JP2023179585A - 自動車用冷凍サイクル装置 - Google Patents

自動車用冷凍サイクル装置 Download PDF

Info

Publication number
JP2023179585A
JP2023179585A JP2023168629A JP2023168629A JP2023179585A JP 2023179585 A JP2023179585 A JP 2023179585A JP 2023168629 A JP2023168629 A JP 2023168629A JP 2023168629 A JP2023168629 A JP 2023168629A JP 2023179585 A JP2023179585 A JP 2023179585A
Authority
JP
Japan
Prior art keywords
hfo
refrigerant
mass
point
points
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023168629A
Other languages
English (en)
Inventor
英二 熊倉
Eiji Kumakura
和宏 古庄
Kazuhiro Kosho
勝 田中
Masaru Tanaka
瞬 大久保
Shun Okubo
充司 板野
Mitsushi Itano
佑樹 四元
Yuki Yotsumoto
彰人 水野
Akihito Mizuno
智行 後藤
Tomoyuki Goto
康夫 山田
Yasuo Yamada
立美 土屋
Tatsumi Tsuchiya
健司 午坊
Kenji Gobo
眸 黒木
Hitomi Kuroki
大輔 加留部
Daisuke Karube
達哉 高桑
Tatsuya Takakuwa
哲志 津田
Tetsushi Tsuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2019/027031 external-priority patent/WO2020017386A1/ja
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Publication of JP2023179585A publication Critical patent/JP2023179585A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3228Cooling devices using compression characterised by refrigerant circuit configurations
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3227Cooling devices using compression characterised by the arrangement or the type of heat exchanger, e.g. condenser, evaporator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H3/00Other air-treating devices
    • B60H3/02Moistening ; Devices influencing humidity levels, i.e. humidity control
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/008Lubricant compositions compatible with refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/106Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/122Halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/126Unsaturated fluorinated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/128Perfluorinated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/22All components of a mixture being fluoro compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/40Replacement mixtures
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/04Ethers; Acetals; Ortho-esters; Ortho-carbonates
    • C10M2207/0406Ethers; Acetals; Ortho-esters; Ortho-carbonates used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • C10M2207/2835Esters of polyhydroxy compounds used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/1033Polyethers, i.e. containing di- or higher polyoxyalkylene groups used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/30Refrigerators lubricants or compressors lubricants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0312Pressure sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0403Refrigeration circuit bypassing means for the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/197Pressures of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21162Temperatures of a condenser of the refrigerant at the inlet of the condenser

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Lubricants (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

【課題】本開示の課題は、自動車用の冷凍サイクル装置に適した冷媒を搭載した、自動車用の冷凍サイクル装置を提供することである。【解決手段】自動車用冷凍サイクル装置1は、冷媒回路10の冷媒として、少なくともHFO-1132(E)及びHFO-1234yfを含む。冷媒回路10は、圧縮機80と、アキュームレータ80aと、蒸発器または放熱器として機能する外気用熱交換器82と、送風空気を加熱する第1熱交換器85と、送風空気を冷却する第2熱交換器86と、暖房用制御弁83と、冷房用制御弁87と、運転モードを冷房または暖房に切り替える電磁弁23と、外気用熱交換器82の冷媒出口から第2熱交換器86の冷媒入口への冷媒の流通を許容し、逆方向への冷媒の流通を禁止する逆止弁24とを有する。【選択図】図5

