JP2023119087A - Photocurable resin composition, hard coat film for molding, and molded article using the same, and method for manufacturing insert-molded article - Google Patents

Photocurable resin composition, hard coat film for molding, and molded article using the same, and method for manufacturing insert-molded article Download PDF

Info

Publication number
JP2023119087A
JP2023119087A JP2022021721A JP2022021721A JP2023119087A JP 2023119087 A JP2023119087 A JP 2023119087A JP 2022021721 A JP2022021721 A JP 2022021721A JP 2022021721 A JP2022021721 A JP 2022021721A JP 2023119087 A JP2023119087 A JP 2023119087A
Authority
JP
Japan
Prior art keywords
molding
weight
hard coat
insert
coat film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022021721A
Other languages
Japanese (ja)
Inventor
晴彦 間瀬
Haruhiko Mase
秀俊 佐藤
Hidetoshi Sato
正章 熊谷
Masaaki Kumagai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aica Kogyo Co Ltd
Original Assignee
Aica Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aica Kogyo Co Ltd filed Critical Aica Kogyo Co Ltd
Priority to JP2022021721A priority Critical patent/JP2023119087A/en
Publication of JP2023119087A publication Critical patent/JP2023119087A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

To provide a photocurable resin composition which has abrasion resistance and chemical resistance, has high elongation at break and good moldability, has excellent weather resistance enough to withstand outdoor use, and is suitable for molding application, a hard coat film for molding coated with the same and a molded article, and a method for manufacturing an insert-molded article.SOLUTION: A photocurable resin composition contains urethane acrylate obtained by further reacting pentaerythritol triacrylate with diisocyanate obtained by reacting ethylene glycol with isophorone diisocyanate, silicone-containing acryl(meth)acrylate, a photostabilizer, and a photopolymerization initiator, where a weight average molecular weight of the urethane acrylate is 2,000-12,000, and a blending amount of the silicone-containing acryl(meth)acrylate is 0.5-30 pts.wt. with respect to 100 pts.wt. of the urethane acrylate.SELECTED DRAWING: None

Description

本発明は成形性に優れた光硬化性の樹脂組成物、及びその樹脂硬化層を有する成形用ハードコートフィルム、更にはそれを用いた成形品とインサート成形品の製造方法に関する。 TECHNICAL FIELD The present invention relates to a photocurable resin composition excellent in moldability, a hard coat film for molding having a cured resin layer thereof, and a method for producing molded articles and insert molded articles using the same.

アクリル系の光硬化性樹脂は、プラスチックフィルムやプラスチック成形物表面に特別な性能を付与するために多くの分野で用いられており、例えばPET(ポリエチレンテレフタレート)フィルム上に塗布して高硬度を付与したハードコートフィルムは、タッチパネル用フィルムや成形用フィルムとして大量に使用されている。 Acrylic photo-curing resins are used in many fields to impart special performance to the surface of plastic films and plastic moldings. The resulting hard coat film is used in large quantities as a film for touch panels and a film for molding.

これらのなかで特に成形用としては、フィルム表面に絵柄を印刷後、加熱により軟化させた状態で3次元成形を行う成形用フィルムが良く知られているが、フィルムに塗布されたハードコート樹脂層を硬くすると、立体形状に加工する際に曲面においてマイクロクラックが入りやすくなり、加工形状には制約があった。そのため過去に出願人は、表面硬度と成形性を両立させるインサート成形用のハードコート樹脂として、トリアジン環含有(メタ)アクリレートプレポリマーと平均一次粒子径が80~500nmの有機微粒子を含むハードコート剤を発明した(特許文献1)。このハードコート剤は膜厚が1~10μmで十分な柔軟性と表面物性が両立可能な優れるものであった。 Among these, particularly for molding, molding films are well known in which a pattern is printed on the surface of the film and then three-dimensional molding is performed in a state in which the film is softened by heating. If the material is hardened, microcracks are likely to occur on the curved surface when it is processed into a three-dimensional shape, and there are restrictions on the shape to be processed. Therefore, in the past, the applicant has proposed a hard coating agent containing a triazine ring-containing (meth)acrylate prepolymer and organic fine particles having an average primary particle diameter of 80 to 500 nm as a hard coating resin for insert molding that achieves both surface hardness and moldability. (Patent Document 1). This hard coating agent had a film thickness of 1 to 10 μm and was excellent in that both sufficient flexibility and surface physical properties were compatible.

こうした成形用途に適したハードコート剤を選定することで、加工面での制約はある程度緩和されてはきたが、インサート成形品の用途が広がるにつれて、従来から求められる成形性や耐摩耗性に加え、様々な特性が求められるようになってきている。例えば自動車の外装や屋外保管される機器の外装のように、常時屋外で使用される用途では、新たに紫外線や気温の寒暖差に耐えうる十分な耐候性や耐久性が求められるようになってきた。そのため、従来からの要求特性である十分な成形性や耐摩耗性、耐薬品性等に加えて、屋外での使用に耐えうる十分な耐候性を持たせるためには改善の余地があった。 By selecting a hard coating agent suitable for such molding applications, restrictions on processing have been eased to some extent. , various characteristics are required. For applications that are always used outdoors, such as the exterior of automobiles and the exterior of equipment stored outdoors, there is a new demand for sufficient weather resistance and durability to withstand ultraviolet rays and temperature differences. Ta. Therefore, in addition to the conventionally required properties such as sufficient moldability, abrasion resistance, and chemical resistance, there is room for improvement in order to provide sufficient weather resistance to withstand outdoor use.

特許第4848200号Patent No. 4848200

本発明の課題は、耐摩耗性や耐薬品性を有し、破断伸度が高く成形性が良好であると共に、屋外での使用にも耐えうる優れた耐候性を有する成形用途に適した光硬化性樹脂組成物、及びこれを塗工した成形用ハードコートフィルムと、それを用いた成形品、並びにインサート成形品の製造方法を提供することにある。 The object of the present invention is to provide a light suitable for molding applications that has wear resistance and chemical resistance, high breaking elongation and good moldability, and has excellent weather resistance that can withstand outdoor use. An object of the present invention is to provide a curable resin composition, a molding hard coat film coated with the same, a molded article using the same, and a method for producing an insert molded article.

上記の課題を解決するため、請求項1の発明は、エチレングリコールとイソホロンジイソシアネート(以下IPDIという)を反応させたジイソシアネートに、ペンタエリスリトールトリアクリレート(以下PETAという)を更に反応させたウレタンアクリレート(A)と、シリコーン含有アクリル(メタ)アクリレート(B)と、光安定剤(C)と、光重合開始剤(D)と、を含み、前記(A)の重量平均分子量が2,000~12,000であり、前記(B)の配合量が前記(A)100重量部に対し0.5~30重量部であることを特徴とする光硬化性樹脂組成物を提供する。 In order to solve the above problems, the invention of claim 1 provides a urethane acrylate (A ), a silicone-containing acrylic (meth)acrylate (B), a light stabilizer (C), and a photopolymerization initiator (D), wherein the weight average molecular weight of (A) is 2,000 to 12, 000, and the amount of (B) is 0.5 to 30 parts by weight per 100 parts by weight of (A).

請求項2の発明は、前記(B)が、アクリル主鎖にシリコーン側鎖を有するアクリル(メタ)アクリレートであることを特徴とする請求項1記載の光硬化性樹脂組成物を提供する。 The invention of claim 2 provides the photocurable resin composition of claim 1, wherein the (B) is an acrylic (meth)acrylate having a silicone side chain on the acrylic main chain.

請求項3の発明は、プラスチック基材上に請求項1又は2いずれか記載の光硬化性樹脂組成物の硬化層を有することを特徴とする成形用ハードコートフィルムを提供する。 The invention according to claim 3 provides a hard coat film for molding, comprising a cured layer of the photocurable resin composition according to claim 1 or 2 on a plastic substrate.

