JP2023516390A - 粒子ソーティングシステムおよび方法 - Google Patents

粒子ソーティングシステムおよび方法 Download PDF

Info

Publication number
JP2023516390A
JP2023516390A JP2022552834A JP2022552834A JP2023516390A JP 2023516390 A JP2023516390 A JP 2023516390A JP 2022552834 A JP2022552834 A JP 2022552834A JP 2022552834 A JP2022552834 A JP 2022552834A JP 2023516390 A JP2023516390 A JP 2023516390A
Authority
JP
Japan
Prior art keywords
array
minutes
pores
pore
seconds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022552834A
Other languages
English (en)
Other versions
JPWO2021178566A5 (ja
Inventor
チョン パン,
コルム ハント,
イヴァン ケー. ディモフ,
Original Assignee
オルカ バイオシステムズ インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オルカ バイオシステムズ インコーポレイテッド filed Critical オルカ バイオシステムズ インコーポレイテッド
Publication of JP2023516390A publication Critical patent/JP2023516390A/ja
Publication of JPWO2021178566A5 publication Critical patent/JPWO2021178566A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5085Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
    • B01L3/50857Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates using arrays or bundles of open capillaries for holding samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0652Sorting or classification of particles or molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0668Trapping microscopic beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/12Specific details about manufacturing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0819Microarrays; Biochips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0893Geometry, shape and general structure having a very large number of wells, microfabricated wells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/161Control and use of surface tension forces, e.g. hydrophobic, hydrophilic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/161Control and use of surface tension forces, e.g. hydrophobic, hydrophilic
    • B01L2300/165Specific details about hydrophobic, oleophobic surfaces

Abstract

粒子ソーティングのためのシステムおよび方法が記載される。アレイは、第1の表面およびその第1の表面の反対側の第2の表面を有する基材を備え得る。基材は、第1の表面から第2の表面に延びる管腔を画定する複数のポアを含み得る。複数のポアは、複数の粒子を含むサンプル溶液を受け取るように構成され得る。アレイは、第1の表面もしくは第2の表面にまたは第1の表面もしくは第2の表面付近に設けられた表面材料をさらに含み得る。表面材料は、第1の表面もしくは第2の表面の一方が親水性であり、第1の表面もしくは第2の表面の他方が疎水性であるように、第1の表面もしくは第2の表面におけるまたは前記第1の表面もしくは第2の表面付近にあるサンプル溶液または複数の粒子の湿潤挙動を修正するように構成された複数の材料を含み得る。

