JP2023157915A - バスバーの製造方法 - Google Patents

バスバーの製造方法 Download PDF

Info

Publication number
JP2023157915A
JP2023157915A JP2023126453A JP2023126453A JP2023157915A JP 2023157915 A JP2023157915 A JP 2023157915A JP 2023126453 A JP2023126453 A JP 2023126453A JP 2023126453 A JP2023126453 A JP 2023126453A JP 2023157915 A JP2023157915 A JP 2023157915A
Authority
JP
Japan
Prior art keywords
members
laser
bus bar
thickness direction
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023126453A
Other languages
English (en)
Inventor
大烈 尹
Dairetsu In
和行 梅野
Kazuyuki Umeno
昌充 金子
Akimitsu Kaneko
淳 寺田
Atsushi Terada
史香 西野
Fumika NISHINO
暢康 松本
Nobuyasu Matsumoto
知道 安岡
Tomomichi Yasuoka
江 李
Ko Ri
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Publication of JP2023157915A publication Critical patent/JP2023157915A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/02Single bars, rods, wires, or strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/046Automatically focusing the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0608Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams in the same heat affected zone [HAZ]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0652Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/242Fillet welding, i.e. involving a weld of substantially triangular cross section joining two parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/26Seam welding of rectilinear seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • B23K26/322Bonding taking account of the properties of the material involved involving coated metal parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/003Apparatus or processes specially adapted for manufacturing conductors or cables using irradiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/02Soldered or welded connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/02Soldered or welded connections
    • H01R4/029Welded connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • H01R43/02Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for soldered or welded connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • H01R43/02Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for soldered or welded connections
    • H01R43/0221Laser welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/34Coated articles, e.g. plated or painted; Surface treated articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/38Conductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/12Copper or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/58Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation characterised by the form or material of the contacting members
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

【課題】より改善された新規なバスバーの製造方法を提供する。【解決手段】板状の複数の部材と、当該複数の部材に含まれる二つの部材を溶接した線状の溶接部と、を有したバスバーの製造方法は、例えば、二つの部材のうち一の部材の厚さ方向と交差した方向の端部と、二つの部材のうちの他の部材と、が隣接した状態で、複数のビームを含むレーザ光の照射によって、当該一の部材の厚さ方向と交差した方向の端部と当該他の部材との間に当該端部に沿う線状の溶接部を形成する。この場合、一の部材の厚さ方向と交差した方向の端部と、他の部材の厚さ方向の端部とが隣接した状態で、溶接部を形成してもよい。一の部材の厚さ方向と交差した方向の端部と、他の部材の厚さ方向と交差した方向の端部とが隣接した状態で、溶接部を形成してもよい。また、一の部材と他の部材とが互いの厚さ方向に重ねられた状態で、溶接部を形成してもよい。【選択図】図2