請求項4の発明は、前記プラスチック基材がポリカーボネート基材、アクリル基材、ポリエステル基材、又はこれらの複合基材の群から選択される基材であることを特徴とする請求項3記載の成形用ハードコートフィルを提供する。 The invention of claim 4 is characterized in that the plastic base material is a base material selected from the group consisting of a polycarbonate base material, an acrylic base material, a polyester base material, or a composite base material thereof. A molding hard coat fill is provided.

請求項5の発明は、前記成形用ハードコートフィルムがインサート成形用又はアウトモールド成形用であることを特徴する請求項3又は4いずれか記載の成形用ハードコートフィルムを提供する。 The invention of claim 5 provides the hard coat film for molding according to any one of claims 3 and 4, characterized in that the hard coat film for molding is for insert molding or outmold molding.

請求項6の発明は、前記成形用ハードコートフィルムを、金型を用いて賦形後、光硬化性樹脂硬化層とは反対側から溶融樹脂を射出して樹脂成形品を形成することを特徴とする請求項3又は4いずれか記載のインサート成形品の製造方法を提供する。 The invention according to claim 6 is characterized in that after shaping the hard coat film for molding using a mold, a resin molded product is formed by injecting a molten resin from the side opposite to the photocurable resin cured layer. A method for manufacturing an insert-molded product according to claim 3 or 4 is provided.

請求項7の発明は、を前記溶融樹脂が着色されていることを特徴とする請求項6記載のインサート成形品の製造方法を提供する。 The invention of claim 7 provides the method of manufacturing an insert-molded product according to claim 6, wherein the molten resin is colored.

請求項8の発明は、前記インサート成形品が車両外装用途であることを特徴とする請求項6又は7いずれか記載のインサート成形品の製造方法を提供する。 The invention according to claim 8 provides the method for manufacturing an insert-molded product according to claim 6 or 7, wherein the insert-molded product is used for vehicle exteriors.

請求項9の発明は、請求項3~5いずれか記載の成形用ハードコートフィルムを用いたインサート成形品又はアウトモールド成形品を提供する。 The invention according to claim 9 provides an insert-molded article or an out-molded article using the molding hard coat film according to any one of claims 3 to 5.

本発明の光硬化性樹脂組成物及びこれを塗工したハードコートフィルム(以下HCフィルムという)は、耐摩耗性や耐薬品性を有し、破断伸度が高く成形性が良好であると共に優れた耐候性を有するため、屋外で使用するようなインサート成形品やアウトモールド成形品に用いる材料として有用である。 The photocurable resin composition of the present invention and the hard coat film (hereinafter referred to as HC film) coated with the same have abrasion resistance and chemical resistance, high breaking elongation and good moldability. Because of its weather resistance, it is useful as a material for insert-molded products and out-molded products for outdoor use.

本発明の光硬化性樹脂組成物の構成は、エチレングリコールとIPDIを反応させたジイソシアネートに、PETAを更に反応させたウレタンアクリレート(A)と、シリコーン含有アクリル(メタ)アクリレート(B)と、光安定剤(C)と、光重合開始剤(D)である。なお、本明細書において(メタ)アクリレートは、アクリレートとメタクリレートとの双方を包含する。 The composition of the photocurable resin composition of the present invention comprises a diisocyanate obtained by reacting ethylene glycol and IPDI, a urethane acrylate (A) obtained by further reacting PETA, a silicone-containing acrylic (meth)acrylate (B), and a light A stabilizer (C) and a photopolymerization initiator (D). In this specification, (meth)acrylate includes both acrylate and methacrylate.

前記(A)の合成で使用する脂環式ジイソシアネートのIPDIは、黄変が無く耐候安定性に優れると同時に剛性が高く、硬化物の硬度を上げることができる。炭素鎖が非常に短いエチレングリコールと反応させることで、分子内のウレタン結合濃度を高くすることが可能となり、耐薬品性に優れた剛性の高い直鎖構造の主骨格を形成できる。エチレングリコールの代わりにポリエチレングリコールを用いると、ウレタン結合の濃度が低くなり耐薬品性が低下する傾向がある。 IPDI, which is an alicyclic diisocyanate used in the synthesis of (A), is free from yellowing, has excellent weather resistance stability, and has high rigidity, so that the hardness of the cured product can be increased. By reacting with ethylene glycol, which has a very short carbon chain, it is possible to increase the concentration of urethane bonds in the molecule, forming a highly rigid straight-chain main skeleton with excellent chemical resistance. When polyethylene glycol is used in place of ethylene glycol, the concentration of urethane bonds tends to decrease and chemical resistance tends to decrease.

前記(A)の合成方法としては特に制限はなく、公知の方法を用いることができる。反応は無溶媒下でも良いが、(A)の分子量が大きくなるにつれて攪拌が困難となる場合があるため、ブタノン等のケトン類、キシレン等の芳香族不活性溶媒などを用いても良い。またエチレングリコール及びPETAの水酸基と、イソシアネート基との反応には、触媒を用いることが好ましい。その場合の例としては、ジブチルスズジラウレート等の錫系、ナフテン酸コバルト等の金属アルコキシド系が挙げられる。反応温度は適宜設定可能であるが40~120℃が好ましく、60~100℃が更に好ましい。 The method for synthesizing (A) is not particularly limited, and known methods can be used. The reaction may be carried out without a solvent, but since stirring may become difficult as the molecular weight of (A) increases, a ketone such as butanone or an aromatic inert solvent such as xylene may be used. Moreover, it is preferable to use a catalyst for the reaction between the hydroxyl group of ethylene glycol and PETA and the isocyanate group. Examples thereof include tin-based agents such as dibutyltin dilaurate and metal alkoxide-based agents such as cobalt naphthenate. Although the reaction temperature can be set appropriately, it is preferably 40 to 120°C, more preferably 60 to 100°C.

前記(A)の重量平均分子量(以下Mwという)は2,000~12,000であり、2,500~11,000が好ましく、3,000~10,000が更に好ましい。2,000未満では破断伸度が低くなるため十分な成形性を確保することが難しくなり、12,000超では耐摩耗性が低下し、また作業性の良い粘度に調整しにくくなる。(A)のMwは、反応させるエチレングリコールとIPDIのモル比により調整が可能で、エチレングリコールに対するIPDIのモル比を近づけると、Mwは大きくなる傾向がある。なおMwは、ゲル浸透クロマトグラフィーにより、スチレンジビニルベンゼン基材の充填剤を用いたカラムでテトラハイドロフラン溶離液を用いて、標準ポリスチレン換算の分子量を測定、算出した。 The weight average molecular weight (hereinafter referred to as Mw) of (A) is 2,000 to 12,000, preferably 2,500 to 11,000, more preferably 3,000 to 10,000. If it is less than 2,000, the elongation at break becomes low, making it difficult to ensure sufficient moldability. Mw of (A) can be adjusted by the molar ratio of ethylene glycol and IPDI to be reacted, and Mw tends to increase as the molar ratio of IPDI to ethylene glycol approaches. The Mw was calculated by measuring the molecular weight in terms of standard polystyrene by gel permeation chromatography using a column using a styrene-divinylbenzene-based packing material and using a tetrahydrofuran eluent.

前記(A)の配合量は、固形分全量に対し55~95重量%が好ましく、60~90重量%が更に好ましく、65~88重量%が特に好ましい。55重量%以上とすることで十分な破断強度と耐薬品性を確保することができ、95重量%以下とすることで十分な耐候性を確保することができる。 The content of (A) is preferably 55 to 95% by weight, more preferably 60 to 90% by weight, particularly preferably 65 to 88% by weight, based on the total solid content. Sufficient breaking strength and chemical resistance can be ensured by making it 55% by weight or more, and sufficient weather resistance can be ensured by making it 95% by weight or less.