Description

相互参照
本願は、2020年3月4日出願の米国仮特許出願第62/985,257号に基づく利益を主張する。この仮出願は、参照により本明細書中に援用される。
背景
細胞療法は、再生医学および免疫療法の礎石である。この治療に持ち込まれる非治療用細胞の多くは無害であるが、特定の異常な細胞型は、小集団であっても患者において深刻な有害事象の原因となり得る。ゆえに、治療用細胞を患者に移植する前に、それらの細胞を有害な細胞から精製することが極めて重要となり得る。細胞ベースの再生医療技術を臨床に移行するのを加速させるためには、希少な幹細胞および他の免疫細胞型を表面マーカーの差次的発現に基づいて臨床に適用可能な無菌のフォーマットで単離するためのハイスループットかつ高純度の方法が必要であり得る。
要旨
本明細書中に開示される実施形態は、細胞をソーティングするためのシステム、方法およびデバイスを提供する。いくつかの場合において、それらの細胞は、レーザー(例えば、レーザー抽出)および/またはマイクロポアアレイの助けによりソーティングされ得る。そのマイクロポアアレイは、目的の細胞の抽出を助けるためにレーザーと相互作用できるコーティングを含み得る。そのコーティングは、場合によっては剥離し、それと同時にマイクロポアアレイ内に保持された液体のメニスカスを破壊できる。有益なことに、本明細書中に記載されるアプローチは、例えば、目的の粒子を保持している液体に対して直接ではなくアレイ表面にレーザーが向けられるので、細胞生存率および抽出効率を高めることができる。
いくつかの態様において、本開示は、第1の表面およびその第1の表面の反対側の第2の表面を有する基材を備えるアレイを提供し、その基材は、基材材料および表面材料を含み、その表面材料は、第1または第2の表面に位置または隣接し、その基材は、第1の表面から第2の表面に伸びる管腔を画定する複数のポアを含み、その基材は、複数のポアの各ポアが、500ミクロンまたはそれ未満の最大直径を有すること、複数のポアの各ポアが、5またはそれを超えるアスペクト比を有すること、および表面材料が、入射電磁放射線の10パーセント超を吸収する材料から選択されることを特徴とする。
いくつかの態様において、本開示は、第1の表面およびその第1の表面の反対側の第2の表面を有する基材を備えるアレイを提供し、その基材は、基材材料および表面材料を含み、その表面材料は、第1または第2の表面に位置または隣接し、その基材は、第1の表面から第2の表面に延びる複数のポアを含み、その基材は、1平方ミリメートルあたり100個またはそれを超えるポアというポア密度、複数のポアの各ポアが、10を超えるアスペクト比を有すること、および表面材料が、入射電磁放射線の10パーセント超を吸収する材料から選択されることを特徴とする。
ある特定の実施形態において、各ポアは、約0.008mmまたはそれ未満の最大断面積を有する。ある特定の実施形態において、複数のポアの各ポアは、5ミクロン~100ミクロンの範囲内のポア直径を有する。ある特定の実施形態において、複数のポアの各ポアは、15ミクロン~50ミクロンの範囲内のポア直径を有する。ある特定の実施形態において、各ポアは、約1mm~約500mmの範囲から選択される長さを有する。ある特定の実施形態において、各ポアは、約1mm~約100mmの範囲から選択される長さを有する。ある特定の実施形態において、各ポアは、約0.1mm~約10mmの範囲から選択される長さを有する。
ある特定の実施形態において、ポア密度は、1平方ミリメートルあたり100~2500ポアの範囲内である。ある特定の実施形態において、ポア密度は、1平方ミリメートルあたり500~1500ポアの範囲内である。ある特定の実施形態において、表面材料は、基材材料と実質的に類似である。ある特定の実施形態において、表面材料は、基材材料と異なる。ある特定の実施形態において、基材材料は、ガラスであり、表面材料は、ガラスではない。ある特定の実施形態において、表面材料は、金属を含む。ある特定の実施形態において、表面材料は、0.4ミクロン~2.5ミクロンから選択される波長の入射電磁放射線の10パーセント超を吸収する。ある特定の実施形態において、表面材料は、入射放射線の50パーセント超を吸収する。ある特定の実施形態において、表面材料は、0.4ミクロン~1.5ミクロンから選択される波長の入射電磁放射線の50パーセント超を吸収する。
ある特定の実施形態において、アスペクト比は、5~100の範囲内である。ある特定の実施形態において、アスペクト比は、20またはそれを超える。ある特定の実施形態において、アスペクト比は、50またはそれを超える。ある特定の実施形態において、アスペクト比は、100またはそれを超える。ある特定の実施形態において、表面材料は、第2の表面を覆うかまたは部分的に覆う。ある特定の実施形態において、表面材料は、第1の表面を覆うかまたは部分的に覆う。ある特定の実施形態において、表面材料は、ポアの管腔へのアクセスを遮断しない。ある特定の実施形態において、表面材料は、約20nm~500nmの平均厚さを有する。ある特定の実施形態において、表面材料は、約100nm~500nmの平均厚さを有する。ある特定の実施形態において、表面材料は、疎水性である。
ある特定の実施形態において、第1の表面と第2の表面は、実質的に平行な面である。ある特定の実施形態において、上記複数のポアは、第1の表面から第2の表面まで表面法線に対して角度をなして延びている。ある特定の実施形態において、その角度は、より大きく0~90度の範囲内である。ある特定の実施形態において、上記複数のポアは、第1の表面から第2の表面まで直角に延びている。ある特定の実施形態において、上記複数のポアは、第1の表面から第2の表面まで間接経路を通っている。
いくつかの態様において、本開示は、混合物の構成要素をソーティングするためのシステムシステムを提供し、そのシステムは、本開示の任意の態様のアレイ、およびそのアレイから放出された選ばれた内容物を受け取るように構成された内側表面を備えるハウジングを備える。ある特定の実施形態において、内側表面は、基材の第2の表面の下に位置する。
いくつかの態様において、本開示は、選ばれた内容物をアレイのポアから放出する方法を提供し、その方法は、選ばれた内容物を含むアレイのポアを識別する工程であって、そのアレイは、第1の表面およびその第1の表面の反対側の第2の表面を有する基材を備え、その基材は、基材材料および表面材料を含み、その表面材料は、第1または第2の表面に位置または隣接し、その基材は、第1の表面から第2の表面に延びる管腔を画定する複数のポアを含み、その基材は、(a)複数のポアの各ポアが、500ミクロンまたはそれ未満の最大直径を有すること、(b)複数のポアの各ポアが、5またはそれを超えるアスペクト比を有すること、(c)1平方ミリメートルあたり100個またはそれを超えるポアというポア密度、および(d)表面材料が、入射電磁放射線の10パーセント超を吸収する材料から選択されること、のうちの1つまたはそれを超えることを特徴とする、工程、および識別されたポア内のまたは識別されたポアに隣接する表面材料に向けられた電磁放射線によって、前記アレイの第1または第2の表面から表面材料の一部分を除去し、それにより、識別されたポアの内容物を放出する工程を含む。
ある特定の実施形態において、電磁放射線は、0.2ミクロン~2.5ミクロンの波長、内容物とポアとの接着を破壊するのに十分なフルエンスレベル、および1ns~1ミリ秒の範囲内のパルス持続時間から選択される。ある特定の実施形態において、表面材料を除去する工程は、アブレーションを含む。ある特定の実施形態において、表面材料を除去する工程は、機械的除去を含む。ある特定の実施形態において、機械的除去が、チッピングを含む。ある特定の実施形態において、表面材料を除去する工程は、光熱除去を含む。ある特定の実施形態において、表面材料を除去する工程は、光化学的除去を含む。ある特定の実施形態において、表面材料を除去する工程は、光音響的除去を含む。
ある特定の実施形態において、選ばれた内容物は、水溶液中の細胞を含む。ある特定の実施形態において、その細胞は、INKT細胞、Tmem、Treg、HSPCおよびそれらの組み合わせから選択される。ある特定の実施形態において、複数のポアの各ポアは、約0.008mmまたはそれ未満の断面積を有する。ある特定の実施形態において、複数のポアの各ポアは、5ミクロン~100ミクロンの範囲内のポア直径を有する。ある特定の実施形態において、複数のポアの各ポアは、15ミクロン~50ミクロンの範囲内のポア直径を有する。ある特定の実施形態において、各ポアは、約1mm~約500mmの範囲から選択される長さを有する。ある特定の実施形態において、各ポアは、約1mm~約100mmの範囲から選択される長さを有する。ある特定の実施形態において、各ポアは、約0.1mm~約10mmの範囲から選択される長さを有する。
ある特定の実施形態において、ポア密度は、1つのアレイにおいて1平方ミリメートルあたり100~2500ポアの範囲内である。ある特定の実施形態において、ポア密度は、1つのアレイの1平方ミリメートルあたり500~1500ポアの範囲内である。ある特定の実施形態において、アレイは、1000ポア/mmを超えるポア密度を含む。ある特定の実施形態において、ポア密度は、5000ポア/mmまたはそれを超える。ある特定の実施形態において、アスペクト比は、5~100の範囲内である。ある特定の実施形態において、ポアは、20またはそれを超えるアスペクト比を有する。ある特定の実施形態において、ポアは、50またはそれを超えるアスペクト比を有する。ある特定の実施形態において、ポアは、100またはそれを超えるアスペクト比を有する。ある特定の実施形態において、表面材料は、約0.4ミクロン~約2.5ミクロンから選択される波長において10パーセント超を吸収する。ある特定の実施形態において、表面材料は、入射放射線の50パーセント超を吸収する。ある特定の実施形態において、表面材料は、約0.4ミクロン~約2.5ミクロンから選択される波長の入射放射線の50パーセント超を吸収する。
ある特定の実施形態において、上記アレイは、(a)複数のポアの各ポアが、500ミクロンまたはそれ未満の最大直径を有すること、(b)複数のポアの各ポアが、5またはそれを超えるアスペクト比を有すること、(c)1平方ミリメートルあたり100個またはそれを超えるポアというポア密度、および(d)表面材料が、入射電磁放射線の10パーセント超を吸収する材料から選択されること、のうちの2つまたはそれを超えることを特徴とする。ある特定の実施形態において、表面材料の一部分は、識別されたポアに隣接する。ある特定の実施形態において、表面の一部分は、識別されたポアの管腔表面を含む。ある特定の実施形態において、表面の一部分は、100ミクロンまたはそれ未満の深さまで除去される。ある特定の実施形態において、表面の一部分は、50ミクロンまたはそれ未満の深さまで除去される。ある特定の実施形態において、上記方法は、選ばれた内容物を含むポアを識別する工程の前に、選ばれた内容物を含む溶液をアレイにロードする工程をさらに含む。ある特定の実施形態において、選ばれた内容物を含むポアを識別する工程は、アレイのポアから放射された電磁放射線を解析する工程を含む。ある特定の実施形態において、内容物を放出する工程は、1秒あたり約5,000~約100,000,000ポアという速度で内容物を放出することを含む。
いくつかの態様において、本開示は、赤外線吸収コアおよび非赤外線吸収シェルを備えるビーズを提供し、その非赤外線吸収シェルの外径は、約10ミクロンに等しいかまたはそれ未満である。
ある特定の実施形態において、非赤外線吸収シェルは、アガロース、デキストランまたはその両方を含む。ある特定の実施形態において、赤外線吸収コアは、赤外線吸収色素を含む。ある特定の実施形態において、ビーズは、約20ミクロンに等しいかまたはそれ未満の直径を有する。
いくつかの態様において、本開示は、複数の、本開示の任意の態様のビーズ;および目的の粒子を含む溶液を提供する。ある特定の実施形態において、目的の粒子は、細胞である。ある特定の実施形態において、複数のビーズの数と複数の細胞の数との比は、約1:1~10:1である。
本開示の別の態様では、アレイは、第1の表面およびその第1の表面の反対側の第2の表面を有する基材であって、その基材は、第1の表面から第2の表面に延びる管腔を画定する複数のポアを含み、その複数のポアは、複数の粒子を含むサンプル溶液を受け取るように構成されている、基材と、第1の表面もしくは第2の表面にまたは第1の表面もしくは第2の表面付近に設けられた表面材料であって、その表面材料は、第1の表面もしくは第2の表面の一方が親水性であり、第1の表面もしくは第2の表面の他方が疎水性であるように、上記第1の表面もしくは第2の表面におけるまたは第1の表面もしくは第2の表面付近のサンプル溶液または複数の粒子の湿潤挙動を修正するように構成されている複数の材料を含む、表面材料とを含む。
いくつかの実施形態において、複数の材料は、金属層(例えば、スパッタリング、物理的スパッタリング、化学的コーティング、官能基による修飾(すなわち、表面親水性修飾、表面疎水性修飾)されたものなど)を含む。金属層は、約50nm~約1mmの範囲内の厚さを有し得る。金属層は、チタンおよび/または金を含み得る。金属層の第1の部分は、第1の化学的コーティングでコーティングされてもよい。金属層の第2の部分は、第1の化学的コーティングとは異なる第2の化学的コーティングでコーティングされてもよい。いくつかの実施形態において、第1の化学的コーティングは、第1の表面もしくは第2の表面におけるまたは第1の表面もしくは第2の表面付近の複数のポアの垂直側壁に設けられてもよい。第1の化学的コーティングは、ポアの垂直側壁への粒子の付着を低減または排除するように構成され得る。第2の化学的コーティングは、ポアからのサンプル溶液の望ましくない漏れを低減または防止するように構成され得る。いくつかの実施形態において、第2の化学的コーティングは疎水性である。第2の化学的コーティングは、第1の表面もしくは第2の表面にあるまたは第1の表面もしくは第2の表面付近にある基材の一部分に設けられてもよい。基材の一部分は、複数のポアの垂直側壁付近にあってもよい。いくつかの場合において、基材の一部分は、複数のポアの垂直側壁に対して実質的に直交していてもよい。
いくつかの実施形態において、第1の化学的コーティングは、メトキシ-ポリ(エチレン-グリコール)-チオールを含み得る。第2の化学的コーティングは、1H,1H,2H,2H-ペルフルオロデカンチオールを含み得る。
いくつかの実施形態において、複数の材料は、金属層(例えば、スパッタリング、物理的スパッタリング、化学的コーティング、官能基による修飾(すなわち、表面親水性修飾、表面疎水性修飾)されたものなど)上にない化学的コーティングをさらに含む。化学的コーティングは、基材または複数のポアの、金属層(例えば、スパッタリング、物理的スパッタリング、化学的コーティング、官能基による修飾(すなわち、表面親水性修飾、表面疎水性修飾)されたものなど)を有しない1またはそれを超える部分に設けられてもよい。いくつかの実施形態において、化学的コーティングは、メトキシ-ポリ(エチレン-グリコール)-シランを含む。
いくつかの実施形態において、第2の表面は、複数の粒子を含むサンプル溶液を受け取るように構成され得る。第1の表面は、1つまたはそれを超えるポアから1つまたはそれを超える粒子を放出するために破壊されるように構成され得る。いくつかの実施形態において、第2の表面は、複数の粒子を含むサンプル溶液の複数のポアへの吸収を促進するために親水性であり得る。第1の表面は、ポアからのサンプル溶液の望ましくない漏れを低減または排除するために疎水性であり得る。
いくつかの実施形態において、第1の表面は、第2の表面の1つまたはそれを超える部分に電磁放射線を向けることによって破壊されるように構成され得る。いくつかの実施形態において、複数のポアの各ポアは、500ミクロンまたはそれ未満の最大直径を有する。複数のポアの各ポアは、5またはそれを超えるアスペクト比を有し得る。表面材料は、入射電磁放射線の10%超を吸収する材料から選択されてもよい。基材は、平方ミリメートルあたり100またはそれを超えるポアのポア密度を有し得る。
いくつかの実施形態において、アレイの粒子抽出収率は、少なくとも70%である。官能基により修飾された表面層(すなわち、化学的にコーティングされた金属層)(すなわち、表面親水性修飾、表面疎水性修飾されたもの)を有するアレイの粒子抽出収率は、官能基により修飾された表面層(すなわち、化学的にコーティングされた金属層)(すなわち、表面親水性修飾、表面疎水性修飾されたもの)を有しない別のアレイよりも高くなり得る。例えば、官能基により修飾された表面層(すなわち、化学的にコーティングされた金属層)(すなわち、表面親水性修飾、表面疎水性修飾されたもの)を有するアレイの粒子抽出収率は、官能基により修飾された表面層(すなわち、化学的にコーティングされた金属層)(すなわち、表面親水性修飾、表面疎水性修飾されたもの)を有しない別のアレイよりも少なくとも5%高くなり得る。いくつかの場合において、官能基により修飾された表面層(すなわち、化学的にコーティングされた金属層)(すなわち、表面親水性修飾、表面疎水性修飾されたもの)を有するアレイの粒子抽出収率は、官能基により修飾された表面層(すなわち、化学的にコーティングされた金属層)(すなわち、表面親水性修飾、表面疎水性修飾されたもの)を有しない別のアレイよりも少なくとも20%高い。
いくつかの実施形態において、複数の粒子は生細胞を含む。官能基により修飾された表面層(すなわち、化学的にコーティングされた金属層)(すなわち、表面親水性修飾、表面疎水性修飾されたもの)を有するアレイの生細胞抽出収率は、官能基により修飾された表面層(すなわち、化学的にコーティングされた金属層)(すなわち、表面親水性修飾、表面疎水性修飾されたもの)を有しない別のアレイよりも高くなり得る。例えば、官能基により修飾された表面層(すなわち、化学的にコーティングされた金属層)(すなわち、表面親水性修飾、表面疎水性修飾されたもの)を有するアレイの生細胞抽出収率は、官能基により修飾された表面層(すなわち、化学的にコーティングされた金属層)(すなわち、表面親水性修飾、表面疎水性修飾されたもの)を有しない別のアレイよりも少なくとも5%高くなり得る。いくつかの場合において、官能基により修飾された表面層(すなわち、化学的にコーティングされた金属層)(すなわち、表面親水性修飾、表面疎水性修飾されたもの)を有するアレイの生細胞抽出収率は、官能基により修飾された表面層(すなわち、化学的にコーティングされた金属層)(すなわち、表面親水性修飾、表面疎水性修飾されたもの)を有しない別のアレイよりも少なくとも20%高い。
参照による組み込み
本明細書において言及されるすべての刊行物、特許および特許出願は、各個別の刊行物、特許または特許出願が明確かつ個別に参照により援用されると示されるのと同程度に、参照により本明細書中で援用される。
本発明の新規特徴は、添付の請求項に詳細に示される。本発明の原理を利用した例証的な実施形態を説明する以下の詳細な説明および添付の図面を参照することにより、本発明の特徴および利点がより理解される。
図1Aは、いくつかの実施形態に係る、細胞をソーティングするためのアレイの側断面図である。
図1Bは、いくつかの実施形態に係る、粒子をソーティングするためのアレイの上面図である。
図1Cは、いくつかの実施形態に係る、異なる細胞濃度を有するアレイの例示的な画像を示している。
図2Aは、いくつかの実施形態に係る、粒子をソーティングするための例示的なアレイの側断面図である。
図2Bは、いくつかの実施形態に係る、その例示的なアレイの例示的な基材の直交図である。
図3Aは、いくつかの実施形態に係る、粒子をソーティングするための例示的なアレイの直交図である。
図3Bは、いくつかの実施形態に係る、レーザーによって除去されるコーティングをポア付近の場所に備える、粒子をソーティングするための例示的なアレイの直交図である。
図4Aは、いくつかの実施形態に係る、例示的な第1アレイにおける、IRエネルギー吸収蛍光色素で染色されたPBMCの直交図である。
図4Bは、いくつかの実施形態に係る、PBMC抽出後の、例示的な第1アレイの直交図である。
図5Aは、いくつかの実施形態に係る、ミクロスフェアを備えるアレイの側断面図を示している。
図5Bは、いくつかの実施形態に係る、ミクロスフェアおよび水性サンプル溶液を含むアレイの側断面図を示している。
図6Aは、いくつかの実施形態に係る、ミクロスフェアおよび細胞で満たされたマイクロポアのアレイの明視野像を示している。
図6Bは、いくつかの実施形態に係る、単一ポアからの細胞の抽出の明視野像を示している。
図6Cは、いくつかの実施形態に係る、ミクロスフェアおよび1つの細胞で満たされたポアのアレイの画像を示している。
図6Dは、いくつかの実施形態に係る、単一のマイクロポアから細胞を抽出した後のアレイの画像を示している。
図7Aは、いくつかの実施形態に係る、抽出された細胞の例示的な明視野像を示している。
図7Bは、いくつかの実施形態に係る、抽出された細胞の例示的な画像を示している。
図8は、いくつかの実施形態に係る、アガロースおよびデキストランを含む例示的なミクロスフェアの明視野像を示している。
図9は、いくつかの実施形態に係る、アガロースおよびデキストランを含む例示的なミクロスフェアの高倍率の赤外線画像を示している。
図10Aは、いくつかの実施形態に係る、アガロースおよびIR吸収色素を含む例示的なミクロスフェアの明視野像を示している。
図10Bは、いくつかの実施形態に係る、アガロースおよびIR吸収色素を含む例示的なミクロスフェアの赤外線画像を示している。
図11Aは、いくつかの実施形態に係る、コーティング手順のフローチャートを示している。
図11Bは、いくつかの実施形態に係る、図11Aのコーティング手順の更なる詳細を示している。
図12Aは、いくつかの実施形態に係る、粒子をソーティングするためのアレイの上面図である。
図12Bは、いくつかの実施形態に係る、アレイの下端に表面修飾を備えるアレイの断面図を示している。
図13Aは、いくつかの実施形態に係る、表面修飾前のアレイの底端部の断面図を示している。
図13Bは、いくつかの実施形態に係る、前処理材料の1つの層でコーティングされたアレイの底端部の断面図を示している。
図13Cは、いくつかの実施形態に係る、第1の材料および第2の材料でコーティングされたアレイの底端部の断面図を示している。
図13Dは、いくつかの実施形態に係る、コーティング材料の2つの層および表面修飾を備えるアレイの底端部の断面図を示している。
図14Aは、いくつかの実施形態に係る、アレイ、ハウジングおよび内側表面を備えるシステムの側断面図を示している。
図14Bは、いくつかの実施形態に係る、アレイ、ハウジング、内側表面および電磁放射線源を備えるシステムの側断面図を示している。
図15Aは、いくつかの実施形態に係る、0時間後における例示的なシステムの漏れ試験の初めの直交図である。
図15Bは、いくつかの実施形態に係る、5時間後における例示的なシステムの漏れ試験の終わりの直交図である。
図16Aは、いくつかの実施形態に係る、複数のポアを備えるアレイを提供しているところの側断面図を示している。
図16Bは、いくつかの実施形態に係る、アレイ内に水溶液を堆積させているところの側断面図を示している。
図16Cは、いくつかの実施形態に係る、図1Aの例示的なアレイをカートリッジに挿入しているところの側断面図を示している。
図16Dは、いくつかの実施形態に係る、第1の細胞および第2の細胞のシグナルのプロットの画像を示している。
図16Eは、いくつかの実施形態に係る、第2の細胞を抽出しているところの側断面図を示している。
図16Fは、いくつかの実施形態に係る、細胞を回収しているところの側断面図を示している。
図17は、いくつかの実施形態に係る、細胞のアレイの例示的な生蛍光画像を示している。
図18は、いくつかの実施形態に係る、図17に表されたアレイの50万ポアの例示的な散布図を示している。
図19A~図19Cは、いくつかの実施形態に係る、AuコーティングされたポアプレートとCrコーティングされたポアプレートとの性能(抽出収率および細胞生存率)の比較を示している。 図19A~図19Cは、いくつかの実施形態に係る、AuコーティングされたポアプレートとCrコーティングされたポアプレートとの性能(抽出収率および細胞生存率)の比較を示している。 図19A~図19Cは、いくつかの実施形態に係る、AuコーティングされたポアプレートとCrコーティングされたポアプレートとの性能(抽出収率および細胞生存率)の比較を示している。
図20は、いくつかの実施形態に係る、異なるコーティングの接触角画像および測定値を示している。
詳細な説明
高速かつ無菌の細胞ソーティングシステムを提供する必要がある。したがって、マイクロポアアレイなどのアレイからレーザー抽出によって細胞をソーティングするためのシステム、デバイスおよび方法が、本明細書中に提供される。本明細書中のシステム、デバイスおよび方法が用いるマイクロポアソーティングは、約10,000細胞/秒という高ソーティング速度または最先端のものの速度よりも100~1000倍速い速度を求めて形成され得る。さらに、本明細書中に記載される実施形態は、無菌性および操作者のバイオセイフティーを維持し、サンプル間の汚染を低減し、流速の時間的制約を無くしつつ、細胞生存率または細胞機能を損なわずにそのようなソーティング速度を可能にし得る。特に、マイクロポアアレイの表面材料、ならびにそれを使用するシステムおよび方法によって、ポアの内容物に対する熱的影響が無視できる状態でポアの内容物を放出することができる。本開示の様々なシステムおよび方法は、例えば、参照によりその全体が本明細書に組み込まれる、「ULTRAFAST PARTICLE SORTING」と題する国際特許出願第PCT/US2019/049221号に記載されているものなど、他のシステムおよび方法と組み合わせるかまたは修正することができる。
アレイ
アレイが本明細書中に提供される。本明細書中に記載されるアレイは、粒子をソーティングするために利用され得る。それらの粒子は、目的の粒子、例えば、治療で使用するために濃縮する必要がある細胞であり得る。そのアレイは、基材を備え得る。その基材は、第1の表面、例えば上面、第1の表面の反対側の第2の表面、例えば底面、および第1の表面から第2の表面に延びる複数のポアを含み得る。それらのポアは、本明細書中に記載されるような様々な形状を有し得る管腔を画定し得る。それらのポアは、マイクロポアまたはマイクロチャネルであり得る。
1つの非限定的な例において、複数のポアを含む基材は、各ポアが500ミクロンまたはそれ未満の最大直径を有すること、各ポアが10またはそれを超えるアスペクト比を有すること、および表面材料が、入射電磁放射線の10パーセント超を吸収する材料から選択されることを特徴とし得る。さらなるまたは代替の非限定的な例において、複数のポアを含む基材は、1平方ミリメートルあたり100個またはそれを超えるポアというポア密度、各ポアが10またはそれを超えるアスペクト比を有すること、および表面材料が、入射電磁放射線の10パーセント超を吸収する材料から選択されることを特徴とし得る。
図1Aは、いくつかの実施形態に係る、粒子をソーティングするためのアレイの垂直方向の側断面図である。図1Aに示されるように、アレイ100は、(a)第1の表面111および第1の表面111の反対側の第2の表面112と、(b)第1の表面111から第2の表面112に延びる複数のポア113とを備える基材110を備え得る。それらの複数のポアは、互いに実質的に平行であり得、粒子を液体と共に保持するように構成され得る。例えば、その液体は、表面張力によってポア内に保持され得、いくつかの場合において、各ポアの一端または両端にメニスカスを形成し得る。
基材110は、基材材料を含み得る。基材材料は、ガラス、例えば、ケイ酸塩ガラス、溶融シリカ、溶融石英などであり得る。その基材材料は、プラスチック、例えば、PETG、PEEKなどであり得る。いくつかの実施形態において、基材は、金属、例えば、アルミニウム、鋼、クロム、チタン、金などであり得る。
基材110は、複数のポア113を含み得る。いくつかの場合において、複数のポア113は、約10万個から約1000億個のポアを含む。いくつかの場合において、複数のポア113は、約1000個から約10億個のポアを含む。いくつかの場合において、複数のポア113は、約100万個から約1000億個のポアを含む。
基材110は、ある密度のポアを含み得る。そのポアの密度は、1つのアレイの1平方ミリメートルあたりのポアの数を含み得る。ポア密度は、第1の表面111または第2の表面112において計測され得る。必要に応じて、いくつかの実施形態において、第1のアレイ100は、約66パーセントまたは約40パーセント~約75パーセントのオープンアレイ割合(充填密度)を有する。いくつかの場合において、ポア密度は、1平方ミリメートルあたり100~2500ポアの範囲内であり得る。いくつかの場合において、ポア密度は、1平方ミリメートルあたり500~1500ポアの範囲内であり得る。高ポア密度を製造する方法は、毛細管などの管を融合することによる方法であり得る。ポア密度は、管の壁厚および中央の直径を変化させることによって変更され得る。
1つの非限定的な例において、第1のアレイ110は、幅および長さがそれぞれ10×10インチであり、直径がそれぞれ15umの2億4000万個のポア113を含む。