Description

地球温暖化係数(GWP)が低い冷媒を用いた自動車用冷凍サイクル装置に関する。
従来、冷凍用あるいは冷蔵用の装置の熱サイクルシステムでは、冷媒として、単一冷媒であるR134aが多用されている。また、R410AやR404を用いることも考えられる。R410Aは、(CH2F2;HFC-32又はR32)とペンタフルオロエタン(C2HF5;HFC-125又はR125)との2成分混合冷媒であり、擬似共沸組成物である。R404は、R125,R134a,R143aの3成分混合冷媒であり、擬似共沸組成物である。
しかし、R134aの地球温暖化係数(GWP)は1430、R410Aの地球温暖化係数(GWP)は2088、R404Aの地球温暖化係数(GWP)は3920であり、近年、地球温暖化への懸念の高まりから、GWPがより低い冷媒がより多く使用されつつある。
例えば、特許文献1(国際公開第2005/105947)においては、R134aに代替可能な低GWP混合冷媒が、特許文献2(国際公開第2015/141678号)においては、R410Aに代替可能な低GWP混合冷媒が、特許文献3(特開2018-184597)においては、R404Aに代替可能な低GWP混合冷媒が種々提案されている。
これまで、GWPが小さい冷媒のうち、どのような冷媒を自動車用冷凍サイクル装置に用いるべきかについては、なんら検討されていない。
第1観点の自動車用冷凍サイクル装置は、冷媒回路と、その冷媒回路に封入された冷媒と、を備える。冷媒回路は、圧縮機と、放熱器と、減圧部と、吸熱器とを有する。冷媒は、少なくとも1,2-ジフルオロエチレンを含む。
第2観点の自動車用冷凍サイクル装置は、第1観点の自動車用冷凍サイクル装置であって、冷媒が、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、トリフルオロエチレン(HFO-1123)及び2,3,3,3-テトラフルオロ-1-プロペン(R1234yf)を含む。
第3観点の自動車用冷凍サイクル装置は、第2観点の自動車用冷凍サイクル装置であって、
前記冷媒において、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点D(87.6, 0.0, 12.4)、
点G(18.2, 55.1, 26.7)、
点H(56.7, 43.3, 0.0)及び
点O(100.0, 0.0, 0.0)
の4点をそれぞれ結ぶ線分OD、DG、GH及びHOで囲まれる図形の範囲内又は前記線分OD、DG及びGH上にあり(ただし、点O及び点Hは除く)、
前記線分DGは、
座標(0.0047y2-1.5177y+87.598, y, -0.0047y2+0.5177y+12.402)
で表わされ、
前記線分GHは、
座標(-0.0134z2-1.0825z+56.692, 0.0134z2+0.0825z+43.308, z)
で表わされ、かつ
前記線分HO及びODが直線である。
第4観点の自動車用冷凍サイクル装置は、第2観点の自動車用冷凍サイクル装置であって、
前記冷媒において、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点L(72.5, 10.2, 17.3)、
点G(18.2, 55.1, 26.7)、
点H(56.7, 43.3, 0.0)及び
点I(72.5, 27.5, 0.0)
の4点をそれぞれ結ぶ線分LG、GH、HI及びILで囲まれる図形の範囲内又は前記線分LG、GH及びIL上にあり(ただし、点H及び点Iは除く)、
前記線分LGは、
座標(0.0047y2-1.5177y+87.598, y, -0.0047y2+0.5177y+12.402)
で表わされ、
前記線分GHは、
座標(-0.0134z2-1.0825z+56.692, 0.0134z2+0.0825z+43.308, z)
で表わされ、かつ
前記線分HI及びILが直線である。
第5観点の自動車用冷凍サイクル装置は、第2観点から第4観点のいずれかの自動車用冷凍サイクル装置であって、前記冷媒が、さらに、ジフルオロメタン(R32)を含有する。
第6観点の自動車用冷凍サイクル装置は、第5観点の自動車用冷凍サイクル装置であって、
前記冷媒において、HFO-1132(E)、HFO-1123及びR1234yf並びにR32の、これらの総和を基準とする質量%をそれぞれx、y及びz並びにaとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
0<a≦10.0のとき、
点A(0.02a2-2.46a+93.4, 0, -0.02a2+2.46a+6.6)、
点B’(-0.008a2-1.38a+56, 0.018a2-0.53a+26.3, -0.01a2+1.91a+17.7)、
点C(-0.016a2+1.02a+77.6, 0.016a2-1.02a+22.4, 0)及び
点O(100.0, 0.0, 0.0)
の4点をそれぞれ結ぶ直線で囲まれる図形の範囲内又は前記直線OA、AB’及びB’C上にあり(ただし、点O及び点Cは除く)、
10.0<a≦16.5のとき、
点A(0.0244a2-2.5695a+94.056, 0, -0.0244a2+2.5695a+5.944)、
点B’(0.1161a2-1.9959a+59.749, 0.014a2-0.3399a+24.8, -0.1301a2+2.3358a+15.451)、
点C(-0.0161a2+1.02a+77.6, 0.0161a2-1.02a+22.4, 0)及び
点O(100.0, 0.0, 0.0)
の4点をそれぞれ結ぶ直線で囲まれる図形の範囲内又は前記直線OA、AB’及びB’C上にあり(ただし、点O及び点Cは除く)、又は
16.5<a≦21.8のとき、
点A(0.0161a2-2.3535a+92.742, 0, -0.0161a2+2.3535a+7.258)、
点B’(-0.0435a2-0.0435a+50.406, -0.0304a2+1.8991a-0.0661, 0.0739a2-1.8556a+49.6601)、
点C(-0.0161a2+0.9959a+77.851, 0.0161a2-0.9959a+22.149, 0)及び
点O(100.0, 0.0, 0.0)
の4点をそれぞれ結ぶ直線で囲まれる図形の範囲内、又は、前記直線OA、AB’及びB’C上にある(ただし、点O及び点Cは除く)。
第7観点の自動車用冷凍サイクル装置は、第2観点の自動車用冷凍サイクル装置であって、
前記冷媒が、HFO-1132(E)及びHFO-1123の合計を、該冷媒の全体に対して99.5質量%以上含み、かつ、
該冷媒が、HFO-1132(E)を、該冷媒の全体に対して62.5質量%~72.5質量%含む。
第8観点の自動車用冷凍サイクル装置は、第1観点の自動車用冷凍サイクル装置であって、
前記冷媒が、HFO-1132(E)、R32及びR1234yfを含み、
前記冷媒において、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点A(71.1, 0.0, 28.9)、
点C(36.5, 18.2, 45.3)、
点F(47.6, 18.3, 34.1)及び
点D(72.0, 0.0, 28.0)
の4点をそれぞれ結ぶ線分AC、CF、FD、及びDAで囲まれる図形の範囲内又は前記線分上にあり、
前記線分ACは、
座標(0.0181y2-2.2288y+71.096, y, -0.0181y2+1.2288y+28.904)
で表わされ、
前記線分FDは、
座標(0.02y2-1.7y+72, y, -0.02y2+0.7y+28)
で表わされ、かつ、
前記線分CF及びDAが直線である。
第9観点の自動車用冷凍サイクル装置は、第1観点の自動車用冷凍サイクル装置であって、
前記冷媒が、HFO-1132(E)、R32及びR1234yfを含み、
前記冷媒において、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点A(71.1, 0.0, 28.9)、
点B(42.6, 14.5, 42.9)、
点E(51.4, 14.6, 34.0)及び
点D(72.0, 0.0, 28.0)
の4点をそれぞれ結ぶ線分AB、BE、ED、及びDAで囲まれる図形の範囲内又は前記線分上にあり、
前記線分ABは、
座標(0.0181y2-2.2288y+71.096, y, -0.0181y2+1.2288y+28.904)
で表わされ、
前記線分EDは、
座標(0.02y2-1.7y+72, y, -0.02y2+0.7y+28)
で表わされ、かつ、
前記線分BE及びDAが直線である。
第10観点の自動車用冷凍サイクル装置は、第1観点の自動車用冷凍サイクル装置であって、
前記冷媒が、HFO-1132(E)、R32及びR1234yfを含み、
前記冷媒において、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点G(77.5, 6.9, 15.6)、
点I(55.1, 18.3, 26.6)及び
点J(77.5. 18.4, 4.1)
の3点をそれぞれ結ぶ線分GI、IJ及びJKで囲まれる図形の範囲内又は前記線分上にあり、
前記線分GIは、
座標(0.02y2-2.4583y+93.396, y, -0.02y2+1.4583y+6.604)
で表わされ、かつ、
前記線分IJ及びJKが直線である。
第11観点の自動車用冷凍サイクル装置は、第1観点の自動車用冷凍サイクル装置であって、
前記冷媒が、HFO-1132(E)、R32及びR1234yfを含み、
前記冷媒において、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点G(77.5, 6.9, 15.6)、
点H(61.8, 14.6, 23.6)及び
点K(77.5, 14.6, 7.9)
の3点をそれぞれ結ぶ線分GH、HK及びKGで囲まれる図形の範囲内又は前記線分上にあり、
前記線分GHは、
座標(0.02y2-2.4583y+93.396, y, -0.02y2+1.4583y+6.604)
で表わされ、かつ、
前記線分HK及びKGが直線である。
第12観点の自動車用冷凍サイクル装置は、第1観点の自動車用冷凍サイクル装置であって、
前記冷媒が、HFO-1132(E)、HFO-1123及びR32を含み、
前記冷媒において、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点O(100.0, 0.0, 0.0)、
点C’(56.7, 43.3, 0.0)、
点D’(52.2, 38.3, 9.5)、
点E’(41.8, 39.8, 18.4)及び
点A’(81.6, 0.0, 18.4)
の5点をそれぞれ結ぶ線分OC’、C’D’、D’E’、E’A’及びA’Oで囲まれる図形の範囲内又は前記線分C’D’、D’E’及びE’A’上にあり(ただし、点C’及びA’を除く)、
前記線分C’D’は、
座標(-0.0297z2-0.1915z+56.7, 0.0297z2+1.1915z+43.3, z)
で表わされ、
前記線分D’E’は、
座標(-0.0535z2+0.3229z+53.957, 0.0535z2+0.6771z+46.043, z)
で表わされ、かつ、
前記線分OC’、E’A’及びA’Oが直線である。
第13観点の自動車用冷凍サイクル装置は、第1観点の自動車用冷凍サイクル装置であって、
前記冷媒が、HFO-1132(E)、HFO-1123及びR32を含み、
前記冷媒において、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点O(100.0, 0.0, 0.0)、
点C(77.7, 22.3, 0.0)、
点D(76.3, 14.2, 9.5)、
点E(72.2, 9.4, 18.4)及び
点A’(81.6, 0.0, 18.4)
の5点をそれぞれ結ぶ線分OC、CD、DE、EA’及びA’Oで囲まれる図形の範囲内又は前記線分CD、DE及びEA’上にあり(ただし、点C及びA’を除く)、
前記線分CDEは、
座標(-0.017z2+0.0148z+77.684, 0.017z2+0.9852z+22.316, z)
で表わされ、かつ、
前記線分OC、EA’及びA’Oが直線である。
第14観点の自動車用冷凍サイクル装置は、第1観点の自動車用冷凍サイクル装置であって、
前記冷媒が、HFO-1132(E)、HFO-1123及びR32を含み、
前記冷媒において、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点O(100.0, 0.0, 0.0)、
点C’(56.7, 43.3, 0.0)、
点D’(52.2, 38.3, 9.5)及び
点A(90.5, 0.0, 9.5)
の5点をそれぞれ結ぶ線分OC’、C’D’、D’A及びAOで囲まれる図形の範囲内又は前記線分C’D’及びD’A上にあり(ただし、点C’及びAを除く)、
前記線分C’D’は、
座標(-0.0297z2-0.1915z+56.7, 0.0297z2+1.1915z+43.3, z)
で表わされ、かつ、
前記線分OC’、D’A及びAOが直線である。
第15観点の自動車用冷凍サイクル装置は、第1観点の自動車用冷凍サイクル装置であって、
前記冷媒が、HFO-1132(E)、HFO-1123及びR32を含み、
前記冷媒において、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点O(100.0, 0.0, 0.0)、
点C(77.7, 22.3, 0.0)、
点D(76.3, 14.2, 9.5)、
点A(90.5, 0.0, 9.5)
の5点をそれぞれ結ぶ線分OC、CD、DA及びAOで囲まれる図形の範囲内又は前記線分CD及びDA上にあり(ただし、点C及びAを除く)、
前記線分CDは、
座標(-0.017z2+0.0148z+77.684, 0.017z2+0.9852z+22.316, z)
で表わされ、かつ、
前記線分OC、DA及びAOが直線である。
第16観点の自動車用冷凍サイクル装置は、第1観点の自動車用冷凍サイクル装置であって、
前記冷媒が、CO2、並びにトランス-1,2-ジフルオロエチレン(HFO-1132(E))、ジフルオロメタン(R32)及び2,3,3,3-テトラフルオロ-1-プロペン(R1234yf)を含み、
CO2、並びにR32、HFO-1132(E)及びR1234yfの、これらの総和を基準とする質量%をそれぞれw、並びにx、y及びzとするとき、R32、HFO-1132(E)及びR1234yfの総和が(100-w)質量%となる3成分組成図において、座標(x,y,z)が、
0<w≦1.2のとき、
点I(0.0, 72.0, 28.0-w)
点J(18.3, 48.5, 33.2-w)
点K(36.8, 35.6, 27.6-w)
点L(51.7, 28.9, 19.4-w)
点B’’(-1.5278w2+2.75w+50.5, 0.0, 1.5278w2-3.75w+49.5)
点D(-2.9167w+40.317, 0.0, 1.9167w+59.683)
点C(0.0, -4.9167w+58.317, 3.9167w+41.683)
の7点をそれぞれ結ぶ曲線IJ、曲線JK及び曲線KL、並びに直線LB’’、直線B’’D、直線DC及び直線CIで囲まれる図形の範囲内又は前記線分上にあり(ただし、直線B’’D及び直線CIの上の点は除く)、
1.2<w≦4.0のとき、
点I(0.0, 72.0, 28.0-w)
点J(18.3, 48.5, 33.2-w)
点K(36.8, 35.6, 27.6-w)
点L(51.7, 28.9, 19.4-w)
点B’’(51.6, 0.0, 48.4-w)
点D(-2.8226w+40.211, 0.0, 1.8226w+59.789)
点C(0.0, 0.1081w2-5.169w+58.447, -0.1081w2+4.169w+41.553)
の7点をそれぞれ結ぶ曲線IJ、曲線JK及び曲線KL、並びに直線LB’’、直線B’’D、直線DC及び直線CIで囲まれる図形の範囲内又は前記線分上にあり(ただし、直線B’’D及び直線CIの上の点は除く)、
4.0<w≦7.0のとき、
点I(0.0, 72.0, 28.0-w)
点J(18.3, 48.5, 33.2-w)
点K(36.8, 35.6, 27.6-w)
点L(51.7, 28.9, 19.4-w)
点B’’(51.6, 0.0, 48.4-w)
点D(-2.8w+40.1, 0.0, 1.8w+59.9)
点C(0.0, 0.0667w2-4.9667w+58.3, -0.0667w2+3.9667w+41.7)
の7点をそれぞれ結ぶ曲線IJ、曲線JK及び曲線KL、並びに直線LB’’、直線B’’D、直線DC及び直線CIで囲まれる図形の範囲内又は前記線分上にあり(ただし、直線B’’D及び直線CIの上の点は除く)、かつ
曲線IJは、
座標(x, 0.0236x2-1.716x+72, -0.0236x2+0.716x+28-w)
で表わされ、
曲線JKは、
座標(x, 0.0095x2-1.2222x+67.676, -0.0095x2+0.2222x+32.324-w)
で表わされ、
曲線KLは、
座標(x, 0.0049x2-0.8842x+61.488, -0.0049x2-0.1158x+38.512)
で表わされる。
第17観点の自動車用冷凍サイクル装置は、第1観点の自動車用冷凍サイクル装置であって、
前記冷媒が、CO2、並びにトランス-1,2-ジフルオロエチレン(HFO-1132(E))、ジフルオロメタン(R32)及び2,3,3,3-テトラフルオロ-1-プロペン(R1234yf)を含み、
CO2、並びにR32、HFO-1132(E)及びR1234yfの、これらの総和を基準とする質量%をそれぞれw、並びにx、y及びzとするとき、R32、HFO-1132(E)及びR1234yfの総和が(100-w)質量%となる3成分組成図において、座標(x,y,z)が、
0<w≦1.2のとき、
点I(0.0, 72.0, 28.0-w)
点J(18.3, 48.5, 33.2-w)
点K(36.8, 35.6, 27.6-w)
点F(-0.0833w+36.717, -4.0833w+5.1833, 3.1666w+58.0997)
点C(0.0, -4.9167w+58.317, 3.9167w+41.683)
の5点をそれぞれ結ぶ曲線IJ及び曲線JK、並びに直線KF、直線FC及び直線CIで囲まれる図形の範囲内又は前記線分上にあり(ただし、直線CIの上の点は除く)、
1.2<w≦1.3のとき、
点I(0.0, 72.0, 28.0-w)
点J(18.3, 48.5, 33.2-w)
点K(36.8, 35.6, 27.6-w)
点F(36.6, -3w+3.9, 2w+59.5)
点C(0.0, 0.1081w2-5.169w+58.447, -0.1081w2+4.169w+41.553)
の5点をそれぞれ結ぶ曲線IJ及び曲線JK、並びに直線KF、直線FC及び直線CIで囲まれる図形の範囲内又は前記線分上にあり(ただし、直線CIの上の点は除く)、
1.3<w≦4.0のとき、
点I(0.0, 72.0, 28.0-w)
点J(18.3, 48.5, 33.2-w)
点K(36.8, 35.6, 27.6-w)
点B’(36.6, 0.0, -w+63.4)
点D(-2.8226w+40.211, 0.0, 1.8226w+59.789)
点C(0.0, 0.1081w2-5.169w+58.447, -0.1081w2+4.169w+41.553)
の6点をそれぞれ結ぶ曲線IJ及び曲線JK、並びに直線KB’、直線B’D、直線DC及び直線CIで囲まれる図形の範囲内又は前記線分上にあり(ただし、直線CIの上の点は除く)、
4.0<w≦7.0のとき、
点I(0.0, 72.0, 28.0-w)
点J(18.3, 48.5, 33.2-w)
点K(36.8, 35.6, 27.6-w)
点B’(36.6, 0.0, -w+63.4)
点D(-2.8w+40.1, 0.0, 1.8w+59.9)
点C(0.0, 0.0667w2-4.9667w+58.3, -0.0667w2+3.9667w+41.7)
の6点をそれぞれ結ぶ曲線IJ及び曲線JK、並びに直線KB’、直線B’D、直線DC及び直線CIで囲まれる図形の範囲内又は前記線分上にあり(ただし、直線CIの上の点は除く)、かつ曲線IJは、
座標(x, 0.0236x2-1.716x+72, -0.0236x2+0.716x+28-w)
で表わされ、
曲線JKは、
座標(x, 0.0095x2-1.2222x+67.676, -0.0095x2+0.2222x+32.324-w)
で表わされる。
第18観点の自動車用冷凍サイクル装置は、第1観点の自動車用冷凍サイクル装置であって、
前記冷媒が、CO2、並びにR32、HFO-1132(E)及びR1234yfを含み、
CO2、並びにR32、HFO-1132(E)及びR1234yfの、これらの総和を基準とする質量%をそれぞれw、並びにx、y及びzとするとき、R32、HFO-1132(E)及びR1234yfの総和が(100-w)質量%となる3成分組成図において、座標(x,y,z)が、
0<w≦1.2のとき、
点I(0.0, 72.0, 28.0-w)
点J(18.3, 48.5, 33.2-w)
点E(18.2, -1.1111w2-3.1667w+31.9, 1.1111w2+2.1667w+49.9)
点C(0.0, -4.9167w+58.317, 3.9167w+41.683)
の4点をそれぞれ結ぶ曲線IJ及び曲線JK、並びに直線KF、直線FC及び直線CIで囲まれる図形の範囲内又は前記線分上にあり(ただし、直線CIの上の点は除く)、
1.2<w≦4.0のとき、
点I(0.0, 72.0, 28.0-w)
点J(18.3, 48.5, 33.2-w)
点E(-0.0365w+18.26, 0.0623w2-4.5381w+31.856, -0.0623w2+3.5746w+49.884)
点C(0.0, 0.1081w2-5.169w+58.447, -0.1081w2+4.169w+41.553)
の4点をそれぞれ結ぶ曲線IJ及び曲線JK、並びに直線KF、直線FC及び直線CIで囲まれる図形の範囲内又は前記線分上にあり(ただし、直線CIの上の点は除く)、
4.0<w≦7.0のとき、
点I(0.0, 72.0, 28.0-w)
点J(18.3, 48.5, 33.2-w)
点E(18.1, 0.0444w2-4.3556w+31.411, -0.0444w2+3.3556w+50.489)
点C(0.0, 0.0667w2-4.9667w+58.3, -0.0667w2+3.9667w+41.7)
の4点をそれぞれ結ぶ曲線IJ及び曲線JK、並びに直線KF、直線FC及び直線CIで囲まれる図形の範囲内又は前記線分上にあり(ただし、直線CIの上の点は除く)、かつ
曲線IJは、
座標(x, 0.0236x2-1.716x+72, -0.0236x2+0.716x+28-w)
で表わされる。
第19観点の自動車用冷凍サイクル装置は、第1観点の自動車用冷凍サイクル装置であって、
前記冷媒が、CO2、並びにR32、HFO-1132(E)及びR1234yfを含み、
CO2、並びにR32、HFO-1132(E)及びR1234yfの、これらの総和を基準とする質量%をそれぞれw、並びにx、y及びzとするとき、R32、HFO-1132(E)及びR1234yfの総和が(100-w)質量%となる3成分組成図において、座標(x,y,z)が、
0<w≦0.6のとき、
点G(-5.8333w2-3.1667w+22.2, 7.0833w2+1.4167w+26.2, -1.25w2+0.75w+51.6)
点O(36.8, 0.8333w2+1.8333w+22.6, -0.8333w2-2.8333w+40.6)
点P(51.7, 1.1111w2+20.5, -1.1111w2-w+27.8)
点B’’(-1.5278w2+2.75w+50.5, 0.0, 1.5278w2-3.75w+49.5)
点D(-2.9167w+40.317, 0.0, 1.9167w+59.683)
の5点をそれぞれ結ぶ曲線GO及び曲線OP、並びに直線PB’’、直線B’’D及び直線DGで囲まれる図形の範囲内又は前記線分上にあり(ただし、直線B’’Dの上の点は除く)、
0.6<w≦1.2のとき、
点G(-5.8333w2-3.1667w+22.2, 7.0833w2+1.4167w+26.2, -1.25w2+0.75w+51.6)
点N(18.2, 0.2778w2+3w+27.7, -0.2778w2-4w+54.1)
点O(36.8, 0.8333w2+1.8333w+22.6, -0.8333w2-2.8333w+40.6)
点P(51.7, 1.1111w2+20.5, -1.1111w2-w+27.8)
点B’’(-1.5278w2+2.75w+50.5, 0.0, 1.5278w2-3.75w+49.5)
点D(-2.9167w+40.317, 0.0, 1.9167w+59.683)
の6点をそれぞれ結ぶ曲線GN、曲線NO、及び曲線OP、並びに直線PB’’、直線B’’D及び直線DGで囲まれる図形の範囲内又は前記線分上にあり(ただし、直線B’’Dの上の点は除く)、
かつ
曲線GOは、
0<w≦0.6のとき、
座標(x, (0.00487w2-0.0059w+0.0072)x2+(-0.279w2+0.2844w-0.6701)x+3.7639w2-0.2467w+37.512, 100-w-x-y)
で表わされ、
曲線GNは、
0.6<w≦1.2のとき、
座標(x, (0.0122w2-0.0113w+0.0313)x2+(-0.3582w2+0.1624w-1.4551)x+2.7889w2+3.7417w+43.824 , 100-w-x-y)
で表わされ、
曲線NOは、
0.6<w≦1.2のとき、
座標(x, (0.00487w2-0.0059w+0.0072)x2+(-0.279w2+0.2844w-0.6701)x+3.7639w2-0.2467w+37.512, 100-w-x-y)
で表され、
曲線OPは、
0<w≦1.2のとき、
座標(x, (0.0074w2-0.0133w+0.0064)x2+(-0.5839w2+1.0268w-0.7103)x+11.472w2-17.455w+40.07, 100-w-x-y)
で表わされ、
1.2<w≦4.0のとき、
点M(0.0, -0.3004w2+2.419w+55.53, 0.3004w2-3.419w+44.47)
点W(10.0, -0.3645w2+3.5024w+44.422, 0.3645w2-4.5024w+55.578)
点N(18.2, -0.3773w2+3.319w+28.26, 0.3773w2-4.319w+53.54)
点O(36.8, -0.1392w2+1.4381w+24.475, 0.1392w2-2.4381w+38.725)
点P(51.7, -0.2381w2+1.881w+20.186, 0.2381w2-2.881w+28.114)
点B’’(51.6, 0.0, -w+48.4)
点D(-2.8226w+40.211, 0.0, 1.8226w+59.789)
点C(0.0, 0.1081w2-5.169w+58.447, -0.1081w2+4.169w+41.553)
の8点をそれぞれ結ぶ曲線MW、曲線WN、曲線NO及び曲線OP、並びに直線PB’’、直線B’’D、直線DC及び直線CMで囲まれる図形の範囲内又は前記線分上にあり(ただし、直線B’’D及び直線CMの上の点は除く)、かつ
曲線MWは、
座標(x, (0.0043w2-0.0359w+0.1509)x2+(-0.0493w2+0.4669w-3.6193)x-0.3004w2+2.419w+55.53, 100-w-x-y)
で表わされ、
曲線WNは、
座標(x, (0.0055w2-0.0326w+0.0665)x2+(-0.1571w2+0.8981w-2.6274)x+0.6555w2-2.2153w+54.044, 100-w-x-y)
で表わされ、
曲線NOは、
座標(x, (-0.00062w2+0.0036w+0.0037)x2+(0.0375w2-0.239w-0.4977)x-0.8575w2+6.4941w+36.078, 100-w-x-y)
で表わされ、
曲線OPは、
座標(x, (-0.000463w2+0.0024w-0.0011)x2+(0.0457w2-0.2581w-0.075)x-1.355w2+8.749w+27.096, 100-w-x-y)
で表わされ、
4.0<w≦7.0のとき、
点M(0.0, -0.0667w2+0.8333w+58.133, 0.0667w2-1.8333w+41.867)
点W(10.0, -0.0667w2+1.1w+39.267, 0.0667w2-2.1w+50.733)
点N(18.2, -0.0889w2+1.3778w+31.411, 0.0889w2-2.3778w+50.389)
点O(36.8, -0.0444w2+0.6889w+25.956, 0.0444w2-1.6889w+37.244)
点P(51.7, -0.0667w2+0.8333w+21.633, 0.0667w2-1.8333w+26.667)
点B’’(51.6, 0.0, -w+48.4)
点D(-2.8w+40.1, 0.0, 1.8w+59.9)
点C(0.0, 0.0667w2-4.9667w+58.3, -0.0667w2+3.9667w+41.7)
の8点をそれぞれ結ぶ曲線MW、曲線WN、曲線NO及び曲線OP、並びに直線PB’’、直線B’’D、直線DC及び直線CMで囲まれる図形の範囲内又は前記線分上にあり(ただし、直線B’’D及び直線CMの上の点は除く)、かつ
曲線MWは、
座標(x, (0.00357w2-0.0391w+0.1756)x2+(-0.0356w2+0.4178w-3.6422)x-0.0667w2+0.8333w+58.103, 100-w-x-y)
で表わされ、
曲線WNは、
座標(x, (-0.002061w2+0.0218w-0.0301)x2+(0.0556w2-0.5821w-0.1108)x-0.4158w2+4.7352w+43.383, 100-w-x-y)
で表わされ、
曲線NOは、
座標(x, 0.0082x2+(0.0022w2-0.0345w-0.7521)x-0.1307w2+2.0247w+42.327, 100-w-x-y)
で表わされ、
曲線OPは、
座標(x, (-0.0006258w2+0.0066w-0.0153)x2+(0.0516w2-0.5478w+0.9894)x-1.074w2+11.651w+10.992, 100-w-x-y)
で表わされる。
第20観点の自動車用冷凍サイクル装置は、第1観点の自動車用冷凍サイクル装置であって、
前記冷媒が、CO2、並びにR32、HFO-1132(E)及びR1234yfを含み、
CO2、並びにR32、HFO-1132(E)及びR1234yfの、これらの総和を基準とする質量%をそれぞれw、並びにx、y及びzとするとき、R32、HFO-1132(E)及びR1234yfの総和が(100-w)質量%となる3成分組成図において、座標(x,y,z)が、
0<w≦0.6のとき、
点G(-5.8333w2-3.1667w+22.2, 7.0833w2-1.4167w+26.2, -1.25w2+3.5834w+51.6)
点O(36.8, 0.8333w2+1.8333w+22.6, -0.8333w2-2.8333w+40.6)
点F(-0.0833w+36.717, -4.0833w+5.1833, 3.1666w+58.0997)
の3点をそれぞれ結ぶ曲線GO、並びに直線OF及び直線FGで囲まれる図形の範囲内又は前記線分上にあり、かつ
曲線GOは、
座標(x, (0.00487w2-0.0059w+0.0072)x2+(-0.279w2+0.2844w-0.6701)x+3.7639w2-0.2467w+37.512, 100-w-x-y)
で表わされ、
0.6<w≦1.2のとき、
点G(-5.8333w2-3.1667w+22.2, 7.0833w2-1.4167w+26.2, -1.25w2+3.5834w+51.6)
点N(18.2, 0.2778w2+3.0w+27.7, -0.2.778w2-4.0w+54.1)
点O(36.8, 0.8333w2+1.8333w+22.6, -0.8333w2-2.8333w+40.6)
点F(-0.0833w+36.717, -4.0833w+5.1833, 3.1666w+58.0997)
の4点をそれぞれ結ぶ曲線GN及び曲線NO、並びに直線OF及び直線FGで囲まれる図形の範囲内又は前記線分上にあり、かつ
曲線GNは、
0.6<w≦1.2のとき、
座標(x, (0.0122w2-0.0113w+0.0313)x2+(-0.3582w2+0.1624w-1.4551)x+2.7889w2+3.7417w+43.824 , 100-w-x-y)
で表わされ、
曲線NOは、
0.6<w≦1.2のとき、
座標(x, (0.00487w2-0.0059w+0.0072)x2+(-0.279w2+0.2844w-0.6701)x+3.7639w2-0.2467w+37.512, 100-w-x-y)
で表され
1.2<w≦1.3のとき、
点M(0.0, -0.3004w2+2.419w+55.53, 0.3004w2-3.419w+44.47)
点W(10.0, -0.3645w2+3.5024w34.422, 0.3645w2-4.5024w+55.578)
点N(18.2, -0.3773w2+3.319w+28.26, 0.3773w2-4.319w+53.54)
点O(36.8, -0.1392w2+1.4381w+24.475, 0.1392w2-2.4381w+38.725)
点F(36.6, -3w+3.9, 2w+59.5)
点C(0.1081w2-5.169w+58.447, 0.0, -0.1081w2+4.169w+41.553)
の6点をそれぞれ結ぶ曲線MW、曲線WN及び曲線NO、並びに直線OF及び直線FC及び直線CMで囲まれる図形の範囲内又は前記線分上にあり(ただし、直線CMの上の点は除く)、かつ
曲線MWは、
座標(x, (0.0043w2-0.0359w+0.1509)x2+(-0.0493w2+0.4669w-3.6193)x-0.3004w2+2.419w+55.53, 100-w-x-y)
で表わされ、
曲線WNは、
座標(x, (0.0055w2-0.0326w+0.0665)x2+(-0.1571w2+0.8981w-2.6274)x+0.6555w2-2.2153w+54.044, 100-w-x-y)
で表わされ、
曲線NOは、
座標(x, (-0.00062w2+0.0036w+0.0037)x2+(0.0375w2-0.239w-0.4977)x-0.8575w2+6.4941w+36.078, 100-w-x-y)
で表わされ、
1.3<w≦4.0のとき、
点M(0.0, -0.3004w2+2.419w+55.53, 0.3004w2-3.419w+44.47)
点W(10.0, -0.3645w2+3.5024w+34.422, 0.3645w2-4.5024w+55.578)
点N(18.2, -0.3773w2+3.319w+28.26, 0.3773w2-4.319w+53.54)
点O(36.8, -0.1392w2+1.4381w+24.475, 0.1392w2-2.4381w+38.725)
点B’( 36.6, 0.0, -w+63.4)
点D(-2.8226w+40.211, 0.0, 1.8226w+59.789)
点C(0.0, 0.1081w2-5.169w+58.447, -0.1081w2+4.169w+41.553)
の7点をそれぞれ結ぶ曲線MW、曲線WN及び曲線NO、並びに直線OB’、直線B’D、及び直線DC及び直線CMで囲まれる図形の範囲内又は前記線分上にあり(ただし、直線CMの上の点は除く)、かつ
曲線MWは、
座標(x, (0.0043w2-0.0359w+0.1509)x2+(-0.0493w2+0.4669w-3.6193)x-0.3004w2+2.419w+55.53, 100-w-x-y)
で表わされ、
曲線WNは、
座標(x, (0.0055w2-0.0326w+0.0665)x2+(-0.1571w2+0.8981w-2.6274)x+0.6555w2-2.2153w+54.044, 100-w-x-y)
曲線NOは、
座標(x, (-0.00062w2+0.0036w+0.0037)x2+(0.0457w2-0.2581w-0.075)x-1.355w2+8.749w+27.096, 100-w-x-y)
で表わされ、
4.0<w≦7.0のとき、
点M(0.0, -0.0667w2+0.8333w58.133, 0.0667w2-1.8333w+41.867)
点W(10.0, -0.0667w2+1.1w+39.267, 0.0667w2-2.1w+50.733)
点N(18. 2, -0.0889w2+1.3778w+31.411, 0.0889w2-2.3778w+50.389)
点O(36.8, -0.0444w2+0.6889w+25.956, 0.0444w2-1.6889w+37.244)
点B’(36.6, 0.0, -w+63.4)
点D(-2.8w+40. 1, 0.0, 1.8w+59.9)
点C(0.0, 0.0667w2-4.9667w+58.3, -0.0667w2+3.9667w+41.7)
の7点をそれぞれ結ぶ曲線MW、曲線WN及び曲線NO、並びに直線OB’、直線B’D、及び直線DC及び直線CMで囲まれる図形の範囲内又は前記線分上にあり(ただし、直線CMの上の点は除く)、かつ
曲線MWは、
座標(x, (0.00357w2-0.0391w+0.1756)x2+(-0.0356w2+0.4178w-3.6422)x-0.0667w2+0.8333w+58.103, 100-w-x-y)
で表わされ、
曲線WNは、
座標(x, (-0.002061w2+0.0218w-0.0301)x2+(0.0556w2-0.5821w-0.1108)x-0.4158w2+4.7352w+43.383, 100-w-x-y)
曲線NOは、
座標(x, (0.0082x2+(0.0022w2-0.0345w-0.7521)x-0.1307w2+2.0247w+42.327, 100-w-x-y)
で表わされる。
第21観点の自動車用冷凍サイクル装置は、第1観点の自動車用冷凍サイクル装置であって、
前記冷媒が、CO2、並びにR32、HFO-1132(E)及びR1234yfを含み、
CO2、並びにR32、HFO-1132(E)及びR1234yfの、これらの総和を基準とする質量%をそれぞれw、並びにx、y及びzとするとき、R32、HFO-1132(E)及びR1234yfの総和が(100-w)質量%となる3成分組成図において、座標(x,y,z)が、
1.2<w≦4.0のとき、
点M(0.0, -0.3004w2+2.419w+55.53, 0.3004w2-3.419w+44.47)
点W(10.0, -0.3645w2+3.5024w+34.422, 0.3645w2-4.5024w+55.578)
点N(18.2, -0.3773w2+3.319w+28.26, 0.3773w2-4.319w+53.54)
点E(-0.0365w+18.26, 0.0623w2-4.5381w+31.856, -0.0623w2+3.5746w+49.884)
点C(0.0, 0.1081w2-5.169w+58.447, -0.1081w2+4.169w+41.553)
の5点をそれぞれ結ぶ曲線MW及び曲線WN、並びに直線NE、直線EC及び直線CMで囲まれる図形の範囲内又は前記線分上にあり(ただし、直線CMの上の点は除く)、かつ
曲線MWは、
座標(x, (0.0043w2-0.0359w+0.1509)x2+(-0.0493w2+0.4669w-3.6193)x-0.3004w2+2.419w+55.53, 100-w-x-y)
で表わされ、
曲線WNは、
座標(x, (0.0055w2-0.0326w+0.0665)x2+(-0.1571w2+0.8981w-2.6274)x+0.6555w2-2.2153w+54.044, 100-w-x-y)
で表わされ、
4.0<w≦7.0のとき、
点M(0.0, -0.0667w2+0.8333w+58.133, 0.0667w2-1.8333w+41.867)
点W(10.0, -0.0667w2+1.1w+39.267, 0.0667w2-2.1w+50.733)
点N(18.2, -0.0889w2+1.3778w+31.411, 0.0889w2-2.3778w+50.389)
点E(18.1, 0.0444w2-4.3556w+31.411, -0.0444w2+3.3556w+50.489)
点C(0.0, 0.0667w2-4.9667w+58.3, -0.0667w2+3.9667w+41.7)
の5点をそれぞれ結ぶ曲線MW及び曲線WN、並びに直線NE、直線EC及び直線CMで囲まれる図形の範囲内又は前記線分上にあり(ただし、直線CMの上の点は除く)、かつ
曲線MWは、
座標(x, (0.00357w2-0.0391w+0.1756)x2+(-0.0356w2+0.4178w-3.6422)x-0.0667w2+0.8333w+58.103, 100-w-x-y)
で表わされ、
曲線WNは、
座標(x, (-0.002061w2+0.0218w-0.0301)x2+(0.0556w2-0.5821w-0.1108)x-0.4158w2+4.7352w+43.383, 100-w-x-y)
で表わされる。
第22観点の自動車用冷凍サイクル装置は、冷媒回路と、その冷媒回路に封入された冷媒と、を備える。冷媒回路は、圧縮機と、放熱器と、減圧部と、吸熱器とを有する。冷媒は、少なくともトランス-1,2-ジフルオロエチレン(HFO-1132(E))、ジフルオロメタン(HFC-32)及び2,3,3,3-テトラフルオロプロペン(HFO-1234yf)を含む。
第23観点の自動車用冷凍サイクル装置は、第22観点の自動車用冷凍サイクル装置であって、
前記冷媒は、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、ジフルオロメタン(HFC-32)及び2,3,3,3-テトラフルオロプロペン(HFO-1234yf)を含有し、該三成分の総濃度が、前記冷媒全体に対して99.5質量%以上であり、且つ
該三成分の質量比が、該三成分を各頂点とする三角組成図において、
点A(HFO-1132(E)/HFC-32/HFO-1234yf=51.8/1.0/47.2質量%)、
点B(HFO-1132(E)/HFC-32/HFO-1234yf=35.3/1.0/63.7質量%)、
点C(HFO-1132(E)/HFC-32/HFO-1234yf=10.1/18.0/71.9質量%)及び
点D(HFO-1132(E)/HFC-32/HFO-1234yf=27.8/18.0/54.2質量%)、
の4点を通る図形で囲まれた領域の範囲内にある。
第24観点の自動車用冷凍サイクル装置は、第22観点の自動車用冷凍サイクル装置であって、
前記冷媒は、HFO-1132(E)、HFC-32及びHFO-1234yfを含有し、該三成分の総濃度が、前記冷媒全体に対して99.5質量%以上であり、且つ
該三成分の質量比が、該三成分を各頂点とする三角組成図において、
点A(HFO-1132(E)/HFC-32/HFO-1234yf=51.8/1.0/47.2質量%)、
点B(HFO-1132(E)/HFC-32/HFO-1234yf=35.3/1.0/63.7質量%)、
点E(HFO-1132(E)/HFC-32/HFO-1234yf=15.2/14.3/70.5質量%)及び
点F(HFO-1132(E)/HFC-32/HFO-1234yf=31.1/14.3/54.6質量%)、
の4点を通る図形で囲まれた領域の範囲内にある。
第25観点の自動車用冷凍サイクル装置は、第22観点の自動車用冷凍サイクル装置であって、
前記冷媒は、HFO-1132(E)、HFC-32及びHFO-1234yfを含有し、該三成分の総濃度が、前記冷媒全体に対して99.5質量%以上であり、且つ
該三成分の質量比が、該三成分を各頂点とする三角組成図において、
点P(HFO-1132(E)/HFC-32/HFO-1234yf=45.6/1.0/53.4質量%)、
点B(HFO-1132(E)/HFC-32/HFO-1234yf=35.3/1.0/63.7質量%)、
点Q(HFO-1132(E)/HFC-32/HFO-1234yf=1.0/24.8/74.2質量%)、
点R(HFO-1132(E)/HFC-32/HFO-1234yf=1.0/29.2/69.8質量%)及び
点S(HFO-1132(E)/HFC-32/HFO-1234yf=6.5/29.2/64.3質量%)、
の5点を通る図形で囲まれた領域の範囲内にある。
第26観点の自動車用冷凍サイクル装置は、第23観点~第25観点のいずれかの自動車用冷凍サイクル装置であって、前記冷媒は、HFO-1132(E)、HFC-32及びHFO-1234yfのみからなる。
第27観点の自動車用冷凍サイクル装置は、冷媒回路と、その冷媒回路に封入された冷媒と、を備える。冷媒回路は、圧縮機と、放熱器と、減圧部と、吸熱器とを有する。冷媒は、少なくともHFO-1132(E)、HFO-1123及びHFO-1234yfを含む。
第28観点の自動車用冷凍サイクル装置は、第27観点の自動車用冷凍サイクル装置であって、
前記冷媒は、HFO-1132(E)、HFO-1123及びHFO-1234yfを含有し、該三成分の総濃度が、前記冷媒全体に対して99.5質量%以上であり、且つ
該三成分の質量比が、該三成分を各頂点とする三角組成図において、
点A(HFO-1132(E)/HFO-1123/HFO-1234yf=42.5/1.0/56.5質量%)、
点B(HFO-1132(E)/HFO-1123/HFO-1234yf=27.1/1.0/71.9質量%)、
点C(HFO-1132(E)/HFO-1123/HFO-1234yf=1.0/30.4/68.6質量%)、
点D(HFO-1132(E)/HFO-1123/HFO-1234yf=1.0/57.0/42.0質量%)及び
点E(HFO-1132(E)/HFO-1123/HFO-1234yf=42.5/24.1/33.4質量%)
の5点を通る図形で囲まれた領域の範囲内にある。
第29観点の自動車用冷凍サイクル装置は、第27観点の自動車用冷凍サイクル装置であって、
前記冷媒は、HFO-1132(E)、HFO-1123及びHFO-1234yfを含有し、該三成分の総濃度が、前記冷媒全体に対して99.5質量%以上であり、且つ
該三成分の質量比が、該三成分を各頂点とする三角組成図において、
点A(HFO-1132(E)/HFO-1123/HFO-1234yf=42.5/1.0/56.5質量%)、
点B(HFO-1132(E)/HFO-1123/HFO-1234yf=27.1/1.0/71.9質量%)、
点C(HFO-1132(E)/HFO-1123/HFO-1234yf=1.0/30.4/68.6質量%)、
点F(HFO-1132(E)/HFO-1123/HFO-1234yf=1.0/52.2/46.8質量%)及び
点G(HFO-1132(E)/HFO-1123/HFO-1234yf=42.5/18.9/38.6質量%)
の5点を通る図形で囲まれた領域の範囲内にある。
第30観点の自動車用冷凍サイクル装置は、第28観点又は第29観点の自動車用冷凍サイクル装置であって、
前記冷媒は、HFO-1132(E)、HFO-1123及びHFO-1234yfを含有し、該三成分の総濃度が、前記冷媒全体に対して99.5質量%以上であり、且つ
該三成分の質量比が、該三成分を各頂点とする三角組成図において、
点A(HFO-1132(E)/HFO-1123/HFO-1234yf=42.5/1.0/56.5質量%)、
点B(HFO-1132(E)/HFO-1123/HFO-1234yf=27.1/1.0/71.9質量%)、
点C(HFO-1132(E)/HFO-1123/HFO-1234yf=1.0/30.4/68.6質量%)、
点H(HFO-1132(E)/HFO-1123/HFO-1234yf=1.0/35.2/63.8質量%)、
点I(HFO-1132(E)/HFO-1123/HFO-1234yf=27.4/29.8/42.8質量%)及び
点G(HFO-1132(E)/HFO-1123/HFO-1234yf=42.5/18.9/38.6質量%)
の6点を通る図形で囲まれた領域の範囲内にある。
第31観点の自動車用冷凍サイクル装置は、第28観点~第30観点のいずれかの自動車用冷凍サイクル装置であって、前記冷媒は、HFO-1132(E)、HFO-1123及びHFO-1234yfのみからなる。
第32観点の自動車用冷凍サイクル装置は、冷媒回路と、その冷媒回路に封入された冷媒と、を備える。冷媒回路は、圧縮機と、放熱器と、減圧部と、吸熱器とを有する。冷媒は、少なくともHFO-1132(E)及びHFO-1234yfを含む。
第33観点の自動車用冷凍サイクル装置は、第32観点の自動車用冷凍サイクル装置であって、
前記冷媒は、
HFO-1132(E)及びHFO-1234yfの全質量に対して、
HFO-1132(E)の含有割合が35.0~65.0質量%であり、
HFO-1234yfの含有割合が65.0~35.0質量%である。
第34観点の自動車用冷凍サイクル装置は、第32観点の自動車用冷凍サイクル装置であって、
前記冷媒は、HFO-1132(E)及びHFO-1234yfの全質量に対して、
HFO-1132(E)の含有割合が41.3~53.5質量%であり、
HFO-1234yfの含有割合が58.7~46.5質量%である。
第35観点の自動車用冷凍サイクル装置は、第33観点又は第34観点の自動車用冷凍サイクル装置であって、前記冷媒は、HFO-1132(E)及びHFO-1234yfのみからなる。
第36観点の自動車用冷凍サイクル装置は、第32観点の自動車用冷凍サイクル装置であって、
前記冷媒は、
HFO-1132(E)及びHFO-1234yfの全質量に対して、
HFO-1132(E)の含有割合が40.5~49.2質量%であり、
HFO-1234yfの含有割合が59.5~50.8質量%である。
第37観点の自動車用冷凍サイクル装置は、第36観点の自動車用冷凍サイクル装置であって、前記冷媒は、HFO-1132(E)及びHFO-1234yfのみからなる。
第38観点の自動車用冷凍サイクル装置は、第32観点の自動車用冷凍サイクル装置であって、前記冷媒は、HFO-1132(E)及びHFO-1234yfを含有し、HFO-1132(E)及びHFO-1234yfの全質量に対して、
HFO-1132(E)の含有割合が31.1~39.8質量%であり、
HFO-1234yfの含有割合が68.9~60.2質量%である。
第39観点の自動車用冷凍サイクル装置は、第32観点の自動車用冷凍サイクル装置であって、前記冷媒は、HFO-1132(E)及びHFO-1234yfを含有し、前記冷媒は、HFO-1132(E)及びHFO-1234yfの全質量に対して、
HFO-1132(E)の含有割合が31.1~37.9質量%であり、
HFO-1234yfの含有割合が68.9~62.1質量%である。
第40観点の自動車用冷凍サイクル装置は、第38観点又は第39観点の自動車用冷凍サイクル装置であって、前記冷媒は、HFO-1132(E)及びHFO-1234yfのみからなる。
第41観点の自動車用冷凍サイクル装置は、第32観点の自動車用冷凍サイクル装置であって、前記冷媒が、HFO-1132(E)及びHFO-1234yfを含有し、HFO-1132(E)及びHFO-1234yfの全質量に対して、
HFO-1132(E)の含有割合が21.0~28.4質量%であり、
HFO-1234yfの含有割合が79.0~71.6質量%である。
第42観点の自動車用冷凍サイクル装置は、第41観点の自動車用冷凍サイクル装置であって、前記冷媒が、HFO-1132(E)及びHFO-1234yfのみからなる。
第43観点の自動車用冷凍サイクル装置は、第32観点の自動車用冷凍サイクル装置であって、前記冷媒が、HFO-1132(E)及びHFO-1234yfを含有し、HFO-1132(E)及びHFO-1234yfの全質量に対して、
HFO-1132(E)の含有割合が12.1~72.0質量%であり、
HFO-1234yfの含有割合が87.9~28.0質量%である。
第44観点の自動車用冷凍サイクル装置は、冷媒回路と、その冷媒回路に封入された冷媒と、を備える。冷媒回路は、圧縮機と、放熱器と、減圧部と、吸熱器とを有する。冷媒は、少なくともHFC-32、HFO-1234yf、並びに、1,1-ジフルオロエチレン(HFO-1132a)及びテトラフルオロエチレン(FO-1114)の少なくとも一種を含む。
第45観点の自動車用冷凍サイクル装置は、第44観点の自動車用冷凍サイクル装置であって、前記冷媒は、HFO-1132aを含有する。
第46観点の自動車用冷凍サイクル装置は、第44観点の自動車用冷凍サイクル装置であって、
前記冷媒は、HFC-32、HFO-1234yf及びHFO-1132aの合計量を100質量%として、15.0~24.0質量%のHFC-32、及び1.0~7.0質量%のHFO-1132a、を含有する。
第47観点の自動車用冷凍サイクル装置は、第44観点の自動車用冷凍サイクル装置であって、前記冷媒は、HFC-32、HFO-1234yf及びHFO-1132aの合計量を100質量%として、19.5~23.5質量%のHFC-32、及び3.1~3.7質量%のHFO-1132aを含有する。
第48観点の自動車用冷凍サイクル装置は、第44観点の自動車用冷凍サイクル装置であって、前記冷媒が、HFC-32、HFO-1234yf及びHFO-1132aを含み、前記冷媒において、HFC-32、HFO-1132a及びHFO-1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFC-32、HFO-1132a及びHFO-1234yfの総和が100質量%となる3成分組成図において、座標(x, y, z)が、
点R(21.80, 3.95, 74.25)、
点S(21.80, 3.05, 75.15)、及び
点T(20.95, 75.30, 3.75)、
の3点をそれぞれ結ぶ線分RS、ST及びTRで囲まれる三角形の範囲内又は前記線分上にある。
第49観点の自動車用冷凍サイクル装置は、第44観点の自動車用冷凍サイクル装置であって、
前記冷媒は、
HFC-32、HFO-1234yf及びHFO-1132aを含み、
前記冷媒において、HFC-32、HFO-1132a及びHFO-1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFC-32、HFO-1132a及びHFO-1234yfの総和が100質量%となる3成分組成図において、座標(x, y, z)が、
点L(74.0, 19.9, 6.1)、
点F(49.1, 25.9, 25.0)、
点G(0.0, 48.6, 51.4)、
点O(0.0, 0.0, 100)及び
点B(73.9, 0.0, 26.1)、
の5点をそれぞれ結ぶ線分LF、FG、GO、OB及びBLで囲まれる図形の範囲内又は前記線分上(但し、線分GO及びOB上を除く)にあり、
前記線分LFは、
座標(y=0.0021x2-0.4975x+45.264)で表わされ、
前記線分FGは、
座標(y=0.0031x2-0.6144x+48.6)で表わされ、且つ、
前記線分GO、OB及びBLが直線である。
第50観点の自動車用冷凍サイクル装置は、第44観点の自動車用冷凍サイクル装置であって、
前記冷媒は、
HFC-32、HFO-1234yf及びHFO-1132aを含み、
前記冷媒において、HFC-32、HFO-1132a及びHFO-1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFC-32、HFO-1132a及びHFO-1234yfの総和が100質量%となる3成分組成図において、座標(x, y, z)が、
点P(59.1, 23.2, 17.7)、
点F(49.1, 25.9, 25.0)、
点G(0.0, 48.6, 51.4)、
点O(0.0, 0.0, 100)及び
点B’(59.0, 0.0, 40.2)、
の5点をそれぞれ結ぶ線分PF、FG、GO、OB’及びB’Pで囲まれる図形の範囲内又は前記線分上(但し、線分GO及びOB’上を除く)にあり、
前記線分PFは、
座標(y=0.0021x2-0.4975x+45.264)で表わされ、
前記線分FGは、
座標(y=0.0031x2-0.6144x+48.6)で表わされ、且つ、
前記線分GO、OB’及びB’Pが直線である。
第51観点の自動車用冷凍サイクル装置は、第44観点の自動車用冷凍サイクル装置であって、
前記冷媒は、
HFC-32、HFO-1234yf及びHFO-1132aを含み、
前記冷媒において、HFC-32、HFO-1132a及びHFO-1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFC-32、HFO-1132a及びHFO-1234yfの総和が100質量%となる3成分組成図において、座標(x, y, z)が、
点M(74.0, 19.5, 6.5)、
点I(62.9, 15.5, 21.6)、
点J(33.5, 0.0, 66.5)、及び
点B(73.9, 0.0, 26.1)、
の4点をそれぞれ結ぶ線分MI、IJ、JB及びBMで囲まれる図形の範囲内又は前記線分上(但し、線分JB上を除く)にあり、
前記線分MIは、
座標(y=0.006x2+1.1837x-35.264)で表わされ、
前記線分IJは、
座標(y=0.0083x2-0.2719x-0.1953)で表わされ、且つ、
前記線分JB及びBMが直線である。
第52観点の自動車用冷凍サイクル装置は、第44観点の自動車用冷凍サイクル装置であって、
前記冷媒は、
HFC-32、HFO-1234yf及びHFO-1132aを含み、
前記冷媒において、HFC-32、HFO-1132a及びHFO-1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFC-32、HFO-1132a及びHFO-1234yfの総和が100質量%となる3成分組成図において、座標(x, y, z)が、
点Q(59.1, 12.7, 28.2)、
点J(33.5, 0.0, 66.5)、及び
点B’(59.0, 0.0, 40.2)、
の3点をそれぞれ結ぶ線分QJ、JB’及びB’Qで囲まれる図形の範囲内又は前記線分上(但し、線分JB’上を除く)にあり、
前記線分QJは、
座標(y=0.0083x2-0.2719x-0.1953)で表わされ、且つ、
前記線分JB’及びB’Qが直線である。
第53観点の自動車用冷凍サイクル装置は、第44観点の自動車用冷凍サイクル装置であって、前記冷媒が、HFC-32、HFO-1234yf及びHFO-1132aを含み、前記冷媒において、HFC-32、HFO-1132a及びHFO-1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFC-32、HFO-1132a及びHFO-1234yfの総和が100質量%となる3成分組成図において、座標(x, y, z)が、
点Q(59.1, 12.7, 28.2)、
点U(59.0, 5.5, 35.5)、及び
点V(52.5, 8.4, 39.1)、
の3点をそれぞれ結ぶ線分QU、UV及びVQで囲まれる図形の範囲内又は前記線分上にあり、
前記線分VQは、
座標(y=0.0083x2-0.2719x-0.1953)で表わされ、且つ、
前記線分UVは、
座標(y=0.0026x2-0.7385x+39.946)で表わされ、
前記線分QUが直線である。
第54観点の自動車用冷凍サイクル装置は、冷媒回路と、その冷媒回路に封入された冷媒と、を備える。冷媒回路は、圧縮機と、放熱器と、減圧部と、吸熱器とを有する。冷媒は、少なくともジフルオロメタン(R32)、二酸化炭素(CO2)、ペンタフルオロエタン(R125)、1,1,1,2-テトラフルオロエタン(R134a)、及び2,3,3,3-テトラフルオロプロペン(R1234yf)を含む。
第55観点の自動車用冷凍サイクル装置は、第54観点の自動車用冷凍サイクル装置であって、
前記冷媒は、
ジフルオロメタン(R32)、二酸化炭素(CO2)、ペンタフルオロエタン(R125)、1,1,1,2-テトラフルオロエタン(R134a)、及び2,3,3,3-テトラフルオロプロペン(R1234yf)、
を含み、
R32、CO2、R125、R134a及びR1234yfの総和を基準とする、R32の質量%をa、CO2の質量%をb、R125の質量%をc1、R134aの質量%をc2、R125及びR134aの合計の質量%をc、R1234yfの質量%をxとし、c1/(c1+c2)をrとする場合、
R32が(100-x)質量%の点と、CO2が(100-x)質量%の点と、R125及びR134aの合計が(100-x)質量%の点とを頂点とする3成分組成図において、座標(a,b,c)が、
1-1-1) 43.8≧x≧41、かつ0.5≧r≧0.25であるとき、
点A(-0.6902x+43.307, 100-a-x, 0.0)、
点Or=0.25~0.5((-2.2857x+87.314)r2+(1.7143x-55.886)r+(-0.9643x+55.336), (2.2857x-112.91)r2+(-1.7143x+104.69)r+(-0.25x+11.05), 100-a-b-x)、
点Dr=0.25~0.5(0.0, -28.8r2+54.0r+(-x+49.9), 100-b-x)及び
点Q(0.0, 100-x, 0.0)
を結ぶ線分で囲まれる四角形の範囲内又は該線分上にあるか(ただし、線分Dr=0.25~0.5Q及びQA上の点は除く)、又は
1-1-2) 43.8≧x≧41、かつ1.0≧r≧0.5であるとき、
点A(-0.6902x+43.307, 100-a-c, 0.0)、
点Or=0.5~1.0((-0.2857x+8.5143)r2+(0.5x-10.9)+(-0.8571x+52.543), (-0.2857x+4.5143)r2+(0.5x+0.9)r+(-0.7143x+33.586), 100-a-b-x)、
点Dr=0.5~1.0(0.0, (-0.5714x+12.229)r2+(0.8571x-0.3429)r+(-1.2857x+66.814), 100-b-x)及び
点Q(0.0, 100-x, 0.0)
を結ぶ線分で囲まれる四角形の範囲内又は該線分上にあるか(ただし、線分Dr=0.5~1.0Q及びQA上の点は除く)、又は
1-2-1) 46.5≧x≧43.8、かつ0.5≧r≧0.25であるとき、
点A(-0.6902x+43.307, 100-a-x, 0.0)、
点Or=0.25~0.5((1.1852x-64.711)r2+(-0.7407x+51.644)r+(-0.5556x+37.433), (-2.3704x+91.022)r2+(2.0741x-61.244)r+(-0.963x+42.278), 100-a-b-x)、
点Dr=0.25~0.5(0.0, -28.8r2+54.0r+(-x+49.9), 100-b-x)及び
点Q(0.0, 100-x, 0.0)
を結ぶ線分で囲まれる四角形の範囲内又は該線分上にあるか(ただし、線分Dr=0.25~0.5Q及びQA上の点は除く)、又は
1-2-2) 46.5≧x≧43、かつ1.0≧r≧0.5であるとき、
点A(-0.6902x+43.307, 100-a-x, 0.0)、
点Or=0.5~1.0((0.2963x-16.978)r2+(-0.3704x+27.222)r+(-0.5185x+37.711), -8.0r2+22.8r+(-0.5185x+25.011), 100-a-b-x)、
点Dr=0.5~1.0(0.0, -12.8r2+37.2r+(-x+54.3), 100-b-x)及び
点Q(0.0, 100-x, 0.0)
を結ぶ線分で囲まれる四角形の範囲内又は該線分上にあるか(ただし、線分Dr=0.5~1.0Q及びQA上の点は除く)、
1-3-1) 50≧x≧46.5、かつ0.5≧r≧0.25であるとき、
点A(-0.6902x+43.307, 100-a-x, 0.0)、
点Or=0.25~0.5(-9.6r2+17.2r+(-0.6571x+42.157), -19.2r2+(0.2286x+24.571)r+(-0.6286x+26.729), 100-a-b-x)、
点Dr=0.25~0.5(0.0, (0.9143x-71.314)r2+(-0.5714x+80.571)+(-0.9143x+45.914), 100-b-x)及び
点Q(0.0, 100-x, 0.0)
を結ぶ線分で囲まれる四角形の範囲内又は該線分上にあるか(ただし、線分Dr=0.25~0.5Q及びQA上の点は除く)、又は
1-3-2) 50≧x≧46.5、かつ1.0≧r≧0.5であるとき、
点A(-0.6902x+43.307, 100-a-x, 0.0)、
点Or=0.5~1.0((-0.2286x+7.4286)r2+(0.4x-8.6)r+(-0.8x+50.8), (0.2286x-18.629)r2+(-0.2857x+36.086)r+(-0.4286x+20.829), 100-a-b-x)、
点Dr=0.5~1.0(0.0, (0.2286x-23.429)r2+(-0.4x+55.8)r+(-0.8286x+46.329), 100-b-x)及び
点Q(0.0, 100-x, 0.0)
を結ぶ線分で囲まれる四角形の範囲内又は該線分上にある(ただし、線分Dr=0.5~1.0Q及びQA上の点は除く)。
第56観点の自動車用冷凍サイクル装置は、第54観点の自動車用冷凍サイクル装置であって、
前記冷媒は、
R32、CO2、R125、R134a及びR1234yf
を含み、
R32、CO2、R125、R134a及びR1234yfの総和を基準とする、R32の質量%をa、CO2の質量%をb、R125の質量%をc1、R134aの質量%をc2、R125及びR134aの合計の質量%をc、R1234yfの質量%をxとし、c1/(c1+c2)をrとする場合、
R32が(100-x)質量%の点と、CO2が(100-x)質量%の点と、R125及びR134aの合計が(100-x)質量%の点とを頂点とする3成分組成図において、座標(a,b,c)が、
2-1-1)43.8≧x≧41、かつ0.5≧r≧0.25であるとき、
点Fr=0.25~0.5(0.0, (-1.1429x+37.257)r2+(1.2857x-38.714)r-(-1.7143x+106.89), 100-b-x)、
点Pr=0.25~0.5((-1.1429x+34.057)r2+(1.0x-21.0)r+(-0.4643x+27.636), (2.2857x-119.31)r2+(-2.0x+122.0)r+(-0.3929x+19.907), 100-a-b-x)及び
点Dr=0.25~0.5(0.0, -28.8r2+54.0r+(-x+49.9), 100-b-x)
を結ぶ線分で囲まれる三角形の範囲内又は該線分上にあるか(ただし、線分Dr=0.25~0.5Fr=0.25~0.5上の点は除く)、又は
2-1-2)43.8≧x≧41、かつ1.0≧r≧0.5であるとき、
点Fr=0.5~1.0(0.0, (3.7143x-159.49)r2+(-5.0714x+222.53)r+(0.25x+25.45), 100-b-x)、
点Pr=0.5~1.0((3.4286x-138.17)r2+(-5.4286x+203.57)+(1.6071x-41.593), (-2.8571x+106.74)r2+(4.5714x-143.63)r+(-2.3929x+96.027), 100-a-b-x)及び
点Dr=0.5~1.0(0.0, (-0.5714x+12.229)r2+(0.8571x-0.3429)r+(-1.2857x+66.814), 100-b-x)
を結ぶ線分で囲まれる三角形の範囲内又は該線分上にあるか(ただし、線分Dr=0.5~1.0Fr=0.5~1.0上の点は除く)、又は
2-2-1)46.5≧x≧43、かつ0.5≧r≧0.25であるとき、
点Fr=0.25~0.5(0.0, (9.4815x-428.09)r2+(-7.1111x+329.07)r+(-0.2593x+43.156), 100-b-x)、
点Pr=0.25~0.5((-8.2963x+347.38)r2+(4.8889x-191.33)r+(-0.963x+49.478), (7.1111x-330.67)r2+(-4.1481x+216.09)r+(-0.2593x+14.056), 100-a-b-x)及び
点Dr=0.25~0.5(0.0, -28.8r2+54.0r+(-x+49.9), 100-b-x)
を結ぶ線分で囲まれる三角形の範囲内又は該線分上にあるか(ただし、線分Dr=0.25~0.5Fr=0.25~0.5上の点は除く)、又は
2-2-2)46.5≧x≧43、かつ1.0≧r≧0.5であるとき、
点Fr=0.5~1.0(0.0, (-4.7407x+210.84)r2+(6.963x-304.58)r+(-3.7407x+200.24), 100-b-x)、
点Pr=0.5~1.0((0.2963x-0.9778)r2+(0.2222x-43.933)r+(-0.7778x+62.867), (-0.2963x-5.4222)r2+(-0.0741x+59.844)r+(-0.4444x+10.867), 100-a-b-x)及び
点Dr=0.5~1.0(0.0, -12.8r2+37.2r+(-x+54.3), 100-b-x)
を結ぶ線分で囲まれる三角形の範囲内又は該線分上にあるか(ただし、線分Dr=0.5~1.0Fr=0.5~1.0上の点は除く)、又は
2-3-1)50≧x≧46.5、かつ0.37≧r≧0.25であるとき、
点Fr=0.25~0.37(0.0, (-35.714x+1744.0)r2+(23.333x-1128.3)r+(-5.144x+276.32), 100-b-x)、
点Pr=0.25~0.37((11.905x-595.24)r2+(-7.6189x+392.61)r+(0.9322x-39.027), (-27.778x+1305.6)r2+(17.46x-796.35)r+(-3.5147x+166.48),100-a-b-x)及び
点Dr=0.25~0.37(0.0, (0.9143x-71.314)r2+(-0.5714x+80.571)+(-0.9143x+45.914), 100-b-x)
を結ぶ線分で囲まれる三角形の範囲内又は該線分上にあるか(ただし、線分Dr=0.25~0.37Fr=0.25~0.37上の点は除く)、又は
2-3-2)50≧x≧46.5、かつ1.0≧r≧0.5であるとき、
点Fr=0.5~1.0(0.0, (2.2857x-115.89)r2+(-3.0857x+162.69)r+(-0.3714x+43.571), 100-b-x)、
点Pr=0.5~1.0((-3.2x+161.6)r2+(4.4571x-240.86)r+(-2.0857x+123.69), (2.5143x-136.11)r2+(-3.3714x+213.17)r+(0.5429x-35.043), 100-a-b-x)及び
点Dr=0.5~1.0(0.0, (0.2286x-23.429)r2+(-0.4x+55.8)r+(-0.8286x+46.329), 100-b-x)
を結ぶ線分で囲まれる三角形の範囲内又は該線分上にある(ただし、線分Dr=0.5~1.0Fr=0.5~1.0上の点は除く)。
第57観点の自動車用冷凍サイクル装置は、第55観点又は第56観点の自動車用冷凍サイクル装置であって、前記冷媒は、R32、CO2、R125、R134a及びR1234yfの合計を、前記冷媒全体に対して99.5質量%以上含有する。
第58観点の自動車用冷凍サイクル装置は、冷媒回路と、その冷媒回路に封入された冷媒と、を備える。冷媒回路は、圧縮機と、放熱器と、減圧部と、吸熱器とを有する。冷媒は、少なくともシス-1,2-ジフルオロエチレン(HFO-1132(Z))及び2,3,3,3-テトラフルオロプロペン(HFO-1234yf)を含む。
第59観点の自動車用冷凍サイクル装置は、第58観点の自動車用冷凍サイクル装置であって、前記冷媒が、シス-1,2-ジフルオロエチレン(HFO-1132(Z))及び2,3,3,3-テトラフルオロプロペン(HFO-1234yf)を含有し、
HFO-1132(Z)及びHFO-1234yfの全質量に対して、
HFO-1132(Z)の含有割合が53.0~59.5質量%であり、
HFO-1234yfの含有割合が47.0~40.5質量%である。
第60観点の自動車用冷凍サイクル装置は、第59観点の自動車用冷凍サイクル装置であって、前記冷媒が、HFO-1132(Z)及びHFO-1234yfのみからなる。
第61観点の自動車用冷凍サイクル装置は、第58観点の自動車用冷凍サイクル装置であって、
前記冷媒が、シス-1,2-ジフルオロエチレン(HFO-1132(Z))及び2,3,3,3-テトラフルオロプロペン(HFO-1234yf)を含有し、
HFO-1132(Z)及びHFO-1234yfの全質量に対して、
HFO-1132(Z)の含有割合が41.0~49.2質量%であり、
HFO-1234yfの含有割合が59.0~50.8質量%である。
第62観点の自動車用冷凍サイクル装置は、第61観点の自動車用冷凍サイクル装置であって、前記冷媒が、HFO-1132(Z)及びHFO-1234yfのみからなる。
第63観点の自動車用冷凍サイクル装置は、第59観点から第62観点のいずれかひとつの自動車用冷凍サイクル装置であって、R134a、R22、R12、R404A、R407A、R407C、R407F、R407H、R410A、R413A、R417A、R422A、R422B、R422C、R422D、R423A、R424A、R426A、R427A、R428A、R430A、R434A、R437A、R438A、R448A、R449A、R449B、R449C、R450A、R452A、R452B、R454A、R452B、R454C、R455A、R465A、R502、R507、R513A、R513B、R515A又はR515Bの代替冷媒として用いられる。
第64観点の自動車用冷凍サイクル装置は、第58観点から第63観点の自動車用冷凍サイクル装置であって、水、トレーサー、紫外線蛍光染料、安定剤及び重合禁止剤からなる群より選択される少なくとも1種の物質を含有する。
第65観点の自動車用冷凍サイクル装置は、第58観点から第64観点の自動車用冷凍サイクル装置であって、更に、冷凍機油を含有し、冷凍装置用作動流体として用いられる。
第66観点の自動車用冷凍サイクル装置は、第65観点の自動車用冷凍サイクル装置であって、前記冷凍機油は、ポリアルキレングリコール(PAG)、ポリオールエステル(POE)及びポリビニルエーテル(PVE)からなる群より選択される少なくとも1種のポリマーを含有する。
燃焼性試験に用いた装置の模式図である。 HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図に、点A~M及びO並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図に、点A~C、B’及びO並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、HFO-1123及びR1234yfの総和が95質量%(R32含有割合が5質量%)となる3成分組成図に、点A~C、B’及びO並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、HFO-1123及びR1234yfの総和が90質量%(R32含有割合が10質量%)となる3成分組成図に、点A~C、B’及びO並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、HFO-1123及びR1234yfの総和が85.7質量%(R32含有割合が14.3質量%)となる3成分組成図に、点A~C、B’及びO並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、HFO-1123及びR1234yfの総和が83.5質量%(R32含有割合が16.5質量%)となる3成分組成図に、点A~C、B’及びO並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、HFO-1123及びR1234yfの総和が80.8質量%(R32含有割合が19.2質量%)となる3成分組成図に、点A~C、B’及びO並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、HFO-1123及びR1234yfの総和が78.2質量%(R32含有割合が21.8質量%)となる3成分組成図に、点A~C、B’及びO並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図に、点A~K及びO~R並びにそれらを互いに結ぶ線分を示した図である。 HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図に、点A~D、A’~D’及びO並びにそれらを互いに結ぶ線分を示した図である。 R32、HFO-1132(E)及びR1234yfの総和が100質量%となる3成分組成図に、本開示の冷媒を規定する点及び線分を示した図である。 R32、HFO-1132(E)及びR1234yfの総和が99.4質量%(CO2含有割合が0.6質量%)となる3成分組成図に、本開示の冷媒を規定する点及び線分を示した図である。 R32、HFO-1132(E)及びR1234yfの総和が98.8質量%(CO2含有割合が1.2質量%)となる3成分組成図に、本開示の冷媒を規定する点及び線分を示した図である。 R32、HFO-1132(E)及びR1234yfの総和が98.7質量%(CO2含有割合が1.3質量%)となる3成分組成図に、本開示の冷媒を規定する点及び線分を示した図である。 R32、HFO-1132(E)及びR1234yfの総和が97.5質量%(CO2含有割合が2.5質量%)となる3成分組成図に、本開示の冷媒を規定する点及び線分を示した図である。 R32、HFO-1132(E)及びR1234yfの総和が96質量%(CO2含有割合が4質量%)となる3成分組成図に、本開示の冷媒を規定する点及び線分を示した図である。 R32、HFO-1132(E)及びR1234yfの総和が94.5質量%(CO2含有割合が5.5質量%)となる3成分組成図に、本開示の冷媒を規定する点及び線分を示した図である。 R32、HFO-1132(E)及びR1234yfの総和が93質量%(CO2含有割合が7質量%)となる3成分組成図に、本開示の冷媒を規定する点及び線分を示した図である。 燃焼性(可燃又は不燃)の判別をするための実験装置の模式図である。 トランス-1,2-ジフルオロエチレン(HFO-1132(E))、ジフルオロメタン(HFC-32)及び2,3,3,3-テトラフルオロプロペン(HFO-1234yf)の三角組成図における、冷媒2A1に含有されるHFO-1132(E)、HFC-32及びHFO-1234yfの質量比(点A、B、C及びDの4点を通る図形で囲まれた領域、及び点A、B、E及びFの4点を通る図形で囲まれた領域)を示す図である。 HFO-1132(E)、HFC-32及びHFO-1234yfの三角組成図における、冷媒2A2に含有されるHFO-1132(E)、HFC-32及びHFO-1234yfの質量比(点P、B、Q、R及びSの5点を通る図形で囲まれた領域)を示す図である。 HFO-1132(E)、HFO-1123及びHFO-1234yfの三角組成図における、冷媒2Bに含有されるHFO-1132(E)、HFO-1123及びHFO-1234yfの質量比(点A、B、C、D及びEの5点を通る図形で囲まれた領域、点A、B、C、F及びGの5点を通る図形で囲まれた領域、並びに点A、B、C、H、I及びGの6点を通る図形で囲まれた領域)を示す図である。 本開示の第1形態及び第2形態の冷媒2Dの組成を説明するための3成分組成図である。図1の拡大図中、第1形態の冷媒2Dの最大組成はXで示される四角形の範囲内又は前記四角形の線分上である。図1の拡大図中、第1形態の好ましい冷媒の組成はYで示される四角形の範囲内又は前記四角形の線分上である。また、図1の拡大図中、第2形態の冷媒2Dの組成は線分RS、ST及びTRで囲まれる三角形の範囲内又は前記線分上である。 冷媒2Dの第3形態から第7形態の冷媒の組成を説明するための3成分組成図である。 燃焼性試験に用いた装置の模式図である。 対向流型の熱交換器の一例を示す概略図である。 対向流型の熱交換器の一例を示す概略図であり、(a)は平面図、(b)は斜視図である。 本開示の冷凍機における冷媒回路の一態様を示す概略図である。 図2Hの冷媒回路の変形例を示す概略図である。 図2Hの冷媒回路の変形例を示す概略図である。 図2Hの冷媒回路の変形例を示す概略図である。 オフサイクルデフロストを説明する概略図である。 加熱デフロストを説明する概略図である。 逆サイクルホットガスデフロストを説明する概略図である。 正サイクルホットガスデフロストを説明する概略図である。 冷媒2Eに関し、R32が(100-x)質量%の点と、CO2が(100-x)質量%の点と、R125及びR134aの合計が(100-x)質量%の点とを頂点とする3成分組成図において、表206~209に示されるASHRAE不燃限界点と点Fr=0.25と点Pr=0.25とを結んだ直線Fr=0.25Pr=0.25を示した図である。 冷媒2Eに関し、R32が(100-x)質量%の点と、CO2が(100-x)質量%の点と、R125及びR134aの合計が(100-x)質量%の点とを頂点とする3成分組成図において、表206~209に示されるASHRAE不燃限界点と点Fr=0.375と点Pr=0.375とを結んだ直線Fr=0.375Pr=0.375を示した図である。 冷媒2Eに関し、R32が(100-x)質量%の点と、CO2が(100-x)質量%の点と、R125及びR134aの合計が(100-x)質量%の点とを頂点とする3成分組成図において、表206~209に示されるASHRAE不燃限界点と点Fr=0.5と点Pr=0.5とを結んだ直線Fr=0.5Pr=0.5を示した図である。 冷媒2Eに関し、R32が(100-x)質量%の点と、CO2が(100-x)質量%の点と、R125及びR134aの合計が(100-x)質量%の点とを頂点とする3成分組成図において、表206~209に示されるASHRAE不燃限界点と点Fr=0.75と点Pr=0.75とを結んだ直線Fr=0.75Pr=0.75を示した図である。 冷媒2Eに関し、R32が(100-x)質量%の点と、CO2が(100-x)質量%の点と、R125及びR134aの合計が(100-x)質量%の点とを頂点とする3成分組成図において、表206~209に示されるASHRAE不燃限界点と点Fr=1.0と点Pr=1.0とを結んだ直線Fr=1.0Pr=1.0を示した図である。 冷媒2Eに関し、R1234yfの濃度が41質量%のときにおける、点A、Or=0.25~1、Dr=0.25~1、Cr=0.25~1、Fr=0.25~1、Pr=0.25~1及びQを示す三角図である。 冷媒2Eに関し、R1234yfの濃度が43.8質量%のときにおける、点A、Or=0.25~1、Dr=0.25~1、Cr=0.25~1、Fr=0.25~1、Pr=0.25~1及びQを示す三角図である。 冷媒2Eに関し、R1234yfの濃度が46.5質量%のときにおける、点A、Or=0.25~1、Dr=0.25~1、Cr=0.25~1、Fr=0.25~1、Pr=0.25~1及びQを示す三角図である。 冷媒2Eに関し、R1234yfの濃度が50.0質量%のときにおける、点A、Or=0.25~1、Dr=0.25~1、Cr=0.25~1、Pr=0.25~1及びQを示す三角図である。 冷媒2Eに関し、R1234yfの濃度が46.5質量%のときにおける、点Dr=0.25~1、Cr=0.25~1、Fr=0.25~0.37、Fr=0.5~1、Pr=0.25~0.37、Pr=0.50~1及びQを示す三角図である。 冷媒2Eに関し、R1234yfの濃度が50.0質量%のときにおける、点Dr=0.25~1、Cr=0.25~1、Fr=0.25~0.37、Fr=0.37~1、Pr=0.25~0.37、Pr=0.37~1及びQを示す三角図である。 本開示の第1実施形態に係る自動車用空調装置の概略構成図。 暖房モードにおける冷媒の流通経路を示した自動車用空調装置の概略構成図。 冷房モードにおける冷媒の流通経路を示した自動車用空調装置の概略構成図。 制御装置のブロック図。 第1実施形態の変形例に係る自動車用空調装置の概略構成図。 本開示の第2実施形態に係る自動車用空調装置の概略構成図。 冷房モードにおける冷媒の流通経路を示した自動車用空調装置の概略構成図。 暖房モードにおける冷媒の流通経路を示した自動車用空調装置の概略構成図。 制御装置のブロック図。 第2実施形態の変形例に係る自動車用空調装置の概略構成図。
(1)
(1-1)用語の定義
本明細書において用語「冷媒」には、ISO817(国際標準化機構)で定められた、冷媒の種類を表すRで始まる冷媒番号(ASHRAE番号)が付された化合物が少なくとも含まれ、さらに冷媒番号が未だ付されていないとしても、それらと同等の冷媒としての特性を有するものが含まれる。冷媒は、化合物の構造の面で、「フルオロカーボン系化合物」と「非フルオロカーボン系化合物」とに大別される。「フルオロカーボン系化合物」には、クロロフルオロカーボン(CFC)、ハイドロクロロフルオロカーボン(HCFC)及びハイドロフルオロカーボン(HFC)が含まれる。「非フルオロカーボン系化合物」としては、プロパン(R290)、プロピレン(R1270)、ブタン(R600)、イソブタン(R600a)、二酸化炭素(R744)及びアンモニア(R717)等が挙げられる。
本明細書において、用語「冷媒を含む組成物」には、(1)冷媒そのもの(冷媒の混合物を含む)と、(2)その他の成分をさらに含み、少なくとも冷凍機油と混合することにより冷凍機用作動流体を得るために用いることのできる組成物と、(3)冷凍機油を含有する冷凍機用作動流体とが少なくとも含まれる。本明細書においては、これら三態様のうち、(2)の組成物のことを、冷媒そのもの(冷媒の混合物を含む)と区別して「冷媒組成物」と表記する。また、(3)の冷凍機用作動流体のことを「冷媒組成物」と区別して「冷凍機油含有作動流体」と表記する。
本明細書において、用語「代替」は、第一の冷媒を第二の冷媒で「代替」するという文脈で用いられる場合、第一の類型として、第一の冷媒を使用して運転するために設計された機器において、必要に応じてわずかな部品(冷凍機油、ガスケット、パッキン、膨張弁、ドライヤその他の部品のうち少なくとも一種)の変更及び機器調整のみを経るだけで、第二の冷媒を使用して、最適条件下で運転することができることを意味する。すなわち、この類型は、同一の機器を、冷媒を「代替」して運転することを指す。この類型の「代替」の態様としては、第二の冷媒への置き換えの際に必要とされる変更乃至調整の度合いが小さい順に、「ドロップイン(drop in)代替」、「ニアリー・ドロップイン(nealy drop in)代替」及び「レトロフィット(retrofit)」があり得る。
第二の類型として、第二の冷媒を用いて運転するために設計された機器を、第一の冷媒の既存用途と同一の用途のために、第二の冷媒を搭載して用いることも、用語「代替」に含まれる。この類型は、同一の用途を、冷媒を「代替」して提供することを指す。
本明細書において用語「冷凍機(refrigerator)」とは、物あるいは空間の熱を奪い去ることにより、周囲の外気よりも低い温度にし、かつこの低温を維持する装置全般のことをいう。言い換えれば、冷凍機は温度の低い方から高い方へ熱を移動させるために、外部からエネルギーを得て仕事を行いエネルギー変換する変換装置のことをいう。
本開示において冷媒が「不燃」であるとは、米国ANSI/ASHRAE34-2013規格において冷媒許容濃度のうち最も燃えやすい組成であるWCF(Worst case of formulation for flammability)組成が「クラス1」と判断されることを意味する。
本明細書において冷媒が「弱燃」であるとは、米国ANSI/ASHRAE34-2013規格においてWCF組成が「クラス2」と判断されることを意味する。
本開示において、冷媒が「ASHRAE不燃」であるとは、WCF組成又はWCFF組成がASTM E681-2009〔化学品(蒸気及び気体)の引火性濃度限界の標準試験法〕の測定装置及び測定方法に基づいた試験で不燃と特定できた場合を指し、それぞれ「クラス1 ASHRAE不燃(WCF不燃)」又は「クラス1 ASHRAE不燃(WCFF不燃)」に分類される。なお、WCFF組成(Worst case of fractionation for flammability:最も燃え易い混合組成)は、ANSI/ASHRAE34-2013に基づいた貯蔵、輸送、使用時の漏洩試験を行うことで特定する。
本明細書において冷媒が「微燃」であるとは、米国ANSI/ASHRAE34-2013規格においてWCF組成が「クラス2L」と判断されることを意味する。
本明細書において温度グライド(Temperature Glide)とは、熱サイクルシステムの構成要素内における、本開示の冷媒を含む組成物の相変化過程の開始温度と終了温度との差の絶対値と言い換えることができる。
本明細書において、「車載用空調機器」とは、ガソリン車、ハイブリッド自動車、電気自動車、水素自動車などの自動車で用いられる冷凍装置の一種である。車載用空調機器とは、蒸発器にて液体の冷媒に熱交換を行わせ、蒸発した冷媒ガスを圧縮機が吸い込み、断熱圧縮された冷媒ガスを凝縮器で冷却して液化させ、さらに膨張弁を通過させて断熱膨張させた後、蒸発機に再び液体の冷媒として供給する冷凍サイクルからなる冷凍装置を指す。
本明細書において、「ターボ冷凍機」とは、大型冷凍機の一種である。ターボ冷凍機とは、蒸発器にて液体の冷媒に熱交換を行わせ、蒸発した冷媒ガスを遠心式圧縮機が吸い込み、断熱圧縮された冷媒ガスを凝縮器で冷却して液化させ、さらに膨張弁を通過させて断熱膨張させた後、蒸発機に再び液体の冷媒として供給する冷凍サイクルからなる冷凍装置を指す。なお、上記「大型冷凍機」とは、建物単位での空調を目的とした大型空調機を指す。
本明細書において、「飽和圧力」とは飽和蒸気の圧力を意味する。
本明細書において、「吐出温度」とは圧縮機の吐出口における混合冷媒の温度を意味する。
本明細書において、「蒸発圧力」とは蒸発温度での飽和圧力を意味する。
本明細書において、「臨界温度」とは臨界点における温度を意味し、気体を圧縮してもそれ以下の温度でなければ液体にできない境目の温度を意味する。
本明細書において、GWPは、IPCC(Intergovernmental Panel on Climate Change)第4次報告書の値に基づいた値を意味する。
本明細書において、「質量比」との記載は「組成比」との記載と同義である。
(1-2)冷媒
詳細は後述するが、本開示の冷媒1A、冷媒1B、冷媒1C、冷媒1D、冷媒1E、冷媒2A、冷媒2B、冷媒2C、冷媒2D、及び冷媒2E、のいずれか1つ(「本開示の冷媒」と表記することがある)を冷媒として用いることができる。
(1-3)冷媒組成物
本開示の冷媒組成物は、本開示の冷媒を少なくとも含み、本開示の冷媒と同じ用途のために使用することができる。また、本開示の冷媒組成物は、さらに少なくとも冷凍機油と混合することにより冷凍機用作動流体を得るために用いることができる。
本開示の冷媒組成物は、本開示の冷媒に加え、さらに少なくとも一種のその他の成分を含有する。本開示の冷媒組成物は、必要に応じて、以下のその他の成分のうち少なくとも一種を含有していてもよい。上述の通り、本開示の冷媒組成物を、冷凍機における作動流体として使用するに際しては、通常、少なくとも冷凍機油と混合して用いられる。したがって、本開示の冷媒組成物は、好ましくは冷凍機油を実質的に含まない。具体的には、本開示の冷媒組成物は、冷媒組成物全体に対する冷凍機油の含有量が好ましくは0~1質量%であり、より好ましくは0~0.1質量%である。
(1-3-1) 水
本開示の冷媒組成物は微量の水を含んでもよい。冷媒組成物における含水割合は、冷媒全体に対して、0.1質量%以下とすることが好ましい。冷媒組成物が微量の水分を含むことにより、冷媒中に含まれ得る不飽和のフルオロカーボン系化合物の分子内二重結合が安定化され、また、不飽和のフルオロカーボン系化合物の酸化も起こりにくくなるため、冷媒組成物の安定性が向上する。
(1-3-2)トレーサー
トレーサーは、本開示の冷媒組成物が希釈、汚染、その他何らかの変更があった場合、その変更を追跡できるように検出可能な濃度で本開示の冷媒組成物に添加される。
本開示の冷媒組成物は、トレーサーとして、一種を単独で含有してもよいし、二種以上を含有してもよい。
トレーサーとしては、特に限定されず、一般に用いられるトレーサーの中から適宜選択することができる。
トレーサーとしては、例えば、ハイドロフルオロカーボン、ハイドロクロロフルオロカーボン、クロロフルオロカーボン、ハイドロクロロカーボン、フルオロカーボン、重水素化炭化水素、重水素化ハイドロフルオロカーボン、パーフルオロカーボン、フルオロエーテル、臭素化化合物、ヨウ素化化合物、アルコール、アルデヒド、ケトン、亜酸化窒素(N2O)等が挙げられる。トレーサーとしては、ハイドロフルオロカーボン、ハイドロクロロフルオロカーボン、クロロフルオロカーボン、ハイドロクロロカーボン、フルオロカーボン及びフルオロエーテルが特に好ましい。
トレーサーとしては、以下の化合物が好ましい。
FC-14(テトラフルオロメタン、CF4
HCC-40(クロロメタン、CH3Cl)
HFC-23(トリフルオロメタン、CHF3
HFC-41(フルオロメタン、CH3Cl)
HFC-125(ペンタフルオロエタン、CF3CHF2
HFC-134a(1,1,1,2-テトラフルオロエタン、CF3CH2F)
HFC-134(1,1,2,2-テトラフルオロエタン、CHF2CHF2
HFC-143a(1,1,1-トリフルオロエタン、CF3CH3
HFC-143(1,1,2-トリフルオロエタン、CHF2CH2F)
HFC-152a(1,1-ジフルオロエタン、CHF2CH3
HFC-152(1,2-ジフルオロエタン、CH2FCH2F)
HFC-161(フルオロエタン、CH3CH2F)
HFC-245fa(1,1,1,3,3-ペンタフルオロプロパン、CF3CH2CHF2
HFC-236fa(1,1,1,3,3,3-ヘキサフルオロプロパン、CF3CH2CF3
HFC-236ea(1,1,1,2,3,3-ヘキサフルオロプロパン、CF3CHFCHF2
HFC-227ea(1,1,1,2,3,3,3-ヘプタフルオロプロパン、CF3CHFCF3)
HCFC-22(クロロジフルオロメタン、CHClF2
HCFC-31(クロロフルオロメタン、CH2ClF)
CFC-1113(クロロトリフルオロエチレン、CF2=CClF)
HFE-125(トリフルオロメチル-ジフルオロメチルエーテル、CF3OCHF2
HFE-134a(トリフルオロメチル-フルオロメチルエーテル、CF3OCH2F)
HFE-143a(トリフルオロメチル-メチルエーテル、CF3OCH3
HFE-227ea(トリフルオロメチル-テトラフルオロエチルエーテル、CF3OCHFCF3
HFE-236fa(トリフルオロメチル-トリフルオロエチルエーテル、CF3OCH2CF3
本開示の冷媒組成物は、トレーサーを合計で、冷媒組成物全体に対して、約10重量百万分率(ppm)~約1000ppm含んでいてもよい。本開示の冷媒組成物は、トレーサーを合計で、冷媒組成物全体に対して、好ましくは約30ppm~約500ppm、より好ましくは約50ppm~約300ppm含んでいてもよい。
(1-3-3)紫外線蛍光染料
本開示の冷媒組成物は、紫外線蛍光染料として、一種を単独で含有してもよいし、二種以上を含有してもよい。
紫外線蛍光染料としては、特に限定されず、一般に用いられる紫外線蛍光染料の中から適宜選択することができる。
紫外線蛍光染料としては、例えば、ナフタルイミド、クマリン、アントラセン、フェナントレン、キサンテン、チオキサンテン、ナフトキサンテン及びフルオレセイン、並びにこれらの誘導体が挙げられる。紫外線蛍光染料としては、ナフタルイミド及びクマリンのいずれか又は両方が特に好ましい。
(1-3-4)安定剤
本開示の冷媒組成物は、安定剤として、一種を単独で含有してもよいし、二種以上を含有してもよい。
安定剤としては、特に限定されず、一般に用いられる安定剤の中から適宜選択することができる。
安定剤としては、例えば、ニトロ化合物、エーテル類及びアミン類等が挙げられる。
ニトロ化合物としては、例えば、ニトロメタン及びニトロエタン等の脂肪族ニトロ化合物、並びにニトロベンゼン及びニトロスチレン等の芳香族ニトロ化合物等が挙げられる。
エーテル類としては、例えば、1,4-ジオキサン等が挙げられる。
アミン類としては、例えば、2,2,3,3,3-ペンタフルオロプロピルアミン、ジフェニルアミン等が挙げられる。
その他にも、ブチルヒドロキシキシレン、ベンゾトリアゾール等が挙げられる。
安定剤の含有割合は、特に限定されず、冷媒全体に対して、通常、0.01~5質量%とすることが好ましく、0.05~2質量%とすることがより好ましい。
(1-3-5)重合禁止剤
本開示の冷媒組成物は、重合禁止剤として、一種を単独で含有してもよいし、二種以上を含有してもよい。
重合禁止剤としては、特に限定されず、一般に用いられる重合禁止剤の中から適宜選択することができる。
重合禁止剤としては、例えば、4-メトキシ-1-ナフトール、ヒドロキノン、ヒドロキノンメチルエーテル、ジメチル-t-ブチルフェノール、2,6-ジ-tert-ブチル-p-クレゾール、ベンゾトリアゾール等が挙げられる。
重合禁止剤の含有割合は、特に限定されず、冷媒全体に対して、通常、0.01~5質量%とすることが好ましく、0.05~2質量%とすることがより好ましい。
(1-4)冷凍機油含有作動流体
本開示の冷凍機油含有作動流体は、本開示の冷媒又は冷媒組成物と、冷凍機油とを少なくとも含み、冷凍機における作動流体として用いられる。具体的には、本開示の冷凍機油含有作動流体は、冷凍機の圧縮機において使用される冷凍機油と、冷媒又は冷媒組成物とが互いに混じり合うことにより得られる。冷凍機油含有作動流体には冷凍機油は一般に10~50質量%含まれる。
(1-4-1)冷凍機油
本開示の組成物は、冷凍機油として、一種を単独で含有してもよいし、二種以上を含有してもよい。
冷凍機油としては、特に限定されず、一般に用いられる冷凍機油の中から適宜選択することができる。その際には、必要に応じて、前記混合物との相溶性(miscibility)及び前記混合物の安定性等を向上する作用等の点でより優れている冷凍機油を適宜選択することができる。
冷凍機油の基油としては、例えば、ポリアルキレングリコール(PAG)、ポリオールエステル(POE)及びポリビニルエーテル(PVE)からなる群より選択される少なくとも一種が好ましい。
冷凍機油は、基油に加えて、さらに添加剤を含んでいてもよい。添加剤は、酸化防止剤、極圧剤、酸捕捉剤、酸素捕捉剤、銅不活性化剤、防錆剤、油性剤及び消泡剤からなる群より選択される少なくとも一種であってもよい。
冷凍機油として、40℃における動粘度が5~400 cStであるものが、潤滑の点で好ましい。
本開示の冷凍機油含有作動流体は、必要に応じて、さらに少なくとも一種の添加剤を含んでもよい。添加剤としては例えば以下の相溶化剤等が挙げられる。
(1-4-2)相溶化剤
本開示の冷凍機油含有作動流体は、相溶化剤として、一種を単独で含有してもよいし、二種以上を含有してもよい。
相溶化剤としては、特に限定されず、一般に用いられる相溶化剤の中から適宜選択することができる。
相溶化剤としては、例えば、ポリオキシアルキレングリコールエーテル、アミド、ニトリル、ケトン、クロロカーボン、エステル、ラクトン、アリールエーテル、フルオロエーテルおよび1,1,1-トリフルオロアルカン等が挙げられる。相溶化剤としては、ポリオキシアルキレングリコールエーテルが特に好ましい。
(1-5)各種冷媒1
以下、本開示において用いられる冷媒である冷媒1A~冷媒1Eについて、詳細に説明する。
なお、以下の冷媒1A、冷媒1B、冷媒1C、冷媒1D及び冷媒1Eの各記載は、それぞれ独立しており、点や線分を示すアルファベット、実施例の番号および比較例の番号は、いずれも冷媒1A、冷媒1B、冷媒1C、冷媒1D及び冷媒1Eの間でそれぞれ独立であるものとする。例えば、冷媒1Aの実施例1と冷媒1Bの実施例1とは、互いに異なる実施形態についての実施例を示している。
(1-5-1)冷媒1A
本開示の冷媒1Aは、トランス-1,2-ジフルオロエチレン(HFO-1132(E))、トリフルオロエチレン(HFO-1123)及び2,3,3,3-テトラフルオロ-1-プロペン(R1234yf)を含む混合冷媒である。
本開示の冷媒1Aは、R410Aと同等の冷凍能力及び成績係数を有し、かつGWPが十分に小さい、という、R410A代替冷媒として望ましい諸特性を有する。
本開示の冷媒1Aは、HFO-1132(E)及びR1234yf、並びに必要に応じてHFO-1123を含む組成物であって、さらに以下の要件を満たすものであってもよい。この冷媒1AもR410Aと同等の冷凍能力及び成績係数を有し、かつGWPが十分に小さい、という、R410A代替冷媒として望ましい諸特性を有する。
要件:
HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点D(87.6, 0.0, 12.4)、
点G(18.2, 55.1, 26.7)、
点H(56.7, 43.3, 0.0)及び
点O(100.0, 0.0, 0.0)
の4点をそれぞれ結ぶ線分OD、DG、GH及びHOで囲まれる図形の範囲内又は前記線分OD、DG及びGH上にあり(ただし、点O及びHは除く)、
前記線分DGは、
座標(0.0047y2-1.5177y+87.598, y, -0.0047y2+0.5177y+12.402)
で表わされ、
前記線分GHは、