本発明に使用されるシリコーン含有アクリル(メタ)アクリレート(B)は、硬化物表面の滑り性を良好にして耐摩耗性を向上させると共に、耐久性に優れた塗膜を形成させる目的で添加され、例えばアクリル主鎖にシリコーン側鎖を有するアクリル(メタ)アクリレート等を挙げることができる。反応性を有する(メタ)アクリロイル基を分子内に有することで(A)と強固に結合し、経時的なブリードアウト発生を抑制して、長期間にわたり硬化物表面に良好な滑り性や耐摩耗性を付与することができる。 The silicone-containing acrylic (meth)acrylate (B) used in the present invention is added for the purpose of improving the slipperiness of the surface of the cured product, improving the abrasion resistance, and forming a coating film with excellent durability. , for example, an acrylic (meth)acrylate having a silicone side chain on the acrylic main chain. Having a reactive (meth)acryloyl group in the molecule firmly binds to (A), suppresses the occurrence of bleed-out over time, and provides good lubricity and wear resistance on the surface of the cured product over a long period of time. You can give it character.

前記(B)の配合量は、(A)100重量部に対し0.5~30重量部であり、0.8~28重量部が好ましく、3~20重量部が更に好ましく、5~15重量部が特に好ましい。0.5重量部未満では十分な耐摩耗性が確保しにくくなり、30重量部超ではヘイズが上昇し外観が低下する傾向が有る。固形分全量に対しては0.4~21重量%が好ましく、0.6~20重量%が更に好ましい。(B)の市販品としてはGL-02R(商品名:共栄社化学社製)等が挙げられる。 The amount of (B) is 0.5 to 30 parts by weight, preferably 0.8 to 28 parts by weight, more preferably 3 to 20 parts by weight, and 5 to 15 parts by weight with respect to 100 parts by weight of (A). Part is particularly preferred. If it is less than 0.5 parts by weight, it will be difficult to ensure sufficient abrasion resistance, and if it exceeds 30 parts by weight, the haze will increase and the appearance will tend to deteriorate. It is preferably 0.4 to 21% by weight, more preferably 0.6 to 20% by weight, based on the total solid content. Commercially available products of (B) include GL-02R (trade name: manufactured by Kyoeisha Chemical Co., Ltd.).

本発明に使用される光安定剤(C)は、屋外で使用した場合の紫外線暴露や、輻射熱による硬化膜の劣化防止を目的に配合する。例えば、紫外線により光劣化したポリマーから生ずるアルキルラジカルやパーオキシラジカルを効率よくトラップするラジカル補足剤(c1)や、吸収した紫外線のエネルギーを熱エネルギーなどに変換することにより、ポリマーの分解を抑制する紫外線吸収剤(c2)などが挙げられる。 The light stabilizer (C) used in the present invention is blended for the purpose of preventing deterioration of the cured film due to ultraviolet exposure and radiant heat when used outdoors. For example, a radical scavenger (c1) that efficiently traps alkyl radicals and peroxy radicals generated from polymers photodegraded by ultraviolet rays, or by converting the energy of absorbed ultraviolet rays into heat energy, suppresses the decomposition of polymers. An ultraviolet absorber (c2) and the like can be mentioned.

本発明に使用されるラジカル補足剤(c1)としては、例えばヒンダードアミン系(以下HALS系と言う)やヒンダードフェノール系、芳香族アミン系等が挙げられ、単独あるいは2種類以上を組み合わせて使用することができる。これらの中では、低濃度でもラジカル補足効率が高いHALS系が好ましい。 Examples of the radical scavenger (c1) used in the present invention include hindered amine-based (hereinafter referred to as HALS-based), hindered phenol-based, and aromatic amine-based agents, which may be used alone or in combination of two or more. be able to. Among these, the HALS system, which has a high radical scavenging efficiency even at a low concentration, is preferred.

前記(c1)の配合量は、固形分全量に対し1~10重量%が好ましく、2~8重量%が更に好ましく、3~6重量%が特に好ましい。この範囲とすることで、十分な光安定性を確保することが出来る。HALS系の市販品としてはTinuvin123及びTinuvin249(商品名:BASFジャパン社製)等が挙げられる。 The content of (c1) is preferably 1 to 10% by weight, more preferably 2 to 8% by weight, particularly preferably 3 to 6% by weight, based on the total solid content. Sufficient photostability can be ensured by setting it as this range. Examples of commercially available HALS products include Tinuvin123 and Tinuvin249 (trade name: manufactured by BASF Japan).

本発明に使用される紫外線吸収剤(c2)は、エネルギーが高い有害な紫外線領域に吸収帯域を持つラジカル連鎖開始阻止剤であり、前記(c1)との併用により、耐候性をより向上及び安定させることが可能となる。例えばベンゾトリアゾール系、トリアジン系、ベンゾフェノン系等が挙げられ、単独あるいは2種類以上を組み合わせて使用することができる。これらの中では紫外線の長波長部を強く吸収することが可能なヒドロキシフェニルトリアジン系が好ましい。 The ultraviolet absorber (c2) used in the present invention is a radical chain initiation inhibitor having an absorption band in the high-energy, harmful ultraviolet region. It is possible to For example, benzotriazole-based, triazine-based, benzophenone-based, etc. can be mentioned, and can be used alone or in combination of two or more. Among these, the hydroxyphenyltriazine system is preferable because it can strongly absorb the long wavelength region of ultraviolet rays.

前記(c2)の配合量は、固形分全量に対し0.5~5重量%が好ましく、0.8~3.0重量%が更に好ましく、1.0~2.0重量%が特に好ましい。この範囲とすることで、十分な紫外線吸収特性を確保することが出来る。市販品としてはTinuvin460及び477(商品名:BASFジャパン社製)等が挙げられる。また前記(c1)と(c2)を合計した(C)の配合量は、固形分全量に対し1.0~12重量%が好ましく、1.5~10重量%が更に好ましく、4.0~8.0重量%が特に好ましい。1.0重量%以上とすることで耐候性の向上が期待でき、12重量%以下とすることで過剰配合とならず、基材との十分な密着性を確保できる。 The content of (c2) is preferably 0.5 to 5% by weight, more preferably 0.8 to 3.0% by weight, particularly preferably 1.0 to 2.0% by weight, based on the total solid content. By setting it as this range, sufficient ultraviolet absorption characteristics can be ensured. Commercially available products include Tinuvin 460 and 477 (trade name: manufactured by BASF Japan). The amount of (C), which is the sum of (c1) and (c2), is preferably 1.0 to 12% by weight, more preferably 1.5 to 10% by weight, more preferably 4.0 to 4.0% by weight, based on the total solid content. 8.0% by weight is particularly preferred. When the content is 1.0% by weight or more, an improvement in weather resistance can be expected, and when the content is 12% by weight or less, excessive compounding can be avoided and sufficient adhesion to the substrate can be ensured.

本発明に使用される光重合開始剤(D)は、紫外線や電子線などの照射でラジカルを生じ、そのラジカルが重合反応のきっかけとなるもので、ベンジルケタール系、アセトフェノン系、フォスフィンオキサイド系等汎用の光重合開始剤が使用できる。重合開始剤の光吸収波長を任意に選択することによって、紫外線領域から可視光領域にいたる広い波長範囲にわたって硬化性を付与することができる。具体的にはベンジルケタール系として2.2-ジメトキシ-1.2-ジフェニルエタン-1-オンが、α-ヒドロキシアセトフェノン系として1-ヒドロキシ-シクロヘキシル-フェニル-ケトン及び1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オンが、α-アミノアセトフェノン系として2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オンが、アシルフォスフィンオキサイド系として2.4.6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド及びビス(2.4.6‐トリメチルベンゾイル)‐フェニルフォスフィンオキサイド等があり、単独または2種以上を組み合わせて使用できる。 The photopolymerization initiator (D) used in the present invention generates radicals when irradiated with ultraviolet rays, electron beams, or the like, and the radicals trigger a polymerization reaction. general-purpose photopolymerization initiators such as Curability can be imparted over a wide wavelength range from the ultraviolet region to the visible light region by arbitrarily selecting the light absorption wavelength of the polymerization initiator. Specifically, 2,2-dimethoxy-1,2-diphenylethan-1-one is a benzyl ketal system, and 1-hydroxy-cyclohexyl-phenyl-ketone and 1-[4-(2- hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propan-1-one is 2-methyl-1-(4-methylthiophenyl)-2-morpholinopropane-1 as α-aminoacetophenone -on includes acylphosphine oxides such as 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide and bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, either singly or in combination of two or more can be used in combination.