さらに、第1のアレイ100は、図1Aによると、第1の表面111と第2の表面112との間の垂直距離として計測されるアレイ高さ110aを有する。いくつかの実施形態において、アレイ高さ110aは、第1の表面111と第2の表面112との間の最大または最小の垂直距離として計測され得る。いくつかの実施形態において、アレイ高さ110aは、ポア113の標準的な高さとして計測され得る。いくつかの実施形態において、アレイ高さ110aは、ポア113の最大または最小の長さとして計測され得る。各ポアは、高さ(または長手方向の長さ)113aを有し得る。その長さは、ポア間で一様であり得るか、またはその長さは、製造プロセス中の歪みまたは不規則さなどによって、ポアごとに異なり得る。必要に応じて、ポア113の各々は、約50mmと等しいかまたはそれ未満の長さを有する。いくつかの場合において、各ポアは、約1mm~約500mmから選択される長さを有し得る。いくつかの場合において、各ポアは、約1mm~約100mmから選択される長さを有し得る。いくつかの場合において、各ポアは、約1mm~約10mmから選択される長さを有し得る。
必要に応じて、複数のポア113は、第1の表面111および第2の表面112に対して実質的に直角であり得る。いくつかの実施形態において、複数のポア113は、互いに実質的に平行であり得る。いくつかの実施形態において、第2の表面の反対側の第1の表面は、実質的に平行な面であり得る。複数のポアは、第1の表面から第2の表面に直角に延びていることがある。それらのポアは、第1の表面から第2の表面に垂直に延びていることがある。あるいは、複数のポアは、表面法線に対する角度で第1の表面から第2の表面に延びていることがある。その角度は、法線から90度未満であり得る。その角度は、60度未満、45度未満、30度未満またはそれ未満であり得る。その角度は、5~90度の範囲内であり得る。
いくつかの実施形態において、複数のポアは、第1の表面から第2の表面まで間接経路を通っていることがある。そのような実施形態において、それらのポアは、入り組んでいるか、つづり合わさっているか、または差し込まれている状態であり得る。それらのポアは、ポアを通るパスが第1の表面から第2の表面への真っ直ぐな経路を基準として実質的に方向を変えるように1つまたは複数の湾曲部を含み得る。
図1Bは、粒子をソーティングするためのアレイ100の上面図を示す。いくつかの例において、アレイ100は、複数のポア113を有する。それらのポアの各々が、断面を含み得る。その断面は、円形であり得るか、楕円形であり得るか、多面形(例えば、正方形、六角形、八角形、十二角形など)であり得るか、または不規則な形状を有し得る。その形状は、ポア間で一様であり得るか、またはポアは、製造プロセス中の歪みまたは不規則さなどによって、ポアごとに異なり得る。
図1Aを参照すると、各ポア113の断面は、断面寸法113bを含み得る。断面寸法は、アレイの2つの表面のいずれかまたは中間位置で計測され得る。断面寸法は、単一の断面で計測され得る。追加的または代替的に、断面寸法は、ポアに沿った多くの位置にわたって平均化され得る。その寸法は、基準となるものを用いた顕微鏡下での方法、干渉計による方法、流量からの計算による方法などの多くの方法で計測され得る。いくつかの例において、アレイの各ポアは、5ミクロン~100ミクロンの範囲内の断面寸法を含み得る。いくつかの例において、各ポアは、15ミクロン~50ミクロンの範囲内の断面寸法を有し得る。
いくつかの場合において、断面寸法は、直径であり得る。直径という用語は、円形、ほぼ円形または楕円形であるポアの端から端までの最大の断面距離を包含すると意図される。いくつかの例において、アレイの各ポアは、5ミクロン~100ミクロンの範囲内のポア直径を含み得る。いくつかの例において、各ポアは、10ミクロン~50ミクロンの範囲内の直径を有し得る。
各ポア113は、ある断面積を含み得る。その断面積は、単一の断面において計測され得る。追加的または代替的に、その断面積は、ポアに沿った多くの位置にわたって平均され得る。図1Bに示されるポア113の白色の領域は、ポアの第1の表面における断面積を画定し得る。必要に応じて、マイクロポア113の各々が、約1平方ミリメートルに等しいかまたはそれ未満の断面積を有する。いくつかの場合において、複数のポアの各ポアは、約0.008mmまたはそれ未満の最大断面積を有し得る。
アレイの各ポア113は、あるアスペクト比を含み得る。そのアスペクト比は、ポアの最大の断面寸法に対するポアの長さの割合であり得る。そのアスペクト比は、ポアの直径に対するポアの長さの割合であり得る。いくつかの場合において、アスペクト比は、10~100の範囲内であり得る。いくつかの場合において、アスペクト比は、10またはそれを超えることがある。いくつかの場合において、アスペクト比は、20またはそれを超えることがある。いくつかの場合において、アスペクト比は、100またはそれを超えることがある。
図1Cは、異なる細胞濃度を有するアレイの例示的な画像を示している。各ウェルは、図示の実施形態に示すように、細胞などの目的の1つの粒子または複数の粒子を含み得る。1つの粒子または複数の粒子は、1つの細胞または複数の細胞を含み得る。複数の細胞の数は、約1、約5、約25、またはそれを超えるものであり得る。いくつかの例において、複数の細胞の数は、約100未満または約1000未満であり得る。
いくつかの実施形態において、水性サンプル溶液をアレイ100上に広げることなどによって、水性サンプル溶液をアレイ100上に堆積され得る。いくつかの実施形態において、アレイ100の第1の表面111は親水性であり得、水性サンプル溶液はポア113に吸収され得る。いくつかの実施形態において、アレイ100の第1の表面111は、水性サンプル溶液内の細胞などの目的の粒子をマイクロポア113に分配させてもよい。いくつかの実施形態において、アレイ100の第1の表面111は、水性サンプル溶液内の目的の粒子をマイクロポア113にランダムに分配させてもよい。いくつかの実施形態において、目的の粒子(単数または複数)は、ポアを通って移動し得、各マイクロポア113の底に沈み得る。必要に応じて、いくつかの実施形態において、目的の粒子は、水性サンプル溶液の表面張力によって各ポア113に留め置かれ得る。
基材の1つまたはそれを超える表面部分は、材料でコーティングされてもよい。コーティングされた材料は、基材のコーティングされた部分またはこの部分の付近に向けられた電磁放射線に応答して破壊されるように構成され得る。したがって、目的の粒子が、アレイの特定のマイクロチャネル(ポア)内に保持されていると識別されると、電磁放射線が、表面材料を破壊するように基材のコーティングされた部分に向けられ得、その結果、そのマイクロチャネル内に保持された液体のメニスカスが壊れて、目的の粒子が放出され得る。ある特定の実施形態において、電磁放射線は、マイクロアレイにおけるポアの中のまたはポア付近のコーティングされた材料の一部分を除去、例えば、切除することができ、これにより、ポアのマイクロチャネル内に保持された液体のメニスカスが壊れる。
表面材料
例えば図2A~17に示されている、表面材料を含むアレイ100の非限定的な例が、本明細書中に提供される。図2Aを参照すると、表面材料120はコーティングを含み得る。そのコーティングは、基材110の第1の表面111に結合され得る。いくつかの実施形態において、表面材料120は、基材材料の材料と異なる材料を含み得る。1つの例において、コーティングは、遷移金属(例えば金および金への付着性を提供することができる金属(例えばクロム、チタン、ニッケル、またはニッケル-クロム)などの金属を含み得る。いくつかの実施形態において、表面材料は複数の層を含み得る。表面材料は、金属コーティングの組み合わせ(例えば、Ti-Au)を含み得る。いくつかの実施形態において、表面材料はメタロイドまたは金属酸化物を含み得る。いくつかの実施形態において、表面材料としては、スカンジウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、イットリウム、ジルコニウム、白金、金、水銀、ニオブ、イリジウム、モリブデン、銀、カドミウム、タンタル、タングステン、アルミニウム、ケイ素、リン(Phosphorous)、スズ、任意の前述のものの酸化物またはそれらの任意の組み合わせを挙げることができる。
いくつかの実施形態において、表面材料120はポリマーを含み得る。いくつかの実施形態において、表面材料は、本明細書に記載のコーティング材料のいずれかの組み合わせを含み得る。表面材料またはコーティングは、表面材料の一部分にまたは一部分の付近に向けられた電磁放射線に応答して、アレイの第1の表面111から破壊されるように形成されてもよい。したがって、目的の粒子がアレイの特定のマイクロチャネル内に保持されていると識別されると、電磁放射線を表面に向けてコーティングを破壊および/または剥離することができ、マイクロチャネル内に保持された液体のメニスカスを破壊して目的の粒子(複数可)を放出することができる。
図2Aは、いくつかの実施形態に係る、粒子をソーティングするための例示的なアレイの側断面図である。図2Aに図示されているように、アレイ100は、基材110を備え得る。その基材は、複数のポア113を含み得る。基材110は、第2の表面112および第2の表面112の反対側の第1の表面111を含み得る。必要に応じて、複数のポア113は、第1の表面111から第2の表面112に延び得る。いくつかの実施形態において、コーティング120は、第1の表面111に結合され得る。
いくつかの実施形態において、アレイ100は、約66パーセントというオープンアレイ割合(充填密度)を有する。いくつかの実施形態において、ポア113の各々は、約1平方ミリメートルに等しいかまたはそれ未満の断面積を有する。いくつかの実施形態において、ポア113の各々は、約50um~約150umの直径を有する。いくつかの実施形態において、ポア113の各々は、約50mmに等しいかまたはそれ未満の長さを有する。いくつかの実施形態において、複数のポア113は、第2の表面112および第1の表面111に対して直角である。いくつかの実施形態において、複数のポア113におけるポア113の各々は、互いに実質的に平行であり得る。いくつかの実施形態において、複数のポア113は、約100万~約1000億個のポアを含み得る。
さらに、アレイ100は、図2Aによると、第2の表面112から表面材料120までの距離として計測されるアレイ高さ110aを有する。いくつかの実施形態において、アレイ高さ110aは、第1の表面111と第2の表面112との間の垂直距離として計測され得る。いくつかの実施形態において、アレイ高さ110aは、第1の表面111と第2の表面112との間の最大または最小の垂直距離として計測され得る。いくつかの実施形態において、アレイ高さ110aは、ポア113の標準的な高さとして計測され得る。いくつかの実施形態において、アレイ高さ110aは、ポア113の最大または最小の高さとして計測され得る。
図2Bは、いくつかの実施形態に係る例示的なアレイの上面図である。アレイ100内の複数のポア113は、図2Bによると、直角のパターン(orthogonal pattern)で配置されている。いくつかの実施形態において、そのパターンは、線形パターン、三角形パターン、六角形パターン、不規則なパターンまたはそれらの任意の組み合わせを含む。ポア113の直交パターンは、図2Bによると、第1の隔たり113bおよび第2の隔たり113cのうちの少なくとも1つを有し、第1の隔たり113bおよび第2の隔たりは、連続したポア113の中心点の間で計測される。いくつかの実施形態において、第1の隔たり113bおよび第2の隔たりのうちの少なくとも1つは、連続したポア113の表面上の対向する点の間の垂直距離として計測される。いくつかの実施形態において、第1の隔たり113bおよび第2の隔たり113cのうちの少なくとも1つは、約10mm~約40mmであり得る。
本明細書に記載のアレイは、コーティング120を含み得る。そのコーティングは、基材の1つまたはそれを超える表面部分に結合され得る。そのコーティングは、電磁放射線に曝露されたとき、破壊されるように構成され得る。例えば、コーティングの一部分に向けられたレーザーからの電磁放射線に応答して、そのコーティングは、チッピングし得るか、または剥離し得る。必要に応じて、そのコーティングは、基材の材料と異なる材料を含み得る。例えば、基材110は、第1の材料を含み得、コーティング120は、第1の材料と異なる第2の材料を含み得る。
いくつかの場合において、表面材料(コーティング120)は、アレイの第2の表面112を覆い得るかまたは部分的に覆い得る。追加のまたは代替の場合において、表面材料は、アレイの第1の表面111を覆い得るかまたは部分的に覆い得る。いくつかの場合において、表面材料は、ポアの管腔へのアクセスを実質的に遮断しないことがある。しかしながら、いくつかの例では、製造中のコーティング厚のばらつきなどに起因して、いくつかのポアの封鎖が生じ得る。表面材料は、約20ナノメートル(nm)~500nmの平均厚さを有し得る。表面材料は、約100nm~500nmの平均厚さを有し得る。
いくつかの場合において、表面材料(コーティング120)は、基材材料110に実質的に類似し得る。いくつかの場合において、アレイは、均一であり得る。いくつかの実施形態において、均一アレイは、コーティングを含まないか、または含む必要がない。いくつかの実施形態において、均一なアレイは、一様な集塊または合金材料を含む。1つの例において、アレイは、メタロイド、金属(例えば、クロム、チタン、金、鉄、ニッケル、銅、白金、またはパラジウム)(例えば、金および金に付着性を提供することができる金属(例えば、クロム、チタン、ニッケル、またはニッケル-クロム))、またはそれらの任意の組み合わせを含む。いくつかの実施形態において、基材材料は、ガラス、プラスチック、アルミニウム、鋼、ステンレス鋼、またはそれらの任意の組み合わせを含む。
いくつかの場合において、表面材料(コーティング120)は、基材材料110と実質的に異なり得る。基材材料は、ガラスであり得、表面材料は、ガラス以外の材料であり得る。いくつかの場合において、表面材料(コーティング120)は、金属を含み得る。いくつかの場合において、金属は、チタン、金、クロム、銀、アルミニウム、または任意の他の金属を含み得る。いくつかの場合において、表面材料は、金属酸化物、例えばフッ化マグネシウム、フッ化カルシウム、二酸化ケイ素などを含み得る。表面材料は、反射または吸収などの個々に合わせた光学的特性を形成するように、金属および/または金属酸化物の層を含み得る。
いくつかの実施形態において、表面材料(コーティング120)は、遷移金属(例えば、チタン、金など)を含む。いくつかの実施形態において、第2の材料は、メタロイドを含む。いくつかの実施形態において、第2の材料は、金属酸化物を含む。いくつかの実施形態において、第2の材料としては、スカンジウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、イットリウム、ジルコニウム、白金、金、水銀、ニオブ、イリジウム、モリブデン、銀、カドミウム、タンタル、タングステン、アルミニウム、ケイ素、リン(Phosphorous)、スズ、任意の前述のものの酸化物またはそれらの任意の組み合わせが挙げられる。
いくつかの実施形態において、表面材料(コーティング120)は、細胞生存率に悪影響を及ぼさない材料から選択される。例えば、表面材料は、生体適合性であり得る。表面材料は、無毒性であり得る。ある特定の実施形態において、表面材料は、電磁放射線と接触したとき、細胞傷害または細胞死を引き起こさない材料から選択される。例えば、表面材料を電磁放射線と接触させることによって生成される生成物自体が、細胞傷害または細胞死を引き起こしてはならない。つまり、例えば、表面材料のアブレーションによって生成される生成物は、生体適合性かつ/または細胞に対して無毒性であり得る。ある特定の実施形態において、細胞生存率に対する影響は、細胞を表面材料に曝露する前および後の細胞生存率を計測することによって評価される。ある特定の実施形態において、細胞生存率は、同じままであるか、または40%未満、30%未満、20%未満、15%未満、10%未満もしくは5%未満しか低下しない。ある特定の実施形態において、細胞生存率は、表面材料を電磁放射線と接触させる前および後の細胞生存率を計測することによって評価され得る。例えば、細胞生存率は、細胞をアレイにロードする前、および表面材料と電磁放射線との接触によってアレイのポアから細胞を放出した後に評価される。いくつかの例において、生存率は、表面材料を電磁放射線と接触させた後も、同じままであるか、または40%未満、30%未満、20%未満、15%未満、10%未満、5%未満または1%未満しか低下しない。
アレイは、いくつかの場合において、個々に合わせた疎水性を有し得る。1つの例において、第2の表面112は、親水性であり得る。必要に応じて、第2の表面112は、それ自体が親水性である必要はないが、親水性コーティングに作動可能に結合され得る。いくつかの実施形態において、コーティング120の一部分は、第1の表面111から破壊されるように形成され得る。いくつかの実施形態において、コーティング120の一部分は、コーティングの一部分に向けられた電磁放射線に応答して、第1の表面111から破壊されるように形成され得る。いくつかの実施形態において、コーティング120は、疎水性であり得る。
コーティング120は、表面材料の一部分に向けられた電磁放射線に応答して破壊されるように構成され得る。したがって、目的の粒子がアレイの特定のマイクロチャネル(ポア)内に保持されていると識別されると、電磁放射線をコーティングに向けてそのコーティング120を破壊および/または剥離することができ、マイクロチャネル(ポア113)内に保持された液体のメニスカスを破壊して目的の粒子を放出することができる。コーティング120は、電磁放射線源が放射する波長に対応する波長または波長範囲で吸収し得る。
したがって、目的の粒子がアレイの特定のポア内に保持されていると識別されると、電磁放射線が、その特定のポアの近くまたはその特定のポア付近に向けられて、目的の粒子を放出し得る。いくつかの実施形態において、表面材料の破壊は、アレイ、アレイ上のコーティングまたはその両方の材料の少なくとも一部分を除去することを含む。
いくつかの実施形態において、アレイの破壊は、局所的な加熱によって引き起こされ得る。そのようなメカニズムは、パルス持続時間がより長いとき、ピーク出力密度がより低いとき、および/または入射放射線の波長が赤外であるとき、起こる可能性があり得る。局所的な加熱は、表面材料(コーティング120)またはアレイ材料の昇華を引き起こし得る。いくつかの実施形態において、基材材料およびコーティング120は、異なる熱膨張係数を含み、それにより、チッピングに至り得る。
追加的または代替的に、アレイの破壊は、アブレーションによって引き起こされ得る。そのようなメカニズムは、入射ピーク出力密度がより高いとき、パルス持続時間がより短いとき、放射電力がより高いとき、および/または入射放射線が可視であるとき、起こる可能性があり得る。アブレーションは、アレイまたは基材材料の局所的な結合の切断および/または気化を含み得る。
追加的または代替的に、アレイの破壊は、プラズマ発生によって引き起こされ得る。このメカニズムは、入射放射線のパルス持続時間が特に短いとき、入射放射線の波長が多光子イオン化メカニズムと共鳴関係にあるとき、およびまたは入射放射線の波長が非常に短いとき、起こる可能性があり得る。ピコ秒台からフェムト秒台のパルス持続時間によって、基材または表面材料(surface mater)の光学エッチングにつながる局所的な加熱よりも速いプラズマ発生がもたらされ得る。
追加的または代替的に、アレイの破壊は、衝撃波発生によって生じ得る。そのようなメカニズムは、ピーク出力密度がより高いとき、フォノンが共鳴しているとき、および/またはパルス持続時間がより短いとき、起こる可能性が高い場合があり得る。衝撃は、表面材料またはアレイ材料の物理的振動、チッピングまたは揺れを引き起こし得る。
ある例において、表面材料(コーティング120)は、可視または赤外の範囲の波長を吸収する。いくつかの実施形態において、表面材料は、不透明であり得る。その表面材料は、可視および赤外の範囲内で選択される少なくとも5ナノメートルの帯域を吸収し得る。その表面材料は、0.4~2.5ミクロンから選択される少なくとも5ナノメートルの帯域内の入射放射線の10パーセント超を吸収し得る。その表面材料は、0.4ミクロン~2.5ミクロンから選択される波長の入射電磁放射線の10パーセント超を吸収し得る。いくつかの場合において、その表面材料は、少なくとも5ナノメートルの帯域内の入射放射線の50パーセント超を吸収し得る。その5ナノメートルの帯域は、0.4~2.5ミクロンの波長の範囲内で選択され得る。その表面材料は、0.4ミクロン~1.5ミクロンから選択される波長の入射電磁放射線の50パーセント超を吸収し得る。その表面材料は、ドープされたオルトバナジン酸イッテルビウムまたはイッテルビウム・アルミニウム・ガーネット固体レーザーの高調波から選択される波長の入射放射線の10パーセント超を吸収し得る。その表面材料は、1064ナノメートルの入射放射線の10パーセント超を吸収し得る。
1つの例において、アレイ100のコーティング120は、約600nmの平均厚さを有する。コーティング120の厚さは、赤外線(IR)レーザーによって約100nmもしくはそれ未満、例えば約75nmもしくはそれ未満、または約50nmもしくはそれ未満だけ薄くされ得る。コーティングの厚さは、10~1000nmであり得る。いくつかの実施形態において、コーティングまたはその任意の識別可能な層は、10nm、20nm、30nm、40nm、50nm、60nm、70nm、80nm、90nm、100nm、150nm、200nm、250nm、300nm、300nm、400nm、450nm、500nm、550nm、600nm、650nm、700nm、750nm、800nm、850nm、900nm、950nm、もしくは1000nm、または約10nm、約20nm、約30nm、約40nm、約50nm、約60nm、約70nm、約80nm、約90nm、約100nm、約150nm、約200nm、約250nm、約300nm、約300nm、約400nm、約450nm、約500nm、約550nm、約600nm、約650nm、約700nm、約750nm、約800nm、約850nm、約900nm、約950nm、もしくは約1000nm、あるいは前述の値のうちの2つの間の任意の範囲の厚さを有する。いくつかの実施形態において、コーティングまたはその任意の識別可能な層は、少なくとも10nm、少なくとも20nm、少なくとも30nm、少なくとも40nm、少なくとも50nm、少なくとも60nm、少なくとも70nm、少なくとも80nm、少なくとも90nm、少なくとも100nm、少なくとも150nm、少なくとも200nm、少なくとも250nm、少なくとも300nm、少なくとも300nm、少なくとも400nm、少なくとも450nm、少なくとも500nm、少なくとも550nm、少なくとも600nm、少なくとも650nm、少なくとも700nm、少なくとも750nm、少なくとも800nm、少なくとも850nm、少なくとも900nm、少なくとも950nm、または少なくとも1000nm、あるいは少なくとも約10nm、少なくとも約20nm、少なくとも約30nm、少なくとも約40nm、少なくとも約50nm、少なくとも約60nm、少なくとも約70nm、少なくとも約80nm、少なくとも約90nm、少なくとも約100nm、少なくとも約150nm、少なくとも約200nm、少なくとも約250nm、少なくとも約300nm、少なくとも約300nm、少なくとも約400nm、少なくとも約450nm、少なくとも約500nm、少なくとも約550nm、少なくとも約600nm、少なくとも約650nm、少なくとも約700nm、少なくとも約750nm、少なくとも約800nm、少なくとも約850nm、少なくとも約900nm、少なくとも約950nm、または少なくとも約1000nmの厚さを有する。いくつかの実施形態において、コーティングまたはその任意の識別可能な層は、少なくとも10nm、少なくとも20nm、少なくとも30nm、少なくとも40nm、少なくとも50nm、少なくとも60nm、少なくとも70nm、少なくとも80nm、少なくとも90nm、少なくとも100nm、少なくとも150nm、少なくとも200nm、少なくとも250nm、少なくとも300nm、少なくとも300nm、少なくとも400nm、少なくとも450nm、少なくとも500nm、少なくとも550nm、少なくとも600nm、少なくとも650nm、少なくとも700nm、少なくとも750nm、少なくとも800nm、少なくとも850nm、少なくとも900nm、少なくとも950nm、または少なくとも1000nm、あるいは少なくとも約10nm、少なくとも約20nm、少なくとも約30nm、少なくとも約40nm、少なくとも約50nm、少なくとも約60nm、少なくとも約70nm、少なくとも約80nm、少なくとも約90nm、少なくとも約100nm、少なくとも約150nm、少なくとも約200nm、少なくとも約250nm、少なくとも約300nm、少なくとも約300nm、少なくとも約400nm、少なくとも約450nm、少なくとも約500nm、少なくとも約550nm、少なくとも約600nm、少なくとも約650nm、少なくとも約700nm、少なくとも約750nm、少なくとも約800nm、少なくとも約850nm、少なくとも約900nm、少なくとも約950nm、または少なくとも約1000nmの厚さを有する。いくつかの実施形態において、コーティングの厚さは、少なくとも10nm、少なくとも20nm、少なくとも30nm、少なくとも40nm、少なくとも50nm、少なくとも100nm、少なくとも200nm、少なくとも300nm、少なくとも400nm、少なくとも500nm、少なくとも600nm、少なくとも800nm、少なくとも1000nm、またはそれを超えるものであり得る。いくつかの実施形態において、コーティングの厚さは、最大で1000nm、最大で800nm、最大で600nm、最大で500nm、最大で400nm、最大で300nm、最大で200nm、最大で100nm、最大で50nm、最大で40nm、最大で30nm、最大で20nm、最大で10nm、またはそれ未満であり得る。コーティングの層構造(複数可)は、エネルギー分散型X線分光法(EDSまたはEDX)を使用して決定することができる。
いくつかの実施形態において、電磁放射線源は、コーティング120の平均厚さを約1nm~約5nm、約1nm~約10nm、約1nm~約20nm、約1nm~約30nm、約1nm~約40nm、約1nm~約60nm、約1nm~約70nm、約1nm~約80nm、約1nm~約90nmまたは約1nm~約100nm薄くするように形成され得る。
いくつかの実施形態において、電磁放射線源は、約1nm~約5nm、約1nm~約10nm、約1nm~約20nm、約1nm~約30nm、約1nm~約40nm、約1nm~約60nm、約1nm~約70nm、約1nm~約80nm、約1nm~約90nmまたは約1nm~約100nmの平均深さでアレイの一部分を切除するように形成され得る。
いくつかの実施形態において、電磁放射線源は、コーティング120またはアレイの一部分を除去するように形成され得、その一部分は、約1μm~約30μm、1μm~約20μm、約1μm~約10μmまたは約1μm~約5μmの表面積を有する。
いくつかの実施形態において、電磁放射線源は、マイクロポアの外周から約1nm~約5nm、約1nm~約10nm、約1nm~約20nm、約1nm~約30nm、約1nm~約40nm、約1nm~約60nm、約1nm~約70nm、約1nm~約80nm、約1nm~約90nmまたは約1nm~約100nmの平均距離でアレイの一部分を切除するように形成され得る。
図3Aは、いくつかの実施形態に係る、コーティングを含む粒子をソーティングするための例示的なアレイの上面図を示している。図3Bは、いくつかの実施形態に係る、レーザーによって除去されるコーティングを含む粒子をソーティングするためのアレイの非限定的な例の上面図を示している。図3Aおよび3Bを参照すると、コーティング120は電磁エネルギーを吸収し得、それにより、それが基材110から破壊され、各ポア113内の流体のメニスカスを壊し、内部の細胞が排出される。図3Bは、電磁エネルギーによって基材110から除去されたコーティング120の片を示している。図3Bを参照すると、レーザーは、単一のポアもしくは単一のポア付近、2つの隣接したポアの間、または3つのポアから等距離の場所に焦点が当てられ得る。いくつかの実施形態において、赤外線レーザーを単一ポアの近く、2つの隣接したポアの間または3つのポアから等距離の場所に焦点を当てることにより、それぞれ1つ、2つまたは3つのポア113内の流体のメニスカスが壊れて、内部の細胞が排出される。いくつかの実施形態において、レーザーを特定のポアに近づけて焦点を当てることにより、付近のポア内の細胞を意図せず排出してしまう可能性が低下する。いくつかの実施形態において、赤外線レーザーの強度および持続時間のうちの少なくとも1つは、1つ、2つまたは3つのポア内の細胞の排出を制御するように設定され得る。
いくつかの実施形態において、表面材料(コーティング120)は、材料をアレイ100上にスパッタすることによって形成され得る。いくつかの実施形態において、表面材料は、1つまたはそれを超える金属(例えば、チタン、金)を含み得る。表面材料の厚さは、10~1000nmであり得る。いくつかの実施形態において、表面材料の厚さは、少なくとも10nm、20nm、30nm、40nm、50nm、100nm、200nm、300nm、400nm、500nm、600nm、800nm、1000nm、またはそれを超えるものであり得る。いくつかの実施形態において、表面材料の厚さは、最大で1000nm、800nm、600nm、500nm、400nm、300nm、200nm、100nm、50nm、40nm、30nm、20nm、10nm、またはそれ未満であり得る。いくつかの実施形態において、表面材料はTi-Auスタックを含み得る。チタン層の厚さは、少なくとも10nm、20nm、30nm、40nm、50nm、100nm、200nm、またはそれを超えるものであり得る。金層は、チタン層上に直接形成されていてもよい。金層の厚さは、少なくとも100nm、200nm、300nm、400nm、500nm、600nm、700nm、またはそれを超えるものであり得る。いくつかの実施形態において、表面材料はチタン層を含んでもよく、金層は任意であってもよい。