座標(-0.0134z2-1.0825z+56.692, 0.0134z2+0.0825z+43.308, z)
で表わされ、かつ
前記線分HO及びODが直線である。本開示の冷媒1Aは、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が92.5%以上となり、かつR410Aを基準とするCOP比が92.5%以上となる。
本開示の冷媒1Aは、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点L(72.5, 10.2, 17.3)、
点G(18.2, 55.1, 26.7)、
点H(56.7, 43.3, 0.0)及び
点I(72.5, 27.5, 0.0)
の4点をそれぞれ結ぶ線分LG、GH、HI及びILで囲まれる図形の範囲内又は前記線分LG、GH及びIL上にあり(ただし、点H及び点Iは除く)、
前記線分LGは、
座標(0.0047y2-1.5177y+87.598, y, -0.0047y2+0.5177y+12.402)
で表わされ、
前記線分GHは、
座標(-0.0134z2-1.0825z+56.692, 0.0134z2+0.0825z+43.308, z)
で表わされ、かつ
前記線分HI及びILが直線であるものであれば好ましい。本開示の冷媒1Aは、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が92.5%以上となり、かつR410Aを基準とするCOP比が92.5%以上となるだけでなく、さらにASHRAEの規格で微燃性(2Lクラス)を示す。
本開示の冷媒1Aは、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点D(87.6, 0.0, 12.4)、
点E(31.1, 42.9, 26.0)、
点F(65.5, 34.5, 0.0)及び
点O(100.0, 0.0, 0.0)
の4点をそれぞれ結ぶ線分OD、DE、EF及びFOで囲まれる図形の範囲内又は前記線分OD、DE及びEF上にあり(ただし、点O及び点Fは除く)、
前記線分DEは、
座標(0.0047y2-1.5177y+87.598, y, -0.0047y2+0.5177y+12.402)
で表わされ、
前記線分EFは、
座標(-0.0064z2-1.1565z+65.501, 0.0064z2+0.1565z+34.499, z)
で表わされ、かつ
前記線分FO及びODが直線であるものであれば好ましい。本開示の冷媒1Aは、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が93.5%以上となり、かつR410Aを基準とするCOP比が93.5%以上となる。
本開示の冷媒1Aは、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点L(72.5, 10.2, 17.3)、
点E(31.1, 42.9, 26.0)、
点F(65.5, 34.5, 0.0)及び
点I(72.5, 27.5, 0.0)
の4点をそれぞれ結ぶ線分LE、EF、FI及びILで囲まれる図形の範囲内又は前記線分LE、EF及びIL上にあり(ただし、点F及び点Iは除く)、
前記線分LEは、
座標(0.0047y2-1.5177y+87.598, y, -0.0047y2+0.5177y+12.402)
で表わされ、
前記線分EFは、
座標(-0.0134z2-1.0825z+56.692, 0.0134z2+0.0825z+43.308, z)
で表わされ、かつ
前記線分FI及びILが直線であるものであれば好ましい。本開示の冷媒1Aは、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が93.5%以上となり、かつR410Aを基準とするCOP比が93.5%以上となるだけでなく、さらにASHRAEの規格で微燃性(2Lクラス)を示す。
本開示の冷媒1Aは、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点A(93.4, 0.0, 6.6)、
点B(55.6, 26.6, 17.8)、
点C(77.6, 22.4, 0.0)及び
点O(100.0, 0.0, 0.0)
の4点をそれぞれ結ぶ線分OA、AB、BC及びCOで囲まれる図形の範囲内又は前記線分OA、AB及びBC上にあり(ただし、点O及び点Cは除く)、
前記線分ABは、
座標(0.0052y2-1.5588y+93.385, y, -0.0052y2+0. 5588y+6.615)
で表わされ、
前記線分BCは、
座標(-0.0032z2-1.1791z+77.593, 0.0032z2+0.1791z+22.407, z)
で表わされ、かつ
前記線分CO及びOAが直線であるものであれば好ましい。本開示の冷媒1Aは、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が95%以上となり、かつR410Aを基準とするCOP比が95%以上となる。
本開示の冷媒1Aは、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点K(72.5, 14.1, 13.4)、
点B(55.6, 26.6, 17.8)及び
点J(72.5, 23.2, 4.3)
の3点をそれぞれ結ぶ線分KB、BJ及びJKで囲まれる図形の範囲内又は前記線分上にあり、前記線分KBは、
座標(0.0052y2-1.5588y+93.385, y, -0.0052y2+0. 5588y+6.615)
で表わされ、
前記線分BJは、
座標(-0.0032z2-1.1791z+77.593, 0.0032z2+0.1791z+22.407, z)
で表わされ、かつ
前記線分JKが直線であるものであれば好ましい。本開示の冷媒1Aは、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が95%以上となり、かつR410Aを基準とするCOP比が95%以上となるだけでなく、さらにASHRAEの規格で微燃性(2Lクラス)を示す。
本開示の冷媒1Aは、上記の特性や効果を損なわない範囲内で、HFO-1132(E)、HFO-1123及びR1234yfに加えて、さらにジフルオロメタン(R32)を含んでいてもよい。本開示の冷媒1Aの全体に対するR32の含有割合は特に限定されず、幅広く選択できる。例えば、本開示の冷媒1Aの全体に対するR32の含有割合が21.8質量%のとき、この混合冷媒のGWPが150となるため、R32の含有割合をそれ以下とすることもできる。本開示の冷媒1Aの全体に対するR32の含有割合は、例えば5質量%以上としてもよい。
本開示の冷媒1Aは、HFO-1132(E)、HFO-1123及びR1234yfに加えて、さらにR32を含む場合、HFO-1132(E)、HFO-1123及びR1234yf並びにR32の、これらの総和を基準とする質量%をそれぞれx、y及びz並びにaとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図(図1C~図1I)において、座標(x,y,z)が、
0<a≦10.0のとき、
点A(0.02a2-2.46a+93.4, 0, -0.02a2+2.46a+6.6)、
点B’(-0.008a2-1.38a+56, 0.018a2-0.53a+26.3, -0.01a2+1.91a+17.7)、
点C(-0.016a2+1.02a+77.6, 0.016a2-1.02a+22.4, 0)及び
点O(100.0, 0.0, 0.0)
の4点をそれぞれ結ぶ直線で囲まれる図形の範囲内又は前記直線OA、AB’及びB’C上にあり(ただし、点O及び点Cは除く)、
10.0<a≦16.5のとき、
点A(0.0244a2-2.5695a+94.056, 0, -0.0244a2+2.5695a+5.944)、
点B’(0.1161a2-1.9959a+59.749, 0.014a2-0.3399a+24.8, -0.1301a2+2.3358a+15.451)、
点C(-0.0161a2+1.02a+77.6, 0.0161a2-1.02a+22.4, 0)及び
点O(100.0, 0.0, 0.0)
の4点をそれぞれ結ぶ直線で囲まれる図形の範囲内又は前記直線OA、AB’及びB’C上にあり(ただし、点O及び点Cは除く)、又は
16.5<a≦21.8のとき、
点A(0.0161a2-2.3535a+92.742, 0, -0.0161a2+2.3535a+7.258)、
点B’(-0.0435a2-0.0435a+50.406, -0.0304a2+1.8991a-0.0661, 0.0739a2-1.8556a+49.6601)、
点C(-0.0161a2+0.9959a+77.851, 0.0161a2-0.9959a+22.149, 0)及び
点O(100.0, 0.0, 0.0)
の4点をそれぞれ結ぶ直線で囲まれる図形の範囲内又は前記直線OA、AB’及びB’C上上にあるものとすることができる(ただし、点O及び点Cは除く)。なお、点B’は、前記3成分組成図において、R410Aを基準とする冷凍能力比が95%となり、かつR410Aを基準とするCOP比が95%となる点を点Bとすると、R410Aを基準とするCOP比が95%となる点を結ぶ近似直線と、直線ABとの交点である。本開示の冷媒1Aは、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が95%以上となり、かつR410Aを基準とするCOP比が95%以上となる。
本開示の冷媒1Aは、上記の特性や効果を損なわない範囲内で、HFO-1132(E)、HFO-1123及びR1234yf並びにR32に加えて、さらに他の追加的な冷媒を含有していてもよい。この点で、本開示の冷媒1Aが、HFO-1132(E)、HFO-1123及びR1234yf並びにR32の合計を、冷媒1A全体に対して99.5質量%以上含むことが好ましく、99.75質量%以上含むことがより好ましく、99.9質量%以上含むことがさらに好ましい。
また、本開示の冷媒1Aは、HFO-1132(E)、HFO-1123及びR1234yfの合計を、冷媒1A全体に対して99.5質量%以上含むものであってよく、99.75質量%以上含むものであってもよく、さらに99.9質量%以上含むものであってもよい。
また、本開示の冷媒1Aは、HFO-1132(E)、HFO-1123及びR1234yf並びにR32の合計を、冷媒1A全体に対して99.5質量%以上含むものであってよく、99.75質量%以上含むものであってもよく、さらに99.9質量%以上含むものであってもよい。
追加的な冷媒としては、特に限定されず、幅広く選択できる。混合冷媒は、追加的な冷媒として、一種を単独で含んでいてもよいし、二種以上を含んでいてもよい。
本開示の冷媒1Aは、R410Aの代替冷媒としての使用に適している。
(冷媒1Aの実施例)
以下に、冷媒1Aの実施例を挙げてさらに詳細に説明する。ただし、本開示の冷媒1Aは、これらの実施例に限定されるものではない。
HFO-1132(E)、HFO-1123及びR1234yfを、これらの総和を基準として、表1~5にそれぞれ示した質量%で混合した混合冷媒を調製した。
これらの各混合冷媒について、R410を基準とするCOP比及び冷凍能力比をそれぞれ求めた。計算条件は以下の通りとした。
蒸発温度:5℃
凝縮温度:45℃
過熱度:1K
過冷却度;5K
Ecomp(圧縮仕事量):0.7kWh
これらの値を、各混合冷媒についてのGWPと合わせて表1~5に示す。
Figure 2023179585000002
Figure 2023179585000003
Figure 2023179585000004
Figure 2023179585000005
Figure 2023179585000006
これらの結果から、HFO-1132(E)、HFO-1123及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点D(87.6, 0.0, 12.4)、
点G(18.2, 55.1, 26.7)、
点H(56.7, 43.3, 0.0)及び
点O(100.0, 0.0, 0.0)
の4点をそれぞれ結ぶ線分OD、DG、GH及びHOで囲まれる図形(図1B)の範囲内又は前記線分OD、DG及びGH上にある場合(ただし、点O及び点Hは除く)、R410Aを基準とする冷凍能力比が92.5%以上となり、かつR410Aを基準とするCOP比が92.5%以上となることが判る。
また、同様に、座標(x,y,z)が、
点D(87.6, 0.0, 12.4)、
点E(31.1, 42.9, 26.0)、
点F(65.5, 34.5, 0.0)及び
点O(100.0, 0.0, 0.0)
の4点をそれぞれ結ぶ線分OD、DE、EF及びFOで囲まれる図形(図1B)の範囲内又は前記線分OD、DE及びEF上にある場合(ただし、点O及び点Fは除く)、R410Aを基準とする冷凍能力比が93.5%以上となり、かつR410Aを基準とするCOP比が93.5%以上となることが判る。
また、同様に、座標(x,y,z)が、
点A(93.4, 0.0, 6.6)、
点B(55.6, 26.6, 17.8)、
点C(77.6, 22.4, 0.0)及び
点O(100.0, 0.0, 0.0)
の4点をそれぞれ結ぶ線分OA、AB、BC及びCOで囲まれる図形(図1B)の範囲内又は前記線分OA、AB及びBC上にある場合(ただし、点O及び点Cは除く)、R410Aを基準とする冷凍能力比が95%以上となり、かつR410Aを基準とするCOP比が95%以上となることが判る。
なお、これらの組成物において、R1234yfは燃焼性の低下や重合等の変質抑制に寄与しており、これを含むことが好ましい。
さらに、これらの各混合冷媒について、ANSI/ASHRAE34-2013規格に従い燃焼速度を測定した。燃焼速度が10 cm/s以下となるものは「2Lクラス(微燃性)」であるとした。これらの結果から、HFO-1132(E)、HFO-1123及びR1234yfの混合冷媒においては、これらの総和を基準として、HFO-1132(E)を72.5質量%以下含む場合に、「2Lクラス(微燃性)」と判断できることが明らかとなった。
なお、燃焼速度試験は図1Aに示す装置を用いて、以下の通り行った。まず、使用した混合冷媒は99.5%またはそれ以上の純度とし、真空ゲージ上に空気の痕跡が見られなくなるまで凍結、ポンピング及び解凍のサイクルを繰り返すことにより脱気した。閉鎖法により燃焼速度を測定した。初期温度は周囲温度とした。点火は、試料セルの中心で電極間に電気的スパークを生じさせることにより行った。放電の持続時間は1.0~9.9msとし、点火エネルギーは典型的には約0.1~1.0Jであった。シュリーレン写真を使って炎の広がりを視覚化した。光を通す2つのアクリル窓を備えた円筒形容器(内径:155mm、長さ:198mm)を試料セルとして用い、光源としてはキセノンランプを用いた。炎のシュリーレン画像を高速デジタルビデオカメラで600fpsのフレーミング速度で記録し、PCに保存した。
HFO-1132(E)、HFO-1123及びR1234yf並びにR32を、これらの総和を基準として、表6~12にそれぞれ示した質量%で混合した混合冷媒を調製した。
これらの各混合冷媒について、R410Aを基準とするCOP比及び冷凍能力比をそれぞれ求めた。計算条件は前述と同じとした。これらの値を、各混合冷媒についてのGWPと合わせて表6~12に示す。
Figure 2023179585000007
Figure 2023179585000008
Figure 2023179585000009
Figure 2023179585000010
Figure 2023179585000011
Figure 2023179585000012
Figure 2023179585000013
これらの結果から、HFO-1132(E)、HFO-1123及びR1234yf並びにR32の、これらの総和を基準とする質量%をそれぞれx、y及びz並びにaとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図(図1C~図1I)において、座標(x,y,z)が、
0<a≦10.0のとき、
点A(0.02a2-2.46a+93.4, 0, -0.02a2+2.46a+6.6)、
点B’(-0.008a2-1.38a+56, 0.018a2-0.53a+26.3, -0.01a2+1.91a+17.7)、
点C(-0.016a2+1.02a+77.6, 0.016a2-1.02a+22.4, 0)及び
点O(100.0, 0.0, 0.0)
の4点をそれぞれ結ぶ直線で囲まれる図形の範囲内又は前記直線OA、AB’及びB’C上にあり(ただし、点O及び点Cは除く)、
10.0<a≦16.5のとき、
点A(0.0244a2-2.5695a+94.056, 0, -0.0244a2+2.5695a+5.944)、
点B’(0.1161a2-1.9959a+59.749, 0.014a2-0.3399a+24.8, -0.1301a2+2.3358a+15.451)、
点C(-0.0161a2+1.02a+77.6, 0.0161a2-1.02a+22.4, 0)及び
点O(100.0, 0.0, 0.0)
の4点をそれぞれ結ぶ直線で囲まれる図形の範囲内又は前記直線OA、AB’及びB’C上にあり(ただし、点O及び点Cは除く)、又は
16.5<a≦21.8のとき、
点A(0.0161a2-2.3535a+92.742, 0, -0.0161a2+2.3535a+7.258)、
点B’(-0.0435a2-0.0435a+50.406, -0.0304a2+1.8991a-0.0661, 0.0739a2-1.8556a+49.6601)、
点C(-0.0161a2+0.9959a+77.851, 0.0161a2-0.9959a+22.149, 0)及び
点O(100.0, 0.0, 0.0)
の4点をそれぞれ結ぶ直線で囲まれる図形の範囲内又は前記直線OA、AB’及びB’C上にある(ただし、点O及び点Cは除く)本開示の冷媒は、R410Aを基準とする冷凍能力比が95%以上となり、かつR410Aを基準とするCOP比が95%以上となることが判る。
なお、図1C~図1Iは、それぞれ、順に、R32含有割合a(質量%)が、0質量%、5質量%、10質量%、14.3質量%、16.5質量%、19.2質量%及び21.8質量%の場合の組成を表わしている。
なお、点B’は、前記3成分組成図において、R410Aを基準とする冷凍能力比が95%となり、かつR410Aを基準とするCOP比が95%となる点を点Bとすると、R410Aを基準とするCOP比が95%となる点Cを含む3点を結ぶ近似直線と、直線ABとの交点である。
点A、B’及びCは、近似計算によりそれぞれ以下のようにして求めた。
点Aは、HFO-1123含有割合が0質量%であり、かつR410Aを基準とする冷凍能力比が95%となる点である。点Aについて、計算により以下の三範囲毎に三点ずつを求め、これらの近似式を求めた。
Figure 2023179585000014
点Cは、R1234yf含有割合が0質量%であり、かつR410Aを基準とするCOP比が95%となる点である。点Cについて、計算により以下の三範囲毎に三点ずつを求め、これらの近似式を求めた。
Figure 2023179585000015
点B’について、計算により以下の三範囲毎に三点ずつを求め、これらの近似式を求めた。
Figure 2023179585000016
(1-5-2)冷媒1B
本開示の冷媒1Bは、
HFO-1132(E)及びHFO-1123の合計を、冷媒1Bの全体に対して99.5質量%以上含み、かつ
HFO-1132(E)を、冷媒1Bの全体に対して62.5質量%~72.5質量%含む、混合冷媒である。
本開示の冷媒1Bは、(1)R410Aと同等の成績係数を有すること、(2)R410Aと同等の冷凍能力を有すること、(3)GWPが十分に小さいこと、及び(4)ASHRAEの規格で微燃性(2Lクラス)であること、という、R410A代替冷媒として望ましい諸特性を有する。
本開示の冷媒1Bは、HFO-1132(E)を72.5質量%以下含む混合冷媒であればASHRAEの規格で微燃性(2Lクラス)となるため特に好ましい。
本開示の冷媒1Bは、HFO-1132(E)を、62.5質量%以上含む混合冷媒であればより好ましい。この場合、本開示の冷媒1Bは、R410Aを基準とする成績係数比がより優れたものとなり、かつHFO-1132(E)及び/又はHFO-1123の重合反応がより抑制され、安定性がより優れたものとなる。
本開示の冷媒1Bは、上記の特性や効果を損なわない範囲内で、HFO-1132(E)及びHFO-1123に加えて、さらに他の追加的な冷媒を含有していてもよい。この点で、本開示の冷媒1Bが、HFO-1132(E)及びHFO-1123の合計を、冷媒1B全体に対して99.75質量%以上含むことがより好ましく、99.9質量%以上含むことがさらに好ましい。
追加的な冷媒としては、特に限定されず、幅広く選択できる。混合冷媒は、追加的な冷媒として、一種を単独で含んでいてもよいし、二種以上を含んでいてもよい。
本開示の冷媒1Bは、R410A、R407C及びR404A等のHFC冷媒、並びにR22等のHCFC冷媒の代替冷媒としての使用に適している。
(冷媒1Bの実施例)
以下に、冷媒1Bの実施例を挙げてさらに詳細に説明する。ただし、本開示の冷媒1Bは、これらの実施例に限定されるものではない。
HFO-1132(E)及びHFO-1123を、これらの総和を基準として表16及び表17にそれぞれ示した質量%(mass%)で混合した混合冷媒を調製した。
R410A(R32=50%/R125=50%)の混合物を含有する組成物のGWPは、IPCC(Intergovernmental Panel on Climate Change)第4次報告書の値に基づいて評価した。HFO-1132(E)のGWPは記載がないが、HFO-1132a(GWP=1以下)、HFO-1123(GWP=0.3,特許文献1に記載)から、そのGWPを1と想定した。R410A及びHFO-1132(E)とHFO-1123との混合物を含有する組成物の冷凍能力は、National Institute of Science and Technology(NIST) Reference Fluid Thermodynamic and Transport Properties Database(Refprop 9.0)を使い、下記条件で混合冷媒の冷凍サイクル理論計算を実施することにより求めた。
蒸発温度 5℃
凝縮温度 45℃
過熱温度 1K
過冷却温度 5K
圧縮機効率 70%
また、これらの結果をもとに算出したGWP、COP及び冷凍能力を表1、表2に示す。なお、比COP及び比冷凍能力については、R410Aに対する割合を示す。
成績係数(COP)は、次式により求めた。
COP =(冷凍能力又は暖房能力)/消費電力量
また、燃焼性はANSI/ASHRAE34-2013規格に従い燃焼速度を測定した。燃焼速度が10 cm/s以下となるものは「2Lクラス(微燃性)」であるとした。
燃焼速度試験は図1Aに示す装置を用いて、以下の通り行った。まず、使用した混合冷媒は99.5%またはそれ以上の純度とし、真空ゲージ上に空気の痕跡が見られなくなるまで凍結、ポンピング及び解凍のサイクルを繰り返すことにより脱気した。閉鎖法により燃焼速度を測定した。初期温度は周囲温度とした。点火は、試料セルの中心で電極間に電気的スパークを生じさせることにより行った。放電の持続時間は1.0~9.9msとし、点火エネルギーは典型的には約0.1~1.0Jであった。シュリーレン写真を使って炎の広がりを視覚化した。光を通す2つのアクリル窓を備えた円筒形容器(内径:155mm、長さ:198mm)を試料セルとして用い、光源としてはキセノンランプを用いた。炎のシュリーレン画像を高速デジタルビデオカメラで600fpsのフレーミング速度で記録し、PCに保存した。
Figure 2023179585000017
Figure 2023179585000018
組成物が、HFO-1132(E)を、該組成物の全体に対して62.5質量%~72.5質量%含む場合に、GWP=1という低いGWPを持ちつつも安定で、かつ、ASHRAE燃焼性2Lを確保し、更に驚くべきことにR410Aと同等の性能を確保することができる。
(1-5-3)冷媒1C
本開示の冷媒1Cは、HFO-1132(E)、R32及び2,3,3,3-テトラフルオロ-1-プロペン(R1234yf)を含む混合冷媒である。
本開示の冷媒1Cは、R410Aと同等の冷却能力を有し、GWPが十分に小さく、かつASHRAEの規格で微燃性(2Lクラス)である、という、R410A代替冷媒として望ましい諸特性を有する。
本開示の冷媒1Cは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点A(71.1, 0.0, 28.9)、
点C(36.5, 18.2, 45.3)、
点F(47.6, 18.3, 34.1)及び
点D(72.0, 0.0, 28.0)
の4点をそれぞれ結ぶ線分AC、CF、FD、及びDAで囲まれる図形の範囲内又は前記線分上にあり、
前記線分ACは、
座標(0.0181y2-2.2288y+71.096, y, -0.0181y2+1.2288y+28.904)
で表わされ、
前記線分FDは、
座標(0.02y2-1.7y+72, y, -0.02y2+0.7y+28)
で表わされ、かつ
前記線分CF及びDAが直線であるものであれば好ましい。本開示の冷媒1Cは、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が85%以上となり、GWPが125以下となり、かつASHRAEの規格で微燃性(2Lクラス)となる。
本開示の冷媒1Cは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点A(71.1, 0.0, 28.9)、
点B(42.6, 14.5, 42.9)、
点E(51.4, 14.6, 34.0)及び
点D(72.0, 0.0, 28.0)
の4点をそれぞれ結ぶ線分AB、BE、ED、及びDAで囲まれる図形の範囲内又は前記線分上にあり、
前記線分ABは、
座標(0.0181y2-2.2288y+71.096, y, -0.0181y2+1.2288y+28.904)
で表わされ、
前記線分EDは、
座標(0.02y2-1.7y+72, y, -0.02y2+0.7y+28)
で表わされ、かつ
前記線分BE及びDAが直線であるものであれば好ましい。本開示の冷媒1Cは、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が85%以上となり、GWPが100以下となり、かつASHRAEの規格で微燃性(2Lクラス)となる。
本開示の冷媒1Cは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点G(77.5, 6.9, 15.6)、
点I(55.1, 18.3, 26.6)及び
点J(77.5. 18.4, 4.1)
の3点をそれぞれ結ぶ線分GI、IJ及びJKで囲まれる図形の範囲内又は前記線分上にあり、前記線分GIは、
座標(0.02y2-2.4583y+93.396, y, -0.02y2+1.4583y+6.604)
で表わされ、かつ
前記線分IJ及びJKが直線であるものであれば好ましい。本開示の冷媒1Cは、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が95%以上となり、GWPが100以下となり、かつ重合や分解などの変化を起こしにくく、安定性に優れている。
本開示の冷媒1Cは、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点G(77.5, 6.9, 15.6)、
点H(61.8, 14.6, 23.6)及び
点K(77.5, 14.6, 7.9)
の3点をそれぞれ結ぶ線分GH、HK及びKGで囲まれる図形の範囲内又は前記線分上にあり、前記線分GHは、
座標(0.02y2-2.4583y+93.396, y, -0.02y2+1.4583y+6.604)
で表わされ、かつ
前記線分HK及びKGが直線であるものであれば好ましい。本開示の冷媒1Cは、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が95%以上となり、GWPが100以下となり、かつ重合や分解などの変化を起こしにくく、安定性に優れている。
本開示の冷媒1Cは、上記の特性や効果を損なわない範囲内で、HFO-1132(E)、R32及びR1234yfに加えて、さらに他の追加的な冷媒を含有していてもよい。この点で、本開示の冷媒1Cが、HFO-1132(E)、R32及びR1234yfの合計を、冷媒1C全体に対して99.5質量%以上含むことが好ましく、99.75質量%以上含むことがより好ましく、99.9質量%以上含むことがさらに好ましい。
追加的な冷媒としては、特に限定されず、幅広く選択できる。混合冷媒は、追加的な冷媒として、一種を単独で含んでいてもよいし、二種以上を含んでいてもよい。
本開示の冷媒1Cは、R410Aの代替冷媒としての使用に適している。
(冷媒1Cの実施例)
以下に、冷媒1Cの実施例を挙げてさらに詳細に説明する。ただし、本開示の冷媒1Cは、これらの実施例に限定されるものではない。
HFO-1132(E)、R32及びR1234yfの各混合冷媒について、ANSI/ASHRAE34-2013規格に従って、燃焼速度を測定した。R32の濃度を5質量%ずつ変化させながら、燃焼速度が10 cm/sを示す組成を見出した。見出された組成を表18に示す。
なお、燃焼速度試験は図1Aに示す装置を用いて、以下の通り行った。まず、使用した混合冷媒は99.5%またはそれ以上の純度とし、真空ゲージ上に空気の痕跡が見られなくなるまで凍結、ポンピング及び解凍のサイクルを繰り返すことにより脱気した。閉鎖法により燃焼速度を測定した。初期温度は周囲温度とした。点火は、試料セルの中心で電極間に電気的スパークを生じさせることにより行った。放電の持続時間は1.0~9.9msとし、点火エネルギーは典型的には約0.1~1.0Jであった。シュリーレン写真を使って炎の広がりを視覚化した。光を通す2つのアクリル窓を備えた円筒形容器(内径:155mm、長さ:198mm)を試料セルとして用い、光源としてはキセノンランプを用いた。炎のシュリーレン画像を高速デジタルビデオカメラで600fpsのフレーミング速度で記録し、PCに保存した。
Figure 2023179585000019
これらの結果から、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる図1Jの3成分組成図において、座標(x,y,z)が、表18に示す5点をそれぞれ結ぶ線分上又は該線分よりも右側にある場合、ASHRAEの規格で微燃性(2Lクラス)となることが判る。
R1234yfは、HFO-1132(E)及びR32のいずれよりも燃焼速度が低いことが判っているためである。
HFO-1132(E)、R32及びR1234yfを、これらの総和を基準として、表19~23にそれぞれ示した質量%で混合した混合冷媒を調製した。表19~23の各混合冷媒について、R410を基準とする成績係数[Coefficient of Performance(COP)]比及び冷凍能力比をそれぞれ求めた。計算条件は以下の通りとした。
蒸発温度:5℃
凝縮温度:45℃
過熱度:1K
過冷却度;5K
Ecomp(圧縮仕事量):0.7kWh
これらの値を、各混合冷媒についてのGWPと合わせて表19~23に示す。
Figure 2023179585000020
Figure 2023179585000021
Figure 2023179585000022
Figure 2023179585000023
Figure 2023179585000024
これらの結果から、HFO-1132(E)、R32及びR1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、R32及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点A(71.1, 0.0, 28.9)、
点C(36.5, 18.2, 45.3)、
点F(47.6, 18.3, 34.1)及び
点D(72.0, 0.0, 28.0)
の4点をそれぞれ結ぶ線分AC、CF、FD、及びDAで囲まれる図形(図1J)の範囲内又は該線分上にある場合、R410Aを基準とする冷凍能力比が85%以上となり、GWPが125以下となり、かつASHRAEの規格で微燃性(2Lクラス)となることが判る。
また、同様に、座標(x,y,z)が、
点A(71.1, 0.0, 28.9)、
点B(42.6, 14.5, 42.9)、
点E(51.4, 14.6, 34.0)及び
点D(72.0, 0.0, 28.0)
の4点をそれぞれ結ぶ線分AB、BE、ED、及びDAで囲まれる図形(図1J)の範囲内又は該線分上にある場合、R410Aを基準とする冷凍能力比が85%以上となり、GWPが100以下となり、かつASHRAEの規格で微燃性(2Lクラス)となることが判る。
また、同様に、座標(x,y,z)が、
点G(77.5, 6.9, 15.6)、
点I(55.1, 18.3, 26.6)及び
点J(77.5. 18.4, 4.1)
の3点をそれぞれ結ぶ線分GI、IJ及びJKで囲まれる図形(図1J)の範囲内又は該線分上にある場合、R410Aを基準とする冷凍能力比が95%以上となり、GWPが125以下となり、かつ重合や分解などの変化を起こしにくく、安定性に優れることが判る。
また、同様に、座標(x,y,z)が、
点G(77.5, 6.9, 15.6)、
点H(61.8, 14.6, 23.6)及び
点K(77.5, 14.6, 7.9)
の3点をそれぞれ結ぶ線分GH、HK及びKGで囲まれる図形(図1J)の範囲内又は該線分上にある場合、R410Aを基準とする冷凍能力比が95%以上となり、GWPが100以下となり、かつ重合や分解などの変化を起こしにくく、安定性に優れることが判る。
(1-5-4)冷媒1D
本開示の冷媒1Dは、HFO-1132(E)、HFO-1123及びR32を含む混合冷媒である。
本開示の冷媒1Dは、R410Aと同等の成績係数を有し、かつGWPが十分に小さい、という、R410A代替冷媒として望ましい諸特性を有する。
本開示の冷媒1Dは、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点O(100.0, 0.0, 0.0)、
点C’(56.7, 43.3, 0.0)、
点D’(52.2, 38.3, 9.5)、
点E’(41.8, 39.8, 18.4)及び
点A’(81.6, 0.0, 18.4)
の5点をそれぞれ結ぶ線分OC’、C’D’、D’E’、E’A’及びA’Oで囲まれる図形の範囲内又は前記線分C’D’、D’E’及びE’A’上にあり(ただし、点C’及びA’を除く)、
前記線分C’D’は、
座標(-0.0297z2-0.1915z+56.7, 0.0297z2+1.1915z+43.3, z)
で表わされ、
前記線分D’E’は、
座標(-0.0535z2+0.3229z+53.957, 0.0535z2+0.6771z+46.043, z)
で表わされ、かつ
前記線分OC’、E’A’及びA’Oが直線であるものであれば好ましい。本開示の冷媒1Dは、上記要件が満たされる場合、R410Aを基準とするCOP比が92.5%以上となり、かつGWPが125以下となる。
本開示の冷媒1Dは、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点O(100.0, 0.0, 0.0)、
点C(77.7, 22.3, 0.0)、
点D(76.3, 14.2, 9.5)、
点E(72.2, 9.4, 18.4)及び
点A’(81.6, 0.0, 18.4)
の5点をそれぞれ結ぶ線分OC、CD、DE、EA’及びA’Oで囲まれる図形の範囲内又は前記線分CD、DE及びEA’上にあり(ただし、点C及びA’を除く)、
前記線分CDEは、
座標(-0.017z2+0.0148z+77.684, 0.017z2+0.9852z+22.316, z)
で表わされ、かつ
前記線分OC、EA’及びA’Oが直線であるものであれば好ましい。本開示の冷媒1Dは、上記要件が満たされる場合、R410Aを基準とするCOP比が95%以上となり、かつGWPが125以下となる。
本開示の冷媒1Dは、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点O(100.0, 0.0, 0.0)、
点C’(56.7, 43.3, 0.0)、
点D’(52.2, 38.3, 9.5)及び
点A(90.5, 0.0, 9.5)
の5点をそれぞれ結ぶ線分OC’、C’D’、D’A及びAOで囲まれる図形の範囲内又は前記線分C’D’及びD’A上にあり(ただし、点C’及びAを除く)、
前記線分C’D’は、
座標(-0.0297z2-0.1915z+56.7, 0.0297z2+1.1915z+43.3, z)
で表わされ、かつ
前記線分OC’、D’A及びAOが直線であるものであれば好ましい。本開示の冷媒1Dは、上記要件が満たされる場合、R410Aを基準とするCOP比が93.5%以上となり、かつGWPが65以下となる。
本開示の冷媒1Dは、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR32の総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点O(100.0, 0.0, 0.0)、
点C(77.7, 22.3, 0.0)、
点D(76.3, 14.2, 9.5)、
点A(90.5, 0.0, 9.5)
の5点をそれぞれ結ぶ線分OC、CD、DA及びAOで囲まれる図形の範囲内又は前記線分CD及びDA上にあり(ただし、点C及びAを除く)、
前記線分CDは、
座標(-0.017z2+0.0148z+77.684, 0.017z2+0.9852z+22.316, z)
で表わされ、かつ
前記線分OC、DA及びAOが直線であるものであれば好ましい。本開示の冷媒1Dは、上記要件が満たされる場合、R410Aを基準とするCOP比が95%以上となり、かつGWPが65以下となる。
本開示の冷媒1Dは、上記の特性や効果を損なわない範囲内で、HFO-1132(E)、HFO-1123及びR32に加えて、さらに他の追加的な冷媒を含有していてもよい。この点で、本開示の冷媒1Dが、HFO-1132(E)、HFO-1123及びR32の合計を、冷媒1D全体に対して99.5質量%以上含むことが好ましく、99.75質量%以上含むことがより好ましく、99.9質量%以上含むことがさらに好ましい。
追加的な冷媒としては、特に限定されず、幅広く選択できる。混合冷媒は、追加的な冷媒として、一種を単独で含んでいてもよいし、二種以上を含んでいてもよい。
本開示の冷媒1Dは、R410Aの代替冷媒としての使用に適している。
(冷媒1Dの実施例)
以下に、冷媒1Dの実施例を挙げてさらに詳細に説明する。ただし、本開示の冷媒1Dは、これらの実施例に限定されるものではない。
HFO-1132(E)、HFO-1123及びR32を、これらの総和を基準として、表24~26にそれぞれ示した質量%で混合した混合冷媒を調製した。
これらの各混合冷媒について、R410を基準とするCOP比及び冷凍能力[Refrigeration Capacity(Cooling Capacity又はCapacityと表記されることもある)]比をそれぞれ求めた。計算条件は以下の通りとした。
蒸発温度:5℃
凝縮温度:45℃
過熱度:1K
過冷却度;5K
Ecomp(圧縮仕事量):0.7kWh
これらの値を、各混合冷媒についてのGWPと合わせて表24~26に示す。
Figure 2023179585000025
Figure 2023179585000026
Figure 2023179585000027
これらの結果から、HFO-1132(E)、HFO-1123及びR32の、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFO-1132(E)、HFO-1123及びR1234yfの総和が100質量%となる3成分組成図において、座標(x,y,z)が、
点O(100.0, 0.0, 0.0)、
点C’(56.7, 43.3, 0.0)、
点D’(52.2, 38.3, 9.5)、
点E’(41.8, 39.8, 18.4)及び
点A’(81.6, 0.0, 18.4)
の5点をそれぞれ結ぶ線分OC’、C’D’、D’E’、E’A’及びA’Oで囲まれる図形(図1K)の範囲内又は前記線分C’D’、D’E’及びE’A’上にある場合(ただし、点C’及びA’を除く)、R410Aを基準とするCOP比が92.5%以上となり、かつGWPが125以下となることが判る。
また、同様に、座標(x,y,z)が、
点O(100.0, 0.0, 0.0)、
点C(77.7, 22.3, 0.0)、
点D(76.3, 14.2, 9.5)、
点E(72.2, 9.4, 18.4)及び
点A’(81.6, 0.0, 18.4)
の5点をそれぞれ結ぶ線分OC、CD、DE、EA’及びA’Oで囲まれる図形(図1K)の範囲内又は前記線分CD、DE及びEA’上にある場合(ただし、点C及びA’を除く)、R410Aを基準とするCOP比が95%以上となり、かつGWPが125以下となることが判る。
また、同様に、座標(x,y,z)が、
点O(100.0, 0.0, 0.0)、
点C’(56.7, 43.3, 0.0)、
点D’(52.2, 38.3, 9.5)及び
点A(90.5, 0.0, 9.5)
の5点をそれぞれ結ぶ線分OC’、C’D’、D’A及びAOで囲まれる図形(図1K)の範囲内又は前記線分C’D’及びD’A上にある場合(ただし、点C’及びAを除く)、R410Aを基準とするCOP比が92.5%以上となり、かつGWPが65以下となることが判る。
また、同様に、座標(x,y,z)が、
点O(100.0, 0.0, 0.0)、
点C(77.7, 22.3, 0.0)、
点D(76.3, 14.2, 9.5)、
点A(90.5, 0.0, 9.5)
の5点をそれぞれ結ぶ線分OC、CD、DA及びAOで囲まれる図形(図1K)の範囲内又は前記線分CD及びDA上にある場合(ただし、点C及びAを除く)、R410Aを基準とするCOP比が95%以上となり、かつGWPが65以下となることが判る。
一方、比較例2、3及び4に示されるようにR32を含まない場合、二重結合を持つHFO-1132(E)及びHFO-1123の濃度が相対的に高くなり、冷媒化合物において分解等の変質や重合を招くため、好ましくない。
また、比較例3、5及び7に示されるようにHFO-1123を含まない場合、その燃焼抑制効果が得られず、組成物を微燃性とすることができないため、好ましくない。
(1-5-5)冷媒1E
本開示の冷媒1Eは、CO2、並びにR32、HFO-1132(E)及びR1234yfを含む混合冷媒である。
本開示の冷媒1Eは、R410Aと同等の冷却能力を有し、GWPが十分に小さく、かつ微燃性である、という、R410A代替冷媒として望ましい諸特性を有する。
本開示の冷媒1Eは、CO2、並びにR32、HFO-1132(E)及びR1234yfの、これらの総和を基準とする質量%をそれぞれw、並びにx、y及びzとするとき、R32、HFO-1132(E)及びR1234yfの総和が(100-w)質量%となる3成分組成図において、座標(x,y,z)が、
点I(0.0, 72.0, 28.0-w)
点J(18.3, 48.5, 33.2-w)
点K(36.8, 35.6, 27.6-w)
点L(51.7, 28.9, 19.4-w)
点B’’(-1.5278w2+2.75w+50.5, 0.0, 1.5278w2-3.75w+49.5)
点D(-2.9167w+40.317, 0.0, 1.9167w+59.683)
点C(0.0, -4.9167w+58.317, 3.9167w+41.683)
の7点をそれぞれ結ぶ曲線IJ、曲線JK及び曲線KL、並びに直線LB’’、直線B’’D、直線DC及び直線CIで囲まれる図形の範囲内又は前記線分上にあり(ただし、直線B’’D及び直線CIの上の点は除く)、
1.2<w≦4.0のとき、
点I(0.0, 72.0, 28.0-w)
点J(18.3, 48.5, 33.2-w)
点K(36.8, 35.6, 27.6-w)
点L(51.7, 28.9, 19.4-w)
点B’’(51.6, 0.0, 48.4-w)
点D(-2.8226w+40.211, 0.0, 1.8226w+59.789)
点C(0.0, 0.1081w2-5.169w+58.447, -0.1081w2+4.169w+41.553)
の7点をそれぞれ結ぶ曲線IJ、曲線JK及び曲線KL、並びに直線LB’’、直線B’’D、直線DC及び直線CIで囲まれる図形の範囲内又は前記線分上にあり(ただし、直線B’’D及び直線CIの上の点は除く)、
4.0<w≦7.0のとき、
点I(0.0, 72.0, 28.0-w)
点J(18.3, 48.5, 33.2-w)
点K(36.8, 35.6, 27.6-w)
点L(51.7, 28.9, 19.4-w)
点B’’(51.6, 0.0, 48.4-w)
点D(-2.8w+40.1, 0.0, 1.8w+59.9)
点C(0.0, 0.0667w2-4.9667w+58.3, -0.0667w2+3.9667w+41.7)
の7点をそれぞれ結ぶ曲線IJ、曲線JK及び曲線KL、並びに直線LB’’、直線B’’D、直線DC及び直線CIで囲まれる図形の範囲内又は前記線分上にあり(ただし、直線B’’D及び直線CIの上の点は除く)、かつ
曲線IJは、
座標(x, 0.0236x2-1.716x+72, -0.0236x2+0.716x+28-w)
で表わされ、
曲線JKは、
座標(x, 0.0095x2-1.2222x+67.676, -0.0095x2+0.2222x+32.324-w)
で表わされ、
曲線KLは、
座標(x, 0.0049x2-0.8842x+61.488, -0.0049x2-0.1158x+38.512)
で表わされるものである。
本開示の冷媒1Eは、R410Aを基準とする冷凍能力比が80%以上であり、GWPが350以下であり、かつWCF微燃となる。
本開示の冷媒1Eは、CO2、並びにR32、HFO-1132(E)及びR1234yfの、これらの総和を基準とする質量%をそれぞれw、並びにx、y及びzとするとき、R32、HFO-1132(E)及びR1234yfの総和が(100-w)質量%となる3成分組成図において、座標(x,y,z)が、
0<w≦1.2のとき、
点I(0.0, 72.0, 28.0-w)
点J(18.3, 48.5, 33.2-w)
点K(36.8, 35.6, 27.6-w)
点F(-0.0833w+36.717, -4.0833w+5.1833, 3.1666w+58.0997)
点C(0.0, -4.9167w+58.317, 3.9167w+41.683)
の5点をそれぞれ結ぶ曲線IJ及び曲線JK、並びに直線KF、直線FC及び直線CIで囲まれる図形の範囲内又は前記線分上にあり(ただし、直線CIの上の点は除く)、
1.2<w≦1.3のとき、
点I(0.0, 72.0, 28.0-w)
点J(18.3, 48.5, 33.2-w)
点K(36.8, 35.6, 27.6-w)
点F(36.6, -3w+3.9, 2w+59.5)
点C(0.0, 0.1081w2-5.169w+58.447, -0.1081w2+4.169w+41.553)
の5点をそれぞれ結ぶ曲線IJ及び曲線JK、並びに直線KF、直線FC及び直線CIで囲まれる図形の範囲内又は前記線分上にあり(ただし、直線CIの上の点は除く)、
1.3<w≦4.0のとき、
点I(0.0, 72.0, 28.0-w)
点J(18.3, 48.5, 33.2-w)
点K(36.8, 35.6, 27.6-w)
点B’(36.6, 0.0, -w+63.4)
点D(-2.8226w+40.211, 0.0, 1.8226w+59.789)
点C(0.0, 0.1081w2-5.169w+58.447, -0.1081w2+4.169w+41.553)
の6点をそれぞれ結ぶ曲線IJ及び曲線JK、並びに直線KB’、直線B’D、直線DC及び直線CIで囲まれる図形の範囲内又は前記線分上にあり(ただし、直線CIの上の点は除く)、
4.0<w≦7.0のとき、
点I(0.0, 72.0, 28.0-w)
点J(18.3, 48.5, 33.2-w)
点K(36.8, 35.6, 27.6-w)
点B’(36.6, 0.0, -w+63.4)
点D(-2.8w+40.1, 0.0, 1.8w+59.9)
点C(0.0, 0.0667w2-4.9667w+58.3, -0.0667w2+3.9667w+41.7)
の6点をそれぞれ結ぶ曲線IJ及び曲線JK、並びに直線KB’、直線B’D、直線DC及び直線CIで囲まれる図形の範囲内又は前記線分上にあり(ただし、直線CIの上の点は除く)、かつ曲線IJは、
座標(x, 0.0236x2-1.716x+72, -0.0236x2+0.716x+28-w)
で表わされ、
曲線JKは、
座標(x, 0.0095x2-1.2222x+67.676, -0.0095x2+0.2222x+32.324-w)
で表わされるものであれば好ましい。本開示の冷媒1Eは、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が80%以上となり、GWPが250以下となり、かつWCF微燃となる。
本開示の冷媒1Eは、CO2、並びにR32、HFO-1132(E)及びR1234yfの、これらの総和を基準とする質量%をそれぞれw、並びにx、y及びzとするとき、R32、HFO-1132(E)及びR1234yfの総和が(100-w)質量%となる3成分組成図において、座標(x,y,z)が、
0<w≦1.2のとき、
点I(0.0, 72.0, 28.0-w)
点J(18.3, 48.5, 33.2-w)
点E(18.2, -1.1111w2-3.1667w+31.9, 1.1111w2+2.1667w+49.9)
点C(0.0, -4.9167w+58.317, 3.9167w+41.683)
の4点をそれぞれ結ぶ曲線IJ及び曲線JK、並びに直線KF、直線FC及び直線CIで囲まれる図形の範囲内又は前記線分上にあり(ただし、直線CIの上の点は除く)、
1.2<w≦4.0のとき、
点I(0.0, 72.0, 28.0-w)
点J(18.3, 48.5, 33.2-w)
点E(-0.0365w+18.26, 0.0623w2-4.5381w+31.856, -0.0623w2+3.5746w+49.884)
点C(0.0, 0.1081w2-5.169w+58.447, -0.1081w2+4.169w+41.553)
の4点をそれぞれ結ぶ曲線IJ及び曲線JK、並びに直線KF、直線FC及び直線CIで囲まれる図形の範囲内又は前記線分上にあり(ただし、直線CIの上の点は除く)、
4.0<w≦7.0のとき、
点I(0.0, 72.0, 28.0-w)
点J(18.3, 48.5, 33.2-w)
点E(18.1, 0.0444w2-4.3556w+31.411, -0.0444w2+3.3556w+50.489)
点C(0.0, 0.0667w2-4.9667w+58.3, -0.0667w2+3.9667w+41.7)
の4点をそれぞれ結ぶ曲線IJ及び曲線JK、並びに直線KF、直線FC及び直線CIで囲まれる図形の範囲内又は前記線分上にあり(ただし、直線CIの上の点は除く)、かつ
曲線IJは、
座標(x, 0.0236x2-1.716x+72, -0.0236x2+0.716x+28-w)
で表わされるものであれば好ましい。本開示の冷媒1Eは、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が80%以上となり、GWPが125以下となり、かつWCF微燃となる。
本開示の冷媒1Eは、CO2、並びにR32、HFO-1132(E)及びR1234yfの、これらの総和を基準とする質量%をそれぞれw、並びにx、y及びzとするとき、R32、HFO-1132(E)及びR1234yfの総和が(100-w)質量%となる3成分組成図において、座標(x,y,z)が、
0<w≦0.6のとき、
点G(-5.8333w2-3.1667w+22.2, 7.0833w2+1.4167w+26.2, -1.25w2+0.75w+51.6)
点O(36.8, 0.8333w2+1.8333w+22.6, -0.8333w2-2.8333w+40.6)
点P(51.7, 1.1111w2+20.5, -1.1111w2-w+27.8)
点B’’(-1.5278w2+2.75w+50.5, 0.0, 1.5278w2-3.75w+49.5)
点D(-2.9167w+40.317, 0.0, 1.9167w+59.683)
の5点をそれぞれ結ぶ曲線GO及び曲線OP、並びに直線PB’’、直線B’’D及び直線DGで囲まれる図形の範囲内又は前記線分上にあり(ただし、直線B’’Dの上の点は除く)、
0.6<w≦1.2のとき、
点G(-5.8333w2-3.1667w+22.2, 7.0833w2+1.4167w+26.2, -1.25w2+0.75w+51.6)
点N(18.2, 0.2778w2+3w+27.7, -0.2778w2-4w+54.1)
点O(36.8, 0.8333w2+1.8333w+22.6, -0.8333w2-2.8333w+40.6)
点P(51.7, 1.1111w2+20.5, -1.1111w2-w+27.8)
点B’’(-1.5278w2+2.75w+50.5, 0.0, 1.5278w2-3.75w+49.5)
点D(-2.9167w+40.317, 0.0, 1.9167w+59.683)
の6点をそれぞれ結ぶ曲線GN、曲線NO、及び曲線OP、並びに直線PB’’、直線B’’D及び直線DGで囲まれる図形の範囲内又は前記線分上にあり(ただし、直線B’’Dの上の点は除く)、
かつ
曲線GOは、
0<w≦0.6のとき、
座標(x, (0.00487w2-0.0059w+0.0072)x2+(-0.279w2+0.2844w-0.6701)x+3.7639w2-0.2467w+37.512, 100-w-x-y)
で表わされ、
曲線GNは、
0.6<w≦1.2のとき、
座標(x, (0.0122w2-0.0113w+0.0313)x2+(-0.3582w2+0.1624w-1.4551)x+2.7889w2+3.7417w+43.824 , 100-w-x-y)
で表わされ、
曲線NOは、
0.6<w≦1.2のとき、
座標(x, (0.00487w2-0.0059w+0.0072)x2+(-0.279w2+0.2844w-0.6701)x+3.7639w2-0.2467w+37.512, 100-w-x-y)
で表され、
曲線OPは、
0<w≦1.2のとき、
座標(x, (0.0074w2-0.0133w+0.0064)x2+(-0.5839w2+1.0268w-0.7103)x+11.472w2-17.455w+40.07, 100-w-x-y)
で表わされ、
1.2<w≦4.0のとき、
点M(0.0, -0.3004w2+2.419w+55.53, 0.3004w2-3.419w+44.47)
点W(10.0, -0.3645w2+3.5024w+44.422, 0.3645w2-4.5024w+55.57)
点N(18.2, -0.3773w2+3.319w+28.26, 0.3773w2-4.319w+53.54)
点O(36.8, -0.1392w2+1.4381w+24.475, 0.1392w2-2.4381w+38.725)
点P(51.7, -0.2381w2+1.881w+20.186, 0.2381w2-2.881w+28.114)
点B’’(51.6, 0.0, -w+48.4)
点D(-2.8226w+40.211, 0.0, 1.8226w+59.789)
点C(0.0, 0.1081w2-5.169w+58.447, -0.1081w2+4.169w+41.553)
の8点をそれぞれ結ぶ曲線MW、曲線WN、曲線NO及び曲線OP、並びに直線PB’’、直線B’’D、直線DC及び直線CMで囲まれる図形の範囲内又は前記線分上にあり(ただし、直線B’’D及び直線CMの上の点は除く)、かつ
曲線MWは、
座標(x, (0.0043w2-0.0359w+0.1509)x2+(-0.0493w2+0.4669w-3.6193)x-0.3004w2+2.419w+55.53, 100-w-x-y)
で表わされ、
曲線WNは、
座標(x, (0.0055w2-0.0326w+0.0665)x2+(-0.1571w2+0.8981w-2.6274)x+0.6555w2-2.2153w+54.044, 100-w-x-y)
で表わされ、
曲線NOは、
座標(x, (-0.00062w2+0.0036w+0.0037)x2+(0.0375w2-0.239w-0.4977)x-0.8575w2+6.4941w+36.078, 100-w-x-y)
で表わされ、
曲線OPは、
座標(x, (-0.000463w2+0.0024w-0.0011)x2+(0.0457w2-0.2581w-0.075)x-1.355w2+8.749w+27.096, 100-w-x-y)
で表わされ、
4.0<w≦7.0のとき、
点M(0.0, -0.0667w2+0.8333w+58.133, 0.0667w2-1.8333w+41.867)
点W(10.0, -0.0667w2+1.1w+39.267, 0.0667w2-2.1w+50.733)
点N(18.2, -0.0889w2+1.3778w+31.411, 0.0889w2-2.3778w+50.389)
点O(36.8, -0.0444w2+0.6889w+25.956, 0.0444w2-1.6889w+37.244)
点P(51.7, -0.0667w2+0.8333w+21.633, 0.0667w2-1.8333w+26.667)
点B’’(51.6, 0.0, -w+48.4)
点D(-2.8w+40.1, 0.0, 1.8w+59.9)
点C(0.0, 0.0667w2-4.9667w+58.3, -0.0667w2+3.9667w+41.7)
の8点をそれぞれ結ぶ曲線MW、曲線WN、曲線NO及び曲線OP、並びに直線PB’’、直線B’’D、直線DC及び直線CMで囲まれる図形の範囲内又は前記線分上にあり(ただし、直線B’’D及び直線CMの上の点は除く)、かつ
曲線MWは、
座標(x, (0.00357w2-0.0391w+0.1756)x2+(-0.0356w2+0.4178w-3.6422)x-0.0667w2+0.8333w+58.103, 100-w-x-y)
で表わされ、
曲線WNは、
座標(x, (-0.002061w2+0.0218w-0.0301)x2+(0.0556w2-0.5821w-0.1108)x-0.4158w2+4.7352w+43.383, 100-w-x-y)
で表わされ、
曲線NOは、
座標(x, 0.0082x2+(0.0022w2-0.0345w-0.7521)x-0.1307w2+2.0247w+42.327, 100-w-x-y)
で表わされ、
曲線OPは、
座標(x, (-0.0006258w2+0.0066w-0.0153)x2+(0.0516w2-0.5478w+0.9894)x-1.074w2+11.651w+10.992, 100-w-x-y)
で表わされるものであれば好ましい。本開示の冷媒1Eは、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が80%以上となり、GWPが350以下となり、かつASHRAE微燃となる。
本開示の冷媒1Eは、CO2、並びにR32、HFO-1132(E)及びR1234yfの、これらの総和を基準とする質量%をそれぞれw、並びにx、y及びzとするとき、R32、HFO-1132(E)及びR1234yfの総和が(100-a)質量%となる3成分組成図において、座標(x,y,z)が、
0<w≦0.6のとき、
点G(-5.8333w2-3.1667w+22.2, 7.0833w2-1.4167w+26.2, -1.25w2+3.5834w+51.6)
点O(36.8, 0.8333w2+1.8333w+22.6, -0.8333w2-2.8333w+40.6)
点F(-0.0833w+36.717, -4.0833w+5.1833, 3.1666w+58.0997)
の3点をそれぞれ結ぶ曲線GO、並びに直線OF及び直線FGで囲まれる図形の範囲内又は前記線分上にあり、かつ
曲線GOは、
座標(x, (0.00487w2-0.0059w+0.0072) x2+(-0.279w2+0.2844w-0.6701)x+3.7639w2-0.2467w+37.512, 100-w-x-y)
で表わされ、
0.6<w≦1.2のとき、
点G(-5.8333w2-3.1667w+22.2, 7.0833w2-1.4167w+26.2, -1.25w2+3.5834w+51.6)
点N(18.2, 0.2778w2+3.0w+27.7, -0.2.778w2-4.0w+54.1)
点O(36.8, 0.8333w2+1.8333w+22.6, -0.8333w2-2.8333w+40.6)
点F(-0.0833w+36.717, -4.0833w+5.1833, 3.1666w+58.0997)
の4点をそれぞれ結ぶ曲線GN及び曲線NO、並びに直線OF及び直線FGで囲まれる図形の範囲内又は前記線分上にあり、かつ
曲線GNは、
0.6<w≦1.2のとき、
座標(x, (0.0122w2-0.0113w+0.0313)x2+(-0.3582w2+0.1624w-1.4551)x+2.7889w2+3.7417w+43.824, 100-w-x-y)
で表わされ、
曲線NOは、
0.6<w≦1.2のとき、
座標(x, (0.00487w2-0.0059w+0.0072)x2+(-0.279w2+0.2844w-0.6701)x+3.7639w2-0.2467w+37.512, 100-w-x-y)
で表され
1.2<w≦1.3のとき、
点M(0.0, -0.3004w2+2.419w+55.53, 0.3004w2-3.419w+44.47)
点W(10.0, -0.3645w2+3.5024w34.422, 0.3645w2-4.5024w+55.578)
点N(18.2, -0.3773w2+3.319w+28.26, 0.3773w2-4.319w+53.54)
点O(36.8, -0.1392w2+1.4381w+24.475, 0.1392w2-2.4381w+38.725)
点F(36.6, -3w+3.9, 2w+59.5)
点C(0.1081w2-5.169w+58.447, 0.0, -0.1081w2+4.169w+41.553)
の6点をそれぞれ結ぶ曲線MW、曲線WN及び曲線NO、並びに直線OF及び直線FC及び直線CMで囲まれる図形の範囲内又は前記線分上にあり(ただし、直線CMの上の点は除く)、かつ
曲線MWは、
座標(x, (0.0043w2-0.0359w+0.1509)x2+(-0.0493w2+0.4669w-3.6193)x-0.3004w2+2.419w+55.53, 100-w-x-y)
で表わされ、
曲線WNは、
座標(x, (0.0055w2-0.0326w+0.0665)x2+(-0.1571w2+0.8981w-2.6274)x+0.6555w2-2.2153w+54.044, 100-w-x-y)
で表わされ、
曲線NOは、
座標(x, (-0.00062w2+0.0036w+0.0037)x2+(0.0375w2-0.239w-0.4977)x-0.8575w2+6.4941w+36.078, 100-w-x-y)
で表わされ、
1.3<w≦4.0のとき、
点M(0.0, -0.3004w2+2.419w+55.53, 0.3004w2-3.419w+44.47)
点W(10.0, -0.3645w2+3.5024w+34.422, 0.3645w2-4.5024w+55.578)
点N(18.2, -0.3773w2+3.319w+28.26, 0.3773w2-4.319w+53.54)
点O(36.8, -0.1392w2+1.4381w+24.475, 0.1392w2-2.4381w+38.725)
点B’(36.6, 0.0, -w+63.4)
点D(-2.8226w+40.211, 0.0, 1.8226w+59.789)
点C(0.0, 0.1081w2-5.169w+58.447, -0.1081w2+4.169w+41.553)
の7点をそれぞれ結ぶ曲線MW、曲線WN及び曲線NO、並びに直線OB’、直線B’D、及び直線DC及び直線CMで囲まれる図形の範囲内又は前記線分上にあり(ただし、直線CMの上の点は除く)、かつ
曲線MWは、
座標(x, (0.0043w2-0.0359w+0.1509)x2+(-0.0493w2+0.4669w-3.6193)x-0.3004w2+2.419w+55.53, 100-w-x-y)
で表わされ、
曲線WNは、
座標(x, (0.0055w2-0.0326w+0.0665)x2+(-0.1571w2+0.8981w-2.6274)x+0.6555w2-2.2153w+54.044, 100-w-x-y)
曲線NOは、
座標(x, (-0.00062w2+0.0036w+0.0037)x2+(0.0457w2-0.2581w-0.075)x-1.355w2+8.749w+27.096, 100-w-x-y)
で表わされ、
4.0<w≦7.0のとき、
点M(0.0, -0.0667w2+0.8333w58.133, 0.0667w2-1.8333w+41.867)
点W(10.0, -0.0667w2+1.1w+39.267, 0.0667w2-2.1w+50.733)
点N(18. 2, -0.0889w2+1.3778w+31.411, 0.0889w2-2.3778w+50.389)
点O(36.8, -0.0444w2+0.6889w+25.956, 0.0444w2-1.6889w+37.244)
点B’(36.6, 0.0, -w+63.4)
点D(-2.8w+40. 1, 0.0, 1.8w+59.9)
点C(0.0, 0.0667w2-4.9667w+58.3, -0.0667w2+3.9667w+41.7)
の7点をそれぞれ結ぶ曲線MW、曲線WN及び曲線NO、並びに直線OB’、直線B’D、及び直線DC及び直線CMで囲まれる図形の範囲内又は前記線分上にあり(ただし、直線CMの上の点は除く)、かつ
曲線MWは、
座標(x, (0.00357w2-0.0391w+0.1756)x2+(-0.0356w2+0.4178w-3.6422)x-0.0667w2+0.8333w+58.103, 100-w-x-y)
で表わされ、
曲線WNは、
座標(x, (-0.002061w2+0.0218w-0.0301)x2+(0.0556w2-0.5821w-0.1108)x-0.4158w2+4.7352w+43.383, 100-w-x-y)
曲線NOは、
座標(x, (0.0082x2+(0.0022w2-0.0345w-0.7521)x-0.1307w2+2.0247w+42.327, 100-w-x-y)
で表わされるものであれば好ましい。本開示の冷媒1Eは、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が80%以上となり、GWPが250以下となり、かつASHRAE微燃となる。
本開示の冷媒1Eは、CO2、並びにR32、HFO-1132(E)及びR1234yfの、これらの総和を基準とする質量%をそれぞれw、並びにx、y及びzとするとき、R32、HFO-1132(E)及びR1234yfの総和が(100-a)質量%となる3成分組成図において、座標(x,y,z)が、
1.2<w≦4.0のとき、
点M(0.0, -0.3004w2+2.419w+55.53, 0.3004w2-3.419w+44.47)
点W(10.0, -0.3645w2+3.5024w+34.422, 0.3645w2-4.5024w+55.578)
点N(18.2, -0.3773w2+3.319w+28.26, 0.3773w2-4.319w+53.54)
点E(-0.0365w+18.26, 0.0623w2-4.5381w+31.856, -0.0623w2+3.5746w+49.884)
点C(0.0, 0.1081w2-5.169w+58.447, -0.1081w2+4.169w+41.553)
の5点をそれぞれ結ぶ曲線MW及び曲線WN、並びに直線NE、直線EC及び直線CMで囲まれる図形の範囲内又は前記線分上にあり(ただし、直線CMの上の点は除く)、かつ
曲線MWは、
座標(x, (0.0043w2-0.0359w+0.1509)x2+(-0.0493w2+0.4669w-3.6193)x-0.3004w2+2.419w+55.53, 100-w-x-y)
で表わされ、
曲線WNは、
座標(x, (0.0055w2-0.0326w+0.0665)x2+(-0.1571w2+0.8981w-2.6274)x+0.6555w2-2.2153w+54.044, 100-w-x-y)
で表わされ、
4.0<w≦7.0のとき、
点M(0.0, -0.0667w2+0.8333w+58.133, 0.0667w2-1.8333w+41.867)
点W(10.0, -0.0667w2+1.1w+39.267, 0.0667w2-2.1w+50.733)
点N(18.2, -0.0889w2+1.3778w+31.411, 0.0889w2-2.3778w+50.389)
点E(18.1, 0.0444w2-4.3556w+31.411, -0.0444w2+3.3556w+50.489)
点C(0.0, 0.0667w2-4.9667w+58.3, -0.0667w2+3.9667w+41.7)
の5点をそれぞれ結ぶ曲線MW及び曲線WN、並びに直線NE、直線EC及び直線CMで囲まれる図形の範囲内又は前記線分上にあり(ただし、直線CMの上の点は除く)、かつ
曲線MWは、
座標(x, (0.00357w2-0.0391w+0.1756)x2+(-0.0356w2+0.4178w-3.6422)x-0.0667w2+0.8333w+58.103, 100-w-x-y)
で表わされ、
曲線WNは、
座標(x, (-0.002061w2+0.0218w-0.0301)x2+(0.0556w2-0.5821w-0.1108)x-0.4158w2+4.7352w+43.383, 100-w-x-y)
で表わされるものであれば好ましい。本開示の冷媒1Eは、上記要件が満たされる場合、R410Aを基準とする冷凍能力比が80%以上となり、GWPが125以下となり、かつASHRAE微燃となる。
本開示の冷媒1Eは、上記の特性や効果を損なわない範囲内で、CO2、並びにR32、HFO-1132(E)及びR1234yfに加えて、さらに他の追加的な冷媒を含有していてもよい。この点で、本開示の冷媒1Eが、CO2、並びにR32、HFO-1132(E)及びR1234yfの合計を、冷媒全体に対して99.5質量%以上含むことが好ましく、99.75質量%以上含むことがより好ましく、99.9質量%以上含むことがさらに好ましい。
追加的な冷媒としては、特に限定されず、幅広く選択できる。混合冷媒は、追加的な冷媒として、一種を単独で含んでいてもよいし、二種以上を含んでいてもよい。
本開示の冷媒1Eは、冷凍機における作動流体として好ましく使用することができる。
本開示の組成物は、R410Aの代替冷媒としての使用に適している。
(冷媒1Eの実施例)
以下に、冷媒1Eの実施例を挙げてさらに詳細に説明する。ただし、本開示の冷媒1Dは、これらの実施例に限定されるものではない。
CO2、並びにR32、HFO-1132(E)及びR1234yfの各混合冷媒について、ANSI/ASHRAE34-2013規格に従って、燃焼速度を測定した。CO2の濃度を変化させながら、燃焼速度が10 cm/sを示す組成を見出した。見出された組成を表27~29に示す。
なお、燃焼速度試験は図1Aに示す装置を用いて、以下の通り行った。まず、使用した混合冷媒は99.5%またはそれ以上の純度とし、真空ゲージ上に空気の痕跡が見られなくなるまで凍結、ポンピング及び解凍のサイクルを繰り返すことにより脱気した。閉鎖法により燃焼速度を測定した。初期温度は周囲温度とした。点火は、試料セルの中心で電極間に電気的スパークを生じさせることにより行った。放電の持続時間は1.0~9.9msとし、点火エネルギーは典型的には約0.1~1.0Jであった。シュリーレン写真を使って炎の広がりを視覚化した。光を通す2つのアクリル窓を備えた円筒形容器(内径:155mm、長さ:198mm)を試料セルとして用い、光源としてはキセノンランプを用いた。炎のシュリーレン画像を高速デジタルビデオカメラで600fpsのフレーミング速度で記録し、PCに保存した。
WCFF濃度は、WCF濃度を初期濃度としてNIST Standard Reference Data Base Refleak Version 4.0により漏洩シミュレーションを行うことで求めた。
Figure 2023179585000028
Figure 2023179585000029
Figure 2023179585000030
これらの結果から、CO2、並びにR32、HFO-1132(E)及びR1234yfの、これらの総和を基準とする質量%をそれぞれw、並びにx、y及びzとするとき、R32、HFO-1132(E)及びR1234yfの総和が(100-w)質量%となる図1B~図1Iの3成分組成図において、座標(x,y,z)が、点I、J、K及びLをそれぞれ結ぶ線分上又は該線分よりも下側にある場合、WCF微燃となることが判る。
また、図1Bの3成分組成図において、座標(x,y,z)が、点M、N、O及びPをそれぞれ結ぶ線分上又は該線分よりも下側にある場合、ASHRAE微燃となることが判る。
R32、HFO-1132(E)及びR1234yfを、これらの総和を基準として、表30~40にそれぞれ示した質量%で混合した混合冷媒を調製した。表30~37の各混合冷媒について、R410を基準とする成績係数[Coefficient of Performance(COP)]比及び冷凍能力比をそれぞれ求めた。
R1234yf、及び、R410A(R32=50%/R125=50%)の混合物を含有する組成物のGWPは、IPCC(Intergovernmental Panel on Climate Change)第4次報告書の値に基づいて評価した。HFO-1132(E)のGWPは記載がないが、HFO-1132a(GWP=1以下)、HFO-1123(GWP=0.3,特許文献1に記載)から、そのGWPを1と想定した。R410A及びHFO-1132(E)、HFO-1123、R1234yfとの混合物を含有する組成物の冷凍能力は、National Institute of Science and Technology(NIST) Reference Fluid Thermodynamic and Transport Properties Database(Refprop 9.0)を使い、下記条件で混合冷媒の冷凍サイクル理論計算を実施することにより求めた。
蒸発温度:5℃
凝縮温度:45℃
過熱度:5K
過冷却度;5K
Ecomp(圧縮仕事量):0.7kWh
これらの値を、各混合冷媒についてのGWPと合わせて表30~37に示す。なお、表30~37は、CO2濃度が0質量%、0.6質量%、1.2質量%、1.3質量%、2.5質量%、4質量%、5.5質量%、7質量%の場合をそれぞれ示している。
Figure 2023179585000031
Figure 2023179585000032
Figure 2023179585000033
Figure 2023179585000034
Figure 2023179585000035
Figure 2023179585000036
Figure 2023179585000037
Figure 2023179585000038
Figure 2023179585000039
Figure 2023179585000040
Figure 2023179585000041
Figure 2023179585000042
Figure 2023179585000043
Figure 2023179585000044
Figure 2023179585000045
Figure 2023179585000046
Figure 2023179585000047
これらの結果から、CO2、並びにR32、HFO-1132(E)及びR1234yfの、これらの総和を基準とする質量%をそれぞれw並びにx、y及びzとするとき、R32、HFO-1132(E)及びR1234yfの総和が(100-w)質量%となる図1B~図1Iの3成分組成図において、座標(x,y,z)が、直線A’’B’’の線上にあるときに該混合冷媒のGWPが350となり、該線よりも右側に位置するときに該混合冷媒のGWPが350未満となることが判る。また、図1B~図1Iの3成分組成図において、座標(x,y,z)が、直線A’B’の線上にあるときに該混合冷媒のGWPが250となり、該線よりも右側に位置するときに該混合冷媒のGWPが250未満となることが判る。さらに、図1B~図1Iの3成分組成図において、座標(x,y,z)が、直線ABの線上にあるときに該混合冷媒のGWPが125となり、該線よりも右側に位置するときに該混合冷媒のGWPが125未満となることが判る。
点D及び点Cを結ぶ直線が、R410Aを基準とする冷凍能力比が80%となる点を結ぶ曲線よりも概ねわずかに左側に位置することが判る。よって、座標(x,y,z)が、点D及び点Cを結ぶ直線よりも左側にある場合に、R410Aを基準とする該混合冷媒の冷凍能力比が80%以上となることが判る。
点A及びB、A’及びB’、並びにA’’及びB’’の座標は、前記の表に記載される各点に基づいて近似式を求めることにより決定した。具体的には表47(点A及びB)、表48(点A’及びB’)並びに表49(点A’’及びB’’)に示す通り計算を行った。
Figure 2023179585000048
Figure 2023179585000049
Figure 2023179585000050
点C~Gの座標は、前記の表に記載される各点に基づいて近似式を求めることにより決定した。具体的には表50及び51に示す通り計算を行った。
Figure 2023179585000051
Figure 2023179585000052
曲線IJ、曲線JK及び曲線KL上の点の座標は、前記の表に記載される各点に基づいて近似式を求めることにより決定した。具体的には表52に示す通り計算を行った。
Figure 2023179585000053
曲線MW及び曲線WM上の点の座標は、前記の表に記載される各点に基づいて近似式を求めることにより決定した。具体的には表53(0質量%<CO2濃度≦1.2質量%のとき)、表54(1.2質量%<CO2濃度≦4.0質量%のとき)、表55(4.0質量%<CO2濃度≦7.0質量%のとき)に示す通り計算を行った。
Figure 2023179585000054
Figure 2023179585000055
Figure 2023179585000056
曲線NO及び曲線OP上の点の座標は、前記の表に記載される各点に基づいて近似式を求めることにより決定した。具体的には表56(0質量%<CO2濃度≦1.2質量%のとき)、表57(1.2質量%<CO2濃度≦4.0質量%のとき)及び表58(4.0質量%<CO2濃度≦7.0質量%のとき)に示す通り計算を行った。
Figure 2023179585000057
Figure 2023179585000058
Figure 2023179585000059
(1-6)各種冷媒2
以下、本開示において用いられる冷媒である冷媒2A~冷媒2Eについて、詳細に説明する。
なお、以下の冷媒2A、冷媒2B、冷媒2C、冷媒2D及び冷媒2Eの各記載は、それぞれ独立しており、点や線分を示すアルファベット、実施例の番号および比較例の番号は、いずれも冷媒2A、冷媒2B、冷媒2C、冷媒2D及び冷媒2Eの間でそれぞれ独立であるものとする。例えば、冷媒2Aの実施例1と冷媒2Bの実施例1とは、互いに異なる実施形態についての実施例を示している。
(1-6-1)冷媒2A
冷媒2Aとしては、「冷媒2A1」及び「冷媒2A2」が挙げられる。以下、冷媒2A1及び冷媒2A2についてそれぞれ説明する。本開示において、冷媒2A1及び冷媒2A2は、それぞれ混合冷媒である。
(1-6-1-1)冷媒2A1
冷媒2A1は、HFO-1132(E)、HFC-32及びHFO-1234yfを必須成分として含有する混合冷媒である。以下、本項目において、HFO-1132(E)、HFC-32及びHFO-1234yfを「三成分」とも称する。
冷媒2A1全体における、三成分の総濃度は99.5質量%以上である。換言すると、冷媒2A1は、三成分をこれらの濃度の総和で99.5質量%以上含有する。
冷媒2A1において、三成分の質量比は、該三成分を各頂点とする三角組成図において、
点A(HFO-1132(E)/HFC-32/HFO-1234yf=51.8/1.0/47.2質量%)、
点B(HFO-1132(E)/HFC-32/HFO-1234yf=35.3/1.0/63.7質量%)、
点C(HFO-1132(E)/HFC-32/HFO-1234yf=10.1/18.0/71.9質量%)及び
点D(HFO-1132(E)/HFC-32/HFO-1234yf=27.8/18.0/54.2質量%)、
の4点を通る図形で囲まれた領域の範囲内にある。
言い換えれば、冷媒2A1において、三成分の質量比は、該三成分を各頂点とする図2Aの三角組成図に示される:
点A(HFO-1132(E)/HFC-32/HFO-1234yf=51.8/1.0/47.2質量%)、
点B(HFO-1132(E)/HFC-32/HFO-1234yf=35.3/1.0/63.7質量%)、
点C(HFO-1132(E)/HFC-32/HFO-1234yf=10.1/18.0/71.9質量%)及び
点D(HFO-1132(E)/HFC-32/HFO-1234yf=27.8/18.0/54.2質量%)、
の4点をそれぞれ結ぶ直線a、曲線b、直線c及び曲線dで囲まれた領域の範囲内にある。
本項目において、三成分を各頂点とする三角組成図とは、図2Aに示すように、上記三成分(HFO-1132(E)、HFC-32及びHFO-1234yf)を頂点とし、HFO-1132(E)、HFC-32及びHFO-1234yfの濃度の総和を100質量%とする三成分組成図を意味する。
冷媒2A1は、このような構成を有することによって、(1)GWPが十分に小さいこと(125以下)、(2)R404Aの代替冷媒として用いた場合に、R404Aと同等以上の冷凍能力及び成績係数(COP)を有すること、並びに(3)ANSI/ASHRAE34-2013規格に従い測定された燃焼速度が5cm/s以下であること、という諸特性を有する。
本項目において、R404Aと同等以上の成績係数(COP)とは、R404Aに対するCOP比が100%以上(好ましくは102%以上、より好ましくは103%以上)であることを意味し、R404Aと同等以上の冷凍能力とは、R404Aに対する冷凍能力比が95%以上(好ましくは100%以上、より好ましくは102以上、最も好ましくは103%以上)であることを意味する。また、GWPが十分に小さいとは、GWPが125以下、好ましくは110以下、より好ましくは100以下、更に好ましくは75以下であることを意味する。
図2Aにおいて、点A、点B、点C及び点Dは白抜き丸(○)で示される、上記座標を持つ点である。
点A、B、C及びDの技術的意味は次の通りである。また、各点の濃度(質量%)は、後述の実施例で求めた値と同一である。
A:ANSI/ASHRAE34-2013規格に従い測定された燃焼速度が5cm/sであって、HFC-32の濃度(質量%)が1.0質量%である質量比
B:HFC-32の濃度(質量%)が1.0質量%であって、冷凍能力がR404Aに対して95%である質量比
C:冷凍能力がR404Aに対して95%であって、GWPが125である質量比
D:GWPが125であって、ANSI/ASHRAE34-2013規格に従い測定された燃焼速度が5cm/sである質量比
「ANSI/ASHRAE34-2013規格に従い測定された燃焼速度が5cm/s」とは、ANSI/ASHRAE34-2013規格でのクラス2L(微燃)に区分するための基準である燃焼速度(10cm/s)の半分の数値であり、クラス2Lに規定される冷媒の中でも比較的安全であることを意味する。具体的には、「燃焼速度(10cm/s)の半分の数値」であると、万が一着火した場合にも火炎が伝播しにくいという点で比較的安全である。なお、以下ANSI/ASHRAE34-2013規格に従い測定された燃焼速度を、単に「燃焼速度」とも称する。
冷媒2A1において、三成分の混合冷媒の燃焼速度は、0超~4.5cm/sが好ましく、0超~4cm/sがより好ましく、0超~3.5cm/sが更に好ましく、0超~3cm/sが特に好ましい。
点A及びBは、いずれも直線a上にある。すなわち、線分ABは直線aの一部である。直線aは、HFC-32の濃度(質量%)が1.0質量%である質量比を示す直線である。直線aよりも三角組成図の頂点HFC-32側の領域では、三成分の混合冷媒のHFC-32の濃度が1質量%を超える。
また、直線aよりも三角組成図の頂点HFC-32側の領域では、予想外に冷凍能力が大きい。
図2Aにおいて、HFO-1132(E)の質量%=x、HFC-32の質量%=y及びHFO-1234yfの質量%=zとするとき、HFC-32の濃度が1.0質量%である質量比を示す線分は、以下の式によって表わされる線分に近似される。
HFC-32が1.0質量%である質量比を示す線分:点A及び点Bの二点を結ぶ直線aの一部(図2Aの線分AB)
y=1.0
z=100-x-y
35.3≦x≦51.8
点B及びCは、いずれも曲線b上にある。曲線bは、冷凍能力がR404Aに対して95%である質量比を示す曲線である。曲線bよりも三角組成図の頂点HFO-1132(E)側及び頂点HFC-32側の領域では、三成分の混合冷媒の冷凍能力がR404Aに対して95%を超える。
曲線bは次のようにして求められる。
表201は、HFO-1132(E)=1.0、10.1、20.0、35.3質量%(mass%)であるときに対R404Aとの冷凍能力比が95%である4点を示す。曲線bはこの4点を結ぶ線で示され、ここでHFO-1132(E)の質量%=x、HFC-32の質量%=y及びHFO-1234yfの質量%=zとした場合、曲線bは最小二乗法により表201の式で近似される。
Figure 2023179585000060
点C及びDは、いずれも直線c上にある。すなわち、線分CDは直線cの一部である。直線cは、GWPが125である質量比を示す直線である。直線cよりも三角組成図の頂点HFO-1132(E)側及び頂点HFO-1234yf側の領域では、三成分の混合冷媒のGWPが125未満である。
図2Aにおいて、HFO-1132(E)の質量%=x、HFC-32の質量%=y及びHFO-1234yfの質量%=zとするとき、GWP=125である質量比を示す線分は、以下の式によって表わされる線分に近似される。
GWP=125である質量比を示す線分:点C及び点Dの二点を結ぶ直線cの一部(図2Aの線分CD)
y=18.0
z=100-x-y
10.1≦x≦27.8
点A及びDは、いずれも曲線d上にある。曲線dは、燃焼速度が5cm/sになる質量比を示す曲線である。曲線dよりも三角組成図の頂点HFO-1234yf側の領域では、三成分の混合冷媒は、燃焼速度が5.0cm/s未満である。
曲線dは次のようにして求められる。
表202は、HFO-1132(E)=18.0、30.0、40.0、53.5質量%であるときにWCF微燃である4点を示す。曲線dはこの4点を結ぶ線で示され、ここでHFO-1132(E)の質量%=x、HFC-32の質量%=y及びHFO-1234yfの質量%=zとした場合、曲線dは最小二乗法により表202の式で近似される。
Figure 2023179585000061
HFO-1132(E)、HFC-32及びHFO-1234yfの三元混合冷媒は、点A、B、C及びDの4点をそれぞれ結ぶ線で囲まれた領域(ABCD領域)の範囲内の質量比において、GWPが125以下、冷凍能力が対R404A比で95%以上且つ燃焼速度が5cm/s以下である。
冷媒2A1において、三成分の質量比は、該三成分を各頂点とする三角組成図において、
点A(HFO-1132(E)/HFC-32/HFO-1234yf=51.8/1.0/47.2質量%)、
点B(HFO-1132(E)/HFC-32/HFO-1234yf=35.3/1.0/63.7質量%)、
点E(HFO-1132(E)/HFC-32/HFO-1234yf=15.2/14.3/70.5質量%)及び
点F(HFO-1132(E)/HFC-32/HFO-1234yf=31.1/14.3/54.6質量%)、
の4点を通る図形で囲まれた領域の範囲内にあることが好ましい。
言い換えれば、冷媒2A1において、三成分の質量比は、該三成分を各頂点とする図2Aの三角組成図に示される:
点A(HFO-1132(E)/HFC-32/HFO-1234yf=51.8/1.0/47.2質量%)、
点B(HFO-1132(E)/HFC-32/HFO-1234yf=35.3/1.0/63.7質量%)、
点E(HFO-1132(E)/HFC-32/HFO-1234yf=15.2/14.3/70.5質量%)及び
点F(HFO-1132(E)/HFC-32/HFO-1234yf=31.1/14.3/54.6質量%)
の4点をそれぞれ結ぶ直線a、曲線b、直線e及び曲線dで囲まれた領域の範囲内にあることが好ましい。
上記三成分を各頂点とする三角組成図については、上記の通りである。
図2Aにおいて、点A、点B、点E及び点Fは白抜き丸(○)で示される、上記座標を持つ点である。
点A、Bの技術的意味は、上記の通りである。
点E及びFの技術的意味は次の通りである。また、各点の濃度(質量%)は、後述の実施例で求めた値と同一である。
E:冷凍能力がR404Aに対して95%であって、GWPが100である質量比
F:GWPが100であって、ANSI/ASHRAE34-2013規格に従い測定された燃焼速度が5cm/sである、GWP=100の質量比
直線a及び曲線bについては、上記の通りである。点Eは曲線b上にある。
点E及びFは、いずれも直線e上にある。すなわち、線分EFは直線eの一部である。直線eは、GWPが100である質量比を示す直線である。直線eよりも三角組成図の頂点HFO-1132(E)側及び頂点HFO-1234yf側の領域では、三成分の混合冷媒のGWPが100未満である。
図2Aにおいて、HFO-1132(E)の質量%=x、HFC-32の質量%=y及びHFO-1234yfの質量%=zとするとき、GWP=100である質量比を示す線分は、以下の式によって表わされる線分に近似される。
GWP=100である質量比を示す線分:点E及び点Fの二点を結ぶ直線eの一部(図2Aの線分EF)
y=14.3
z=100-x-y
15.2≦x≦31.1
点A及びFは、いずれも曲線d上にある。曲線dについては、上記の通りである。
HFO-1132(E)、HFC-32及びHFO-1234yfの三元混合冷媒は、点A、B、E及びFの4点をそれぞれ結ぶ線で囲まれた領域(ABEF領域)の範囲内の質量比において、GWPが100以下、冷凍能力が対R404A比で95%以上且つ燃焼速度が5.0cm/s以下である。
冷媒2A1は、HFO-1132(E)、HFC-32及びHFO-1234yfをこれらの濃度の総和で99.5質量%以上含有するが、その中でも、冷媒2A1全体におけるHFO-1132(E)、HFC-32及びHFO-1234yfの合計量が99.7質量%以上であれば好ましく、99.8質量%以上であればより好ましく、99.9質量%以上であれば更に好ましい。
冷媒2A1は、上記の特性を損なわない範囲内で、HFO-1132(E)、HFC-32及びHFO-1234yfに加えて、更に他の冷媒を含むことができる。この場合、冷媒2A1全体における他の冷媒の含有割合は0.5質量%以下が好ましく、0.3質量%以下がより好ましく、0.2質量%以下が更に好ましく、0.1質量%以下が特に好ましい。他の冷媒としては、特に限定されず、この分野で広く使用されている公知の冷媒の中から幅広く選択できる。冷媒2A1は、他の冷媒を単独で含んでいてもよいし、他の冷媒を2種以上含んでいてもよい。
冷媒2A1は、HFO-1132(E)、HFC-32及びHFO-1234yfのみからなることが特に好ましい。換言すると、冷媒2A1は、冷媒2A1全体におけるHFO-1132(E)、HFC-32及びHFO-1234yfの総濃度が100質量%であることが特に好ましい。
冷媒2A1は、HFO-1132(E)、HFC-32及びHFO-1234yfのみからなる場合、三成分の質量比は、該三成分を各頂点とする三角組成図において、
点A(HFO-1132(E)/HFC-32/HFO-1234yf=51.8/1.0/47.2質量%)、
点B(HFO-1132(E)/HFC-32/HFO-1234yf=35.3/1.0/63.7質量%)、
点C(HFO-1132(E)/HFC-32/HFO-1234yf=10.1/18.0/71.9質量%)及び
点D(HFO-1132(E)/HFC-32/HFO-1234yf=27.8/18.0/54.2質量%)、
の4点を通る図形で囲まれた領域の範囲内にあることが好ましい。
点A、B、C及びDの技術的意味は、上記の通りである。点A、B、C及びDの4点を通る図形で囲まれた領域については、上記の通りである。
この場合、HFO-1132(E)、HFC-32及びHFO-1234yfの三元混合冷媒は、点A、B、C及びDの4点をそれぞれ結ぶ線で囲まれた領域(ABCD領域)の範囲内の質量比において、GWPが125以下、冷凍能力が対R404A比で95%以上且つ燃焼速度が5.0cm/s以下である。
冷媒2A1は、HFO-1132(E)、HFC-32及びHFO-1234yfのみからなる場合、三成分の質量比は、該三成分を各頂点とする三角組成図において、
点A(HFO-1132(E)/HFC-32/HFO-1234yf=51.8/1.0/47.2質量%)、
点B(HFO-1132(E)/HFC-32/HFO-1234yf=35.3/1.0/63.7質量%)、
点E(HFO-1132(E)/HFC-32/HFO-1234yf=15.2/14.3/70.5質量%)及び
点F(HFO-1132(E)/HFC-32/HFO-1234yf=31.1/14.3/54.6質量%)、
の4点を通る図形で囲まれた領域の範囲内にあることがより好ましい。
点A、B、E及びFの技術的意味は、上記の通りである。点A、B、E及びFの4点を通る図形で囲まれた領域については、上記の通りである。
この場合、HFO-1132(E)、HFC-32及びHFO-1234yfの三元混合冷媒は、点A、B、E及びFの4点をそれぞれ結ぶ線で囲まれた領域(ABEF領域)の範囲内の質量比において、GWPが100以下、冷凍能力が対R404A比で95%以上且つ燃焼速度が5.0cm/s以下である。
冷媒2A1は、GWPが125以下であることによって、地球温暖化の観点から他の汎用冷媒と比べて顕著に環境負荷を抑えることができる。
(1-6-1-2)冷媒2A2
冷媒2A2は、HFO-1132(E)、HFC-32及びHFO-1234yfを必須成分として含有する混合冷媒である。以下、本項目において、HFO-1132(E)、HFC-32及びHFO-1234yfを「三成分」とも称する。
冷媒2A2全体における、三成分の総濃度は99.5質量%以上である。換言すると、冷媒2A2は、三成分をこれらの濃度の総和で99.5質量%以上含有する。
冷媒2A2において、三成分の質量比は、該三成分を各頂点とする三角組成図において、
点P(HFO-1132(E)/HFC-32/HFO-1234yf=45.6/1.0/53.4質量%)、
点B(HFO-1132(E)/HFC-32/HFO-1234yf=35.3/1.0/63.7質量%)、
点Q(HFO-1132(E)/HFC-32/HFO-1234yf=1.0/24.8/74.2質量%)、
点R(HFO-1132(E)/HFC-32/HFO-1234yf=1.0/29.2/69.8質量%)及び
点S(HFO-1132(E)/HFC-32/HFO-1234yf=6.5/29.2/64.3質量%)、
の5点を通る図形で囲まれた領域の範囲内にある、組成物。
言い換えれば、冷媒2A2において、三成分の質量比は、該三成分を各頂点とする図2Bの三角組成図に示される:
点P(HFO-1132(E)/HFC-32/HFO-1234yf=45.6/1.0/53.4質量%)、
点B(HFO-1132(E)/HFC-32/HFO-1234yf=35.3/1.0/63.7質量%)、
点Q(HFO-1132(E)/HFC-32/HFO-1234yf=1.0/24.8/74.2質量%)、
点R(HFO-1132(E)/HFC-32/HFO-1234yf=1.0/29.2/69.8質量%)及び
点S(HFO-1132(E)/HFC-32/HFO-1234yf=6.5/29.2/64.3質量%)、
の5点をそれぞれ結ぶ直線p、曲線q、直線r、直線s及び曲線tで囲まれた領域の範囲内にある。
本項目において、三成分を各頂点とする三角組成図とは、図2Bに示すように、上記三成分(HFO-1132(E)、HFC-32及びHFO-1234yf)を頂点とし、HFO-1132(E)、HFC-32及びHFO-1234yfの濃度の総和を100質量%とする三成分組成図を意味する。
冷媒2A2は、このような構成を有することによって、(1)GWPが十分に小さいこと(200以下)、(2)R404Aの代替冷媒として用いた場合に、R404Aと同等以上の冷凍能力及び成績係数(COP)を有すること、並びに(3)40℃での圧力が1.85MPa以下であるという諸特性を有する。
本項目において、R404Aと同等以上の成績係数(COP)とは、R404Aに対するCOP比が100%以上(好ましくは102%以上、より好ましくは103%以上)であることを意味する。R404Aと同等以上の冷凍能力とは、R404Aに対する冷凍能力比が95%以上(好ましくは100%以上、より好ましくは102以上、最も好ましくは103%以上)であることを意味する。GWPが十分に小さいとは、GWPが200以下、好ましくは150以下、より好ましくは125以下、更に好ましくは100以下であることを意味する。
図2Bにおいて、点P、点B、点Q、点R及び点Sは白抜き丸(○)で示される、上記座標を持つ点である。
点P、点B、点Q、点R及び点Sの技術的意味は次の通りである。また、各点の濃度(質量%)は、後述の実施例で求めた値と同一である。
P:40℃での圧力が1.85MPaであって、HFC-32の濃度(質量%)が1.0質量%である質量比
B:HFC-32の濃度(質量%)が1.0質量%であって、冷凍能力がR404Aに対して95%である質量比
Q:冷凍能力がR404Aに対して95%であって、HFO-1132(E)の濃度(質量%)が1.0質量%である質量比
R:HFO-1132(E)の濃度(質量%)が1.0質量%であって、GWPが200である質量比
S:GWPが200であって、40℃での圧力が1.85MPaである質量比
「40℃での圧力が1.85MPaになる質量比」とは、温度40(℃)での飽和圧力が1.85MPaである質量比を意味する。
冷媒2A2において、三成分の混合冷媒の40℃での飽和圧力が1.85MPaを超えた場合、R404A用の冷凍装置からの設計変更が必要となる。三成分の混合冷媒の40℃での飽和圧力は、1.50~1.85MPaが好ましく、1.60~1.85MPaがより好ましく、1.70~1.85MPaが更に好ましく、1.75~1.85MPaが特に好ましい。
点P及びBは、いずれも直線p上にある。すなわち、線分PBは直線pの一部である。直線pは、HFC-32の濃度(質量%)が1.0質量%である質量比を示す直線である。直線pよりも三角組成図の頂点HFC-32側の領域では、三成分の混合冷媒のHFC-32の濃度が1.0質量%を超える。また、直線pよりも三角組成図の頂点HFC-32側の領域では、予想外に冷凍能力が大きい。
図2Bにおいて、HFO-1132(E)の質量%=x、HFC-32の質量%=y及びHFO-1234yfの質量%=zとするとき、HFC-32の濃度が1.0質量%である質量比を示す線分は、以下の式によって表わされる線分に近似される。
HFC-32の濃度(質量%)が1.0質量%である質量比を示す線分:点P及び点Bの二点を結ぶ直線pの一部(図2Bの線分PB)
y=1.0
z=100-x-y
35.3≦x≦45.6
点B及びQは、いずれも曲線q上にある。曲線qは、冷凍能力がR404Aに対して95%になる質量比を示す曲線である。曲線qよりも三角組成図の頂点HFO-1132(E)側及び頂点HFC-32側の領域では、三成分の混合冷媒の冷凍能力がR404Aに対して95%を超える。
曲線qは次のようにして求められる。
表203は、HFO-1132(E)=1.0、10.1、20.0、35.3質量%(mass%)であるときに対R404Aとの冷凍能力比が95%である4点を示す。曲線qはこの4点を結ぶ線で示され、ここでHFO-1132(E)の質量%=x、HFC-32の質量%=y及びHFO-1234yfの質量%=zとした場合、曲線qは最小二乗法により表203の式で近似される。
Figure 2023179585000062
点Q及びRは、いずれも直線r上にある。すなわち、線分QRは直線rの一部である。直線rは、HFO-1132(E)の濃度(質量%)が1.0質量%である質量比を示す直線である。直線rよりも三角組成図の頂点HFO-1132(E)側の領域では、三成分の混合冷媒のHFO-1132(E)の濃度が1.0質量%を超える。また、直線rよりも三角組成図の頂点HFO-1132(E)側の領域では、予想外に冷凍能力が大きい。
図2Bにおいて、HFO-1132(E)の質量%=x、HFC-32の質量%=y及びHFO-1234yfの質量%=zとするとき、HFO-1132(E)の濃度が1.0質量%である質量比を示す線分は、以下の式によって表わされる線分に近似される。