これらの中では、黄変しにくいα-ヒドロキシアセトフェノン系を含むことが好ましく、市販品としてはOmnirad127D、184及び2959(商品名:IGM Resins社製)などがある。前記(D)のラジカル重合性分100重量部に対する配合は2~12重量部が好ましく、3~10重量部が更に好ましい。 Among these, it is preferable to contain an α-hydroxyacetophenone type resin that is resistant to yellowing. The content of (D) per 100 parts by weight of the radically polymerizable component is preferably 2 to 12 parts by weight, more preferably 3 to 10 parts by weight.

本発明の光硬化性樹脂組成物(以下本組成物という)には、性能を損なわない範囲で必要に応じて、架橋剤、密着促進剤、酸化防止剤、ブルーイング剤、顔料、レベリング剤、消泡剤、増粘剤、沈澱防止剤、帯電防止剤、防曇剤、抗菌剤、ワックス、つや消し剤、親水剤、撥水剤、無機フィラー、有機微粒子等を添加してもよい。 The photocurable resin composition of the present invention (hereinafter referred to as the present composition) may optionally contain a cross-linking agent, an adhesion promoter, an antioxidant, a bluing agent, a pigment, a leveling agent, as long as the performance is not impaired. Defoamers, thickeners, anti-settling agents, anti-static agents, anti-fogging agents, antibacterial agents, waxes, matting agents, hydrophilic agents, water repellent agents, inorganic fillers, organic fine particles and the like may be added.

上記架橋剤としては、低粘度で(A)及び(B)との相溶性に優れる点で、多官能(メタ)アクリレートを用いることが好ましい。例えば2官能では(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、ジシクロペンタニルジアクリレートが、3官能ではトリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレートが、4官能でジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスルトールテトラ(メタ)アクリレート、ジグリセリンテトラ(メタ)アクリレートが、5官能ではジペンタエリスリトールペンタ(メタ)アクリレートが、6官能ではジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられ、単独あるいは2種類以上を組み合わせて使用することができる。これらの中では、反応性が良好で成形性を低下させにくい点でジペンタエリスリトールヘキサアクリレート(以下DPHAという)が好ましい。 As the cross-linking agent, it is preferable to use a polyfunctional (meth)acrylate from the viewpoint of low viscosity and excellent compatibility with (A) and (B). For example, bifunctional (poly)ethylene glycol di(meth)acrylate, (poly)propylene glycol di(meth)acrylate, dicyclopentanyl diacrylate, and trifunctional trimethylolpropane tri(meth)acrylate, pentaerythritol tri( meth)acrylates include tetrafunctional ditrimethylolpropane tetra(meth)acrylate, pentaerythritol tetra(meth)acrylate, and diglycerin tetra(meth)acrylate, and pentafunctional dipentaerythritol penta(meth)acrylate, 6 Functionality includes dipentaerythritol hexa(meth)acrylate and the like, which can be used alone or in combination of two or more. Among these, dipentaerythritol hexaacrylate (hereinafter referred to as DPHA) is preferable because it has good reactivity and does not easily deteriorate moldability.

前記架橋剤の配合量としては、(A)100重量部に対し30重量部以下が好ましく、25重量部以下が更に好ましい。30重量部以下とすることで、十分な成形性を確保しつつ反応性を向上させることが出来る。また固形分全量に対する配合比率としては20重量%以下が好ましく、10重量%以下が更に好ましい。 The content of the cross-linking agent is preferably 30 parts by weight or less, more preferably 25 parts by weight or less per 100 parts by weight of (A). By making it 30 parts by weight or less, it is possible to improve the reactivity while ensuring sufficient moldability. Also, the blending ratio of the total solid content is preferably 20% by weight or less, more preferably 10% by weight or less.

本組成物をプラスチック基材に塗工する際には、塗工特性を向上させるため溶剤で希釈してもよい。例えばエタノール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール、ジアセトンアルコール等のアルコール系溶媒、アセトン、メチルエチルケトン(以下MEKという)、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤、酢酸エチル、酢酸ブチル等のエステル系溶媒、プロピレングリコールモノメチルエーテル(以下PGMという),ジエチルエーテル、ジイソプロピルエーテル等のエーテル系溶媒、シクロヘキサン、メチルシクロヘキサン等の炭化水素系溶媒等があげられ、単独あるいは2種類以上を組み合わせて使用できる。希釈する場合の固形分としては10~70%が例示されるが、特に指定は無く、塗工しやすい粘度となるように適宜設定可能である。 When the composition is applied to a plastic substrate, it may be diluted with a solvent to improve coating properties. For example, alcohol solvents such as ethanol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, and diacetone alcohol, ketone solvents such as acetone, methyl ethyl ketone (hereinafter referred to as MEK), methyl isobutyl ketone, and cyclohexanone, ethyl acetate , ester solvents such as butyl acetate, ether solvents such as propylene glycol monomethyl ether (hereinafter referred to as PGM), diethyl ether and diisopropyl ether, and hydrocarbon solvents such as cyclohexane and methylcyclohexane. can be used in combination. The solid content in the case of dilution is exemplified as 10 to 70%, but there is no particular specification, and it can be appropriately set so that the viscosity is easy to apply.

本組成物が塗布されるプラスチック基材としては、ポリエステルフィルム、トリアセチルセルロースフィルム、ポリカーボネート(以下PCという)フィルム、ポリスルフォンフィルム、ナイロンフィルム、シクロオレフィンフィルム、アクリル(以下PMMAという)フィルム、ポリイミドフィルム、ABSフィルム、ポリオレフィンフィルム、PVCフィルム、PVAフィルム等を挙げることができる。なかでも耐候性、加工性、寸法安定性などの点から二軸延伸処理されたポリエステルフィルムが好ましく用いられる。更に自動車内装加飾用ではPMMAフィルムやPCフィルムが好ましく用いられ、またそれらの積層フィルムでも良い。フィルムの厚みは概ね25μm~500μmであればよい。 Plastic substrates to which the present composition is applied include polyester films, triacetylcellulose films, polycarbonate (hereinafter referred to as PC) films, polysulfone films, nylon films, cycloolefin films, acrylic (hereinafter referred to as PMMA) films, and polyimide films. , ABS film, polyolefin film, PVC film, PVA film and the like. Among them, a biaxially stretched polyester film is preferably used from the viewpoint of weather resistance, workability, dimensional stability, and the like. Furthermore, PMMA films and PC films are preferably used for automotive interior decoration, and laminated films thereof may also be used. The thickness of the film may be approximately 25 μm to 500 μm.

前記プラスチック基材は、本組成物との密着性を向上させる目的で、プライマー処理やサンドブラスト法、溶剤処理法などによる表面の凹凸化処理、あるいはコロナ放電処理、クロム酸処理、オゾン・紫外線照射処理などの表面の酸化処理などの表面処理を施すことができる。 For the purpose of improving adhesion to the present composition, the plastic substrate may be subjected to a roughening treatment such as primer treatment, sandblasting, solvent treatment, corona discharge treatment, chromic acid treatment, ozone/ultraviolet irradiation treatment. Surface treatment such as surface oxidation treatment can be applied.

本組成物を塗布する方法は、特に制限はなく、公知のスプレーコート、ロールコート、ダイコート、エアナイフコート、ブレードコート、スピンコート、リバースコート、グラビアコート、ワイヤーバーなどの塗工法またはグラビア印刷、スクリーン印刷、オフセット印刷、インクジェット印刷などの印刷法により形成できる。塗工する膜厚は乾燥時で1μm~10μmが例示できるが、これに限定されるものではない。 The method of applying the present composition is not particularly limited, and known spray coating, roll coating, die coating, air knife coating, blade coating, spin coating, reverse coating, gravure coating, wire bar coating methods, or gravure printing, screen coating. It can be formed by a printing method such as printing, offset printing, or inkjet printing. The film thickness to be coated can be exemplified as 1 μm to 10 μm when dry, but is not limited to this.