いくつかの実施形態において、スパッタリングは真空下で行うことができる。いくつかの実施形態において、真空は、約0.08~約0.02mbarであり得る。いくつかの実施形態において、スパッタリングは、約100V~3kVの電圧下で行うことができる。いくつかの実施形態において、電圧は、少なくとも約100V、110V、130V、150V、170V、220V、280V、500V、1000V、2000V、3000V、またはそれを超えるものであり得る。いくつかの実施形態において、電圧は、最大で約3000V、2000V、1000V、500V、280V、220V、170V、150V、130V、110V、100V、またはそれ未満であり得る。いくつかの実施形態において、スパッタリングは、電流0~50mAの下で行うことができる。いくつかの実施形態において、電流は、少なくとも約0.01mA、0.1mA、1mA、5mA、10mA、20mA、30mA、40mA、50mA、またはそれを超えるものであり得る。いくつかの実施形態において、電流は、最大で約50mA、40mA、30mA、20mA、10mA、1mA、0.1mA、0.01mA、またはそれ未満であり得る。必要に応じて、いくつかの実施形態において、表面材料(コーティング120)は、アレイの片側(111もしくは112)のみまたは両側(111および112)でスパッタすることができる。例えば、いくつかの実施形態において、表面材料は、アレイの第1の面(例えば111)にスパッタすることができる。他の実施形態において、表面材料は、ガラスアレイの第2の面(例えば112)にスパッタすることができる。いくつかの更なる実施形態において、表面材料は、アレイの第1の面(例えば111)および第2の面(例えば112)にスパッタすることができる。
いくつかの実施形態において、PBMCの抽出は、コーティングされたアレイ上に界面活性剤および受け取り培地を加えること;組み立てられ得るアレイを、コーティングされた側を下向きにして受け取り培地に向かってカセットに挿入すること;PBMCをアレイ上に滴下すること、およびPBMCをポア内に静置させることを含む。いくつかの実施形態において、界面活性剤は、細胞膜の完全性を守り、液体剪断下での頑健さを改善する。いくつかの実施形態において、界面活性剤は、非イオン性界面活性剤を含む。いくつかの実施形態において、非イオン性界面活性剤は、0.1パーセントのプルロニック(登録商標)(pluoronic)F68を含む。いくつかの実施形態において、受け取り培地は、OptiPEAK T細胞培地を含む。いくつかの実施形態において、受け取り培地は、ストレプトアビジンをさらに含む。いくつかの実施形態において、PBMCは、約5分間にわたってマイクロポア内に静置される。
いくつかの実施形態では、レーザーから放射され、表面材料コーティング120(例えば、Ti-Auスタック、Ti層、またはAu層)によって吸収される赤外線(IR)エネルギーは、各マイクロポアの底縁においてコーティングを膨張させ、剥離を起こさせて、各マイクロポアからPBMCを抽出し得る。各マイクロポアの底縁におけるコーティングの分離により、その中の流体のメニスカスを壊れて、PBMCが放出される。
図4Aは、いくつかの実施形態に係る、表面材料コーティング(例えば、Ti-Auスタック、Ti層、またはAu層)を含むアレイの非限定的な例におけるIRエネルギー吸収蛍光色素で染色されたPBMCの上面図である。図4Bは、いくつかの実施形態に係る、PBMC抽出後の、表面材料コーティングを備える例示的なアレイの上面図である。
ビーズ
ある特定の実施形態において、アレイのポアは、電磁放射線を吸収するビーズであって、ポア内の流体のメニスカス(miniscus)の破壊に影響するビーズを含み得る。いくつかの場合において、そのビーズ(beard)は、ポアの管腔表面に結合されていてもよいし、結合されていなくてもよい(液体混合物としてポアに加えられてもよい)。コアおよびシェルを含むビーズが、本明細書中に提供される。本開示のビーズは、「ミクロスフェア」と称され得る。コアは、赤外線(IR)吸収コアを含み得る。シェルは、非IR吸収シェルを含み得る。本開示のビーズは、アレイのポアに関連し得、ビーズは、電磁放射線を吸収し得る。非IR吸収シェルは、IR吸収コアを近くの粒子、例えば、細胞から遮断することにより、IR吸収放射線によるコアの傷害作用からそれらの粒子を保護し得る。ビーズは、アガロースをさらに含み得る。非IR吸収シェルは、アガロースを含み得る。ビーズは、デキストランをさらに含み得る。ビーズは、IR吸収色素で染色され得る。ビーズは、約1μm~約20μmまたは約5μm~約20μmなどの約20μmに等しいかまたはそれ未満の直径を含み得る。ビーズは、約10ミクロンに等しいかまたはそれ未満であり得る吸収シェルを含み得る。いくつかの実施形態において、本明細書中に記載されるようなアレイの表面材料は、赤外線吸収コアおよび非赤外線吸収シェルを含むビーズを含み得、その非赤外線吸収シェルの外径は、約10ミクロンに等しいかまたはそれ未満である。
図5Aは、中にビーズが配置されたアレイ100を示している。いくつかの場合において、それらのビーズは、ポアの管腔の内部に配置され得る。いくつかの場合において、それらのビーズは、第1の表面111上に配置され得る。いくつかの場合において、それらのビーズは、ポアの管腔内に配置され得る。図5Bは、図5Aの例示的なアレイ内の水性サンプル溶液の側断面図を示している。いくつかの実施形態において、水性サンプル溶液521をアレイ100上に堆積させることは、水性サンプル溶液521をアレイ100上に広げることを含む。いくつかの実施形態において、アレイ100の親水性の第1の表面111は、水性サンプル溶液521をポア113内に吸い込む。いくつかの実施形態において、アレイ100の親水性の第1の表面111は、水性サンプル溶液521中の第1の細胞522および第2の細胞523をポア113に均等に分配する。いくつかの実施形態において、アレイ100の親水性の第1の表面111は、水性サンプル溶液521中の第1の細胞522および第2の細胞523をポア113にランダムに分配する。いくつかの実施形態において、第1の細胞522および第2の細胞523は、各ポア113の底に沈む。必要に応じて、いくつかの実施形態において、第1の細胞522および第2の細胞523は、水性サンプル溶液521の表面張力によって各ポア113に引き止められる。
図6Aは、いくつかの実施形態に係る、ミクロスフェアおよび細胞で満たされたマイクロポアのアレイの明視野像を示している。図6Aに見られるように、アレイ600内のマイクロポア601の各々は、それぞれの各マイクロポア601の中のマイクロビーズおよび細胞によって塞がれ得る。図6Bは、いくつかの実施形態に係る、単一のマイクロポアからの細胞抽出の明視野像を示している。図6Bに見られるように、アレイ600内のただ1つのマイクロポア601だけしか、細胞によって塞がれることができていないことから、単一のマイクロポア601における細胞だけが除去されたことが示唆される。図6Cは、いくつかの実施形態に係る、ミクロスフェアおよび細胞で満たされたマイクロポアのアレイ画像を示している。図6Cに見られるように、アレイ600内のただ1つのマイクロポア601だけしか、細胞を含まない。図6Dは、いくつかの実施形態に係る、単一のマイクロポアからの細胞抽出後のアレイ600の画像を示している。図6Dに見られるように、アレイ600内のマイクロポア601のいずれもが、細胞を含まないことから、単一のマイクロポア601における単一の細胞が除去されたことが示唆される。
図7Aは、いくつかの実施形態に係る、抽出された細胞の例示的な明視野像を示している。図7Bは、いくつかの実施形態に係る、抽出された細胞の例示的な画像を示している。
図8、9、10A、および10Bによると、ビーズまたはミクロスフェアの例が本明細書中に提供される。図8は、例示的なアガロースおよびデキストランミクロスフェアの明視野像を示している。いくつかの実施形態において、アガロースおよびデキストランミクロスフェア800は、赤外光を吸収するように形成されている。いくつかの実施形態において、アガロースおよびデキストランミクロスフェア800は、不透明、黒色またはその両方である。いくつかの実施形態において、アガロースおよびデキストランミクロスフェア800は、ポリマーシェル酸化鉄ミクロスフェア800を含む。いくつかの実施形態において、アガロースおよびデキストランミクロスフェア800は、約6um~約20umの直径を有する。
図9は、例示的なアガロースおよびデキストランミクロスフェアの高倍率の赤外線画像を示している。図9に見られるように、アガロースおよびデキストランミクロスフェア800は、赤外線(IR)吸収コア910および非IR吸収シェル920を含む。いくつかの実施形態において、IR吸収コア910は、IR吸収色素を含む。いくつかの実施形態において、IR吸収色素は、Epolight1178を含む。いくつかの実施形態において、非IR吸収シェル920は、アガロースおよびデキストランを含む。
IRコア着色粒子を使用することは、効率的な細胞抽出にとって有益であり得る。第1に、アガロースコアの分子構造に組み込まれた色素は、色素コーティングよりもIR吸収を増加させ得る。さらに、非IR吸収ソフトシェルは、任意の潜在的な熱吸収、体積膨張および/またはマイクロバブル形成に関連する応力および熱衝撃から細胞を守るための緩衝層として働き得る。その両方が、抽出効率の増大(成功した抽出事象の回数の増加)および細胞生存率の上昇を可能にし得る。
図10Aは、例示的なアガロースおよびIR色素ミクロスフェアの明視野像を示している。図10Bは、例示的なアガロースおよびIR色素ミクロスフェアの赤外線画像を示している。図10Bに見られるように、アガロースおよびIR色素ミクロスフェア1000は、赤外線(IR)を吸収するものであり得る。いくつかの実施形態において、アガロースおよびIR色素ミクロスフェア1000は、アガロースを含む。いくつかの実施形態において、アガロースおよびIR色素ミクロスフェア1000は、IR吸収色素を含む。いくつかの実施形態において、IR吸収色素は、Epolightを含む。いくつかの実施形態において、その色素は、緑色蛍光タンパク質を含む。いくつかの実施形態において、その色素は、赤色蛍光タンパク質を含む。いくつかの実施形態において、その色素は、シアニン色素、アクリジン色素、フルオロン(flourone)色素、オキサジン色素、ローダミン(rhodomine)色素、クマリン色素、フェナントリジン(pheanthridine)色素、BODIPY色素、ALEXA色素、ペリレン色素、アントラセン色素、ナフタリン色素などを含む。いくつかの実施形態において、アガロースおよびIR色素ミクロスフェア1000は、約2μm~約16μmの直径を有する。
図11Aおよび図11Bは、基材110の1つまたはそれを超える表面の全部または一部を修飾するための例示的な手順を示している。いくつかの実施形態において、例えば図13Bおよび/または図13Cに示すように、ポアプレートの底面および垂直側壁の一部分を最初に表面コーティングで覆うことができる(工程1111)。表面コーティングは、1つまたはそれを超える熱伝導性または導電性材料を含み得る。工程1111は、金属堆積を含み得る。表面コーティングは、クロム、チタン、金、鉄、ニッケル、銅、白金、およびパラジウムからなる群から選択される1つまたはそれを超える金属を含み得る。表面コーティングは、1つまたはそれを超える金属層(例えば、図13Cに示す1320および1322)を含み得、各層は、クロム、チタン、金、鉄、ニッケル、銅、白金、パラジウム、それらの任意の混合物、およびそれらの任意の合金からなる群から独立して選択される。表面コーティングは、金属層と、その下の金属層のための付着層とを含み得る。付着層は、基材材料への付着を促進するために使用され得る。表面コーティングは、金の層と、金の下の金付着層(例えば、クロム、チタン、ニッケル、またはニッケル-クロム)とを含み得る。表面コーティング(工程1111)は、スパッタリング、スピンコーティング、化学蒸着(CVD)、物理蒸着(PVD)、パルスレーザー蒸着、原子層蒸着、低圧CVD、またはそれらの任意の組み合わせなどの任意の適切なコーティング方法を使用して実行することができる。いくつかの実施形態において、表面コーティングは、コーティング120と同じであってもよい。いくつかの実施形態において、コーティングプロセス(工程1111)は、金属堆積を含み得る。いくつかの場合において、金属コーティングは、1つまたはそれを超える金属(例えば、Cr、Ni、Ti、Au)を含み得る。いくつかの実施形態において、金属コーティングは、Ti-Auスタックを含み得る。いくつかの実施形態において、金属コーティングは、Cr-Auスタックを含み得る。いくつかの実施形態において、金属コーティングはNi-Auスタックを含み得る。
次に、ポアプレートの表面は、次いで、プラズマ清浄によって、プレートを塩基性溶液に浸漬することによって、またはそれらの組み合わせなどの、物理的または化学的手段によって、洗浄および/または活性化することができる(工程1113)。物理的または化学的手段(工程1113)は、工程1111から得られたコーティングへの後続の層の付着を強化することができる。いくつかの実施形態において、塩基性溶液は、所定の濃度のNaOHを含み得る。いくつかの実施形態において、所定の濃度は約1M~3Mであり得る。いくつかの実施形態において、所定の濃度は、3M、2.5M、2M、1.5M、1M、もしくは約3M、約2.5M、約2M、約1.5M、約1M、または前述の値のいずれか2つの間の任意の範囲(両端の値を含む)であり得る。いくつかの実施形態において、所定の濃度は、少なくとも1M、1.5M、2M、2.5M、3M、またはそれを超えるものであり得る。いくつかの実施形態において、所定の濃度は、最大3M、2.5M、2M、1.5M、1M、またはそれ未満であり得る。いくつかの実施形態において、ポアプレートを所定の期間にわたって塩基性溶液に浸漬することができる。いくつかの実施形態において、所定の期間は、約15分~12時間の間であり得る。いくつかの実施形態において、所定の期間は、最大で12時間、10時間、8時間、7時間、6時間、5時間、4時間、3時間、2時間、1時間、50分、40分、35分、30分、25分、20分、15分、またはそれ未満であり得る。いくつかの実施形態において、所定の期間は、少なくとも15分、20分、25分、30分、35分、40分、50分、1時間、2時間、3時間、4時間、5時間、6時間、8時間、10時間、12時間、またはそれを超えるものであり得る。
次に、ポアプレートを清浄して、例えば脱イオン水で洗浄することによって、不純物、例えば残留塩基性溶液を除去することができる(工程1115)。ポアプレートは、例えば加圧エアガンからの加圧空気を使用して乾燥させることができる。
いくつかの実施形態において、ポアプレートは、所定の期間、チャンバ内の任意の適切なプラズマでプラズマ清浄されてもよい。適切なプラズマは、アルゴンプラズマ、圧縮空気プラズマ、フレームベースのプラズマ、または真空プラズマであり得る。所定の期間は、10秒、20秒、30秒、40秒、50秒、1分、70秒、80秒、90秒、100秒、110秒、2分、130秒、140秒、150秒、160秒、170秒、3分、3.5分、4分、4.5分、5分、5.5分、6分、6.5分、7分、7.5分、8分、8.5分、9分、9.5分、10分、11分、12分、13分、14分、もしくは15分、または約10秒、約20秒、約30秒、約40秒、約50秒、約1分、約70秒、約80秒、約90秒、約100秒、約110秒、約2分、約130秒、約140秒、約150秒、約160秒、約170秒、約3分、約3.5分、約4分、4.5分、約5分、約5.5分、約6分、約6.5分、約7分、約7.5分、約8分、約8.5分、約9分、約9.5分、約10分、約11分、約12分、約13分、約14分、もしくは約15分、あるいは前述の値のいずれか2つの間の任意の範囲(両端の値を含む)であり得る。所定の期間は、少なくとも10秒、少なくとも20秒、少なくとも30秒、少なくとも40秒、少なくとも50秒、少なくとも1分、少なくとも70秒、少なくとも80秒、少なくとも90秒、少なくとも100秒、少なくとも110秒、少なくとも2分、少なくとも130秒、少なくとも140秒、少なくとも150秒、少なくとも160秒、少なくとも170秒、少なくとも3分、少なくとも3.5分、少なくとも4分、少なくとも4.5分、少なくとも5分、少なくとも5.5分、少なくとも6分、少なくとも6.5分、少なくとも7分、少なくとも7.5分、少なくとも8分、少なくとも8.5分、少なくとも9分、少なくとも9.5分、少なくとも10分、少なくとも11分、少なくとも12分、少なくとも13分、少なくとも14分、もしくは少なくとも15分、または少なくとも約10秒、少なくとも約20秒、少なくとも約30秒、少なくとも約40秒、少なくとも約50秒、少なくとも約1分、少なくとも約70秒、少なくとも約80秒、少なくとも約90秒、少なくとも約100秒、少なくとも約110秒、少なくとも約2分、少なくとも約130秒、少なくとも約140秒、少なくとも約150秒、少なくとも約160秒、少なくとも約170秒、少なくとも約3分、少なくとも約3.5分、少なくとも約4分、少なくとも約4.5分、少なくとも約5分、少なくとも約5.5分、少なくとも約6分、少なくとも約6.5分、少なくとも約7分、少なくとも約7.5分、少なくとも約8分、少なくとも約8.5分、少なくとも約9分、少なくとも約9.5分、少なくとも約10分、少なくとも約11分、少なくとも約12分、少なくとも約13分、少なくとも約14分、もしくは少なくとも約15分であり得る。所定の期間は、最大で10秒、最大で20秒、最大で30秒、最大で40秒、最大で50秒、最大で1分、最大で70秒、最大で80秒、最大で90秒、最大で100秒、最大で110秒、最大で2分、最大で130秒、最大で140秒、最大で150秒、最大で160秒、最大で170秒、最大で3分、最大で3.5分、最大で4分、最大で4.5分、最大で5分、最大で5.5分、最大で6分、最大で6.5分、最大で7分、最大で7.5分、最大で8分、最大で8.5分、最大で9分、最大で9.5分、最大で10分、最大で11分、最大で12分、最大で13分、最大で14分、もしくは最大で15分、または最大で約10秒、最大で約20秒、最大で約30秒、最大で約40秒、最大で約50秒、最大で約1分、最大で約70秒、最大で約80秒、最大で約90秒、最大で約100秒、最大で約110秒、最大で約2分、最大で約130秒、最大で約140秒、最大で約150秒、最大で約160秒、最大で約170秒、最大で約3分、最大で約3.5分、最大で約4分、最大で約4.5分、最大で約5分、最大で約5.5分、最大で約6分、最大で約6.5分、最大で約7分、最大で約7.5分、最大で約8分、最大で約8.5分、最大で約9分、最大で約9.5分、最大で約10分、最大で約11分、最大で約12分、最大で約13分、最大で約14分、もしくは最大で約15分であり得る。プラズマ清浄に使用されるチャンバは、超高真空(UHV)チャンバであり得る。
いくつかの実施形態において、工程1113の後のポアプレートは、1つまたはそれを超える洗浄液を使用して1つまたはそれを超えるパスで洗浄することができる(工程1115)。各パスにおいて、洗浄液は、水、アルコール(例えばメタノール、エタノール、イソプロパノール、ブタノール)、アセトニトリル、アセトン、トルエンおよびそれらの混合物からなる群から独立して選択され得る。各パスは、独立して所定の期間継続することができる。所定の期間は、10秒、20秒、30秒、40秒、50秒、1分、70秒、80秒、90秒、100秒、110秒、2分、130秒、140秒、150秒、160秒、170秒、3分、3.5分、4分、4.5分、5分、5.5分、6分、6.5分、7分、7.5分、8分、8.5分、9分、9.5分、10分、11分、12分、13分、14分、15分、20分、25分、30分、35分、40分、45分、50分、55分、もしくは1時間、または約10秒、約20秒、約30秒、約40秒、約50秒、約1分、約70秒、約80秒、約90秒、約100秒、約110秒、約2分、約130秒、約140秒、約150秒、約160秒、約170秒、約3分、約3.5分、約4分、約4.5分、約5分、約5.5分、約6分、約6.5分、約7分、約7.5分、約8分、約8.5分、約9分、約9.5分、約10分、約11分、約12分、約13分、約14分、約15分、約20分、約25分、約30分、約35分、約40分、約45分、約50分、約55分、もしくは約1時間、あるいは前述の値のいずれか2つの間の任意の範囲(両端の値を含む)であり得る。所定の期間は、少なくとも10秒、少なくとも20秒、少なくとも30秒、少なくとも40秒、少なくとも50秒、少なくとも1分、少なくとも70秒、少なくとも80秒、少なくとも90秒、少なくとも100秒、少なくとも110秒、少なくとも2分、少なくとも130秒、少なくとも140秒、少なくとも150秒、少なくとも160秒、少なくとも170秒、少なくとも3分、少なくとも3.5分、少なくとも4分、少なくとも4.5分、少なくとも5分、少なくとも5.5分、少なくとも6分、少なくとも6.5分、少なくとも7分、少なくとも7.5分、少なくとも8分、少なくとも8.5分、少なくとも9分、少なくとも9.5分、少なくとも10分、少なくとも11分、少なくとも12分、少なくとも13分、少なくとも14分、少なくとも15分、少なくとも20分、少なくとも25分、少なくとも30分、少なくとも35分、少なくとも40分、少なくとも45分、少なくとも50分、少なくとも55分、もしくは1時間、または少なくとも約10秒、少なくとも約20秒、少なくとも約30秒、少なくとも約40秒、少なくとも約50秒、少なくとも約1分、少なくとも約70秒、少なくとも約80秒、少なくとも約90秒、少なくとも約100秒、少なくとも約110秒、少なくとも約2分、少なくとも約130秒、少なくとも約140秒、少なくとも約150秒、少なくとも約160秒、少なくとも約170秒、少なくとも約3分、少なくとも約3.5分、少なくとも約4分、少なくとも約4.5分、少なくとも約5分、少なくとも約5.5分、少なくとも約6分、少なくとも約6.5分、少なくとも約7分、少なくとも約7.5分、少なくとも約8分、少なくとも約8.5分、少なくとも約9分、少なくとも約9.5分、少なくとも約10分、少なくとも約11分、少なくとも約12分、少なくとも約13分、少なくとも約14分、少なくとも約15分、少なくとも約20分、少なくとも約25分、少なくとも約30分、少なくとも約35分、少なくとも約40分、少なくとも約45分、少なくとも約50分、少なくとも約55分、もしくは少なくとも約1時間であり得る。所定の期間は、最大で10秒、最大で20秒、最大で30秒、最大で40秒、最大で50秒、最大で1分、最大で70秒、最大で80秒、最大で90秒、最大で100秒、最大で110秒、最大で2分、最大で130秒、最大で140秒、最大で150秒、最大で160秒、最大で170秒、最大で3分、最大で3.5分、最大で4分、最大で4.5分、最大で5分、最大で5.5分、最大で6分、最大で6.5分、最大で7分、最大で7.5分、最大で8分、最大で8.5分、最大で9分、最大で9.5分、最大で10分、最大で11分、最大で12分、最大で13分、最大で14分、最大で15分、最大で20分、最大で25分、最大で30分、最大で35分、最大で40分、最大で45分、最大で50分、最大で55分、もしくは最大で1時間、または最大で約10秒、最大で約20秒、最大で約30秒、最大で約40秒、最大で約50秒、最大で約1分、最大で約70秒、最大で約80秒、最大で約90秒、最大で約100秒、最大で約110秒、最大で約2分、最大で約130秒、最大で約140秒、最大で約150秒、最大で約160秒、最大で約170秒、最大で約3分、最大で約3.5分、最大で約4分、最大で約4.5分、最大で約5分、最大で約5.5分、最大で約6分、最大で約6.5分、最大で約7分、最大で約7.5分、最大で約8分、最大で約8.5分、最大で約9分、最大で約9.5分、最大で約10分、最大で約11分、最大で約12分、最大で約13分、最大で約14分、最大で約15分、最大で約20分、最大で約25分、最大で約30分、最大で約35分、最大で約40分、最大で約45分、最大で約50分、最大で約55分、もしくは最大で約1時間であり得る。
いくつかの実施形態において、(工程1115の後の)表面官能基化の準備が整った活性化され清浄された表面を有するポアプレートを、次いで、1つまたは複数の表面修飾材料でコーティングすることができる(工程1117)。1つまたはそれを超える表面修飾材料は、1つまたはそれを超えるポリマーを含み得る。1つまたはそれを超える表面修飾材料は、1つもしくはそれを超える親水性材料(例えば1つもしくはそれを超える親水性オリゴマーまたは1つもしくはそれを超える親水性ポリマー)、1つもしくはそれを超える疎水性材料(例えば1つもしくはそれを超える疎水性オリゴマーまたは1つもしくはそれを超える疎水性ポリマー)、またはそれらの任意の組み合わせを含み得る。
いくつかの実施形態において、ポアプレートの垂直側壁の一部分(例えば、ポア113の側壁)は、ポリエチレングリコール(PEG)、ポリ(ヒドロキシエチルメタクリレート)(PHEMA)、ポリアクリルアミド(PAM)、ポリアクリル酸(PAA)、ポリビニルピロリドン(PVP)、多糖類、ポリ乳酸(PLA)などの親水性オリゴマーまたはポリマーで官能基化されてもよい。親水性オリゴマーまたはポリマーは、直鎖状であっても分岐状であってもよい。親水性オリゴマーまたはポリマーは、第1の末端基を含み得る。第1の末端基を含む親水性オリゴマーまたはポリマーは、第2の末端基を含み得る。第1の末端基および第2の末端基の一方は、(工程1117の後に)活性化され清浄された表面と反応するか、またはその表面上に自己組織化膜を形成するように構成されてもよく、第1の末端基および第2の末端基の他方は、存在する場合、表面官能基化後に親水性オリゴマーまたはポリマー上に残るように構成されてもよい。表面官能基化後に親水性オリゴマーまたはポリマー上に残るように構成された第1もしくは第2の末端基は、アルコキシ(例えば、メトキシ、エトキシ)、ヒドロキシル、アミン、またはイオン性親水性基であり得る。(工程1117の後に)活性化され清浄された表面と反応するか、またはその表面上に自己組織化膜を形成するように構成された第1もしくは第2の末端基は、シラン、チオール、第一級アミン(-NH)、カルボン酸(-COOH)、アルデヒド、ビニル、エポキシ、およびクロロから選択され得る。(工程1117の後に)活性化され清浄された表面と反応するか、またはその表面上に自己組織化膜を形成するように構成された第1もしくは第2の末端基は、シランまたはチオールであり得る。工程1117の後に、ポアプレートの垂直側壁は、アルコキシ基(例えばメトキシ)でエンドキャップされた親水性オリゴマーまたはポリマー(例えばポリ(エチレン-グリコール)(PEG))によって官能基化され得る。第1の末端および第2の末端を有する親水性オリゴマーまたはポリマーは、シラン-PEG-メトキシ(PEG-シラン)またはチオール-PEG-メトキシ(PEG-SH)などの官能基化PEGであり得る。
いくつかの実施形態において、親水性オリゴマーまたはポリマー(例えばPEG-シランまたはPEG-SH)は、250、500、750、1000、1250、1500、1750、2000、2250、2500、2750、3000、3250、3500、3750、4000、4250、4500、4750、5000、5250、5500、5750、もしくは6000ダルトン、または約250、約500、約750、約1000、約1250、約1500、約1750、約2000、約2250、約2500、約2750、約3000、約3250、約3500、約3750、約4000、約4250、約4500、約4750、約5000、約5250、約5500、約5750、もしくは約6000ダルトン、あるいは前述の値のいずれか2つの間の任意の範囲の分子量を有する。いくつかの実施形態において、親水性オリゴマーまたはポリマー(例えばPEG-シランまたはPEG-SH)は、少なくとも250、少なくとも500、少なくとも750、少なくとも1000、少なくとも1250、少なくとも1500、少なくとも1750、少なくとも2000、少なくとも2250、少なくとも2500、少なくとも2750、少なくとも3000、少なくとも3250、少なくとも3500、少なくとも3750、少なくとも4000、少なくとも4250、少なくとも4500、少なくとも4750、少なくとも5000、少なくとも5250、少なくとも5500、少なくとも5750、もしくは少なくとも6000ダルトン、または少なくとも約250、少なくとも約500、少なくとも約750、少なくとも約1000、少なくとも約1250、少なくとも約1500、少なくとも約1750、少なくとも約2000、少なくとも約2250、少なくとも約2500、少なくとも約2750、少なくとも約3000、少なくとも約3250、少なくとも約3500、少なくとも約3750、少なくとも約4000、少なくとも約4250、少なくとも約4500、少なくとも約4750、少なくとも約5000、少なくとも約5250、少なくとも約5500、少なくとも約5750、もしくは少なくとも約6000ダルトンの分子量を有する。いくつかの実施形態において、親水性オリゴマーまたはポリマー(例えばPEG-シランまたはPEG-SH)は、最大で250、最大で500、最大で750、最大で1000、最大で1250、最大で1500、最大で1750、最大で2000、最大で2250、最大で2500、最大で2750、最大で3000、最大で3250、最大で3500、最大で3750、最大で4000、最大で4250、最大で4500、最大で4750、最大で5000、最大で5250、最大で5500、最大で5750、もしくは最大で6000ダルトン、または最大で約250、最大で約500、最大で約750、最大で約1000、最大で約1250、最大で約1500、最大で約1750、最大で約2000、最大で約2250、最大で約2500、最大で約2750、最大で約3000、最大で約3250、最大で約3500、最大で約3750、最大で約4000、最大で約4250、最大で約4500、最大で約4750、最大で約5000、最大で約5250、最大で約5500、最大で約5750、もしくは最大で約6000ダルトンの分子量を有する。いくつかの実施形態において、工程1117で使用されるPEG-シランは、アルコール、例えばエタノールに溶解した溶液、例えば0.5g/100mLのPEG-シランであり得る。いくつかの実施形態において、官能基化PEGは、メトキシ-ポリ(エチレン-グリコール)-チオール(PEG-SH)を含み得る。いくつかの実施形態において、PEG-SHは、アルコール、例えば無水エタノールに溶解した溶液、例えば0.5g/100mLのPEG-SHであり得る。いくつかの実施形態において、親水性オリゴマーまたはポリマー(例えば官能基化PEGなど)は、荷電粒子、例えば細胞の、ポアプレート113の異なる表面への非特異的結合、例えば付着を減少させるように構成され得る。PEG-シラン中に存在するシラン基は、ポアプレートのガラス表面に対する選択的親和性を促進し得る。PEG-SH中に存在するチオール基は、遷移金属、例えばTi-Auでコーティングされたポアプレート表面に対する選択的親和性を促進し得る。いくつかの実施形態において、PEG-SHは、基材110の金属コーティング部分、例えばTi-Auに特異的に付着し得る。いくつかの実施形態において、PEG-シランは、いかなる金属コーティングも有しない基材110のガラス部分に特異的に付着し得る。