HFO-1132(E)の濃度(質量%)が1.0質量%である質量比を示す線分:点Q及び点Rの二点を結ぶ直線rの一部(図2Bの線分QR)
x=1.0
z=100-x-y
24.8≦y≦29.2
点R及びSは、いずれも直線s上にある。すなわち、線分RSは直線sの一部である。直線sは、GWPが200である質量比を示す直線である。直線sよりも三角組成図の頂点HFO-1132(E)側及び頂点HFO-1234yf側の領域では、三成分の混合冷媒のGWPが200未満である。
図2Bにおいて、HFO-1132(E)の質量%=x、HFC-32の質量%=y及びHFO-1234yfの質量%=zとするとき、GWP=200である質量比を示す線分は、以下の式によって表わされる線分に近似される。
GWP=200である質量比を示す線分:点R及び点Sの二点を結ぶ直線sの一部(図2Bの線分RS)
y=29.2
z=100-x-y
1.0≦x≦6.5
点P及びSは、いずれも曲線t上にある。曲線tは、40℃での圧力が1.85MPaになる質量比を示す曲線である。曲線tよりも三角組成図の頂点HFO-1234yf側の領域では、三成分の混合冷媒の40℃での圧力が1.85MPa未満である。
曲線tは次のようにして求められる。
表204は、HFO-1132(E)=5.95、18.00、32.35、47.80質量%であるときに40℃での圧力が1.85MPaである4点を示す。曲線tはこの4点を結ぶ線で示され、ここでHFO-1132(E)の質量%=x、HFC-32の質量%=y及びHFO-1234yfの質量%=zとした場合、曲線tは最小二乗法により表204の式で近似される。
Figure 2023179585000063
HFO-1132(E)、HFC-32及びHFO-1234yfの三元混合冷媒は、点P、B、Q、R及びSの5点をそれぞれ結ぶ線で囲まれた領域(PBQRS領域)の範囲内の質量比において、GWPが200以下、冷凍能力が対R404A比で95%以上且つ40℃での圧力が1.85MPa以下である。
冷媒2A2は、HFO-1132(E)、HFC-32及びHFO-1234yfをこれらの濃度の総和で99.5質量%以上含有するが、その中でも、冷媒2A2全体におけるHFO-1132(E)、HFC-32及びHFO-1234yfの合計量が99.7質量%以上であれば好ましく、99.8質量%以上であればより好ましく、99.9質量%以上であれば更に好ましい。
冷媒2A2は、上記の特性を損なわない範囲内で、HFO-1132(E)、HFC-32及びHFO-1234yfに加えて、更に他の冷媒を含むことができる。この場合、冷媒2A2全体における他の冷媒の含有割合は0.5質量%以下が好ましく、0.3質量%以下がより好ましく、0.2質量%以下が更に好ましく、0.1質量%以下が特に好ましい。他の冷媒としては、特に限定されず、この分野で広く使用されている公知の冷媒の中から幅広く選択できる。冷媒2A2は、他の冷媒を単独で含んでいてもよいし、他の冷媒を2種以上含んでいてもよい。
冷媒2A2は、HFO-1132(E)、HFC-32及びHFO-1234yfのみからなることが特に好ましい。換言すると、冷媒2A2は、冷媒2A2全体におけるHFO-1132(E)、HFC-32及びHFO-1234yfの総濃度が100質量%であることが特に好ましい。
冷媒2A2は、HFO-1132(E)、HFC-32及びHFO-1234yfのみからなる場合、三成分の質量比は、該三成分を各頂点とする三角組成図において、
点P(HFO-1132(E)/HFC-32/HFO-1234yf=45.6/1.0/53.4質量%)、
点B(HFO-1132(E)/HFC-32/HFO-1234yf=35.3/1.0/63.7質量%)、
点Q(HFO-1132(E)/HFC-32/HFO-1234yf=1.0/24.8/74.2質量%)、
点R(HFO-1132(E)/HFC-32/HFO-1234yf=1.0/29.2/69.8質量%)及び
点S(HFO-1132(E)/HFC-32/HFO-1234yf=6.5/29.2/64.3質量%)、
の5点を通る図形で囲まれた領域の範囲内にあることが好ましい。
点P、点B、点Q、点R及び点Sの技術的意味は、上記の通りである。点P、点B、点Q、点R及び点Sの5点を通る図形で囲まれた領域については、上記の通りである。
この場合、HFO-1132(E)、HFC-32及びHFO-1234yfの三元混合冷媒は、点P、B、Q、R及びSの5点をそれぞれ結ぶ線で囲まれた領域(PBQRS領域)の範囲内の質量比において、GWPが300以下、冷凍能力が対R404A比で95%以上且つ40℃での圧力が1.85MPaである。
冷媒2A2は、GWPが200以下であることによって、地球温暖化の観点から他の汎用冷媒と比べて顕著に環境負荷を抑えることができる。
[冷媒2Aの実施例]
以下に、実施例を挙げて更に詳細に説明する。ただし、本開示は、これらの実施例に限定されるものではない。
試験例1
実施例1-1~1-11、比較例1-1~1-6及び参考例1-1(R404A)に示される混合冷媒のGWPは、IPCC(Intergovernmental Panel on Climate Change)第4次報告書の値に基づいて評価した。
これらの混合冷媒のCOP、冷凍能力及び40℃での飽和圧力は、National Institute of Science and Technology(NIST)、Reference Fluid Thermodynamic and Transport Properties Database(Refprop 9.0)を使用し、以下の条件で混合冷媒の冷凍サイクル理論計算を実施することにより求めた。
蒸発温度 -40℃
凝縮温度 40℃
過熱温度 20K
過冷却温度 0K
圧縮機効率 70%
試験例1の結果を表205及び表206に示す。表205及び206は、本開示の冷媒2A1の実施例及び比較例を示している。表205及び206中、「COP比(対R404A)」及び「冷凍能力比(対R404A)」とは、R404Aに対する割合(%)を示す。表205及び6中、「飽和圧力(40℃)」とは、飽和温度40℃における飽和圧力を示す。
成績係数(COP)は、次式により求めた。
COP=(冷凍能力又は暖房能力)/消費電力量
混合冷媒の燃焼性は、混合冷媒の混合組成をWCF濃度とし、ANSI/ASHRAE34-2013規格に従い燃焼速度を測定することにより、判断した。
燃焼速度試験は以下の通り行った。まず、使用した混合冷媒は99.5%又はそれ以上の純度とし、真空ゲージ上に空気の痕跡が見られなくなるまで凍結、ポンピング及び解凍のサイクルを繰り返すことにより脱気した。閉鎖法により燃焼速度を測定した。初期温度は周囲温度とした。点火は、試料セルの中心で電極間に電気的スパークを生じさせることにより行った。放電の持続時間は1.0~9.9msとし、点火エネルギーは典型的には約0.1~1.0Jであった。シュリーレン写真を使って炎の広がりを視覚化した。光を通す2つのアクリル窓を備えた円筒形容器(内径:155mm、長さ:198mm)を試料セルとして用い、光源としてはキセノンランプを用いた。炎のシュリーレン画像を高速デジタルビデオカメラで600fpsのフレーミング速度で記録し、PCに保存した。燃焼速度が計測できない場合(0cm/s)は「なし(不燃)」とした。
混合冷媒の燃焼範囲は、ASTM E681-09に基づく測定装置(図1Tを参照)を用いて測定を実施した。具体的には、燃焼の状態が目視および録画撮影できるように内容積12リットルの球形ガラスフラスコを使用し、ガラスフラスコは燃焼により過大な圧力が発生した際には上部のふたからガスが開放されるようにした。着火方法は底部から1/3の高さに保持された電極からの放電により発生させた。
<試験条件>
試験容器:280mmφ球形(内容積:12リットル)
試験温度:60℃±3℃
圧力:101.3kPa±0.7kPa
水分:乾燥空気1gにつき0.0088g±0.0005g(23℃における相対湿度50%の水分量)
冷媒組成物/空気混合比:1vol.%刻み±0.2vol.%
冷媒組成物混合:±0.1質量%
点火方法:交流放電、電圧15kV、電流30mA、ネオン変圧器
電極間隔:6.4mm(1/4inch)
スパーク:0.4秒±0.05秒
判定基準:
・着火点を中心に90度より大きく火炎が広がった場合=火炎伝播あり(可燃)
・着火点を中心に90度以下の火炎の広がりだった場合=火炎伝播なし(不燃)
Figure 2023179585000064
Figure 2023179585000065
試験例2
実施例2-1~2-11、比較例2-1~2-5及び参考例2-1(R404A)に示される混合冷媒のGWPは、IPCC第4次報告書の値に基づいて評価した。
これらの混合冷媒のCOP、冷凍能力及び40℃での飽和圧力は、National Institute of Science and Technology(NIST)、Reference Fluid Thermodynamic and Transport Properties Database(Refprop 9.0)を使用し、以下の条件で混合冷媒の冷凍サイクル理論計算を実施することにより求めた。
蒸発温度 -40℃
凝縮温度 40℃
過熱温度 20K
過冷却温度 0K
圧縮機効率 70%
試験例2の結果を表207及び208に示す。表207及び208は、本開示の冷媒2A2の実施例及び比較例を示している。表207及び208中、各用語の意味は、試験例1と同様である。
成績係数(COP)は、次式により求めた。
COP=(冷凍能力又は暖房能力)/消費電力量
混合冷媒の燃焼性は、試験例1と同様にして判断した。燃焼速度試験は、試験例1と同様にして行った。
混合冷媒の燃焼範囲は、ASTM E681-09に基づく測定装置(図1Tを参照)を用いて、試験例1と同様の方法及び試験条件で測定した。
Figure 2023179585000066
Figure 2023179585000067
(1-6-2)冷媒2B
冷媒2Bは、HFO-1132(E)、HFO-1123及びHFO-1234yfを必須成分として含有する混合冷媒である。以下、本項目において、HFO-1132(E)、HFO-1123及びHFO-1234yfを「三成分」とも称する。
冷媒2B全体における、三成分の総濃度は99.5質量%以上である。換言すると、冷媒2Bは、三成分をこれらの濃度の総和で99.5質量%以上含有する。
冷媒2Bにおいて、三成分の質量比は、該三成分を各頂点とする三角組成図において、
点A(HFO-1132(E)/HFO-1123/HFO-1234yf=42.5/1.0/56.5質量%)、
点B(HFO-1132(E)/HFO-1123/HFO-1234yf=27.1/1.0/71.9質量%)、
点C(HFO-1132(E)/HFO-1123/HFO-1234yf=1.0/30.4/68.6質量%)、
点D(HFO-1132(E)/HFO-1123/HFO-1234yf=1.0/57.0/42.0質量%)及び
点E(HFO-1132(E)/HFO-1123/HFO-1234yf=42.5/24.1/33.4質量%)
の5点を通る図形で囲まれた領域の範囲内にある。
言い換えれば、冷媒2Bにおいて、三成分の質量比は、該三成分を各頂点とする図2Cの三角組成図に示される:
点A(HFO-1132(E)/HFO-1123/HFO-1234yf=42.5/1.0/56.5質量%)、
点B(HFO-1132(E)/HFO-1123/HFO-1234yf=27.1/1.0/71.9質量%)、
点C(HFO-1132(E)/HFO-1123/HFO-1234yf=1.0/30.4/68.6質量%)、
点D(HFO-1132(E)/HFO-1123/HFO-1234yf=1.0/57.0/42.0質量%)及び
点E(HFO-1132(E)/HFO-1123/HFO-1234yf=42.5/24.1/33.4質量%)
の5点をそれぞれ結ぶ直線a、曲線b、直線c、曲線d及び直線eで囲まれた領域の範囲内にある。
本項目において、三成分を各頂点とする三角組成図とは、図2Cに示すように、上記三成分(HFO-1132(E)、HFO-1123及びHFO-1234yf)を頂点とし、HFO-1132(E)、HFO-1123及びHFO-1234yfの濃度の総和を100質量%とする三成分組成図を意味する。
冷媒2Bは、このような構成を有することによって、(1)GWPが十分に小さいこと(125以下)、(2)R404Aの代替冷媒として用いた場合に、R404Aと同等又はそれ以上の冷凍能力を有すること、(3)R404Aと同等以上の成績係数(COP)を有すること、並びに(4)ANSI/ASHRAE34-2013規格に従い測定された燃焼速度が5cm/s以下であること、という諸特性を有する。
本開示において、R404Aと同等以上の成績係数(COP)とは、R404Aに対するCOP比が100%以上(好ましくは101%以上、より好ましくは102%以上、特に好ましくは103%以上)であることを意味する。
本開示において、R404Aと同等又はそれ以上の冷凍能力とは、R404Aに対する冷凍能力比が85%以上(好ましくは90%以上、より好ましくは95%以上、更に好ましくは100%以上、特に好ましくは102%以上)であることを意味する。
本開示において、GWPが十分に小さいとは、GWPが125以下、好ましくは110以下、より好ましくは100以下、特に好ましくは75以下であることを意味する。
図2Cにおいて、点A、点B、点C、点D及び点Eは白抜き丸(○)で示される、上記座標を持つ点である。
点A、B、C、D及びEの技術的意味は次の通りである。また、各点の濃度(質量%)は、後述の実施例で求めた値と同一である。
A:ANSI/ASHRAE34-2013規格に従い測定された燃焼速度が3.0cm/sであって、HFO-1123の濃度(質量%)が1.0質量%である質量比
B:HFO-1123の濃度(質量%)が1.0質量%であって、冷凍能力がR404Aに対して85%である質量比
C:冷凍能力がR404Aに対して85%であって、HFO-1132(E)の濃度(質量%)が1.0質量%である質量比
D:HFO-1132(E)の濃度(質量%)が1.0質量%であって、40℃での飽和圧力が2.25MPaである質量比
E:40℃での飽和圧力が2.25MPaであって、ANSI/ASHRAE34-2013規格に従い測定された燃焼速度が3.0cm/sである質量比
「ANSI/ASHRAE34-2013規格に従い測定された燃焼速度が3.0cm/s」とは、ANSI/ASHRAE34-2013規格でのクラス2L(微燃)に区分するための基準である燃焼速度(10cm/s)の半分未満の数値であり、クラス2Lに規定される冷媒の中でも比較的安全であることを意味する。
具体的には、「燃焼速度(10cm/s)の半分未満の数値」であると、万が一着火した場合にも火炎が伝播しにくいという点で比較的安全である。なお、以下ANSI/ASHRAE34-2013規格に従い測定された燃焼速度を、単に「燃焼速度」とも称する。
冷媒2Bにおいて、三成分の混合冷媒の燃焼速度は、0超2.5cm/s以下が好ましく、0超2.0cm/s以下がより好ましく、0超1.5cm/s以下が更に好ましい。
点A及びBは、いずれも直線a上にある。すなわち、線分ABは直線aの一部である。直線aは、HFO-1123の濃度(質量%)が1.0質量%である質量比を示す直線である。直線aよりも三角組成図の頂点HFO-1123側の領域では、三成分の混合冷媒のHFO-1123の濃度が1.0質量%を超える。
図2Cにおいて、HFO-1132(E)の質量%=x、HFO-1123の質量%=y及びHFO-1234yfの質量%=zとするとき、HFO-1123の濃度が1.0質量%である質量比を示す線分は、以下の式によって表わされる線分に近似される。
HFO-1123の濃度(質量%)が1.0質量%である質量比を示す線分:点A及び点Bの二点を結ぶ直線cの一部(図2Cの線分AB)
y=1.0
z=100-x-y
27.1≦x≦42.5
点B及びCは、いずれも曲線b上にある。曲線bは、冷凍能力がR404Aに対して85%である質量比を示す曲線である。曲線bよりも三角組成図の頂点HFO-1132(E)側及び頂点HFO-1123側の領域では、三成分の混合冷媒の冷凍能力がR404Aに対して85%を超える。
曲線bは次のようにして求められる。
表209は、HFO-1132(E)=1.0、15.0、27.1質量%(mass%)であるときに対R404Aとの冷凍能力比が85%である3点を示す。曲線bはこの3点を結ぶ線で示され、ここでHFO-1132(E)の質量%=x、HFO-1123の質量%=y及びHFO-1234yfの質量%=zとした場合、曲線bは最小二乗法により表209の式で近似される。
Figure 2023179585000068
点C及びDは、いずれも直線c上にある。すなわち、線分CDは直線cの一部である。直線cは、HFO-1132(E)の濃度(質量%)が1.0質量%である質量比を示す直線である。直線cよりも三角組成図の頂点HFO-1132(E)側の領域では、三成分の混合冷媒のHFO-1132(E)の濃度が1.0質量%を超える。
図2Cにおいて、HFO-1132(E)の質量%=x、HFO-1123の質量%=y及びHFO-1234yfの質量%=zとするとき、HFO-1132(E)の濃度(質量%)が1.0質量%である質量比を示す線分は、以下の式によって表わされる線分に近似される。
HFO-1132(E)の濃度(質量%)が1.0質量%である質量比を示す線分:点C及び点Dの二点を結ぶ直線cの一部(図2Cの線分CD)
x=1.0
z=100-x-y
30.4≦y≦57.0
点D及びEは、いずれも曲線d上にある。曲線dは、40℃での飽和圧力が2.25MPaである質量比を示す曲線である。曲線dよりも三角組成図の頂点HFO-1234yf側の領域では、三成分の混合冷媒は、40℃での飽和圧力が2.25MPa未満である。
曲線dは次のようにして求められる。
表210は、HFO-1132(E)=1.0、20.0、42.5質量%であるときに40℃での飽和圧力が2.25MPaである3点を示す。曲線dはこの3点を結ぶ線で示され、ここでHFO-1132(E)の質量%=x、HFO-1123の質量%=y及びHFO-1234yfの質量%=zとした場合、曲線dは最小二乗法により表210の式で近似される。
Figure 2023179585000069
点A及びEは、いずれも直線e上にある。直線eは、燃焼速度が3.0cm/sになる質量比を示す直線である。直線eよりも三角組成図の頂点HFO-1234yf側及び頂点HFO-1123側の領域では、三成分の混合冷媒は、燃焼速度が3.0cm/s未満である。
図2Cにおいて、HFO-1132(E)の質量%=x、HFO-1123の質量%=y及びHFO-1234yfの質量%=zとするとき、燃焼速度が3.0cm/sである質量比は、以下の式によって表わされる線分に近似される。
燃焼速度が3.0cm/sである質量比を示す線分:点A及び点Eの二点を結ぶ直線eの一部(図2Cの線分AE)
x=42.5
z=100-x-y
1.0≦y≦24.1
HFO-1132(E)、HFO-1123及びHFO-1234yfの三元混合冷媒は、点A、B、C、D及びEの5点をそれぞれ結ぶ線で囲まれた領域(ABCDE領域)の範囲内の質量比において、(1)GWPが125以下であること、(2)冷凍能力が対R404A比で85%以上であること、(3)40℃での飽和圧力が2.25MPa以下であること、及び(4)燃焼速度が3.0cm/s以下であること、という諸特性を有する。
冷媒2Bにおいて、三成分の質量比は、該三成分を各頂点とする三角組成図において、
点A(HFO-1132(E)/HFO-1123/HFO-1234yf=42.5/1.0/56.5質量%)、
点B(HFO-1132(E)/HFO-1123/HFO-1234yf=27.1/1.0/71.9質量%)、
点C(HFO-1132(E)/HFO-1123/HFO-1234yf=1.0/30.4/68.6質量%)、
点F(HFO-1132(E)/HFO-1123/HFO-1234yf=1.0/52.2/46.8質量%)及び
点G(HFO-1132(E)/HFO-1123/HFO-1234yf=42.5/18.9/38.6質量%)
の5点を通る図形で囲まれた領域の範囲内にあることが好ましい。
言い換えれば、冷媒2Bにおいて、三成分の質量比は、該三成分を各頂点とする図2Cの三角組成図に示される:
点A(HFO-1132(E)/HFO-1123/HFO-1234yf=42.5/1.0/56.5質量%)、
点B(HFO-1132(E)/HFO-1123/HFO-1234yf=27.1/1.0/71.9質量%)、
点C(HFO-1132(E)/HFO-1123/HFO-1234yf=1.0/30.4/68.6質量%)、
点F(HFO-1132(E)/HFO-1123/HFO-1234yf=1.0/52.2/46.8質量%)及び
点G(HFO-1132(E)/HFO-1123/HFO-1234yf=42.5/18.9/38.6質量%)
の5点をそれぞれ結ぶ直線a、曲線b、直線c、曲線f及び直線eで囲まれた領域の範囲内にあることが好ましい。
上記三成分を各頂点とする三角組成図については、上記の通りである。
図2Cにおいて、点A、点B、点C、点F及び点Gは白抜き丸(○)で示される、上記座標を持つ点である。
点A、B及びCの技術的意味は、上記の通りである。
点F及びGの技術的意味は次の通りである。また、各点の濃度(質量%)は、後述の実施例で求めた値と同一である。
F:HFO-1132(E)の濃度(質量%)が1.0質量%であって、40℃での飽和圧力が2.15MPaである質量比
G:40℃での飽和圧力が2.15MPaであって、ANSI/ASHRAE34-2013規格に従い測定された燃焼速度が3.0cm/sである質量比
直線a、曲線b、直線c及び直線eについては、上記の通りである。点Fは直線c上にあり、点Gは直線e上にある。
点F及びGは、いずれも曲線f上にある。曲線fは、40℃での飽和圧力が2.15MPaである質量比を示す曲線である。曲線fよりも三角組成図の頂点HFO-1234yf側の領域では、三成分の混合冷媒は、40℃での飽和圧力が2.15MPa未満である。
曲線fは次のようにして求められる。
表211は、HFO-1132(E)=1.0、20.0、42.5質量%であるときに40℃での飽和圧力が2.25MPaである3点を示す。曲線fはこの3点を結ぶ線で示され、ここでHFO-1132(E)の質量%=x、HFO-1123の質量%=y及びHFO-1234yfの質量%=zとした場合、曲線fは最小二乗法により表211の式で近似される。
Figure 2023179585000070
HFO-1132(E)、HFO-1123及びHFO-1234yfの三元混合冷媒は、点A、B、C、F及びGの5点をそれぞれ結ぶ線で囲まれた領域(ABCFG領域)の範囲内の質量比において、(1)GWPが125以下であること、(2)冷凍能力が対R404A比で85%以上であること、(3)40℃での飽和圧力が2.15MPa以下であること、及び(4)燃焼速度が3.0cm/s以下であること、という諸特性を有する。
冷媒2Bにおいて、三成分の質量比は、該三成分を各頂点とする三角組成図において、
点A(HFO-1132(E)/HFO-1123/HFO-1234yf=42.5/1.0/56.5質量%)、
点B(HFO-1132(E)/HFO-1123/HFO-1234yf=27.1/1.0/71.9質量%)、
点C(HFO-1132(E)/HFO-1123/HFO-1234yf=1.0/30.4/68.6質量%)、
点H(HFO-1132(E)/HFO-1123/HFO-1234yf=1.0/35.2/63.8質量%)、
点I(HFO-1132(E)/HFO-1123/HFO-1234yf=27.4/29.8/42.8質量%)及び
点G(HFO-1132(E)/HFO-1123/HFO-1234yf=42.5/18.9/38.6質量%)
の6点を通る図形で囲まれた領域の範囲内にあることが好ましい。
言い換えれば、冷媒2Bにおいて、三成分の質量比は、該三成分を各頂点とする図2Cの三角組成図に示される:
点A(HFO-1132(E)/HFO-1123/HFO-1234yf=42.5/1.0/56.5質量%)、
点B(HFO-1132(E)/HFO-1123/HFO-1234yf=27.1/1.0/71.9質量%)、
点C(HFO-1132(E)/HFO-1123/HFO-1234yf=1.0/30.4/68.6質量%)、
点H(HFO-1132(E)/HFO-1123/HFO-1234yf=1.0/35.2/63.8質量%)、
点I(HFO-1132(E)/HFO-1123/HFO-1234yf=27.4/29.8/42.8質量%)及び
点G(HFO-1132(E)/HFO-1123/HFO-1234yf=42.5/18.9/38.6質量%)
の6点をそれぞれ結ぶ直線a、曲線b、直線c、曲線g、曲線f及び直線eで囲まれた領域の範囲内にあることが好ましい。
上記三成分を各頂点とする三角組成図については、上記の通りである。
図2Cにおいて、点A、点B、点C、点G、点H及び点Iは白抜き丸(○)で示される、上記座標を持つ点である。
点A、B、C及びGの技術的意味は、上記の通りである。
点H及びIの技術的意味は次の通りである。また、各点の濃度(質量%)は、後述の実施例で求めた値と同一である。
H:HFO-1132(E)の濃度(質量%)が1.0質量%であって、COPがR404Aに対して100%である質量比
I:COPがR404Aに対して100%であって、40℃での飽和圧力が2.15MPaである質量比
直線a、曲線b、直線c、直線e及び曲線fについては、上記の通りである。点Hは直線c上にあり、点Iは曲線f上にある。
点H及びIは、いずれも曲線g上にある。曲線gは、COPがR404Aに対して100%である質量比を示す曲線である。曲線gよりも三角組成図の頂点HFO-1132(E)側及び頂点HFO-1234yf側の領域では、三成分の混合冷媒は、COPがR404Aに対して100%未満である。
曲線gは次のようにして求められる。
表212は、HFO-1132(E)=1.0、20.0、42.5質量%であるときに40℃での飽和圧力が2.25MPaである3点を示す。曲線fはこの3点を結ぶ線で示され、ここでHFO-1132(E)の質量%=x、HFO-1123の質量%=y及びHFO-1234yfの質量%=zとした場合、曲線fは最小二乗法により表212の式で近似される。
Figure 2023179585000071
HFO-1132(E)、HFO-1123及びHFO-1234yfの三元混合冷媒は、点A、B、C、H、I及びGの6点をそれぞれ結ぶ線で囲まれた領域(ABCHIG領域)の範囲内の質量比において、(1)GWPが125以下であること、(2)冷凍能力が対R404A比で85%以上であること、(3)COPが対R404A比で100%以上であること、(4)40℃での飽和圧力が2.15MPa以下であること、及び(5)燃焼速度が3.0cm/s以下であること、という諸特性を有する。
冷媒2Bは、HFO-1132(E)、HFO-1123及びHFO-1234yfをこれらの濃度の総和で99.5質量%以上含有するが、その中でも、冷媒2B全体におけるHFO-1132(E)、HFO-1123及びHFO-1234yfの合計量が99.7質量%以上であれば好ましく、99.8質量%以上であればより好ましく、99.9質量%以上であれば更に好ましい。
冷媒2Bは、上記の特性を損なわない範囲内で、HFO-1132(E)、HFO-1123及びHFO-1234yfに加えて、更に他の冷媒を含むことができる。この場合、冷媒2B全体における他の冷媒の含有割合は0.5質量%以下が好ましく、0.3質量%以下がより好ましく、0.2質量%以下が更に好ましく、0.1質量%以下が特に好ましい。他の冷媒としては、特に限定されず、この分野で広く使用されている公知の冷媒の中から幅広く選択できる。冷媒2Bは、他の冷媒を単独で含んでいてもよいし、他の冷媒を2種以上含んでいてもよい。
冷媒2Bは、HFO-1132(E)、HFO-1123及びHFO-1234yfのみからなることが特に好ましい。換言すると、冷媒2Bは、冷媒2B全体におけるHFO-1132(E)、HFO-1123及びHFO-1234yfの総濃度が100質量%であることが特に好ましい。
冷媒2Bは、HFO-1132(E)、HFO-1123及びHFO-1234yfのみからなる場合、三成分の質量比は、該三成分を各頂点とする三角組成図において、
点A(HFO-1132(E)/HFO-1123/HFO-1234yf=42.5/1.0/56.5質量%)、
点B(HFO-1132(E)/HFO-1123/HFO-1234yf=27.1/1.0/71.9質量%)、
点C(HFO-1132(E)/HFO-1123/HFO-1234yf=1.0/30.4/68.6質量%)、
点D(HFO-1132(E)/HFO-1123/HFO-1234yf=1.0/57.0/42.0質量%)及び
点E(HFO-1132(E)/HFO-1123/HFO-1234yf=42.5/24.1/33.4質量%)
の5点を通る図形で囲まれた領域の範囲内にあることが好ましい。
点A、B、C、D及びEの技術的意味は、上記の通りである。点A、B、C、D及びEの5点を通る図形で囲まれた領域については、上記の通りである。
この場合、HFO-1132(E)、HFO-1123及びHFO-1234yfの三元混合冷媒は、点A、B、C、D及びEの5点をそれぞれ結ぶ線で囲まれた領域(ABCDE領域)の範囲内の質量比において、(1)GWPが125以下であること、(2)冷凍能力が対R404A比で85%以上であること、(3)40℃での飽和圧力が2.25MPa以下であること、及び(4)燃焼速度が3.0cm/s以下であること、という諸特性を有する。
冷媒2Bは、HFO-1132(E)、HFO-1123及びHFO-1234yfのみからなる場合、三成分の質量比は、該三成分を各頂点とする三角組成図において、
点A(HFO-1132(E)/HFO-1123/HFO-1234yf=42.5/1.0/56.5質量%)、
点B(HFO-1132(E)/HFO-1123/HFO-1234yf=27.1/1.0/71.9質量%)、
点C(HFO-1132(E)/HFO-1123/HFO-1234yf=1.0/30.4/68.6質量%)、
点F(HFO-1132(E)/HFO-1123/HFO-1234yf=1.0/52.2/46.8質量%)及び
点G(HFO-1132(E)/HFO-1123/HFO-1234yf=42.5/18.9/38.6質量%)
の5点を通る図形で囲まれた領域の範囲内にあることがより好ましい。
点A、B、C、F及びGの技術的意味は、上記の通りである。点A、B、C、F及びGの5点を通る図形で囲まれた領域については、上記の通りである。
この場合、HFO-1132(E)、HFO-1123及びHFO-1234yfの三元混合冷媒は、点A、B、C、F及びGの5点をそれぞれ結ぶ線で囲まれた領域(ABCFG領域)の範囲内の質量比において、(1)GWPが125以下であること、(2)冷凍能力が対R404A比で85%以上であること、(3)40℃での飽和圧力が2.15MPa以下であること、及び(4)燃焼速度が3.0cm/s以下であること、という諸特性を有する。
冷媒2Bは、HFO-1132(E)、HFO-1123及びHFO-1234yfのみからなる場合、三成分の質量比は、該三成分を各頂点とする三角組成図において、
点A(HFO-1132(E)/HFO-1123/HFO-1234yf=42.5/1.0/56.5質量%)、
点B(HFO-1132(E)/HFO-1123/HFO-1234yf=27.1/1.0/71.9質量%)、
点C(HFO-1132(E)/HFO-1123/HFO-1234yf=1.0/30.4/68.6質量%)、
点H(HFO-1132(E)/HFO-1123/HFO-1234yf=1.0/35.2/63.8質量%)、
点I(HFO-1132(E)/HFO-1123/HFO-1234yf=27.4/29.8/42.8質量%)及び
点G(HFO-1132(E)/HFO-1123/HFO-1234yf=42.5/18.9/38.6質量%)
の6点を通る図形で囲まれた領域の範囲内にあることが更に好ましい。
点A、B、C、G、H及びIの技術的意味は、上記の通りである。点A、B、C、H、I及びGの6点を通る図形で囲まれた領域については、上記の通りである。
この場合、HFO-1132(E)、HFO-1123及びHFO-1234yfの三元混合冷媒は、点A、B、C、H、I及びGの6点をそれぞれ結ぶ線で囲まれた領域(ABCHIG領域)の範囲内の質量比において、(1)GWPが125以下であること、(2)冷凍能力が対R404A比で85%以上であること、(3)COPが対R404A比で100%以上であること、(4)40℃での飽和圧力が2.15MPa以下であること、及び(5)燃焼速度が3.0cm/s以下であること、という諸特性を有する。
冷媒2Bは、GWPが125以下であることによって、地球温暖化の観点から他の汎用冷媒と比べて顕著に環境負荷を抑えることができる。
[冷媒2Bの実施例]
以下に、実施例を挙げて更に詳細に説明する。ただし、本開示は、これらの実施例に限定されるものではない。
試験例1
実施例1~38、比較例1~9及び参考例1(R404A)に示される混合冷媒のGWPは、IPCC(Intergovernmental Panel on Climate Change)第4次報告書の値に基づいて評価した。
これらの混合冷媒のCOP、冷凍能力及び40℃での飽和圧力は、National Institute of Science and Technology(NIST)、Reference Fluid Thermodynamic and Transport Properties Database(Refprop 9.0)を使用し、以下の条件で混合冷媒の冷凍サイクル理論計算を実施することにより求めた。
蒸発温度 -40℃
凝縮温度 40℃
過熱温度 20K
過冷却温度 0K
圧縮機効率 70%
試験例1の結果を表213~216に示す。表213~216中、「COP比(対R404A)」及び「冷凍能力比(対R404A)」とは、R404Aに対する割合(%)を示す。表213~216中、「飽和圧力(40℃)」とは、飽和温度40℃における飽和圧力を示す。
成績係数(COP)は、次式により求めた。
COP=(冷凍能力又は暖房能力)/消費電力量
混合冷媒の燃焼性は、混合冷媒の混合組成をWCF濃度とし、ANSI/ASHRAE34-2013規格に従い燃焼速度を測定することにより、判断した。
燃焼速度試験は以下の通り行った。まず、使用した混合冷媒は99.5%又はそれ以上の純度とし、真空ゲージ上に空気の痕跡が見られなくなるまで凍結、ポンピング及び解凍のサイクルを繰り返すことにより脱気した。閉鎖法により燃焼速度を測定した。初期温度は周囲温度とした。点火は、試料セルの中心で電極間に電気的スパークを生じさせることにより行った。放電の持続時間は1.0~9.9msとし、点火エネルギーは典型的には約0.1~1.0Jであった。シュリーレン写真を使って炎の広がりを視覚化した。光を通す2つのアクリル窓を備えた円筒形容器(内径:155mm、長さ:198mm)を試料セルとして用い、光源としてはキセノンランプを用いた。炎のシュリーレン画像を高速デジタルビデオカメラで600fpsのフレーミング速度で記録し、PCに保存した。燃焼速度が計測できない場合(0cm/s)は「なし(不燃)」とした。
混合冷媒の燃焼範囲は、ASTM E681-09に基づく測定装置(図1Tを参照)を用いて測定を実施した。具体的には、燃焼の状態が目視および録画撮影できるように内容積12リットルの球形ガラスフラスコを使用し、ガラスフラスコは燃焼により過大な圧力が発生した際には上部のふたからガスが開放されるようにした。着火方法は底部から1/3の高さに保持された電極からの放電により発生させた。
<試験条件>
試験容器:280mmφ球形(内容積:12リットル)
試験温度:60℃±3℃
圧力:101.3kPa±0.7kPa
水分:乾燥空気1gにつき0.0088g±0.0005g(23℃における相対湿度50%の水分量)
冷媒組成物/空気混合比:1vol.%刻み±0.2vol.%
冷媒組成物混合:±0.1質量%
点火方法:交流放電、電圧15kV、電流30mA、ネオン変圧器
電極間隔:6.4mm(1/4inch)
スパーク:0.4秒±0.05秒
判定基準:
・着火点を中心に90度より大きく火炎が広がった場合=火炎伝播あり(可燃)
・着火点を中心に90度以下の火炎の広がりだった場合=火炎伝播なし(不燃)
Figure 2023179585000072
Figure 2023179585000073
Figure 2023179585000074
Figure 2023179585000075
(1-6-3)冷媒2C
冷媒2Cは、一つの態様において、HFO-1132(E)及びHFO-1234yfを含有し、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合は35.0~65.0質量%であり、HFO-1234yfの含有割合は65.0~35.0質量%である。この冷媒を「冷媒2C1」ということがある。
(1-6-3-1)冷媒2C1
冷媒2C1は、上述の構成を有することによって、(1)GWPが十分小さいこと(100以下)、(2)R404Aと同等又はそれ以上のCOPを有すること、及び(3)R404Aと同等又はそれ以上の冷凍能力を有すること、という諸特性を有する。
冷媒2C1において、HFO-1132(E)及びHFO-1234yfの全質量に対する、HFO-1132(E)の含有割合が35.0質量%以上であることにより、R404Aと同等又はそれ以上の冷凍能力が得られる。
また、冷媒2C1において、HFO-1132(E)及びHFO-1234yfの全質量に対する、HFO-1132(E)の含有割合が65.0質量%以下であることにより、冷媒2C1の冷凍サイクルにおける飽和温度40℃の飽和圧力を好適な範囲(特に2.10Mpa以下)に維持することができる。
冷媒2C1において、R404Aに対する冷凍能力が95%以上であればよいが、98%以上であることが好ましく、100%以上であることがより好ましく、101%以上であることが更に好ましく、102%以上であることが特に好ましい。
冷媒2C1は、GWPが100以下であることによって、地球温暖化の観点から他の汎用冷媒と比べて顕著に環境負荷を抑えることができる。
冷媒2C1は、エネルギー消費効率の点から、R404Aに対する冷凍サイクルで消費された動力と冷凍能力の比(成績係数(COP))が高いことが好ましく、具体的には、R404Aに対するCOPは98%以上であることが好ましく、100%以上であることがより好ましく、102%以上であることが特に好ましい。
冷媒2C1において、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合が40.5~59.0質量%であり、HFO-1234yfの含有割合が59.5~41.0質量%であることが好ましい。この場合、冷媒2C1はGWPが100以下であり、R404Aに対するCOPが101%以上であり、且つR404Aに対する冷凍能力が99%以上となる。更にこの場合、冷媒2C1は、飽和温度40℃における飽和圧力が、1.75MPa以上2.00MPa以下となるため、市販のR404A用冷凍装置に対して大きな設計変更なく適用することができる。
冷媒2C1において、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合が41.3~59.0質量%であり、HFO-1234yfの含有割合が58.7~41.0質量%であることがより好ましい。この場合、冷媒2C1はGWPが100以下であり、R404Aに対するCOPが101%以上であり、且つR404Aに対する冷凍能力が99.5%以上となる。更にこの場合、冷媒2C1は、飽和温度40℃における飽和圧力が、1.76MPa以上2.00MPa以下となるため、市販のR404A用冷凍装置に対して大きな設計変更なく適用することができる。
冷媒2C1において、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合が41.3~55.0質量%であり、HFO-1234yfの含有割合が58.7~45.0質量%であることが更に好ましい。この場合、冷媒2C1はGWPが100以下であり、R404Aに対するCOPが101%以上であり、且つR404Aに対する冷凍能力が99.5%以上となる。更にこの場合、冷媒2C1は、飽和温度40℃における飽和圧力が、1.76MPa以上1.95MPa以下となり、市販のR404A用冷凍装置に対して大きな設計変更なく適用することができる。
冷媒2C1において、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合が41.3~53.5質量%であり、HFO-1234yfの含有割合が58.7~46.5質量%であることが特に好ましい。この場合、冷媒2C1はGWPが100以下であること、R404Aに対するCOPが102%以上であり、且つR404Aに対する冷凍能力が99.5%以上となること、及びASHRAEの規格で微燃性(クラス2L)であることという、諸特性を有する。更にこの場合、冷媒2C1は、飽和温度40℃の飽和圧力が、1.76MPa以上1.94MPa以下となり、市販のR404A用冷凍装置に対して大きな設計変更なく適用することができる。
冷媒2C1において、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合が41.3~51.0質量%であり、HFO-1234yfの含有割合が58.7~49.0質量%であることが格別に好ましい。この場合、冷媒2C1はGWPが100以下であること、R404Aに対するCOPが102%以上であり、且つR404Aに対する冷凍能力が99%以上となること、及びASHRAEの規格で微燃性(クラス2L)であることという、諸特性を有する。更にこの場合、冷媒2C1は、飽和温度40℃の飽和圧力が、1.76MPa以上1.90MPa以下となり、市販のR404A用冷凍装置に対して大きな設計変更なく適用することができる。
冷媒2C1において、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合が41.3~49.2質量%であり、HFO-1234yfの含有割合が58.7~50.8質量%であることが最も好ましい。この場合、冷媒2C1はGWPが100以下であること、R404Aに対するCOPが102%以上であり、且つR404Aに対する冷凍能力が99.5%以上となること、及びASHRAEの規格で微燃性(クラス2L)であることという、諸特性を有する。更にこの場合、冷媒2C1は、飽和温度40℃の飽和圧力が、1.76MPa以上1.88MPa以下となり、市販のR404A用冷凍装置に対して大きな設計変更なく適用することができる。
冷媒2C1において、飽和温度40℃の飽和圧力は通常2.10MPa以下、好ましくは2.00MPa以下、より好ましくは1.95MPa以下、更に好ましくは1.90MPa以下、特に好ましくは1.88MPa以下である。飽和温度40℃の飽和圧力がこのような範囲にあれば、市販のR404A用冷凍装置に対して大きな設計変更なく冷媒2C1を適用することができる。
冷媒2C1において、飽和温度40℃の飽和圧力は通常1.70MPa以上、好ましくは1.73MPa以上、より好ましくは1.74MPa以上、更に好ましくは1.75MPa以上、特に好ましくは1.76MPa以上である。飽和温度40℃の飽和圧力がこのような範囲にあれば、市販のR404A用冷凍装置に対して大きな設計変更なく冷媒2C1を適用することができる。
本開示において、冷凍サイクルを運転するために冷媒2C1を使用した場合は、市販のR404A用冷凍装置の部材の寿命を延ばす観点から、吐出温度は好ましくは150℃以下、より好ましくは140℃以下、更に好ましくは130℃以下、特に好ましくは120℃以下である。
冷媒2C1を蒸発温度が-75~-5℃である冷凍サイクルを運転するために用いることにより、R404Aと同等以上の冷凍能力が得られるという利点がある。
本開示の冷媒2C1が使用される冷凍サイクルにおいて、蒸発温度が-5℃を超えた場合は、圧縮比が2.5未満となり、冷凍サイクルとしての効率が悪くなる。本開示の冷媒2C1が使用される冷凍サイクルにおいて、蒸発温度が-75℃未満である場合は、蒸発圧力が0.02MPa未満となり、圧縮機への冷媒の吸入が困難になる。なお、圧縮比は、次式により求めることができる。
圧縮比=凝縮圧力(Mpa)/蒸発圧力(Mpa)
本開示の冷媒2C1が使用される冷凍サイクルにおいて、蒸発温度は好ましくは-7.5℃以下、より好ましくは-10℃以下、更に好ましくは-35℃以下である。
本開示の冷媒2C1が使用される冷凍サイクルにおいて、蒸発温度は好ましくは-65℃以上、より好ましくは-60℃以上、更に好ましくは-55℃以上、特に好ましくは-50℃以上である。
本開示の冷媒2C1が使用される冷凍サイクルにおいて、蒸発温度は好ましくは-65℃以上-5℃以下、より好ましくは-60℃以上-5℃以下、更に好ましくは-55℃以上-7.5℃以下、特に好ましくは-50℃以上-10℃以下である。
本開示の冷媒2C1が使用される冷凍サイクルにおいて、圧縮機への冷媒の吸入を向上させる観点から、蒸発圧力は0.02MPa以上が好ましく、0.03MPa以上がより好ましく、0.04MPa以上が更に好ましく、0.05MPa以上が特に好ましい。
本開示の冷媒2C1が使用される冷凍サイクルにおいて、冷凍サイクルとしての効率を向上させる観点から、圧縮比は2.5以上が好ましく、3.0以上がより好ましく、3.5以上が更に好ましく、4.0以上が特に好ましい。本開示の冷媒2C1が使用される冷凍サイクルにおいて、冷凍サイクルとしての効率を向上させる観点から、圧縮比は200以下が好ましく、150以下がより好ましく、100以下が更に好ましく、50以下が特に好ましい。
冷媒2C1は、HFO-1132(E)及びHFO-1234yfをこれらの濃度の総和で、通常99.5質量%以上含有してもよい。本開示において、冷媒2C1全体におけるHFO-1132(E)及びHFO-1234yfの合計量が99.7質量%以上であれば好ましく、99.8質量%以上であればより好ましく、99.9質量%以上であれば更に好ましい。
冷媒2C1は、上記の特性を損なわない範囲内で、HFO-1132(E)及びHFO-1234yfに加えて、更に他の冷媒を含有することができる。この場合、冷媒2C1全体における他の冷媒の含有割合は0.5質量%以下が好ましく、0.3質量%以下がより好ましく、0.2質量%以下が更に好ましく、0.1質量%以下が特に好ましい。他の冷媒としては、特に限定されず、この分野で広く使用されている公知の冷媒の中から幅広く選択できる。冷媒2C1は、他の冷媒を単独で含んでいてもよいし、他の冷媒を2種以上含んでいてもよい。
冷媒2C1は、HFO-1132(E)及びHFO-1234yfのみからなることが特に好ましい。換言すると、冷媒2C1は、冷媒2C1全体におけるHFO-1132(E)及びHFO-1234yfの総濃度が100質量%であることが特に好ましい。
冷媒2C1が、HFO-1132(E)及びHFO-1234yfのみからなる場合、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合は通常35.0~65.0質量%であり、HFO-1234yfの含有割合は通常65.0~35.0質量%である。冷媒2C1は、このような構成を有することによって、(1)GWPが十分小さいこと(100以下)、(2)R404Aと同等又はそれ以上のCOPを有すること、及び(3)R404Aと同等又はそれ以上の冷凍能力を有すること、という諸特性を有する。
冷媒2C1が、HFO-1132(E)及びHFO-1234yfのみからなる場合、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合が40.5~59.0質量%であり、HFO-1234yfの含有割合が59.5~41.0質量%であることが好ましい。この場合、冷媒2C1はGWPが100以下であり、R404Aに対するCOPが101%以上であり、且つR404Aに対する冷凍能力が99%以上となる。
更にこの場合、冷媒2C1は、飽和温度40℃における飽和圧力が、1.75MPa以上2.00MPa以下となるため、市販のR404A用冷凍装置に対して大きな設計変更なく適用することができる。
冷媒2C1が、HFO-1132(E)及びHFO-1234yfのみからなる場合、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合が41.3~59.0質量%であり、HFO-1234yfの含有割合が58.7~41.0質量%であることがより好ましい。この場合、冷媒2C1はGWPが100以下であり、R404Aに対するCOPが101%以上であり、且つR404Aに対する冷凍能力が99.5%以上となる。更にこの場合、冷媒2C1は、飽和温度40℃における飽和圧力が、1.76MPa以上2.00MPa以下となるため、市販のR404A用冷凍装置に対して大きな設計変更なく適用することができる。
冷媒2C1が、HFO-1132(E)及びHFO-1234yfのみからなる場合、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合が41.3~55.0質量%であり、HFO-1234yfの含有割合が58.7~45.0質量%であることが更に好ましい。この場合、冷媒2C1はGWPが100以下であり、R404Aに対するCOPが101%以上であり、且つR404Aに対する冷凍能力が99.5%以上となる。更にこの場合、冷媒2C1は、飽和温度40℃における飽和圧力が、1.76MPa以上1.95MPa以下となり、市販のR404A用冷凍装置に対して大きな設計変更なく適用することができる。
冷媒2C1が、HFO-1132(E)及びHFO-1234yfのみからなる場合、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合が41.3~53.5質量%であり、HFO-1234yfの含有割合が58.7~46.5質量%であることが特に好ましい。この場合、冷媒2C1はGWPが100以下であること、R404Aに対するCOPが102%以上であり、且つR404Aに対する冷凍能力が99.5%以上となること、及びASHRAEの規格で微燃性(クラス2L)であることという、諸特性を有する。更にこの場合、冷媒2C1は、飽和温度40℃の飽和圧力が、1.76MPa以上1.94MPa以下となり、市販のR404A用冷凍装置に対して大きな設計変更なく適用することができる。
冷媒2C1が、HFO-1132(E)及びHFO-1234yfのみからなる場合、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合が41.3~51.0質量%であり、HFO-1234yfの含有割合が58.7~49.0質量%であることが格別に好ましい。この場合、冷媒2C1はGWPが100以下であること、R404Aに対するCOPが102%以上であり、且つR404Aに対する冷凍能力が99%以上となること、及びASHRAEの規格で微燃性(クラス2L)であることという、諸特性を有する。更にこの場合、冷媒2C1は、飽和温度40℃の飽和圧力が、1.76MPa以上1.90MPa以下となり、市販のR404A用冷凍装置に対して大きな設計変更なく適用することができる。
冷媒2C1が、HFO-1132(E)及びHFO-1234yfのみからなる場合、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合が41.3~49.2質量%であり、HFO-1234yfの含有割合が58.7~50.8質量%であることが最も好ましい。この場合、冷媒2C1はGWPが100以下であること、R404Aに対するCOPが102%以上であり、且つR404Aに対する冷凍能力が99.5%以上となること、及びASHRAEの規格で微燃性(クラス2L)であることという、諸特性を有する。更にこの場合、冷媒2C1は、飽和温度40℃の飽和圧力が、1.76MPa以上1.88MPa以下となり、市販のR404A用冷凍装置に対して大きな設計変更なく適用することができる。
(1-6-3-2)冷媒2C2
本開示の組成物に含まれる冷媒は、一つの態様において、HFO-1132(E)及びHFO-1234yfを含有し、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合が40.5~49.2質量%であり、HFO-1234yfの含有割合が59.5~50.8質量%である。この冷媒を「冷媒2C2」ということがある。
冷媒2C2は、上述の構成を有することによって、(1)GWPが十分小さいこと(100以下)、(2)R404Aと同等又はそれ以上のCOPを有すること、(3)R404Aと同等又はそれ以上の冷凍能力を有すること、及び(4)ASHRAEの規格で微燃性(クラス2L)であることという、諸特性を有する。更にこの場合、冷媒2C2は、飽和温度40℃の飽和圧力が、1.75MPa以上1.88MPa以下となり、市販のR404A用冷凍装置に対して大きな設計変更なく適用することができる。
冷媒2C2において、HFO-1132(E)及びHFO-1234yfの全質量に対する、HFO-1132(E)の含有割合が40.5質量%以上であることにより、R404Aと同等又はそれ以上の冷凍能力が得られる。
また、冷媒2C2において、HFO-1132(E)及びHFO-1234yfの全質量に対する、HFO-1132(E)の含有割合が49.2質量%以下であることにより、冷媒2C2の冷凍サイクルにおける飽和温度40℃の飽和圧力を好適な範囲(特に2.10Mpa以下)に維持することができる。
冷媒2C2において、R404Aに対する冷凍能力が99%以上であればよいが、100%以上であることが好ましく、101%以上であることがより好ましく、102%以上であることが更に好ましく、103%以上であることが特に好ましい。
冷媒2C2は、GWPが100以下であることによって、地球温暖化の観点から他の汎用冷媒と比べて顕著に環境負荷を抑えることができる。
冷媒2C2は、エネルギー消費効率の点から、R404Aに対する冷凍サイクルで消費された動力と冷凍能力の比(成績係数(COP))が高いことが好ましく、具体的には、R404Aに対するCOPは98%以上であることが好ましく、100%以上であることがより好ましく、101%以上であることが更に好ましく、102%以上であることが特に好ましい。
冷媒2C2において、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合が41.3~49.2質量%であり、HFO-1234yfの含有割合が58.7~50.8質量%であることが好ましい。この場合、冷媒2C2はGWPが100以下であること、R404Aに対するCOPが102%以上であること、R404Aに対する冷凍能力が99.5%以上であること、及びASHRAEの規格で微燃性(クラス2L)であることという、諸特性を有する。更にこの場合、冷媒2C2は、飽和温度40℃の飽和圧力が、1.76MPa以上1.88MPa以下となり、市販のR404A用冷凍装置に対して大きな設計変更なく適用することができる。
冷媒2C2において、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合が43.0~49.2質量%であり、HFO-1234yfの含有割合が57.0~50.8質量%であることがより好ましい。この場合、冷媒2C2はGWPが100以下であること、R404Aに対するCOPが102%以上であること、R404Aに対する冷凍能力が101%以上であること、及びASHRAEの規格で微燃性(クラス2L)であることという、諸特性を有する。更にこの場合、冷媒2C2は、飽和温度40℃の飽和圧力が、1.78MPa以上1.88MPa以下となり、市販のR404A用冷凍装置に対して大きな設計変更なく適用することができる。
冷媒2C2において、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合が44.0~49.2質量%であり、HFO-1234yfの含有割合が56.0~50.8質量%であることが更に好ましい。この場合、冷媒2C2はGWPが100以下であること、R404Aに対するCOPが102%以上であること、R404Aに対する冷凍能力が101%以上であること、及びASHRAEの規格で微燃性(クラス2L)であることという、諸特性を有する。更にこの場合、冷媒2C2は、飽和温度40℃の飽和圧力が、1.80MPa以上1.88MPa以下となり、市販のR404A用冷凍装置に対して大きな設計変更なく適用することができる。
冷媒2C2において、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合が45.0~49.2質量%であり、HFO-1234yfの含有割合が55.0~50.8質量%であることが特に好ましい。この場合、冷媒2C2はGWPが100以下であること、R404Aに対するCOPが102%以上であること、R404Aに対する冷凍能力が102%以上であること、及びASHRAEの規格で微燃性(クラス2L)であることという、諸特性を有する。更にこの場合、冷媒2C2は、飽和温度40℃の飽和圧力が、1.81MPa以上1.88MPa以下となり、市販のR404A用冷凍装置に対して大きな設計変更なく適用することができる。
冷媒2C2において、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合が45.0~48.0質量%であり、HFO-1234yfの含有割合が55.0~52.0質量%であることが格別に好ましい。この場合、冷媒2C2はGWPが100以下であること、R404Aに対するCOPが102.5%以上であること、R404Aに対する冷凍能力が102.5%以上であること、及びASHRAEの規格で微燃性(クラス2L)であることという、諸特性を有する。更にこの場合、冷媒2C2は、飽和温度40℃の飽和圧力が、1.81MPa以上1.87MPa以下となり、市販のR404A用冷凍装置に対して大きな設計変更なく適用することができる。
冷媒2C2において、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合が45.0~47.0質量%であり、HFO-1234yfの含有割合が55.0~53.0質量%であることが最も好ましい。この場合、冷媒2C2はGWPが100以下であること、R404Aに対するCOPが102.5%以上であること、R404Aに対する冷凍能力が102.5%以上であること、及びASHRAEの規格で微燃性(クラス2L)であることという、諸特性を有する。更にこの場合、冷媒2C2は、飽和温度40℃の飽和圧力が、1.81MPa以上1.85MPa以下となり、市販のR404A用冷凍装置に対して大きな設計変更なく適用することができる。
冷媒2C2において、飽和温度40℃の飽和圧力は通常2.10MPa以下、好ましくは2.00MPa以下、より好ましくは1.95MPa以下、更に好ましくは1.90MPa以下、特に好ましくは1.88MPa以下である。飽和温度40℃の飽和圧力がこのような範囲にあれば、市販のR404A用冷凍装置に対して大きな設計変更なく冷媒2C2を適用することができる。
冷媒2C2において、飽和温度40℃の飽和圧力は通常1.70MPa以上、好ましくは1.73MPa以上、より好ましくは1.74MPa以上、更に好ましくは1.75MPa以上、特に好ましくは1.76MPa以上である。飽和温度40℃の飽和圧力がこのような範囲にあれば、市販のR404A用冷凍装置に対して大きな設計変更なく冷媒2C2を適用することができる。
本開示において、冷凍サイクルを運転するために冷媒2C2を使用した場合は、市販のR404A用冷凍装置の部材の寿命を延ばす観点から、吐出温度は好ましくは150℃以下、より好ましくは140℃以下、更に好ましくは130℃以下、特に好ましくは120℃以下である。
本開示において、冷媒2C2は、R404Aと同等以上の冷凍能力を得る観点から、蒸発温度が-75~15℃である冷凍サイクルを運転するために用いられることが好ましい。
本開示の冷媒2C2が使用される冷凍サイクルにおいて、蒸発温度は好ましくは15℃以下、より好ましくは5℃以下、更に好ましくは0℃以下、特に好ましくは-5℃以下である。
本開示の冷媒2C2が使用される冷凍サイクルにおいて、蒸発温度は好ましくは-65℃以上、より好ましくは-60℃以上、更に好ましくは-55℃以上、特に好ましくは-50℃以上である。
本開示の冷媒2C2が使用される冷凍サイクルにおいて、蒸発温度は好ましくは-65℃以上15℃以下、より好ましくは-60℃以上5℃以下、更に好ましくは-55℃以上0℃以下、特に好ましくは-50℃以上-5℃以下である。
本開示の冷媒2C2が使用される冷凍サイクルにおいて、圧縮機への冷媒の吸入を向上させる観点から、蒸発圧力は0.02MPa以上が好ましく、0.03MPa以上がより好ましく、0.04MPa以上が更に好ましく、0.05MPa以上が特に好ましい。
本開示の冷媒2C2が使用される冷凍サイクルにおいて、冷凍サイクルとしての効率を向上させる観点から、圧縮比は2.5以上が好ましく、3.0以上がより好ましく、3.5以上が更に好ましく、4.0以上が特に好ましい。
冷媒2C2は、HFO-1132(E)及びHFO-1234yfをこれらの濃度の総和で、通常99.5質量%以上含有してもよい。本開示において、冷媒2C2全体におけるHFO-1132(E)及びHFO-1234yfの合計量が99.7質量%以上であれば好ましく、99.8質量%以上であればより好ましく、99.9質量%以上であれば更に好ましい。
冷媒2C2は、上記の特性を損なわない範囲内で、HFO-1132(E)及びHFO-1234yfに加えて、更に他の冷媒を含有することができる。この場合、冷媒2C2全体における他の冷媒の含有割合は0.5質量%以下が好ましく、0.3質量%以下がより好ましく、0.2質量%以下が更に好ましく、0.1質量%以下が特に好ましい。他の冷媒としては、特に限定されず、この分野で広く使用されている公知の冷媒の中から幅広く選択できる。冷媒2C2は、他の冷媒を単独で含んでいてもよいし、他の冷媒を2種以上含んでいてもよい。
冷媒2C2は、HFO-1132(E)及びHFO-1234yfのみからなることが特に好ましい。換言すると、冷媒2C2は、冷媒2C2全体におけるHFO-1132(E)及びHFO-1234yfの総濃度が100質量%であることが特に好ましい。
冷媒2C2が、HFO-1132(E)及びHFO-1234yfのみからなる場合、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合は通常40.5~49.2質量%であり、HFO-1234yfの含有割合は通常59.5~50.8質量%である。冷媒2C2は、このような構成を有することによって、(1)GWPが十分小さいこと(100以下)、(2)R404Aと同等又はそれ以上のCOPを有すること、(3)R404Aと同等又はそれ以上の冷凍能力を有すること、及び(4)ASHRAEの規格で微燃性(クラス2L)であることという、諸特性を有する。更にこの場合、冷媒2C2は、飽和温度40℃の飽和圧力が、1.75MPa以上1.88MPa以下となり、市販のR404A用冷凍装置に対して大きな設計変更なく適用することができる。
冷媒2C2が、HFO-1132(E)及びHFO-1234yfのみからなる場合、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合が41.3~49.2質量%であり、HFO-1234yfの含有割合が58.7~50.8質量%であることが好ましい。この場合、冷媒2C2はGWPが100以下であること、R404Aに対するCOPが102%以上であること、R404Aに対する冷凍能力が99.5%以上であること、及びASHRAEの規格で微燃性(クラス2L)であることという、諸特性を有する。
更にこの場合、冷媒2C2は、飽和温度40℃の飽和圧力が、1.76MPa以上1.88MPa以下となり、市販のR404A用冷凍装置に対して大きな設計変更なく適用することができる。
冷媒2C2が、HFO-1132(E)及びHFO-1234yfのみからなる場合、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合が43.0~49.2質量%であり、HFO-1234yfの含有割合が57.0~50.8質量%であることがより好ましい。この場合、冷媒2C2はGWPが100以下であること、R404Aに対するCOPが102%以上であること、R404Aに対する冷凍能力が101%以上であること、及びASHRAEの規格で微燃性(クラス2L)であることという、諸特性を有する。更にこの場合、冷媒2C2は、飽和温度40℃の飽和圧力が、1.78MPa以上1.88MPa以下となり、市販のR404A用冷凍装置に対して大きな設計変更なく適用することができる。
冷媒2C2が、HFO-1132(E)及びHFO-1234yfのみからなる場合、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合が44.0~49.2質量%であり、HFO-1234yfの含有割合が56.0~50.8質量%であることが更に好ましい。この場合、冷媒2C2はGWPが100以下であること、R404Aに対するCOPが102%以上であること、R404Aに対する冷凍能力が101%以上であること、及びASHRAEの規格で微燃性(クラス2L)であることという、諸特性を有する。更にこの場合、冷媒2C2は、飽和温度40℃の飽和圧力が、1.80MPa以上1.88MPa以下となり、市販のR404A用冷凍装置に対して大きな設計変更なく適用することができる。
冷媒2C2が、HFO-1132(E)及びHFO-1234yfのみからなる場合、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合が45.0~49.2質量%であり、HFO-1234yfの含有割合が55.0~50.8質量%であることが特に好ましい。この場合、冷媒2C2はGWPが100以下であること、R404Aに対するCOPが102%以上であること、R404Aに対する冷凍能力が102%以上であること、及びASHRAEの規格で微燃性(クラス2L)であることという、諸特性を有する。更にこの場合、冷媒2C2は、飽和温度40℃の飽和圧力が、1.81MPa以上1.88MPa以下となり、市販のR404A用冷凍装置に対して大きな設計変更なく適用することができる。
冷媒2C2が、HFO-1132(E)及びHFO-1234yfのみからなる場合、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合が45.0~48.0質量%であり、HFO-1234yfの含有割合が55.0~52.0質量%であることが格別に好ましい。この場合、冷媒2C2はGWPが100以下であること、R404Aに対するCOPが102.5%以上であること、R404Aに対する冷凍能力が102.5%以上であること、及びASHRAEの規格で微燃性(クラス2L)であることという、諸特性を有する。更にこの場合、冷媒2C2は、飽和温度40℃の飽和圧力が、1.81MPa以上1.87MPa以下となり、市販のR404A用冷凍装置に対して大きな設計変更なく適用することができる。
(1-6-3-3)冷媒2C3
本開示の組成物に含まれる冷媒は、一つの態様において、HFO-1132(E)及びHFO-1234yfを含有し、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合が31.1~39.8質量%であり、HFO-1234yfの含有割合が68.9~60.2質量%である。この冷媒を「冷媒2C3」ということがある。
冷媒2C3は、上述の構成を有することによって、(1)GWPが十分小さいこと(100以下)、(2)R134aと同等程度のCOPを有すること、(3)R134aと比較して150%以上の冷凍能力を有すること、及び(4)吐出温度が90℃以下であることという、諸特性を有する。
冷媒2C3において、HFO-1132(E)及びHFO-1234yfの全質量に対する、HFO-1132(E)の含有割合が31.1質量%以上であることにより、R134aと比較して150%以上の冷凍能力が得られる。
また、冷媒2C3において、HFO-1132(E)及びHFO-1234yfの全質量に対する、HFO-1132(E)の含有割合が39.8質量%以下であることにより、冷媒2C3の冷凍サイクルにおける吐出温度を90℃以下に維持し、R134a用冷凍装置の部材の寿命を長く確保することができる。
冷媒2C3において、R134aに対する冷凍能力が150%以上であればよいが、151%以上であることが好ましく、152%以上であることがより好ましく、153%以上であることが更に好ましく、154%以上であることが特に好ましい。
冷媒2C3において、冷凍サイクルにおける吐出温度は90.0℃以下であることが好ましく、89.7℃以下であることがより好ましく、89.4℃以下であることが更に好ましく、89.0℃以下であることが特に好ましい。
冷媒2C3は、GWPが100以下であることによって、地球温暖化の観点から他の汎用冷媒と比べて顕著に環境負荷を抑えることができる。
冷媒2C3は、エネルギー消費効率の点から、R134aに対する冷凍サイクルで消費された動力と冷凍能力の比(成績係数(COP))が高いことが好ましく、具体的には、R134aに対するCOPは90%以上であることが好ましく、91%以上であることがより好ましく、91.5%以上であることが更に好ましく、92%以上であることが特に好ましい。
冷媒2C3において、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合は通常31.1~39.8質量%であり、HFO-1234yfの含有割合は通常68.9~60.2質量%である。
冷媒2C3は、このような構成を有することによって、(1)GWPが十分小さいこと(100以下)、(2)R134aと同等程度のCOPを有すること、(3)R134aと比べて150%以上の冷凍能力を有すること、及び(4)吐出温度が90.0℃以下であることという、諸特性を有する。
冷媒2C3において、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合が31.1~37.9質量%であり、HFO-1234yfの含有割合が68.9~62.1質量%であることが好ましい。この場合、冷媒2C3は、上述の構成を有することによって、(1)GWPが十分小さいこと(100以下)、(2)R134aと比較して92%以上のCOPを有すること、(3)R134aと比べて150%以上の冷凍能力を有すること、(4)吐出温度が90.0℃以下であること、及び(5)臨界温度が81℃以上であることという、諸特性を有する。
冷媒2C3において、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合が32.0~37.9質量%であり、HFO-1234yfの含有割合が68.0~62.1質量%であることがより好ましい。この場合、冷媒2C3は、上述の構成を有することによって、(1)GWPが十分小さいこと(100以下)、(2)R134aと比較して92%以上のCOPを有すること、(3)R134aと比べて151%以上の冷凍能力を有すること、(4)吐出温度が90.0℃以下であること、及び(5)臨界温度が81℃以上であることという、諸特性を有する。
冷媒2C3において、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合が33.0~37.9質量%であり、HFO-1234yfの含有割合が67.0~62.1質量%であることがより一層好ましい。この場合、冷媒2C3は、上述の構成を有することによって、(1)GWPが十分小さいこと(100以下)、(2)R134aと比較して92%以上のCOPを有すること、(3)R134aと比べて152%以上の冷凍能力を有すること、(4)吐出温度が90.0℃以下であること、及び(5)臨界温度が81℃以上であることという、諸特性を有する。
冷媒2C3において、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合が34.0~37.9質量%であり、HFO-1234yfの含有割合が66.0~62.1質量%であることが更に好ましい。この場合、冷媒2C3は、上述の構成を有することによって、(1)GWPが十分小さいこと(100以下)、(2)R134aと比較して92%以上のCOPを有すること、(3)R134aと比べて153%以上の冷凍能力を有すること、(4)吐出温度が90.0℃以下であること、及び(5)臨界温度が81℃以上であることという、諸特性を有する。
冷媒2C3において、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合が35.0~37.9質量%であり、HFO-1234yfの含有割合が65.0~62.1質量%であることが特に好ましい。この場合、冷媒2C3は、上述の構成を有することによって、(1)GWPが十分小さいこと(100以下)、(2)R134aと比較して92%以上のCOPを有すること、(3)R134aと比べて155%以上の冷凍能力を有すること、(4)吐出温度が90.0℃以下であること、及び(5)臨界温度が81℃以上であることという、諸特性を有する。
本開示において、冷凍サイクルを運転するために冷媒2C3を使用した場合は、市販のR134a用冷凍装置の部材の寿命を延ばす観点から、吐出温度は好ましくは90.0℃以下、より好ましくは89.7℃以下、更に好ましくは89.4℃以下、特に好ましくは89.0℃以下である。
本開示において、冷凍サイクルを運転するために冷媒2C3を使用した場合は、冷凍サイクルでは冷媒の液化(凝縮)の過程を必要とするので、臨界温度は冷媒を液化させるための冷却水または冷却空気の温度より著しく高いことが必要となる。このような観点から、本開示の冷媒2C3が使用される冷凍サイクルにおいて、臨界温度は好ましくは80℃以上、より好ましくは81℃以上、更に好ましくは81.5℃以上、特に82℃以上である。
本開示において、冷媒2C3は、R134aと比較して150%以上の冷凍能力を得る観点から、通常、蒸発温度が-75~15℃である冷凍サイクルを運転するために用いられる。
本開示の冷媒2C3が使用される冷凍サイクルにおいて、蒸発温度は好ましくは15℃以下、より好ましくは5℃以下、更に好ましくは0℃以下、特に好ましくは-5℃以下である。
本開示の冷媒2C3が使用される冷凍サイクルにおいて、蒸発温度は好ましくは-65℃以上、より好ましくは-60℃以上、更に好ましくは-55℃以上、特に好ましくは-50℃以上である。
本開示の冷媒2C3が使用される冷凍サイクルにおいて、蒸発温度は好ましくは-65℃以上15℃以下、より好ましくは-60℃以上5℃以下、更に好ましくは-55℃以上0℃以下、特に好ましくは-50℃以上-5℃以下である。
本開示の冷媒2C3が使用される冷凍サイクルにおいて、性能向上の観点から、冷媒の臨界温度は80℃以上が好ましく、81℃以上がより好ましく、81.5℃以上が更に好ましく、82℃以上が特に好ましい。
冷媒2C3は、HFO-1132(E)及びHFO-1234yfをこれらの濃度の総和で、通常99.5質量%以上含有してもよい。本開示において、冷媒2C3全体におけるHFO-1132(E)及びHFO-1234yfの合計量が99.7質量%以上であれば好ましく、99.8質量%以上であればより好ましく、99.9質量%以上であれば更に好ましい。
冷媒2C3は、上記の特性を損なわない範囲内で、HFO-1132(E)及びHFO-1234yfに加えて、更に他の冷媒を含有することができる。この場合、冷媒2C3全体における他の冷媒の含有割合は0.5質量%以下が好ましく、0.3質量%以下がより好ましく、0.2質量%以下が更に好ましく、0.1質量%以下が特に好ましい。他の冷媒としては、特に限定されず、この分野で広く使用されている公知の冷媒の中から幅広く選択できる。冷媒2C3は、他の冷媒を単独で含んでいてもよいし、他の冷媒を2種以上含んでいてもよい。
冷媒2C3は、HFO-1132(E)及びHFO-1234yfのみからなることが特に好ましい。換言すると、冷媒2C3は、冷媒2C3全体におけるHFO-1132(E)及びHFO-1234yfの総濃度が100質量%であることが特に好ましい。
冷媒2C3が、HFO-1132(E)及びHFO-1234yfのみからなる場合、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合は通常31.1~39.8質量%であり、HFO-1234yfの含有割合は通常68.9~60.2質量%である。冷媒2C3は、このような構成を有することによって、(1)GWPが十分小さいこと(100以下)、(2)R134aと同等程度のCOPを有すること、(3)R134aと比べて150%以上の冷凍能力を有すること、及び(4)吐出温度が90℃以下であることという、諸特性を有する。
冷媒2C3が、HFO-1132(E)及びHFO-1234yfのみからなる場合、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合が31.1~37.9質量%であり、HFO-1234yfの含有割合が68.9~62.1質量%であることが好ましい。この場合、冷媒2C3は、上述の構成を有することによって、(1)GWPが十分小さいこと(100以下)、(2)R134aと比較して92%以上のCOPを有すること、(3)R134aと比べて150%以上の冷凍能力を有すること、(4)吐出温度が90.0℃以下であること、及び(5)臨界温度が81℃以上であることという、諸特性を有する。
冷媒2C3が、HFO-1132(E)及びHFO-1234yfのみからなる場合、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合が32.0~37.9質量%であり、HFO-1234yfの含有割合が68.0~62.1質量%であることがより好ましい。この場合、冷媒2C3は、上述の構成を有することによって、(1)GWPが十分小さいこと(100以下)、(2)R134aと比較して92%以上のCOPを有すること、(3)R134aと比べて151%以上の冷凍能力を有すること、(4)吐出温度が90.0℃以下であること、及び(5)臨界温度が81℃以上であることという、諸特性を有する。
冷媒2C3が、HFO-1132(E)及びHFO-1234yfのみからなる場合、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合が33.0~37.9質量%であり、HFO-1234yfの含有割合が67.0~62.1質量%であることが更に好ましい。この場合、冷媒2C3は、上述の構成を有することによって、(1)GWPが十分小さいこと(100以下)、(2)R134aと比較して92%以上のCOPを有すること、(3)R134aと比べて152%以上の冷凍能力を有すること、(4)吐出温度が90.0℃以下であること、及び(5)臨界温度が81℃以上であることという、諸特性を有する。
冷媒2C3が、HFO-1132(E)及びHFO-1234yfのみからなる場合、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合が34.0~37.9質量%であり、HFO-1234yfの含有割合が66.0~62.1質量%であることが更に好ましい。この場合、冷媒2C3は、上述の構成を有することによって、(1)GWPが十分小さいこと(100以下)、(2)R134aとと比較して92%以上のCOPを有すること、(3)R134aと比べて153%以上の冷凍能力を有すること、(4)吐出温度が90.0℃以下であること、及び(5)臨界温度が81℃以上であることという、諸特性を有する。
冷媒2C3が、HFO-1132(E)及びHFO-1234yfのみからなる場合、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合が35.0~37.9質量%であり、HFO-1234yfの含有割合が65.0~62.1質量%であることが更に好ましい。この場合、冷媒2C3は、上述の構成を有することによって、(1)GWPが十分小さいこと(100以下)、(2)R134aと比較して92%以上のCOPを有すること、(3)R134aと比べて155%以上の冷凍能力を有すること、(4)吐出温度が90.0℃以下であること、及び(5)臨界温度が81℃以上であることという、諸特性を有する。
(1-6-3-4)冷媒2C4
本開示の組成物に含まれる冷媒は、一つの態様において、HFO-1132(E)及びHFO-1234yfを含有し、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合が21.0~28.4質量%であり、HFO-1234yfの含有割合が79.0~71.6質量%である。この冷媒を「冷媒2C4」ということがある。
冷媒2C4は、上述の構成を有することによって、(1)GWPが十分小さいこと(100以下)、(2)R1234yfと同等程度のCOPを有すること、及び(3)R1234yfと比較して140%以上の冷凍能力を有すること、及び(4)ASHRAEの規格で微燃性(クラス2L)であることという、諸特性を有する。更にこの場合、冷媒2C4は、飽和温度-10℃の飽和圧力が、0.380MPa以上0.420MPa以下となり、市販のR1234yf用冷凍装置に対して大きな設計変更なく適用することができる。
冷媒2C4において、HFO-1132(E)及びHFO-1234yfの全質量に対する、HFO-1132(E)の含有割合が21.0質量%以上であることにより、R1234yfと比較して140%以上の冷凍能力が得られる。また、冷媒2C4において、HFO-1132(E)及びHFO-1234yfの全質量に対する、HFO-1132(E)の含有割合が28.4質量%以下であることにより、83.5℃以上の臨界温度を確保し易くなる。
冷媒2C4において、R1234yfに対する冷凍能力が140%以上であればよいが、142%以上であることが好ましく、143%以上であることがより好ましく、145%以上であることが更に好ましく、146%以上であることが特に好ましい。
冷媒2C4は、GWPが100以下であることによって、地球温暖化の観点から他の汎用冷媒と比べて顕著に環境負荷を抑えることができる。
冷媒2C4は、エネルギー消費効率の点から、R1234yfに対する冷凍サイクルで消費された動力と冷凍能力の比(成績係数(COP))が高いことが好ましく、具体的には、R1234yfに対するCOPは95%以上であることが好ましく、96%以上であることがより好ましく、97%以上であることが更に好ましく、98%以上であることが特に好ましい。
冷媒2C4において、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合は好ましくは21.5~28.0質量%であり、HFO-1234yfの含有割合は好ましくは78.5~72.0質量%である。この場合、冷媒2C4は、GWPが100以下であること、R1234yfに対するCOPが98%以上であること、R1234yfに対する冷凍能力が140%以上であること、ASHRAEの規格で微燃性(クラス2Lであること)、吐出温度が65.0℃以下であること、臨界温度が83.5℃以上であることという、諸特性を有する。更にこの場合、冷媒2C4は、飽和温度-10℃の飽和圧力が、0.383MPa以上0.418MPa以下となり、市販のR1234yf用冷凍装置に対して大きな設計変更なく適用することができる。
冷媒2C4において、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合はより好ましくは22.0~27.7質量%であり、HFO-1234yfの含有割合はより好ましくは78.0~72.3質量%である。この場合、冷媒2C4は、GWPが100以下であること、R1234yfに対するCOPが98%以上であること、R1234yfに対する冷凍能力が140%以上であること、ASHRAEの規格で微燃性(クラス2Lであること)、吐出温度が65.0℃以下であること、臨界温度が83.5℃以上であることという、諸特性を有する。更にこの場合、冷媒2C4は、飽和温度-10℃の飽和圧力が、0.385MPa以上0.417MPa以下となり、市販のR1234yf用冷凍装置に対して大きな設計変更なく適用することができる。
冷媒2C4において、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合は更に好ましくは22.5~27.5質量%であり、HFO-1234yfの含有割合は更に好ましくは77.5~72.5質量%である。この場合、冷媒2C4は、GWPが100以下であること、R1234yfに対するCOPが98%以上であること、R1234yfに対する冷凍能力が140%以上であること、ASHRAEの規格で微燃性(クラス2Lであること)、吐出温度が64.8℃以下であること、臨界温度が83.8℃以上であることという、諸特性を有する。更にこの場合、冷媒2C4は、飽和温度-10℃の飽和圧力が、0.388MPa以上0.414MPa以下となり、市販のR1234yf用冷凍装置に対して大きな設計変更なく適用することができる。
冷媒2C4において、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合は特に好ましくは23.0~27.2質量%であり、HFO-1234yfの含有割合は特に好ましくは77.0~72.8質量%である。この場合、冷媒2C4は、GWPが100以下であること、R1234yfに対するCOPが98%以上であること、R1234yfに対する冷凍能力が141%以上であること、ASHRAEの規格で微燃性(クラス2Lであること)、吐出温度が64.8℃以下であること、臨界温度が83.8℃以上であることという、諸特性を有する。更にこの場合、冷媒2C4は、飽和温度-10℃の飽和圧力が、0.390MPa以上0.414MPa以下となり、市販のR1234yf用冷凍装置に対して大きな設計変更なく適用することができる。
冷媒2C4において、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合は格別に好ましくは23.5~27.0質量%であり、HFO-1234yfの含有割合は格別に好ましくは76.5~73.0質量%である。この場合、冷媒2C4は、GWPが100以下であること、R1234yfに対するCOPが98%以上であること、R1234yfに対する冷凍能力が142%以上であること、ASHRAEの規格で微燃性(クラス2Lであること)、吐出温度が64.8℃以下であること、臨界温度が83.8℃以上であることという、諸特性を有する。更にこの場合、冷媒2C4は、飽和温度-10℃の飽和圧力が、0.390MPa以上0.414MPa以下となり、市販のR1234yf用冷凍装置に対して大きな設計変更なく適用することができる。
冷媒2C4において、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合は最も好ましくは24.0~26.7質量%であり、HFO-1234yfの含有割合は最も好ましくは76.0~73.3質量%である。この場合、冷媒2C4は、GWPが100以下であること、R1234yfに対するCOPが98%以上であること、R1234yfに対する冷凍能力が144%以上であること、ASHRAEの規格で微燃性(クラス2Lであること)、吐出温度が64.6℃以下であること、臨界温度が84.0℃以上であることという、諸特性を有する。更にこの場合、冷媒2C4は、飽和温度-10℃の飽和圧力が、0.396MPa以上0.411MPa以下となり、市販のR1234yf用冷凍装置に対して大きな設計変更なく適用することができる。
冷媒2C4において、飽和温度-10℃の飽和圧力は通常0.420MPa以下、好ましくは0.418MPa以下、より好ましくは0.417MPa以下、更に好ましくは0.415MPa以下、特に好ましくは0.413MPa以下である。このような範囲にあれば、市販のR1234yf用冷凍装置に対して大きな設計変更なく冷媒2C4を適用することができる。
冷媒2C4において、飽和温度-10℃の飽和圧力は通常0.380MPa以上、好ましくは0.385MPa以上、より好ましくは0.390MPa以上、更に好ましくは0.400MPa以上、特に好ましくは0.410MPa以上である。これらの場合、市販のR1234yf用冷凍装置に対して大きな設計変更なく冷媒2C4を適用することができる。
本開示において、冷凍サイクルを運転するために冷媒2C4を使用した場合は、市販のR1234yf用冷凍装置の部材の寿命を延ばす観点から、吐出温度は好ましくは65℃以下、より好ましくは64.8℃以下、更に好ましくは64.7℃以下、特に好ましくは64.5℃以下である。
本開示において、冷媒2C4は、R1234yfと比較して140%以上の冷凍能力を得る観点から、蒸発温度が-75~5℃である冷凍サイクルを運転するために用いられることが好ましい。
本開示の冷媒2C4が使用される冷凍サイクルにおいて、R1234yfと比較して140%以上の冷凍能力を得る観点から、蒸発温度は好ましくは5℃以下、より好ましくは0℃以下、更に好ましくは-5℃以下、特に好ましくは-10℃以下である。
本開示の冷媒2C4が使用される冷凍サイクルにおいて、R1234yfと比較して140%以上の冷凍能力を得る観点から、蒸発温度は好ましくは-75℃以上、より好ましくは-60℃以上、更に好ましくは-55℃以上、特に好ましくは-50℃以上である。
本開示の冷媒2C4が使用される冷凍サイクルにおいて、R1234yfと比較して140%以上の冷凍能力を得る観点から、蒸発温度は好ましくは-65℃以上0℃以下、より好ましくは-60℃以上-5℃以下、更に好ましくは-55℃以上-7.5℃以下、特に好ましくは-50℃以上-10℃以下である。
本開示の冷媒2C4が使用される冷凍サイクルにおいて、市販のR1234yf用冷凍装置の部材の寿命を延ばす観点から、吐出温度は65.0℃以下が好ましく、64.9℃以下がより好ましく、64.8℃以下が更に好ましく、64.7℃以下が特に好ましい。
本開示において、冷凍サイクルを運転するために冷媒2C4を使用した場合は、冷凍サイクルでは冷媒の液化(凝縮)の過程を必要とするので、臨界温度は冷媒を液化させるための冷却水または冷却空気の温度より著しく高いことが必要となる。このような観点から、本開示の冷媒2C4が使用される冷凍サイクルにおいて、臨界温度は83.5℃以上が好ましく、83.8℃以上がより好ましく、84.0℃以上が更に好ましく、84.5℃以上が特に好ましい。
冷媒2C4は、上記の特性を損なわない範囲内で、HFO-1132(E)及びHFO-1234yfに加えて、更に他の冷媒を含有することができる。この場合、冷媒2C4全体における他の冷媒の含有割合は0.5質量%以下が好ましく、0.3質量%以下がより好ましく、0.2質量%以下が更に好ましく、0.1質量%以下が特に好ましい。他の冷媒としては、特に限定されず、この分野で広く使用されている公知の冷媒の中から幅広く選択できる。冷媒2C4は、他の冷媒を単独で含んでいてもよいし、他の冷媒を2種以上含んでいてもよい。
冷媒2C4は、HFO-1132(E)及びHFO-1234yfのみからなることが特に好ましい。換言すると、冷媒2C4は、冷媒2C4全体におけるHFO-1132(E)及びHFO-1234yfの総濃度が100質量%であることが特に好ましい。
冷媒2C4が、HFO-1132(E)及びHFO-1234yfのみからなる場合、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合は通常21.0~28.4質量%であり、HFO-1234yfの含有割合は通常79.0~71.6質量%である。冷媒2C4は、このような構成を有することによって、(1)GWPが十分小さいこと(100以下)、(2)R1234yfと同等程度のCOPを有すること、及び(3)R1234yfと比較して140%以上の冷凍能力を有すること、及び(4)ASHRAEの規格で微燃性(クラス2L)であることという、諸特性を有する。更にこの場合、冷媒2C4は、飽和温度-10℃の飽和圧力が、0.380MPa以上0.420MPa以下となり、市販のR1234yf用冷凍装置に対して大きな設計変更なく適用することができる。
冷媒2C4が、HFO-1132(E)及びHFO-1234yfのみからなる場合、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合は好ましくは21.5~28.0質量%であり、HFO-1234yfの含有割合は好ましくは78.5~72.0質量%である。この場合、冷媒2C4は、GWPが100以下であること、R1234yfに対するCOPが98%以上であること、R1234yfに対する冷凍能力が140%以上であること、ASHRAEの規格で微燃性(クラス2Lであること)、吐出温度が65.0℃以下であること、臨界温度が83.5℃以上であることという、諸特性を有する。更にこの場合、冷媒2C4は、飽和温度-10℃の飽和圧力が、0.383MPa以上0.418MPa以下となり、市販のR1234yf用冷凍装置に対して大きな設計変更なく適用することができる。
冷媒2C4が、HFO-1132(E)及びHFO-1234yfのみからなる場合、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合はより好ましくは22.0~27.7質量%であり、HFO-1234yfの含有割合はより好ましくは78.0~72.3質量%である。この場合、冷媒2C4は、GWPが100以下であること、R1234yfに対するCOPが98%以上であること、R1234yfに対する冷凍能力が140%以上であること、ASHRAEの規格で微燃性(クラス2Lであること)、吐出温度が65.0℃以下であること、臨界温度が83.5℃以上であることという、諸特性を有する。更にこの場合、冷媒2C4は、飽和温度-10℃の飽和圧力が、0.385MPa以上0.417MPa以下となり、市販のR1234yf用冷凍装置に対して大きな設計変更なく適用することができる。
冷媒2C4が、HFO-1132(E)及びHFO-1234yfのみからなる場合、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合は更に好ましくは22.5~27.5質量%であり、HFO-1234yfの含有割合は更に好ましくは77.5~72.5質量%である。この場合、冷媒2C4は、GWPが100以下であること、R1234yfに対するCOPが98%以上であること、R1234yfに対する冷凍能力が140%以上であること、ASHRAEの規格で微燃性(クラス2Lであること)、吐出温度が64.8℃以下であること、臨界温度が83.8℃以上であることという、諸特性を有する。更にこの場合、冷媒2C4は、飽和温度-10℃の飽和圧力が、0.388MPa以上0.414MPa以下となり、市販のR1234yf用冷凍装置に対して大きな設計変更なく適用することができる。
冷媒2C4が、HFO-1132(E)及びHFO-1234yfのみからなる場合、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合は特に好ましくは23.0~27.2質量%であり、HFO-1234yfの含有割合は特に好ましくは77.0~72.8質量%である。この場合、冷媒2C4は、GWPが100以下であること、R1234yfに対するCOPが98%以上であること、R1234yfに対する冷凍能力が141%以上であること、ASHRAEの規格で微燃性(クラス2Lであること)、吐出温度が64.8℃以下であること、臨界温度が83.8℃以上であることという、諸特性を有する。更にこの場合、冷媒2C4は、飽和温度-10℃の飽和圧力が、0.390MPa以上0.414MPa以下となり、市販のR1234yf用冷凍装置に対して大きな設計変更なく適用することができる。
冷媒2C4が、HFO-1132(E)及びHFO-1234yfのみからなる場合、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合は格別に好ましくは23.5~27.0質量%であり、HFO-1234yfの含有割合は格別に好ましくは76.5~73.0質量%である。この場合、冷媒2C4は、GWPが100以下であること、R1234yfに対するCOPが98%以上であること、R1234yfに対する冷凍能力が142%以上であること、ASHRAEの規格で微燃性(クラス2Lであること)、吐出温度が64.8℃以下であること、臨界温度が83.8℃以上であることという、諸特性を有する。更にこの場合、冷媒2C4は、飽和温度-10℃の飽和圧力が、0.390MPa以上0.414MPa以下となり、市販のR1234yf用冷凍装置に対して大きな設計変更なく適用することができる。
冷媒2C4が、HFO-1132(E)及びHFO-1234yfのみからなる場合、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合は最も好ましくは24.0~26.7質量%であり、HFO-1234yfの含有割合は最も好ましくは76.0~73.3質量%である。この場合、冷媒2C4は、GWPが100以下であること、R1234yfに対するCOPが98%以上であること、R1234yfに対する冷凍能力が144%以上であること、ASHRAEの規格で微燃性(クラス2Lであること)、吐出温度が64.6℃以下であること、臨界温度が84.0℃以上であることという、諸特性を有する。更にこの場合、冷媒2C4は、飽和温度-10℃の飽和圧力が、0.396MPa以上0.411MPa以下となり、市販のR1234yf用冷凍装置に対して大きな設計変更なく適用することができる。
(1-6-3-5)冷媒2C5
本開示の組成物に含まれる冷媒は、一つの態様において、HFO-1132(E)及びHFO-1234yfを含有し、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合は12.1~72.0質量%であり、HFO-1234yfの含有割合は87.9~28.0質量%である。この冷媒を「冷媒2C5」ということがある。
本開示において、冷媒2C5は、車載用空調機器に用いられる。
冷媒2C5は、上述の構成を有することによって、(1)GWPが十分小さいこと(100以下)、(2)R1234yfと同等程度のCOPを有すること、(3)R1234yfと比較して128%以上の冷凍能力を有すること、及び(4)燃焼速度が10.0cm/s未満であること、という諸特性を有する。
冷媒2C5において、HFO-1132(E)及びHFO-1234yfの全質量に対する、HFO-1132(E)の含有割合が12.1質量%以上であることにより、電気自動車でヒートポンプを用いて暖房する場合に有利な-40℃以下の沸点を確保することができる。なお、-40℃以下の沸点は-40℃で飽和圧力が大気圧以上であることを意味し、上記用途において沸点は-40℃以下でより低い方が好ましい。また、冷媒2C5において、HFO-1132(E)及びHFO-1234yfの全質量に対する、HFO-1132(E)の含有割合が72.0質量%以下であることにより、車載用空調機器に用いる場合の安全性に寄与する10.0cm/s未満の燃焼速度を確保することができる。
冷媒2C5において、R1234yfに対する冷凍能力が128%以上であればよいが、130%以上であることが好ましく、140%以上であることがより好ましく、150%以上であることが更に好ましく、160%以上であることが特に好ましい。
冷媒2C5は、GWPが5以上100以下であることによって、地球温暖化の観点から他の汎用冷媒と比べて顕著に環境負荷を抑えることができる。
冷媒2C5において、エネルギー消費効率の点から、R1234yfに対する冷凍サイクルで消費された動力と冷凍能力の比(成績係数(COP))が100%以上であればよい。
冷媒2C5を車載用空調機器に用いることにより、電気ヒーターに比べて消費電力の少ないヒートポンプによる暖房が可能になるという利点がある。
冷媒2C5において、上記空調機器が、ガソリン車用、ハイブリッド自動車用、電気自動車用又は水素自動車用であることが好ましい。これらの中でも、ヒートポンプにより車室内を暖房しつつ、車の走行距離を向上させる観点から、冷媒2C5において、上記空調機器が電気自動車用であることが特に好ましい。即ち、本開示において、冷媒2C5を電気自動車に用いることが特に好ましい。
本開示において、冷媒2C5は車載用空調機器に使用される。本開示において、冷媒2C5はガソリン車の空調機器、ハイブリッド自動車の空調機器、電気自動車の空調機器又は水素自動車の空調機器に使用されることが好ましい。本開示において、冷媒2C5は、電気自動車の空調機器に使用されることが特に好ましい。
本開示において、ヒートポンプにより車室内を暖房する際、-40℃で大気圧以上の圧力が必要となるため、冷媒2C5の沸点は、好ましくは-51.2~-40.0℃、より好ましくは-50.0~-42.0℃、更に好ましくは-48.0~-44.0℃である。
冷媒2C5において、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合は好ましくは15.0~65.0質量%であり、HFO-1234yfの含有割合は好ましくは85.0~35.0質量%である。
冷媒2C5において、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合はより好ましくは20.0~55.0質量%であり、HFO-1234yfの含有割合はより好ましくは80.0~45.0質量%である。
冷媒2C5において、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合は更に好ましくは25.0~50.0質量%であり、HFO-1234yfの含有割合は更に好ましくは75.0~50.0質量%である。
冷媒2C5において、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合は特に好ましくは30.0~45.0質量%であり、HFO-1234yfの含有割合は特に好ましくは70.0~55.0質量%である。
