999 edition). The pencil hardness of the surface was measured. The measurement results of pencil hardness were evaluated based on the following criteria.
 ○:鉛筆硬度はH以上である。 ○: Pencil hardness is H or higher.
 ×:鉛筆硬度はF以下である。 ×: Pencil hardness is F or less.
 (4-7)HCフィルムの評価結果
 HCフィルムの評価結果を表7、表8に示す。
(4-7) Evaluation results of HC film The evaluation results of HC film are shown in Tables 7 and 8.
Figure JPOXMLDOC01-appb-T000008
 S1~S3は、耐候性、成形性、布跡試験、耐摩耗性、及び鉛筆硬度の全てで良好な評価結果であった。
Figure JPOXMLDOC01-appb-T000008
S1 to S3 had good evaluation results in all of weather resistance, moldability, cloth trace test, abrasion resistance, and pencil hardness.
 一方、基材単体のΔEが1.0超のPMMA/PC基材を用いたS4~S6は、S1~S3に比べて、耐候性の評価結果が劣っていた。また、PC基材を用いたS7は、S1~S3に比べて、耐候性及び鉛筆硬度の評価結果が劣っていた。 On the other hand, samples S4 to S6 using PMMA/PC substrates with a ΔE of more than 1.0 had poorer weather resistance evaluation results than samples S1 to S3. Furthermore, S7 using a PC base material had inferior evaluation results of weather resistance and pencil hardness compared to S1 to S3.
 また、アクリル樹脂基材を用いたS8は、S1~S3に比べて、布跡試験及び鉛筆硬度の評価結果が劣っていた。また、PET基材を用いたS9は、S1~S3に比べて、耐候性及び成形性の評価結果が劣っていた。 Additionally, S8, which uses an acrylic resin base material, had poorer cloth trace test and pencil hardness evaluation results than S1 to S3. Furthermore, S9 using a PET base material had inferior evaluation results of weather resistance and moldability compared to S1 to S3.
 また、HC樹脂組成物を塗布していないS10~S11は、耐摩耗性及び鉛筆硬度の評価結果が劣っていた。また、S11は、さらに、耐候性の評価結果も劣っていた。また、HC樹脂組成物が比較例4であるS12は、耐摩耗性の評価結果が劣っていた。また、HC樹脂組成物が比較例5であるS13は、耐候性の評価結果が劣っていた。 Furthermore, S10 to S11 to which the HC resin composition was not applied had poor evaluation results for wear resistance and pencil hardness. Further, S11 was also inferior in weather resistance evaluation results. In addition, S12, in which the HC resin composition was Comparative Example 4, had poor abrasion resistance evaluation results. Moreover, S13 whose HC resin composition was Comparative Example 5 had poor weather resistance evaluation results.
 (4-8)射出成型の評価
 HCフィルムS1を用いてインサート成形を行い、インサート成形品を製造した。射出成形の樹脂は、黒色のABSであった。BYK製の塗装表面性状測定機ウエーブスキャン3デュアルを用い、インサート成形品のフィルム表面におけるLW(long wave)とSW(short wave)とを測定した。また、比較対象である塗装鋼板の塗装面についても、同様に測定を行った。測定結果を表9に示す。また、インサート成形品のフィルム表面と、塗装鋼板の塗装面とのそれぞれについて、外観観察を行い、外観を評価した。評価結果を表9に示す。
(4-8) Evaluation of injection molding Insert molding was performed using HC film S1 to produce an insert molded product. The injection molding resin was black ABS. LW (long wave) and SW (short wave) on the film surface of the insert molded product were measured using a painted surface property measuring machine WaveScan 3 Dual manufactured by BYK. In addition, measurements were conducted in the same manner on the painted surface of a painted steel plate for comparison. The measurement results are shown in Table 9. In addition, the appearance of the film surface of the insert molded product and the painted surface of the painted steel plate was observed and evaluated. The evaluation results are shown in Table 9.
Figure JPOXMLDOC01-appb-T000009
 インサート成形品のフィルム表面には、ゆず肌の外観不具合が無かった。一方、塗装鋼板の塗装面には、ゆず肌の外観不具合があった。
Figure JPOXMLDOC01-appb-T000009
The film surface of the insert-molded product had no defect in appearance due to the citron skin. On the other hand, the painted surface of the painted steel plate had an appearance defect of citrus skin.
 5.他の実施形態
 以上、本開示の実施形態について説明したが、本開示は上述の実施形態に限定されることなく、種々変形して実施することができる。
5. Other Embodiments Although the embodiments of the present disclosure have been described above, the present disclosure is not limited to the above-described embodiments and can be implemented with various modifications.
 (5-1)上記各実施形態における1つの構成要素が有する機能を複数の構成要素に分担させたり、複数の構成要素が有する機能を1つの構成要素に発揮させたりしてもよい。また、上記各実施形態の構成の一部を省略してもよい。また、上記各実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加、置換等してもよい。 (5-1) The function of one component in each of the above embodiments may be shared among multiple components, or the function of multiple components may be performed by one component. Further, a part of the configuration of each of the above embodiments may be omitted. Further, at least a part of the configuration of each of the above embodiments may be added to, replaced with, etc. in the configuration of other embodiments.
 (5-2)上述したHC樹脂組成物の他、当該HC樹脂組成物を構成要素とする製品、HC樹脂組成物の製造方法等、種々の形態で本開示を実現することもできる。 (5-2) In addition to the above-mentioned HC resin composition, the present disclosure can also be realized in various forms, such as products containing the HC resin composition as a component and methods for producing the HC resin composition.