本組成物を硬化させる際に用いる紫外線照射の光源としては、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、カーボンアーク灯、キセノンランプ、メタルハライドランプ、LEDランプ、無電極紫外線ランプなどがあり、また照射する雰囲気は空気中でもよいし、窒素、アルゴンなどの不活性ガス中でもよい。また紫外線照射時にバックロールの加温や、IRヒーターなどにより塗膜を加熱することで、より硬化性を上げることができる。照射条件としては照射強度500mW/cm~3000mW/cm、露光量50~400mJ/cmが例示されるが、これに限定されるものではない。 Light sources for ultraviolet irradiation used for curing the present composition include low-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, carbon arc lamps, xenon lamps, metal halide lamps, LED lamps, electrodeless ultraviolet lamps, and the like. The atmosphere for irradiation may be air or an inert gas such as nitrogen or argon. Curability can be further increased by heating the coating film with a back roll or an IR heater during ultraviolet irradiation. Examples of irradiation conditions include an irradiation intensity of 500 mW/cm 2 to 3000 mW/cm 2 and an exposure amount of 50 to 400 mJ/cm 2 , but are not limited to these.

本組成物をプラスチック基材に塗工し硬化させたHCフィルム(以下本HCフィルムという)は、130℃雰囲気下での破断伸度が50%以上であることが好ましく、100%以上であることが更に好ましく、200%以上が特に好ましい。破断伸度を80%以上とすることで、十分な成形性が期待できる。 The HC film obtained by applying the present composition to a plastic substrate and curing (hereinafter referred to as the present HC film) preferably has a breaking elongation of 50% or more, and preferably 100% or more, in an atmosphere of 130°C. is more preferred, and 200% or more is particularly preferred. Sufficient moldability can be expected by setting the breaking elongation to 80% or more.

本HCフィルムには、必要に応じ加飾層を設けることができる。加飾する方法としては、例えば印刷や金属蒸着等が挙げられ、またこれら両方を用いて加飾しても良い。また更に射出成形樹脂との密着性を向上させるため、接着層やプライマー層を設けても良い。 The present HC film can be provided with a decorative layer if necessary. Examples of the decorating method include printing and metal vapor deposition, and both of these methods may be used for decorating. Further, an adhesive layer or a primer layer may be provided in order to improve adhesion with the injection molding resin.

本HCフィルムには本組成物が塗布された面の保護のため、保護フィルムを貼り合わせても良い。保護フィルムを用いることで、インサート成形やアウトモールド成形プロセスでの傷つき防止ができ、歩留まり向上が期待できる。 A protective film may be attached to the HC film to protect the surface coated with the composition. By using a protective film, it is possible to prevent damage during insert molding and out molding processes, and an improvement in yield can be expected.

本HCフィルムをインサート成形で用いる方法としては、例えば本組成物が塗布された面を金型の内壁面に向かうよう(本組成物硬化層の反対面が成形樹脂と接するよう)に配置し、必要に応じて本HCフィルムを金型形状に追従させ予備成形し、次に金型を閉じてキャビティ―内に溶融状態の成形樹脂を射出させ、樹脂を固化させることにより樹脂成形品を形成することができる。 As a method of using the present HC film in insert molding, for example, the surface coated with the present composition is arranged so as to face the inner wall surface of the mold (so that the opposite surface of the cured layer of the present composition is in contact with the molding resin), If necessary, the HC film is made to conform to the shape of the mold for preforming, and then the mold is closed to inject molding resin in a molten state into the cavity to solidify the resin to form a resin molded product. be able to.

上記予備成形を行う方法としては、本HCフィルムを軟化点以上に予備加熱して金型に配置し、金型に設けられた吸引孔を通じて真空吸引する方法や、射出成形用金型とは別の成形用金型を用い、真空成形や圧空成形、プレス成形等の公知の成形方法を用いることができる。またこれらの予備成形を行わず、成形樹脂による射出圧により、成形と射出樹脂との一体成形を同時に行うことも可能である。 As a method for carrying out the preforming, the present HC film is preheated to a softening point or higher, placed in a mold, and subjected to vacuum suction through a suction hole provided in the mold. A known molding method such as vacuum molding, air pressure molding, or press molding can be used using a molding die. It is also possible to simultaneously perform molding and integral molding with the injection resin by injection pressure of the molding resin without performing these pre-molding.

上記射出成形する樹脂としては、射出成形が可能な公知の樹脂を用いることが可能である。例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ABS樹脂、AS樹脂、アクリル系樹脂、ウレタン系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、ポリフェニレンエーテル系樹脂、ポリアセタール系樹脂、ポリスルホン系樹脂等が挙げられ、単独あるいは2種類以上を組み合わせて使用することができる。自動車のボディーのようにサイズが大きい場合や、サイズが小さくても肉厚が薄い場合には、成形後の収縮率をHCフィルムのそれと近似させることで、反り等の不具合を回避することができる。 As the resin for injection molding, it is possible to use a known resin that can be injection molded. Examples include polyethylene resins, polypropylene resins, polystyrene resins, ABS resins, AS resins, acrylic resins, urethane resins, polyester resins, polycarbonate resins, polyphenylene ether resins, polyacetal resins, polysulfone resins, and the like. They can be used singly or in combination of two or more. In the case of a large size such as an automobile body, or in the case of a small size but thin thickness, problems such as warping can be avoided by approximating the shrinkage rate after molding to that of HC film. .

また上記の射出成形用樹脂自体を着色することにより、HCフィルムの加飾層を無くしたり、加飾層と射出成形樹脂の色を融合させることでより深みのある外観を出すことが可能となる。更には外装を塗料により着色するような製品、例えば自動車のボディーなどをインサート成形に置き換える場合では、射出成形する樹脂を着色することにより、塗料による外形塗装を省略することが可能となる。この場合、外形塗装でしばしば発生するゆず肌やピット等の外観不良を無くすことができる。 In addition, by coloring the injection molding resin itself, it is possible to eliminate the decoration layer of the HC film, or to combine the color of the decoration layer and the injection molding resin to create a deeper appearance. . Furthermore, when insert molding is used for a product whose exterior is to be colored with paint, such as an automobile body, it is possible to omit exterior coating with paint by coloring the resin to be injection molded. In this case, it is possible to eliminate appearance defects such as citrus peel and pits that often occur in exterior painting.

更に本HCフィルムは、アウトモールド成形にも用いることができる。例えば、TOM(Three-Dimensional Overlay Method)成形に用いても良い。TOM成形は、気密ボックス内にて予め成形された基材に、真空・圧空成形にて3次元表面加飾を行うフィルム成形方法であり、本HCフィルムを用いることで基材の材質を問わず、3次元の大型製品にも対応可能である。 Further, the present HC films can also be used for out-molding. For example, it may be used for TOM (Three-Dimensional Overlay Method) molding. TOM molding is a film molding method that performs three-dimensional surface decoration on a base material pre-formed in an airtight box by vacuum/pneumatic molding. , three-dimensional large-scale products can also be handled.

以下、本発明について実施例、比較例を挙げて詳細に説明するが、具体例を示すものであって、特にこれらに限定するものではない。なお表記が無い場合は、室温は25℃相対湿度65%の条件下で測定を行った。また配合量は固形分換算とし重量部を示す。 Hereinafter, the present invention will be described in detail with reference to examples and comparative examples, but these are specific examples and are not intended to limit the invention in particular. Unless otherwise specified, the measurement was performed at a room temperature of 25° C. and a relative humidity of 65%. Moreover, the blending amount is converted to solid content and shown in parts by weight.