冷媒2C5において、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合は最も好ましくは35.0~40.0質量%であり、HFO-1234yfの含有割合は最も好ましくは65.0~60.0質量%である。
本開示において、冷媒2C5の燃焼速度は10.0cm/s未満であることが好ましく、5.0cm/s未満であることがより好ましく、3.0cm/s未満であることが更に好ましく、2.0cm/sであることが特に好ましい。
本開示において、冷媒2C5は、R1234yfと同等又はそれ以上の冷凍能力を得る観点から、蒸発温度が-40~10℃である冷凍サイクルを運転するために用いられることが好ましい。
本開示において、冷凍サイクルを運転するために冷媒2C5を使用した場合、吐出温度は好ましくは79℃以下、より好ましくは75℃以下、更に好ましくは70℃以下、特に好ましくは67℃以下である。
冷媒2C5は、HFO-1132(E)及びHFO-1234yfをこれらの濃度の総和で、通常99.5質量%以上含有してもよい。本開示において、冷媒2C5全体におけるHFO-1132(E)及びHFO-1234yfの合計量が99.7質量%以上であれば好ましく、99.8質量%以上であればより好ましく、99.9質量%以上であれば更に好ましい。
冷媒2C5は、上記の特性を損なわない範囲内で、HFO-1132(E)及びHFO-1234yfに加えて、更に他の冷媒を含有することができる。この場合、冷媒2C5全体における他の冷媒の含有割合は0.5質量%以下が好ましく、0.3質量%以下がより好ましく、0.2質量%以下が更に好ましく、0.1質量%以下が特に好ましい。他の冷媒としては、特に限定されず、この分野で広く使用されている公知の冷媒の中から幅広く選択できる。冷媒2C5は、他の冷媒を単独で含んでいてもよいし、他の冷媒を2種以上含んでいてもよい。
冷媒2C5は、HFO-1132(E)及びHFO-1234yfのみからなることが特に好ましい。換言すると、冷媒2C5は、冷媒2C5全体におけるHFO-1132(E)及びHFO-1234yfの総濃度が100質量%であることが特に好ましい。
冷媒2C5が、HFO-1132(E)及びHFO-1234yfのみからなる場合、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合は通常12.1~72.0質量%であり、HFO-1234yfの含有割合は通常87.9~28.0質量%である。
冷媒2C5が、HFO-1132(E)及びHFO-1234yfのみからなる場合、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合は好ましくは15.0~65.0質量%であり、HFO-1234yfの含有割合は好ましくは85.0~35.0質量%である。
冷媒2C5が、HFO-1132(E)及びHFO-1234yfのみからなる場合、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合はより好ましくは20.0~55.0質量%であり、HFO-1234yfの含有割合はより好ましくは80.0~45.0質量%である。
冷媒2C5が、HFO-1132(E)及びHFO-1234yfのみからなる場合、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合は更に好ましくは25.0~50.0質量%であり、HFO-1234yfの含有割合は更に好ましくは75.0~50.0質量%である。
冷媒2C5が、HFO-1132(E)及びHFO-1234yfのみからなる場合、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合は特に好ましくは30.0~45.0質量%であり、HFO-1234yfの含有割合は特に好ましくは70.0~55.0質量%である。
冷媒2C5が、HFO-1132(E)及びHFO-1234yfのみからなる場合、HFO-1132(E)及びHFO-1234yfの全質量に対して、HFO-1132(E)の含有割合は最も好ましくは35.0~40.0質量%であり、HFO-1234yfの含有割合は最も好ましくは65.0~60.0質量%である。
[冷媒2Cの実施例]
以下に、実施例を挙げて更に詳細に説明する。ただし、本開示は、これらの実施例に限定されるものではない。
試験例1-1
実施例1-1~1-13、比較例1-1~1-2及び参考例1-1(R404A)に示される混合冷媒のGWPは、IPCC第4次報告書の値に基づいて評価した。
これらの混合冷媒のCOP、冷凍能力、吐出温度、飽和温度40℃における飽和圧力、凝縮圧力及び蒸発圧力は、National Institute of Science and Technology(NIST)及びReference Fluid Thermodynamic and Transport Properties Database(Refprop 9.0)を使用し、下記条件で混合冷媒の冷凍サイクル理論計算を実施することにより求めた。
蒸発温度 -50℃
凝縮温度 40℃
過熱温度 20K
過冷却温度 0K
圧縮機効率 70%
「蒸発温度-50℃」とは、冷凍装置が備える蒸発器における混合冷媒の蒸発温度が-50℃であることを意味する。また、「凝縮温度40℃」とは、冷凍装置が備える凝縮器における混合冷媒の凝縮温度が40℃であることを意味する。
試験例1-1の結果を表217に示す。表217は、本開示の冷媒2C1の実施例及び比較例を示している。表217中、「COP比」及び「冷凍能力比」とは、R404Aに対する割合(%)を示す。
表217中、「飽和圧力(40℃)」とは、飽和温度40℃における飽和圧力を示す。表217中、「吐出温度(℃)」とは、上記混合冷媒の冷凍サイクル理論計算において、冷凍サイクル中で最も温度が高くなる温度を示す。
成績係数(COP)は、次式により求めた。
COP=(冷凍能力又は暖房能力)/消費電力量
圧縮比は、次式により求めた。
圧縮比=凝縮圧力(Mpa)/蒸発圧力(Mpa)
混合冷媒の燃焼性は、混合冷媒の混合組成をWCF濃度とし、ANSI/ASHRAE34-2013規格に従い燃焼速度を測定することにより、判断した。燃焼速度が0cm/s~10cm/sとなるものは「クラス2L(微燃)」、燃焼速度が10cm/s超となるものは「クラス2(弱燃)」であるとし、火炎伝播がないものは「クラス1(不燃)」であるとした。表217中、「ASHRAE燃焼性区分」とは、この判定基準に基づく結果を示している。
燃焼速度試験は以下の通り行った。まず、使用した混合冷媒は99.5%又はそれ以上の純度とし、真空ゲージ上に空気の痕跡が見られなくなるまで凍結、ポンピング及び解凍のサイクルを繰り返すことにより脱気した。閉鎖法により燃焼速度を測定した。初期温度は周囲温度とした。点火は、試料セルの中心で電極間に電気的スパークを生じさせることにより行った。放電の持続時間は1.0~9.9msとし、点火エネルギーは典型的には約0.1~1.0Jであった。シュリーレン写真を使って炎の広がりを視覚化した。光を通す2つのアクリル窓を備えた円筒形容器(内径:155mm、長さ:198mm)を試料セルとして用い、光源としてはキセノンランプを用いた。炎のシュリーレン画像を高速デジタルビデオカメラで600fpsのフレーミング速度で記録し、PCに保存した。
混合冷媒の燃焼範囲は、ASTM E681-09に基づく測定装置(図1Tを参照)を用いて測定を実施した。
具体的には、燃焼の状態が目視および録画撮影できるように内容積12リットルの球形ガラスフラスコを使用し、ガラスフラスコは燃焼により過大な圧力が発生した際には上部のふたからガスが開放されるようにした。着火方法は底部から1/3の高さに保持された電極からの放電により発生させた。
<試験条件>
試験容器:280mmφ球形(内容積:12リットル)
試験温度:60℃±3℃
圧力:101.3kPa±0.7kPa
水分:乾燥空気1gにつき0.0088g±0.0005g(23℃における相対湿度50%の水分量)冷媒組成物/空気混合比:1vol.%刻み±0.2vol.%
冷媒組成物混合:±0.1質量%
点火方法:交流放電、電圧15kV、電流30mA、ネオン変圧器
電極間隔:6.4mm(1/4inch)
スパーク:0.4秒±0.05秒
判定基準:
・着火点を中心に90度より大きく火炎が広がった場合=火炎伝播あり(可燃)
・着火点を中心に90度以下の火炎の広がりだった場合=火炎伝播なし(不燃)
Figure 2023179585000076
試験例1-2
実施例1-14~1-26、比較例1-3~1-4及び参考例1-2(R404A)に示される混合冷媒のGWPは、IPCC第4次報告書の値に基づいて評価した。
これらの混合冷媒のCOP、冷凍能力、吐出温度、飽和温度40℃における飽和圧力、凝縮圧力及び蒸発圧力は、NIST及びRefprop 9.0を使用し、下記条件で混合冷媒の冷凍サイクル理論計算を実施することにより求めた。
蒸発温度 -35℃
凝縮温度 40℃
過熱温度 20K
過冷却温度 0K
圧縮機効率 70%
上記用語の意味は、試験例1-1と同様である。
試験例1-2の結果を表218に示す。表218は、本開示の冷媒2C1の実施例及び比較例を示している。表218中、各用語の意味は、試験例1-1と同様である。
成績係数(COP)及び圧縮比は、試験例1-1と同様にして求めた。
混合冷媒の燃焼性は、試験例1-1と同様にして判断した。燃焼速度試験は、試験例1-1と同様にして行った。
混合冷媒の燃焼範囲は、ASTM E681-09に基づく測定装置(図1Tを参照)を用いて、試験例1-1と同様の方法及び試験条件で測定した。
Figure 2023179585000077
試験例1-3
実施例1-27~1-39、比較例1-5~1-6及び参考例1-3(R404A)に示される混合冷媒のGWPは、IPCC第4次報告書の値に基づいて評価した。
これらの混合冷媒のCOP、冷凍能力、吐出温度、飽和温度40℃における飽和圧力、凝縮圧力及び蒸発圧力は、NIST及びRefprop 9.0を使用し、下記条件で混合冷媒の冷凍サイクル理論計算を実施することにより求めた。
蒸発温度 -10℃
凝縮温度 40℃
過熱温度 20K
過冷却温度 0K
圧縮機効率 70%
上記用語の意味は、試験例1-1と同様である。
試験例1-3の結果を表219に示す。表219は、本開示の冷媒2C1の実施例及び比較例を示している。表219中、各用語の意味は、試験例1-1と同様である。
成績係数(COP)及び圧縮比は、試験例1-1と同様にして求めた。
混合冷媒の燃焼性は、試験例1-1と同様にして判断した。燃焼速度試験は、試験例1-1と同様にして行った。
混合冷媒の燃焼範囲は、ASTM E681-09に基づく測定装置(図1Tを参照)を用いて、試験例1-1と同様の方法及び試験条件で測定した。
Figure 2023179585000078
試験例1-4
比較例1-7~1-21及び参考例1-4(R404A)に示される混合冷媒のGWPは、IPCC第4次報告書の値に基づいて評価した。
これらの混合冷媒のCOP、冷凍能力、吐出温度、飽和温度40℃における飽和圧力、凝縮圧力及び蒸発圧力は、NIST及びRefprop 9.0を使用し、下記条件で混合冷媒の冷凍サイクル理論計算を実施することにより求めた。
蒸発温度 -80℃
凝縮温度 40℃
過熱温度 20K
過冷却温度 0K
圧縮機効率 70%
上記用語の意味は、試験例1-1と同様である。
試験例1-4の結果を表220に示す。表220は、本開示の冷媒2C1の比較例を示している。表220中、各用語の意味は、試験例1-1と同様である。
成績係数(COP)及び圧縮比は、試験例1-1と同様にして求めた。
混合冷媒の燃焼性は、試験例1-1と同様にして判断した。燃焼速度試験は、試験例1-1と同様にして行った。
混合冷媒の燃焼範囲は、ASTM E681-09に基づく測定装置(図1Tを参照)を用いて、試験例1-1と同様の方法及び試験条件で測定した。
Figure 2023179585000079
試験例1-5
比較例1-22~1-36及び参考例1-5(R404A)に示される混合冷媒のGWPは、IPCC第4次報告書の値に基づいて評価した。
これらの混合冷媒のCOP、冷凍能力、吐出温度、飽和温度40℃における飽和圧力、凝縮圧力及び蒸発圧力は、NIST及びRefprop 9.0を使用し、下記条件で混合冷媒の冷凍サイクル理論計算を実施することにより求めた。
蒸発温度 10℃
凝縮温度 40℃
過熱温度 20K
過冷却温度 0K
圧縮機効率 70%
上記用語の意味は、試験例1-1と同様である。
試験例1-5の結果を表221に示す。表221は、本開示の冷媒2C1の比較例を示している。表221中、各用語の意味は、試験例1-1と同様である。
成績係数(COP)及び圧縮比は、試験例1-1と同様にして求めた。
混合冷媒の燃焼性は、試験例1-1と同様にして判断した。燃焼速度試験は、試験例1-1と同様にして行った。
混合冷媒の燃焼範囲は、ASTM E681-09に基づく測定装置(図1Tを参照)を用いて、試験例1-1と同様の方法及び試験条件で測定した。
Figure 2023179585000080
試験例2-1
実施例2-1~2-6、比較例2-1~2-9及び参考例2-1(R404A)に示される混合冷媒のGWPは、IPCC第4次報告書の値に基づいて評価した。
これらの混合冷媒のCOP、冷凍能力、吐出温度、飽和温度40℃における飽和圧力、凝縮圧力及び蒸発圧力は、National Institute of Science and Technology(NIST)及びReference Fluid Thermodynamic and Transport Properties Database(Refprop 9.0)を使用し、下記条件で混合冷媒の冷凍サイクル理論計算を実施することにより求めた。
蒸発温度 -50℃
凝縮温度 40℃
過熱温度 20K
過冷却温度 0K
圧縮機効率 70%
「蒸発温度-50℃」とは、冷凍装置が備える蒸発器における混合冷媒の蒸発温度が-50℃であることを意味する。また、「凝縮温度40℃」とは、冷凍装置が備える凝縮器における混合冷媒の凝縮温度が40℃であることを意味する。
試験例2-1の結果を表222に示す。表222は、本開示の冷媒2C2の実施例及び比較例を示している。表222中、「COP比」及び「冷凍能力比」とは、R404Aに対する割合(%)を示す。
表222中、「飽和圧力(40℃)」とは、飽和温度40℃における飽和圧力を示す。表222中、「吐出温度(℃)」とは、上記混合冷媒の冷凍サイクル理論計算において、冷凍サイクル中で最も温度が高くなる温度を示す。
成績係数(COP)は、次式により求めた。
COP=(冷凍能力又は暖房能力)/消費電力量
圧縮比は、次式により求めた。
圧縮比=凝縮圧力(Mpa)/蒸発圧力(Mpa)
混合冷媒の燃焼性は、混合冷媒の混合組成をWCF濃度とし、ANSI/ASHRAE34-2013規格に従い燃焼速度を測定することにより、判断した。燃焼速度が0cm/s~10cm/sとなるものは「クラス2L(微燃)」、燃焼速度が10cm/s超となるものは「クラス2(弱燃)」であるとし、火炎伝播がないものは「クラス1(不燃)」であるとした。表222中、「ASHRAE燃焼性区分」とは、この判定基準に基づく結果を示している。
燃焼速度試験は以下の通り行った。まず、使用した混合冷媒は99.5%又はそれ以上の純度とし、真空ゲージ上に空気の痕跡が見られなくなるまで凍結、ポンピング及び解凍のサイクルを繰り返すことにより脱気した。閉鎖法により燃焼速度を測定した。初期温度は周囲温度とした。点火は、試料セルの中心で電極間に電気的スパークを生じさせることにより行った。放電の持続時間は1.0~9.9msとし、点火エネルギーは典型的には約0.1~1.0Jであった。シュリーレン写真を使って炎の広がりを視覚化した。光を通す2つのアクリル窓を備えた円筒形容器(内径:155mm、長さ:198mm)を試料セルとして用い、光源としてはキセノンランプを用いた。炎のシュリーレン画像を高速デジタルビデオカメラで600fpsのフレーミング速度で記録し、PCに保存した。
混合冷媒の燃焼範囲は、ASTM E681-09に基づく測定装置(図1Tを参照)を用いて測定を実施した。
具体的には、燃焼の状態が目視および録画撮影できるように内容積12リットルの球形ガラスフラスコを使用し、ガラスフラスコは燃焼により過大な圧力が発生した際には上部のふたからガスが開放されるようにした。着火方法は底部から1/3の高さに保持された電極からの放電により発生させた。
<試験条件>
試験容器:280mmφ球形(内容積:12リットル)
試験温度:60℃±3℃
圧力:101.3kPa±0.7kPa
水分:乾燥空気1gにつき0.0088g±0.0005g(23℃における相対湿度50%の水分量)冷媒組成物/空気混合比:1vol.%刻み±0.2vol.%
冷媒組成物混合:±0.1質量%
点火方法:交流放電、電圧15kV、電流30mA、ネオン変圧器
電極間隔:6.4mm(1/4inch)
スパーク:0.4秒±0.05秒
判定基準:
・着火点を中心に90度より大きく火炎が広がった場合=火炎伝播あり(可燃)
・着火点を中心に90度以下の火炎の広がりだった場合=火炎伝播なし(不燃)
Figure 2023179585000081
試験例2-2
実施例2-7~2-12、比較例2-10~2-18及び参考例2-2(R404A)に示される混合冷媒のGWPは、IPCC第4次報告書の値に基づいて評価した。
これらの混合冷媒のCOP、冷凍能力、吐出温度、飽和温度40℃における飽和圧力、凝縮圧力及び蒸発圧力は、NIST及びRefprop 9.0を使用し、下記条件で混合冷媒の冷凍サイクル理論計算を実施することにより求めた。
蒸発温度 -35℃
凝縮温度 40℃
過熱温度 20K
過冷却温度 0K
圧縮機効率 70%
上記用語の意味は、試験例2-1と同様である。
試験例2-2の結果を表223に示す。表223は、本開示の冷媒2C2の実施例及び比較例を示している。表223中、各用語の意味は、試験例2-1と同様である。
成績係数(COP)及び圧縮比は、試験例2-1と同様にして求めた。
混合冷媒の燃焼性は、試験例2-1と同様にして判断した。燃焼速度試験は、試験例2-1と同様にして行った。
混合冷媒の燃焼範囲は、ASTM E681-09に基づく測定装置(図1Tを参照)を用いて、試験例2-1と同様の方法及び試験条件で測定した。
Figure 2023179585000082
試験例2-3
実施例2-13~2-18、比較例2-19~2-27及び参考例2-3(R404A)に示される混合冷媒のGWPは、IPCC第4次報告書の値に基づいて評価した。
これらの混合冷媒のCOP、冷凍能力、吐出温度、飽和温度40℃における飽和圧力、凝縮圧力及び蒸発圧力は、NIST及びRefprop 9.0を使用し、下記条件で混合冷媒の冷凍サイクル理論計算を実施することにより求めた。
蒸発温度 -10℃
凝縮温度 40℃
過熱温度 20K
過冷却温度 0K
圧縮機効率 70%
上記用語の意味は、試験例2-1と同様である。
試験例2-3の結果を表224に示す。表224は、本開示の冷媒2C2の実施例及び比較例を示している。表224中、各用語の意味は、試験例2-1と同様である。
成績係数(COP)及び圧縮比は、試験例2-1と同様にして求めた。
混合冷媒の燃焼性は、試験例2-1と同様にして判断した。燃焼速度試験は、試験例2-1と同様にして行った。
混合冷媒の燃焼範囲は、ASTM E681-09に基づく測定装置(図1Tを参照)を用いて、試験例2-1と同様の方法及び試験条件で測定した。
Figure 2023179585000083
試験例2-4
実施例2-19~2-24、比較例2-28~2-36及び参考例2-4(R404A)に示される混合冷媒のGWPは、IPCC第4次報告書の値に基づいて評価した。
これらの混合冷媒のCOP、冷凍能力、吐出温度、飽和温度40℃における飽和圧力、凝縮圧力及び蒸発圧力は、NIST及びRefprop 9.0を使用し、下記条件で混合冷媒の冷凍サイクル理論計算を実施することにより求めた。
蒸発温度 -80℃
凝縮温度 40℃
過熱温度 20K
過冷却温度 0K
圧縮機効率 70%
上記用語の意味は、試験例2-1と同様である。
試験例2-4の結果を表225に示す。表225は、本開示の冷媒2C2の実施例及び比較例を示している。表225中、各用語の意味は、試験例2-1と同様である。
成績係数(COP)及び圧縮比は、試験例2-1と同様にして求めた。
混合冷媒の燃焼性は、試験例2-1と同様にして判断した。燃焼速度試験は、試験例2-1と同様にして行った。
混合冷媒の燃焼範囲は、ASTM E681-09に基づく測定装置(図1Tを参照)を用いて、試験例2-1と同様の方法及び試験条件で測定した。
Figure 2023179585000084
試験例2-5
実施例2-25~2-30、比較例2-37~2-45及び参考例2-5(R404A)に示される混合冷媒のGWPは、IPCC第4次報告書の値に基づいて評価した。
これらの混合冷媒のCOP、冷凍能力、吐出温度、飽和温度40℃における飽和圧力、凝縮圧力及び蒸発圧力は、NIST及びRefprop 9.0を使用し、下記条件で混合冷媒の冷凍サイクル理論計算を実施することにより求めた。
蒸発温度 10℃
凝縮温度 40℃
過熱温度 20K
過冷却温度 0K
圧縮機効率 70%
上記用語の意味は、試験例2-1と同様である。
試験例2-5の結果を表226に示す。表226は、本開示の冷媒2C2の実施例及び比較例を示している。表226中、各用語の意味は、試験例2-1と同様である。
成績係数(COP)及び圧縮比は、試験例2-1と同様にして求めた。
混合冷媒の燃焼性は、試験例2-1と同様にして判断した。燃焼速度試験は、試験例2-1と同様にして行った。
混合冷媒の燃焼範囲は、ASTM E681-09に基づく測定装置(図1Tを参照)を用いて、試験例2-1と同様の方法及び試験条件で測定した。
Figure 2023179585000085
試験例3
実施例3-1~3-5、比較例3-1~3-5、参考例3-1(R134a)及び参考例3-2(R404A)に示される混合冷媒のGWPは、IPCC第4次報告書の値に基づいて評価した。
これらの混合冷媒のCOP、冷凍能力、吐出温度、飽和温度45℃における飽和圧力、凝縮圧力及び蒸発圧力は、National Institute of Science and Technology(NIST)及びReference Fluid Thermodynamic and Transport Properties Database(Refprop 9.0)を使用し、下記条件で混合冷媒の冷凍サイクル理論計算を実施することにより求めた。
蒸発温度 -10℃
凝縮温度 45℃
過熱温度 20K
過冷却温度 0K
圧縮機効率 70%
「蒸発温度-10℃」とは、冷凍装置が備える蒸発器における混合冷媒の蒸発温度が-10℃であることを意味する。また、「凝縮温度45℃」とは、冷凍装置が備える凝縮器における混合冷媒の凝縮温度が45℃であることを意味する。
試験例3の結果を表227に示す。表227は、本開示の冷媒2C3の実施例及び比較例を示している。表227中、「COP比」及び「冷凍能力比」とは、R134aに対する割合(%)を示す。表227中、「飽和圧力(45℃)」とは、飽和温度45℃における飽和圧力を示す。表227中、「吐出温度(℃)」とは、上記混合冷媒の冷凍サイクル理論計算において、冷凍サイクル中で最も温度が高くなる温度を示す。
成績係数(COP)は、次式により求めた。
COP=(冷凍能力又は暖房能力)/消費電力量
臨界温度は、National Institute of Science and Technology(NIST)及びReference Fluid Thermodynamic and Transport Properties Database(Refprop 9.0)を使用し、計算を実施することにより求めた。
混合冷媒の燃焼性は、混合冷媒の混合組成をWCF濃度とし、ANSI/ASHRAE34-2013規格に従い燃焼速度を測定することにより、判断した。燃焼速度が0cm/s~10cm/sとなるものは「クラス2L(微燃)」、燃焼速度が10cm/s超となるものは「クラス2(弱燃)」であるとし、火炎伝播がないものは「クラス1(不燃)」であるとした。表227中、「ASHRAE燃焼性区分」とは、この判定基準に基づく結果を示している。
燃焼速度試験は以下の通り行った。まず、使用した混合冷媒は99.5%又はそれ以上の純度とし、真空ゲージ上に空気の痕跡が見られなくなるまで凍結、ポンピング及び解凍のサイクルを繰り返すことにより脱気した。閉鎖法により燃焼速度を測定した。初期温度は周囲温度とした。点火は、試料セルの中心で電極間に電気的スパークを生じさせることにより行った。放電の持続時間は1.0~9.9msとし、点火エネルギーは典型的には約0.1~1.0Jであった。シュリーレン写真を使って炎の広がりを視覚化した。光を通す2つのアクリル窓を備えた円筒形容器(内径:155mm、長さ:198mm)を試料セルとして用い、光源としてはキセノンランプを用いた。炎のシュリーレン画像を高速デジタルビデオカメラで600fpsのフレーミング速度で記録し、PCに保存した。
混合冷媒の燃焼範囲は、ASTM E681-09に基づく測定装置(図1Tを参照)を用いて測定を実施した。
具体的には、燃焼の状態が目視および録画撮影できるように内容積12リットルの球形ガラスフラスコを使用し、ガラスフラスコは燃焼により過大な圧力が発生した際には上部のふたからガスが開放されるようにした。着火方法は底部から1/3の高さに保持された電極からの放電により発生させた。
<試験条件>
試験容器:280mmφ球形(内容積:12リットル)
試験温度:60℃±3℃
圧力:101.3kPa±0.7kPa
水分:乾燥空気1gにつき0.0088g±0.0005g(23℃における相対湿度50%の水分量)冷媒組成物/空気混合比:1vol.%刻み±0.2vol.%
冷媒組成物混合:±0.1質量%
点火方法:交流放電、電圧15kV、電流30mA、ネオン変圧器
電極間隔:6.4mm(1/4inch)
スパーク:0.4秒±0.05秒
判定基準:
・着火点を中心に90度より大きく火炎が広がった場合=火炎伝播あり(可燃)
・着火点を中心に90度以下の火炎の広がりだった場合=火炎伝播なし(不燃)
Figure 2023179585000086
試験例4
実施例4-1~4-7及び比較例4-1~4-5に示される混合冷媒のGWPは、IPCC第4次報告書の値に基づいて評価した。
これらの混合冷媒のCOP、冷凍能力、吐出温度及び飽和温度-10℃における飽和圧力は、National Institute of Science and Technology(NIST)及びReference Fluid Thermodynamic and Transport Properties Database(Refprop 9.0)を使用し、下記条件で混合冷媒の冷凍サイクル理論計算を実施することにより求めた。
蒸発温度 5℃
凝縮温度 45℃
過熱温度 5K
過冷却温度 5K
圧縮機効率 70%
「蒸発温度 5℃」とは、冷凍装置が備える蒸発器における混合冷媒の蒸発温度が5℃であることを意味する。また、「凝縮温度 45℃」とは、冷凍装置が備える凝縮器における混合冷媒の凝縮温度が45℃であることを意味する。
試験例4の結果を表228に示す。表228は、本開示の冷媒2C4の実施例及び比較例を示している。表228中、「COP比」及び「冷凍能力比」とは、R1234yfに対する割合(%)を示す。表228中、「飽和圧力(-10℃)」とは、冷蔵条件の蒸発温度の代表値としての飽和温度-10℃における飽和圧力を示す。表228中、「吐出温度(℃)」とは、上記混合冷媒の冷凍サイクル理論計算において、冷凍サイクル中で最も温度が高くなる温度を示す。
成績係数(COP)は、次式により求めた。
COP=(冷凍能力又は暖房能力)/消費電力量
臨界温度は、National Institute of Science and Technology(NIST)及びReference Fluid Thermodynamic and Transport Properties Database(Refprop 9.0)を使用し、計算を実施することにより求めた。
混合冷媒の燃焼性は、混合冷媒の混合組成をWCF濃度とし、ANSI/ASHRAE34-2013規格に従い燃焼速度を測定することにより、判断した。燃焼速度が0cm/s~10cm/sとなるものを「クラス2L(微燃)」、燃焼速度が10cm/s超となるものは「クラス2(弱燃)」であるとし、火炎伝播がないものは「クラス1(不燃)」であるとした。表228中、「ASHRAE燃焼性区分」とは、この判定基準に基づく結果を示している。
燃焼速度試験は以下の通り行った。まず、使用した混合冷媒は99.5%又はそれ以上の純度とし、真空ゲージ上に空気の痕跡が見られなくなるまで凍結、ポンピング及び解凍のサイクルを繰り返すことにより脱気した。閉鎖法により燃焼速度を測定した。初期温度は周囲温度とした。点火は、試料セルの中心で電極間に電気的スパークを生じさせることにより行った。放電の持続時間は1.0~9.9msとし、点火エネルギーは典型的には約0.1~1.0Jであった。シュリーレン写真を使って炎の広がりを視覚化した。光を通す2つのアクリル窓を備えた円筒形容器(内径:155mm、長さ:198mm)を試料セルとして用い、光源としてはキセノンランプを用いた。炎のシュリーレン画像を高速デジタルビデオカメラで600fpsのフレーミング速度で記録し、PCに保存した。
混合冷媒の燃焼範囲は、ASTM E681-09に基づく測定装置(図1Tを参照)を用いて測定を実施した。
具体的には、燃焼の状態が目視および録画撮影できるように内容積12リットルの球形ガラスフラスコを使用し、ガラスフラスコは燃焼により過大な圧力が発生した際には上部のふたからガスが開放されるようにした。着火方法は底部から1/3の高さに保持された電極からの放電により発生させた。
<試験条件>
試験容器:280mmφ球形(内容積:12リットル)
試験温度:60℃±3℃
圧力:101.3kPa±0.7kPa
水分:乾燥空気1gにつき0.0088g±0.0005g(23℃における相対湿度50%の水分量)
冷媒組成物/空気混合比:1vol.%刻み±0.2vol.%
冷媒組成物混合:±0.1質量%
点火方法:交流放電、電圧15kV、電流30mA、ネオン変圧器
電極間隔:6.4mm(1/4inch)
スパーク:0.4秒±0.05秒
判定基準:
・着火点を中心に90度より大きく火炎が広がった場合=火炎伝播あり(可燃)
・着火点を中心に90度以下の火炎の広がりだった場合=火炎伝播なし(不燃)
Figure 2023179585000087
試験例5
実施例5-1~5-13、比較例5-1~5-3及び参考例5-1(R134a)に示される混合冷媒のGWPは、IPCC第4次報告書の値に基づいて評価した。
これらの混合冷媒のCOP、冷凍能力、沸点及び吐出温度は、National Institute of Science and Technology(NIST)及びReference Fluid Thermodynamic and Transport Properties Database(Refprop 9.0)を使用し、下記条件で混合冷媒の冷凍サイクル理論計算を実施することにより求めた。
蒸発温度 -30℃
凝縮温度 30℃
過熱温度 5K
過冷却温度 5K
圧縮機効率 70%
「蒸発温度 -30℃」とは、冷凍装置が備える蒸発器における混合冷媒の蒸発温度が-30℃であることを意味する。また、「凝縮温度 30℃」とは、冷凍装置が備える凝縮器における混合冷媒の凝縮温度が30℃であることを意味する。
試験例5の結果を表229に示す。表229は、本開示の冷媒2C5の実施例及び比較例を示している。表229中、「COP比」及び「冷凍能力比」とは、R1234yfに対する割合(%)を示す。表229中、「吐出温度(℃)」とは、上記混合冷媒の冷凍サイクル理論計算において、冷凍サイクル中で最も温度が高くなる温度を示す。表229中、「沸点(℃)」とは、混合冷媒の液相が大気圧(101.33kPa)となる温度を示す。表229中、「動力の消費電力量(%)」とは、電気自動車が走行するために使用した電気エネルギーを示し、冷媒をHFO-1234yfとしたとき消費電力量との比で表す。表229中、「暖房の消費電力量(%)」とは、電気自動車が暖房を運転するために使用した電気エネルギーを示し、冷媒をHFO-1234yfとしたとき消費電力量との比で表す。表229中、「走行可能距離」とは、一定の電気容量の二次電池を搭載した電気自動車において、暖房せずに(暖房の消費電力が0)走行した場合の走行可能距離を100%とした場合の暖房ありで走行した場合の走行可能距離を相対割合(%)を表したものである。
成績係数(COP)は、次式により求めた。
COP=(冷凍能力又は暖房能力)/消費電力量
混合冷媒の燃焼性は、混合冷媒の混合組成をWCF濃度とし、ANSI/ASHRAE34-2013規格に従い燃焼速度を測定することにより判断した。燃焼速度の測定は以下の通り行った。まず、使用した混合冷媒は99.5%又はそれ以上の純度とし、真空ゲージ上に空気の痕跡が見られなくなるまで凍結、ポンピング及び解凍のサイクルを繰り返すことにより脱気した。閉鎖法により燃焼速度を測定した。初期温度は周囲温度とした。点火は、試料セルの中心で電極間に電気的スパークを生じさせることにより行った。放電の持続時間は1.0~9.9msとし、点火エネルギーは典型的には約0.1~1.0Jであった。シュリーレン写真を使って炎の広がりを視覚化した。光を通す2つのアクリル窓を備えた円筒形容器(内径:155mm、長さ:198mm)を試料セルとして用い、光源としてはキセノンランプを用いた。炎のシュリーレン画像を高速デジタルビデオカメラで600fpsのフレーミング速度で記録し、PCに保存した。
暖房方法は、沸点が-40℃を超える冷媒では暖房に電気ヒーター方式を用い、沸点が-40℃以下の冷媒には暖房にヒートポンプ方式を用いた。
暖房使用時の消費電力量は、次式により求めた。
暖房使用時の消費電力量=暖房能力/暖房COP
なお、暖房COPとは「暖房効率」を意味する。
暖房効率について、電気ヒーターの場合は暖房COP=1であり、動力と同等の電極を暖房に消費する。つまり、暖房の消費電力はE=E/(1+COP)となる。一方、ヒートポンプの場合はNational Institute of Science and Technology(NIST)及びReference Fluid Thermodynamic and Transport Properties Database(Refprop 9.0)を使用し、下記条件で混合冷媒の冷凍サイクル理論計算を実施することにより暖房COPを求めた。
蒸発温度 -30℃
凝縮温度 30℃
過熱温度 5K
過冷却温度 5K
圧縮機効率 70%
走行可能距離は、次式により求めた。
走行可能距離=(電池容量)/(動力の消費電力量+暖房での消費電力量)
Figure 2023179585000088
(1-6-4)冷媒2D
本開示の冷媒2Dは、ジフルオロメタン(HFC-32)、2,3,3,3-テトラフルオロプロペン(HFO-1234yf)、並びに、1,1-ジフルオロエチレン(HFO-1132a)及びテトラフルオロエチレン(FO-1114)の少なくとも一種を含有することを特徴とする。そして、上記特徴を有する本開示の冷媒2Dは、R404A及び/又はR410Aと同等以上の成績係数(COP)と冷凍能力(Cap)とを有し、GWPが十分に小さいという三種の性能を兼ね備えている。
なお、本開示において、R404Aと同等以上の成績係数(COP)は、R404Aに対するCOP比が100%以上(好ましくは103%以上、より好ましくは105%以上)であることを意味し、R404Aと同等以上の冷凍能力(Cap)は、R404Aに対するCap比が80%以上(好ましくは90%以上、より好ましくは95%以上、最も好ましくは100%以上)であることを意味する。
また、R410Aと同等以上の成績係数(COP)は、R410Aに対するCOP比が90%以上(好ましくは93%以上、より好ましくは95%以上、最も好ましくは100%以上)であることを意味し、R410Aと同等以上の冷凍能力(Cap)は、R410Aに対するCap比が80%以上(好ましくは95%以上、より好ましくは99%以上、最も好ましくは100%以上)であることを意味する。
更に、GWPが十分に小さいとは、GWPが500以下、好ましくは400以下、より好ましくは300以下であることを意味し、後述する第1形態の冷媒2Dの場合には、GWPが200以下、好ましくは170以下、より好ましくは150以下、更に好ましくは130以下であることを意味する。
本開示の冷媒2Dは、HFC-32、HFO-1234yf、並びに、HFO-1132a及びFO-1114の少なくとも一種を含有すればよく、その組成は上記性能が発揮される限りにおいて特に限定されないが、その中でも当該冷媒のGWPが500以下(特に後述する第1形態の冷媒2Dの場合には170以下となる組成であることが好ましい。HFO-1132a及びFO-1114の少なくとも一種についてはどちらか片方又は両方が含まれていてもよいが、本開示ではHFO-1132aを含有することが好ましい。
具体的には、本開示の冷媒2Dは、HFC-32、HFO-1234yf、及びHFO-1132aを含有する態様が好ましく、これら三成分の合計量を100質量%として、HFO-1234yfを含み、HFC-32が15.0~24.0質量%、HFO-1132aが1.0~7.0質量%含まれる混合冷媒であることが好ましい(第1形態の冷媒2D;図2Aの拡大図中、Xで示される四角形の範囲内又は前記四角形の線分上)。その中でも、HFO-1234yfを含み、HFC-32が19.5~23.5質量%、HFO-1132aが3.1~3.7質量%含まれる混合冷媒であることが好ましい(第1形態の好ましい冷媒2D;図2Aの拡大図中、Yで示される四角形の範囲内又は前記四角形の線分上)。かかる組成範囲であれば本開示所定の効果が発揮され易くなる。この第1形態の冷媒2Dは特にR404Aの代替冷媒として有用である。
本開示の冷媒2D(第1形態の冷媒2D)は、凝縮温度グライドは好ましくは12℃以下、より好ましくは10℃以下、更に好ましくは9℃以下である。また、圧縮機出口圧力は好ましくは1.60~2.00MPaの範囲内であり、より好ましくは1.73~1.91MPaの範囲内である。なお、本開示の冷媒2Dは、後述する公知の冷凍機油と混合する場合に冷凍機油との相溶性が良好であるという特性がある。
前記第1形態の冷媒2Dは、その組成範囲内に第2形態の冷媒2Dを包含する。
本開示の冷媒2D(第2形態の冷媒2D)は、HFC-32、HFO-1234yf及びHFO-1132aを含み、前記冷媒において、HFC-32、HFO-1132a及びHFO-1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFC-32、HFO-1132a及びHFO-1234yfの総和が100質量%となる3成分組成図において、座標(x, y, z)が、
点R(21.80, 3.95, 74.25)、
点S(21.80, 3.05, 75.15)、及び
点T(20.95, 75.30, 3.75)、
の3点をそれぞれ結ぶ線分RS、ST及びTRで囲まれる三角形の範囲内又は前記線分上にあることを特徴とする(図2Aの拡大図中、線分RS、ST及びTRで囲まれる三角形の範囲内又は前記線分上)。
本開示の冷媒2D(第2形態の冷媒2D)は、上記要件が満たされる場合、R404Aと同等以上の成績係数(COP)と95%以上の冷凍能力(Cap)とを有し、GWPが150以下であり、凝縮温度グライドが9℃以下である。
本開示の冷媒2Dは、前述の第1形態及び第2形態の冷媒2Dに加えて、下記の第3形態から第7形態の冷媒2Dを包含する。これらの第3形態から第7形態の冷媒2Dは、特にR410Aの代替冷媒として有用である
本開示の冷媒2D(第3形態の冷媒2D)は、HFC-32、HFO-1234yf及びHFO-1132aを含み、
前記冷媒において、HFC-32、HFO-1132a及びHFO-1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFC-32、HFO-1132a及びHFO-1234yfの総和が100質量%となる3成分組成図において、座標(x, y, z)が、
点L(74.0, 19.9, 6.1)、
点F(49.1, 25.9, 25.0)、
点G(0.0, 48.6, 51.4)、
点O(0.0, 0.0, 100)、及び
点B(73.9, 0.0, 26.1)、
の5点をそれぞれ結ぶ線分LF、FG、GO、OB及びBLで囲まれる図形の範囲内又は前記線分上(但し、線分GO及びOB上を除く)にあり、
前記線分LFは、
座標(y=0.0021x2-0.4975x+45.264)で表わされ、
前記線分FGは、
座標(y=0.0031x2-0.6144x+48.6)で表わされ、且つ、
前記線分GO、OB及びBLが直線であることを特徴とする。
本開示の冷媒2D(第3形態の冷媒2D)は、上記要件が満たされる場合、R410Aと同等以上の成績係数(COP)と冷凍能力(Cap)とを有し、GWPが500以下であり、R410Aを基準とする圧縮機出口圧力が1.25倍以下となる。このような圧縮機出口圧力は好ましくは3.4MPa以下であり、より好ましくは3.0MPa以下である。
なお、線分EF(線分LF、線分PFを含む)は本明細書の表及び図2Bの点E、実施例24及び点Fの3点から最小二乗法にて近似曲線を求め、線分FGは点F、実施例26及び点Gの3点から最小二乗法により近似曲線を求めた。
本開示の冷媒2D(第4形態の冷媒2D)は、HFC-32、HFO-1234yf及びHFO-1132aを含み、
前記冷媒において、HFC-32、HFO-1132a及びHFO-1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFC-32、HFO-1132a及びHFO-1234yfの総和が100質量%となる3成分組成図において、座標(x, y, z)が、
点P(59.1, 23.2, 17.7)、
点F(49.1, 25.9, 25.0)、
点G(0.0, 48.6, 51.4)、
点O(0.0, 0.0, 100)及び
点B’(59.0, 0.0, 40.2)、
の5点をそれぞれ結ぶ線分PF、FG、GO、OB’及びB’Pで囲まれる図形の範囲内又は前記線分上(但し、線分GO及びOB’上を除く)にあり、
前記線分PFは、
座標(y=0.0021x2-0.4975x+45.264)で表わされ、
前記線分FGは、
座標(y=0.0031x2-0.6144x+48.6)で表わされ、且つ、
前記線分GO、OB’及びB’Pが直線であることを特徴とする。
本開示の冷媒2D(第4形態の冷媒2D)は、上記要件が満たされる場合、R410Aと同等以上の成績係数(COP)と冷凍能力(Cap)とを有し、GWPが400以下であり、R410Aを基準とする圧縮機出口圧力が1.25倍以下となる。このような圧縮機出口圧力は好ましくは3.4MPa以下であり、より好ましくは3.0MPa以下である。
本開示の冷媒2D(第5形態の冷媒2D)は、HFC-32、HFO-1234yf及びHFO-1132aを含み、
前記冷媒において、HFC-32、HFO-1132a及びHFO-1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFC-32、HFO-1132a及びHFO-1234yfの総和が100質量%となる3成分組成図において、座標(x, y, z)が、
点M(74.0, 19.5, 6.5)、
点I(62.9, 15.5, 21.6)、
点J(33.5, 0.0, 66.5)、及び
点B(73.9, 0.0, 26.1)、
の4点をそれぞれ結ぶ線分MI、IJ、JB及びBMで囲まれる図形の範囲内又は前記線分上(但し、線分JB上を除く)にあり、
前記線分MIは、
座標(y=0.006x2+1.1837x-35.264)で表わされ、
前記線分IJは、
座標(y=0.0083x2-0.2719x-0.1953)で表わされ、且つ、
前記線分JB及びBMが直線であることを特徴とする。
本開示の冷媒2D(第5形態の冷媒2D)は、上記要件が満たされる場合、R410Aと同等以上の成績係数(COP)と冷凍能力(Cap)とを有し、GWPが500以下であり、R410Aを基準とする圧縮機出口圧力が1.25倍以下であり、このような圧縮機出口圧力は好ましくは3.4Mpa以下であり、より好ましくは3.0Mpa以下である。また、凝縮温度グライド及び蒸発温度グライドがともに5℃以下と小さく、特にR410A代替として適している。
なお、線分HI(線分MIを含む)は本明細書の表及び図2Bの点H、実施例21及び点Iの3点から最小二乗法にて近似曲線を求め、線分IJは点I、実施例23及び点Jの3点から最小二乗法により近似曲線を求めた。
本開示の冷媒2D(第6形態の冷媒2D)は、HFC-32、HFO-1234yf及びHFO-1132aを含み、
前記冷媒において、HFC-32、HFO-1132a及びHFO-1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFC-32、HFO-1132a及びHFO-1234yfの総和が100質量%となる3成分組成図において、座標(x, y, z)が、
点Q(59.1, 12.7, 28.2)、
点J(33.5, 0.0, 66.5)、及び
点B’(59.0, 0.0, 40.2)、
の3点をそれぞれ結ぶ線分QJ、JB’及びB’Qで囲まれる図形の範囲内又は前記線分上(但し、線分JB’上を除く)にあり、
前記線分QJは、
座標(y=0.0083x2-0.2719x-0.1953)で表わされ、且つ、
前記線分JB’及びB’Qがで直線であることを特徴とする。
本開示の冷媒2D(第6形態の冷媒2D)は、上記要件が満たされる場合、R410Aと同等以上の成績係数(COP)と冷凍能力(Cap)とを有し、GWPが400以下であり、R410Aを基準とする圧縮機出口圧力が1.25倍以下であり、このような圧縮機出口圧力は好ましくは3.4Mpa以下であり、より好ましくは3.0Mpa以下である。また、蒸発温度グライドが5℃以下と小さく、好ましくは4℃以下であり、より好ましくは3.5℃以下であり、特にR410A代替として適している。
本開示の冷媒2D(第7形態の冷媒2D)は、HFC-32、HFO-1234yf及びHFO-1132aを含み、
前記冷媒において、HFC-32、HFO-1132a及びHFO-1234yfの、これらの総和を基準とする質量%をそれぞれx、y及びzとするとき、HFC-32、HFO-1132a及びHFO-1234yfの総和が100質量%となる3成分組成図において、座標(x, y, z)が、
点Q(59.1, 12.7, 28.2)、
点U(59.0, 5.5, 35.5)、及び
点V(52.5, 8.4, 39.1)、
の3点をそれぞれ結ぶ線分QU、UV及びVQで囲まれる図形の範囲内又は前記線分上にあり、
前記線分VQは、
座標(y=0.0083x2-0.2719x-0.1953)で表わされ、且つ、
前記線分UVは、
座標(y=0.0026x2-0.7385x+39.946)で表わされ
前記線分QUが直線であることを特徴とする。
本開示の冷媒2D(第7形態の冷媒2D)は、上記要件が満たされる場合、R410Aと同等以上の成績係数(COP)と冷凍能力(Cap)(対R410A冷凍能力99%以上)とを有し、GWPが400以下であり、R410Aを基準とする圧縮機出口圧力が1.25倍以下であり、このような圧縮機出口圧力は好ましくは3.4Mpa以下であり、より好ましくは3.0Mpa以下である。また、蒸発温度グライドが5℃以下と小さく、好ましくは4℃以下であり、より好ましくは3.5℃以下であり、特にR410A代替として適している。
なお、線分UVは本明細書の表及び図2Bの点U、実施例28及び点Vの3点から最小二乗法にて近似曲線を求めた。
なお、第1形態から第7形態の冷媒2Dに例示されるように、HFO-1132aを用いた、R12、R22、R134a、R404A、R407A、R407C、R407F、R407H、R410A、R413A、R417A、R422A、R422B、R422C、R422D、R423A、R424A、R426A、R427A、R430A、R434A、R437A、R438A、R448A、R449A、R449B、R449C、R452A、R452B、R454A、R454B、R454C、R455A、R459A、R465A、R502、R507、R513A等の従来冷媒の代替冷媒を提案するのは本開示が初めてであり、本開示は最も広義には、「冷媒を含有する組成物であって、前記冷媒が、1,1-ジフルオロエチレン(HFO-1132a)を含有する、R12、R22、R134a、R404A、R407A、R407C、R407F、R407H、R410A、R413A、R417A、R422A、R422B、R422C、R422D、R423A、R424A、R426A、R427A、R430A、R434A、R437A、R438A、R448A、R449A、R449B、R449C、R452A、R452B、R454A、R454B、R454C、R455A、R459A、R465A、R502、R507又はR513Aの代替冷媒として用いられる組成物。」の発明を包含する。この中でも、「冷媒を含有する組成物であって、前記冷媒が1,1-ジフルオロエチレン(HFO-1132a)を含有するR410Aの代替冷媒として用いられる組成物。」の発明が好ましいものとして含まれる。
<更に他の追加的な冷媒を含有する混合冷媒>
本開示の冷媒2Dは、上記の特性や効果を損なわない範囲内で、HFC-32、HFO-1234yf、並びに、HFO-1132a及びFO-1114の少なくとも一種に加えて、更に他の追加的な冷媒を含有する混合冷媒であってもよい。この場合、HFC-32、HFO-1234yf、並びに、HFO-1132a及びFO-1114の少なくとも一種の合計量が、本開示の冷媒全体に対して、99.5質量%以上100質量%未満であることが好ましく、99.75質量%以上100質量%未満であることがより好ましく、99.9質量%%以上100質量%未満であることが更に好ましい。 上記追加的な冷媒としては、特に限定されず、この分野で広く使用されている公知の冷媒の中から幅広く選択できる。上記混合冷媒は、上記追加的な冷媒を単独で含んでいてもよいし、上記追加的な冷媒を2種以上を含んでいてもよい。
[冷媒2Dの実施例]
以下に、実施例を挙げて更に詳細に説明する。ただし、本開示は、これらの実施例に限定されるものではない。
実施例1~16及び比較例1(第1形態及び第2形態の冷媒2Dに対応)
実施例17~87及び比較例2~18(第3形態~第7形態の冷媒2Dに対応)
各実施例及び比較例に示される混合冷媒のGWP、並びに、R404A(R125/143a/R134a=44/52/4重量%)、R410A(R32/R125=50/50重量%)のGWPは、IPCC(Intergovernmental Panel on Climate Change)第4次報告書の値に基づいて評価した。
また、各実施例及び比較例に示される混合冷媒のCOP及び冷凍能力、並びに、R404AのCOP及び冷凍能力は、National Institute of Science and Technology(NIST)、Reference Fluid Thermodynamic and Transport Properties Database(Refprop 9.0)を使用して求めた。具体的には、実施例1~16及び比較例1(第1形態及び第2形態の冷媒2Dに対応)は下記条件で混合冷媒の冷凍サイクル理論計算を実施することにより求め、
蒸発温度 -40℃
凝縮温度 40℃
過熱温度 20K
過冷却温度 0K
圧縮機効率 70%
実施例17~87及び比較例2~18(第3形態~第7形態の冷媒2Dに対応)は下記条件で混合冷媒の冷凍サイクル理論計算を実施することにより求めた。
蒸発温度 5℃
凝縮温度 45℃
過熱温度 5K
過冷却温度 5K
圧縮機効率 70%
更に、各実施例及び比較例に示される混合冷媒を用いた場合の凝縮温度グライド、蒸発温度グライド及び圧縮機出口圧力についてもRefprop 9.0を使用して求めた。
また、これらの結果をもとに算出したGWP、COP及び冷凍能力を表230及び表231-1~表231-12に示す。なお、COP比及び冷凍能力比については、実施例1~16及び比較例1はR404Aに対する割合(%)を示し、実施例17~87及び比較例2~18はR410Aに対する割合(%)を示す。
成績係数(COP)は、次式により求めた。
COP=(冷凍能力又は暖房能力)/消費電力量
Figure 2023179585000089
表230の結果から明らかなように、特に第2形態の冷媒2Dは、R404Aと同等以上の成績係数(COP)と95%以上の冷凍能力(Cap)とを有し、GWPが150以下であり、凝縮温度グライドが9℃以下であることが分かり、特にR404A代替え冷媒として優れていることが分かる。
Figure 2023179585000090
Figure 2023179585000091
Figure 2023179585000092
Figure 2023179585000093
Figure 2023179585000094
Figure 2023179585000095
Figure 2023179585000096
Figure 2023179585000097
Figure 2023179585000098
Figure 2023179585000099
Figure 2023179585000100
Figure 2023179585000101
上記表231-1から表231-12の結果から明らかな通り、第3形態の冷媒2Dは、所定要件が満たされる場合、R410Aと同等以上の成績係数(COP)と冷凍能力(Cap)とを有し、GWPが500以下であり、R410Aを基準とする圧縮機出口圧力が1.25倍以下となることが分かる。第4形態の冷媒2Dは、所定要件が満たされる場合、R410Aと同等以上の成績係数(COP)と冷凍能力(Cap)とを有し、GWPが400以下であり、R410Aを基準とする圧縮機出口圧力が1.25倍以下となることが分かる。第5形態の冷媒2Dは、所定要件が満たされる場合、R410Aと同等以上の成績係数(COP)と冷凍能力(Cap)とを有し、GWPが500以下であり、R410Aを基準とする圧縮機出口圧力が1.25倍以下であり、また凝縮温度グライド及び蒸発温度グライドがともに5℃以下と小さいことが分かる。また、第6形態の冷媒2Dは、所定要件が満たされる場合、R410Aと同等以上の成績係数(COP)と冷凍能力(Cap)とを有し、GWPが400以下であり、R410Aを基準とする圧縮機出口圧力が1.25倍以下であり、また蒸発温度グライドが5℃以下と小さいことが分かる。また、第7形態の冷媒2Dは、所定要件が満たされる場合、R410Aと同等以上の成績係数(COP)と冷凍能力(Cap)(99%以上対R410A)とを有し、GWPが400以下であり、R410Aを基準とする圧縮機出口圧力が1.25倍以下であり、また蒸発温度グライドが5℃以下と小さいことが分かる。これらの第3形態から第7形態の冷媒2Dは、いずれもR410Aの代替冷媒として適しており、特に凝縮温度グライド及び/又は蒸発温度グライドが小さい第5形態又は第6形態の冷媒2Dは特にR410Aの代替冷媒として適している。更には、凝縮温度グライド及び/又は蒸発温度グライドが小さく、かつ、R410Aと同等以上の成績係数(COP)と冷凍能力(Cap)(99%以上対R410A)である第7形態の冷媒2Dは更にR410Aの代替え冷媒として優れている。
(1-6-5)冷媒2E
本開示の冷媒2Eは、R32、CO2、R125、R134a及びR1234yfを含有する混合冷媒である。
本開示の冷媒2Eは、(1)GWPが750以下であること、(2)WCF不燃又はASHRAE不燃であること、及び(3)R410Aと同等のCOP及び冷凍能力を有することという、R410A代替冷媒に通常求められる諸特性を有する。
本開示の冷媒2Eは、上記に加えて、温度グライドを有するため、冷媒の流れと外部熱媒体の流れとが対向流となる熱交換器を有する冷凍機において使用することにより、エネルギー効率及び/又は冷凍能力が改善するという効果も奏する。
本開示の冷媒2Eは、以下の要件1-1-1~1-3-2が満たされるとき、GWP750以下であり、かつWCF不燃であるため好ましい。なお、以下においては、R32、CO2、R125、R134a及びR1234yfの総和を基準とする、R32の質量%をa、CO2の質量%をb、R125の質量%をc1、R134aの質量%をc2、R125及びR134aの合計の質量%をc、R1234yfの質量%をxとし、c1/(c1+c2)をrとする。
R32が(100-x)質量%の点と、CO2が(100-x)質量%の点と、R125及びR134aの合計が(100-x)質量%の点とを頂点とする3成分組成図において、座標(a,b,c)が、
要件1-1-1)
43.8≧x≧41、かつ0.5≧r≧0.25であるとき、
点A(-0.6902x+43.307, 100-a-x, 0.0)、
点Or=0.25~0.5((-2.2857x+87.314)r2+(1.7143x-55.886)r+(-0.9643x+55.336), (2.2857x-112.91)r2+(-1.7143x+104.69)r+(-0.25x+11.05), 100-a-b-x)、
点Dr=0.25~0.5(0.0, -28.8r2+54.0r+(-x+49.9), 100-b-x)及び
点Q(0.0, 100-x, 0.0)
を結ぶ線分で囲まれる四角形の範囲内又は該線分上にあるか(ただし、線分Dr=0.25~0.5Q及びQA上の点は除く)、又は
1-1-2)
43.8≧x≧41、かつ1.0≧r≧0.5であるとき、
点A(-0.6902x+43.307, 100-a-c, 0.0)、
点Or=0.5~1.0((-0.2857x+8.5143)r2+(0.5x-10.9)+(-0.8571x+52.543), (-0.2857x+4.5143)r2+(0.5x+0.9)r+(-0.7143x+33.586), 100-a-b-x)、
点Dr=0.5~1.0(0.0, (-0.5714x+12.229)r2+(0.8571x-0.3429)r+(-1.2857x+66.814), 100-b-x)及び
点Q(0.0, 100-x, 0.0)
を結ぶ線分で囲まれる四角形の範囲内又は該線分上にあるか(ただし、線分Dr=0.5~1.0Q及びQA上の点は除く)、又は
1-2-1)
46.5≧x≧43.8、かつ0.5≧r≧0.25であるとき、
点A(-0.6902x+43.307, 100-a-x, 0.0)、
点Or=0.25~0.5((1.1852x-64.711)r2+(-0.7407x+51.644)r+(-0.5556x+37.433), (-2.3704x+91.022)r2+(2.0741x-61.244)r+(-0.963x+42.278), 100-a-b-x)、
点Dr=0.25~0.5(0.0, -28.8r2+54.0r+(-x+49.9), 100-b-x)及び
点Q(0.0, 100-x, 0.0)
を結ぶ線分で囲まれる四角形の範囲内又は該線分上にあるか(ただし、線分Dr=0.25~0.5Q及びQA上の点は除く)、又は
要件1-2-2)
46.5≧x≧43、かつ1.0≧r≧0.5であるとき、
点A(-0.6902x+43.307, 100-a-x, 0.0)、
点Or=0.5~1.0((0.2963x-16.978)r2+(-0.3704x+27.222)r+(-0.5185x+37.711), -8.0r2+22.8r+(-0.5185x+25.011), 100-a-b-x)、
点Dr=0.5~1.0(0.0, -12.8r2+37.2r+(-x+54.3), 100-b-x)及び
点Q(0.0, 100-x, 0.0)
を結ぶ線分で囲まれる四角形の範囲内又は該線分上にあるか(ただし、線分Dr=0.5~1.0Q及びQA上の点は除く)、
要件1-3-1)
50≧x≧46.5、かつ0.5≧r≧0.25であるとき、
点A(-0.6902x+43.307, 100-a-x, 0.0)、
点Or=0.25~0.5(-9.6r2+17.2r+(-0.6571x+42.157), -19.2r2+(0.2286x+24.571)r+(-0.6286x+26.729), 100-a-b-x)、
点Dr=0.25~0.5(0.0, (0.9143x-71.314)r2+(-0.5714x+80.571)+(-0.9143x+45.914), 100-b-x)及び
点Q(0.0, 100-x, 0.0)
を結ぶ線分で囲まれる四角形の範囲内又は該線分上にあるか(ただし、線分Dr=0.25~0.5Q及びQA上の点は除く)、又は
1-3-2)
50≧x≧46.5、かつ1.0≧r≧0.5であるとき、
点A(-0.6902x+43.307, 100-a-x, 0.0)、
点Or=0.5~1.0((-0.2286x+7.4286)r2+(0.4x-8.6)r+(-0.8x+50.8), (0.2286x-18.629)r2+(-0.2857x+36.086)r+(-0.4286x+20.829), 100-a-b-x)、
点Dr=0.5~1.0(0.0, (0.2286x-23.429)r2+(-0.4x+55.8)r+(-0.8286x+46.329), 100-b-x)及び
点Q(0.0, 100-x, 0.0)
を結ぶ線分で囲まれる四角形の範囲内又は該線分上にある(ただし、線分Dr=0.5~1.0Q及びQA上の点は除く)。
本開示の冷媒2Eは、以下の要件2-1-1~2-3-2が満たされるとき、GWP750以下であり、かつASHRAE不燃であるため好ましい。
要件2-1-1)
43.8≧x≧41、かつ0.5≧r≧0.25であるとき、
点Fr=0.25~0.5(0.0, (-1.1429x+37.257)r2+(1.2857x-38.714)r-(-1.7143x+106.89), 100-b-x)、
点Pr=0.25~0.5((-1.1429x+34.057)r2+(1.0x-21.0)r+(-0.4643x+27.636), (2.2857x-119.31)r2+(-2.0x+122.0)r+(-0.3929x+19.907), 100-a-b-x)及び
点Dr=0.25~0.5(0.0, -28.8r2+54.0r+(-x+49.9), 100-b-x)
を結ぶ線分で囲まれる三角形の範囲内又は該線分上にあるか(ただし、線分Dr=0.25~0.5Fr=0.25~0.5上の点は除く)、又は
2-1-2)43.8≧x≧41、かつ1.0≧r≧0.5であるとき、
点Fr=0.5~1.0(0.0, (3.7143x-159.49)r2+(-5.0714x+222.53)r+(0.25x+25.45), 100-b-x)、
点Pr=0.5~1.0((3.4286x-138.17)r2+(-5.4286x+203.57)+(1.6071x-41.593), (-2.8571x+106.74)r2+(4.5714x-143.63)r+(-2.3929x+96.027), 100-a-b-x)及び
点Dr=0.5~1.0(0.0, (-0.5714x+12.229)r2+(0.8571x-0.3429)r+(-1.2857x+66.814), 100-b-x)
を結ぶ線分で囲まれる三角形の範囲内又は該線分上にあるか(ただし、線分Dr=0.5~1.0Fr=0.5~1.0上の点は除く)、又は
2-2-1)46.5≧x≧43、かつ0.5≧r≧0.25であるとき、
点Fr=0.25~0.5(0.0, (9.4815x-428.09)r2+(-7.1111x+329.07)r+(-0.2593x+43.156), 100-b-x)、
点Pr=0.25~0.5((-8.2963x+347.38)r2+(4.8889x-191.33)r+(-0.963x+49.478), (7.1111x-330.67)r2+(-4.1481x+216.09)r+(-0.2593x+14.056), 100-a-b-x)及び
点Dr=0.25~0.5(0.0, -28.8r2+54.0r+(-x+49.9), 100-b-x)
を結ぶ線分で囲まれる三角形の範囲内又は該線分上にあるか(ただし、線分Dr=0.25~0.5Fr=0.25~0.5上の点は除く)、又は
2-2-2)46.5≧x≧43、かつ1.0≧r≧0.5であるとき、
点Fr=0.5~1.0(0.0, (-4.7407x+210.84)r2+(6.963x-304.58)r+(-3.7407x+200.24), 100-b-x)、
点Pr=0.5~1.0((0.2963x-0.9778)r2+(0.2222x-43.933)r+(-0.7778x+62.867), (-0.2963x-5.4222)r2+(-0.0741x+59.844)r+(-0.4444x+10.867), 100-a-b-x)及び
点Dr=0.5~1.0(0.0, -12.8r2+37.2r+(-x+54.3), 100-b-x)
を結ぶ線分で囲まれる三角形の範囲内又は該線分上にあるか(ただし、線分Dr=0.5~1.0Fr=0.5~1.0上の点は除く)、又は
2-3-1)50≧x≧46.5、かつ0.37≧r≧0.25であるとき、
点Fr=0.25~0.37(0.0, (-35.714x+1744.0)r2+(23.333x-1128.3)r+(-5.144x+276.32), 100-b-x)、
点Pr=0.25~0.37((11.905x-595.24)r2+(-7.6189x+392.61)r+(0.9322x-39.027), (-27.778x+1305.6)r2+(17.46x-796.35)r+(-3.5147x+166.48),100-a-b-x)及び
点Dr=0.25~0.37(0.0, (0.9143x-71.314)r2+(-0.5714x+80.571)+(-0.9143x+45.914), 100-b-x)
を結ぶ線分で囲まれる三角形の範囲内又は該線分上にあるか(ただし、線分Dr=0.25~0.37Fr=0.25~0.37上の点は除く)、又は
2-3-2)50≧x≧46.5、かつ1.0≧r≧0.5であるとき、
点Fr=0.5~1.0(0.0, (2.2857x-115.89)r2+(-3.0857x+162.69)r+(-0.3714x+43.571), 100-b-x)、
点Pr=0.5~1.0((-3.2x+161.6)r2+(4.4571x-240.86)r+(-2.0857x+123.69), (2.5143x-136.11)r2+(-3.3714x+213.17)r+(0.5429x-35.043), 100-a-b-x)及び
点Dr=0.5~1.0(0.0, (0.2286x-23.429)r2+(-0.4x+55.8)r+(-0.8286x+46.329), 100-b-x)
を結ぶ線分で囲まれる三角形の範囲内又は該線分上にある(ただし、線分Dr=0.5~1.0Fr=0.5~1.0上の点は除く)。
本開示の冷媒2Eは、上記の特性や効果を損なわない範囲内で、R32、CO2、R125、R134a及びR1234yfに加えて、さらに他の追加的な冷媒及び/又は不可避不純物を含有していてもよい。この点で、本開示の冷媒2Eが、R32、CO2、R125、R134a及びR1234yfの合計を、冷媒2E全体に対して99.5質量%以上含むことが好ましい。このとき、追加的な冷媒及び不可避不純物の合計含量は、冷媒2E全体に対して0.5質量%以下となる。この点で、冷媒2Eが、R32、CO2、R125、R134a及びR1234yfの合計を、冷媒2E全体に対して、99.75質量%以上含むことがより好ましく、99.9質量%以上含むことがさらに好ましい。
追加的な冷媒としては、特に限定されず、幅広く選択できる。混合冷媒は、追加的な冷媒として、一種を単独で含んでいてもよいし、二種以上を含んでいてもよい。
[冷媒2Eの実施例]
以下に、実施例を挙げてさらに詳細に説明する。ただし、本開示は、これらの実施例に限定されるものではない。
1.WCF不燃限界、及びASHRAE不燃限界(WCF&WCFF不燃)の計算
R32、CO2、R125、R134a及びR1234yfのみからなる混合冷媒の組成は、以下のようにして表わす。すなわち、R32、CO2、R125、R134a及びR1234yfの総和を基準とする、R32の質量%をa、CO2の質量%をb、R125の質量%をc1、R134aの質量%をc2、R125及びR134aの合計の質量%をc、R1234yfの質量%をxとし、c1/(c1+c2)をrとする場合、R32が(100-x)質量%の点と、CO2が(100-x)質量%の点と、R125及びR134aの合計が(100-x)質量%の点とを頂点とする3成分組成図における座標(a,b,c)により、この混合冷媒の組成を特定する。
以下からは、x=41質量%、r=0.25の場合のWCF不燃限界及びASHRAE不燃限界の特定方法を説明する。
3成分組成図にて不燃限界を特定していくには、先ず可燃性冷媒(R32、1234yf)と不燃性冷媒(CO2、R134a、R125)との2元混合冷媒の不燃限界を求める必要がある。以下に、当該2元混合冷媒の不燃限界の求め方を示す。
[1] 可燃性冷媒(R32,1234yf)と不燃性冷媒(CO2、R134a、R125)との2元混合冷媒の不燃限界
2元混合冷媒の不燃限界は、ASTM E681-2009に基づく燃焼試験の測定装置(図2E)及び測定方法に基づいて求めた。
具体的には、燃焼の状態が目視および録画撮影できるように内容積12リットルの球形ガラスフラスコを使用し、ガラスフラスコは燃焼により過大な圧力が発生した際には上部のふたからガスが開放されるようにした。着火方法は底部から1/3の高さに保持された電極からの放電により発生させた。試験条件は以下の通りである。
<試験条件>
試験容器:280 mmφ球形(内容積:12リットル)
試験温度: 60℃±3℃
圧力 :101.3 kPa±0.7 kPa
水分 :乾燥空気1 gにつき0.0088 g±0.0005 g
2元冷媒組成物/空気混合比:1 vol.%刻み±0.2 vol.%
2元冷媒組成物混合: ±0.1 質量%
点火方法:交流放電、電圧15kV、電流30mA、ネオン変圧器
電極間隔:6.4 mm (1/4 inch)
スパーク:0.4 秒 ±0.05 秒
判定基準:
・着火点を中心に90度より火炎が広がった場合 = 燃焼(伝播)
・着火点を中心に90度以下の火炎の広がりだった場合= 火炎伝播なし(不燃)
表232に記載の可燃性冷媒及び不燃性冷媒の組合せについてそれぞれ試験を行った。可燃性冷媒に対して不燃性冷媒を段階的に添加していき、各段階において燃焼試験を行った。
その結果、可燃性冷媒R32と不燃性冷媒R134aとの混合冷媒では、R32=43.0質量%、R134a=57.0質量%から火炎伝播は認められなくなり、この組成を不燃限界とした。また、可燃性冷媒R32と不燃性冷媒R125では、R32=63.0質量%、R125=37.0質量%、可燃性冷媒R32と不燃性冷媒2CO2では、R32=43.5質量%、CO2=56.5質量%、可燃性冷媒1234yfと不燃性冷媒R134aでは、1234yf=62.0質量%、R134a=38.0質量%、可燃性冷媒1234yfと不燃性冷媒R125では、1234yf=79.0質量%、R125=21.0質量%、可燃性冷媒1234yfと不燃性冷媒2CO2では、1234yf=63.0質量%、CO2=37.0質量%からそれぞれ火炎伝播は認められなくなり、これらの組成を不燃限界とした。表232に結果をまとめた。
Figure 2023179585000102
次に、[1]で求めた2元混合冷媒の不燃限界に基づいて、x=41質量%、r=0.25の場合の不燃限界を以下のように求めた。
1) x=41質量%、r=0.25、c=0質量%の場合 点A(a,b,0)
a+b=59質量%とし、以下の手順で混合組成が不燃限界組成になっているかどうかを調べた。
(1) R32換算可燃冷媒濃度=R32濃度+R1234yf濃度×((21/79)×(63/37)+(38/62)×(43/57))/2
(2) R32換算不燃冷媒濃度=R125濃度×(63/37)+R134a濃度×(43/57)+CO2濃度×(43.5/56.5)
ここで、R32換算不燃冷媒組成-R32換算可燃冷媒組成の値がプラスで最小値を示す値を計算上の不燃限界組成とした。表233に計算結果を示すが、点A(15.0,44.0,0)が計算上の不燃限界組成であった。
Figure 2023179585000103
2) x=41質量%、r=0.25、b=30質量%の場合 点(a,30,c)
a+c=29質量%とし、前記と同様の手順でこの条件での不燃限界組成を求め、その結果を表234に示す。
Figure 2023179585000104
3) x=41質量%、r=0.25、b=15質量%の場合 点(a,15,c)
a+c=44質量%とし、前記と同様の手順でこの条件での不燃限界組成を求め、その結果を表235に示す。
Figure 2023179585000105
4) x=41質量%、r=0.25、b=0質量%の場合 点Br=0.25(a,0,c)
a+c=59質量%とし、前記と同様の手順でこの条件での不燃限界組成を求め、その結果を表236に示す。
Figure 2023179585000106
以上の計算上の不燃限界組成を調べた結果を図2Oの3成分組成図に示す。それらの点を結んだものが、図2OのABr=0.25である。
[2] 上記[1]で得られた2元混合冷媒の不燃限界から求めたWCF不燃限界点の燃焼試験による検証
表233で示す組成、
可燃限界組成-1-1)(R32/CO2/R125/R134a)=(15.1/43.9/0.0/0.0)、
不燃限界組成-1-2)(R32/CO2/R125/R134a)=(15.0/44.0/0.0/0.0)、
表235で示す組成、
可燃限界組成-2-1)(R32/CO2/R125/R134a)=(18.3/15.0/6.4/19.3)、
不燃限界組成-2-2)(R32/CO2/R125/R134a)=(18.2/15.0/6.5/19.3)、
を[1]で示したASTM E681に従って燃焼試験を行ったところ、組成-1-1)、組成-2-1)は火炎伝播が認められ、組成1-1-2)、組成-2-2)は火炎伝播は認められなかった。従って、2元混合冷媒の不燃限界から求めた混合冷媒の不燃限界は実際の不燃限界を示しているといえる。
以上、2元混合冷媒の不燃限界から求めた混合冷媒の不燃限界組成をWCF不燃限界点とする。また、WCF不燃限界点は、図2Oに示すように線分ABr=0.25上にあるので、点A、点Br=0.25の2点から求めた線分ABr=0.25をWCF不燃限界線とする。
一方、ASHRAE不燃(WCF不燃、及びWCFF不燃)であることは、混合冷媒の最も燃えやすい組成(WCF)、及び、WCF組成を元に、貯蔵/輸送時の漏洩試験、装置からの漏洩試験、漏洩及び再充填試験を行い、最悪条件の最も燃えやすい組成(WCFF)が不燃となることである。以下では、WCFF濃度は、NIST Standard Reference Data Base Refleak Version 4.0(以下、「Refleak」と表記することがある)により各種条件での漏洩シミュレーションを行うことで求めた。また、求めたWCFF組成が不燃限界になっていることはWCF不燃限界で示した2元混合冷媒の不燃限界から混合冷媒の不燃限界を求める方法で確認した。
x=41質量%、r=0.25の場合のASHRAE不燃限界の求め方を以下で説明する。
5) x=41質量%、r=0.25、a=0質量%の場合 点Br=0.25(0.0,b,c(c1+c2))
Refleakで貯蔵/輸送時の漏洩試験、装置からの漏洩試験、漏洩・再充填試験を行なったところ、貯蔵/輸送時の漏洩条件が一番燃えやすい条件であり、かつ、-40℃での漏洩が一番燃えやすい条件であった。従って、ASHRAE不燃限界は、貯蔵/輸送時で-40℃での漏洩試験を、Refleakでの漏洩シミューレーションを行い以下の手順で求めた。表237は漏洩シミュレーションでの可燃/不燃の限界となる代表値を示す。初期組成が(0.0,39.5,19.5(4.9+14.6))のときに輸送及び貯蔵条件では-40℃、52%放出時に大気圧になり、その時の液側の濃度はx=67.0質量%で(0.0,2.5,30.5(6.1+24.4))であり、前記した不燃判定では大気圧条件で不燃となる限界であった。一方、初期組成が(0.0,39.6,19.4(4.9+14.5))では-40℃、52%放出時に大気圧になり、その時の液側濃度はx=67.1%で(0.0,2.6,30.3(6.1+24.2))であり、前記した不燃判定では可燃であった。従って、初期組成が(0.0,39.5,19.5(4.9+14.6))をWCF組成とした場合に、WCF組成、WCFF組成ともに計算上不燃と判断されるので、(0.0,39.5,19.5(4.9+14.6))がASHRAE不燃限界組成である。
Figure 2023179585000107
6) x=41質量%、r=0.25、a質量%でGWP=750となる場合の 点Pr=0.25(a,b,c(c1+c2)) X=41.0質量%、r=0.25の条件では、a+b+c=100-x=59質量%で示される3成分組成図でGWP=750となる点は図2Oに示しているように、点Cr=0.25(31.6,0.0,27.4(6.9+20.5))と点Dr=0.25(0.0,20.6,38.4(9.6+28.8))を結んだ直線Cr=0.25 Dr=0.25にあり、この直線はc1=-0.085a+9.6で示される。GWP=750でASHRAE不燃限界となるPr=0.25(a,-0.085c1+9.6,c)は、初期組成をこの条件で設定し、Refleakで貯蔵/輸送の条件で-40℃シミューレーションすることでASHRAE不燃限界組成を表238のように求めた。
Figure 2023179585000108
7) x=41質量%、r=0.25、a=10.0質量%場合の 点(a,b,c(c1+c2))
上記と同様に調べた結果を表239に示す。
Figure 2023179585000109
8) x=41質量%、r=0.25、a=5.8質量%場合の 点(a,b,c(c1+c2))
上記と同様に調べた結果を表240に示す。
Figure 2023179585000110
[2]上記で得られた2元混合冷媒の不燃限界から求めたASHRAE不燃限界点の燃焼試験による検証
下記組成を[1]で示したASTM E681に従って燃焼試験を行ったところ、組成-3-1)、組成-4-1)、及び組成5-1)は火炎伝播が認められず、組成-3-2)、組成-4-2)、及び組成-5-2)は火炎伝播が認められた。従って、表237,238,239の計算で示したASHRAE不燃限界は実際の不燃限界を示しているといえる。
組成3-1)
x=R1234yf=41.0質量%、(R32/CO2/R125/R134a)=(0.0/39.5/4.9/14.6)の-40℃、52%放出時の液側組成、x=67.0%、(R32/CO2/R125/R134a)=(0.0/2.5/6.1/24.4)
組成3-2)
x=R1234yf=41.0質量%、(R32/CO2/R125/R134a)=(0.0/39.6/4.9/14.5)の-40℃、52%放出時の液側組成、x=67.1%、(R32/CO2/R125/R134a)=(0.0/2.6/6.1/24.2)
組成4-1)
x=R1234yf=41.0質量%、(R32/CO2/R125/R134a)=(12.8/12.2/8.5/25.5)の-40℃、38%放出時の気側組成、x=40.1%、(R32/CO2/R125/R134a)=(21.8/5.1/12.4/20.6)
組成4-2)
x=R1234yf=41.0質量%、(R32/CO2/R125/R134a)=(12.9/12.1/8.5/25.5)の-40℃、38%放出時の気側組成、x=41.1%、(R32/CO2/R125/R134a)=(21.4/3.8/12.4/21.3)
組成5-1)
x=R1234yf=41.0質量%、(R32/CO2/R125/R134a)=(5.8/30.0/5.8/17.4)の-40℃、50%放出時の液側組成、x=61.2%、(R32/CO2/R125/R134a)=(4.1/1.1/6.4/27.2)
組成5-2)
x=R1234yf=41.0質量%、(R32/CO2/R125/R134a)=(5.8/30.1/5.8/17.3)の-40℃、50%放出時の液側組成、x=61.4%、(R32/CO2/R125/R134a)=(4.1/1.1/6.4/27.0)
図2Oには表237,238,239,240で示したASHRAE不燃限界点と点Fr=0.25 と点Pr=0.25より結んだ直線Fr=0.25 Pr=0.25を示す。ASHRAE不燃限界点は、図2Oで示すように直線Fr=0.25Pr=0.25より可燃冷媒R32側にあるが、安全率も見込んでここでは点Fr=0.25、点Pr=0.25を求めることで得られる直線Fr=0.25Pr=0.25をASHRAE不燃限界線とする。
以上、2元混合冷媒の不燃限界から求めたWCF不燃限界線、Refleakでの漏洩シミュレーションから求めたWCFF組成を元に2元混合冷媒の不燃限界から求めたASHRAE不燃限界線は、実際のそれぞれの不燃限界線と合致したので、これ以降、上記方法でそれぞれの不燃限界を求め、線分ABrをWCF不燃限界線、線分FrPrをASHRAE不燃限界線とする。
表241から表244には2元混合冷媒の不燃限界から求めた混合冷媒のWCF不燃限界点を、表245から表248には漏洩シミュレーションと2元混合冷媒の不燃限界から求めたASHRAE不燃限界点を示す。
Figure 2023179585000111
Figure 2023179585000112
Figure 2023179585000113
Figure 2023179585000114
Figure 2023179585000115
Figure 2023179585000116
Figure 2023179585000117
Figure 2023179585000118
実施例1~222及び比較例1~206
R410A、R32、R125、R1234yf、R134a及びCO2の混合物を含有する組成物のGWPは、IPCC(Intergovernmental Panel on Climate Change)第4次報告書の値に基づいて評価した。また、R410A 並びにR32、R125、R1234yf、R134a及びCO2の混合物を含有する組成物の冷凍能力は、National Institute of Science and Technology(NIST) Reference Fluid Thermodynamic and Transport Properties Database(Refprop 9.0)を使い、下記条件で混合冷媒の冷凍サイクル理論計算を実施することにより求めた。
蒸発温度 -10℃
凝縮温度 45℃
過熱温度 20K
過冷却温度 5K
圧縮機効率 70%
また、これらの結果をもとに算出したGWP、COP及び冷凍能力を表249~280に示す。なお、COP及び冷凍能力については、R410Aに対する割合を示す。
成績係数(COP)は、次式により求めた。
COP =(冷凍能力又は暖房能力)/消費電力量
Figure 2023179585000119
Figure 2023179585000120
Figure 2023179585000121
Figure 2023179585000122
Figure 2023179585000123
Figure 2023179585000124
Figure 2023179585000125
Figure 2023179585000126
Figure 2023179585000127
Figure 2023179585000128
Figure 2023179585000129
Figure 2023179585000130
Figure 2023179585000131
x=R1234yfとしたときの点A、点Br、点Cr、点Dr、点Or、点Fr、点Pr近似曲線の求め方
点A
上記のようにして明らかになった、点Aの4種の組成に基づいて、以下のようにして最小二乗法によりR1234yfの割合(x)の関数として点Aの座標の近似式を求めた。すなわち、点Aの座標(a,b,c)=(-0.6902x+43.307, 100-a-x, 0.0)となることが判った。
Figure 2023179585000132
点Br
また、上記のようにして明らかになった、点Brの組成に基づいて、以下のようにして最小二乗法と計算によりr、及びR1234yfの割合(x)の関数として点Brの座標の近似式を求めた。
Figure 2023179585000133
Figure 2023179585000134
Figure 2023179585000135
点C r=0.25~1.0及びDr=0.25~1.0近似曲線の求め方
また、上記のようにして明らかになった、点Cr、点Drの組成に基づいて、以下のようにして最小二乗法と計算によりr、及びR1234yfの割合(x)の関数として点Cr、点Dr座標の近似式を求めた。
Figure 2023179585000136
Figure 2023179585000137
Figure 2023179585000138
Figure 2023179585000139
Figure 2023179585000140
Figure 2023179585000141
点Or近似曲線の求め方
線分ABrと線分CrDrとの交点であるOrの各点は実施例及び比較例で示しているが、Orの組成に基づいて、以下のようにして最小二乗法と計算によりr、及びR1234yfの割合(x)の関数として点Or座標の近似式を求めた。
Figure 2023179585000142
Figure 2023179585000143
Figure 2023179585000144
点Fr、Pr近似曲線の求め方
点Frと点Prの各点は実施例及び比較例で示しているが、各組成に基づいて、以下のようにして最小二乗法と計算によりr、及びR1234yfの割合(x)の関数として点Fr、点Pr座標の近似式を求めた。
Figure 2023179585000145
Figure 2023179585000146
Figure 2023179585000147
Figure 2023179585000148
Figure 2023179585000149
Figure 2023179585000150
(1-7)各種冷媒3
以下、本開示において用いられる冷媒である冷媒3A、冷媒3Bについて、詳細に説明する。
本開示の組成物は冷媒を含有し、当該冷媒としては、「冷媒3A」及び「冷媒3B」が挙げられる。以下、冷媒3A及び冷媒3Bについてそれぞれ説明する。本明細書において、「本開示の冷媒」とは冷媒3A及び冷媒3Bを意味する。
(1-7-1)冷媒3A
本開示の組成物に含まれる冷媒は、一つの態様において、HFO-1132(Z)及びHFO-1234yfを含有する。この冷媒を「冷媒3A」ということがある。
冷媒3Aは、HFO-1132(Z)及びHFO-1234yfの全質量に対して、HFO-1132(Z)の含有割合が53.0~59.5質量%であり、HFO-1234yfの含有割合が47.0~40.5質量%である。
冷媒3Aは、このような構成を有することによって、(1)GWPが十分小さいこと(100以下)、(2)R134aと同等又はそれ以上のCOPを有すること、(3)R134aと同等又はそれ以上の冷凍能力を有すること、及び(4)ASHRAEの規格で微燃性(クラス2L)であること、というR134a代替冷媒として望ましい諸特性を有する。
本項目において、GWPが十分に小さいとは、GWPが通常100以下、好ましくは75以下、より好ましくは50以下、更に好ましくは25以下であることを意味する。
冷媒3Aにおいて、HFO-1132(Z)及びHFO-1234yfの全質量に対する、HFO-1132(Z)の含有割合が59.5質量%を超える場合は、冷媒3Aが弱燃になるという問題が生じる。
冷媒3Aは、市販のR134a用冷凍装置に対して運転時の消費電力を低減することができる観点から、R134aに対する冷凍能力が通常95%以上、好ましくは98%以上、より好ましくは99%以上、更に好ましくは100%以上、特に好ましくは100.5%以上である。
冷媒3Aは、GWPが100以下であることによって、地球温暖化の観点から他の汎用冷媒と比べて顕著に環境負荷を抑えることができる。
冷媒3Aは、R134aに対する冷凍サイクルで消費された動力と冷凍能力の比(成績係数(COP))が100%以上であるため、市販のR134a用冷凍装置に対して大きな設計変更なく適用することができる。
冷媒3Aは、エネルギー消費効率の点から、R134aに対する冷凍サイクルで消費された動力と冷凍能力の比(成績係数(COP))が高いことが好ましい。具体的には、R134aに対するCOPは98%以上であることが好ましく、99%以上であることがより好ましく、100%以上であることが更に好ましく、101%以上であることが特に好ましい。
冷媒3Aは、HFO-1132(Z)及びHFO-1234yfの全質量に対して、HFO-1132(Z)の含有割合が53.0~59.0質量%であり、HFO-1234yfの含有割合が47.0~41.0質量%であることが好ましい。
冷媒3Aは、HFO-1132(Z)及びHFO-1234yfの全質量に対して、HFO-1132(Z)の含有割合が54.0~59.0質量%であり、HFO-1234yfの含有割合が46.0~41.0質量%であることがより好ましい。
冷媒3Aは、HFO-1132(Z)及びHFO-1234yfの全質量に対して、HFO-1132(Z)の含有割合が55.0~59.0質量%であり、HFO-1234yfの含有割合が45.0~41.0質量%であることが更に好ましい。
冷媒3Aは、HFO-1132(Z)及びHFO-1234yfの全質量に対して、HFO-1132(Z)の含有割合が56.0~59.0質量%であり、HFO-1234yfの含有割合が44.0~41.0質量%であることが特に好ましい。
冷媒3Aは、HFO-1132(Z)及びHFO-1234yfをこれらの濃度の総和で、通常99.5質量%以上含有してもよい。本開示において、冷媒3A全体におけるHFO-1132(Z)及びHFO-1234yfの合計量が99.7質量%以上であれば好ましく、99.8質量%以上であればより好ましく、99.9質量%以上であれば更に好ましい。
冷媒3Aは、上記の特性を損なわない範囲内で、HFO-1132(Z)及びHFO-1234yfに加えて、更に他の冷媒を含有することができる。この場合、冷媒3A全体における他の冷媒の含有割合は0.5質量%以下が好ましく、0.3質量%以下がより好ましく、0.2質量%以下が更に好ましく、0.1質量%以下が特に好ましい。他の冷媒としては、特に限定されず、この分野で広く使用されている公知の冷媒の中から幅広く選択できる。冷媒3Aは、他の冷媒を単独で含んでいてもよいし、他の冷媒を2種以上含んでいてもよい。
本開示において、冷媒3Aは、室内及び被冷却物を十分に冷却する観点から、蒸発温度が-60~20℃である冷凍サイクルを運転するために用いられることが好ましい。
冷媒3Aが使用される冷凍サイクルでは、室内及び被冷却物を十分に冷却する観点から、蒸発温度が15℃以下であることがより好ましく、10℃以下であることがより一層好ましく、5℃以下であること更に好ましく、0℃未満であることが特に好ましい。
冷媒3Aが使用される冷凍サイクルにおいて、蒸発圧力を0.02MPa以上にする観点から、蒸発温度は好ましくは-55℃以上、より好ましくは-50℃以上、更に好ましくは-45℃以上、特に好ましくは-40℃以上である。
冷媒3Aが使用される冷凍サイクルにおいて、蒸発温度はより好ましくは-55℃以上15℃以下、より一層好ましくは-50℃以上10℃以下、更に好ましくは-45℃以上5℃以下、特に好ましくは-40℃以上0℃未満である。
冷媒3Aは、HFO-1132(Z)及びHFO-1234yfのみからなることが特に好ましい。換言すると、冷媒3Aは、冷媒3A全体におけるHFO-1132(Z)及びHFO-1234yfの総濃度が100質量%であることが特に好ましい。
冷媒3AがHFO-1132(Z)及びHFO-1234yfのみからなる場合、HFO-1132(Z)及びHFO-1234yfの全質量に対して、HFO-1132(Z)の含有割合が53.0~59.5質量%であり、HFO-1234yfの含有割合が47.0~40.5質量%であることが好ましい。
冷媒3AがHFO-1132(Z)及びHFO-1234yfのみからなる場合、HFO-1132(Z)及びHFO-1234yfの全質量に対して、HFO-1132(Z)の含有割合が54.0~59.0質量%であり、HFO-1234yfの含有割合が46.0~41.0質量%であることがより一層好ましい。
冷媒3AがHFO-1132(Z)及びHFO-1234yfのみからなる場合、HFO-1132(Z)及びHFO-1234yfの全質量に対して、HFO-1132(Z)の含有割合が55.0~59.0質量%であり、HFO-1234yfの含有割合が45.0~41.0質量%であることが更に好ましい。
冷媒3AがHFO-1132(Z)及びHFO-1234yfのみからなる場合、HFO-1132(Z)及びHFO-1234yfの全質量に対して、HFO-1132(Z)の含有割合が56.0~59.0質量%であり、HFO-1234yfの含有割合が44.0~41.0質量%であることが特に好ましい。
冷媒3AがHFO-1132(Z)及びHFO-1234yfのみからなる場合、HFO-1132(Z)及びHFO-1234yfの全質量に対して、HFO-1132(Z)の含有割合が53.0~59.5質量%であり、HFO-1234yfの含有割合が47.0~40.5質量%であり、冷媒3Aが、蒸発温度が-55℃~15℃である冷凍サイクルを運転するために用いられることが好ましい。
冷媒3AがHFO-1132(Z)及びHFO-1234yfのみからなる場合、HFO-1132(Z)及びHFO-1234yfの全質量に対して、HFO-1132(Z)の含有割合が54.0~59.0質量%であり、HFO-1234yfの含有割合が46.0~41.0質量%であり、冷媒3Aが、蒸発温度が-50℃~10℃である冷凍サイクルを運転するために用いられることがより好ましい。
冷媒3Aが、HFO-1132(Z)及びHFO-1234yfのみからなる場合、HFO-1132(Z)及びHFO-1234yfの全質量に対して、HFO-1132(Z)の含有割合が55.0~59.0質量%であり、HFO-1234yfの含有割合が45.0~41.0質量%であり、冷媒3Aが、蒸発温度が-45℃~5℃である冷凍サイクルを運転するために用いられることが更に好ましい。
冷媒3Aが、HFO-1132(Z)及びHFO-1234yfのみからなる場合、HFO-1132(Z)及びHFO-1234yfの全質量に対して、HFO-1132(Z)の含有割合が56.0~59.0質量%であり、HFO-1234yfの含有割合が44.0~41.0質量%であり、冷媒3Aが、蒸発温度が-40℃以上0℃未満である冷凍サイクルを運転するために用いられることが特に好ましい。
(1-7-2)冷媒3B
本開示の組成物に含まれる冷媒は、一つの態様において、HFO-1132(Z)及びHFO-1234yfを含有し、HFO-1132(Z)及びHFO-1234yfの全質量に対して、HFO-1132(Z)の含有割合が41.0~49.2質量%であり、HFO-1234yfの含有割合が59.0~50.8質量%である。この冷媒を「冷媒3B」ということがある。
冷媒3Bは、このような構成を有することによって、(1)GWPが十分小さいこと(100以下)、(2)R134aと同等又はそれ以上のCOPを有すること、(3)R134aと同等又はそれ以上の冷凍能力を有すること、及び(4)ASHRAEの規格で微燃性(クラス2L)であること、というR134a代替冷媒として望ましい諸特性を有する。
本項目において、GWPが十分に小さいとは、GWPが通常100以下、好ましくは75以下、より好ましくは50以下、更に好ましくは25以下であることを意味する。
冷媒3Bは、GWPが100以下であることによって、地球温暖化の観点から他の汎用冷媒と比べて顕著に環境負荷を抑えることができる。
冷媒3Bは、市販のR134a用冷凍装置に対して運転時の消費電力を低減することができる観点から、R134aに対する冷凍能力が通常95%以上、好ましくは98%以上、より好ましくは99%以上、更に好ましくは100%以上、特に好ましくは101%以上である。
冷媒3Bは、R134aに対する冷凍サイクルで消費された動力と冷凍能力の比(成績係数(COP))が100%以上であるため、市販のR134a用冷凍装置に対して大きな設計変更なく適用することができる。
冷媒3Bは、エネルギー消費効率の点から、R134aに対する冷凍サイクルで消費された動力と冷凍能力の比(成績係数(COP))が高いことが好ましい。具体的には、R134aに対するCOPは98%以上であることが好ましく、99%以上であることがより好ましく、100%以上であることが更に好ましく、101%以上であることが特に好ましい。
冷媒3Bは、HFO-1132(Z)及びHFO-1234yfの全質量に対して、HFO-1132(Z)の含有割合が42.0~49.2質量%であり、HFO-1234yfの含有割合が58.0~50.8質量%であることが好ましい。
冷媒3Bは、HFO-1132(Z)及びHFO-1234yfの全質量に対して、HFO-1132(Z)の含有割合が43.0~49.2質量%であり、HFO-1234yfの含有割合が57.0~50.8質量%であることがより好ましい。
冷媒3Bは、HFO-1132(Z)及びHFO-1234yfの全質量に対して、HFO-1132(Z)の含有割合が44.0~49.0質量%であり、HFO-1234yfの含有割合が56.0~51.0質量%であることが更に好ましい。
冷媒3Bは、HFO-1132(Z)及びHFO-1234yfをこれらの濃度の総和で、通常99.5質量%以上含有してもよい。本開示において、冷媒3B全体におけるHFO-1132(Z)及びHFO-1234yfの合計量が99.7質量%以上であれば好ましく、99.8質量%以上であればより好ましく、99.9質量%以上であれば更に好ましい。
冷媒3Bは、上記の特性を損なわない範囲内で、HFO-1132(Z)及びHFO-1234yfに加えて、更に他の冷媒を含有することができる。この場合、冷媒3B全体における他の冷媒の含有割合は0.5質量%以下が好ましく、0.3質量%以下がより好ましく、0.2質量%以下が更に好ましく、0.1質量%以下が特に好ましい。他の冷媒としては、特に限定されず、この分野で広く使用されている公知の冷媒の中から幅広く選択できる。冷媒3Bは、他の冷媒を単独で含んでいてもよいし、他の冷媒を2種以上含んでいてもよい。
本開示において、冷媒3Bは、室内及び被冷却物を十分に冷却する観点から、蒸発温度が-60~20℃である冷凍サイクルを運転するために用いられることが好ましい。
冷媒3Bが使用される冷凍サイクルでは、室内及び被冷却物を十分に冷却する観点から、蒸発温度が15℃以下であることがより好ましく、10℃以下であることがより一層好ましく、5℃以下であること更に好ましく、0℃未満であることが特に好ましい。
冷媒3Bが使用される冷凍サイクルでは、蒸発圧力を0.02MPa以上にする観点から、蒸発温度は好ましくは-55℃以上、より好ましくは-50℃以上、更に好ましくは-45℃以上、特に好ましくは-40℃以上である。
冷媒3Bが使用される冷凍サイクルにおいて、蒸発温度はより好ましくは-55℃以上15℃以下、より一層好ましくは-50℃以上10℃以下、更に好ましくは-45℃以上5℃以下、特に好ましくは-40℃以上0℃未満である。
冷媒3Bは、HFO-1132(Z)及びHFO-1234yfのみからなることが特に好ましい。換言すると、冷媒3Bは、冷媒3B全体におけるHFO-1132(Z)及びHFO-1234yfの総濃度が100質量%であることが特に好ましい。
冷媒3BがHFO-1132(Z)及びHFO-1234yfのみからなる場合、HFO-1132(Z)及びHFO-1234yfの全質量に対して、HFO-1132(Z)の含有割合が41.0~49.2質量%であり、HFO-1234yfの含有割合が59.0~50.8質量%であることが好ましい。
冷媒3BがHFO-1132(Z)及びHFO-1234yfのみからなる場合、HFO-1132(Z)及びHFO-1234yfの全質量に対して、HFO-1132(Z)の含有割合が42.0~49.2質量%であり、HFO-1234yfの含有割合が58.0~50.8質量%であることがより好ましい。
冷媒3BがHFO-1132(Z)及びHFO-1234yfのみからなる場合、HFO-1132(Z)及びHFO-1234yfの全質量に対して、HFO-1132(Z)の含有割合が43.0~49.2質量%であり、HFO-1234yfの含有割合が57.0~50.8質量%であることが更に好ましい。
冷媒3BがHFO-1132(Z)及びHFO-1234yfのみからなる場合、HFO-1132(Z)及びHFO-1234yfの全質量に対して、HFO-1132(Z)の含有割合が44.0~49.0質量%であり、HFO-1234yfの含有割合が56.0~51.0質量%であることが特に好ましい。
冷媒3BがHFO-1132(Z)及びHFO-1234yfのみからなる場合、HFO-1132(Z)及びHFO-1234yfの全質量に対して、HFO-1132(Z)の含有割合が41.0~49.2質量%であり、HFO-1234yfの含有割合が59.0~50.8質量%であり、冷媒3Bが、蒸発温度が-55℃~15℃である冷凍サイクルを運転するために用いられることが好ましい。
冷媒3Bが、HFO-1132(Z)及びHFO-1234yfのみからなる場合、HFO-1132(Z)及びHFO-1234yfの全質量に対して、HFO-1132(Z)の含有割合が42.0~49.2質量%であり、HFO-1234yfの含有割合が58.0~50.8質量%であり、冷媒3Bが、蒸発温度が-50℃~10℃である冷凍サイクルを運転するために用いられることがより好ましい。
冷媒3Bが、HFO-1132(Z)及びHFO-1234yfのみからなる場合、HFO-1132(Z)及びHFO-1234yfの全質量に対して、HFO-1132(Z)の含有割合が43.0~49.2質量%であり、HFO-1234yfの含有割合が57.0~50.8質量%であり、冷媒3Bが、蒸発温度が-45℃~5℃である冷凍サイクルを運転するために用いられることが更に好ましい。
冷媒3Bが、HFO-1132(Z)及びHFO-1234yfのみからなる場合、HFO-1132(Z)及びHFO-1234yfの全質量に対して、HFO-1132(Z)の含有割合が44.0~49.0質量%であり、HFO-1234yfの含有割合が56.0~51.0質量%であり、冷媒3Bが、蒸発温度が-40℃以上0℃未満である冷凍サイクルを運転するために用いられることが特に好ましい。