図12Aは、いくつかの実施形態に係る、アレイ100の上面図を示し、図12Bは、アレイの断面図を示している。図12Bは、基材110の第1の部分および第2の部分に、1つまたはそれを超える表面修飾材料(例えば1つまたはそれを超える親水性材料)を添加してもよいことを示している。いくつかの実施形態において、第1の部分は、表面112により近い部分である基材110の上部であり得る。いくつかの実施形態において、第2の部分は、表面111により近い部分である基材110の底部であり得る。いくつかの実施形態において、基材110の第1の部分(例えば、図13Bにおいて1320/1322によって覆われていない垂直側壁の部分)は、基材110の表面特性を変更する材料1231でコーティングされてもよい。表面材料1231は、上述したような親水性オリゴマーまたはポリマー(例えば官能基化PEG)などの親水性材料を含み得る。いくつかの実施形態において、表面材料1231は、官能基化PEG、例えばPEG-シラン(例えば、図11に関して本明細書中で上述したような、または本明細書の他の場所で説明される)であり得る。いくつかの実施形態において、官能基化PEGは、ポア113の壁への荷電粒子、例えば細胞の非特異的結合、例えば付着を低減し得る。いくつかの実施形態において、PEG-シラン中のシラン基を使用して、基材110のガラス部分の表面特性を変更することができる。いくつかの実施形態において、13A~13Dを参照してより詳細に説明するように、基材110の第2の部分(底部)は、複数の材料1300でコーティングされてもよい。
図13A~図13Dは、基材110の底部(例えば、図11に関して本明細書中で上述したような、または本明細書の他の場所で説明される)に多層コーティング1300(図13D参照)を形成するための例示的なプロセスを示している。いくつかの実施形態において、多層コーティング1300は、基材110の表面特性を向上または変更することができる。さらに、多層コーティング1300は、いくつかの場合において、マイクロポアアレイに保持された液体のメニスカスを剥離し、同時に破壊することができる。いくつかの実施形態において、多層コーティング1300またはコーティング1300の少なくとも1つもしくはそれを超える部分は、電磁放射線、例えばレーザーを使用して破壊され得る。
いくつかの実施形態において、図13Bに示すように、基材110の表面上に第1の層1320を形成してもよい。いくつかの実施形態において、第1の層は、遷移金属、例えばAu、Ti、またはCrを含み得る。必要に応じて、いくつかの実施形態において、図13Cに示すように、第2の層1322を第1の層1320上に形成してもよい。いくつかの実施形態において、第2の層は、第1の層と異なる材料であり得る。いくつかの実施形態において、第2の層は、貴金属、例えばAuを含み得る。第1の層は、いくつかの実施形態において、コーティング材料の少なくとも1つまたはそれを超える後続の層の基材への付着を促進することができる。いくつかの実施形態において、第1の層は、異なるコーティング材料、例えば金の第2の層の付着を容易にすることができるチタンであり得る。いくつかの実施形態において、第2の層、例えば金は、他の材料、例えばポリマーでコーティングされてもよい。一例として、チオール(-SH)基は、金に対して高い親和性を有する。いくつかの実施形態において、第2の層、例えば金は、例えば官能性表面コーティング材料のチオール(-SH)誘導体、例えばPEG-SHを使用することによる、表面官能基化に適し得る。
続いて、図13Dに示すように、ポアの垂直側壁部分(例えば、Z軸に沿って延びる)を覆う第3の層1332を形成してもよい。垂直側壁部分は、第1の層1320および/または第2の層1322(例えば、図11に関して本明細書中で上述したような、または本明細書の他の場所で説明される)を含み得る。第1および/または第2の層1320/1322は、Ti層、Ti-Auスタック、またはAu層を含み得る。いくつかの実施形態において、第3の層1332はポリマーを含み得る。いくつかの実施形態において、ポリマーは、PEG、またはPEGの誘導体、例えばPEG-チオールを含み得る。PEG-SH中に存在するチオール基は、金属、例えばTi-Auでコーティングされたポアプレート表面に対する選択的親和性を促進し得る。いくつかの実施形態において、官能基化PEGは、ポア113の壁への荷電粒子、例えば細胞の非特異的結合、例えば付着を低減し得る。
いくつかの実施形態において、図13Dに示すように、第1の層1320および/または第2の層1322上の基材の底部を覆う第4の層1333を形成してもよい。底部は、ポアの垂直側壁付近にあってもよい。第4の層1333は、図13Dに示すように、Y軸に沿って延びていてもよい。いくつかの実施形態において、第4の層1333はオリゴマーまたはポリマーを含み得る。いくつかの実施形態において、第4の層は、疎水性オリゴマーまたはポリマー、例えばフッ素化もしくは過フッ素化オリゴマーまたはポリマーを含み得る。フッ素化もしくは過フッ素化オリゴマーまたはポリマーは、フッ素化ジオキソール、フッ素化ジオキソラン、フッ素化環状重合性アルキルエーテル、およびそれらの組み合わせからなる群から選択されるモノマーから形成されてもよい。フッ素化もしくは過フッ素化オリゴマーまたはポリマーは、ペルフルオロアルキルチオール、例えばペルフルオロヘキサンチオール、ペルフルオロオクタンチオールまたはペルフルオロデカンチオールであり得る。フッ素化もしくは過フッ素化オリゴマーまたはポリマーは、1H,1H,2H,2H-ペルフルオロデカンチオール(PF-SH)を含み得る。PF-SH中に存在するチオール基は、前のコーティング層、例えば金に対して高い親和性を有し得る。疎水性オリゴマーまたはポリマーは、直鎖状であっても分岐状であってもよい。疎水性オリゴマーまたはポリマーは、第1の末端基を含み得る。第1の末端基を含む疎水性オリゴマーまたはポリマーは、第2の末端基を含み得る。第1の末端基および第2の末端基の一方は、(工程1117の後に)活性化され清浄された表面と反応するか、またはその表面上に自己組織化膜(例えば単層)を形成するように構成されてもよく、第1の末端基および第2の末端基の他方は、存在する場合、表面官能基化後に疎水性オリゴマーまたはポリマー上に残るように構成されてもよい。活性化され清浄された表面と反応するか、またはその表面上に自己組織化膜を形成するように構成された第1もしくは第2の末端基は、シラン、チオール、第一級アミン(-NH)、カルボン酸(-COOH)、アルデヒド、ビニル、エポキシ、およびクロロから選択され得る。(工程1117の後に)活性化され清浄された表面と反応するか、またはその表面上に自己組織化膜を形成するように構成された第1もしくは第2の末端基は、チオールであり得る。疎水性オリゴマーまたはポリマー(例えばフッ素化もしくは過フッ素化オリゴマーまたはポリマー)は、250、480、500、750、1000、1250、1500、1750、2000、2250、2500、2750、3000、3250、3500、3750、4000、4250、4500、4750、5000、5250、5500、5750、もしくは6000ダルトン、または約250、約480、約500、約750、約1000、約1250、約1500、約1750、約2000、約2250、約2500、約2750、約3000、約3250、約3500、約3750、約4000、約4250、約4500、約4750、約5000、約5250、約5500、約5750、もしくは約6000ダルトン、あるいは前述の値のいずれか2つの間の任意の範囲の分子量を有し得る。疎水性オリゴマーまたはポリマー(例えばフッ素化もしくは過フッ素化オリゴマーまたはポリマー)は、少なくとも250、少なくとも480、少なくとも500、少なくとも750、少なくとも1000、少なくとも1250、少なくとも1500、少なくとも1750、少なくとも2000、少なくとも2250、少なくとも2500、少なくとも2750、少なくとも3000、少なくとも3250、少なくとも3500、少なくとも3750、少なくとも4000、少なくとも4250、少なくとも4500、少なくとも4750、少なくとも5000、少なくとも5250、少なくとも5500、少なくとも5750、もしくは少なくとも6000ダルトン、または少なくとも約250、少なくとも約480、少なくとも約500、少なくとも約750、少なくとも約1000、少なくとも約1250、少なくとも約1500、少なくとも約1750、少なくとも約2000、少なくとも約2250、少なくとも約2500、少なくとも約2750、少なくとも約3000、少なくとも約3250、少なくとも約3500、少なくとも約3750、少なくとも約4000、少なくとも約4250、少なくとも約4500、少なくとも約4750、少なくとも約5000、少なくとも約5250、少なくとも約5500、少なくとも約5750、もしくは少なくとも約6000ダルトンの分子量を有し得る。疎水性オリゴマーまたはポリマー(例えばフッ素化もしくは過フッ素化オリゴマーまたはポリマー)は、最大で250、最大で480、最大で500、最大で750、最大で1000、最大で1250、最大で1500、最大で1750、最大で2000、最大で2250、最大で2500、最大で2750、最大で3000、最大で3250、最大で3500、最大で3750、最大で4000、最大で4250、最大で4500、最大で4750、最大で5000、最大で5250、最大で5500、最大で5750、もしくは最大で6000ダルトン、または最大で約250、最大で約480、最大で約500、最大で約750、最大で約1000、最大で約1250、最大で約1500、最大で約1750、最大で約2000、最大で約2250、最大で約2500、最大で約2750、最大で約3000、最大で約3250、最大で約3500、最大で約3750、最大で約4000、最大で約4250、最大で約4500、最大で約4750、最大で約5000、最大で約5250、最大で約5500、最大で約5750、もしくは最大で約6000ダルトンの分子量を有し得る。いくつかの実施形態において、疎水性表面コーティングは、自己組織化単分子膜(SAM)を形成し得る。いくつかの実施形態において、自己組織化単分子膜は濡れ性を低下させ得る。いくつかの実施形態において、自己組織化単分子膜は表面エネルギーを低下させ得る。いくつかの実施形態において、疎水性表面コーティング、例えばPF-SHは、約120°の水接触角を有し得る。いくつかの実施形態において、疎水性表面コーティング、例えばPF-SHは、90°~150°の水接触角を有し得る。いくつかの実施形態において、疎水性表面コーティング、例えばPF-SHは、100°、105°、110°、または115°の水接触角を有し得る。いくつかの実施形態において、疎水性コーティングをシーラントとして使用することができる。いくつかの実施形態において、シーラントは、表面111上のポア終端部からの漏れを防止することができる。いくつかの実施形態において、チオール基は、疎水性コーティング、例えばPF-SHの、下にある表面、例えばTi-Au中のAuへの付着性を改善し得る。
いくつかの実施形態において、表面材料1320および/または1322(例えば、図11に関して本明細書中で上述したような、または本明細書の他の場所で説明される)は、金属スパッタリングによって基材110の表面に適用され得る。いくつかの実施形態において、表面材料1320および/または1322の厚さは、10nm~1000nmであり得る。いくつかの実施形態において、表面材料1320および/または1322の厚さは、少なくとも10nm、20nm、30nm、40nm、50nm、100nm、200nm、300nm、400nm、500nm、600nm、800nm、1000nm、またはそれを超えるものであり得る。いくつかの実施形態において、表面材料1320および/または1322の厚さは、最大で約1000nm、800nm、600nm、500nm、400nm、300nm、200nm、100nm、50nm、40nm、30nm、20nm、10nm、またはそれ未満であり得る。
いくつかの実施形態において、スパッタリングは真空下で行うことができる。いくつかの実施形態において、真空は、約0.08~約0.02mbarであり得る。いくつかの実施形態において、真空は、最大で約0.01mbar、0.02mbar、0.03mbar、0.04mbar、0.05mbar、0.06mbar、0.07mbar、0.08mbar、0.09mbar、0.1mbar、またはそれ未満であり得る。いくつかの実施形態において、真空は、少なくとも約0.1mbar、0.09mbar、0.08mbar、0.07mbar、0.06mbar、0.05mbar、0.04mbar、0.03mbar、0.02mbar、0.01mbar、またはそれを超えるものであり得る。いくつかの実施形態において、スパッタリングは、約100V~3kVの電圧下で行うことができる。いくつかの実施形態において、電圧は、少なくとも約100V、110V、130V、150V、170V、220V、280V、500V、1000V、2000V、3000V、またはそれを超えるものであり得る。いくつかの実施形態において、電圧は、最大で約3000V、2000V、1000V、500V、280V、220V、170V、150V、130V、110V、100V、またはそれ未満であり得る。いくつかの実施形態において、スパッタリングは、電流0~50mAの下で行うことができる。いくつかの実施形態において、電流は、少なくとも約0.01mA、0.1mA、1mA、5mA、10mA、20mA、30mA、40mA、50mA、またはそれを超えるものであり得る。いくつかの実施形態において、電流は、最大で約50mA、40mA、30mA、20mA、10mA、1mA、0.1mA、0.01mA、またはそれ未満であり得る。いくつかの実施形態において、表面材料は、ガラスアレイの片面または両面にスパッタすることができる(例えば、プレートの上部および/または底部)。
赤外線吸収ビーズを形成する方法も本明細書で提供される。いくつかの実施形態において、その方法は、アガロースビーズを洗浄する工程;アガロースビーズを着色する工程;およびアガロースビーズのコアを形成する工程を含む。いくつかの実施形態において、アガロースビーズを洗浄する工程は、アガロースビーズを第1の溶媒に懸濁し、アガロースビーズおよび第1の溶媒を遠心分離することを含む。いくつかの実施形態において、第1の溶媒は、有機溶媒、例えばアセトン、または水性溶媒、例えば水、またはそれらの組み合わせを含む。いくつかの実施形態において、遠心は、約1,000rpm~約4,000rpmの速度で行われ得る。いくつかの実施形態において、遠心は、約2,000rpmの速度で行われ得る。いくつかの実施形態において、1mLの第1の溶媒が、50mgのアガロースビーズごとに使用され得る。いくつかの実施形態において、アガロースビーズは、Superdexビーズを含む。
いくつかの実施形態において、アガロースビーズを着色する工程は、着色液を形成すること、その着色液を遠心分離すること、および着色液をアガロースビーズに加えることを含む。着色液は、Epolin 1178および第2の溶媒を含み得る。いくつかの実施形態において、第2の溶媒は、アセトン、水、脱イオン水またはそれらの任意の組み合わせを含む。遠心は、約2,000rpm~約10,000rpm、例えば、約5,000rpmの速度で行われ得る。いくつかの実施形態において、アガロースビーズを着色する工程は、アガロースビーズおよび着色液をインキュベートすることをさらに含む。インキュベーションは、約15分間~約1時間、例えば、約30分間行われ得る。いくつかの実施形態において、インキュベーションは、室温で行われ得る。インキュベーションは、絶えず混合しながら行われ得る。いくつかの実施形態において、アガロースビーズを着色する工程は、インキュベーション後に、例えば、約750rpm~約3,000rpmの速度で、アガロースビーズを遠心分離することをさらに含む。いくつかの実施形態において、アガロースビーズを着色する工程は、色の濃いビーズを色の薄いビーズから分離することをさらに含む。いくつかの実施形態において、アガロースビーズを着色する工程は、アガロースビーズを0.2パーセントのBSA-PBSに懸濁することをさらに含む。
いくつかの実施形態において、アガロースビーズのコアを形成する工程は、アガロースビーズを第3の溶媒に懸濁すること、およびアガロースビーズおよび第3の溶媒を遠心分離することを含む。いくつかの実施形態において、第3の溶媒は、1:1のアセトン-水混合物を含む。いくつかの実施形態において、遠心は、約500rpm~約2,000rpmの速度で行われ得る。いくつかの実施形態において、遠心は、約10秒間~約60秒間行われ得る。
あるいは、いくつかの実施形態において、アガロースビーズのコアを形成する工程は、ビーズを緩衝液中でインキュベートすることを含む。いくつかの実施形態において、緩衝液は、BSA-PBSを含む。いくつかの実施形態において、緩衝液は、約0.2パーセントの濃度を有する。いくつかの実施形態において、ビーズを緩衝液中でインキュベートすることは、約4℃の温度で行われ得る。いくつかの実施形態において、ビーズを緩衝液中でインキュベートすることは、少なくとも約5日間にわたって行われ得る。アガロースビーズのコアを形成する工程は、緩衝液を毎日交換することをさらに含み得る。
本明細書中に記載されるような複数のビーズおよび本明細書中に記載されるような目的の粒子を含む溶液が、本明細書中に提供される。いくつかの場合において、目的の粒子は、細胞である。いくつかの場合において、その溶液は、約1:1~10:1である、複数のビーズの数と複数の細胞の数との比を含む。目的の粒子を含む溶液は、本明細書中に記載されるようなアレイの1つまたは複数のポアに挿入され得る。溶液の例は、実施例5および6に関してさらに記載される。
システム
本明細書中に提供される別の態様は、粒子をソーティングするためのシステムである。混合物の構成要素をソーティングするためのシステムが、本明細書中に提供される。そのシステムは、本明細書中に記載されるようなアレイの任意の実施形態、バリエーションまたは例を含み得る。
図14Aは、アレイ100、ハウジング1431および内側表面1432を備えるシステムを示している。粒子をソーティングするためのシステムは、第1の表面111;第1の表面111の反対側の第2の表面112;および第1の表面111から第2の表面112に延びる複数のポア113を含む基材110を備えるアレイ100を備え得、ポア113の各々は、約1平方ミリメートルに等しいかまたはそれ未満の断面積および約10mmに等しいかまたはそれ未満の長さを含み、基材110は、第1の材料;および第2の表面112に作動可能に結合されたコーティング120(ここで、コーティング120は、第1の材料と異なる第2の材料を含み、コーティング120の一部分は、そのコーティング120の一部分に向けられた電磁放射線に応答して第2の表面112から破壊されるように形成され得る);およびアレイ100の複数のポア113内の流体(ここで、複数のポア113内の流体のメニスカスは、コーティング120に実質的に隣接している)を備える。
いくつかの実施形態において、第1の表面111または第2の表面112は親水性であり得る。いくつかの実施形態において、第1の表面111または第2の表面112は、親水性コーティング120に結合され得る。いくつかの実施形態において、コーティング120は疎水性であり得る。いくつかの実施形態において、コーティング120は、1時間に等しいまたはそれを超える期間、ポアからの漏れを防止することが可能であり得る。いくつかの実施形態において、コーティング120は、その全体が第1の表面111または第2の表面112を覆う。
いくつかの実施形態において、表面コーティング材料はチタンであり得る。いくつかの実施形態において、表面コーティング材料は、銀、金、アルミニウム、銅、白金、ニッケル、またはコバルトを含む。いくつかの実施形態において、基材材料はガラスであり得る。いくつかの実施形態において、断面積は、約0.03mmに等しいかまたはそれ未満であり得る。いくつかの実施形態において、長さは、約1.5mmに等しいかまたはそれ未満であり得る。いくつかの実施形態において、コーティング120は、約200nmに等しいかまたはそれ未満の厚さを含む。いくつかの実施形態において、基材110は、約0.5m-1という表面積対体積比を含む。いくつかの実施形態において、コーティング120の一部分は、電磁放射線を吸収するように、かつコーティング120の一部分に向けられた電磁放射線に応答して第2の表面112から剥がれるように、形成され得る。いくつかの実施形態において、複数のマイクロポア113は、第1の表面111および第2の表面112に対して直角である。いくつかの実施形態において、複数のマイクロポア113は、互いに実質的に平行である。いくつかの実施形態において、複数のマイクロポア113は、約100万~約1000億個のマイクロポア113である。いくつかの実施形態において、第2の材料は、不透明である。第2の材料は、赤外(IR)エネルギーを吸収するように形成され得る。基材110とコーティング120とは、異なる熱膨張係数を含み得る。
必要に応じて、上記システムは、アレイから放出された選ばれた内容物を受け取るように構成された内側表面1432を含むハウジング1431をさらに備え得る。上記システムは、本明細書中に記載されるようなアレイの任意の実施形態、バリエーションまたは例、および内側表面を含むハウジングを備え得る。その内側表面は、基材の第2の表面の下に位置し得る。上記システムは、セルソーターをさらに備え得る。アレイは、セルソーター上にマウントされ得る。
必要に応じて、粒子をソーティングするためのシステムは、電磁放射線源を備え得る。
図14Bは、アレイ100および電磁放射線源1451を備える、粒子をソーティングするためのシステムを示している。そのアレイは、第1または第2の表面の一部分に向けられた電磁放射線に応答して第1の表面または第2の表面において破壊されるように形成され得る。いくつかの場合において、例えば、目的の粒子が細胞であるとき、細胞生存率の上昇を助けるために、目的の粒子を保持しているコンパートメントにレーザーまたは他のエネルギー源を直接向けることなくアレイの特定のコンパートメント内に保持された粒子をソーティングシステムが放出できることが有益であり得る。アレイのポアの内部ではなく、アレイの表面にレーザーエネルギーの焦点を合わせることにより、熱衝撃、熱膨張、マイクロバブル発生および局所的な剪断応力(sheer stress)からポア内容物が傷害を受ける可能性が回避または低減され得る。
電磁放射線の発生源は、レーザーを含み得る。レーザーは、ドープされた固体レーザーであり得る。レーザーは、ファイバーレーザーであり得る。レーザーは、半導体ダイオードレーザーであり得る。レーザーは、ガスレーザー、例えば、HeNeレーザーまたはエキシマ(eximer)レーザーであり得る。レーザーは、ある範囲内の波長の電磁放射線を放射し得る。いくつかの実施形態において、その電磁放射線は、可視光線および/または赤外線として放射され得る。その電磁放射線は、5ナノメートルの帯域内で放射され得、次いで、可視光線または赤外線として放射され得る。その電磁放射線は、ドープされた固体レーザーの高調波(例えば、ドープされたオルトバナジン酸イッテルビウムまたはイッテルビウム・アルミニウム・ガーネット)で放射され得る。その電磁放射線は、1064nmの放射線を含み得る。
上記電磁放射線は、入射エネルギーを含み得る。その入射エネルギーは、1パルスあたり0.1マイクロジュール超であり得る。その入射エネルギーは、1パルスあたり1ミリジュール未満であり得る。その入射エネルギーは、1パルスあたり1ピコジュール~1ジュールの範囲内であり得る。平均出力は、10ワット未満であり得る。平均電力は、100ミリワット未満であり得る。平均出力は、1マイクロワット超であり得る。
上記電磁放射線は、ある入射ピーク出力密度を含み得る。そのピーク出力密度は、1平方センチメートルあたり10テラワット未満であり得る。そのピーク出力は、1平方センチメートルあたり10ギガワット未満であり得る。
上記電磁放射線は、ある入射スポット径を含み得る。そのスポット径は、細胞の内容物が有意に照射されることなく、ポアに隣接する範囲が照射され得るように十分に小さいことがある。そのスポット径は、ポアのサイズおよびポアの間隔に基づいて調整され得る。そのスポット径は、管腔の内部の細胞などのポアの内容物が有意に照射されることなく、ポア管腔の内壁が照射され得るように十分に小さいことがある。そのスポット径は、10ミリメートル(mm)未満、1mm未満、100ミクロン(μm)未満、10μm未満またはそれ未満であり得る。
上記電磁放射線は、ある入射パルス持続時間を含み得る。そのパルス持続時間は、約5フェムト秒超であり得る。そのパルス持続時間は、約100フェムト秒超であり得る。そのパルス持続時間は、約1ナノ秒超またはそれを超えることがある。そのパルス持続時間は、約1マイクロ秒未満であり得る。
電磁放射線源の一例は、出力が0.1mJであり、出力密度が10~10W/mmである1064nmのイッテルビウムファイバーレーザーを含み、それにより、最大レーザー出力の10パーセント~30パーセントにおいて4nsのパルス持続時間で20μmのスポット径が、アレイに30~90J/cmを提供することができる。
上記システムは、電磁放射線源の焦点を合わせるための1つまたは複数のレンズをさらに備え得る。その1つまたは複数のレンズは、顕微鏡の対物レンズを含み得る。その顕微鏡の対物レンズは、アレイの特定の一部分を標的化するために、アレイの表面の端から端までラスタースキャンされ得る。上記システムは、アレイの表面に対する対物レンズの位置を制御し得る1つまたはそれを超える移動ステージを備え得る。
上記システムは、1つまたはそれを超えるビームスプリッター、フィルターまたは干渉フィルターを備え得る。そのシステムの1つまたはそれを超えるビームスプリッター、フィルターまたは干渉フィルターは、ユーザーが、電磁放射線源をアレイの表面と一直線に並べるかまたは電磁放射線源をアレイの表面に向けながら、アレイの表面をモニターできるようにし得る。その位置調整は、アレイを破壊し得る出力よりも低い出力または同じ出力の電磁放射線で行われ得る。上記システムは、電磁放射線源の位置調整をモニターするために、1つまたはそれを超える位置敏感型光学検出器(例えば、CCD)を備え得る。
上記システムは、第2の電磁放射線源を備え得る。第2の電磁放射線源は、位置調整のために使用され得る。第2の電磁放射線源は、フルオロフォアなどの吸収体を励起させるために使用され得る。第2の電磁放射線源は、干渉性であってもよいし、非干渉性であってもよい。第2の電磁放射線源は、広帯域であってもよいし、狭帯域であってもよい。第2の電磁放射線源は、電磁放射線源に関する本明細書中に記載される任意の特性(例えば、力、パルス持続時間、波長など)を含み得る。
図15Aおよび図15Bは、アレイおよびハウジングを備える例示的なシステム1400を示している。図15Aは、0時間後における漏れ試験の初めの上面図である。図18Bは、5時間後における例示的なアレイの漏れ試験の初めの上面図である。図15A~図15Bによると、フレーム1510における例示的なアレイ100の漏れ試験を、脱イオン水を用いて約5時間にわたって行った。アレイのマイクロポアを通じた脱イオン水の漏れは無かった。いくつかの実施形態において、例示的なアレイ100のコーティングは、約1時間と等しいかまたはそれを超える時間にわたってポアからの漏れを防ぐことが可能であり得る。いくつかの実施形態において、例示的なアレイ100のコーティングは、約1時間、2時間、3時間、4時間、5時間、6時間、7時間、8時間、9時間または10時間と等しいかまたはそれを超える時間にわたってポアからの漏れを防ぐことが可能であり得る。
方法