Claims (9)

  1.  エチレングリコールとイソホロンジイソシアネートを反応させたジイソシアネートに、ペンタエリスリトールトリアクリレートをさらに反応させた構造を有するウレタンアクリレート(A)と、光安定剤(B)と、光重合開始剤(C)と、反応性官能基を有するフッ素系シリコーン化合物と、を含み、前記(A)の重量平均分子量が3,500~12,000である自動車外装の成形用フィルム用ハードコート樹脂組成物。 A urethane acrylate (A) having a structure in which pentaerythritol triacrylate is further reacted with a diisocyanate obtained by reacting ethylene glycol and isophorone diisocyanate, a light stabilizer (B), a photopolymerization initiator (C), and reactivity. a fluorine-based silicone compound having a functional group, and wherein the weight average molecular weight of (A) is 3,500 to 12,000.
  2.  請求項1に記載の自動車外装の成形用フィルム用ハードコート樹脂組成物であって、
     前記(B)として、ラジカル捕捉剤(b1)及び紫外線吸収剤(b2)を含み、
     前記(b1)の配合量が固形分全量に対し1~10重量%であり、前記(b2)の配合量が固形分全量に対し0.3~5重量%である自動車外装の成形用フィルム用ハードコート樹脂組成物。
    The hard coat resin composition for a molding film for automobile exterior according to claim 1,
    (B) includes a radical scavenger (b1) and an ultraviolet absorber (b2),
    A film for forming an automobile exterior, wherein the blending amount of (b1) is 1 to 10% by weight based on the total solid content, and the blending amount of (b2) is 0.3 to 5% by weight based on the total solid content. Hard coat resin composition.
  3.  請求項1に記載の自動車外装の成形用フィルム用ハードコート樹脂組成物であって、
     前記反応性官能基を有するフッ素系シリコーン化合物の配合量が、固形分全量に対し0.1~3重量%である自動車外装の成形用フィルム用ハードコート樹脂組成物。
    The hard coat resin composition for a molding film for automobile exterior according to claim 1,
    A hard coat resin composition for a molding film for automobile exteriors, wherein the amount of the fluorine-based silicone compound having a reactive functional group is 0.1 to 3% by weight based on the total solid content.
  4.  基材と、
     前記基材上にある請求項1~3のいずれか1項に記載の自動車外装の成形用フィルム用ハードコート樹脂組成物の硬化層と、
     を有する成形用ハードコートフィルム。
    base material and
    A cured layer of the hard coat resin composition for a molding film for automobile exteriors according to any one of claims 1 to 3, which is on the base material;
    Hard coat film for molding.
  5.  請求項4に記載の成形用ハードコートフィルムであって、
     前記基材は、ポリカーボネート基材及びアクリル基材の複合基材であり、
     60℃の下で強度が0.55W/mであるUVBを100時間照射する前後での前記複合基材のΔEが1.0以下である成形用ハードコートフィルム。
    The hard coat film for molding according to claim 4,
    The base material is a composite base material of a polycarbonate base material and an acrylic base material,
    A hard coat film for molding, wherein the composite substrate has a ΔE of 1.0 or less before and after being irradiated with UVB having an intensity of 0.55 W/m 2 at 60° C. for 100 hours.