(用途)
本開示の冷媒を含有する組成物は、作動流体として、1)冷凍サイクルを運転する工程を含む冷凍方法、2)冷凍サイクルを運転する冷凍装置の運転方法等における既存の冷媒の用途に幅広く利用することができる。
ここで、上記冷凍サイクルは、圧縮機を介しての冷媒(本開示の冷媒3A及び冷媒3B)を当該冷媒のみの状態、又は後述する冷媒組成物或いは冷凍機油含有作動流体の状態で冷凍装置の内部を循環させてエネルギー変換することを意味する。
本開示には、冷凍方法における本開示の冷媒(又はそれらを含む組成物)の使用、冷凍装置などの運転方法における本開示の冷媒(又はそれらを含む組成物)の使用、更には本開示の冷媒(又はそれらを含む組成物)を有する冷凍装置等も包含されている。
本開示の冷媒3Aを含有する組成物は、室内及び被冷却物を十分に冷却する観点から、蒸発温度が-60~20℃である冷凍サイクルを運転するために用いられることが好ましい。また、本開示の冷媒3Aを含有する組成物を蒸発温度が-60~20℃である冷凍サイクルを運転するために用いることにより、市販のR134a用冷凍装置に対して運転時のCOPが高くなるため、消費電力を低減することができる。
冷媒3Aを含有する組成物が使用される冷凍サイクルでは、室内や被冷却物を十分に冷却する観点から、蒸発温度が15℃以下であることがより好ましく、10℃以下であることがより一層好ましく、5℃以下であること更に好ましく、0℃未満であることが特に好ましい。
冷媒3Aを含有する組成物が使用される冷凍サイクルでは、蒸発圧力を0.02MPa以上にする観点から、蒸発温度は好ましくは-55℃以上、より好ましくは-50℃以上、更に好ましくは-45℃以上、特に好ましくは-40℃以上である。
冷媒3Aを含有する組成物が使用される冷凍サイクルにおいて、蒸発温度はより好ましくは-55℃以上15℃以下、より一層好ましくは-50℃以上10℃以下、更に好ましくは-45℃以上5℃以下、特に好ましくは-40℃以上0℃未満である。
冷媒3Aを含有する組成物は、凝縮温度が0~70℃である冷凍サイクルを運転するために用いることが好ましい。
冷媒3Aを含有する組成物が使用される冷凍サイクルでは、冷凍装置の寿命を延ばす観点から、凝縮温度が70℃以下であることが好ましく、60℃以下であることがより好ましく、55℃以下であることが更に好ましく、50℃以下であることが特に好ましい。
冷媒3Aを含有する組成物が使用される冷凍サイクルでは、室外機の結露を防止する観点から、凝縮温度が0℃以上であることが好ましく、5℃以上であることがより好ましく、10℃以上であることが更に好ましく、15℃以上であることが特に好ましい。
本開示において、圧縮機を介して冷媒3Aを含有する組成物を循環させる冷凍サイクルを構成する装置とすることができる。
冷媒3Bを含有する組成物は、室内及び被冷却物を十分に冷却する観点から、蒸発温度が-60~20℃である冷凍サイクルを運転するために用いられることが好ましい。
冷媒3Bを含有する組成物が使用される冷凍サイクルでは、室内及び被冷却物を十分に冷却する観点から、蒸発温度が15℃以下であることがより好ましく、10℃以下であることがより一層好ましく、5℃以下であること更に好ましく、0℃未満であることが特に好ましい。
冷媒3Bを含有する組成物が使用される冷凍サイクルでは、蒸発圧力を0.02MPa以上にする観点から、蒸発温度は好ましくは-55℃以上、より好ましくは-50℃以上、更に好ましくは-45℃以上、特に好ましくは-40℃以上である。
冷媒3Bを含有する組成物が使用される冷凍サイクルにおいて、蒸発温度はより好ましくは-55℃以上15℃以下、より一層好ましくは-50℃以上10℃以下、更に好ましくは-45℃以上5℃以下、特に好ましくは-40℃以上0℃未満である。
冷媒3Bを含有する組成物は、凝縮温度が0~70℃である冷凍サイクルを運転するために用いることが好ましい。
冷媒3Bを含有する組成物が使用される冷凍サイクルでは、冷凍装置の寿命を延ばす観点から、凝縮温度が70℃以下であることが好ましく、60℃以下であることがより好ましく、55℃以下であることが更に好ましく、50℃以下であることが特に好ましい。
冷媒3Bを含有する組成物が使用される冷凍サイクルでは、室外機の結露を防止する観点から、凝縮温度が0℃以上であることが好ましく、5℃以上であることがより好ましく、10℃以上であることが更に好ましく、15℃以上であることが特に好ましい。
本開示において、圧縮機を介して冷媒3Bを含有する組成物を循環させる冷凍サイクルを構成する装置とすることができる。
本開示の冷媒3A及び冷媒3B(又はそれらを含む組成物)が適用できる冷凍装置としては、例えば、空調機器、冷蔵庫、冷凍庫、冷水機、製氷機、冷蔵ショーケース、冷凍ショーケース、冷凍冷蔵ユニット、冷凍冷蔵倉庫用冷凍機、車載用空調機器、ターボ冷凍機及びスクリュー冷凍機からなる群より選択される少なくとも1種が好ましいものとして挙げられる。
本開示の組成物は、R134a、R22、R12、R404A、R407A、R407C、R407F、R407H、R410A、R413A、R417A、R422A、R422B、R422C、R422D、R423A、R424A、R426A、R427A、R428A、R430A、R434A、R437A、R438A、R448A、R449A、R449B、R450A、R454A、R454C、R455A、R465A、R502、R507、R513A、R513B、R515A又はR515Bの代替冷媒としての使用に適している。これらの中でも、本開示の組成物は、R134aと同等又はそれ以上の成績係数(COP)及び冷凍能力(Capacity)を有すること、並びにGWPが十分に小さいこと、という特性を有するため、R134aの代替冷媒としての使用に特に適している。
(冷媒組成物)
本開示の冷媒組成物は、本開示の冷媒を少なくとも含み、本開示の冷媒と同じ用途のために使用することができる。
また、本開示の冷媒組成物は、更に少なくとも冷凍機油と混合することにより冷凍装置用作動流体を得るために用いることができる。
本開示の冷媒組成物は、本開示の冷媒に加えて、更に少なくとも1種のその他の成分を含有する。本開示の冷媒組成物は、必要に応じて、以下のその他の成分のうち少なくとも1種を含有していてもよい。
上述の通り、本開示の冷媒組成物を、冷凍装置における作動流体として使用するに際しては、通常、少なくとも冷凍機油と混合して用いられる。
ここで、本開示の冷媒組成物は、好ましくは冷凍機油を実質的に含まない。具体的には、本開示の冷媒組成物は、冷媒組成物全体に対する冷凍機油の含有量が好ましくは0~1質量%であり、より好ましくは0~0.5質量%であり、更に好ましくは0~0.25質量%であり、特に好ましくは0~0.1質量%である。
(水)
本開示の冷媒組成物は微量の水を含んでもよい。
冷媒組成物における含水割合は、冷媒全体に対して、0~0.1質量%であることが好ましく、0~0.075質量%であることがより好ましく、0~0.05質量%であることが更に好ましく、0~0.025質量%であることが特に好ましい。
冷媒組成物が微量の水分を含むことにより、冷媒中に含まれ得る不飽和のフルオロカーボン系化合物の分子内二重結合が安定化され、また、不飽和のフルオロカーボン系化合物の酸化も起こりにくくなるため、冷媒組成物の安定性が向上する。
(トレーサー)
トレーサーは、本開示の冷媒組成物が希釈、汚染、その他何らかの変更があった場合、その変更を追跡できるように検出可能な濃度で本開示の冷媒組成物に添加される。
本開示の冷媒組成物は、上記トレーサーを1種単独で含有してもよいし、2種以上を含有してもよい。
上記トレーサーとしては、特に限定されず、一般に用いられるトレーサーの中から適宜選択することができる。好ましくは、本開示の冷媒に不可避的に混入する不純物とはなり得ない化合物をトレーサーとして選択する。
上記トレーサーとしては、例えば、ハイドロフルオロカーボン、ハイドロクロロフルオロカーボン、クロロフルオロカーボン、ハイドロクロロカーボン、フルオロカーボン、重水素化炭化水素、重水素化ハイドロフルオロカーボン、パーフルオロカーボン、フルオロエーテル、臭素化化合物、ヨウ素化化合物、アルコール、アルデヒド、ケトン、亜酸化窒素(N2O)等が挙げられる。これらの中でも、ハイドロフルオロカーボン、ハイドロクロロフルオロカーボン、クロロフルオロカーボン、ハイドロクロロカーボン、フルオロカーボン及びフルオロエーテルが好ましい。
上記トレーサーとしては、具体的には、以下の化合物(以下、トレーサー化合物とも称する)がより好ましい。
HCC-40(クロロメタン、CH3Cl)
HFC-41(フルオロメタン、CH3F)
HFC-161(フルオロエタン、CH3CH2F)
HFC-245fa(1,1,1,3,3-ペンタフルオロプロパン、CF3CH2CHF2
HFC-236fa(1,1,1,3,3,3-ヘキサフルオロプロパン、CF3CH2CF3
HFC-236ea(1,1,1,2,3,3-ヘキサフルオロプロパン、CF3CHFCHF2
HCFC-22(クロロジフルオロメタン、CHClF2
HCFC-31(クロロフルオロメタン、CH2ClF)
CFC-1113(クロロトリフルオロエチレン、CF2=CClF)
HFE-125(トリフルオロメチル-ジフルオロメチルエーテル、CF3OCHF2
HFE-134a(トリフルオロメチル-フルオロメチルエーテル、CF3OCH2F)
HFE-143a(トリフルオロメチル-メチルエーテル、CF3OCH3
HFE-227ea(トリフルオロメチル-テトラフルオロエチルエーテル、CF3OCHFCF3
HFE-236fa(トリフルオロメチル-トリフルオロエチルエーテル、CF3OCH2CF3
上記トレーサー化合物は、10質量百万分率(ppm)~1000ppmの合計濃度で冷媒組成物中に存在し得る。上記トレーサー化合物は30ppm~500ppmの合計濃度で冷媒組成物中に存在することが好ましく、50ppm~300ppmの合計濃度で冷媒組成物中に存在することがより好ましく、75ppm~250ppmの合計濃度で冷媒組成物中に存在することが更に好ましく、100ppm~200ppmの合計濃度で冷媒組成物中に存在することが特に好ましい。
(紫外線蛍光染料)
本開示の冷媒組成物は、紫外線蛍光染料を1種単独で含有してもよいし、2種以上を含有してもよい。
上記紫外線蛍光染料としては、特に限定されず、一般に用いられる紫外線蛍光染料の中から適宜選択することができる。
上記紫外線蛍光染料としては、例えば、ナフタルイミド、クマリン、アントラセン、フェナントレン、キサンテン、チオキサンテン、ナフトキサンテン及びフルオレセイン、並びにこれらの誘導体が挙げられる。これらの中でも、ナフタルイミド及びクマリンが好ましい。
(安定剤)
本開示の冷媒組成物は、安定剤を1種単独で含有してもよいし、2種以上を含有してもよい。
上記安定剤としては、特に限定されず、一般に用いられる安定剤の中から適宜選択することができる。
上記安定剤としては、例えば、ニトロ化合物、エーテル類、アミン類等が挙げられる。
ニトロ化合物としては、例えば、ニトロメタン、ニトロエタン等の脂肪族ニトロ化合物、及びニトロベンゼン、ニトロスチレン等の芳香族ニトロ化合物等が挙げられる。
エーテル類としては、例えば、1,4-ジオキサン等が挙げられる。
アミン類としては、例えば、2,2,3,3,3-ペンタフルオロプロピルアミン、ジフェニルアミン等が挙げられる。
上記安定剤としては、上記ニトロ化合物、エーテル類及びアミン類以外にも、ブチルヒドロキシキシレン、ベンゾトリアゾール等が挙げられる。
上記安定剤の含有割合は、特に限定されず、冷媒全体に対して、通常、0.01~5質量%であり、0.05~3質量%が好ましく、0.1~2質量%がより好ましく、0.25~1.5質量%が更に好ましく、0.5~1質量%が特に好ましい。
なお、本開示の冷媒組成物の安定性の評価方法は、特に限定されず、一般的に用いられる手法で評価することができる。そのような手法の一例として、ASHRAE標準97-2007にしたがって遊離フッ素イオンの量を指標として評価する方法等が挙げられる。その他にも、全酸価(total acid number)を指標として評価する方法等も挙げられる。この方法は、例えば、ASTM D 974-06にしたがって行うことができる。
(重合禁止剤)
本開示の冷媒組成物は、重合禁止剤を1種単独で含有してもよいし、2種以上を含有してもよい。
上記重合禁止剤としては、特に限定されず、一般に用いられる重合禁止剤の中から適宜選択することができる。
上記重合禁止剤としては、例えば、4-メトキシ-1-ナフトール、ヒドロキノン、ヒドロ
キノンメチルエーテル、ジメチル-t-ブチルフェノール、2,6-ジ-tert-ブチル-p-クレゾール、ベンゾトリアゾール等が挙げられる。
上記重合禁止剤の含有割合は、特に限定されず、冷媒全体に対して、通常、0.01~5質
量%であり、0.05~3質量%が好ましく、0.1~2質量%がより好ましく、0.25~1.5質量%が更に好ましく、0.5~1質量%が特に好ましい。
(冷媒組成物に含み得るその他の成分)
本開示の冷媒組成物は、以下の成分も含み得るものとして挙げられる。
例えば、前述の冷媒とは異なるフッ素化炭化水素を含有することができる。他の成分としてのフッ素化炭化水素は特に限定されず、HCFC-1122及びHCFC-124、CFC-1113からなる群より選択される少なくとも一種のフッ素化炭化水素が挙げられる。
また、その他の成分としては、例えば、式(A):CmHnXp[式中、Xはそれぞれ独立してフッ素原子、塩素原子又は臭素原子を表し、mは1又は2であり、2m+2≧n+pであり、p≧1である。]で表される少なくとも一種のハロゲン化有機化合物を含有することができる。上記ハロゲン化有機化合物は特に限定されず、例えば、ジフルオロクロロメタン、クロロメタン、2-クロロ-1,1,1,2,2-ペンタフルオロエタン、2-クロロ-1,1,1,2-テトラフルオロエタン、2-クロロ-1,1-ジフルオロエチレン、トリフルオロエチレン等が好ましい。
また、その他の成分としては、例えば、式(B):CmHnXp[式中、Xはそれぞれ独立してハロゲン原子ではない原子を表し、mは1又は2であり、2m+2≧n+pであり、p≧1である。]で表される少なくとも一種の有機化合物を含有することができる。上記有機化合物は特に限定されず、例えば、プロパン、イソブタン等が好ましい。
これらのフッ素化炭化水素、上記式(A)で表わされるハロゲン化有機化合物、及び上記
式(B)で表わされる有機化合物の含有量は限定的ではないが、これらの合計量として、冷
媒組成物の全量に対して0.5質量%以下が好ましく、0.3質量%以下がより好ましく、0.1質量%以下が特に好ましい。
(冷凍機油含有作動流体)
本開示の冷凍機油含有作動流体は、本開示の冷媒又は冷媒組成物と、冷凍機油とを少なくとも含み、冷凍装置における作動流体として用いられる。具体的には、本開示の冷凍機油含有作動流体は、冷凍装置の圧縮機において使用される冷凍機油と、冷媒又は冷媒組成物とが互いに混じり合うことにより得られる。
上記冷凍機油の含有割合は、特に限定されず、冷凍機油含有作動流体全体に対して、通常、10~50質量%であり、12.5~45質量%が好ましく、15~40質量%がより好ましく、17.5~35質量%が更に好ましく、20~30質量%が特に好ましい。
(冷凍機油)
本開示の組成物は、冷凍機油を1種単独で含有してもよいし、2種以上を含有してもよい。
上記冷凍機油としては、特に限定されず、一般に用いられる冷凍機油の中から適宜選択することができる。その際には、必要に応じて、本開示の冷媒の混合物(本開示の混合冷媒)との相溶性(miscibility)及び本開示の混合冷媒の安定性等を向上する作用等の点でより優れている冷凍機油を適宜選択することができる。
上記冷凍機油の基油としては、例えば、ポリアルキレングリコール(PAG)、ポリオールエステル(POE)及びポリビニルエーテル(PVE)からなる群より選択される少なくとも一種が好ましい。
上記冷凍機油は、上記基油に加えて、更に添加剤を含んでいてもよい。
上記添加剤は、酸化防止剤、極圧剤、酸捕捉剤、酸素捕捉剤、銅不活性化剤、防錆剤、油性剤及び消泡剤からなる群より選択される少なくとも1種であってもよい。
上記冷凍機油としては、潤滑の点から、40℃における動粘度が5~400cStであるものが
好ましい。
本開示の冷凍機油含有作動流体は、必要に応じて、更に少なくとも1種の添加剤を含んでもよい。添加剤としては例えば以下の相溶化剤等が挙げられる。
(相溶化剤)
本開示の冷凍機油含有作動流体は、相溶化剤を一種単独で含有してもよいし、二種以上を含有してもよい。
上記相溶化剤としては、特に限定されず、一般に用いられる相溶化剤の中から適宜選択することができる。
上記相溶化剤としては、例えば、ポリオキシアルキレングリコールエーテル、アミド、ニトリル、ケトン、クロロカーボン、エステル、ラクトン、アリールエーテル、フルオロエーテル、1,1,1-トリフルオロアルカン等が挙げられる。これらの中でも、ポリオキシアルキレングリコールエーテルが好ましい。
以下に、実施例を挙げて更に詳細に説明する。ただし、本開示は、これらの実施例に限定されるものではない。
試験例1-1
実施例1-1~1-3、比較例1-1~1-6及び参考例1-1(R134a)に示される混合冷媒のGWPは、IPCC第4次報告書の値に基づいて評価した。
これらの混合冷媒のCOP、冷凍能力、吐出温度、飽和温度40℃における飽和圧力、凝縮圧力及び蒸発圧力は、National Institute of Science and Technology(NIST)、Reference Fluid Thermodynamic and Transport Properties Database(Refprop 9.0)を使用し、下記条件で混合冷媒の冷凍サイクル理論計算を実施することにより求めた。
<空調条件>
蒸発温度 10℃
凝縮温度 40℃
過熱温度 20K
過冷却温度 0K
圧縮機効率 70%
「蒸発温度10℃」とは、冷凍装置が備える蒸発器における混合冷媒の蒸発温度が10℃であることを意味する。また、「凝縮温度40℃」とは、冷凍装置が備える凝縮器における混合冷媒の凝縮温度が40℃であることを意味する。
試験例1-1の結果を表401に示す。表401は、本開示の冷媒3Aの実施例及び比較例を示している。表401中、「COP比」及び「冷凍能力比」とは、R134aに対する割合(%)を示す。表401中、「飽和圧力(40℃)」とは、飽和温度40℃における飽和圧力を示す。表401中、「吐出温度(℃)」とは、上記混合冷媒の冷凍サイクル理論計算において、冷凍サイクル中で最も温度が高くなる温度を示す。
成績係数(COP)は、次式により求めた。
COP=(冷凍能力又は暖房能力)/消費電力量
圧縮比は、次式により求めた。
圧縮比=凝縮圧力(Mpa)/蒸発圧力(Mpa)
混合冷媒の燃焼性は、混合冷媒の混合組成をWCF濃度とし、ANSI/ASHRAE34-2013規格に従い燃焼速度を測定することにより、判断した。R134aの燃焼性は、R134aの組成をWCF濃度とし、ANSI/ASHRAE34-2013規格に従い燃焼速度を測定することにより、判断した。
燃焼速度が0cm/s~10cm/sとなる混合冷媒は「クラス2L(微燃)」、燃焼速度が10cm/s
超となる混合冷媒は「クラス2(弱燃)」であるとした。R134aは火炎伝播がなかったため、「クラス1(不燃)」であるとした。表401中、「ASHRAE燃焼性区分」とは、この判定基準に基づく結果を示している。
燃焼速度試験は以下の通り行った。まず、使用した混合冷媒は99.5%又はそれ以上の純度とし、真空ゲージ上に空気の痕跡が見られなくなるまで凍結、ポンピング及び解凍のサイクルを繰り返すことにより脱気した。閉鎖法により燃焼速度を測定した。初期温度は周囲温度とした。点火は、試料セルの中心で電極間に電気的スパークを生じさせることにより行った。放電の持続時間は1.0~9.9msとし、点火エネルギーは典型的には約0.1~1.0Jであった。シュリーレン写真を使って炎の広がりを視覚化した。光を通す2つのアクリル窓を備えた円筒形容器(内径:155mm、長さ:198mm)を試料セルとして用い、光源としてはキセノンランプを用いた。炎のシュリーレン画像を高速デジタルビデオカメラで600fpsのフレーミング速度で記録し、PCに保存した。
混合冷媒の燃焼範囲は、ASTM E681-09に基づく測定装置(図1Tを参照)を用いて測定を実施した。
具体的には、燃焼の状態が目視および録画撮影できるように内容積12リットルの球形ガラスフラスコを使用し、ガラスフラスコは燃焼により過大な圧力が発生した際には上部のふたからガスが開放されるようにした。着火方法は底部から1/3の高さに保持された電極からの放電により発生させた。
<試験条件>
試験容器:280mmφ球形(内容積:12リットル)
試験温度:60℃±3℃
圧力:101.3kPa±0.7kPa
水分:乾燥空気1gにつき0.0088g±0.0005g(23℃における相対湿度50%の水分量)
冷媒組成物/空気混合比:1vol.%刻み±0.2vol.%
冷媒組成物混合:±0.1質量%
点火方法:交流放電、電圧15kV、電流30mA、ネオン変圧器
電極間隔:6.4mm(1/4inch)
スパーク:0.4秒±0.05秒
判定基準:
・着火点を中心に90度より大きく火炎が広がった場合=火炎伝播あり(可燃)
・着火点を中心に90度以下の火炎の広がりだった場合=火炎伝播なし(不燃)
Figure 2023179585000151
試験例1-2
実施例1-4~1-6、比較例1-7~1-12及び参考例1-2(R134a)に示される混合冷媒のGWPは、IPCC第4次報告書の値に基づいて評価した。
これらの混合冷媒のCOP、冷凍能力、吐出温度、飽和温度45℃における飽和圧力、凝縮圧力及び蒸発圧力は、NIST、Refprop 9.0を使用し、下記条件で混合冷媒の冷凍サイクル理論計算を実施することにより求めた。
<空調条件>
蒸発温度 5℃
凝縮温度 45℃
過熱温度 5K
過冷却温度 5K
圧縮機効率 70%
上記用語の意味は、試験例1-1と同様である。
試験例1-2の結果を表402に示す。表402は、本開示の冷媒3Aの実施例及び比較例を示している。表402中、各用語の意味は、試験例1-1と同様である。
成績係数(COP)及び圧縮比は、試験例1-1と同様にして求めた。
混合冷媒の燃焼性は、試験例1-1と同様にして判断した。燃焼速度試験は、試験例1-1と同様にして行った。
混合冷媒の燃焼範囲は、ASTM E681-09に基づく測定装置(図1Tを参照)を用いて、試験例1-1と同様の方法及び試験条件で測定した。
Figure 2023179585000152
試験例1-3
実施例1-7~1-9、比較例1-13~1-18及び参考例1-3(R134a)に示される混合冷媒のGWPは、IPCC第4次報告書の値に基づいて評価した。
これらの混合冷媒のCOP、冷凍能力、吐出温度、飽和温度40℃における飽和圧力、凝縮圧力及び蒸発圧力は、NIST、Refprop 9.0を使用し、下記条件で混合冷媒の冷凍サイクル理論計算を実施することにより求めた。
<空調条件>
蒸発温度 -10℃
凝縮温度 40℃
過熱温度 20K
過冷却温度 0K
圧縮機効率 70%
上記用語の意味は、試験例1-1と同様である。
試験例1-3の結果を表403に示す。表403は、本開示の冷媒3Aの実施例及び比較例を示している。表403中、各用語の意味は、試験例1-1と同様である。
成績係数(COP)及び圧縮比は、試験例1-1と同様にして求めた。
混合冷媒の燃焼性は、試験例1-1と同様にして判断した。燃焼速度試験は、試験例1-1と同様にして行った。
混合冷媒の燃焼範囲は、ASTM E681-09に基づく測定装置(図1Tを参照)を用いて、試験例1-1と同様の方法及び試験条件で測定した。
Figure 2023179585000153
試験例1-4
実施例1-10~1-12、比較例1-19~1-24及び参考例1-4(R134a)に示される混合冷媒のGWPは、IPCC第4次報告書の値に基づいて評価した。
これらの混合冷媒のCOP、冷凍能力、吐出温度、飽和温度40℃における飽和圧力、凝縮圧力及び蒸発圧力は、NIST、Refprop 9.0を使用し、下記条件で混合冷媒の冷凍サイクル理論計算を実施することにより求めた。
<空調条件>
蒸発温度 -35℃
凝縮温度 40℃
過熱温度 20K
過冷却温度 0K
圧縮機効率 70%
上記用語の意味は、試験例1-1と同様である。
試験例1-4の結果を表404に示す。表404は、本開示の冷媒3Aの実施例及び比較例を示している。表404中、各用語の意味は、試験例1-1と同様である。
成績係数(COP)及び圧縮比は、試験例1-1と同様にして求めた。
混合冷媒の燃焼性は、試験例1-1と同様にして判断した。燃焼速度試験は、試験例1-1と同様にして行った。
混合冷媒の燃焼範囲は、ASTM E681-09に基づく測定装置(図1Tを参照)を用いて、試験例1-1と同様の方法及び試験条件で測定した。
Figure 2023179585000154
試験例1-5
実施例1-13~1-15、比較例1-25~1-30及び参考例1-5(R134a)に示される混合冷媒のGWPは、IPCC第4次報告書の値に基づいて評価した。
これらの混合冷媒のCOP、冷凍能力、吐出温度、飽和温度40℃における飽和圧力、凝縮圧力及び蒸発圧力は、NIST、Refprop 9.0を使用し、下記条件で混合冷媒の冷凍サイクル理論計算を実施することにより求めた。
<空調条件>
蒸発温度 -50℃
凝縮温度 40℃
過熱温度 20K
過冷却温度 0K
圧縮機効率 70%
上記用語の意味は、試験例1-1と同様である。
試験例1-5の結果を表405に示す。表405は、本開示の冷媒3Aの実施例及び比較例を示している。表405中、各用語の意味は、試験例1-1と同様である。
成績係数(COP)及び圧縮比は、試験例1-1と同様にして求めた。
混合冷媒の燃焼性は、試験例1-1と同様にして判断した。燃焼速度試験は、試験例1-1と同様にして行った。
混合冷媒の燃焼範囲は、ASTM E681-09に基づく測定装置(図1Tを参照)を用いて、試験例1-1と同様の方法及び試験条件で測定した。
Figure 2023179585000155
試験例1-6
実施例1-16~1-18、比較例1-31~1-36及び参考例1-6(R134a)に示される混合冷媒のGWPは、IPCC第4次報告書の値に基づいて評価した。
これらの混合冷媒のCOP、冷凍能力、吐出温度、飽和温度40℃における飽和圧力、凝縮圧力及び蒸発圧力は、NIST、Refprop 9.0を使用し、下記条件で混合冷媒の冷凍サイクル理論計算を実施することにより求めた。
<空調条件>
蒸発温度 -65℃
凝縮温度 40℃
過熱温度 20K
過冷却温度 0K
圧縮機効率 70%
上記用語の意味は、試験例1-1と同様である。
試験例1-6の結果を表406に示す。表406は、本開示の冷媒3Aの実施例及び比較例を示している。表406中、各用語の意味は、試験例1-1と同様である。
成績係数(COP)及び圧縮比は、試験例1-1と同様にして求めた。
混合冷媒の燃焼性は、試験例1-1と同様にして判断した。燃焼速度試験は、試験例1-1と同様にして行った。
混合冷媒の燃焼範囲は、ASTM E681-09に基づく測定装置(図1Tを参照)を用いて、試験例1-1と同様の方法及び試験条件で測定した。
Figure 2023179585000156
試験例2-1
実施例2-1~2-4、比較例2-1~2-6及び参考例2-1(R134a)に示される混合冷媒のGWPは、IPCC第4次報告書の値に基づいて評価した。
これらの混合冷媒のCOP、冷凍能力、吐出温度、飽和温度40℃における飽和圧力、凝縮圧力及び蒸発圧力は、National Institute of Science and Technology(NIST)、Reference Fluid Thermodynamic and Transport Properties Database(Refprop 9.0)を使用し、下記条件で混合冷媒の冷凍サイクル理論計算を実施することにより求めた。
<空調条件>
蒸発温度 10℃
凝縮温度 40℃
過熱温度 20K
過冷却温度 0K
圧縮機効率 70%
「蒸発温度10℃」とは、冷凍装置が備える蒸発器における混合冷媒の蒸発温度が10℃であることを意味する。また、「凝縮温度40℃」とは、冷凍装置が備える凝縮器における混合冷媒の凝縮温度が40℃であることを意味する。
試験例2-1の結果を表407に示す。表407は、本開示の冷媒3Bの実施例及び比較例を示している。表407中、「COP比」及び「冷凍能力比」とは、R134aに対する割合(%)を示す。表407中、「飽和圧力(40℃)」とは、飽和温度40℃における飽和圧力を示す。表407中、「吐出温度(℃)」とは、上記混合冷媒の冷凍サイクル理論計算において、冷凍サイクル中で最も温度が高くなる温度を示す。
成績係数(COP)は、次式により求めた。
COP=(冷凍能力又は暖房能力)/消費電力量
圧縮比は、次式により求めた。
圧縮比=凝縮圧力(Mpa)/蒸発圧力(Mpa)
混合冷媒の燃焼性は、混合冷媒の混合組成をWCF濃度とし、ANSI/ASHRAE34-2013規格に従い燃焼速度を測定することにより、判断した。R134aの燃焼性は、R134aの組成をWCF濃度とし、ANSI/ASHRAE34-2013規格に従い燃焼速度を測定することにより、判断した。
燃焼速度が0cm/s~10cm/sとなる混合冷媒は「クラス2L(微燃)」、燃焼速度が10cm/s超となる混合冷媒は「クラス2(弱燃)」であるとした。R134aは火炎伝播がなかったため、「クラス1(不燃)」であるとした。表407中、「ASHRAE燃焼性区分」とは、この判定基準に基づく結果を示している。
燃焼速度試験は以下の通り行った。まず、使用した混合冷媒は99.5%又はそれ以上の純度とし、真空ゲージ上に空気の痕跡が見られなくなるまで凍結、ポンピング及び解凍のサイクルを繰り返すことにより脱気した。閉鎖法により燃焼速度を測定した。初期温度は周囲温度とした。点火は、試料セルの中心で電極間に電気的スパークを生じさせることにより行った。放電の持続時間は1.0~9.9msとし、点火エネルギーは典型的には約0.1~1.0Jであった。シュリーレン写真を使って炎の広がりを視覚化した。光を通す2つのアクリル窓を備えた円筒形容器(内径:155mm、長さ:198mm)を試料セルとして用い、光源としてはキセノンランプを用いた。炎のシュリーレン画像を高速デジタルビデオカメラで600fpsのフレーミング速度で記録し、PCに保存した。
混合冷媒の燃焼範囲は、ASTM E681-09に基づく測定装置(図1Tを参照)を用いて測定を実施した。
具体的には、燃焼の状態が目視および録画撮影できるように内容積12リットルの球形ガラスフラスコを使用し、ガラスフラスコは燃焼により過大な圧力が発生した際には上部のふたからガスが開放されるようにした。着火方法は底部から1/3の高さに保持された電極からの放電により発生させた。
<試験条件>
試験容器:280mmφ球形(内容積:12リットル)
試験温度:60℃±3℃
圧力:101.3kPa±0.7kPa
水分:乾燥空気1gにつき0.0088g±0.0005g(23℃における相対湿度50%の水分量)
冷媒組成物/空気混合比:1vol.%刻み±0.2vol.%
冷媒組成物混合:±0.1質量%
点火方法:交流放電、電圧15kV、電流30mA、ネオン変圧器
電極間隔:6.4mm(1/4inch)
スパーク:0.4秒±0.05秒
判定基準:
・着火点を中心に90度より大きく火炎が広がった場合=火炎伝播あり(可燃)
・着火点を中心に90度以下の火炎の広がりだった場合=火炎伝播なし(不燃)
Figure 2023179585000157
試験例2-2
実施例2-5~2-8、比較例2-7~2-12及び参考例2-2(R134a)に示され
る混合冷媒のGWPは、IPCC第4次報告書の値に基づいて評価した。
これらの混合冷媒のCOP、冷凍能力、吐出温度、飽和温度45℃における飽和圧力、凝縮
圧力及び蒸発圧力は、NIST、Refprop 9.0を使用し、下記条件で混合冷媒の冷凍サイクル
理論計算を実施することにより求めた。
<空調条件>
蒸発温度 5℃
凝縮温度 45℃
過熱温度 5K
過冷却温度 5K
圧縮機効率 70%
上記用語の意味は、試験例2-1と同様である。
試験例2-2の結果を表408に示す。表408は、本開示の冷媒3Bの実施例及び比較例を示している。表408中、各用語の意味は、試験例2-1と同様である。
成績係数(COP)及び圧縮比は、試験例2-1と同様にして求めた。
混合冷媒の燃焼性は、試験例2-1と同様にして判断した。燃焼速度試験は、試験例2-1と同様にして行った。
混合冷媒の燃焼範囲は、ASTM E681-09に基づく測定装置(図1Tを参照)を用いて、試験例2-1と同様の方法及び試験条件で測定した。
Figure 2023179585000158
試験例2-3
実施例2-9~2-12、比較例2-13~2-18及び参考例2-3(R134a)に示される混合冷媒のGWPは、IPCC第4次報告書の値に基づいて評価した。
これらの混合冷媒のCOP、冷凍能力、吐出温度、飽和温度40℃における飽和圧力、凝縮圧力及び蒸発圧力は、NIST、Refprop 9.0を使用し、下記条件で混合冷媒の冷凍サイクル理論計算を実施することにより求めた。
<空調条件>
蒸発温度 -10℃
凝縮温度 40℃
過熱温度 20K
過冷却温度 0K
圧縮機効率 70%
上記用語の意味は、試験例2-1と同様である。
試験例2-3の結果を表409に示す。表409は、本開示の冷媒3Bの実施例及び比較例を示している。表409中、各用語の意味は、試験例2-1と同様である。
成績係数(COP)及び圧縮比は、試験例2-1と同様にして求めた。
混合冷媒の燃焼性は、試験例2-1と同様にして判断した。燃焼速度試験は、試験例2-1と同様にして行った。
混合冷媒の燃焼範囲は、ASTM E681-09に基づく測定装置(図1Tを参照)を用いて、試験例2-1と同様の方法及び試験条件で測定した。
Figure 2023179585000159
試験例2-4
実施例2-13~2-16、比較例2-19~2-24及び参考例2-4(R134a)に示される混合冷媒のGWPは、IPCC第4次報告書の値に基づいて評価した。
これらの混合冷媒のCOP、冷凍能力、吐出温度、飽和温度40℃における飽和圧力、凝縮圧力及び蒸発圧力は、NIST、Refprop 9.0を使用し、下記条件で混合冷媒の冷凍サイクル理論計算を実施することにより求めた。
<空調条件>
蒸発温度 -35℃
凝縮温度 40℃
過熱温度 20K
過冷却温度 0K
圧縮機効率 70%
上記用語の意味は、試験例2-1と同様である。
試験例2-4の結果を表410に示す。表410は、本開示の冷媒3Bの実施例及び比較例を示している。表410中、各用語の意味は、試験例2-1と同様である。
成績係数(COP)及び圧縮比は、試験例2-1と同様にして求めた。
混合冷媒の燃焼性は、試験例2-1と同様にして判断した。燃焼速度試験は、試験例2-1と同様にして行った。
混合冷媒の燃焼範囲は、ASTM E681-09に基づく測定装置(図1Tを参照)を用いて、試験例2-1と同様の方法及び試験条件で測定した。
Figure 2023179585000160
試験例2-5
実施例2-17~2-20、比較例2-25~2-30及び参考例2-5(R134a)に示される混合冷媒のGWPは、IPCC第4次報告書の値に基づいて評価した。
これらの混合冷媒のCOP、冷凍能力、吐出温度、飽和温度40℃における飽和圧力、凝縮圧力及び蒸発圧力は、NIST、Refprop 9.0を使用し、下記条件で混合冷媒の冷凍サイクル理論計算を実施することにより求めた。
<空調条件>
蒸発温度 -50℃
凝縮温度 40℃
過熱温度 20K
過冷却温度 0K
圧縮機効率 70%
上記用語の意味は、試験例2-1と同様である。
試験例2-5の結果を表411に示す。表411は、本開示の冷媒3Bの実施例及び比較例を示している。表411中、各用語の意味は、試験例2-1と同様である。
成績係数(COP)及び圧縮比は、試験例2-1と同様にして求めた。
混合冷媒の燃焼性は、試験例2-1と同様にして判断した。燃焼速度試験は、試験例2-1と同様にして行った。
混合冷媒の燃焼範囲は、ASTM E681-09に基づく測定装置(図1Tを参照)を用いて、試験例2-1と同様の方法及び試験条件で測定した。
Figure 2023179585000161
試験例2-6
実施例2-21~2-24、比較例2-31~2-36及び参考例2-6(R134a)に示される混合冷媒のGWPは、IPCC第4次報告書の値に基づいて評価した。
これらの混合冷媒のCOP、冷凍能力、吐出温度、飽和温度40℃における飽和圧力、凝縮圧力及び蒸発圧力は、NIST、Refprop 9.0を使用し、下記条件で混合冷媒の冷凍サイクル理論計算を実施することにより求めた。
<空調条件>
蒸発温度 -65℃
凝縮温度 40℃
過熱温度 20K
過冷却温度 0K
圧縮機効率 70%
上記用語の意味は、試験例2-1と同様である。
試験例2-6の結果を表412に示す。表412は、本開示の冷媒3Bの実施例及び比較例を示している。表412中、各用語の意味は、試験例2-1と同様である。
成績係数(COP)及び圧縮比は、試験例2-1と同様にして求めた。
混合冷媒の燃焼性は、試験例2-1と同様にして判断した。燃焼速度試験は、試験例2-1と同様にして行った。
混合冷媒の燃焼範囲は、ASTM E681-09に基づく測定装置(図1Tを参照)を用いて、試験例2-1と同様の方法及び試験条件で測定した。
Figure 2023179585000162
(2)冷凍機油
第2グループの技術としての冷凍機油は、冷媒組成物と共存させて冷凍サイクルを行わせることで、冷凍サイクル装置内の潤滑性を高めることが可能であり、効率的なサイクル性能を発揮させることも可能となる。
冷凍機油として、例えば、含酸素系合成油(エステル系冷凍機油、エーテル系冷凍機油等)、炭化水素系冷凍機油等が挙げられる。なかでも、冷媒または冷媒組成物との相溶性の観点から、エステル系冷凍機油、エーテル系冷凍機油が好ましい。冷凍機油としては、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
冷凍機油は、潤滑性や圧縮機の密閉性の低下を抑制させること、低温条件下で冷媒に対して相溶性が十分に確保されること、圧縮機の潤滑不良を抑制させること、蒸発器における熱交換効率を良好にすること、の少なくともいずれかの観点から、40℃における動粘度が1mm/s以上750mm/s以下であることが好ましく、1mm/s以上400mm/s以下であることがより好ましい。なお、冷凍機油の100℃における動粘度としては、例えば、1mm/s以上100mm/s以下であってよく、1mm/s以上50mm/s以下であることがより好ましい。
冷凍機油は、アニリン点が、-100℃以上0℃以下であることが好ましい。ここで、「アニリン点」は、例えば、炭化水素系溶剤等の溶解性を示す数値であり、試料(ここでは冷凍機油)を等容積のアニリンと混合して冷やしたときに、互いに溶解し合えなくなって濁りがみえ始めたときの温度を表すものである(JIS K 2256で規定)。なお、これらの値は、冷媒が溶解しない状態の冷凍機油自体の値である。このようなアニリン点の冷凍機油を用いることで、例えば、樹脂製機能部品を構成する各軸受および電動機の絶縁材料が冷凍機油と接する位置で用いられている場合においても、これらの樹脂製機能部品に対する冷凍機油の適合性を向上させることができる。具体的には、アニリン点が低すぎると、冷凍機油が軸受や絶縁材料に浸透し易くなり、軸受等が膨潤し易くなる。一方、アニリン点が高すぎると、冷凍機油が軸受や絶縁材料に浸透し難くなり、軸受等が収縮し易くなる。そこで、アニリン点が上述した所定の範囲(-100℃以上0℃以下)である冷凍機油を用いることで、軸受や絶縁材料の膨潤/収縮変形を防止することができる。ここで、各軸受が膨潤変形してしまうと、摺動部での隙間(ギャップ)を所望とする長さに維持することができない。その結果、摺動抵抗の増大を招く虞がある。各軸受が収縮変形してしまうと、軸受の硬度が高くなり圧縮機の振動によって軸受が破損する虞がある。つまり、各軸受が収縮変形すると、摺動部の剛性の低下を招く虞がある。また、電動機の絶縁材料(絶縁被服材料や絶縁フィルム等)が膨潤変形してしまうと、その絶縁材料の絶縁性が低下してしまう。絶縁材料が収縮変形してしまうと、上述した軸受の場合と同様に絶縁材料が破損する虞があり、この場合もまた絶縁性が低下してしまう。これに対して、上記のようにアニリン点が所定の範囲内である冷凍機油を用いることで、軸受や絶縁材料の膨潤/収縮変形を抑制できるため、このような不具合を回避することができる。
冷凍機油は、冷媒組成物と混合して冷凍機用作動流体として使用される。冷凍機用作動流体全量に対する冷凍機油の配合割合は、5質量%以上60質量%以下であることが好ましく、10質量%以上50質量%以下であることがより好ましい。
(2-1)含酸素系合成油
含酸素系合成油であるエステル系冷凍機油やエーテル系冷凍機油は、主として、炭素原子と酸素原子を有して構成されている。エステル系冷凍機油やエーテル系冷凍機油においては、この炭素原子と酸素原子の比率(炭素/酸素モル比)が小さすぎると吸湿性が高くなり、当該比率が大きすぎると冷媒との相溶性が低下してしまうことから、当該比率はモル比で2以上7.5以下であることが好ましい。
(2-1-1)エステル系冷凍機油
エステル系冷凍機油としては、化学的安定性の観点から、二塩基酸と1価アルコールとの二塩基酸エステル油、ポリオールと脂肪酸とのポリオールエステル油、またはポリオールと多価塩基酸と1価アルコール(又は脂肪酸)とのコンプレックスエステル油、ポリオール炭酸エステル油等が基油成分として挙げられる。
(二塩基酸エステル油)
二塩基酸エステル油としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、フタル酸、イソフタル酸、テレフタル酸等の二塩基酸、特に、炭素数5~10の二塩基酸(グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸等)と、直鎖または分枝アルキル基を有する炭素数1~15の一価アルコール(メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、ノナノール、デカノール、ウンデカノール、ドデカノール、トリデカノール、テトラデカノール、ペンタデカノール等)とのエステルが好ましい。この二塩基酸エステル油としては、具体的には、グルタル酸ジトリデシル、アジピン酸ジ(2-エチルヘキシル)、アジピン酸ジイソデシル、アジピン酸ジトリデシル、セバシン酸ジ(3-エチルヘキシル)等が挙げられる。
(ポリオールエステル油)
ポリオールエステル油とは、多価アルコールと脂肪酸(カルボン酸)とから合成されるエステルであり、炭素/酸素モル比が2以上7.5以下、好ましくは3.2以上5.8以下のものである。
ポリオールエステル油を構成する多価アルコールとしては、ジオール(エチレングリコール、1,3-プロパンジオール、プロピレングリコール、1,4-ブタンジオール、1,2-ブタンジオール、2-メチル-1,3-プロパンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、2-エチル-2-メチル-1,3-プロパンジオール、1,7-ヘプタンジオール、2-メチル-2-プロピル-1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,11-ウンデカンジオール、1,12-ドデカンジオール等)、水酸基を3~20個有するポリオール(トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、ジ-(トリメチロールプロパン)、トリ-(トリメチロールプロパン)、ペンタエリスリトール、ジ-(ペンタエリスリトール)、トリ-(ペンタエリスリトール)、グリセリン、ポリグリセリン(グリセリンの2~3量体)、1,3,5-ペンタントリオール、ソルビトール、ソルビタン、ソルビトールグリセリン縮合物、アドニトール、アラビトール、キシリトール、マンニトールなどの多価アルコール、キシロース、アラビノース、リボース、ラムノース、グルコース、フルクトース、ガラクトース、マンノース、ソルボース、セロビオース、マルトース、イソマルトース、トレハロース、シュクロース、ラフィノース、ゲンチアノース、メレンジトースなどの糖類、ならびにこれらの部分エーテル化物等)が挙げられ、エステルを構成する多価アルコールとしては、上記の1種でもよく、2種以上が含まれていてもよい。
ポリオールエステルを構成する脂肪酸としては、特に炭素数は制限されないが、通常炭素数1~24のものが用いられる。直鎖の脂肪酸、分岐を有する脂肪酸が好ましい。直鎖の脂肪酸としては、酢酸、プロピオン酸、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、ドデカン酸、トリデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸、ヘプタデカン酸、オクタデカン酸、ノナデカン酸、エイコサン酸、オレイン酸、リノール酸、リノレン酸等が挙げられ、カルボキシル基に結合する炭化水素基は、全て飽和炭化水素であってもよく、不飽和炭化水素を有していてもよい。さらに、分岐を有する脂肪酸としては、2-メチルプロパン酸、2-メチルブタン酸、3-メチルブタン酸、2,2-ジメチルプロパン酸、2-メチルペンタン酸、3-メチルペンタン酸、4-メチルペンタン酸、2,2-ジメチルブタン酸、2,3-ジメチルブタン酸、3,3-ジメチルブタン酸、2-メチルヘキサン酸、3-メチルヘキサン酸、4-メチルヘキサン酸、5-メチルヘキサン酸、2,2-ジメチルペンタン酸、2,3-ジメチルペンタン酸、2,4-ジメチルペンタン酸、3,3-ジメチルペンタン酸、3,4-ジメチルペンタン酸、4,4-ジメチルペンタン酸、2-エチルペンタン酸、3-エチルペンタン酸、2,2,3-トリメチルブタン酸、2,3,3-トリメチルブタン酸、2-エチル-2-メチルブタン酸、2-エチル-3-メチルブタン酸、2-メチルヘプタン酸、3-メチルヘプタン酸、4-メチルヘプタン酸、5-メチルヘプタン酸、6-メチルヘプタン酸、2-エチルヘキサン酸、3-エチルヘキサン酸、4-エチルヘキサン酸、2,2-ジメチルヘキサン酸、2,3-ジメチルヘキサン酸、2,4-ジメチルヘキサン酸、2,5-ジメチルヘキサン酸、3,3-ジメチルヘキサン酸、3,4-ジメチルヘキサン酸、3,5-ジメチルヘキサン酸、4,4-ジメチルヘキサン酸、4,5-ジメチルヘキサン酸、5,5-ジメチルヘキサン酸、2-プロピルペンタン酸、2-メチルオクタン酸、3-メチルオクタン酸、4-メチルオクタン酸、5-メチルオクタン酸、6-メチルオクタン酸、7-メチルオクタン酸、2,2-ジメチルヘプタン酸、2,3-ジメチルヘプタン酸、2,4-ジメチルヘプタン酸、2,5-ジメチルヘプタン酸、2,6-ジメチルヘプタン酸、3,3-ジメチルヘプタン酸、3,4-ジメチルヘプタン酸、3,5-ジメチルヘプタン酸、3,6-ジメチルヘプタン酸、4,4-ジメチルヘプタン酸、4,5-ジメチルヘプタン酸、4,6-ジメチルヘプタン酸、5,5-ジメチルヘプタン酸、5,6-ジメチルヘプタン酸、6,6-ジメチルヘプタン酸、2-メチル-2-エチルヘキサン酸、2-メチル-3-エチルヘキサン酸、2-メチル-4-エチルヘキサン酸、3-メチル-2-エチルヘキサン酸、3-メチル-3-エチルヘキサン酸、3-メチル-4-エチルヘキサン酸、4-メチル-2-エチルヘキサン酸、4-メチル-3-エチルヘキサン酸、4-メチル-4-エチルヘキサン酸、5-メチル-2-エチルヘキサン酸、5-メチル-3-エチルヘキサン酸、5-メチル-4-エチルヘキサン酸、2-エチルヘプタン酸、3-メチルオクタン酸、3,5,5-トリメチルヘキサン酸、2-エチル-2,3,3-トリメチル酪酸、2,2,4,4-テトラメチルペンタン酸、2,2,3,3-テトラメチルペンタン酸、2,2,3,4-テトラメチルペンタン酸、2,2-ジイソプロピルプロパン酸などが挙げられる。脂肪酸は、これらの中から選ばれる1種または2種以上の脂肪酸とのエステルであってもよい。
エステルを構成する多価アルコールは1種類でもよく、2種以上の混合物でもよい。また、エステルを構成する脂肪酸は、単一成分でもよく、2種以上の脂肪酸とのエステルでもよい。脂肪酸は、各々1種類でもよく、2種類以上の混合物でもよい。また、ポリオールエステル油は、遊離の水酸基を有していてもよい。
具体的なポリオールエステル油としては、ネオペンチルグリコール、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、ジ-(トリメチロールプロパン)、トリ-(トリメチロールプロパン)、ペンタエリスリトール、ジ-(ペンタエリスリトール)、トリ-(ペンタエリスリトール)などのヒンダードアルコールのエステルがより好ましく、ネオペンチルグリコール、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタンおよびペンタエリスリトール、ジ-(ペンタエリスリトール)のエステルがさらにより好ましく、ネオペンチルグリコール、トリメチロールプロパン、ペンタエリスリトール、ジ-(ペンタエリスリトール)等と炭素数2~20の脂肪酸とのエステルが好ましい。
このような多価アルコール脂肪酸エステルを構成する脂肪酸において、脂肪酸は直鎖アルキル基をもつ脂肪酸のみでもよいし、分岐構造をもつ脂肪酸から選ばれてもよい。また、直鎖と分岐脂肪酸の混合エステルでもよい。さらに、エステルを構成する脂肪酸は、上記脂肪酸から選ばれる2種類以上が用いられていてもよい。
具体的な例として、直鎖と分岐脂肪酸の混合エステルの場合には、直鎖を有する炭素数4~6の脂肪酸と分岐を有する炭素数7~9の脂肪酸のモル比は、15:85~90:10であり、好ましくは15:85~85:15であり、より好ましくは20:80~80:20であり、さらに好ましくは25:75~75:25であり、最も好ましくは30:70~70:30である。また、多価アルコール脂肪酸エステルを構成する脂肪酸の全量に占める直鎖を有する炭素数4~6の脂肪酸および分岐を有する炭素数7~9の脂肪酸の合計の割合は20モル%以上であることが好ましい。脂肪酸組成に関しては、冷媒との十分な相溶性、および冷凍機油として必要な粘度とを両立させるものであることが好ましい。なお、ここでいう脂肪酸の割合とは、冷凍機油に含まれる多価アルコール脂肪酸エステルを構成する脂肪酸全量を基準とした値である。
なかでも、このような冷凍機油としては、脂肪酸における炭素数4~6の脂肪酸と炭素数7~9の分岐脂肪酸のモル比が15:85~90:10であり、炭素数4~6の脂肪酸は2-メチルプロパン酸を含有し、上記エステルを構成する脂肪酸の全量に占める炭素数4~6の脂肪酸および炭素数7~9の分岐脂肪酸の合計の割合が20モル%以上であるエステル(以下、「多価アルコール脂肪酸エステル(A)」という。)を含有したものが好ましい。
多価アルコール脂肪酸エステル(A)には、多価アルコールの全ての水酸基がエステル化された完全エステル、多価アルコールの水酸基の一部がエステル化せずに残っている部分エステル、ならびに完全エステルと部分エステルとの混合物が包含されるが、多価アルコール脂肪酸エステル(A)の水酸基価は、好ましくは10mgKOH/g以下、さらには5mgKOH/g以下、最も好ましくは3mgKOH/g以下である。
多価アルコール脂肪酸エステル(A)を構成する脂肪酸において、炭素数4~6の脂肪酸と分岐を有する炭素数7~9の脂肪酸のモル比は、15:85~90:10であり、好ましくは15:85~85:15であり、より好ましくは20:80~80:20であり、さらに好ましくは25:75~75:25であり、最も好ましくは30:70~70:30である。また、多価アルコール脂肪酸エステル(A)を構成する脂肪酸の全量に占める炭素数4~6の脂肪酸および分岐を有する炭素数7~9の脂肪酸の合計の割合は20モル%以上である。脂肪酸組成に関する上記の条件を満たさない場合には、冷媒組成物にジフルオロメタンが含まれている場合において、当該ジフルオロメタンとの十分な相溶性、および冷凍機油として必要な粘度とが高水準で両立されにくくなる。なお、脂肪酸の割合とは、冷凍機油に含有される多価アルコール脂肪酸エステルを構成する脂肪酸全量を基準とした値である。
上記炭素数4~6の脂肪酸としては、具体的には例えば、ブタン酸、2-メチルプロパン酸、ペンタン酸、2-メチルブタン酸、3-メチルブタン酸、2,2-ジメチルプロパン酸、2-メチルペンタン酸、3-メチルペンタン酸、4-メチルペンタン酸、2,2-ジメチルブタン酸、2,3-ジメチルブタン酸、3,3-ジメチルブタン酸、ヘキサン酸などが挙げられる。これらの中でも、2-メチルプロパン酸のように、アルキル骨格に分岐を有するものが好ましい。
上記分岐を有する炭素数7~9の脂肪酸としては、具体的には例えば、2-メチルヘキサン酸、3-メチルヘキサン酸、4-メチルヘキサン酸、5-メチルヘキサン酸、2,2-ジメチルペンタン酸、2,3-ジメチルペンタン酸、2,4-ジメチルペンタン酸、3,3-ジメチルペンタン酸、3,4-ジメチルペンタン酸、4,4-ジメチルペンタン酸、2-エチルペンタン酸、3-エチルペンタン酸、1,1,2-トリメチルブタン酸、1,2,2-トリメチルブタン酸、1-エチル-1メチルブタン酸、1-エチル-2-メチルブタン酸、オクタン酸、2-エチルヘキサン酸、3-エチルヘキサン酸、3,5-ジメチルヘキサン酸、2,4-ジメチルヘキサン酸、3,4-ジメチルヘキサン酸、4,5-ジメチルヘキサン酸、2,2-ジメチルヘキサン酸、2-メチルヘプタン酸、3-メチルヘプタン酸、4-メチルヘプタン酸、5-メチルヘプタン酸、6-メチルヘプタン酸、2-プロピルペンタン酸、ノナン酸、2,2-ジメチルヘプタン酸、2-メチルオクタン酸、2-エチルヘプタン酸、3-メチルオクタン酸、3,5,5-トリメチルヘキサン酸、2-エチル-2,3,3-トリメチル酪酸、2,2,4,4-テトラメチルペンタン酸、2,2,3,3-テトラメチルペンタン酸、2,2,3,4-テトラメチルペンタン酸、2,2-ジイソプロピルプロパン酸などが挙げられる。
多価アルコール脂肪酸エステル(A)は、炭素数4~6の脂肪酸と分岐を有する炭素数7~9の脂肪酸のモル比が15:85~90:10であり、かつ、炭素数4~6の脂肪酸が2-メチルプロパン酸を含有する限りにおいて、炭素数4~6の脂肪酸および分岐を有する炭素数7~9の脂肪酸以外の脂肪酸を構成酸成分として含有してもよい。
上記炭素数4~6の脂肪酸および分岐を有する炭素数7~9の脂肪酸以外の脂肪酸としては、具体的には、酢酸、プロピオン酸等の炭素数2~3の脂肪酸;ヘプタン酸、オクタン酸、ノナン酸等の炭素数7~9の直鎖脂肪酸;デカン酸、ウンデカン酸、ドデカン酸、トリデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸、ヘプタデカン酸、オクタデカン酸、ノナデカン酸、エイコサン酸、オレイン酸等の炭素数10~20の脂肪酸等が挙げられる。
上記炭素数4~6の脂肪酸および分岐を有する炭素数7~9の脂肪酸と、これらの脂肪酸以外の脂肪酸とを組み合わせて用いる場合、多価アルコール脂肪酸エステル(A)を構成する脂肪酸の全量に占める炭素数4~6の脂肪酸および炭素数7~9の分岐脂肪酸の合計の割合が20モル%以上とすることが好ましく、25モル%以上であることがより好ましく、30モル%以上であることがさらにより好ましい。この割合が20モル%以上であることにより、冷媒組成物においてジフルオロメタンが含まれている場合における当該ジフルオロメタンとの相溶性が十分となる。
多価アルコール脂肪酸エステル(A)の中でも、酸構成成分が2-メチルプロパン酸と3,5,5-トリメチルヘキサン酸のみからなるものが、必要粘度の確保と、冷媒組成物においてジフルオロメタンが含まれている場合における当該ジフルオロメタンとの相溶性との両立の面で特に好ましい。
上記多価アルコール脂肪酸エステルは、分子構造の異なるエステルの2種以上の混合物であってもよく、かかる場合には個々の分子が必ずしも上記の条件を満たしている必要はなく、冷凍機油中に含まれるペンタエリスリトール脂肪酸エステルを構成する脂肪酸全体として上記条件を満たしていればよい。
上記した通り、多価アルコール脂肪酸エステル(A)は、エステルを構成する酸成分として炭素数4~6の脂肪酸及び分岐を有する炭素数7~9の脂肪酸を必須とし、必要に応じてその他の脂肪酸を構成成分として含むものである。すなわち、多価アルコール脂肪酸エステル(A)は、2種のみの脂肪酸を酸構成成分としているものであっても、3種以上の構造の異なる脂肪酸を酸構成成分としているものであってもよいが、当該多価アルコール脂肪酸エステルは、酸構成成分として、カルボニル炭素と隣接する炭素原子(α位炭素原子)が四級炭素でない脂肪酸のみを含有することが好ましい。多価アルコール脂肪酸エステルを構成する脂肪酸中に、α位炭素原子が四級炭素である脂肪酸が含まれる場合には、冷媒組成物にジフルオロメタンを含んでいる場合における当該ジフルオロメタン存在下での潤滑性が不十分となる傾向にある。
また、本実施形態にかかるポリオールエステルを構成する多価アルコールとしては、水酸基を2~6個有する多価アルコールが好ましく用いられる。
2価アルコール(ジオール)としては、具体的には例えば、エチレングリコール、1,3-プロパンジオール、プロピレングリコール、1,4-ブタンジオール、1,2-ブタンジオール、2-メチル-1,3-プロパンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、2-エチル-2-メチル-1,3-プロパンジオール、1,7-ヘプタンジオール、2-メチル-2-プロピル-1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,11-ウンデカンジオール、1,12-ドデカンジオールなどが挙げられる。また、3価以上のアルコールとしては、具体的には例えば、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、ジ-(トリメチロールプロパン)、トリ-(トリメチロールプロパン)、ペンタエリスリトール、ジ-(ペンタエリスリトール)、トリ-(ペンタエリスリトール)、グリセリン、ポリグリセリン(グリセリンの2~3量体)、1,3,5-ペンタントリオール、ソルビトール、ソルビタン、ソルビトールグリセリン縮合物、アドニトール、アラビトール、キシリトール、マンニトールなどの多価アルコール、キシロース、アラビノース、リボース、ラムノース、グルコース、フルクトース、ガラクトース、マンノース、ソルボース、セロビオースなどの糖類、ならびにこれらの部分エーテル化物などが挙げられる。これらの中でも、より加水分解安定性に優れることから、ネオペンチルグリコール、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、ジ-(トリメチロールプロパン)、トリ-(トリメチロールプロパン)、ペンタエリスリトール、ジ-(ペンタエリスリトール)、トリ-(ペンタエリスリトール)などのヒンダードアルコールのエステルがより好ましく、ネオペンチルグリコール、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタンおよびペンタエリスリトール、ジ-(ペンタエリスリトール)のエステルがさらにより好ましく、ネオペンチルグリコール、トリメチロールプロパン、ペンタエリスリトール、ジ-(ペンタエリスリトール)がさらに好ましく、冷媒との相溶性および加水分解安定性に特に優れることから、ペンタエリスリトール、ジ-(ペンタエリスリトール)またはペンタエリスリトールとジ-(ペンタエリスリトール)との混合エステルが最も好ましい。
上記多価アルコール脂肪酸エステル(A)を構成する酸構成成分の好ましい例としては、以下のものを挙げることができる。
(i)ブタン酸、2-メチルプロパン酸、ペンタン酸、2-メチルブタン酸、3-メチルブタン酸、2,2-ジメチルプロパン酸、2-メチルペンタン酸、3-メチルペンタン酸、4-メチルペンタン酸、2,2-ジメチルブタン酸、2,3-ジメチルブタン酸、3,3-ジメチルブタン酸およびヘキサン酸から選ばれる1~13種と、2-メチルヘキサン酸、3-メチルヘキサン酸、4-メチルヘキサン酸、5-メチルヘキサン酸、2,2-ジメチルペンタン酸、2,3-ジメチルペンタン酸、2,4-ジメチルペンタン酸、3,3-ジメチルペンタン酸、3,4-ジメチルペンタン酸、4,4-ジメチルペンタン酸、2-エチルペンタン酸、3-エチルペンタン酸および2-エチル-3-メチルブタン酸から選ばれる1~13種との組合せ;
(ii)ブタン酸、2-メチルプロパン酸、ペンタン酸、2-メチルブタン酸、3-メチルブタン酸、2,2-ジメチルプロパン酸、2-メチルペンタン酸、3-メチルペンタン酸、4-メチルペンタン酸、2,2-ジメチルブタン酸、2,3-ジメチルブタン酸、3,3-ジメチルブタン酸およびヘキサン酸から選ばれる1~13種と、2-メチルヘプタン酸、3-メチルヘプタン酸、4-メチルヘプタン酸、5-メチルヘプタン酸、6-メチルヘプタン酸、2,2-ジメチルヘキサン酸、3,3-ジメチルヘキサン酸、4,4-ジメチルヘキサン酸、5,5-ジメチルヘキサン酸、2,3-ジメチルヘキサン酸、2,4-ジメチルヘキサン酸、2,5-ジメチルヘキサン酸、3,4-ジメチルヘキサン酸、3,5-ジメチルヘキサン酸、4,5-ジメチルヘキサン酸、2,2,3-トリメチルペンタン酸、2,3,3-トリメチルペンタン酸、2,4,4-トリメチルペンタン酸、3,4,4-トリメチルペンタン酸、2-エチルヘキサン酸、3-エチルヘキサン酸、2-プロピルペンタン酸、2-メチル-2-エチルペンタン酸、2-メチル-3-エチルペンタン酸および3-メチル-3-エチルペンタン酸から選ばれる1~25種との組合せ;
(iii)ブタン酸、2-メチルプロパン酸、ペンタン酸、2-メチルブタン酸、3-メチルブタン酸、2,2-ジメチルプロパン酸、2-メチルペンタン酸、3-メチルペンタン酸、4-メチルペンタン酸、2,2-ジメチルブタン酸、2,3-ジメチルブタン酸、3,3-ジメチルブタン酸およびヘキサン酸から選ばれる1~13種と、2-メチルオクタン酸、3-メチルオクタン酸、4-メチルオクタン酸、5-メチルオクタン酸、6-メチルオクタン酸、7-メチルオクタン酸、8-メチルオクタン酸、2,2-ジメチルヘプタン酸、3,3-ジメチルヘプタン酸、4,4-ジメチルヘプタン酸、5,5-ジメチルヘプタン酸、6,6-ジメチルヘプタン酸、2,3-ジメチルヘプタン酸、2,4-ジメチルヘプタン酸、2,5-ジメチルヘプタン酸、2,6-ジメチルヘプタン酸、3,4-ジメチルヘプタン酸、3,5-ジメチルヘプタン酸、3,6-ジメチルヘプタン酸、4,5-ジメチルヘプタン酸、4,6-ジメチルヘプタン酸、2-エチルヘプタン酸、3-エチルヘプタン酸、4-エチルヘプタン酸、5-エチルヘプタン酸、2-プロピルヘキサン酸、3-プロピルヘキサン酸、2-ブチルペンタン酸、2,2,3-トリメチルヘキサン酸、2,2,3-トリメチルヘキサン酸、2,2,4-トリメチルヘキサン酸、2,2,5-トリメチルヘキサン酸、2,3,4-トリメチルヘキサン酸、2,3,5-トリメチルヘキサン酸、3,3,4-トリメチルヘキサン酸、3,3,5-トリメチルヘキサン酸、3,5,5-トリメチルヘキサン酸、4,4,5-トリメチルヘキサン酸、4,5,5-トリメチルヘキサン酸、2,2,3,3-テトラメチルペンタン酸、2,2,3,4-テトラメチルペンタン酸、2,2,4,4-テトラメチルペンタン酸、2,3,4,4-テトラメチルペンタン酸、3,3,4,4-テトラメチルペンタン酸、2,2-ジエチルペンタン酸、2,3-ジエチルペンタン酸、3,3-ジエチルペンタン酸、2-エチル-2,3,3-トリメチル酪酸、3-エチル-2,2,3-トリメチル酪酸および2,2-ジイソプロピルプロピオン酸から選ばれる1~50種との組合せ。
上記多価アルコール脂肪酸エステルを構成する酸構成成分のさらに好ましい例としては、以下のものを挙げることができる。
(i)2-メチルプロパン酸と、2-メチルヘキサン酸、3-メチルヘキサン酸、4-メチルヘキサン酸、5-メチルヘキサン酸、2,2-ジメチルペンタン酸、2,3-ジメチルペンタン酸、2,4-ジメチルペンタン酸、3,3-ジメチルペンタン酸、3,4-ジメチルペンタン酸、4,4-ジメチルペンタン酸、2-エチルペンタン酸、3-エチルペンタン酸および2-エチル-3-メチルブタン酸から選ばれる1~13種との組合せ;
(ii)2-メチルプロパン酸と、2-メチルヘプタン酸、3-メチルヘプタン酸、4-メチルヘプタン酸、5-メチルヘプタン酸、6-メチルヘプタン酸、2,2-ジメチルヘキサン酸、3,3-ジメチルヘキサン酸、4,4-ジメチルヘキサン酸、5,5-ジメチルヘキサン酸、2,3-ジメチルヘキサン酸、2,4-ジメチルヘキサン酸、2,5-ジメチルヘキサン酸、3,4-ジメチルヘキサン酸、3,5-ジメチルヘキサン酸、4,5-ジメチルヘキサン酸、2,2,3-トリメチルペンタン酸、2,3,3-トリメチルペンタン酸、2,4,4-トリメチルペンタン酸、3,4,4-トリメチルペンタン酸、2-エチルヘキサン酸、3-エチルヘキサン酸、2-プロピルペンタン酸、2-メチル-2-エチルペンタン酸、2-メチル-3-エチルペンタン酸および3-メチル-3-エチルペンタン酸から選ばれる1~25種との組合せ;
(iii)2-メチルプロパン酸と、2-メチルオクタン酸、3-メチルオクタン酸、4-メチルオクタン酸、5-メチルオクタン酸、6-メチルオクタン酸、7-メチルオクタン酸、8-メチルオクタン酸、2,2-ジメチルヘプタン酸、3,3-ジメチルヘプタン酸、4,4-ジメチルヘプタン酸、5,5-ジメチルヘプタン酸、6,6-ジメチルヘプタン酸、2,3-ジメチルヘプタン酸、2,4-ジメチルヘプタン酸、2,5-ジメチルヘプタン酸、2,6-ジメチルヘプタン酸、3,4-ジメチルヘプタン酸、3,5-ジメチルヘプタン酸、3,6-ジメチルヘプタン酸、4,5-ジメチルヘプタン酸、4,6-ジメチルヘプタン酸、2-エチルヘプタン酸、3-エチルヘプタン酸、4-エチルヘプタン酸、5-エチルヘプタン酸、2-プロピルヘキサン酸、3-プロピルヘキサン酸、2-ブチルペンタン酸、2,2,3-トリメチルヘキサン酸、2,2,3-トリメチルヘキサン酸、2,2,4-トリメチルヘキサン酸、2,2,5-トリメチルヘキサン酸、2,3,4-トリメチルヘキサン酸、2,3,5-トリメチルヘキサン酸、3,3,4-トリメチルヘキサン酸、3,3,5-トリメチルヘキサン酸、3,5,5-トリメチルヘキサン酸、4,4,5-トリメチルヘキサン酸、4,5,5-トリメチルヘキサン酸、2,2,3,3-テトラメチルペンタン酸、2,2,3,4-テトラメチルペンタン酸、2,2,4,4-テトラメチルペンタン酸、2,3,4,4-テトラメチルペンタン酸、3,3,4,4-テトラメチルペンタン酸、2,2-ジエチルペンタン酸、2,3-ジエチルペンタン酸、3,3-ジエチルペンタン酸、2-エチル-2,3,3-トリメチル酪酸、3-エチル-2,2,3-トリメチル酪酸および2,2-ジイソプロピルプロピオン酸から選ばれる1~50種との組合せ。
上記多価アルコール脂肪酸エステル(A)の含有量は、冷凍機油全量基準で50質量%以上であり、好ましくは60質量%以上、より好ましくは70質量%以上、さらに好ましくは75質量%以上である。本実施形態に係る冷凍機油は、後述するように多価アルコール脂肪酸エステル(A)以外の潤滑油基油や添加剤を含有してもよいが、多価アルコール脂肪酸エステル(A)が50質量%未満であると、必要粘度と相溶性とを高水準で両立することができなくなる。
本実施形態に係る冷凍機油において、多価アルコール脂肪酸エステル(A)は主として基油として用いられる。本実施形態に係る冷凍機油の基油としては、多価アルコール脂肪酸エステル(A)のみを単独で(すなわち多価アルコール脂肪酸エステル(A)の含有量が100質量%)用いてもよいが、これに加えて、その優れた性能を損なわない程度に、多価アルコール脂肪酸エステル(A)以外の基油をさらに含有してもよい。多価アルコール脂肪酸エステル(A)以外の基油としては、鉱油、オレフィン重合体、アルキルジフェニルアルカン、アルキルナフタレン、アルキルベンゼン等の炭化水素系油;多価アルコール脂肪酸エステル(A)以外のポリオールエステル、コンプレックスエステル、脂環式ジカルボン酸エステル等のエステル、ポリグリコール、ポリビニルエーテル、ケトン、ポリフェニルエーテル、シリコーン、ポリシロキサン、パーフルオロエーテル等の酸素を含有する合成油(以下、場合により「他の含酸素合成油」という)などが挙げられる。
酸素を含有する合成油としては、上記の中でも、多価アルコール脂肪酸エステル(A)以外のエステル、ポリグリコール、ポリビニルエーテルが好ましく、特に好ましいのは、多価アルコール脂肪酸エステル(A)以外のポリオールエステルである。多価アルコール脂肪酸エステル(A)以外のポリオールエステルとしては、ネオペンチルグリコール、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、ペンタエリスリトール、ジペンタエリスリトール等の多価アルコールと脂肪酸とのエステルが挙げられ、特に好ましいものは、ネオペンチルグリコールと脂肪酸とのエステル、ペンタエリスリトールと脂肪酸とのエステル及びジペンタエリスリトールと脂肪酸とのエステルである。
ネオペンチルグリコールエステルとしては、ネオペンチルグリコールと炭素数5~9の脂肪酸とのエステルであることが好ましい。このようなネオペンチルグリコールエステルとしては、具体的には例えば、ネオペンチルグリコールジ3,5,5-トリメチルヘキサノエート、ネオペンチルグリコールジ2-エチルヘキサノエート、ネオペンチルグリコールジ2-メチルヘキサノエート、ネオペンチルグリコールジ2-エチルペンタノエート、ネオペンチルグリコールと2-メチルヘキサン酸・2-エチルペンタン酸のエステル、ネオペンチルグリコールと3-メチルヘキサン酸・5-メチルヘキサン酸のエステル、ネオペンチルグリコールと2-メチルヘキサン酸・2-エチルヘキサン酸のエステル、ネオペンチルグリコールと3,5-ジメチルヘキサン酸・4,5-ジメチルヘキサン酸・3,4-ジメチルヘキサン酸のエステル、ネオペンチルグリコールジペンタノエート、ネオペンチルグリコールジ2-エチルブタノエート、ネオペンチルグリコールジ2-メチルペンタノエート、ネオペンチルグリコールジ2-メチルブタノエート、ネオペンチルグリコールジ3-メチルブタノエート等が挙げられる。
ペンタエリスリトールエステルとしては、ペンタエリスリトールと炭素数5~9の脂肪酸とのエステルが好ましい。このようなペンタエリスリトールエステルとしては、具体的には、ペンタエリスリトールと、ペンタン酸、2-メチルブタン酸、3-メチルブタン酸、ヘキサン酸、2-メチルペンタン酸、2-エチルブタン酸、2-エチルペンタン酸、2-メチルヘキサン酸、3,5,5-トリメチルヘキサン酸および2-エチルヘキサン酸から選ばれる1種以上の脂肪酸とのエステルが挙げられる。
ジペンタエリスリトールエステルとしては、ジペンタエリスリトールと炭素数5~9の脂肪酸のエステルが好ましい。このようなジペンタエリスリトールエステルとしては、具体的には、ジペンタエリスリトールと、ペンタン酸、2-メチルブタン酸、3-メチルブタン酸、ヘキサン酸、2-メチルペンタン酸、2-エチルブタン酸、2-エチルペンタン酸、2-メチルヘキサン酸、3,5,5-トリメチルヘキサン酸および2-エチルヘキサン酸から選ばれる1種以上の脂肪酸とのエステルが挙げられる。
本実施形態に係る冷凍機油が多価アルコール脂肪酸エステル(A)以外の含酸素合成油を含有する場合、多価アルコール脂肪酸エステル(A)以外の含酸素合成油の含有量は、本実施形態に係る冷凍機油の優れた潤滑性と相溶性とを損なわない限りにおいて特に制限はないが、多価アルコール脂肪酸エステル(A)以外のポリオールエステルを配合する場合、冷凍機油全量基準で、50質量%未満であることが好ましく、45質量%以下であることがより好ましく、40質量%以下であることがさらに好ましく、35質量%以下であることがさらにより好ましく、30質量%以下であることが一層好ましく、25質量%以下であることが最も好ましく;ポリオールエステル以外の含酸素合成油を配合する場合、冷凍機油全量基準で50質量%未満であることが好ましく、40質量%以下であることがより好ましく、30質量%以下であることがさらに好ましい。ペンタエリスリトール脂肪酸エステル以外のポリオールエステルや他の含酸素合成油の配合量が多すぎると、上記効果が十分には得られない。
なお、多価アルコール脂肪酸エステル(A)以外のポリオールエステルは、多価アルコールの水酸基の一部がエステル化されずに水酸基のまま残っている部分エステルであっても良く、全ての水酸基がエステル化された完全エステルであっても良く、また部分エステルと完全エステルの混合物であっても良いが、水酸基価が、10mgKOH/g以下であることが好ましく、5mgKOH/g以下であることがより好ましく、3mgKOH/g以下であることが最も好ましい。
本実施形態に係る冷凍機および冷凍機用作動流体が多価アルコール脂肪酸エステル(A)以外のポリオールエステルを含有する場合、該ポリオールエステルとして、単一の構造のポリオールエステルの1種からなるものを含有してもよく、また、構造の異なる2種以上のポリオールエステルの混合物を含有してもよい。
また、多価アルコール脂肪酸エステル(A)以外のポリオールエステルは、1種の脂肪酸と1種の多価アルコールとのエステル、2種以上の脂肪酸と1種の多価アルコールとのエステル、1種の脂肪酸と2種以上の多価アルコールとのエステル、2種以上の脂肪酸と2種以上の多価アルコールとのエステルのいずれであってもよい。
本実施形態に係る冷凍機油は、多価アルコール脂肪酸エステル(A)のみからなるものであってもよく、また、多価アルコール脂肪酸エステル(A)とその他の基油とからなるものであってもよいが、後述する各種添加剤をさらに含有してもよい。また、本実施形態に係る冷凍機用作動流体においても、各種添加剤をさらに含有してもよい。なお、以下の説明において、添加剤の含有量については、冷凍機油全量を基準として示すが、冷凍機用作動流体におけるこれらの成分の含有量は、冷凍機油全量を基準とした場合に後述する好ましい範囲内となるように選定することが望ましい。
本実施形態に係る冷凍機油および冷凍機用作動流体の耐摩耗性、耐荷重性をさらに改良するために、リン酸エステル、酸性リン酸エステル、チオリン酸エステル、酸性リン酸エステルのアミン塩、塩素化リン酸エステルおよび亜リン酸エステルからなる群より選ばれる少なくとも1種のリン化合物を配合することができる。これらのリン化合物は、リン酸または亜リン酸とアルカノール、ポリエーテル型アルコールとのエステルあるいはその誘導体である。
具体的には例えば、リン酸エステルとしては、トリブチルホスフェート、トリペンチルホスフェート、トリヘキシルホスフェート、トリヘプチルホスフェート、トリオクチルホスフェート、トリノニルホスフェート、トリデシルホスフェート、トリウンデシルホスフェート、トリドデシルホスフェート、トリトリデシルホスフェート、トリテトラデシルホスフェート、トリペンタデシルホスフェート、トリヘキサデシルホスフェート、トリヘプタデシルホスフェート、トリオクタデシルホスフェート、トリオレイルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、キシレニルジフェニルホスフェートなどが挙げられる。
酸性リン酸エステルとしては、モノブチルアシッドホスフェート、モノペンチルアシッドホスフェート、モノヘキシルアシッドホスフェート、モノヘプチルアシッドホスフェート、モノオクチルアシッドホスフェート、モノノニルアシッドホスフェート、モノデシルアシッドホスフェート、モノウンデシルアシッドホスフェート、モノドデシルアシッドホスフェート、モノトリデシルアシッドホスフェート、モノテトラデシルアシッドホスフェート、モノペンタデシルアシッドホスフェート、モノヘキサデシルアシッドホスフェート、モノヘプタデシルアシッドホスフェート、モノオクタデシルアシッドホスフェート、モノオレイルアシッドホスフェート、ジブチルアシッドホスフェート、ジペンチルアシッドホスフェート、ジヘキシルアシッドホスフェート、ジヘプチルアシッドホスフェート、ジオクチルアシッドホスフェート、ジノニルアシッドホスフェート、ジデシルアシッドホスフェート、ジウンデシルアシッドホスフェート、ジドデシルアシッドホスフェート、ジトリデシルアシッドホスフェート、ジテトラデシルアシッドホスフェート、ジペンタデシルアシッドホスフェート、ジヘキサデシルアシッドホスフェート、ジヘプタデシルアシッドホスフェート、ジオクタデシルアシッドホスフェート、ジオレイルアシッドホスフェートなどが挙げられる。
チオリン酸エステルとしては、トリブチルホスフォロチオネート、トリペンチルホスフォロチオネート、トリヘキシルホスフォロチオネート、トリヘプチルホスフォロチオネート、トリオクチルホスフォロチオネート、トリノニルホスフォロチオネート、トリデシルホスフォロチオネート、トリウンデシルホスフォロチオネート、トリドデシルホスフォロチオネート、トリトリデシルホスフォロチオネート、トリテトラデシルホスフォロチオネート、トリペンタデシルホスフォロチオネート、トリヘキサデシルホスフォロチオネート、トリヘプタデシルホスフォロチオネート、トリオクタデシルホスフォロチオネート、トリオレイルホスフォロチオネート、トリフェニルホスフォロチオネート、トリクレジルホスフォロチオネート、トリキシレニルホスフォロチオネート、クレジルジフェニルホスフォロチオネート、キシレニルジフェニルホスフォロチオネートなどが挙げられる。
酸性リン酸エステルのアミン塩としては、酸性リン酸エステルと、炭素数1~24、好ましくは5~18の1~3級の直鎖または分岐アルキル基のアミンとのアミン塩が挙げられる。
酸性リン酸エステルのアミン塩を構成するアミンとしては、直鎖または分岐のメチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン、トリデシルアミン、テトラデシルアミン、ペンタデシルアミン、ヘキサデシルアミン、ヘプタデシルアミン、オクタデシルアミン、オレイルアミン、テトラコシルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ジペンチルアミン、ジヘキシルアミン、ジヘプチルアミン、ジオクチルアミン、ジノニルアミン、ジデシルアミン、ジウンデシルアミン、ジドデシルアミン、ジトリデシルアミン、ジテトラデシルアミン、ジペンタデシルアミン、ジヘキサデシルアミン、ジヘプタデシルアミン、ジオクタデシルアミン、ジオレイルアミン、ジテトラコシルアミン、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリペンチルアミン、トリヘキシルアミン、トリヘプチルアミン、トリオクチルアミン、トリノニルアミン、トリデシルアミン、トリウンデシルアミン、トリドデシルアミン、トリトリデシルアミン、トリテトラデシルアミン、トリペンタデシルアミン、トリヘキサデシルアミン、トリヘプタデシルアミン、トリオクタデシルアミン、トリオレイルアミン、トリテトラコシルアミンなどのアミンとの塩が挙げられる。アミンは単独の化合物であっても、2種以上の化合物の混合物であっても良い。
塩素化リン酸エステルとしては、トリス・ジクロロプロピルホスフェート、トリス・クロロエチルホスフェート、トリス・クロロフェニルホスフェート、ポリオキシアルキレン・ビス[ジ(クロロアルキル)]ホスフェートなどが挙げられる。亜リン酸エステルとしては、ジブチルホスファイト、ジペンチルホスファイト、ジヘキシルホスファイト、ジヘプチルホスファイト、ジオクチルホスファイト、ジノニルホスファイト、ジデシルホスファイト、ジウンデシルホスファイト、ジドデシルホスファイト、ジオレイルホスファイト、ジフェニルホスファイト、ジクレジルホスファイト、トリブチルホスファイト、トリペンチルホスファイト、トリヘキシルホスファイト、トリヘプチルホスファイト、トリオクチルホスファイト、トリノニルホスファイト、トリデシルホスファイト、トリウンデシルホスファイト、トリドデシルホスファイト、トリオレイルホスファイト、トリフェニルホスファイト、トリクレジルホスファイトなどが挙げられる。また、これらの混合物も使用できる。
本実施形態に係る冷凍機油および冷凍機用作動流体が上記リン化合物を含有する場合、リン化合物の含有量は特に制限されないが、冷凍機油全量基準(基油と全配合添加剤の合計量基準)で、0.01~5.0質量%であることが好ましく、0.02~3.0質量%であることがより好ましい。なお、上記リン化合物は1種を単独で用いてもよく、2種以上を併用してもよい。
また、本実施形態に係る冷凍機油および冷凍機用作動流体は、その熱・化学的安定性をさらに改良するために、テルペン化合物を添加することができる。本開示でいう「テルペン化合物」とは、イソプレンの重合した化合物およびこれらの誘導体を意味し、イソプレンの2~8量体が好ましく用いられる。テルペン化合物としては、具体的には、ゲラニオール、ネロール、リナロール、シトラール(ゲラニアールを含む)、シトロネロール、メントール、リモネン、テルピネロール、カルボン、ヨノン、ツヨン、樟脳(カンファー)、ボルネオールなどのモノテルペン、ファルネセン、ファルネソール、ネロリドール、幼若ホルモン、フムレン、カリオフイレン、エレメン、カジノール、カジネン、ツチンなどのセスキテルペン、ゲラニルゲラニオール、フィトール、アビエチン酸、ピマラジェン、ダフネトキシン、タキソール、ピマール酸などのジテルペン、ゲラニルファルネセンなどのセスタテルペン、スクアレン、リモニン、カメリアゲニン、ホパン、ラノステロールなどのトリテルペン、カロテノイドなどのテトラテルペンなどが挙げられる。
これらのテルペン化合物の中でも、モノテルペン、セスキテルペン、ジテルペンが好ましく、セスキテルペンがより好ましく、αファルネセン(3,7,11-トリメチルドデカ-1,3,6,10-テトラエン)および/またはβファルネセン(7,11-ジメチル-3-メチリデンドデカ-1,6,10-トリエン)が特に好ましい。本開示において、テルペン化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
本実施形態に係る冷凍機油におけるテルペン化合物の含有量は特に制限されないが、冷凍機油全量基準で、好ましくは0.001~10質量%、より好ましくは0.01~5質量%、さらに好ましくは0.05~3質量%である。テルペン化合物の含有量が0.001質量%未満であると熱・化学的安定性の向上効果が不十分となる傾向にあり、また、10質量%を超えると潤滑性が不十分となる傾向にある。また、本実施形態に係る冷凍機用作動流体におけるテルペン化合物の含有量については、冷凍機油全量を基準とした場合に上記の好ましい範囲内となるように選定することが望ましい。
また、本実施形態に係る冷凍機油および冷凍機用作動流体は、その熱・化学的安定性をさらに改良するために、フェニルグリシジルエーテル型エポキシ化合物、アルキルグリシジルエーテル型エポキシ化合物、グリシジルエステル型エポキシ化合物、アリルオキシラン化合物、アルキルオキシラン化合物、脂環式エポキシ化合物、エポキシ化脂肪酸モノエステルおよびエポキシ化植物油から選ばれる少なくとも1種のエポキシ化合物を含有することができる。
フェニルグリシジルエーテル型エポキシ化合物としては、具体的には、フェニルグリシジルエーテルまたはアルキルフェニルグリシジルエーテルが例示できる。ここでいうアルキルフェニルグリシジルエーテルとは、炭素数1~13のアルキル基を1~3個有するものが挙げられ、中でも炭素数4~10のアルキル基を1個有するもの、例えばn-ブチルフェニルグリシジルエーテル、i-ブチルフェニルグリシジルエーテル、sec-ブチルフェニルグリシジルエーテル、tert-ブチルフェニルグリシジルエーテル、ペンチルフェニルグリシジルエーテル、ヘキシルフェニルグリシジルエーテル、ヘプチルフェニルグリシジルエーテル、オクチルフェニルグリシジルエーテル、ノニルフェニルグリシジルエーテル、デシルフェニルグリシジルエーテルなどが好ましいものとして例示できる。
アルキルグリシジルエーテル型エポキシ化合物としては、具体的には、デシルグリシジルエーテル、ウンデシルグリシジルエーテル、ドデシルグリシジルエーテル、トリデシルグリシジルエーテル、テトラデシルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、ソルビトールポリグリシジルエーテル、ポリアルキレングリコールモノグリシジルエーテル、ポリアルキレングリコールジグリシジルエーテルなどが例示できる。
グリシジルエステル型エポキシ化合物としては、具体的には、フェニルグリシジルエステル、アルキルグリシジルエステル、アルケニルグリシジルエステルなどが挙げられ、好ましいものとしては、グリシジル-2,2-ジメチルオクタノエート、グリシジルベンゾエート、グリシジルアクリレート、グリシジルメタクリレートなどが例示できる。
アリルオキシラン化合物としては、具体的には、1,2-エポキシスチレン、アルキル-1,2-エポキシスチレンなどが例示できる。
アルキルオキシラン化合物としては、具体的には、1,2-エポキシブタン、1,2-エポキシペンタン、1,2-エポキシヘキサン、1,2-エポキシヘプタン、1,2-エポキシオクタン、1,2-エポキシノナン、1,2-エポキシデカン、1,2-エポキシウンデカン、1,2-エポキシドデカン、1,2-エポキシトリデカン、1,2-エポキシテトラデカン、1,2-エポキシペンタデカン、1,2-エポキシヘキサデカン、1,2-エポキシヘプタデカン、1,1,2-エポキシオクタデカン、2-エポキシノナデカン、1,2-エポキシイコサンなどが例示できる。
脂環式エポキシ化合物としては、具体的には、1,2-エポキシシクロヘキサン、1,2-エポキシシクロペンタン、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、ビス(3,4-エポキシシクロヘキシルメチル)アジペート、エキソ-2,3-エポキシノルボルナン、ビス(3,4-エポキシ-6-メチルシクロヘキシルメチル)アジペート、2-(7-オキサビシクロ[4.1.0]ヘプト-3-イル)-スピロ(1,3-ジオキサン-5,3’-[7]オキサビシクロ[4.1.0]ヘプタン、4-(1’-メチルエポキシエチル)-1,2-エポキシ-2-メチルシクロヘキサン、4-エポキシエチル-1,2-エポキシシクロヘキサンなどが例示できる。
エポキシ化脂肪酸モノエステルとしては、具体的には、エポキシ化された炭素数12~20の脂肪酸と炭素数1~8のアルコールまたはフェノール、アルキルフェノールとのエステルなどが例示できる。特にエポキシステアリン酸のブチル、ヘキシル、ベンジル、シクロヘキシル、メトキシエチル、オクチル、フェニルおよびブチルフェニルエステルが好ましく用いられる。
エポキシ化植物油としては、具体的には、大豆油、アマニ油、綿実油等の植物油のエポキシ化合物などが例示できる。
これらのエポキシ化合物の中でも好ましいものは、フェニルグリシジルエーテル型エポキシ化合物、アルキルグリシジルエーテル型エポキシ化合物、グリシジルエステル型エポキシ化合物、および脂環式エポキシ化合物である。
本実施形態に係る冷凍機油および冷凍機用作動流体が上記エポキシ化合物を含有する場合、エポキシ化合物の含有量は特に制限されないが、冷凍機油全量基準で、0.01~5.0質量%であることが好ましく、0.1~3.0質量%であることがより好ましい。なお、上記エポキシ化合物は、1種を単独で用いてもよく、2種以上を併用してもよい。
なお、多価アルコール脂肪酸エステル(A)を含む冷凍機油の40℃における動粘度は、好ましくは20~80mm/s、より好ましくは25~75mm/s、最も好ましくは30~70mm/sとすることができる。また、100℃における動粘度は好ましくは2~20mm/s、より好ましくは3~10mm/sとすることができる。動粘度が前記下限値以上の場合には冷凍機油として必要な粘度を確保しやすく、他方、前記上限値以下の場合には冷媒組成物としてジフルオロメタンが含まれている場合の当該ジフルオロメタンとの相溶性を十分にすることができる。
また、多価アルコール脂肪酸エステル(A)を含む冷凍機油の体積抵抗率は特に限定されないが、好ましくは1.0×1012Ω・cm以上、より好ましくは1.0×1013Ω・cm以上、最も好ましくは1.0×1014Ω・cm以上とすることができる。特に、密閉型の冷凍機用に用いる場合には高い電気絶縁性が必要となる傾向にある。なお、体積抵抗率とは、JIS C 2101「電気絶縁油試験方法」に準拠して測定した25℃での値を意味する。
また、多価アルコール脂肪酸エステル(A)を含む冷凍機油の水分含有量は特に限定されないが、冷凍機油全量基準で好ましくは200ppm以下、より好ましくは100ppm以下、最も好ましくは50ppm以下とすることができる。特に密閉型の冷凍機用に用いる場合には、冷凍機油の熱・化学的安定性や電気絶縁性への影響の観点から、水分含有量が少ないことが求められる。
また、多価アルコール脂肪酸エステル(A)を含む冷凍機油の酸価は特に限定されないが、冷凍機または配管に用いられている金属への腐食を防止するため、好ましくは0.1mgKOH/g以下、より好ましくは0.05mgKOH/g以下とすることができる。なお、本開示において、酸価とは、JIS K 2501「石油製品および潤滑油一中和価試験方法」に準拠して測定した酸価を意味する。
また、多価アルコール脂肪酸エステル(A)を含む冷凍機油の灰分は特に限定されないが、冷凍機油の熱・化学的安定性を高めスラッジ等の発生を抑制するため、好ましくは100ppm以下、より好ましくは50ppm以下とすることができる。なお、灰分とは、JIS K 2272「原油および石油製品の灰分並びに硫酸灰分試験方法」に準拠して測定した灰分の値を意味する。
(コンプレックスエステル油)
コンプレックスエステル油とは、脂肪酸および二塩基酸と、一価アルコールおよびポリオールとのエステルである。脂肪酸、二塩基酸、一価アルコール、ポリオールとしては、上述と同様のものを用いることができる。
脂肪酸としては、上記ポリオールエステルの脂肪酸で示したものが挙げられる。
二塩基酸としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、フタル酸、イソフタル酸、テレフタル酸等が挙げられる。
ポリオールとしては、上記ポリオールエステルの多価アルコールとして示したものが挙げられる。コンプレックスエステルは、これらの脂肪酸、二塩基酸、ポリオールのエステルであり、各々単一成分でもよいし、複数成分からなるエステルでもよい。
(ポリオール炭酸エステル油)
ポリオール炭酸エステル油とは、炭酸とポリオールとのエステルである。
ポリオールとしては、上述と同様のジオールやポリオールが挙げられる。
また、ポリオール炭酸エステル油としては、環状アルキレンカーボネートの開環重合体であってもよい。
(2-1-2)エーテル系冷凍機油
エーテル系冷凍機油としては、ポリビニルエーテル油、ポリオキシアルキレン油等が挙げられる。
(ポリビニルエーテル油)
ポリビニルエーテル油としては、ビニルエーテルモノマーの重合体、ビニルエーテルモノマーとオレフィン性二重結合を有する炭化水素モノマーとの共重合体、オレフィン性二重結合とポリオキシアルキレン鎖を有するモノマーとビニルエーテルモノマーとの共重合体等が挙げられる。
ポリビニルエーテル油の炭素/酸素モル比は、2以上7.5以下であることが好ましく、2.5以上5.8以下であることがより好ましい。炭素/酸素モル比が当該範囲より低いと吸湿性が高くなり、当該範囲より高いと相溶性が低下する。また、ポリビニルエーテルの重量平均分子量は、好ましくは200以上3000以下、より好ましくは500以上1500以下である。
ポリビニルエーテル油は、流動点が-30℃以下であることが好ましい。ポリビニルエーテル油は、20℃における表面張力が0.02N/m以上0.04N/m以下であることが好ましい。ポリビニルエーテル油は、15℃における密度が0.8g/cm以上1.8g/cm以下であることが好ましい。ポリビニルエーテル油は、温度30℃、相対湿度90%における飽和水分量が2000ppm以上であることが好ましい。
冷凍機油においては、ポリビニルエーテルが主成分として含まれていてもよい。冷媒にHFO-1234yfが含まれている場合には、冷凍機油の主成分であるポリビニルエーテルが、当該HFO-1234yfに対して相溶性を有しており、冷凍機油の40℃における動粘度が400mm/s以下であると、HFO-1234yfが、冷凍機油にある程度溶解する。また、冷凍機油の流動点が-30℃以下である場合には、冷媒回路において冷媒組成物や冷凍機油が低温となる部位においても冷凍機油の流動性を確保しやすい。また、冷凍機油の20℃における表面張力が0.04N/m以下である場合には、圧縮機から吐出された冷凍機油が冷媒組成物によって押し流されにくくなるような大きな油滴になりにくい。このため、圧縮機から吐出された冷凍機油は、HFO-1234yfに溶解してHFO-1234yfと共に圧縮機に戻されやすい。
また、冷凍機油の40℃における動粘度が30mm/s以上である場合には、動粘度が低すぎて油膜強度が不十分になることが抑制され、潤滑性能を確保しやすい。また、冷凍機油の20℃における表面張力が0.02N/m以上である場合には、圧縮機内のガス冷媒中で小さな油滴になりにくく、圧縮機から多量に冷凍機油が吐出されることを抑制できる。このため、圧縮機における冷凍機油の貯留量を充分に確保しやすい。
また、冷凍機油の飽和水分量が、温度30℃/相対湿度90%において2000ppm以上である場合には、冷凍機油の吸湿性を比較的高いものとすることができる。これにより、冷媒にHFO-1234yfが含まれている場合には、HFO-1234yf中の水分を冷凍機油によって有る程度捕捉することが可能となる。HFO-1234yfは、含有される水分の影響により、変質/劣化し易い分子構造を有する。よって、冷凍機油による吸湿効果により、このような劣化を抑制することができる。
さらに、冷媒回路を流れる冷媒と接触可能となるシール部や摺動部に所定の樹脂製機能部品が配置されている場合であって、当該樹脂製機能部品が、ポリテトラフルオロエチレン、ポリフェニレンサルファイド、フェノール樹脂、ポリアミド樹脂、クロロブレンゴム、シリコンゴム、水素化ニトリルゴム、フッ素ゴム、ヒドリンゴムのいずれかで構成されている場合には、冷凍機油のアニリン点は、当該樹脂製機能部品との適合性を考慮して、その数値範囲を設定することが好ましい。このようにアニリン点を設定することで、例えば樹脂製機能部品を構成する軸受と冷凍機油との適合性が向上する。具体的に、アニリン点が小さ過ぎると、冷凍機油が軸受等に浸透し易くなり、軸受等が膨潤し易くなる。一方、アニリン点が大き過ぎると、冷凍機油が軸受等と浸透し難くなり、軸受等が収縮し易くなる。そこで、冷凍機油のアニリン点を所定の数値範囲とすることで、軸受等の膨潤/収縮変形を防止できる。ここで、例えば各軸受等が膨潤/縮小変形してしまうと、摺動部での隙間(ギャップ)を所望とする長さに維持することができない。その結果、摺動抵抗の増大や摺動部の剛性の低下を招くおそれがある。しかしながら、上記のように冷凍機油のアニリン点を所定の数値範囲とすることで、軸受等の膨潤/縮小変形が抑制されるので、このような不具合を回避できる。
ビニルエーテルモノマーは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。オレフィン性二重結合を有する炭化水素モノマーとしては、エチレン、プロピレン、各種ブテン、各種ペンテン、各種ヘキセン、各種ヘプテン、各種オクテン、ジイソブチレン、トリイソブチレン、スチレン、α-メチルスチレン、各種アルキル置換スチレン等が挙げられる。オレフィン性二重結合を有する炭化水素モノマーは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
ポリビニルエーテル共重合体は、ブロックまたはランダム共重合体のいずれであってもよい。ポリビニルエーテル油は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
好ましく用いられるポリビニルエーテル油は、下記一般式(1)で表される構造単位を有する。
Figure 2023179585000163
(式中、R、RおよびRは同一でも異なっていてもよく、それぞれ水素原子または炭素数1~8の炭化水素基を示し、Rは炭素数1~10の2価の炭化水素基または炭素数2~20の2価のエーテル結合酸素含有炭化水素基を示し、Rは炭素数1~20の炭化水素基を示し、mは上記ポリビニルエーテルについてのmの平均値が0~10となるような数を示し、R~Rは構造単位ごとに同一であっても異なっていてもよく、一の構造単位においてmが2以上である場合には、複数のROは同一でも異なっていてもよい。)
上記一般式(1)におけるR、RおよびRは、少なくとも1つが水素原子、特には全てが水素原子であることが好ましい。一般式(1)におけるmは0以上10以下、特には0以上5以下が、さらには0であることが好ましい。一般式(1)におけるRは炭素数1~20の炭化水素基を示すが、この炭化水素基としては、具体的にはメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、各種ペンチル基、各種ヘキシル基、各種ヘプチル基、各種オクチル基のアルキル基、シクロペンチル基、シクロヘキシル基、各種メチルシクロヘキシル基、各種エチルシクロヘキシル基、各種ジメチルシクロヘキシル基などのシクロアルキル基、フェニル基、各種メチルフェニル基、各種エチルフェニル基、各種ジメチルフェニル基のアリール基、ベンジル基、各種フェニルエチル基、各種メチルベンジル基のアリールアルキル基を示す。なお、アルキル基、シクロアルキル基、フェニル基、アリール基、アリールアルキル基の中でも、アルキル基、特には炭素数1以上5以下のアルキル基が好ましい。なお、上記ポリビニルエーテル油としては、Rの炭素数が1又は2のアルキル基であるポリビニルエーテル油:Rの炭素数が3又は4のアルキル基であるポリビニルエーテル油の比率が、40%:60%~100%:0%で含まれていることが好ましい。
本実施形態におけるポリビニルエーテル油は、一般式(1)で表される構造単位が同一である単独重合体であっても、2種以上の構造単位で構成される共重合体であってもよい。共重合体はブロック共重合体またはランダム共重合体のいずれであってもよい。
本実施形態に係るポリビニルエーテル油は、上記一般式(1)で表される構造単位のみで構成されるものであってもよいが、下記一般式(2)で表される構造単位をさらに含む共重合体であってもよい。この場合、共重合体はブロック共重合体またはランダム共重合体のいずれであってもよい。
Figure 2023179585000164
(式中、R~Rは互いに同一でも異なっていてもよく、それぞれ水素原子または炭素数1~20の炭化水素基を示す。)
ビニルエーテル系モノマーとしては、下記一般式(3)の化合物が挙げられる。
Figure 2023179585000165
(式中、R、R、R、R、Rおよびmは、それぞれ一般式(1)中のR、R、R、R、Rおよびmと同一の定義内容を示す。)
上記ポリビニルエーテル系化合物に対応する各種のものがあるが、例えば、ビニルメチルエーテル;ビニルエチルエーテル;ビニル-n-プロピルエーテル;ビニル-イソプロピルエーテル;ビニル-n-ブチルエーテル;ビニル-イソブチルエーテル;ビニル-sec-ブチルエーテル;ビニル-tert-ブチルエーテル;ビニル-n-ペンチルエーテル;ビニル-n-ヘキシルエーテル;ビニル-2-メトキシエチルエーテル;ビニル-2-エトキシエチルエーテル;ビニル-2-メトキシ-1-メチルエチルエーテル;ビニル-2-メトキシ-プロピルエーテル;ビニル-3,6-ジオキサヘプチルエーテル;ビニル-3,6,9-トリオキサデシルエーテル;ビニル-1,4-ジメチル-3,6-ジオキサヘプチルエーテル;ビニル-1,4,7-トリメチル-3,6,9-トリオキサデシルエーテル;ビニル-2,6-ジオキサ-4-ヘプチルエーテル;ビニル-2,6,9-トリオキサ-4-デシルエーテル;1-メトキシプロペン;1-エトキシプロペン;1-n-プロポキシプロペン;1-イソプロポキシプロペン;1-n-ブトキシプロペン;1-イソブトキシプロペン;1-sec-ブトキシプロペン;1-tert-ブトキシプロペン;2-メトキシプロペン;2-エトキシプロペン;2-n-プロポキシプロペン;2-イソプロポキシプロペン;2-n-ブトキシプロペン;2-イソブトキシプロペン;2-sec-ブトキシプロペン;2-tert-ブトキシプロペン;1-メトキシ-1-ブテン;1-エトキシ-1-ブテン;1-n-プロポキシ-1-ブテン;1-イソプロポキシ-1-ブテン;1-n-ブトキシ-1-ブテン;1-イソブトキシ-1-ブテン;1-sec-ブトキシ-1-ブテン;1-tert-ブトキシ-1-ブテン;2-メトキシ-1-ブテン;2-エトキシ-1-ブテン;2-n-プロポキシ-1-ブテン;2-イソプロポキシ-1-ブテン;2-n-ブトキシ-1-ブテン;2-イソブトキシ-1-ブテン;2-sec-ブトキシ-1-ブテン;2-tert-ブトキシ-1-ブテン;2-メトキシ-2-ブテン;2-エトキシ-2-ブテン;2-n-プロポキシ-2-ブテン;2-イソプロポキシ-2-ブテン;2-n-ブトキシ-2-ブテン;2-イソブトキシ-2-ブテン;2-sec-ブトキシ-2-ブテン;2-tert-ブトキシ-2-ブテン等が挙げられる。これらのビニルエーテル系モノマーは公知の方法により製造することができる。
上記一般式(1)で表される構成単位を有するポリビニルエーテル系化合物は、その末端を本開示例に示す方法及び公知の方法により、所望の構造に変換することができる。変換する基としては、飽和の炭化水素,エーテル、アルコール、ケトン、アミド、ニトリルなどを挙げることができる。
ポリビニルエーテル系化合物としては、次の末端構造を有するものが好ましい。
Figure 2023179585000166
(式中、R11、R21およびR31は互いに同一でも異なっていてもよく、それぞれ水素原子または炭素数1~8の炭化水素基を示し、R41は炭素数1~10の二価の炭化水素基または炭素数2~20の二価のエーテル結合酸素含有炭化水素基を示し、R51は炭素数1~20の炭化水素基を示し、mはポリビニルエーテルについてのmの平均値が0~10となるような数を示し、mが2以上の場合には、複数のR41Oは同一でも異なっていてもよい。)
Figure 2023179585000167
(式中、R61、R71、R81およびR91は互いに同一でも異なっていてもよく、それぞれ水素原子または炭素数1~20の炭化水素基を示す。)
Figure 2023179585000168