本明細書中に記載されるアレイの実施形態、例およびバリエーションは、そのアレイのポアから粒子を放出するための方法において利用され得る。本明細書中に記載されるシステムの実施形態、例およびバリエーションは、アレイのポアから粒子を放出するための方法において利用され得る。アレイのポアから粒子を放出する方法が本明細書中に提供され、その方法は、ポアを満たす工程、溶液の一部をポアの中に保持する工程、電磁放射線をアレイの一部分に向ける工程、アレイの一部分を破壊する工程、および目的の粒子を含む溶液の一部を放出する工程を含む。ポアは、ある溶液の少なくとも一部で満たされ得る。その溶液は、目的の粒子を含み得る。その溶液の一部は、表面張力によってポアの中に保持され得る。アレイの一部分を破壊する工程は、ポアの中に保持された溶液の一部の表面張力を破壊し得る。
本明細書では、選ばれた内容物をアレイのポアから放出する方法を提供し、その方法は、選ばれた内容物を含むアレイのポアを識別する工程であって、そのアレイは、第1の表面およびその第1の表面の反対側の第2の表面を有する基材を備え、その基材は、基材材料および表面材料を含み、その表面材料は、第1または第2の表面に位置または隣接し、その基材は、第1の表面から第2の表面に延びる管腔を画定する複数のポアを含み、その基材は、(a)複数のポアの各ポアが、500ミクロンまたはそれ未満の最大直径を有すること、(b)複数のポアの各ポアが、10またはそれを超えるアスペクト比を有すること、(c)1平方ミリメートルあたり100個またはそれを超えるポアというポア密度、および(d)表面材料が、入射電磁放射線の10パーセント超を吸収する材料から選択されること、のうちの1つまたはそれを超えることを特徴とする、工程、および識別されたポア内のまたは識別されたポアに隣接する表面材料に向けられた電磁放射線によって、前記アレイの第1または第2の表面から表面材料の一部分を除去し、それにより、識別されたポアの内容物を放出する工程を含む。
いくつかの例において、上記アレイは、(a)複数のポアの各ポアが、500ミクロンまたはそれ未満の最大直径を有すること、(b)複数のポアの各ポアが、10またはそれを超えるアスペクト比を有すること、(c)1平方ミリメートルあたり100個またはそれを超えるポアというポア密度、および(d)表面材料が、入射電磁放射線の10パーセント超を吸収する材料から選択されること、のうちの2つまたはそれを超えることを特徴とし得る。
図16A~16Fは、本明細書中に記載されるように、図1Aの例示的なアレイを用いて細胞をソーティングする方法の一例の側断面図を示している。図16A~Fによると、例示的な第1アレイ100を用いて細胞をソーティングする例示的な方法1600は、複数のポア113を備えるアレイ100を提供する工程1610を含む。いくつかの実施形態において、操作1610は、図5Aによると、ミクロスフェアを含むアレイ100の第1の表面111に最も近いポア113の一部分を覆う工程をさらに含み得る。方法1600の操作1620は、水溶液1621をアレイ内に堆積させる工程を含み得る。いくつかの場合において、そのアレイは、図16Bによると、第1の細胞1622および第2の細胞1623を第1のアレイ100上に堆積させることを含み得る。方法1600の操作1630は、図16Cによると、アレイ100をハウジング1631に挿入することを含み得る。いくつかの場合において、ハウジングは、カートリッジを備え得る。ハウジングは、内側表面1632を備え得る。方法100の操作1640は、選ばれた粒子のシグナルのプロットを捕捉する工程を含み得る。その選ばれた粒子は、図16Dによると、第1の細胞1622および第2の細胞1623を含み得る。図16Eによると、方法1600は、第1の細胞および第2の細胞1623のシグナルのプロット内の第1の細胞1622のシグナルのプロットの位置を突き止める工程1640をさらに含み得る。図16Fによると、方法1600は、第2の細胞1623をアレイ100から抽出する工程1640;および第2の細胞1623を回収する工程1650をさらに含み得る。細胞をアレイから抽出する工程は、アレイ100の表面上または表面近くのコーティングを破壊する工程を含み得る。破壊する工程は、電磁放射線をアレイの表面の選択された位置に提供する工程を含み得る。図16Aは、その例示的な方法に従って、コーティングを含む複数のポアを備えるアレイを提供しているところの側断面図を示している。
図16Bは、図1の例示的なアレイの中に水性サンプル溶液を堆積させているところの側断面図を示している。いくつかの実施形態において、水性サンプル溶液1621をアレイ100上に堆積させる工程1620は、水性サンプル溶液1621をアレイ100上に広げる工程を含む。いくつかの実施形態において、アレイ100の親水性の第2の表面112は、水性サンプル溶液1621をポア113に吸い込む。いくつかの実施形態において、アレイ100の親水性の第2の表面112は、水性サンプル溶液1621内の第1の細胞1622および第2の細胞1623をポア113に均等に分配する。いくつかの実施形態において、アレイ100の親水性の第2の表面112は、水性サンプル溶液1621内の第1の細胞1622および第2の細胞1623をポア113にランダムに分配する。いくつかの実施形態において、第1の細胞1622および第2の細胞1623は、各ポア113の底に沈む。必要に応じて、いくつかの実施形態において、第1の細胞1622および第2の細胞1623は、水性サンプル溶液1621の表面張力によって各ポア113に引き止められる。いくつかの例において、それらの細胞は、INKT細胞、Tmem、Treg、HSPC、およびそれらの組み合わせから選択される。アレイ100の第1の表面111は、疎水性であり得る。例えば、本明細書の他の箇所に記載されているように、ポアプレートの底側を疎水性層として1H,1H,2H,2H-ペルフルオロデカンチオールでコーティングして、ポアプレートの漏れを防ぐことができる。本明細書の他の箇所に記載されているように、ポアプレートの底部付近のポアの垂直側壁をメトキシ-ポリ(エチレン-グリコール)-チオールでコーティングして、細胞粘着性を低下させることができる。
図16Cは、いくつかの実施形態に係る、図1Aの例示的なアレイを閉鎖カートリッジまたはハウジングに挿入しているところの側断面図を示している。図16Cによると、カートリッジ1631は、アレイ100の上部に加湿膜1633を備え、第2の細胞1623を回収するための回収トレイ1632も備える。必要に応じて、いくつかの実施形態において、カートリッジ1631は、閉鎖カートリッジ1631を含む。必要に応じて、いくつかの実施形態において、カートリッジ1631は、湿度が制御されたカートリッジ1631を含む。必要に応じて、いくつかの実施形態において、加湿膜1633は、ポア113からの蒸発を減少させる。必要に応じて、いくつかの実施形態において、回収トレイ1632は、カートリッジ1631内のアレイ100の下に配置され得る。必要に応じて、いくつかの実施形態において、回収トレイ1632は、透明の回収トレイ1632を含む。
図16Dは、いくつかの実施形態に係る、第1の細胞および第2の細胞のシグナルのプロットの画像を示している。図16Dによると、第2の細胞のシグナルのプロット1641が測定され得る。いくつかの実施形態において、第1の細胞1642のシグナルのプロットが測定され得る。いくつかの実施形態において、それらのプロットは、自動蛍光走査システムによって撮影された画像を定量化することによって捕捉され得る。第1の細胞は、第1の波長において蛍光性であり得、第2の細胞は、第2の波長において蛍光性であり得る。いくつかの実施形態において、合わせた画像が測定され得る。図17は、細胞のアレイの生の蛍光画像の非限定的な例を示している。図18は、図17に表された50万個のマイクロポアのアレイの散布図の非限定的な例を示している。
図16Eは、いくつかの実施形態に係る、第2の細胞を抽出する側断面図を示している。図16Eによると、図16Dにおける第2の細胞1623のシグナルのプロットに従って、第2の細胞1623を含むポア113をレーザー1651によるパルスに曝露することによって、第2の細胞1623がアレイ100から抽出される。レーザーは、コーティング120を励起させる。いくつかの実施形態において、ミクロスフェアは、特定のポア113内に提供され得る。必要に応じて、いくつかの実施形態において、レーザー1651は、ナノ秒レーザー1651を含む。
図16Fは、いくつかの実施形態に係る、細胞を回収しているところの側断面図を示している。図16Fによると、レーザー1651によってアレイ100から抽出された第2の細胞1623は、回収トレイ1661に回収され得る。
本明細書中に提供される別の態様は、アレイのポアから粒子を放出する方法であり、その方法は、ある溶液の少なくとも一部でポアを満たす工程(ここで、その溶液の少なくとも一部は、目的の粒子を含む);ポアの中の溶液の一部を表面張力によって保持する工程;電磁放射線をアレイの一部分に向ける工程;アレイの一部分を破壊し、それによって、ポアの中に保持された溶液の一部の表面張力を破壊する工程;および目的の粒子を含む溶液の一部を放出する工程を含む。いくつかの実施形態において、そのアレイは、基材、およびその基材に作動可能に結合されたコーティングを備える。いくつかの実施形態において、その基材は、第1の表面、第1の表面の反対側の第2の表面、およびポアを備え、そのポアは、第1の表面から第2の表面に延びている。いくつかの実施形態において、第1の表面は親水性であり、コーティングは疎水性である。いくつかの実施形態において、アレイの一部分は、アレイのコーティングである。いくつかの実施形態において、アレイの部分は、ポアに近接したアレイのコーティングである。いくつかの実施形態において、コーティングは、クロム、チタン、金、鉄、ニッケル、銅、白金、およびパラジウムからなる群から選択される1つまたはそれを超える金属を含み得る。いくつかの実施形態において、コーティングは、1つまたはそれを超える金属層を含み得、各層は、クロム、チタン、金、鉄、ニッケル、銅、白金、パラジウム、それらの任意の混合物、およびそれらの任意の合金からなる群から独立して選択される。いくつかの実施形態において、コーティングは、金属層(例えば金)と、その下の金属層のための付着層とを含み得る。金層の付着層は、金の下に、クロム、チタン、ニッケル、またはニッケル-クロムを含み得る。いくつかの実施形態において、コーティングは、チタン-金スタック、またはチタン層を含む。いくつかの実施形態において、アレイは、複数のポアを含む。いくつかの実施形態において、上記方法は、複数のポアを溶液で満たす工程をさらに含む。いくつかの実施形態において、上記方法は、複数のポアのサブセットの中に保持された溶液を放出する工程をさらに含み、その複数のポアのサブセットは、目的の粒子を含む溶液を保持している。上記方法は、各粒子に対する複数の蛍光シグネチャを解析する工程をさらに含み得る。いくつかの実施形態において、上記方法は、その解析に基づいて、目的の粒子を含む溶液の一部を保持しているポアを決定する工程をさらに含む。いくつかの実施形態において、それらの粒子は、1秒あたり約5,000~約100,000,000個の目的の粒子という速度で放出される。いくつかの実施形態において、目的の粒子は、細胞を含む。いくつかの実施形態において、細胞は、60パーセントと等しいかまたはそれを超える生存率で放出される。いくつかの実施形態において、上記方法は、目的の粒子をハウジングにおいて受け取る工程をさらに含み、そのハウジングは、目的の粒子を受け取るための内側表面を備える。いくつかの実施形態において、内側表面は、受け取り培地を保持している。いくつかの実施形態において、受け取り培地は、プルロニック(登録商標)F68を含む。
いくつかの実施形態において、上記方法は、識別されたポア内のまたは識別されたポアに隣接する表面材料に向けられた電磁放射線によって、アレイの第1または第2の表面から表面材料の一部分を除去し、それにより、識別されたポアの内容物を放出する工程をさらに含む。いくつかの例において、表面材料の一部分は、識別されたポアに隣接し得る。表面の一部分は、識別されたポアの管腔表面を含み得る。表面の一部分は、100ミクロンまたはそれ未満の深さまで除去され得る。表面の一部分は、50ミクロンまたはそれ未満の深さまで除去され得る。
いくつかの場合において、選ばれた内容物を含むポアを識別する前に、選ばれた内容物を含む溶液をアレイにロードする工程。いくつかの場合において、選ばれた内容物を含むポアを識別する工程は、アレイのポアから放射された電磁放射線を解析する工程を含む。いくつかの場合において、内容物を放出する工程は、1秒あたり約5,000~約100,000,000ポアという速度で内容物を放出することを含む。
電磁放射線の発生源は、レーザーを含み得る。レーザーは、ドープされた固体レーザーであり得る。レーザーは、ファイバーレーザーであり得る。レーザーは、半導体ダイオードレーザーであり得る。レーザーは、ガスレーザー、例えば、HeNeレーザーまたはエキシマレーザーであり得る。レーザーは、ある範囲内の波長の電磁放射線を放射し得る。いくつかの実施形態において、その電磁放射線は、可視光線および/または赤外線で放射され得る。その電磁放射線は、5ナノメートルの帯域内で放射され得、次いで、可視光線または赤外線として放射され得る。その電磁放射線は、ドープされた固体レーザーの高調波(例えば、ドープされたオルトバナジン酸イッテルビウムまたはイッテルビウム・アルミニウム・ガーネット)で放射され得る。その電磁放射線は、1064nmの放射線を含み得る。
電磁放射線は、0.2ミクロン~2.5ミクロンの波長、および内容物とポアとの接着を破壊するのに十分なフルエンスレベル、および1ns~1ミリ秒の範囲内のパルス持続時間から選択され得る。
したがって、目的の粒子が、アレイの特定のポア内に保持されていると識別されると、電磁放射線が、その特定のポアの近くまたは特定のポアに隣接したところに向けられて、目的の粒子を放出し得る。いくつかの実施形態において、第2の表面の破壊は、アレイの材料の少なくとも一部分、アレイ上のコーティングまたはその両方を除去することを含む。
いくつかの実施形態において、表面材料の一部分を除去する工程は、局所的な加熱によって引き起こされ得る。そのようなメカニズムは、パルス持続時間がより長いとき、ピーク出力密度がより低いとき、および/または入射放射線の波長が赤外であるとき、起こる可能性があり得る。局所的な加熱は、表面材料またはアレイ材料の昇華を引き起こし得る。いくつかの実施形態において、基材材料とコーティングとは、異なる熱膨張係数を含み、それにより、チッピングに至り得る。
いくつかの場合において、表面材料の一部分を除去する工程は、アブレーションによって引き起こされ得る。そのようなメカニズムは、入射ピーク出力密度がより高いとき、パルス持続時間がより短いとき、放射電力がより高いとき、および/または入射放射線が可視であるとき、起こる可能性があり得る。アブレーションは、アレイまたは基材材料の局所的な結合の切断および/または気化を含み得る。
いくつかの場合において、表面材料の一部分を除去する工程は、プラズマ発生によって引き起こされ得る。このメカニズムは、入射放射線のパルス持続時間が特に短いとき、入射放射線の波長が多光子イオン化メカニズムと共鳴関係にあるとき、およびまたは入射放射線の波長が非常に短いとき、起こる可能性があり得る。ピコ秒台からフェムト秒台のパルス持続時間により、基材または表面材料の光学エッチングにつながる局所的な加熱よりも速いプラズマ発生がもたらされ得る。
いくつかの場合において、表面材料の一部分を除去する工程は、衝撃波発生によって生じ得る。そのようなメカニズムは、ピーク出力密度がより高いとき、フォノンが共鳴しているとき、および/またはパルス持続時間がより短いとき、起こる可能性が高い場合がある。衝撃は、表面材料またはアレイ材料の物理的振動、チッピングまたは揺れを引き起こし得る。
いくつかの場合において、表面材料の一部分を除去する工程は、光イオン化などの光化学的除去である。いくつかの場合において、表面材料の一部分を除去する工程は、衝撃波の光学的発生などによる光音響的除去を含む。
用語および定義
別段定義されない限り、本明細書中で使用されるすべての専門用語は、本開示が属する分野の当業者が通常理解している意味と同じ意味を有する。
本明細書中で使用されるとき、単数形「a」、「an」および「the」は、文脈が明らかに他のことを指示しない限り、複数の指示対象を含む。本明細書中の「または」に対する任意の言及は、別段述べられない限り、「および/または」を包含すると意図されている。
本明細書中で使用されるとき、用語「約」とは、その中の増分を含めて、述べた量に10パーセント、5パーセントまたは1パーセント近い量のことを指す。
本明細書中で使用されるとき、用語「PBMC」とは、末梢血単核球のことを指す。
本明細書中で使用されるとき、用語「直角」とは、垂直の配置または関係性のことを指す。
以下の説明的な例は、本明細書中に記載されるソフトウェアアプリケーション、システムおよび方法の実施形態の代表であって、決して限定であることを意味しない。
実施例1-Ti-Auコーティングされたマイクロポアアレイの調製:
ガラスマイクロポアアレイ(20μmポア、60パーセントのポアカバー率)を、最初に厚さ100nmのチタン(Ti)、続いて厚さ500nmの金(Au)でスパッタした(真空:8×10-2~2×10-2mbar、スパッタリング電圧:100V~3kV、電流:0~50mA)。ポアプレートの片側にTi/Auをスパッタした。Ti/Auは、本明細書の他の箇所に記載されているように、ポアプレートの両側、またはいずれかの側にスパッタすることができることに留意されたい。
その後、室温で、Ti/Auコーティングされたマイクロポアアレイを2M NaOH溶液に20分間浸漬した。残留NaOHを脱イオン水(DI)およびエタノールを用いて洗い流し、ポアプレートをブロー乾燥させた。
PEG-シランコーティング
メトキシ-ポリ(エチレン-グリコール)-シラン(PEG-シラン)を0.1~5g/100mLの濃度でアルコールに溶解した。酢酸を0.1~5mL/100mLの体積比で溶液に添加した。前の工程からの乾燥ポアプレートを溶液に浸漬し、60~80℃の温度のオーブン中で10~60分間インキュベートした。次いで、ポアプレートを脱イオン水(DI)およびエタノールを使用して洗い流し、ポアプレートをブロー乾燥させた。
PEG-SHコーティング
0.5g/100mLのメトキシ-ポリ(エチレン-グリコール)-チオール(PEG-SH)を、超音波処理を用いて無水エタノール(200プルーフ)に溶解した。前の工程からの乾燥ポアプレートを溶液に浸漬し、30℃のオーブン中で1時間インキュベートした。次いで、ポアプレートを脱イオン水(DI)およびエタノールを使用して洗い流し、ポアプレートをブロー乾燥させた。
ポアプレートのAu側の疎水性コーティング
100μLのPF-SHを5mLの95%エタノールに添加した。次いで、エタノールを蒸発させながら、この溶液を8×8インチのPDMSシート上に均一に分配した。PDMSシート上に液体が目視で検出できない場合は、ポアプレートのAu側の上にPDMSシート(PF-SH側を下にして)を5分間適用した。次いで、PDMSシートを剥がした。ポアプレートを10分間静置した。
ポアプレートをPEG-SHコーティング溶液に浸漬し、30℃のオーブン中で15分間インキュベートした。次いで、ポアプレートを脱イオン水(DI)および/またはエタノールを用いて洗い流し、ポアプレートを加圧エアガンを用いてブロー乾燥させた。
実施例2-カセットアセンブリ:
カセットは、(上から下に向かって)カセットの上部に封着されたガラス;マイクロポアプレートを保持するためのアルミニウム合金フレーム;マイクロポアプレートから一定または不定の距離の間隔をあけた受け取りガラスプレートを含む。(カセットのサイズに応じて)異なる体積の0.1パーセントのプルロニック(登録商標)F68(Cat.24040032,ThermoFisher Scientific Inc.)を含む受け取り培地(OptiPEAK T Cell培地,InVitria,Junction City,KS)を受け取りプレートに加えた。コーティングされたマイクロポアアレイを、コーティングされた側を下向きにして(受け取り培地に面して)カセットに組み立てた。受け取り培地にプルロニック(登録商標)F68を加えることによって、ポアから抽出される細胞の生存率を0パーセントの生存率から>75パーセントの生存率へ大幅に高めることができる。
実施例3-コーティングされたマイクロポアアレイによる細胞ソーティング:
OptiPEAK T細胞培地中に200万/mLという密度を有するPBMCをマイクロポアアレイの上部に滴下し、5分間静置させて、表面張力によって単一細胞がマイクロポアの底に捕捉されるようにした。その後、カセットをセルソーターにマウントした。10~100パーセントのレーザー出力を用いることにより、マイクロポアから細胞を抽出することができる。マイクロポアの底の縁部のTi-AuコーティングがIRレーザーエネルギーを吸収し、Ti-Auの薄層が除去された。メニスカスを壊し、所望のマイクロポアから細胞を放出した。
実施例4-IR吸収コアを有するアガロースビーズの製造:
この手順では、透明のシェルおよびIR吸収コアを有するアガロースビーズの調製を説明する。
工程1.50mgのSuperdexビーズ(Superdex 75 100/300 GL,GE Healthcare Life Sciences)を1mLのアセトンに懸濁する。2000rpmで遠心して、Superdexビーズを回収する。アセトンを廃棄する。アセトン中に1mLのIR吸収色素(Epolight 1178,Epolin,New Jersey,USA)飽和溶液を作製する。5000rpmで遠心して、溶解していないIR色素を除去する。IR色素溶液をSuperdexビーズに加える。絶えず混合しながら室温で30分間インキュベートする。その混合物を1500rpmで遠心分離する。上部の液体を廃棄する。底に色の濃いペレットだけを残す。アセトンでさらに洗浄せずに、得られた色の濃いペレットを0.2パーセントBSA-PBSに懸濁する。これにより、均一にIR色素が組み込まれたSuperdexビーズが得られる。
工程2.ビーズの外側部分から色素を除去するために、ピペッティングによってビーズを1:1アセトン-水混合物で15秒未満、リンスする。その直後に、その混合物を1000rpmで30秒間遠心し、上部の液体を廃棄する。これにより、IRコア構造が得られる。
あるいは、IR吸収コアは、工程1から得られたビーズを4度の0.2パーセントBSA-PBS中で>5日間インキュベートすることによって作製することもできる。緩衝液を1日1回交換する。これにより、分子拡散のみによってIR色素がSuperdexビーズからゆっくり溶ける。
IR色素ミクロスフェアの有効性を下記の表1に示す。
Figure 2023516390000002
クロムミクロスフェアの有効性を下記の表2に示す。
Figure 2023516390000003
実施例5-培地サプリメントとしてプルロニック(登録商標)F68を用いたときの単一PBMC生存率:
この手順では、細胞ソーティング中の細胞生存率を高めるための培地サプリメントを説明する。細胞のロードおよび収集に向けて、0.1パーセントのプルロニック(登録商標)F68および1×ペニシリン/ストレプトマイシンが補充されたOptiPEAK T Lymphocyte Complete Media(777OPT069)に細胞を懸濁し、収集した。この実施例では、20μmのマイクロポアサイズを有する例示的なアレイの場合、3つの各サンプルに対するパーセント生存率が、それぞれ81パーセント、74パーセントおよび65パーセントと計測された。
実施例6-PBMC抽出:
この手順では、目的の粒子およびビーズを含む溶液を説明する。
ヒトPBMC細胞を含む溶液をマイクロポアアレイの上部に滴下した。10分後、単一のPBMCがマイクロポアにロードしているところだった。その後、コントロールビーズ(IR色素でコーティングされたTiOビーズ)、またはアガロースおよびデキストランビーズ、またはアガロースおよびIR色素ミクロスフェアのいずれかを含む溶液を、マイクロポアアレイの上部にロードした。15~30分後、ビーズが重力によってマイクロポア内にロードされた。細胞およびビーズを含むポアアレイを、細胞培養液を含む受け取りレザバーの上部にマウントした。ビーズがロードされたポアの底を標的化するようにIRパルスレーザーを向け、細胞を細胞培養液中に抽出した。抽出後、抽出された細胞を含む細胞培養液を生存率アッセイに向けて収集した。
実施例7-細胞生存率:
この手順では、細胞生存率の測定を説明する。
定量的サンドイッチELISAアッセイ(ヒトIFN-ガンマELISpot Kit,R&D Systems Inc.,No.EL285)によって、細胞生存率を測定した。このアッセイは、PVDFが塗布されたマイクロプレート上にプレコーティングされたヒトサイトカインインターフェロンγ(IFN-ガンマ)に特異的な捕捉抗体を使用する。収集された細胞をウェルに直接、ピペットで移すと、分泌細胞のすぐ近傍の固定化された抗体が、分泌されたヒトIFN-ガンマに結合する。洗浄工程およびビオチン化検出抗体とのインキュベーションの後、ストレプトアビジンに結合体化されたアルカリホスファターゼを加えた。その後、洗浄によって未結合の酵素を除去し、基質溶液を加えた。青色の沈殿物が、サイトカインの部位に現れ得、スポットとして出現し得る。各個別のスポットが、個々のヒトIFN-ガンマ分泌細胞に相当する。それらのスポットを数えた。生細胞数が既知である段階希釈の標準細胞サンプルも、収集された細胞サンプルと同じようにプレーティングした。各ウェル内の青色のスポットを数えることによって、検量線をプロットした。収集されたサンプル中の生細胞数を検量線によって決定した。
実施例8-異なるコーティング間の性能(抽出収率および細胞生存率)の比較:
図19A~19Cは、AuコーティングされたポアプレートとCrコーティングされたポアプレートとの性能(抽出収率および細胞生存率)の比較を示している。Auコーティングされたコアプレートは、図11A~図13Dを参照して本明細書に記載された表面修飾物を含み得る。例えば、Auコーティングされたポアプレートは、図12Bおよび図13Dに記載および示された材料を含み得る。図19AのAuコーティングされたポアアレイを参照すると、アレイ内のポアの上部側壁部分(ガラス部分)はPEG-シランでコーティングされてもよい。アレイ内のポアの下部垂直側壁部分は、AuおよびPEG-チオールでコーティングされてもよい。(ポアの垂直側壁付近の)アレイの底部をAuでコーティングし、ペルフルオロオクタンチオールでスタンピングしてもよい。図19AのCrコーティングされたポアアレイを参照すると、アレイのポアの底部および底部垂直側壁はCrのみでコーティングされてもよく、アレイ内のポアの上部側壁部分(ガラス部分)はPEG-シランでコーティングされてもよい。
異なる表面PEG修飾を備えるAuコーティングされたポアプレートは、Crコーティングされたポアプレートよりも抽出収率および細胞生存率の改善を提供することができる。例えば、Auコーティングされたポアプレートの抽出収率は73%であるが、Crコーティングされたポアアレイの抽出収率は66%である。AuコーティングされたポアプレートとCrコーティングされたポアプレートとの間で抽出された細胞の生存率は類似している(66%対68%)が、AuコーティングされたコアプレートはCrコーティングされたポアプレートと比較してより高い抽出収率を有するので、Auコーティングされたポアプレートを使用して得られた生存細胞の数はCrコーティングされたポアプレートよりも多い。
図19Bは、AuコーティングされたポアプレートとCrコーティングされたポアプレートとの間の収率の別の例を示している。抽出収率および細胞生存率、ならびに全生細胞収率は、Ti-Au-PEGコーティングされたポアプレートで改善される。CD4/8-APC T細胞マーカーで染色された末梢血単核細胞(PBMC)をAuコーティングされたプレートおよびCrコーティングされたプレートにロードし、色素排除によるそれらの抽出収率および生存率を比較するために抽出した。化学的にコーティングされたAuプレートと比較して、PEG-シランでコーティングされたCrプレートのみが高い色素排除ベースの生存率を示したが、そのレーザー出力の限界を考慮すると、抽出収率は改善することができなかった。Crコーティングされたプレートの全収率(すなわち、抽出収率および生存率)は、Auコーティングされたプレートよりもはるかに低いようであった。図19Cは、Ti-Au-PEGおよび疎水性コーティングでコーティングされたフルプレートからの抽出収率画像を示している(明るいドットは、蛍光イメージング下に蛍光抗体で染色された細胞である)。図19Cに示すように、抽出前後の画像の比較は、上記の定量的結果と一致する高い抽出収率を示している。
実施例9-異なるコーティングの接触角画像および測定:
図20は、裸のAu表面、mPEG-SHコーティングされた表面およびPF-SHコーティングされた表面の画像および接触角測定値を示している。画像および測定値は、ガラスプレート上およびポアプレート上で得た。図20に示すように、異なる表面コーティングを使用して、液体に対する湿潤挙動を修正することができる。例えば、疎水性コーティングをポアプレート(例えば、PF-SHをアレイの底部にスタンピングすることによって)の底に形成して、ポアからの漏れを防止し、液体および粒子をポア内に保持するのに十分なメニスカスを形成することができる。
本発明の好ましい実施形態を本明細書中に示し、説明してきたが、そのような実施形態が例示のためだけに提供されていることは、当業者には明らかであろう。当業者は、数多くのバリエーション、変更および置換を本発明から逸脱することなく考え付くだろう。本明細書中に記載される本発明の実施形態に対する様々な代替物が本発明の実施において使用され得ることが理解されるべきである。