ウレアク1の調製
撹拌機、還流冷却器、滴下漏斗、及び温度計を取り付けた四つ口フラスコに、エチレングリコール200重量部とIPDI(NCO基37.5%)825重量部と触媒とMEKとを固形分50%になるように仕込み、80℃で6時間攪拌・反応させ、赤外吸収分析でイソシアネート基のピークが所定の量になった時点で反応を終了させた。次にPETA(水酸基価120mgKOH/g)438重量部を添加し、70℃で6時間攪拌・反応させた後、赤外吸収分析でイソシアネート基の消滅したことを確認し、MEKにより固形分を50%に調整して、Mw6,200で6官能のウレアク1を得た。
Preparation of Ureac 1 In a four-necked flask equipped with a stirrer, reflux condenser, dropping funnel and thermometer, 200 parts by weight of ethylene glycol and 825 parts by weight of IPDI (37.5% NCO groups) and catalyst were added. and MEK were charged so as to give a solid content of 50%, stirred and reacted at 80° C. for 6 hours, and the reaction was terminated when the isocyanate group peak reached a predetermined amount in infrared absorption analysis. Next, 438 parts by weight of PETA (hydroxyl value 120 mgKOH/g) was added, and after stirring and reacting at 70 ° C. for 6 hours, it was confirmed by infrared absorption analysis that the isocyanate group had disappeared. % to obtain ureac 1 having a Mw of 6,200 and a hexafunctionality.

ウレアク2の調製
撹拌機、還流冷却器、滴下漏斗、及び温度計を取り付けた四つ口フラスコに、エチレングリコール200重量部とIPDI(NCO基37.5%)930重量部と触媒とMEKとを固形分50%になるように仕込み、80℃で6時間攪拌・反応させ、赤外吸収分析でイソシアネート基のピークが所定の量になった時点で反応を終了させた。次にPETA(水酸基価120mgKOH/g)886重量部を添加し、70℃で6時間攪拌・反応させた後、赤外吸収分析でイソシアネート基の消滅したことを確認し、MEKにより固形分を50%に調整して、Mw3,200で6官能のウレアク2を得た。
Preparation of Ureac 2 In a four-necked flask equipped with a stirrer, reflux condenser, dropping funnel and thermometer, 200 parts by weight of ethylene glycol and 930 parts by weight of IPDI (37.5% NCO groups) and catalyst were added. and MEK were charged so as to give a solid content of 50%, stirred and reacted at 80° C. for 6 hours, and the reaction was terminated when the isocyanate group peak reached a predetermined amount in infrared absorption analysis. Next, 886 parts by weight of PETA (hydroxyl value 120 mg KOH / g) was added, and after stirring and reacting at 70 ° C. for 6 hours, it was confirmed by infrared absorption analysis that the isocyanate group had disappeared, and the solid content was reduced to 50 by MEK. % to obtain a hexafunctional ureac 2 with Mw of 3,200.

ウレアク3の調製
撹拌機、還流冷却器、滴下漏斗、及び温度計を取り付けた四つ口フラスコに、エチレングリコール200重量部とIPDI(NCO基37.5%)895重量部と触媒とMEKとを固形分50%になるように仕込み、80℃で6時間攪拌・反応させ、赤外吸収分析でイソシアネート基のピークが所定の量になった時点で反応を終了させた。次にPETA(水酸基価120mgKOH/g)743重量部を添加し、70℃で6時間攪拌・反応させた後、赤外吸収分析でイソシアネート基の消滅したことを確認し、MEKにより固形分を50%に調整して、Mw3,800で6官能のウレアク3を得た。
Preparation of Ureac 3 In a four-necked flask equipped with stirrer, reflux condenser, addition funnel and thermometer, 200 parts by weight of ethylene glycol and 895 parts by weight of IPDI (37.5% NCO groups) and catalyst were added. and MEK were charged so as to give a solid content of 50%, stirred and reacted at 80° C. for 6 hours, and the reaction was terminated when the isocyanate group peak reached a predetermined amount in infrared absorption analysis. Next, 743 parts by weight of PETA (hydroxyl value 120 mgKOH/g) was added, and after stirring and reacting at 70 ° C. for 6 hours, it was confirmed by infrared absorption analysis that the isocyanate group had disappeared, and the solid content was reduced to 50 by MEK. % to obtain a hexafunctional ureac 3 with Mw of 3,800.

ウレアク4の調製
撹拌機、還流冷却器、滴下漏斗、及び温度計を取り付けた四つ口フラスコに、エチレングリコール200重量部とIPDI(NCO基37.5%)808重量部と触媒とMEKとを固形分50%になるように仕込み、80℃で6時間攪拌・反応させ、赤外吸収分析でイソシアネート基のピークが所定の量になった時点で反応を終了させた。次にPETA(水酸基価120mgKOH/g)371重量部を添加し、70℃で6時間攪拌・反応させた後、赤外吸収分析でイソシアネート基の消滅したことを確認し、MEKにより固形分を50%に調整して、Mw7,800で6官能のウレアク4を得た。
Preparation of Ureac 4 In a four-necked flask equipped with stirrer, reflux condenser, dropping funnel and thermometer, 200 parts by weight of ethylene glycol and 808 parts by weight of IPDI (37.5% NCO groups) and catalyst were added. and MEK were charged so as to give a solid content of 50%, stirred and reacted at 80° C. for 6 hours, and the reaction was terminated when the isocyanate group peak reached a predetermined amount in infrared absorption analysis. Next, 371 parts by weight of PETA (hydroxyl value 120 mgKOH/g) was added, and after stirring and reacting at 70° C. for 6 hours, it was confirmed by infrared absorption analysis that the isocyanate group had disappeared. % to obtain a hexafunctional ureac 4 with Mw of 7,800.

ウレアク5の調製
撹拌機、還流冷却器、滴下漏斗、及び温度計を取り付けた四つ口フラスコに、エチレングリコール200重量部とIPDI(NCO基37.5%)790重量部と触媒とMEKとを固形分50%になるように仕込み、80℃で6時間攪拌・反応させ、赤外吸収分析でイソシアネート基のピークが所定の量になった時点で反応を終了させた。次にPETA(水酸基価120mgKOH/g)295重量部を添加し、70℃で6時間攪拌・反応させた後、赤外吸収分析でイソシアネート基の消滅したことを確認し、MEKにより固形分を50%に調整して、Mw9,800で6官能のウレアク5を得た。
Preparation of Ureac 5 Into a four-neck flask equipped with stirrer, reflux condenser, dropping funnel and thermometer, 200 parts by weight of ethylene glycol and 790 parts by weight of IPDI (37.5% NCO groups) and catalyst were added. and MEK were charged so as to give a solid content of 50%, stirred and reacted at 80° C. for 6 hours, and the reaction was terminated when the isocyanate group peak reached a predetermined amount in infrared absorption analysis. Next, 295 parts by weight of PETA (hydroxyl value 120 mgKOH/g) was added, and after stirring and reacting at 70 ° C. for 6 hours, it was confirmed by infrared absorption analysis that the isocyanate group had disappeared, and the solid content was reduced to 50 by MEK. %, ureac 5 having a Mw of 9,800 and a hexafunctionality was obtained.

上記製法に準じて、ウレアク1~5と同骨格でMw違いのウレアクA及びBと、エチレングリコールの代わりにポリエチレングリコールを用いたウレアクCを得た。
ウレアクA:PETA-IPDI-(エチレングリコール-IPDI)n-PETA骨格、
6官能、固形分50%、Mw 1,800
ウレアクB:PETA-IPDI-(エチレングリコール-IPDI)n-PETA骨格、
6官能、固形分50%、Mw 13,000
ウレアクC:PETA-IPDI-ポリエチレングリコール-IPDI-PETA骨格、 6官能、固形分50%、Mw6,000
Ureaac A and B having the same skeleton as Ureaac 1 to 5 but different Mw, and Ureaac C using polyethylene glycol instead of ethylene glycol were obtained according to the above-mentioned production method.
Ureac A: PETA-IPDI-(ethylene glycol-IPDI) n-PETA skeleton,
Hexafunctional, solid content 50%, Mw 1,800
Ureac B: PETA-IPDI-(ethylene glycol-IPDI) n-PETA skeleton,
Hexafunctional, solid content 50%, Mw 13,000
Ureac C: PETA-IPDI-polyethylene glycol-IPDI-PETA skeleton, hexafunctional, solid content 50%, Mw 6,000