(式中、R12、R22およびR32は互いに同一でも異なっていてもよく、それぞれ水素原子または炭素数1~8の炭化水素基を示し、R42は炭素数1~10の二価の炭化水素基または炭素数2~20の二価のエーテル結合酸素含有炭化水素基を示し、R52は炭素数1~20の炭化水素基を示し、mはポリビニルエーテルについてのmの平均値が0~10となるような数を示し、mが2以上の場合には、複数のR42Oは同一でも異なっていてもよい。)
Figure 2023179585000169

(式中、R62、R72、R82およびR92は互いに同一でも異なっていてもよく、それぞれ水素原子または炭素数1~20の炭化水素基を示す。)
Figure 2023179585000170

(式中、R13、R23およびR33は互いに同一でも異なっていてもよく、それぞれ水素原子または炭素数1~8の炭化水素基を示す。)
本実施形態におけるポリビニルエーテル油は、上記したモノマーをラジカル重合、カチオン重合、放射線重合などによって製造することができる。重合反応終了後、必要に応じて通常の分離・精製方法を施すことにより、目的とする一般式(1)で表される構造単位を有するポリビニルエーテル系化合物が得られる。
(ポリオキシアルキレン油)
ポリオキシアルキレン油としては、炭素数2~4のアルキレンオキシド(エチレンオキシド、プロピレンオキシド等)を、水や水酸基含有化合物を開始剤として重合させる方法等により得られたポリオキシアルキレン化合物が挙げられる。また、ポリオキシアルキレン化合物の水酸基をエーテル化またはエステル化したものであってもよい。ポリオキシアルキレン油中のオキシアルキレン単位は、1分子中において同一であってもよく、2種以上のオキシアルキレン単位が含まれていてもよい。1分子中に少なくともオキシプロピレン単位が含まれることが好ましい。
具体的なポリオキシアルキレン油としては、例えば次の一般式(9)
101-[(OR102-OR103 …(9)
(式中、R101は水素原子、炭素数1~10のアルキル基、炭素数2~10のアシル基又は結合部2~6個を有する炭素数1~10の脂肪族炭化水素基、R102は炭素数2~4のアルキレン基、R103は水素原子、炭素数1~10のアルキル基又は炭素数2~10のアシル基、lは1~6の整数、kはk×lの平均値が6~80となる数を示す。)で表される化合物が挙げられる。
上記一般式(9)において、R101、R103におけるアルキル基は直鎖状、分岐鎖状、環状のいずれであってもよい。該アルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、各種ブチル基、各種ペンチル基、各種ヘキシル基、各種ヘプチル基、各種オクチル基、各種ノニル基、各種デシル基、シクロペンチル基、シクロヘキシル基などを挙げることができる。このアルキル基の炭素数が10を超えると冷媒との相溶性が低下し、相分離を生じる場合がある。好ましいアルキル基の炭素数は1~6である。
また、R101、R103における該アシル基のアルキル基部分は直鎖状、分岐鎖状、環状のいずれであってもよい。該アシル基のアルキル基部分の具体例としては、上記アルキル基の具体例として挙げた炭素数1~9の種々の基を同様に挙げることができる。該アシル基の炭素数が10を超えると冷媒との相溶性が低下し、相分離を生じる場合がある。好ましいアシル基の炭素数は2~6である。
101及びR103が、いずれもアルキル基又はアシル基である場合には、R101とR103は同一であってもよいし、互いに異なっていてもよい。
さらにlが2以上の場合には、1分子中の複数のR103は同一であってもよいし、異なっていてもよい。
101が結合部位2~6個を有する炭素数1~10の脂肪族炭化水素基である場合、この脂肪族炭化水素基は鎖状のものであってもよいし、環状のものであってもよい。結合部位2個を有する脂肪族炭化水素基としては、例えば、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ヘプチレン基、オクチレン基、ノニレン基、デシレン基、シクロペンチレン基、シクロヘキシレン基などが挙げられる。また、結合部位3~6個を有する脂肪族炭化水素基としては、例えば、トリメチロールプロパン、グリセリン、ペンタエリスリトール、ソルビトール;1,2,3-トリヒドロキシシクロヘキサン;1,3,5-トリヒドロキシシクロヘキサンなどの多価アルコールから水酸基を除いた残基を挙げることができる。
この脂肪族炭化水素基の炭素数が10を超えると冷媒との相溶性が低下し、相分離が生じる場合がある。好ましい炭素数は2~6である。
上記一般式(9)中のR102は炭素数2~4のアルキレン基であり、繰り返し単位のオキシアルキレン基としては、オキシエチレン基、オキシプロピレン基、オキシブチレン基が挙げられる。1分子中のオキシアルキレン基は同一であってもよいし、2種以上のオキシアルキレン基が含まれていてもよいが、1分子中に少なくともオキシプロピレン単位を含むものが好ましく、特にオキシアルキレン単位中に50モル%以上のオキシプロピレン単位を含むものが好適である。
上記一般式(9)中のlは1~6の整数で、R101の結合部位の数に応じて定めることができる。例えばR101がアルキル基やアシル基の場合、lは1であり、R101が結合部位2,3,4,5及び6個を有する脂肪族炭化水素基である場合、lはそれぞれ2,3,4,5及び6となる。lは1または2であることが好ましい。また、kはk×lの平均値が6~80となる数であることが好ましい。
ポリオキシアルキレン油の構造は、下記一般式(10)で表されるポリオキシプロピレンジオールジメチルエーテル、並びに下記一般式(11)で表されるポリ(オキシエチレン/オキシプロピレン)ジオールジメチルエーテルが経済性および前述の効果の点で好適であり、また、下記一般式(12)で表されるポリオキシプロピレンジオールモノブチルエーテル、さらには下記一般式(13)で表されるポリオキシプロピレンジオールモノメチルエーテル、下記一般式(14)で表されるポリ(オキシエチレン/オキシプロピレン)ジオールモノメチルエーテル、下記一般式(15)で表されるポリ(オキシエチレン/オキシプロピレン)ジオールモノブチルエーテル、下記一般式(16)で表されるポリオキシプロピレンジオールジアセテートが、経済性等の点で好適である。
CHO-(CO)-CH …(10)
(式中、hは6~80の数を表す。)
CHO-(CO)-(CO)-CH …(11)
(式中、iおよびjはそれぞれ1以上であり且つiとjとの合計が6~80となる数を表す。)
O-(CO)-H …(12)
(式中、hは6~80の数を示す。)
CHO-(CO)-H …(13)
(式中、hは6~80の数を表す。)
CHO-(CO)-(CO)-H …(14)
(式中、iおよびjはそれぞれ1以上であり且つiとjとの合計が6~80となる数を表す。)
O-(CO)-(CO)-H …(15)
(式中、iおよびjはそれぞれ1以上であり且つiとjとの合計が6~80となる数を表す。)
CHCOO-(CO)-COCH …(16)
(式中、hは6~80の数を表す。)
このポリオキシアルキレン油は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(2-2)炭化水素系冷凍機油
炭化水素系冷凍機油としては、例えば、アルキルベンゼンを用いることができる。
アルキルベンゼンとしては、フッ化水素などの触媒を用いてプロピレンの重合物とベンゼンを原料として合成される分岐アルキルベンゼン、また同触媒を用いてノルマルパラフィンとベンゼンを原料として合成される直鎖アルキルベンゼンが使用できる。アルキル基の炭素数は、潤滑油基油として好適な粘度とする観点から、好ましくは1~30、より好ましくは4~20である。また、アルキルベンゼン1分子が有するアルキル基の数は、アルキル基の炭素数によるが粘度を設定範囲内とするために、好ましくは1~4、より好ましくは1~3である。
なお、炭化水素系冷凍機油は、冷凍サイクル系内を、冷媒と共に循環することが好ましい。冷凍機油は冷媒と溶解することが最も好ましい形態だが、冷凍サイクル系内を冷媒と共に循環できる冷凍機油であれば、例えば、溶解性が低い冷凍機油(例えば、特許第2803451号公報に記載されている冷凍機油)であっても用いることができる。冷凍機油が冷凍サイクル系内を循環するためには、冷凍機油の動粘度が小さいことが求められる。炭化水素系冷凍機油の動粘度としては、40℃において1mm/s以上50mm/s以下であることが好ましく、1mm/s以上25mm/s以下であることがより好ましい。
これらの冷凍機油は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
冷凍機用作動流体における、炭化水素系冷凍機油の含有量は、例えば、冷媒組成物100質量部に対して、10質量部以上100質量部以下であってよく、20質量部以上50質量部以下であることがより好ましい。
(2-3)添加剤
冷凍機油には、1種または2種以上の添加剤が含まれていてもよい。
添加剤としては、酸捕捉剤、極圧剤、酸化防止剤、消泡剤、油性剤、銅不活性化剤等の金属不活化剤、、摩耗防止剤、および、相溶化剤等が挙げられる。
酸捕捉剤には、フェニルグリシジルエーテル、アルキルグリシジルエーテル、アルキレングリコールグリシジルエーテル、シクロヘキセンオキシド、α-オレフィンオキシド、エポキシ化大豆油などのエポキシ化合物、カルボジイミド等を用いることができる。なお、これらのうち、相溶性の観点から、フェニルグリシジルエーテル、アルキルグリシジルエーテル、アルキレングリコールグリシジルエーテル、シクロヘキセンオキシド、α-オレフィンオキシドが好ましい。アルキルグリシジルエーテルのアルキル基、及びアルキレングリコールグリシジルエーテルのアルキレン基は、分岐を有していてもよい。これらの炭素数は、3以上30以下であればよく、4以上24以下であればより好ましく、6以上16以下であればさらに好ましい。また、α-オレフィンオキシドは、全炭素数が4以上50以下であればよく、4以上24以下であればより好ましく、6以上16以下であればさらに好ましい。酸捕捉剤は、1種だけを用いてもよく、複数種類を併用することも可能である。
極圧剤には、例えば、リン酸エステル類を含むものを用いることができる。
リン酸エステル類としては、リン酸エステル、亜リン酸エステル、酸性リン酸エステル、及び酸性亜リン酸エステル等を用いることができ、リン酸エステル、亜リン酸エステル、酸性リン酸エステル、及び酸性亜リン酸エステルのアミン塩を含むものを用いることもできる。
リン酸エステルには、トリアリールホスフェート、トリアルキルホスフェート、トリアルキルアリールホスフェート、トリアリールアルキルホスフェート、トリアルケニルホスフェート等がある。さらに、リン酸エステルを具体的に列挙すると、トリフェニルホスフェート、トリクレジルホスフェート、ベンジルジフェニルホスフェート、エチルジフェニルホスフェート、トリブチルホスフェート、エチルジブチルホスフェート、クレジルジフェニルホスフェート、ジクレジルフェニルホスフェート、エチルフェニルジフェニルホスフェート、ジエチルフェニルフェニルホスフェート、プロピルフェニルジフェニルホスフェート、ジプロピルフェニルフェニルホスフェート、トリエチルフェニルホスフェート、トリプロピルフェニルホスフェート、ブチルフェニルジフェニルホスフェート、ジブチルフェニルフェニルホスフェート、トリブチルフェニルホスフェート、トリヘキシルホスフェート、トリ(2-エチルヘキシル)ホスフェート、トリデシルホスフェート、トリラウリルホスフェート、トリミリスチルホスフェート、トリパルミチルホスフェート、トリステアリルホスフェート、トリオレイルホスフェート等がある。
また、亜リン酸エステルの具体的としては、トリエチルホスファイト、トリブチルホスファイト、トリフェニルホスファイト、トリクレジルホスファイト、トリ(ノニルフェニル)ホスファイト、トリ(2-エチルヘキシル)ホスファイト、トリデシルホスファイト、トリラウリルホスファイト、トリイソオクチルホスファイト、ジフェニルイソデシルホスファイト、トリステアリルホスファイト、トリオレイルホスファイト等がある。
また、酸性リン酸エステルの具体的としては、2-エチルヘキシルアシッドホスフェート、エチルアシッドホスフェート、ブチルアシッドホスフェート、オレイルアシッドホスフェート、テトラコシルアシッドホスフェート、イソデシルアシッドホスフェート、ラウリルアシッドホスフェート、トリデシルアシッドホスフェート、ステアリルアシッドホスフェート、イソステアリルアシッドホスフェート等がある。
また、酸性亜リン酸エステルの具体的としては、ジブチルハイドロゲンホスファイト、ジラウリルハイドロゲンホスファイト、ジオレイルハイドゲンホスファイト、ジステアリルハイドロゲンホスファイト、ジフェニルハイドロゲンホスファイト等がある。以上のリン酸エステル類の中で、オレイルアシッドホスフェート、ステアリルアシッドホスフェートが好適である。
また、リン酸エステル、亜リン酸エステル、酸性リン酸エステル又は酸性亜リン酸エステルのアミン塩に用いられるアミンのうちモノ置換アミンの具体例としては、ブチルアミン、ペンチルアミン、ヘキシルアミン、シクロヘキシルアミン、オクチルアミン、ラウリルアミン、ステアリルアミン、オレイルアミン、ベンジルアミン等がある。また、ジ置換アミンの具体例としては、ジブチルアミン、ジペンチルアミン、ジヘキシルアミン、ジシクロヘキシルアミン、ジオクチルアミン、ジラウリルアミン、ジステアリルアミン、ジオレイルアミン、ジベンジルアミン、ステアリル・モノエタノールアミン、デシル・モノエタノールアミン、ヘキシル・モノプロパノールアミン、ベンジル・モノエタノールアミン、フェニル・モノエタノールアミン、トリル・モノプロパノール等がある。また、トリ置換アミンの具体例としては、トリブチルアミン、トリペンチルアミン、トリヘキシルアミン、トリシクロヘキシルアミン、トリオクチルアミン、トリラウリルアミン、トリステアリルアミン、トリオレイルアミン、トリベンジルアミン、ジオレイル・モノエタノールアミン、ジラウリル・モノプロパノールアミン、ジオクチル・モノエタノールアミン、ジヘキシル・モノプロパノールアミン、ジブチル・モノプロパノールアミン、オレイル・ジエタノールアミン、ステアリル・ジプロパノールアミン、ラウリル・ジエタノールアミン、オクチル・ジプロパノールアミン、ブチル・ジエタノールアミン、ベンジル・ジエタノールアミン、フェニル・ジエタノールアミン、トリル・ジプロパノールアミン、キシリル・ジエタノールアミン、トリエタノールアミン、トリプロパノールアミン等がある。
また、上記以外の極圧剤としては、例えば、モノスルフィド類、ポリスルフィド類、スルホキシド類、スルホン類、チオスルフィネート類、硫化油脂、チオカーボネート類、チオフェン類、チアゾール類、メタンスルホン酸エステル類等の有機硫黄化合物系の極圧剤、チオリン酸トリエステル類等のチオリン酸エステル系の極圧剤、高級脂肪酸、ヒドロキシアリール脂肪酸類、多価アルコールエステル類、アクリル酸エステル類等のエステル系の極圧剤、塩素化パラフィン等の塩素化炭化水素類、塩素化カルボン酸誘導体等の有機塩素系の極圧剤、フッ素化脂肪族カルボン酸類、フッ素化エチレン樹脂、フッ素化アルキルポリシロキサン類、フッ素化黒鉛等の有機フッ素化系の極圧剤、高級アルコール等のアルコール系の極圧剤、ナフテン酸塩類(ナフテン酸鉛等)、脂肪酸塩類(脂肪酸鉛等)、チオリン酸塩類(ジアルキルジチオリン酸亜鉛等)、チオカルバミン酸塩類、有機モリブデン化合物、有機スズ化合物、有機ゲルマニウム化合物、ホウ酸エステル等の金属化合物系の極圧剤が挙げられる。
酸化防止剤には、例えば、フェノール系の酸化防止剤やアミン系の酸化防止剤を用いることができる。フェノール系の酸化防止剤には、2,6-ジ-tert-ブチル-4-メチルフェノール(DBPC)、2,6-ジ-tert-ブチル-4-エチルフェノール、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)、2,4-ジメチル-6-tert-ブチルフェノール、2,6-ジ-tert-ブチルフェノール、ジ-tert-ブチル-p-クレゾール、ビスフェノールA等がある。また、アミン系の酸化防止剤には、N,N’-ジイソプロピル-p-フェニレンジアミン、N,N’-ジ-sec-ブチル-p-フェニレンジアミン、フェニル-α-ナフチルアミン、N.N’-ジ-フェニル-p-フェニレンジアミン、N,N-ジ(2-ナフチル)-p-フェニレンジアミン等がある。なお、酸化防止剤には、酸素を捕捉する酸素捕捉剤も用いることができる。
消泡剤としては、例えば、ケイ素化合物を用いることができる。
油性剤としては、例えば、高級アルコール類、脂肪酸等を用いることができる。
銅不活性化剤等の金属不活化剤としては、ベンゾトリアゾールやその誘導体等を用いることができる。
摩耗防止剤としては、ジチオリン酸亜鉛等を用いることができる。
相溶化剤としては、特に限定されず、一般に用いられる相溶化剤の中から適宜選択することができ、一種を単独で用いてもよいし、二種以上を用いてもよい。相溶化剤としては、例えば、ポリオキシアルキレングリコールエーテル、アミド、ニトリル、ケトン、クロロカーボン、エステル、ラクトン、アリールエーテル、フルオロエーテルおよび1,1,1-トリフルオロアルカン等が挙げられる。相溶化剤としては、ポリオキシアルキレングリコールエーテルが特に好ましい。
なお、冷凍機油には、必要に応じて、耐荷重添加剤、塩素捕捉剤、清浄分散剤、粘度指数向上剤、耐熱性向上剤、安定剤、腐食防止剤、耐熱性向上剤、流動点降下剤、および、防錆剤等を添加することも可能である。
上記各添加剤の配合量は、冷凍機油に含まれる割合が0.01質量%以上5質量%以下であってよく、0.05質量%以上3質量%以下であることが好ましい。なお、冷媒組成物と冷凍機油とを合わせた冷凍機用作動流体中の添加剤の配合割合が、5質量%以下であることが好ましく、3質量%以下であることがより好ましい。
なお、冷凍機油は、塩素濃度が50ppm以下となっていることが好ましく、硫黄濃度が50ppm以下となっていることが好ましい。
(3)自動車用冷凍サイクル装置の第1実施形態
以下、上記の冷媒1A、冷媒1B、冷媒1C、冷媒1D、冷媒1E、冷媒2A、冷媒2B、冷媒2C、冷媒2D、冷媒2E、冷媒3A、冷媒3Bのいずれか1つ及び冷凍機油を用いた自動車用空調装置について説明する。自動車用空調装置は、自動車用冷凍サイクル装置である。
(3-1)自動車用空調装置1の構成
図3は、本開示の第1実施形態に係る自動車用空調装置1の概略構成図である。図3において、自動車用空調装置1は、蒸気圧縮式の自動車用冷凍サイクル装置である。「自動車用の冷凍サイクル装置」とは、ガソリン車、ハイブリッド自動車、電気自動車、水素自動車などの自動車で用いられる冷凍サイクル装置の一種である。
自動車用空調装置1は、冷媒回路10、空調ユニット30、および、制御手段である制御装置60を備えている。
冷媒回路10は、車室内への送風空気の温度を調整する蒸気圧縮式の冷媒回路である。
空調ユニット30は、冷媒回路10によって温度調整された送風空気を車室内へ吹き出す。制御装置60は、自動車用空調装置1の各種構成機器の作動を制御する。
冷媒回路10は、送風空気を冷却して車室内を冷房する冷房モード(冷房運転)の冷媒回路と、送風空気を加熱して車室を暖房する暖房モード(暖房運転)の冷媒回路とを切替えることができる。
(3-2)冷媒回路10
図4は、暖房モードにおける冷媒の流通経路を示した自動車用空調装置1の概略構成図である。図4において、暖房モードにおける冷媒の流通部分を実線で示し、冷媒の流通が中止された部分を破線で示している。
図5は、冷房モードにおける冷媒の流通経路を示した自動車用空調装置1の概略構成図である。冷房モードにおける冷媒の流通部分を実線で示し、冷媒の流通が中止された部分を破線で示している。
冷媒回路10は、圧縮機80、第1熱交換器85、外気用熱交換器82、第2熱交換器86、アキュムレータ80a、暖房用制御弁83、冷房用制御弁87、電磁弁23、および逆止弁24等を備えている。
圧縮機80は、吸入した冷媒を圧縮して吐出する。第1熱交換器85は、送風空気を加熱する熱交換器である。第2熱交換器86は、送風空気を冷却する熱交換器である。暖房用制御弁83および冷房用制御弁87は、冷媒を減圧膨張させる減圧装置である。電磁弁23は、冷房モードの冷媒回路と、暖房モードの冷媒回路とを切り替える冷媒回路切替手段である。
(3-2-1)圧縮機80
圧縮機80では、圧縮機構がモータによって駆動される。モータとして、例えば、インバータから出力される交流電圧によって、その回転数が制御される交流モータが採用される。
インバータは、制御装置60から出力される制御信号に応じた周波数の交流電圧を出力する。この回転数制御出力によって、圧縮機80の冷媒吐出能力が変更される。圧縮機80としては、斜板式圧縮機、スクロール圧縮機、マルチベーン圧縮機、ロータリー圧縮機等の各種圧縮機を採用することができる。
(3-2-2)外気用熱交換器82
外気用熱交換器82は、内部を流通する冷媒と室外ファン90から送風された車室外の空気とを熱交換させる。外気用熱交換器82は、暖房モード時には蒸発器として機能する。また、外気用熱交換器82は、冷房モード時には放熱器として機能する。室外ファン90は、制御装置60から出力される制御電圧によって回転数が制御される。
(3-2-3)暖房用制御弁83
第1熱交換器85の冷媒出口と、外気用熱交換器82の冷媒入口との間には、暖房モード時に冷媒を減圧させる暖房用制御弁83が接続されている。暖房用制御弁83は、例えば、電動膨張弁であるが、それに限定されるものではない。
(3-2-4)第1熱交換器85
圧縮機80の吐出口と第1熱交換器85の冷媒入口とは吐出管によって接続されている。第1熱交換器85は、空調ユニット30において車室内へ送風される送風空気の空気通路を形成する空調ダクト31内に配置されている。
第1熱交換器85は、その内部を流通する冷媒と送風空気とを熱交換させることによって送風空気を加熱する。
(3-2-5)第2熱交換器86
第2熱交換器86は、空調ダクト31内のうち、第1熱交換器85の送風空気流れの上流に配置されて、その内部を流通する冷媒と送風空気とを熱交換させて送風空気を冷却する冷却用熱交換器である。第2熱交換器86の冷媒出口とアキュムレータ80aの入口とは配管によって接続されている。アキュムレータ80aは、内部に流入した冷媒の気液を分離して、サイクル内の余剰冷媒を蓄える気液分離器である。さらに、アキュムレータ80aの気相冷媒出口と圧縮機80の吸入口とは吸入管によって接続される。
(3-2-6)冷房用制御弁87
外気用熱交換器82の冷媒出口と第2熱交換器86の冷媒入口との間には、冷房モード時に冷媒を減圧させる冷房用制御弁87が接続されている。
冷房用制御弁87は、例えば、電動膨張弁である。但し、冷房用制御弁87は、冷房モード時に冷媒を減圧させる機能を発揮することができれば、これに限定されるものではない。冷房用制御弁87は、オリフィス、キャピラリチューブなどの固定絞りを採用することもできる。
(3-2-7)バイパス22
外気用熱交換器82の冷媒出口と第2熱交換器86の冷媒出口との間には、逆止弁24、冷房用制御弁87および第2熱交換器86を迂回するバイパス22が設けられている。バイパス22には電磁弁23が設けられている。
(3-2-8)電磁弁23
電磁弁23は、開閉弁である。電磁弁23は、冷房モードにおける冷媒回路、暖房モードにおける冷媒回路を切り替える冷媒回路切替手段である。電磁弁23は、制御装置60から出力される制御信号によって、その作動が制御される。電磁弁23は、冷房モード時に閉じられ、暖房モード時に開放される。
(3-2-9)逆止弁24
外気用熱交換器82の冷媒出口と第2熱交換器86の冷媒入口とを繋ぐ冷媒通路には、逆止弁24が設けられている。逆止弁24は、外気用熱交換器82の冷媒出口から第2熱交換器86の冷媒入口への冷媒の流通を許容し、逆方向への冷媒の流通を禁止する。
(3-3)空調ユニット30
空調ユニット30は、例えば、車室内最前部のインストルメントパネルの内側に配置されている。空調ユニット30は、その外殻を形成する空調ダクト31内に、送風機32、第2熱交換器86、第1熱交換器85、エアミックスドア34等を収容する。
(3-3-1)空調ダクト31
空調ダクト31は、ある程度の弾性を有し、強度的にも優れた樹脂(例えば、ポリプロピレン)にて成形されており、その内部に車室内へ送風される送風空気の空気通路を形成している。空調ダクト31の送風空気流れ最上流側には、ケース内へ車室内の空気(内気)と外気とを切替導入する空気取込機構33が配置されている。
(3-3-2)空気取込機構33
空気取込機構33は、それぞれ内気を取り込む内気取込口33aと外気を取り込む外気取込口33bを有している。内気取込口33aは、内気ドア43aによって開閉される。外気取込口33bは、外気ドア43bによって開閉される。例えば、内気ドア43aおよび外気ドア43bがモータによって駆動する場合、制御装置60によりモータの回転量を制御することによって内気ドア43aおよび外気ドア43bの開度が調整される。その結果、空調ダクト31内に流入する内気と外気の流量割合が調整される。
空気取込機構33の空気流れ下流側には、空気取込機構33を介して吸入した空気を車室内へ向けて送風する送風機32が配置されている。送風手段である送風機32は、例えば、遠心多翼ファンを電動モータにて駆動する電動送風機であって、制御装置60から出力される制御電圧によって回転数が制御される。
送風機32の空気流れ下流側には、第2熱交換器86および第1熱交換器85が、送風空気の流れに対して、第2熱交換器86、第1熱交換器85の順に配置されている。空調ダクト31内には、第2熱交換器86を通過後の送風空気のうち、第1熱交換器85を通過させる風量と第1熱交換器85を通過させない風量との風量割合を調整するエアミックスドア34が配置されている。
(3-3-3)エアミックスドア34
エアミックスドア34は、例えば、モータによって駆動される。モータは、制御装置60から出力される制御信号によって、その作動が制御される。
本実施形態では、暖房モード時には、図4に示すように、第2熱交換器86を通過後の送風空気の全風量を第1熱交換器85へ流入させる暖房位置に、エアミックスドア34を移動させる。
したがって、第2熱交換器86を通過後の送風空気は、第1熱交換器85を通過して温風通路を流れ、複数の吹出用の開口部の上流側に形成されたエアミックス部に至る。
冷房モード時には、図5に示すように、第2熱交換器86を通過後の送風空気の全風量を、第1熱交換器85を迂回させる冷房位置に、エアミックスドア34を移動させる。
したがって、第2熱交換器86を通過後の送風空気は、冷風通路を流れ、複数の吹出用の開口部の上流側に形成されたエアミックス部に至る。
空調ダクト31の空気流れ最下流部には、第1熱交換器85を通過した送風空気、或いは第1熱交換器85を迂回した送風空気を、空調対象空間である車室内へ吹き出すための開口が設けられている。
したがって、冷房モード時に、エアミックスドア34の開度を調整して、第2熱交換器86にて冷却された送風空気の一部を第1熱交換器85で再加熱することで、吹出口から車室内へ吹き出される送風空気の温度を調整するようにしてもよい。
(3-4)制御装置60
図6は、制御装置60のブロック図である。図6において、制御装置60は、CPU、ROM及びRAM等を含む周知のマイクロコンピュータとその周辺回路とから構成されている。そして、そのROM内に記憶された空調制御プログラムに基づいて各種演算、処理を行い、その出力側に接続された圧縮機80、暖房用制御弁83、冷房用制御弁87、電磁弁23、送風機32等の作動を制御する。
制御装置60は、暖房モード時には、電磁弁23を開き、冷房用制御弁87を閉じて、図4に示すように冷媒回路10に冷媒を循環する。
制御装置60は、冷房モード時には、電磁弁23を閉じ、暖房用制御弁83を全開として、図5に示すように冷媒回路10に冷媒を循環する。
制御装置60の入力側には、圧力センサ61、冷媒温度センサ62、吹出温度センサ63、室内温度センサ64等の空調制御用のセンサ群の検出信号が入力される。
圧力センサ61は、第1熱交換器85から流出し、暖房用制御弁83へ流入する前の冷媒の温度および圧力を検出する。冷媒温度センサ62は、外気用熱交換器82から流出する外気用熱交換器出口における冷媒温度を検出する。吹出温度センサ63は、第1熱交換器85を通過直後の車室内へ吹き出される空気温度を検出する。室内温度センサ64は、車室内の空気温度を検出する。
(3-5)自動車用空調装置1の動作
(3-5-1)冷房モード
冷房モードでは、制御装置60が、電磁弁23を閉じ、暖房用制御弁83を全開とし、冷房用制御弁87を 冷媒減圧作用を発揮する絞り状態とする。これにより、冷房モードでは、図5の実線矢印に示すように、圧縮機80→第1熱交換器85→暖房用制御弁83→外気用熱交換器82→冷房用制御弁87→第2熱交換器86→アキュムレータ80a→圧縮機80の吸入口の順で冷媒が循環する。
エアミックスドア34の開度については、エアミックスドア34が空調ダクト31を全開とし、第2熱交換器86通過後の送風空気の全流量が空調ダクト31を通過するよう に決定される。
冷房モードでは、圧縮機80から吐出された冷媒が第1熱交換器85へ流入する。この際、冷房モードでは、エアミックスドア34が空調ダクト31を全開としているので、第1熱交換器85へ流入した冷媒は、送風空気に放熱することなく第1熱交換器85から流出する。
第1熱交換器85から流出した冷媒は、全開となっている暖房用制御弁83を通過して、外気用熱交換器82へ流入する。外気用熱交換器82へ流入した冷媒は、送風機32から送風された外気と熱交換して放熱する。
外気用熱交換器82から流出した冷媒は、電磁弁23が閉じているので、冷房用制御弁87へ流入して減圧される。冷房用制御弁87にて減圧された冷媒は、第2熱交換器86へ流入する。
第2熱交換器86へ 流入した冷媒は、送風機32から送風された送風空気から吸熱して蒸発する。これにより 、送風空気が冷却される。
第2熱交換器86から流出した冷媒は、アキュムレータ80aへ流入して気液分離される。アキュムレータ80aにて分離された気相冷媒は、圧縮機80に吸入され再び圧縮される。
冷房モードの自動車用空調装置1では、第2熱交換器86にて冷却された送風空気を車室内へ吹き出すことによって、車室内の冷房を行うことができる。
(3-5-2)暖房モード
暖房モードでは、制御装置60が、暖房用制御弁83を絞り状態とし、冷房用制御弁87を全閉とし、電磁弁23を開く。これにより、暖房モードでは、図4の実線矢印 に示すように、圧縮機80→第1熱交換器85→暖房用制御弁83→外気用熱交換器82→バイパス22→アキュムレータ80a→圧縮機80の吸入口の順で冷媒が循環する。
また、エアミックスドア34の開度については、エアミックスドア34が空調ダクト31を全閉とし、第2熱交換器86を通過後の送風空気の全流量が第1熱交換器85を通過する。
暖房モードでは、圧縮機80から吐出された冷媒が第1熱交換器85へ流入する。第1熱交換器85へ流入した冷媒は、第2熱交換器86を通過した送風空気と熱交換して放熱する。これにより、送風空気が加熱される。
第1熱交換器85から流出した冷媒は、暖房用制御弁83へ流入して減圧される。暖房用制御弁83にて減圧された冷媒は、外気用熱交換器82へ流入する。
外気用熱交換器82へ流入した冷媒は、室外ファン90から送風された外気から吸熱して蒸発する。
外気用熱交換器82から流出した冷媒は、バイパス22を通過してアキュムレータ80aへ流入する。アキュムレータ80aへ流入した冷媒は、気液分離される。アキュムレータ80aにて分離された気相冷媒は、圧縮機80に吸入され再び圧縮される。
暖房モードの自動車用空調装置1では、第1熱交換器85にて加熱された送風空気を車室内へ吹き出すことによって、車室内の暖房を行うことができる。
(3-5-3)除湿暖房モード
除湿暖房モードでは、制御装置60が、暖房用制御弁83を絞り状態とし、冷房用制御弁87を全開あるいは絞り状態とし、電磁弁23を閉じる。これにより、除湿暖房モードでは、図5の実線矢印に示すように、圧縮機80→第1熱交換器85→暖房用制御弁83→外気用熱交換器82→冷房用制御弁87→第2熱交換器86→アキュムレータ80a→圧縮機80の吸入口の順で冷媒が循環する。つまり、実質的に、冷房モードと同様の順で冷媒が循環する。
また、エアミックスドア34の開度については、暖房モードと同様に、エアミックスドア34が空調ダクト31を全閉とする。
除湿暖房モードでは、圧縮機80から吐出された冷媒が、第1熱交換器85へ流入し、第2熱交換器86にて冷却されて除湿された送風空気と熱交換して放熱する。これにより、送風空気が加熱される。
第1熱交換器85から流出した冷媒は、暖房用制御弁83へ流入して減圧される。暖房用制御弁83にて減圧された冷媒は、外気用熱交換器82へ流入する。
外気用熱交換器82へ流入した低圧冷媒は、室外ファン90から送風された外気から吸熱して蒸発する。
外気用熱交換器82から流出した冷媒は、電磁弁23が閉じているので、冷房用制御弁87へ流入して減圧される。冷房用制御弁87にて減圧された冷媒は、第2熱交換器86へ流入する。
第2熱交換器86へ流入した冷媒は、送風機84から送風された送風空気から吸熱して蒸発する。これにより、送風空気が冷却される。
第2熱交換器86から流出した冷媒は、アキュムレータ80aへ流入して気液分離される。アキュムレータ80aにて分離された気相冷媒は、圧縮機80に吸入され再び圧縮される。
除湿暖房モードの自動車用空調装置1では、第2熱交換器86にて冷却されて除湿された送風空気を第1熱交換器85にて再加熱して車室内へ吹き出すことによって、車室内 の除湿暖房を行うことができる。
(3-5-4)除霜モード
自動車用空調装置1が除霜運転を行う場合、エアミックスドア34が第1熱交換器85に向かう通風経路を閉じる。電磁弁23は開状態である。暖房用制御弁83は全開状態である。冷房用制御弁87は全閉状態である。
圧縮機80で圧縮された冷媒は高温かつ高圧の冷媒となって吐出される。圧縮機80から吐出された冷媒は、第1熱交換器85を通過する。
エアミックスドア34は第1熱交換器85に向かう風路を閉じているため、暖房運転時と比較して冷媒の放熱量は少ない。
第1熱交換器85を通過した冷媒は、全開状態の暖房用制御弁83を通過して外気用熱交換器82に流入する。これにより、冷媒は外気用熱交換器82で放熱するため、外気用熱交換器82を昇温して除霜を行うことができる。
外気用熱交換器82から流出した冷媒は、バイパス22を通過してアキュムレータ80aに流入する。そして、アキュムレータ80aに流入した冷媒は、気相と液相とに分離され、気相の冷媒が圧縮機80に吸入される。
(3-6)変形例
第1実施形態では、外気用熱交換器82から流出した冷媒をバイパス22に流す場合には、電磁弁23を開状態にし、冷房用制御弁87を全閉状態にしている。また、外気用熱交換器82から流出した冷媒を第2熱交換器86に流す場合には、電磁弁23を閉状態にして、冷房用制御弁87を絞り状態にしている。
しかし、冷媒回路における流路の切替は上記方法に限定されるものではなく、三方弁を用いて流路の切替を行ってもよい。
図7は、第1実施形態の変形例に係る自動車用空調装置1の概略構成図である。図7において、第1実施形態と変形例との相違点は、第1実施形態の電磁弁23を廃止し、外気用熱交換器82の出口に接続されている配管とバイパス22との接続部分に三方弁25が設けられている点である。
外気用熱交換器82か流出した冷媒は、三方弁25によって、バイパス22に向かう流れ、および第2熱交換器86に向かう流れのいずれかが選択される。
(3-7)特徴
(3-7-1)
自動車用空調装置1は、少なくとも1,2-ジフルオロエチレンを含む冷媒が封入された冷媒回路10を備えている。
(3-7-2)
自動車用空調装置1は、少なくとも1132(E)と1234yfとR32を含む混合冷媒が封入された冷媒回路10を備えている。
(3-7-3)
自動車用空調装置1は、少なくとも1132(E)と1123とR1234yfを含む冷媒が封入された冷媒回路10を備えている。
(3-7-4)
自動車用空調装置1は、少なくとも1132(E)/1234yfを含む冷媒が封入された冷媒回路10を備えている。
(3-7-5)
自動車用空調装置1は、少なくとも1132aとR32とR1234yfを含む冷媒が封入された冷媒回路10を備えている。
(3-7-6)
自動車用空調装置1は、少なくともR32とR125とR1234yfとR134aとCO2を含む冷媒が封入された冷媒回路10を備えている。
(4)自動車用冷凍サイクル装置の第2実施形態
以下、上記の冷媒1A、冷媒1B、冷媒1C、冷媒1D、冷媒1E、冷媒2A、冷媒2B、冷媒2C、冷媒2D、冷媒2E、冷媒3A、冷媒3Bのいずれか1つ及び冷凍機油を用いた自動車用空調装置について説明する。自動車用空調装置は、自動車用冷凍サイクル装置である。
(4-1)自動車用空調装置101の構成
図8は、本開示の第2実施形態に係る自動車用空調装置101の概略構成図である。図8において、自動車用空調装置101は、冷媒回路110と、制御装置160とを備えている。制御装置160は、各種機器を制御するための装置である。自動車用空調装置101では、制御装置160が空調装置の備える各種機器を制御することで、車内の空調(冷房、暖房、及び、除湿暖房等)が行われる。
(4-2)冷媒回路110
自動車用空調装置101の冷媒回路110は、図8に示すように、主に、圧縮機180と、四路切替弁181と、外気用熱交換器182と、第1熱交換器185と、第2熱交換器186と、を含む蒸気圧縮式の冷媒回路である。また、冷媒回路110は、分岐部128を含む。
分岐部128とは、冷媒回路110において、主回路121から分岐配管122が分岐している部分のことである。
分岐配管122は、一端が第1冷媒配管123に接続されており、他端が四路切替弁181と圧縮機180の吸入部とを接続する吸入側冷媒配管124に接続されている。このため、主回路121における冷媒の循環方向が変更されても、分岐配管122には、第1冷媒配管123から圧縮機180の吸入側に向かって同一方向に冷媒が流れることになる。
なお、本実施形態では、分岐配管122の一端は、第1冷媒配管123の一部であって、第1制御弁183と第1熱交換器185とを接続する冷媒配管123aに接続されている。
また、分岐配管122には、膨張機構である第2制御弁187と、第2熱交換器186とが順に接続されている。
主回路121には、図8に示すように、圧縮機180と、外気と熱交換を行う外気用熱交換器182と、第1制御弁183と、車内を空調するための第1熱交換器185と、が順に接続されている。
(4-2-1)圧縮機180
圧縮機180は、回転数が可変なインバータ式の圧縮機であって、吸入したガス冷媒を圧縮するためのものである。
圧縮機180としては、斜板式圧縮機、スクロール圧縮機、マルチベーン圧縮機、ロータリー圧縮機等の各種圧縮機を採用することができる。
(4-2-2)四路切替弁181
主回路121に接続されている四路切替弁181は、主回路121を流れる冷媒の流路を変更する切替機構を構成している。
図9は、冷房モードにおける冷媒の流通経路を示した自動車用空調装置101の概略構成図である。また、図10は、暖房モードにおける冷媒の流通経路を示した自動車用空調装置101の概略構成図である。
四路切替弁181は、圧縮機180の吐出側と外気用熱交換器182と接続し、かつ、第1熱交換器185と圧縮機180の吸入側とを接続する第1状態(図8の実線参照)と、圧縮機180の吐出側と第1熱交換器185とを接続し、かつ、外気用熱交換器182と圧縮機180の吸入側とを接続する第2状態(図8の破線参照)とに切り替わることで、主回路121における冷媒の循環方向が可逆に構成されている(図9及び図10参照)。
(4-2-3)外気用熱交換器182
外気用熱交換器182は、外気と内部を流れる冷媒との間で熱交換を行わせるためのものである。
(4-2-4)第1制御弁183
第1制御弁183は、外気用熱交換器182と第1熱交換器185とを接続する第1冷媒配管123を流れる冷媒圧力の調整や冷媒流量の調整等を行うための電動膨張弁である。
(4-2-5)第1熱交換器185
第1熱交換器185は、車内の空気を熱源として冷媒と熱交換を行うためのものであり、送風機184が第1熱交換器185に接触する空気流れを生成することで、車内の空気と第1熱交換器185を流れる冷媒とを熱交換させることができる。
(4-2-6)第2熱交換器186
第2熱交換器186は、第1熱交換器185と同様に、車内の空気を熱源として冷媒と熱交換を行うためのものであり、送風機184が第2熱交換器186に接触する空気流れを生成することで、車内の空気と第2熱交換器186を流れる冷媒とを熱交換させることができる。
(4-2-7)第2制御弁187
第2制御弁187は、第1冷媒配管123から第2熱交換器186に流れる冷媒圧力の調整や冷媒流量の調整等を行うための電動膨張弁であって、その弁開度が調整されることで、第2熱交換器186を蒸発器として機能させることができる。第2制御弁187は、第2熱交換器186の流入側に配置されている。
本実施形態では、冷媒回路110は、外気用熱交換器182から第1熱交換器185及び第2熱交換器186に向かって冷媒が流れる場合に、第1熱交換器185に流れる冷媒の流量と、第2熱交換器186に流れる冷媒の流量とが所定の割合となるように設計されている。また、本実施形態では、車内の暖房時又は除湿暖房の暖房能力が不足している場合に、車内の空気を加熱するための熱源としてヒータ88が配設されている。ヒータ188は、各種センサの検知結果に基づいて制御装置60によって出力制御がされている。
(4-3)制御装置160の構成
図11は、制御装置160のブロック図である。図11において、制御装置160は、CPU、ROM及びRAM等を含む周知のマイクロコンピュータとその周辺回路とから構成されている。そして、そのROM内に記憶された空調制御プログラムに基づいて各種演算、処理を行い、その出力側に接続された圧縮機180、四路切替弁181、第1制御弁183、送風機184、第2制御弁187、およびヒータ188等の作動を制御する。
制御装置160の入力側には、圧力センサ161、冷媒温度センサ162、吹出温度センサ163、室内温度センサ164等の空調制御用のセンサ群の検出信号が入力される。
圧力センサ161は、第1熱交換器185から流出し、第1制御弁183へ流入する前の冷媒の温度および圧力を検出する。冷媒温度センサ162は、外気用熱交換器182から流出する外気用熱交換器出口における冷媒温度を検出する。吹出温度センサ163は、第1熱交換器185を通過直後の車室内へ吹き出される空気温度を検出する。室内温度センサ164は、車室内の空気温度を検出する。
制御装置160は、第1制御弁183及び第2制御弁187の弁開度や送風機184の回転数を調整する制御を行うことで、第1熱交換器185及び第2熱交換器186における熱交換量を制御する。
(4-4)自動車用空調装置101の動作
次に、車内の空調として冷房が行われている場合、除湿暖房が行われている場合、暖房が行われている場合、及び、除霜が行われている場合における自動車用空調装置101の動作について説明する。
(4-4-1)冷房モード
図9中の矢印は、冷房モード時の冷媒回路110における冷媒の流れを示している。冷房モード時には、四路切替弁181が第1状態に切り替えられ、圧縮機180の回転数は、車内の冷房能力又は除湿能力に応じて調整される。
また、第1制御弁183の弁開度は、第1熱交換器185の出口側の過熱度が所定値となるように制御される。さらに、第2制御弁187の弁開度は、第2熱交換器186の出口側の過熱度が所定値となるように制御される。
圧縮機180から吐出された高圧ガス冷媒は、外気用熱交換器182で外気と熱交換して、冷却され凝縮する。外気用熱交換器182から流出した高圧液冷媒は、第1制御弁183で減圧された後に、冷媒配管123aを流れて第1熱交換器185に至り、或いは、冷媒配管123aの途中で分岐配管122に流れる。
第1熱交換器185に至った冷媒は、送風機184により送風される車内空気と熱交換を行い、液冷媒が蒸発するとともに空気を冷却し、車内の冷房を行う。蒸発したガス冷媒は、四路切替弁181を介して圧縮機180に吸入される。
一方、分岐配管122に至った液冷媒は、第2制御弁187を介して第2熱交換器186に流入する。そして、第2熱交換器186に流入した冷媒は、送風機184により送風される車内空気と熱交換を行い、液冷媒が蒸発するとともに空気を冷却し、車内の冷房を行う。蒸発したガス冷媒は、吸入側冷媒配管124を流れる冷媒に合流し、圧縮機180に吸入される。
このように冷媒回路110内を冷媒が循環して、第1熱交換器185及び第2熱交換器186が蒸発器として機能することで、車内を冷房又は除湿することができる。
(4-4-2)除湿暖房モード
図10中の矢印は、除湿暖房モード時の冷媒回路110における冷媒の流れを示している。除湿暖房モード時には、四路切替弁181が第2状態に切り替えられ、圧縮機180の回転数は、車内の暖房能力に応じて調整される。
また、第1制御弁183の弁開度は、外気用熱交換器182の出口側の過熱度が所定値となるように制御される。さらに、第2制御弁187の弁開度は、車内の除湿能力に応じて調整される。
圧縮機180から吐出された高圧ガス冷媒は、第1熱交換器185で送風機184により送風される車内空気と熱交換を行い、高圧ガス冷媒が凝縮するとともに空気を加熱し、車内の暖房を行う。また、第1熱交換器185から流出した高圧液冷媒は、冷媒配管123aを流れて第1制御弁183に至り、或いは、冷媒配管123aの途中で分岐配管122に流れる。
第1制御弁183に至った液冷媒は、第1制御弁183で減圧された後に、外気用熱交換器182に流入する。外気用熱交換器182では、流入した液冷媒が、外気と熱交換を行うことで蒸発する。そして、蒸発したガス冷媒は、四路切替弁181を介して圧縮機180に吸入される。
一方、分岐配管122に流れた液冷媒は、第2制御弁187で減圧された後に、第2熱交換器186に流入する。そして、第2熱交換器186に流入した冷媒は、送風機184により送風される車内空気と熱交換を行い、液冷媒が蒸発するとともに空気を冷却し、車内の除湿を行う。蒸発したガス冷媒は、吸入側冷媒配管124を流れる冷媒に合流し、圧縮機180に吸入される。
このように冷媒回路110内を冷媒が循環して、第1熱交換器185が凝縮器として機能することで、車内を暖房することができるとともに、第2熱交換器186が蒸発器として機能することで、車内の除湿を行うことができる。
(4-4-3)暖房モード
暖房モードは、図10の除湿暖房モードの除湿動作を行わせないモードであるので、図10を参照しながら説明する。暖房モード時には、四路切替弁181が第2状態に切り替えられ、圧縮機180の回転数は、車内の暖房能力に応じて調整される。
また、第1制御弁183の弁開度は、外気用熱交換器182の出口側の過熱度が所定値となるように制御される。第2制御弁187は、全閉状態である。
圧縮機180から吐出された高圧ガス冷媒は、第1熱交換器185で送風機184により送風される車内空気と熱交換を行い、高圧ガス冷媒が凝縮するとともに空気を加熱し、車内の暖房を行う。また、第1熱交換器185から流出した高圧液冷媒は、冷媒配管123aを流れて第1制御弁183に至る。なお、第2制御弁187は、全閉状態であので、冷媒配管123aの途中で分岐配管122に流れることはない。
第1制御弁183に至った液冷媒は、第1制御弁183で減圧された後に、外気用熱交換器182に流入する。外気用熱交換器182では、流入した液冷媒が、外気と熱交換を行うことで蒸発する。そして、蒸発したガス冷媒は、四路切替弁181を介して圧縮機180に吸入される。
このように冷媒回路110内を冷媒が循環して、第1熱交換器185が凝縮器として機能することで、車内を暖房することができる。
(4-4-4)除霜モード
除霜モードは、図9の冷房モード時の冷媒流れにおいて、第1制御弁183および第2制御弁187を全開状態にするモードであるので、図9を参照しながら説明する。
圧縮機180で圧縮された冷媒は高温かつ高圧の冷媒となって吐出される。圧縮機180から吐出された冷媒は、外気用熱交換器182に流入する。これにより、冷媒は外気用熱交換器182で放熱するため、外気用熱交換器182を昇温して除霜を行うことができる。
外気用熱交換器182から流出した冷媒は、全開状態の第1制御弁183、冷媒配管123a、第1熱交換器185およびを経て、四路切替弁181を介して圧縮機180に吸入される。
一方、分岐配管122に至った液冷媒は、全開状態の第2制御弁187、第2熱交換器186を経て、吸入側冷媒配管124を流れる冷媒に合流し、圧縮機180に吸入される。
(4-5)変形例
第2実施形態では、内気用の熱交換器として第1熱交換器185および第2熱交換器186を並列に設けて、第1熱交換器185を凝縮器として機能させ、第2熱交換器186を蒸発器として機能させることで、暖房と同時に除湿を行うことができる。
但し、これに限定されるものではなく、2つの熱交換器が直列に設けられ、それら2つの熱交換器の間に、膨張機構が設けられてもよい。
図12は、第2実施形態の変形例に係る自動車用空調装置101の概略構成図である。図12において、冷媒回路210では、第1熱交換器285と、第2熱交換器286と、外気用熱交換器282とを直列に設け、かつ、第1熱交換器285と第2熱交換器286との間に、膨張機構としての制御弁287を設けている。なお、図12の中で、第2実施形態と同一の符号を付した機器は、同様の機能を有する機器であり、説明を省略する。
ここでは、除湿暖房モードの動作を例に説明する。自動車用空調装置101では、制御弁287によって冷媒を減圧して、第1熱交換器285を凝縮器として機能させ、第2熱交換器286及び外気用熱交換器282を蒸発器として機能させている。これによって、車内を除湿暖房することができる。
(4-6)特徴
(4-6-1)
自動車用空調装置101は、少なくとも1,2-ジフルオロエチレンを含む冷媒が封入された冷媒回路110を備えている。
(4-6-2)
自動車用空調装置101は、少なくとも1132(E)と1234yfとR32を含む混合冷媒が封入された冷媒回路110を備えている。
(4-6-3)
自動車用空調装置101は、少なくとも1132(E)と1123とR1234yfを含む冷媒が封入された冷媒回路110を備えている。
(4-6-4)
自動車用空調装置101は、少なくとも1132(E)/1234yfを含む冷媒が封入された冷媒回路110を備えている。
(4-6-5)
自動車用空調装置101は、少なくとも1132aとR32とR1234yfを含む冷媒が封入された冷媒回路110を備えている。
(4-6-6)
自動車用空調装置101は、少なくともR32とR125とR1234yfとR134aとCO2を含む冷媒が封入された冷媒回路110を備えている。
<その他の実施形態>
冷媒回路をエコノマイザ熱交換器及びインジェクション弁を用いた冷媒回路としてもよい。
エコノマイザ熱交換器は、第1流路及び第2流路を有し、第1流路を流れる冷媒と第2流路を流れる冷媒とが熱交換する構造とする。
第1流路は、液冷媒管の一部を構成する。第2流路は、インジェクション流路の一部を構成する。インジェクション流路は、液冷媒管と圧縮機の圧縮途中の圧縮室とを接続する冷媒の流路である。インジェクション流路は、液冷媒管から分岐し、圧縮機の圧縮機構の圧縮途中の圧縮室へと連通する冷媒流路である。
インジェクション弁は、例えば開度調節が可能な電動弁である。インジェクション弁は、インジェクション流路の、液冷媒管とエコノマイザ熱交換器の第2流路とを接続する部分、に設ける。
インジェクション弁が開かれると、液冷媒管から分岐し、インジェクション弁を通過した冷媒が、エコノマイザ熱交換器の第2流路に流入する。そして、第2流路に流入した冷媒は、第1流路を流れる冷媒と熱交換し、気相の冷媒となって圧縮機の圧縮機構の圧縮途中の圧縮室に供給される。