  6.  基材と、前記基材上の硬化層とを有する成形用ハードコートフィルムを、金型を用いて賦形し、
     前記硬化層とは反対側から溶融樹脂を射出して樹脂成形品を形成するインサート成形品の製造方法であって、
     前記硬化層は、エチレングリコールとイソホロンジイソシアネートを反応させたジイソシアネートに、ペンタエリスリトールトリアクリレートをさらに反応させた構造を有するウレタンアクリレート(A)と、光安定剤(B)と、光重合開始剤(C)と、反応性官能基を有するフッ素系シリコーン化合物と、を含み、前記(A)の重量平均分子量が3,500~12,000である樹脂組成物の硬化物であるインサート成形品の製造方法。
    A molding hard coat film having a base material and a cured layer on the base material is shaped using a mold,
    A method for manufacturing an insert molded product, the method comprising: injecting molten resin from the side opposite to the cured layer to form a resin molded product,
    The cured layer contains urethane acrylate (A) having a structure in which pentaerythritol triacrylate is further reacted with a diisocyanate obtained by reacting ethylene glycol and isophorone diisocyanate, a light stabilizer (B), and a photopolymerization initiator (C). ) and a fluorine-based silicone compound having a reactive functional group, and a method for producing an insert molded article, which is a cured product of the resin composition of (A) having a weight average molecular weight of 3,500 to 12,000. .
  7.  請求項6に記載のインサート成形品の製造方法であって、
     前記溶融樹脂が着色されているインサート成形品の製造方法。
    A method for manufacturing an insert molded product according to claim 6, comprising:
    A method for manufacturing an insert molded product, in which the molten resin is colored.
  8.  請求項4に記載の成形用ハードコートフィルムを用いたインサート成形品。 An insert molded product using the hard coat film for molding according to claim 4.
  9.  請求項4に記載の成形用ハードコートフィルムを用いたアウトモールド成形品。 An out-mold molded product using the hard coat film for molding according to claim 4.
PCT/JP2023/009883 2022-07-11 2023-03-14 Hard coat resin composition for automotive exterior molding film, hard coat film for molding, method for producing insert molded product, insert molded product, and out-mold molded product WO2024014053A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022110973A JP7213384B1 (en) 2022-07-11 2022-07-11 HARD COAT FILM FOR MOLDING, MOLDED PRODUCT USING IT, AND METHOD FOR MANUFACTURING INSERT MOLDED PRODUCT
JP2022-110973 2022-07-11

Publications (1)

Publication Number Publication Date
WO2024014053A1 true WO2024014053A1 (en) 2024-01-18

Family

ID=85035355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/009883 WO2024014053A1 (en) 2022-07-11 2023-03-14 Hard coat resin composition for automotive exterior molding film, hard coat film for molding, method for producing insert molded product, insert molded product, and out-mold molded product

Country Status (2)