実施例1~11
前記(A)として上記で調整したウレアク1~5を、(B)としてGL―02R(商品名:共栄社化学社製、アクリル主鎖にシリコーン側鎖を有するアクリルアクリレート、固形分20%酢酸ブチル希釈品)を、(c1)としてTinuvin249(商品名:BASFジャパン社製)を、(c2)としてTinuvin477(商品名:BASFジャパン社製)を、(D)としてOmnirad2959及び127D(商品名:IGM Resins社製)を、架橋剤としてDPHAを、表1記載の配合で均一に溶解・分散するまで撹拌し、更に固形分が30%となるようにPGMを加えて希釈撹拌し、実施例1~11の光硬化性樹脂組成物を得た。
Examples 1-11
Ureac 1 to 5 prepared above as (A), and GL-02R (trade name: manufactured by Kyoeisha Chemical Co., Ltd., acrylic acrylate having a silicone side chain in the acrylic main chain, solid content 20% diluted with butyl acetate) as (B) product), Tinuvin 249 (trade name: manufactured by BASF Japan) as (c1), Tinuvin 477 (trade name: manufactured by BASF Japan) as (c2), Omnirad 2959 and 127D (trade name: IGM Resins) as (D) ), DPHA as a cross-linking agent is stirred until it is uniformly dissolved and dispersed according to the formulation shown in Table 1, and then PGM is added and stirred for dilution so that the solid content becomes 30%. A photocurable resin composition was obtained.

比較例1~6
実施例で用いた材料の他、オリゴマーとして上記ウレアクA~Cを、表2記載の配合で均一に溶解・分散するまで撹拌し、更に固形分が30%となるようにPGMを加えて希釈撹拌し、比較例1~6の光硬化性樹脂組成物を得た。
Comparative Examples 1-6
In addition to the materials used in the examples, the above Ureac A to C as oligomers are stirred until they are uniformly dissolved and dispersed according to the formulation shown in Table 2, and then PGM is added so that the solid content is 30%, and diluted and stirred. Then, photocurable resin compositions of Comparative Examples 1 to 6 were obtained.

表1
Table 1

表2
Table 2

評価方法は以下の通りとした。 The evaluation method was as follows.

HCフィルムの調製
実施例及び比較例で作成した光硬化性樹脂組成物を、ユーピロンフィルム(商品名:DF02UL、三菱ガス化学社製、厚み254μm、PMMA/PC積層フィルム)を用い、PMMA面側に乾燥膜厚で3μmとなるように光硬化性樹脂を塗布し、恒温槽で80℃×1分乾燥後、高圧水銀ランプで出力1300mW/cm2、積算光量が200mJとなる様に紫外線照射し、評価用フィルムを調製した。
The photocurable resin compositions prepared in the HC film preparation examples and comparative examples were coated on the PMMA surface side using an Iupilon film (trade name: DF02UL, manufactured by Mitsubishi Gas Chemical Co., Ltd., thickness 254 μm, PMMA/PC laminated film). A photocurable resin is applied so that the dry film thickness is 3 μm, dried in a constant temperature bath at 80° C. for 1 minute, then irradiated with ultraviolet rays from a high-pressure mercury lamp at an output of 1300 mW/cm2 and an integrated light intensity of 200 mJ, and evaluated. A film for use was prepared.

射出成形品の調製
実施例1の光硬化性樹脂組成物を硬化させたHCフィルムを用い、射出成形の樹脂として黒色のABSを用いて実際にインサート成形を行った。
PREPARATION OF INJECTION MOLDED PRODUCT Using the HC film obtained by curing the photocurable resin composition of Example 1, insert molding was actually performed using black ABS as the resin for injection molding.

硬化性:HCフィルムを用い、塗膜表面の指触でもタック感を確認し、タック無しを〇、タック有りを×とした。 Curability: Using an HC film, the tackiness of the surface of the coating film was also checked by finger touch.

密着性:JIS K 5600-5-6のクロスカット法に準拠し、塗工面に1mm間隔で10×10にマス目を作成し、セロハンテープCT-24(商品名:ニチバン社製)を貼り、上方に引っ張り剥離状況を確認し、剥離無しを〇、剥離有りを×とした。
剥離無し:100/100、剥離有り:0/100~99/100
Adhesion: Based on the cross-cut method of JIS K 5600-5-6, create 10 × 10 squares at intervals of 1 mm on the coated surface, paste cellophane tape CT-24 (product name: manufactured by Nichiban Co., Ltd.), The state of peeling was checked by pulling it upward, and the absence of peeling was indicated by ◯, and the presence of peeling was indicated by x.
No peeling: 100/100, with peeling: 0/100 to 99/100

ヘイズ:JIS K7361-1に準拠し、東洋精機製作所製のHaze-GARD2を用いて測定し、1.0%以下を○、1.0%超を×とした。 Haze: Measured using Haze-GARD2 manufactured by Toyo Seiki Seisakusho in accordance with JIS K7361-1, with ◯ for 1.0% or less and x for more than 1.0%.

耐摩耗性:スガ試験機製の摩擦試験機FR-IBSを用い、ハードコートフィルムの樹脂組成物塗布面を、試験用白綿布(カナキン3号)を取り付けた摩擦子(直径16mm)で9Nの荷重をかけて1往復/1秒の速さで100mm往復させ、1000往復後の傷の有無を確認し、傷無しを○、傷有りを×とした。 Abrasion resistance: Using a friction tester FR-IBS manufactured by Suga Test Instruments Co., Ltd., the resin composition coated surface of the hard coat film is subjected to a load of 9 N with a friction element (diameter 16 mm) attached with a white cotton cloth for testing (Kanakin No. 3). It was reciprocated 100 mm at a speed of 1 reciprocation/1 second under a high pressure, and after 1000 reciprocations, the presence or absence of scratches was confirmed.

耐薬品性:硬化皮膜にハンドクリーム、ニュートロジーナSPF45(商品名:ジョンソン・エンド・ジョンソン社製)を塗布し、80℃6時間放置させ、その後室温に戻し、拭き取ったのち表面を観察した。塗布の跡なしを○、跡ありを×とした。 Chemical resistance: Hand cream Neutrogena SPF45 (trade name: manufactured by Johnson & Johnson) was applied to the cured film, allowed to stand at 80°C for 6 hours, then returned to room temperature, wiped off, and then the surface was observed. The absence of traces of application was indicated by ◯, and the presence of traces was indicated by ×.

耐候性:HCフィルムを用い、SAE規格J2527に準拠し、500kJ照射した際の外観を目視で確認し、外観変化なしを〇、外観変化あり(白化・ワレ・黄変)を×とした。 Weather resistance: HC film was used, and according to SAE standard J2527, the appearance was visually confirmed when irradiated at 500 kJ.

破断伸度:HCフィルムを横25mm×縦50mmにカットし、Minebia製TechnoGraph TGI-1KNを用い、雰囲気温度130℃、引っ張り速度300mm/分で引っ張り試験を行い、目視で割れを確認し、伸び率が80%以上を○、200%以上を◎とした。
計算式:50mmを基準として何mm伸びたかで計算。
伸びた長さ(mm)/50mm×100=伸び率%
Breaking elongation: Cut the HC film into 25 mm wide x 50 mm long, and use TechnoGraph TGI-1KN manufactured by Minebia to perform a tensile test at an ambient temperature of 130 ° C. and a tensile speed of 300 mm / min. 80% or more was evaluated as ◯, and 200% or more as ⊚.
Calculation formula: Calculated by how many mm it has grown based on 50 mm.
Elongated length (mm) / 50 mm x 100 = elongation %

外観:BYK製の塗装表面性状測定機ウエーブスキャン3デュアルを用い、射出成型品のフィルム表面と、塗装鋼板の塗装面を測定し、LW(long wave)とSW(short wave)データを測定し比較した。 Appearance: Using BYK's WAVE SCAN 3 DUAL coating surface property measuring machine, measure the film surface of the injection molded product and the coated surface of the coated steel plate, measure and compare the LW (long wave) and SW (short wave) data. did.