以上、本開示の実施形態を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
1 自動車用空調装置(自動車用冷凍サイクル装置)
10 冷媒回路
80 圧縮機、
82 外気用熱交換器(凝縮器、蒸発器)
83 暖房用制御弁(減圧部)
85 第1熱交換器(凝縮器)
86 第2熱交換器(蒸発器)
87 冷房用制御弁(減圧部)
101 自動車用空調装置(自動車用冷凍サイクル装置)
110 冷媒回路
180 圧縮機、
182 外気用熱交換器(凝縮器、蒸発器)
183 第1制御弁(減圧部)
185 第1熱交換器(蒸発器、凝縮器)
186 第2熱交換器(蒸発器)
187 第2制御弁(減圧部)
210 冷媒回路
国際公開第2005/105947号 国際公開第2015/141678号 特開2018-184597号公報

Claims (12)

  1. 冷媒回路(10)と、
    前記冷媒回路(10)に封入され、少なくともHFO-1132(E)及びHFO-1234yfを含む冷媒と、
    を備え、
    前記冷媒回路(10)は、
    圧縮機(80)と、
    前記圧縮機(80)の吸入口に接続されるアキュームレータ(80a)と、
    暖房モード時には蒸発器として機能し、冷房モード時には放熱器として機能する外気用熱交換器(82)と、
    冷媒入口が前記圧縮機(80)の吐出口に接続され、送風空気を加熱する第1熱交換器(85)と、
    冷媒出口が前記アキュームレータ(80a)の冷媒入口に接続され、送風空気を冷却する第2熱交換器(86)と、
    前記第1熱交換器(85)の冷媒出口と前記外気用熱交換器(82)の冷媒入口との間に接続され、前記暖房モード時に冷媒を減圧膨張させる暖房用制御弁(83)と、
    前記外気用熱交換器(82)の冷媒出口と前記第2熱交換器(86)の冷媒入口との間に接続され、前記冷房モード時に冷媒を減圧膨張させる冷房用制御弁(87)と、
    前記冷媒回路(10)を冷房モードと暖房モードのいずれかに切り替える電磁弁(23)と、
    前記外気用熱交換器(82)の冷媒出口から前記第2熱交換器(86)の冷媒入口への冷媒の流通を許容し、逆方向への冷媒の流通を禁止する逆止弁(24)と、
    を有する、
    自動車用冷凍サイクル装置。
  2. 前記冷媒が、HFO-1132(E)及びHFO-1234yfを含有し、
    HFO-1132(E)及びHFO-1234yfの全質量に対して、
    HFO-1132(E)の含有割合が35.0~65.0質量%であり、
    HFO-1234yfの含有割合が65.0~35.0質量%であり、
    請求項1に記載の自動車用冷凍サイクル装置。
  3. HFO-1132(E)及びHFO-1234yfの全質量に対して、
    HFO-1132(E)の含有割合が41.3~53.5質量%であり、
    HFO-1234yfの含有割合が58.7~46.5質量%である、
    請求項1に記載の自動車用冷凍サイクル装置。
  4. 前記冷媒が、HFO-1132(E)及びHFO-1234yfのみからなる、
    請求項2又は請求項3に記載の自動車用冷凍サイクル装置。
  5. 前記冷媒が、HFO-1132(E)及びHFO-1234yfを含有し、
    HFO-1132(E)及びHFO-1234yfの全質量に対して、
    HFO-1132(E)の含有割合が40.5~49.2質量%であり、
    HFO-1234yfの含有割合が59.5~50.8質量%である、
    請求項1に記載の自動車用冷凍サイクル装置。
  6. 前記冷媒が、HFO-1132(E)及びHFO-1234yfのみからなる、
    請求項5に記載の自動車用冷凍サイクル装置。
  7. 前記冷媒が、HFO-1132(E)及びHFO-1234yfを含有し、
    HFO-1132(E)及びHFO-1234yfの全質量に対して、
    HFO-1132(E)の含有割合が31.1~39.8質量%であり、
    HFO-1234yfの含有割合が68.9~60.2質量%である、
    請求項1に記載の自動車用冷凍サイクル装置。
  8. 前記冷媒が、HFO-1132(E)及びHFO-1234yfを含有し、
    HFO-1132(E)及びHFO-1234yfの全質量に対して、
    HFO-1132(E)の含有割合が31.1~37.9質量%であり、
    HFO-1234yfの含有割合が68.9~62.1質量%である、
    請求項1に記載の自動車用冷凍サイクル装置。
  9. 前記冷媒が、HFO-1132(E)及びHFO-1234yfのみからなる、
    請求項7又は請求項8に記載の自動車用冷凍サイクル装置。
  10. 前記冷媒が、HFO-1132(E)及びHFO-1234yfを含有し、
    HFO-1132(E)及びHFO-1234yfの全質量に対して、
    HFO-1132(E)の含有割合が21.0~28.4質量%であり、
    HFO-1234yfの含有割合が79.0~71.6質量%である、
    請求項1に記載の自動車用冷凍サイクル装置。
  11. 前記冷媒が、HFO-1132(E)及びHFO-1234yfのみからなる、
    請求項10に記載の自動車用冷凍サイクル装置。
  12. 前記冷媒が、HFO-1132(E)及びHFO-1234yfを含有し、
    HFO-1132(E)及びHFO-1234yfの全質量に対して、
    HFO-1132(E)の含有割合が12.1~72.0質量%であり、
    HFO-1234yfの含有割合が87.9~28.0質量%であり、
    請求項1に記載の自動車用冷凍サイクル装置。
JP2023168629A 2018-07-17 2023-09-28 自動車用冷凍サイクル装置 Pending JP2023179585A (ja)

Applications Claiming Priority (26)

Application Number Priority Date Filing Date Title
JP2018134448 2018-07-17
JP2018134448 2018-07-17
JP2018227398 2018-12-04
JP2018227398 2018-12-04
JP2018230259 2018-12-07
JP2018230259 2018-12-07
JP2019013979 2019-01-30
JP2019013974 2019-01-30
JP2019013979 2019-01-30
JP2019013974 2019-01-30
JP2019018617 2019-02-05
JP2019018617 2019-02-05
JP2019019701 2019-02-06
JP2019019701 2019-02-06
JP2019078133 2019-04-16
JP2019078133 2019-04-16
JP2019084708 2019-04-25
JP2019084708 2019-04-25
JP2019112408 2019-06-17
JP2019112408 2019-06-17
JP2019115584 2019-06-21
JP2019115584 2019-06-21
JPPCT/JP2019/027031 2019-07-08
PCT/JP2019/027031 WO2020017386A1 (ja) 2018-07-17 2019-07-08 冷媒を含有する組成物、熱移動媒体及び熱サイクルシステム
PCT/JP2019/027988 WO2020017520A1 (ja) 2018-07-17 2019-07-16 自動車用冷凍サイクル装置
JP2020531323A JP7393667B2 (ja) 2018-07-17 2019-07-16 自動車用冷凍サイクル装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020531323A Division JP7393667B2 (ja) 2018-07-17 2019-07-16 自動車用冷凍サイクル装置

Publications (1)

Publication Number Publication Date
JP2023179585A true JP2023179585A (ja) 2023-12-19

Family

ID=69163898

Family Applications (6)

Application Number Title Priority Date Filing Date
JP2020531323A Active JP7393667B2 (ja) 2018-07-17 2019-07-16 自動車用冷凍サイクル装置
JP2023168630A Pending JP2023181169A (ja) 2018-07-17 2023-09-28 自動車用冷凍サイクル装置
JP2023168628A Pending JP2023174718A (ja) 2018-07-17 2023-09-28 自動車用冷凍サイクル装置
JP2023168632A Pending JP2023181171A (ja) 2018-07-17 2023-09-28 自動車用冷凍サイクル装置
JP2023168631A Pending JP2023181170A (ja) 2018-07-17 2023-09-28 自動車用冷凍サイクル装置
JP2023168629A Pending JP2023179585A (ja) 2018-07-17 2023-09-28 自動車用冷凍サイクル装置

Family Applications Before (5)

Application Number Title Priority Date Filing Date
JP2020531323A Active JP7393667B2 (ja) 2018-07-17 2019-07-16 自動車用冷凍サイクル装置
JP2023168630A Pending JP2023181169A (ja) 2018-07-17 2023-09-28 自動車用冷凍サイクル装置
JP2023168628A Pending JP2023174718A (ja) 2018-07-17 2023-09-28 自動車用冷凍サイクル装置
JP2023168632A Pending JP2023181171A (ja) 2018-07-17 2023-09-28 自動車用冷凍サイクル装置
JP2023168631A Pending JP2023181170A (ja) 2018-07-17 2023-09-28 自動車用冷凍サイクル装置

Country Status (6)

Country Link
US (1) US11920077B2 (ja)
EP (2) EP3825383A4 (ja)
JP (6) JP7393667B2 (ja)
KR (1) KR20210035223A (ja)
CN (6) CN112673074A (ja)
WO (1) WO2020017520A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016182030A1 (ja) * 2015-05-14 2016-11-17 旭硝子株式会社 流体組成物、冷媒組成物および空気調和機
US11839062B2 (en) 2016-08-02 2023-12-05 Munters Corporation Active/passive cooling system
GB201712813D0 (en) 2017-08-10 2017-09-27 Mexichem Fluor Sa De Cv Compositions
US11365335B2 (en) * 2017-12-18 2022-06-21 Daikin Industries, Ltd. Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
CN113637457A (zh) * 2017-12-18 2021-11-12 大金工业株式会社 包含制冷剂的组合物、其用途、以及具有其的制冷机和该制冷机的运转方法
JP7108212B2 (ja) 2018-07-17 2022-07-28 ダイキン工業株式会社 冷媒を含有する組成物、熱移動媒体及び熱サイクルシステム
US11912922B2 (en) 2018-07-17 2024-02-27 Daikin Industries, Ltd. Refrigerant cycle apparatus
EP3825383A4 (en) 2018-07-17 2022-10-05 Daikin Industries, Ltd. REFRIGERATION CIRCUIT DEVICE FOR A VEHICLE
JP7073421B2 (ja) * 2019-01-11 2022-05-23 ダイキン工業株式会社 シス-1,2-ジフルオロエチレンを含む組成物
WO2020158170A1 (ja) 2019-01-30 2020-08-06 ダイキン工業株式会社 冷媒を含有する組成物、並びに、その組成物を用いた冷凍方法、冷凍装置の運転方法及び冷凍装置
ES2976211T3 (es) * 2019-01-30 2024-07-26 Daikin Ind Ltd Composición que contiene refrigerante y método de refrigeración que usa dicha composición, método de operación para dispositivo de refrigeración y dispositivo de refrigeración
WO2020162401A1 (ja) 2019-02-05 2020-08-13 ダイキン工業株式会社 冷媒を含有する組成物、並びに、その組成物を用いた冷凍方法、冷凍装置の運転方法及び冷凍装置
JP6791414B2 (ja) 2019-02-06 2020-11-25 ダイキン工業株式会社 冷媒を含有する組成物、並びに、その組成物を用いた冷凍方法、冷凍装置の運転方法及び冷凍装置
JP6897814B2 (ja) * 2019-06-19 2021-07-07 ダイキン工業株式会社 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
WO2023058558A1 (ja) * 2021-10-04 2023-04-13 ダイキン工業株式会社 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
KR20230051159A (ko) * 2021-10-04 2023-04-17 다이킨 고교 가부시키가이샤 냉매를 포함하는 조성물, 그 사용, 그리고 그것을 갖는 냉동기 및 그 냉동기의 운전 방법
WO2024106515A1 (ja) * 2022-11-18 2024-05-23 Eneos株式会社 作動流体組成物及び冷凍機

Family Cites Families (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2309224A (en) 1940-01-11 1943-01-26 Matson C Terry Self-contained air conditioner
JPS615511Y2 (ja) 1980-10-30 1986-02-19
AU694975B2 (en) 1994-07-11 1998-08-06 Solvay (Societe Anonyme) Coolants
JP2869038B2 (ja) 1996-06-05 1999-03-10 松下電器産業株式会社 3成分混合冷媒を用いたヒートポンプ装置
US6658882B2 (en) 2001-08-09 2003-12-09 Sanyo Electric Co., Ltd. Integral-type air conditioner
US7279451B2 (en) 2002-10-25 2007-10-09 Honeywell International Inc. Compositions containing fluorine substituted olefins
US7704404B2 (en) 2003-07-17 2010-04-27 Honeywell International Inc. Refrigerant compositions and use thereof in low temperature refrigeration systems
US20060243945A1 (en) 2005-03-04 2006-11-02 Minor Barbara H Compositions comprising a fluoroolefin
BRPI0722037A2 (pt) 2007-09-18 2014-03-25 Carrier Corp Unidade de condicionamento de ar.
WO2010002023A1 (en) * 2008-07-01 2010-01-07 Daikin Industries, Ltd. REFRIGERANT COMPOSITION COMPRISING DIFLUOROMETHANE (HFC32), 2,3,3,3-TETRAFLUOROPROPENE (HFO1234yf) AND 1,1,1,2-TETRAFLUOROETHANE (HFC134a)
US20100122545A1 (en) 2008-11-19 2010-05-20 E. I. Du Pont De Nemours And Company Tetrafluoropropene compositions and uses thereof
DE202009019200U1 (de) 2008-11-19 2018-10-15 The Chemours Company Fc, Llc Tetrafluorpropen-Zusammensetzungen und Ihre Verwendungen
FR2938551B1 (fr) * 2008-11-20 2010-11-12 Arkema France Procede de chauffage et/ou climatisation d'un vehicule
BRPI0921128A2 (pt) 2008-12-02 2016-02-16 Mexichem Amanco Holding Sa composição e dispositivo de tranfer~encia de calor, uso de uma composição, agente de soro, composição espumável, espuma, composição pulverizável, métodos para resfriar, aquecer e limpar um artigo, para extrair uma substância da biomassa, um material de uma solução aquosa, e um material de uma matriz sólida particulada, para reequipar um dispositivo de tranferência de calor, para reduzir o impacto ambiental que surge da operação de um produto, para preparar uma composição, e, para gerar composição e dispositivo de tranfer~encia de calor, uso de uma composição, agente de soro, composição espumável, espuma, composição pulverizável, métodos para resfriar, aquecer e limpar um artigo, para extrair uma substância da biomassa, um material de uma solução aquosa, e um material de uma matriz sólida particulada, para reequipar um dispositivo de tranferência de calor, para reduzir o impacto ambiental que surge da operação de um produto, para preparar uma composição, e , para gerar crédito de emissão de gás de estufa, e , dispositivo de geração de energia mecânica.
GB201002622D0 (en) 2010-02-16 2010-03-31 Ineos Fluor Holdings Ltd Heat transfer compositions
US8961812B2 (en) 2010-04-15 2015-02-24 E I Du Pont De Nemours And Company Compositions comprising Z-1,2-difluoroethylene and uses thereof
US8961811B2 (en) * 2010-04-15 2015-02-24 E I Du Pont De Nemours And Company Compositions comprising E-1,2-difluoroethylene and uses thereof
EP2585550A4 (en) 2010-06-22 2014-10-08 Arkema Inc Heat transfer compositions of liquid hydrocarbons and a hydrofluoroolefin
EP2711407B1 (en) 2011-05-19 2018-11-07 AGC Inc. Working medium and heat-cycle system
CN108821936A (zh) 2012-04-27 2018-11-16 Agc株式会社 四氟丙烯的保存方法和四氟丙烯的保存容器
JP6062061B2 (ja) 2012-12-04 2017-01-18 ハネウェル・インターナショナル・インコーポレーテッド 低gwpの熱伝達組成物
KR101462426B1 (ko) 2012-12-07 2014-11-17 한화케미칼 주식회사 탄소나노튜브를 포함하는 고열전도성 블래더용 고무복합체 조성물 및 그 제조방법
FR3000095B1 (fr) 2012-12-26 2015-02-20 Arkema France Composition comprenant du 2,3,3,3-tetrafluoropropene et du 1,2-difluoroethylene
EP2993213B1 (en) * 2013-04-30 2020-07-15 AGC Inc. Composition containing trifluoroethylene
EP2993212B1 (en) * 2013-04-30 2019-08-28 AGC Inc. Working medium for heat cycle
GB2530915C (en) 2013-06-19 2019-10-30 Mitsubishi Electric Corp Air-conditioning apparatus
JP6157616B2 (ja) 2013-06-19 2017-07-05 三菱電機株式会社 冷凍サイクル装置
RU2664518C2 (ru) 2013-07-12 2018-08-20 Асахи Гласс Компани, Лимитед Рабочая жидкость для теплового цикла, композиция для системы теплового цикла и система теплового цикла
US10101043B2 (en) 2013-07-26 2018-10-16 Energy Design Technology & Solutions, Inc. HVAC system and method of operation
AU2014297674B2 (en) 2013-07-29 2016-06-16 Mitsubishi Electric Corporation Heat pump apparatus
PL3055379T3 (pl) 2013-10-10 2020-04-30 The Chemours Company Fc, Llc Kompozycje zawierające difluorometan, pentafluoroetan, tetrafluoroetan i tetrafluoropropen i ich zastosowania
CN106029821B (zh) * 2014-01-31 2020-06-02 Agc株式会社 热循环用工作介质、热循环系统用组合物以及热循环系统
DE112015000583T5 (de) 2014-01-31 2016-11-03 Asahi Glass Company, Limited Arbeitsfluid für einen Wärmekreisprozess, Zusammensetzung für ein Wärmekreisprozesssystem und Wärmekreisprozesssystem
WO2015125874A1 (ja) * 2014-02-20 2015-08-27 旭硝子株式会社 熱サイクル用作動媒体
EP3845620B1 (en) 2014-02-24 2024-09-18 Agc Inc. Composition for heat cycle systems, and heat cycle system
WO2015136977A1 (ja) 2014-03-14 2015-09-17 三菱電機株式会社 圧縮機及び冷凍サイクル装置
EP3121243A4 (en) * 2014-03-17 2017-11-08 Asahi Glass Company, Limited Working medium for heat cycles, composition for heat-cycle systems, and heat-cycle system
CN106133110B (zh) 2014-03-18 2020-06-02 Agc株式会社 热循环用工作介质、热循环系统用组合物以及热循环系统
JP6105511B2 (ja) 2014-04-10 2017-03-29 三菱電機株式会社 ヒートポンプ装置
JP6417533B2 (ja) 2014-05-12 2018-11-07 パナソニックIpマネジメント株式会社 圧縮機およびそれを用いた冷凍サイクル装置
EP3153560A4 (en) 2014-06-06 2018-01-10 Asahi Glass Company, Limited Working medium for heat cycle, composition for heat cycle system, and heat cycle system
EP3153567A4 (en) 2014-06-06 2018-01-10 Asahi Glass Company, Limited Composition for heat cycle system and heat cycle system
WO2015186670A1 (ja) 2014-06-06 2015-12-10 旭硝子株式会社 熱サイクルシステム用組成物および熱サイクルシステム
JPWO2015186557A1 (ja) * 2014-06-06 2017-04-27 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
JP2016011423A (ja) 2014-06-06 2016-01-21 旭硝子株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
JP2015229767A (ja) 2014-06-06 2015-12-21 旭硝子株式会社 熱サイクル用作動媒体
JP6504172B2 (ja) 2014-08-12 2019-04-24 Agc株式会社 熱サイクルシステム
WO2016075541A1 (en) 2014-11-11 2016-05-19 Kujak Stephen A Refrigerant compositions and methods of use
GB201501598D0 (en) 2015-01-30 2015-03-18 Mexichem Fluor Sa De Cv Compositions
WO2016182030A1 (ja) 2015-05-14 2016-11-17 旭硝子株式会社 流体組成物、冷媒組成物および空気調和機
CN107614651A (zh) 2015-05-25 2018-01-19 旭硝子株式会社 热循环用工作介质以及热循环系统
JP6848861B2 (ja) 2015-06-01 2021-03-24 Agc株式会社 熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステム
WO2017122517A1 (ja) 2016-01-12 2017-07-20 旭硝子株式会社 冷凍サイクル装置及び熱サイクルシステム
JP6788820B2 (ja) 2016-02-18 2020-11-25 パナソニックIpマネジメント株式会社 冷凍サイクル用作動媒体および冷凍サイクルシステム
MX2018010417A (es) 2016-02-29 2018-11-29 Chemours Co Fc Llc Mezclas refrigerantes que comprenden difluorometano, pentafluoroetano, tetrafluoroetano, tetrafluoropropeno y dioxido de carbono y usos de estas.
CN109312108A (zh) 2016-05-11 2019-02-05 欧文斯科宁知识产权资产有限公司 包含低水平溴化阻燃剂的聚合物泡沫及其制备方法
JP6877998B2 (ja) 2016-12-27 2021-05-26 パナソニック株式会社 冷凍サイクル用作動媒体および冷凍サイクルシステム
JP6884572B2 (ja) 2016-12-27 2021-06-09 パナソニック株式会社 冷凍サイクル用作動媒体および冷凍サイクルシステム
JP6979564B2 (ja) 2017-04-13 2021-12-15 パナソニックIpマネジメント株式会社 冷凍サイクル装置
JP2018179404A (ja) 2017-04-13 2018-11-15 パナソニックIpマネジメント株式会社 冷凍サイクル装置
JP6979563B2 (ja) 2017-04-13 2021-12-15 パナソニックIpマネジメント株式会社 冷凍サイクル装置
JP6979565B2 (ja) 2017-04-13 2021-12-15 パナソニックIpマネジメント株式会社 冷凍サイクル装置
JP7113185B2 (ja) 2017-04-13 2022-08-05 パナソニックIpマネジメント株式会社 冷凍サイクル装置
EP3614076A4 (en) 2017-04-20 2021-01-06 AGC Inc. THERMODYNAMIC CYCLE SYSTEM
JP6504298B2 (ja) 2017-04-21 2019-04-24 ダイキン工業株式会社 冷媒を含有する組成物及びその応用
GB201712813D0 (en) 2017-08-10 2017-09-27 Mexichem Fluor Sa De Cv Compositions
JP6899529B2 (ja) 2017-08-10 2021-07-07 パナソニックIpマネジメント株式会社 冷凍サイクル用作動媒体および冷凍サイクルシステム
US11365335B2 (en) 2017-12-18 2022-06-21 Daikin Industries, Ltd. Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
US11906207B2 (en) 2017-12-18 2024-02-20 Daikin Industries, Ltd. Refrigeration apparatus
WO2019123898A1 (ja) 2017-12-18 2019-06-27 ダイキン工業株式会社 冷媒用または冷媒組成物用の冷凍機油、冷凍機油の使用方法、および、冷凍機油としての使用
US20220404070A1 (en) * 2017-12-18 2022-12-22 Daikin Industries, Ltd. Air conditioner
US20200326100A1 (en) 2017-12-18 2020-10-15 Daikin Industries, Ltd. Warm-water generating apparatus
US11441819B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Refrigeration cycle apparatus
US20220389299A1 (en) * 2017-12-18 2022-12-08 Daikin Industries, Ltd. Refrigeration cycle apparatus
CN113637457A (zh) 2017-12-18 2021-11-12 大金工业株式会社 包含制冷剂的组合物、其用途、以及具有其的制冷机和该制冷机的运转方法
WO2019124145A1 (ja) 2017-12-18 2019-06-27 ダイキン工業株式会社 空気調和機
US20200393178A1 (en) 2017-12-18 2020-12-17 Daikin Industries, Ltd. Refrigeration cycle apparatus
US20200326103A1 (en) 2017-12-18 2020-10-15 Daikin Industries, Ltd. Refrigeration cycle
US20230002659A1 (en) * 2017-12-18 2023-01-05 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
JP6857813B2 (ja) 2018-03-05 2021-04-14 パナソニックIpマネジメント株式会社 冷凍サイクル装置
JP6857815B2 (ja) 2018-05-29 2021-04-14 パナソニックIpマネジメント株式会社 冷凍サイクル装置
EP3825383A4 (en) 2018-07-17 2022-10-05 Daikin Industries, Ltd. REFRIGERATION CIRCUIT DEVICE FOR A VEHICLE
JP7393669B2 (ja) 2018-07-17 2023-12-07 ダイキン工業株式会社 冷凍サイクル装置
EP3825382A4 (en) 2018-07-17 2022-06-01 Daikin Industries, Ltd. REFRIGERATION CIRCUIT DEVICE
US11912922B2 (en) 2018-07-17 2024-02-27 Daikin Industries, Ltd. Refrigerant cycle apparatus
JPWO2020071380A1 (ja) 2018-10-01 2021-09-16 Agc株式会社 熱サイクルシステム用組成物および熱サイクルシステム
ES2976211T3 (es) 2019-01-30 2024-07-26 Daikin Ind Ltd Composición que contiene refrigerante y método de refrigeración que usa dicha composición, método de operación para dispositivo de refrigeración y dispositivo de refrigeración
WO2020256129A1 (ja) 2019-06-19 2020-12-24 ダイキン工業株式会社 1,2-ジフルオロエチレン(hfo-1132)と酸素とを気相で共存させる方法、並びにそれらを含む保存容器及び冷凍機
JP2021001722A (ja) 2019-06-19 2021-01-07 ダイキン工業株式会社 ジフルオロエチレン(hfo−1132)を作動流体として含む冷凍機
WO2020256134A1 (ja) 2019-06-19 2020-12-24 ダイキン工業株式会社 冷凍サイクル用作動媒体及び冷凍サイクルシステム

Also Published As

Publication number Publication date
JP2023181171A (ja) 2023-12-21
EP4234293A3 (en) 2023-09-13
JP7393667B2 (ja) 2023-12-07
CN116215188A (zh) 2023-06-06
CN116278639A (zh) 2023-06-23
CN116215187A (zh) 2023-06-06
JP2023174718A (ja) 2023-12-08
JP2023181170A (ja) 2023-12-21
EP3825383A4 (en) 2022-10-05
EP4234293A2 (en) 2023-08-30
JPWO2020017520A1 (ja) 2021-08-02
CN114475162A (zh) 2022-05-13
KR20210035223A (ko) 2021-03-31
JP2023181169A (ja) 2023-12-21
CN116215189A (zh) 2023-06-06
EP3825383A1 (en) 2021-05-26
CN112673074A (zh) 2021-04-16
US20210309902A1 (en) 2021-10-07
WO2020017520A1 (ja) 2020-01-23
US20230029441A2 (en) 2023-01-26
US11920077B2 (en) 2024-03-05

Similar Documents

Publication Publication Date Title
JP7393667B2 (ja) 自動車用冷凍サイクル装置
JP7393668B2 (ja) 冷媒サイクル装置
JP7448851B2 (ja) 冷凍サイクル装置
EP3730569A1 (en) Refrigeration cycle device
JP7506321B2 (ja) 庫内空気調節装置
US20240218226A1 (en) Refrigeration cycle device for vehicle
WO2023058646A1 (ja) 自動車用冷凍サイクル装置
US20240174905A1 (en) Refrigerant cycle apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231003