Claims (33)

  1. アレイであって、
    第1の表面および前記第1の表面の反対側の第2の表面を有する基材であって、前記基材は、前記第1の表面から前記第2の表面に延びる管腔を画定する複数のポアを含み、前記複数のポアは、複数の粒子を含むサンプル溶液を受け取るように構成されている、基材と、
    前記第1の表面もしくは前記第2の表面にまたは前記第1の表面もしくは前記第2の表面付近に設けられた表面材料であって、前記表面材料は、前記第1の表面もしくは前記第2の表面の一方が親水性であり、前記第1の表面もしくは前記第2の表面の他方が疎水性であるように、前記第1の表面もしくは前記第2の表面におけるまたは前記第1の表面もしくは前記第2の表面付近の前記サンプル溶液または前記複数の粒子の湿潤挙動を修正するように構成されている複数の材料を含む、表面材料と
    を含む、アレイ。
  2. 前記複数の材料が、官能基により修飾された表面層を含み、前記官能基により修飾された表面層が、必要に応じて疎水性に修飾された表面層、疎水性に修飾された表面層、もしくはそれらの組み合わせであり、または前記官能基により修飾された表面層が、必要に応じて化学的にコーティングされた金属層である、請求項1に記載のアレイ。
  3. 前記官能基により修飾された表面層がチタンおよび/または金を含む、請求項2に記載のアレイ。
  4. 前記官能基により修飾された表面層の第1の部分が、第1の化学的コーティングでコーティングされている、請求項2に記載のアレイ。
  5. 前記官能基により修飾された表面層の第2の部分が、前記第1の化学的コーティングとは異なる第2の化学的コーティングでコーティングされている、請求項4に記載のアレイ。
  6. 前記第1の化学的コーティングが、前記第1の表面もしくは前記第2の表面におけるまたは前記第1の表面もしくは前記第2の表面付近の前記複数のポアの垂直側壁に設けられている、請求項4に記載のアレイ。
  7. 前記第1の化学的コーティングが、前記ポアの前記垂直側壁への前記粒子の付着を低減または排除するように構成されている、請求項6に記載のアレイ。
  8. 前記第2の化学的コーティングが、前記ポアからの前記サンプル溶液の望ましくない漏れを低減または防止するように構成されている、請求項5に記載のアレイ。
  9. 前記第2の化学的コーティングが疎水性である、請求項5に記載のアレイ。
  10. 前記第2の化学的コーティングが、前記第1の表面もしくは前記第2の表面にあるまたは前記第1の表面もしくは前記第2の表面付近にある前記基材の一部分に設けられており、前記基材の前記一部分が、前記複数のポアの垂直側壁付近にある、請求項5に記載のアレイ。
  11. 前記基材の前記一部分が、前記複数のポアの前記垂直側壁に対して実質的に直交している、請求項10に記載のアレイ。
  12. 前記第1の化学的コーティングが、メトキシ-ポリ(エチレン-グリコール)-チオールを含む、請求項4に記載のアレイ。
  13. 前記第2の化学的コーティングが、1H,1H,2H,2H-ペルフルオロデカンチオールを含む、請求項5に記載のアレイ。
  14. 前記複数の材料が、前記官能基により修飾された表面層上にない化学的コーティングをさらに含む、請求項2に記載のアレイ。
  15. 前記化学的コーティングが、前記官能基により修飾された表面層を有しない前記基材または前記複数のポアの1つもしくはそれを超える部分に設けられている、請求項14に記載のアレイ。
  16. 前記化学的コーティングが、メトキシ-ポリ(エチレン-グリコール)-シランを含む、請求項14に記載のアレイ。
  17. 前記第2の表面が、前記複数の粒子を含む前記サンプル溶液を受け取るように構成されている、請求項1に記載のアレイ。
  18. 前記第1の表面が、1つまたはそれを超える前記ポアから1つまたはそれを超える前記粒子を放出するために破壊されるように構成されている、請求項2に記載のアレイ。
  19. 前記第2の表面が、前記複数の粒子を含む前記サンプル溶液の前記複数のポアへの吸収を促進するために親水性である、請求項18に記載のアレイ。
  20. 前記第1の表面が疎水性であり、前記ポアからの前記サンプル溶液の望ましくない漏れを低減または排除する、請求項18に記載のアレイ。
  21. 前記第1の表面が、前記第2の表面の1つまたはそれを超える部分に電磁放射線を向けることによって破壊されるように構成されている、請求項18に記載のアレイ。
  22. 前記複数のポアの各ポアが、500ミクロンまたはそれ未満の最大直径を有する、請求項1に記載のアレイ。
  23. 前記複数のポアの各ポアが、10またはそれを超えるアスペクト比を有する、請求項1に記載のアレイ。
  24. 前記表面材料が、入射電磁放射線の10%超を吸収する材料から選択される、請求項1に記載のアレイ。
  25. 前記基材が、平方ミリメートルあたり100またはそれを超えるポアのポア密度を有する、請求項1に記載のアレイ。
  26. 前記アレイの粒子抽出収率が少なくとも70%である、請求項1に記載のアレイ。
  27. 前記官能基により修飾された表面層を有する前記アレイの粒子抽出収率が、前記官能基により修飾された表面層を有しない別のアレイよりも高い、請求項2に記載のアレイ。
  28. 前記官能基により修飾された表面層を有する前記アレイの粒子抽出収率が、前記官能基により修飾された表面層を有しない前記別のアレイよりも少なくとも5%高い、請求項27に記載のアレイ。
  29. 前記官能基により修飾された表面層を有する前記アレイの粒子抽出収率が、前記官能基により修飾された表面層を有しない前記別のアレイよりも少なくとも20%高い、請求項28に記載のアレイ。
  30. 前記複数の粒子が生細胞を含み、前記官能基により修飾された表面層を有する前記アレイの生細胞抽出収率が、前記官能基により修飾された表面層を有しない別のアレイよりも高い、請求項2に記載のアレイ。
  31. 前記官能基により修飾された表面層を有する前記アレイの生細胞抽出収率が、前記官能基により修飾された表面層を有しない前記別のアレイよりも少なくとも5%高い、請求項30に記載のアレイ。
  32. 前記官能基により修飾された表面層を有する前記アレイの生細胞抽出収率が、前記官能基により修飾された表面層を有しない前記別のアレイよりも少なくとも20%高い、請求項30に記載のアレイ。
  33. 前記官能基により修飾された表面層が、約50nm~約1mmの範囲内の厚さを有する、請求項1に記載のアレイ。
JP2022552834A 2020-03-04 2021-03-03 粒子ソーティングシステムおよび方法 Pending JP2023516390A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US202062985257P 2020-03-04 2020-03-04
US62/985,257 2020-03-04
PCT/US2021/020712 WO2021178566A1 (en) 2020-03-04 2021-03-03 Particle sorting systems and methods