実施例評価結果
表3
Example evaluation results Table 3

比較例評価結果
表4
Comparative example evaluation results Table 4

表5
Table 5

実施例は硬化性、密着性、ヘイズ、耐摩耗性、耐薬品性、耐候性、破断伸度全ての面で問題はなく良好であった。また着色した樹脂を用いて射出成形したインサート成形品の外観は、ゆず肌のような外観不具合が無かった。 The examples had no problems in all aspects of curability, adhesion, haze, wear resistance, chemical resistance, weather resistance and elongation at break. In addition, the appearance of the insert-molded product injection-molded using the colored resin did not have appearance defects such as citrus peel.

一方、(B)の配合量が下限未満の比較例1は耐摩耗性が低く、上限超の比較例2はヘイズが高かった。また(A)のMwが下限以下の比較例3は破断伸度が低く、Mwが上限以上の比較例4は耐摩耗性が劣り、ポリエチレングリコール骨格のオリゴマーを用いた比較例7は耐薬品性が劣り、更に(C)を配合していない比較例6は耐候性が劣り、いずれも本願発明に適さないものであった。



On the other hand, Comparative Example 1 in which the blending amount of (B) was less than the lower limit had low abrasion resistance, and Comparative Example 2 in which the blending amount of (B) exceeded the upper limit had high haze. In addition, Comparative Example 3 in which Mw of (A) is below the lower limit has low breaking elongation, Comparative Example 4 in which Mw is above the upper limit has poor wear resistance, and Comparative Example 7 using an oligomer having a polyethylene glycol skeleton exhibits chemical resistance. Furthermore, Comparative Example 6, which did not contain (C), had poor weather resistance, and neither of them was suitable for the present invention.



Claims (9)

エチレングリコールとイソホロンジイソシアネートを反応させたジイソシアネートに、ペンタエリスリトールトリアクリレートを更に反応させたウレタンアクリレート(A)と、シリコーン含有アクリル(メタ)アクリレート(B)と、光安定剤(C)と、光重合開始剤(D)と、を含み、前記(A)の重量平均分子量が2,000~12,000であり、前記(B)の配合量が前記(A)100重量部に対し0.5~30重量部であることを特徴とする光硬化性樹脂組成物。 Urethane acrylate (A) obtained by further reacting pentaerythritol triacrylate with diisocyanate obtained by reacting ethylene glycol and isophorone diisocyanate, silicone-containing acrylic (meth)acrylate (B), light stabilizer (C), and photopolymerization and an initiator (D), wherein the weight average molecular weight of (A) is 2,000 to 12,000, and the blending amount of (B) is 0.5 to 100 parts by weight of (A). 30 parts by weight of a photocurable resin composition. 前記(B)が、アクリル主鎖にシリコーン側鎖を有するアクリル(メタ)アクリレートであることを特徴とする請求項1記載の光硬化性樹脂組成物。 2. The photocurable resin composition according to claim 1, wherein the (B) is an acrylic (meth)acrylate having a silicone side chain on the acrylic main chain. プラスチック基材上に請求項1又は2いずれか記載の光硬化性樹脂組成物の硬化層を有することを特徴とする成形用ハードコートフィルム。 A molding hard coat film comprising a cured layer of the photocurable resin composition according to claim 1 on a plastic substrate. 前記プラスチック基材がポリカーボネート基材、アクリル基材、ポリエステル基材、又はこれらの複合基材の群から選択される基材であることを特徴とする請求項3記載の成形用ハードコートフィルム。 4. The molding hard coat film according to claim 3, wherein the plastic substrate is a substrate selected from the group consisting of a polycarbonate substrate, an acrylic substrate, a polyester substrate, and a composite substrate thereof. 前記成形用ハードコートフィルムがインサート成形用又はアウトモールド成形用であることを特徴する請求項3又は4いずれか記載の成形用ハードコートフィルム。 5. The hard coat film for molding according to claim 3, wherein the hard coat film for molding is for insert molding or outmold molding. 前記成形用ハードコートフィルムを、金型を用いて賦形後、光硬化性樹脂硬化層とは反対側から溶融樹脂を射出して樹脂成形品を形成することを特徴とする請求項3又は4いずれか記載のインサート成形品の製造方法。 5. A molded resin product is formed by injecting a molten resin from the side opposite to the photocurable resin cured layer after shaping the hard coat film for molding using a mold. A method for producing an insert-molded product according to any one of the above. 前記溶融樹脂が着色されていることを特徴とする請求項6記載のインサート成形品の製造方法。 7. The method of manufacturing an insert-molded product according to claim 6, wherein said molten resin is colored. インサート成形品が車両外装用途であることを特徴とする請求項6又は7いずれか記載のインサート成形品の製造方法。 8. The method for producing an insert-molded product according to claim 6, wherein the insert-molded product is used for vehicle exteriors. 請求項3~5いずれか記載の成形用ハードコートフィルムを用いたインサート成形品又はアウトモールド成形品。
An insert-molded article or an out-molded article using the molding hard coat film according to any one of claims 3 to 5.
JP2022021721A 2022-02-16 2022-02-16 Photocurable resin composition, hard coat film for molding, and molded article using the same, and method for manufacturing insert-molded article Pending JP2023119087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022021721A JP2023119087A (en) 2022-02-16 2022-02-16 Photocurable resin composition, hard coat film for molding, and molded article using the same, and method for manufacturing insert-molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022021721A JP2023119087A (en) 2022-02-16 2022-02-16 Photocurable resin composition, hard coat film for molding, and molded article using the same, and method for manufacturing insert-molded article

Publications (1)

Publication Number Publication Date
JP2023119087A true JP2023119087A (en) 2023-08-28

Family

ID=87763320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022021721A Pending JP2023119087A (en) 2022-02-16 2022-02-16 Photocurable resin composition, hard coat film for molding, and molded article using the same, and method for manufacturing insert-molded article

Country Status (1)

Country Link
JP (1) JP2023119087A (en)

Similar Documents

Publication Publication Date Title
JP4003800B2 (en) Active energy ray-curable resin composition for film protective layer and film using the same
KR20100137538A (en) Curable resin composition and paint, and plastic molded product produced by laminating the same
WO2011048775A1 (en) Vehicle member and process for production thereof
JP2007131837A (en) Active energy ray-curable resin composition for film-protective layer, and film and optical sheet using the composition
JP2011256344A (en) Vehicle member and process for production thereof
JP2021066874A (en) Photocurable resin composition and hard coat film
JP2010260905A (en) Photocurable composition
EP3636717A1 (en) Uv-curable paint composition
TWI784769B (en) Paint composition, semi-cured film, decorative molded article, and method for manufacturing the decorated molded article
JP6451627B2 (en) Active energy ray-curable resin composition and automobile headlamp lens
JP5392326B2 (en) Vehicle member and manufacturing method thereof
CN113874446B (en) Coating composition, decorative film and decorative molded article
TWI758597B (en) Active energy ray-curable resin composition, cured product, and laminate
JP7199185B2 (en) Antireflection hard coat film for molding
JP7293518B1 (en) Hard coat resin composition for molding film for automobile exterior
JP2023119087A (en) Photocurable resin composition, hard coat film for molding, and molded article using the same, and method for manufacturing insert-molded article
JP7385784B1 (en) Photocurable resin composition, hard coat film for molding, and molded products using the same
JP2023054872A (en) Antireflection film, method for using the same and plastic molded article using the same
JP2022126018A (en) Antireflection film and method for producing the same
JP7464489B2 (en) After-cure type molding anti-reflective hard coat film
JP3819245B2 (en) Curable composition for coating, coated article, and outer skin for automobile
JP2024097120A (en) Hard coat film for molding, molded product using same, and method for manufacturing insert molded product
JP3782670B2 (en) Curable composition for coating, coated article, outer plate for automobile, and active energy ray-curable composition
JP2024057637A (en) Photo-curable resin composition, molding hard coat film, and molded article therewith
WO2007043570A1 (en) Active energy ray-curable resin composition for film protection layer, film using same and optical sheet