Country Link
JP (3) JP7213384B1 (en)
WO (1) WO2024014053A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016186039A (en) * 2015-03-27 2016-10-27 三菱化学株式会社 Urethane (meth)acrylate oligomer
WO2016199847A1 (en) * 2015-06-12 2016-12-15 株式会社カネカ Layered film
JP2018111793A (en) * 2017-01-11 2018-07-19 アイカ工業株式会社 Ultraviolet-curable resin composition and hard coat film
JP2021066874A (en) * 2019-10-23 2021-04-30 アイカ工業株式会社 Photocurable resin composition and hard coat film
JP2022055398A (en) * 2020-09-29 2022-04-08 アイカ工業株式会社 Antireflection hard coat film for after cure type molding
JP2022126018A (en) * 2021-02-18 2022-08-30 アイカ工業株式会社 Antireflection film and method for producing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013173871A (en) 2012-02-27 2013-09-05 Mitsubishi Chemicals Corp Composition, antistatic coating agent, and antistatic laminate
EP3680103A4 (en) * 2017-09-06 2020-10-14 Mitsubishi Gas Chemical Company, Inc. High-hardness molding resin sheet and molded article using same
JP2019168264A (en) * 2018-03-22 2019-10-03 豊田合成株式会社 Near-infrared sensor cover
JP2022018764A (en) * 2020-07-16 2022-01-27 株式会社ネオス Curable composition for forming hard coat and laminate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016186039A (en) * 2015-03-27 2016-10-27 三菱化学株式会社 Urethane (meth)acrylate oligomer
WO2016199847A1 (en) * 2015-06-12 2016-12-15 株式会社カネカ Layered film
JP2018111793A (en) * 2017-01-11 2018-07-19 アイカ工業株式会社 Ultraviolet-curable resin composition and hard coat film
JP2021066874A (en) * 2019-10-23 2021-04-30 アイカ工業株式会社 Photocurable resin composition and hard coat film
JP2022055398A (en) * 2020-09-29 2022-04-08 アイカ工業株式会社 Antireflection hard coat film for after cure type molding
JP2022126018A (en) * 2021-02-18 2022-08-30 アイカ工業株式会社 Antireflection film and method for producing the same

Also Published As

Publication number Publication date
JP2024009446A (en) 2024-01-23
JP2024009743A (en) 2024-01-23
JP7361962B1 (en) 2023-10-16
JP7213384B1 (en) 2023-01-26
JP2024009744A (en) 2024-01-23
JP7293518B1 (en) 2023-06-19

Similar Documents

Publication Publication Date Title
KR101887722B1 (en) Decorated sheet and decorated resin molded article using same
CN112272681B (en) Radiation curable composition
WO2011048775A1 (en) Vehicle member and process for production thereof
WO2008075806A1 (en) Photo-curable coating composition comprising hyperbranched structure prepolymer, method for preparing the same and product prepared by the same
JP6642737B2 (en) Aqueous resin composition, laminate using the same, optical film and image display device
JP2010260905A (en) Photocurable composition
JP2021066874A (en) Photocurable resin composition and hard coat film
TWI784769B (en) Paint composition, semi-cured film, decorative molded article, and method for manufacturing the decorated molded article
JP6451627B2 (en) Active energy ray-curable resin composition and automobile headlamp lens
JP2019006897A (en) Photocurable resin composition and sheet
JP7361962B1 (en) Hard coat film for molding, molded products using the same, and method for producing insert molded products
JP7199185B2 (en) Antireflection hard coat film for molding
KR102275295B1 (en) Urethane (meth)acrylate polymer
JP7385784B1 (en) Photocurable resin composition, hard coat film for molding, and molded products using the same
JPH06128502A (en) Covering material composition
JP2022126018A (en) Antireflection film and method for producing the same
JP3819245B2 (en) Curable composition for coating, coated article, and outer skin for automobile
JP2023054872A (en) Antireflection film, method for using the same and plastic molded article using the same
JP7464489B2 (en) After-cure type molding anti-reflective hard coat film
CN113874446B (en) Coating composition, decorative film and decorative molded article
JP2023119087A (en) Photocurable resin composition, hard coat film for molding, and molded article using the same, and method for manufacturing insert-molded article
JP3782670B2 (en) Curable composition for coating, coated article, outer plate for automobile, and active energy ray-curable composition
JP2024057637A (en) Photocurable resin composition, hard coat film for molding, and molded article using same
CN113396169A (en) Photocurable silicone resin composition, silicone resin molded article obtained by curing the same, and method for producing the molded article
JP7370835B2 (en) Curable composition and cured film thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23839233

Country of ref document: EP

Kind code of ref document: A1