Publications (2)

Publication Number Publication Date
JP2023516390A true JP2023516390A (ja) 2023-04-19
JPWO2021178566A5 JPWO2021178566A5 (ja) 2024-02-29

Family

ID=77613097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022552834A Pending JP2023516390A (ja) 2020-03-04 2021-03-03 粒子ソーティングシステムおよび方法

Country Status (5)

Country Link
US (1) US20230166261A1 (ja)
EP (1) EP4114570A4 (ja)
JP (1) JP2023516390A (ja)
CN (1) CN115461153A (ja)
WO (1) WO2021178566A1 (ja)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6893877B2 (en) * 1998-01-12 2005-05-17 Massachusetts Institute Of Technology Methods for screening substances in a microwell array
US20060105453A1 (en) * 2004-09-09 2006-05-18 Brenan Colin J Coating process for microfluidic sample arrays
EP1782075B1 (en) * 2004-08-04 2023-10-04 Life Technologies Corporation Method for differentially coating a substrate
US7629115B2 (en) * 2005-05-13 2009-12-08 Honeywell International Inc. Cell-based platform for high throughput screening
US8873038B2 (en) * 2010-10-27 2014-10-28 The Board Of Trustees Of The University Of Illinois Tailored raman spectrocopic probes for ultrasensitive and highly multiplexed assays
US20130244001A1 (en) * 2012-03-02 2013-09-19 Massachusetts Institute Of Technology Superhydrophobic Nanostructures
JP6920997B2 (ja) * 2015-02-22 2021-08-18 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー マイクロスクリーニング装置、プロセス、及び生成物
EP3516392A4 (en) * 2016-09-19 2020-05-20 The Board of Trustees of the Leland Stanford Junior University MICROSCREEN AND SORTING DEVICE, METHOD AND PRODUCTS
CN110198786A (zh) * 2016-11-14 2019-09-03 浩康生物系统公司 用于分选目标颗粒的方法和装置
AU2019331905A1 (en) * 2018-08-31 2021-03-18 Orca Biosystems, Inc. Ultrafast particle sorting
CN109609339B (zh) * 2018-12-14 2022-04-05 华中科技大学同济医学院附属协和医院 一种实时观察和处理悬浮细胞的微流控芯片及其制备方法和应用

Also Published As

Publication number Publication date
EP4114570A4 (en) 2024-02-21
EP4114570A1 (en) 2023-01-11
WO2021178566A1 (en) 2021-09-10
CN115461153A (zh) 2022-12-09
US20230166261A1 (en) 2023-06-01

Similar Documents

Publication Publication Date Title
JP6757730B2 (ja) マスサイトメトリーによる分析用の構造化生体試料
US20170074760A1 (en) Assembling apparatus and assembling method, apparatus for manufacturing microscopic object assembly structure, apparatus for assembling and removing microorganism, apparatus for detecting detection target substance, apparatus for separating separation target substance, and apparatus for introducing introduction target substance
JP2008076411A (ja) レーザ捕獲顕微解剖のための凸形状接着性フィルムシステム
JP2020514732A5 (ja)
US20180010149A1 (en) Plasmonic nanocavity-based cell therapy method and system
WO2017094101A1 (ja) 細胞解析デバイス、装置およびそれを用いた細胞解析方法
US20160377513A1 (en) Sample collection device and sample collection device array
US20130230912A1 (en) Base body and method for manufacturing base body
JP4527353B2 (ja) 個別液滴を生成する方法及び機器
JP3626952B2 (ja) レーザー照射によって標本から個々の対象物を分離するための標本用支持装置
US11136614B2 (en) Live-cell seeding method for microarrays
US20210339246A1 (en) Ultrafast particle sorting
WO2011003498A2 (en) Method and system for the manipulation of cells
JP2023516390A (ja) 粒子ソーティングシステムおよび方法
WO2011094865A1 (en) Fluid sampling device and method of use thereof
Hooper et al. Efficiency studies of particle removal with pulsed-laser induced plasma
JPWO2017159878A1 (ja) 試料積載プレート及びその製造方法
CN113916624B (zh) 一种组织切割收集装置及收集方法
CN110902646B (zh) 一种阵列结构硅基靶板及其应用
JP2016188772A (ja) 微小物質の回収方法
Dinescu et al. Laser processing of organic materials: Applications in tissue engineering and chemical sensing
JP6172021B2 (ja) 細胞整列チップ、その製造方法、標的細胞の検出方法、標的細胞の検出装置および細胞捕捉不良領域の検出方法
JP7219419B2 (ja) フィルタ構造体、バイオフィルタ、ナノポアセンサ及びフィルタ構造体の製造方法、並びにガラス構造体
JP2018033434A (ja) 細胞捕捉チップ、その製造方法および細胞捕捉方法
Merkt Interactions of nanoparticles and surfaces

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240220

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240220