Description

本発明は、バスバーの製造方法に関する。
従来、複数の部材がそれらの接触部分においてスポット溶接されることにより接続されて構成されたバスバーが知られている(例えば、特許文献1)。
特開平11-297372号公報
しかしながら、スポット溶接では、例えば、複数の部材の接合強度が不十分になる場合があった。
そこで、本発明の課題の一つは、例えば、複数の部材がより接合強度の高い溶接によって接合されたバスバーを製造することができるような、より改善された新規なバスバーの製造方法を得ること、である。
本発明のバスバーにあっては、例えば、板状の複数の部材と、前記複数の部材に含まれる二つの部材を溶接し第一方向に延びた線状の溶接部と、を有したバスバーであって、前記溶接部は、前記二つの部材のうち少なくとも一つの部材の前記第一方向の略両端間に渡って設けられている。
前記バスバーでは、前記二つの部材が、いずれも、前記第一方向に延びるとともに当該第一方向と交差した同じ方向に延びてもよい。
前記バスバーでは、前記二つの部材のうち一つの部材は、前記第一方向に延びるとともに当該第一方向と交差した第二方向に延び、前記二つの部材のうちもう一つの部材は、前記第一方向に延びるとともに当該第一方向および前記第二方向と交差した第三方向に延びてもよい。
前記バスバーでは、前記二つの部材のうち少なくとも一つの部材の表面にめっき層が設けられてもよい。
前記バスバーでは、前記二つの部材のうち少なくとも一つの部材の表面に凹凸面が設けられてもよい。
前記バスバーでは、前記溶接部は、溶接金属と、前記溶接金属の周囲に位置される熱影響部と、を有し、前記溶接金属は、第一部位と、当該第一部位よりも前記溶接部の深さ方向に沿った断面における結晶粒の断面積の平均値が大きい第二部位と、を有してもよい。
前記バスバーでは、前記複数の部材のそれぞれは、銅系金属材料、およびアルミニウム系金属材料のうちいずれか一つで作られてもよい。
前記バスバーでは、前記二つの部材のうち厚さが薄い方の部材の厚さに対する、当該厚さ方向における前記溶接部の深さの比が0.8以上であってもよい。
前記バスバーでは、前記部材の厚さは、0.5[mm]以上であってもよい。
本発明のバスバーの製造方法は、例えば、板状の複数の部材と、当該複数の部材に含まれる二つの部材を溶接し第一方向に延びた線状の溶接部と、を有したバスバーの製造方法であって、前記溶接部を、複数のビームを含むレーザ光の照射によって形成する。
前記バスバーの製造方法では、前記複数のビームは、ビームシェイパによって形成されてもよい。
前記バスバーの製造方法では、前記複数のビームは、800[nm]以上かつ1200[nm]以下の波長の第一レーザ光によるビームと、550[nm]以下の波長の第二レーザ光によるビームと、を含んでもよい。
前記バスバーの製造方法では、前記第二レーザ光の波長は、400[nm]以上かつ500[nm]以下であってもよい。
前記バスバーの製造方法では、前記複数の部材を、母材からレーザ切断によって切断することにより形成してもよい。
前記バスバーの製造方法では、前記複数の部材を、平板状の押出材の切断により形成してもよい。
前記バスバーの製造方法では、前記溶接部の溶接を、カメラによる撮影画像に基づいて制御してもよい。
本発明によれば、例えば、より改善された新規なバスバーの製造方法を得ることができる。
図1は、実施形態のレーザ溶接装置の例示的な概略構成図である。 図2は、実施形態のレーザ溶接装置の加工対象としてのバスバーの一例の模式的な斜視図である。 図3は、実施形態のレーザ溶接装置の加工対象としてのバスバーの一例の模式的な斜視図である。 図4は、実施形態のレーザ溶接装置の加工対象としてのバスバーの一例の模式的な斜視図である。 図5は、実施形態のレーザ溶接装置によって加工対象の表面上に形成されるレーザ光のビーム(スポット)を示す例示的な模式図である。 図6は、照射するレーザ光の波長に対する各金属材料の光の吸収率を示すグラフである。 図7は、実施形態のレーザ溶接装置に含まれる回折光学素子の原理の概念を示す説明図である。 図8は、実施形態の溶接部の例示的かつ模式的な断面図である。 図9は、実施形態の溶接部の一部を示す例示的かつ模式的な断面図である。 図10は、実施形態のバスバーの製造方法において母材からレーザ切断によって複数の部材を切り出す工程を示す例示的な模式図である。
以下、本発明の例示的な実施形態が開示される。以下に示される実施形態の構成、ならびに当該構成によってもたらされる作用および結果(効果)は、一例である。本発明は、以下の実施形態に開示される構成以外によっても実現可能である。また、本発明によれば、構成によって得られる種々の効果(派生的な効果も含む)のうち少なくとも一つを得ることが可能である。
以下に示される実施形態は、同様の構成を備えている。よって、各実施形態の構成によれば、当該同様の構成に基づく同様の作用および効果が得られる。また、以下では、それら同様の構成には同様の符号が付与されるとともに、重複する説明が省略される場合がある。
また、各図において、X方向を矢印Xで表し、Y方向を矢印Yで表し、Z方向を矢印Zで表している。X方向、Y方向、およびZ方向は、互いに交差するとともに直交している。また、各図では、便宜上、レーザ光Lの表面Waにおける掃引方向SDがX方向に沿っている例が図示されているが、掃引方向SDは、表面Waに沿うとともにZ方向と交差していればよく、X方向のみに沿うものではない。
また、図2~4において、バスバー10、部材11、および溶接部14の方向を示すためのD1方向、D2方向、およびD3方向を、それぞれ、矢印D1、矢印D2、矢印D3で表している。D1方向、D2方向、およびD3方向は、互いに交差するとともに互いに直交している。
また、本明細書において、序数は、部品や、部材、部位、レーザ光、方向等を区別するために便宜上付与されており、優先度や順番を示すものではない。
[第1実施形態]
図1は、レーザ加工装置100の概略構成図である。図1に示されるように、レーザ加工装置100は、レーザ装置111と、レーザ装置112と、光学ヘッド120と、光ファイバ130と、コントローラ141と、を有している。
レーザ装置111,112は、それぞれ、レーザ発振器を有しており、一例としては、数kWのパワーのレーザ光を出力できるよう構成されている。また、レーザ装置111,112は、例えば、内部に複数の半導体レーザ素子を有し、当該複数の半導体レーザ素子の合計の出力として数kWのパワーのマルチモードのレーザ光を出力できるよう構成されてもよい。また、レーザ装置111,112は、ファイバレーザ、YAGレーザ、ディスクレーザ等様々なレーザ光源を有してもよい。
レーザ装置111は、800[nm]以上かつ1200[nm]以下の波長の第一レーザ光を出力する。レーザ装置111は、第一レーザ装置の一例である。レーザ装置111が有するレーザ発振器は、第一レーザ発振器の一例である。
他方、レーザ装置112は、550[nm]以下の波長の第二レーザ光を出力する。レーザ装置112は、第二レーザ装置の一例である。レーザ装置112は、400[nm]以上500[nm]以下の波長の第二レーザ光を出力するのが好適である。レーザ装置112が有するレーザ発振器は、第二レーザ発振器の一例である。
光ファイバ130は、それぞれ、レーザ装置111,112から出力されたレーザ光を光学ヘッド120に導く。
光学ヘッド120は、レーザ装置111,112から入力されたレーザ光を、加工対象Wに向かって照射するための光学装置である。光学ヘッド120は、コリメートレンズ121と、集光レンズ122と、ミラー123と、フィルタ124と、を有している。コリメートレンズ121、集光レンズ122、ミラー123、およびフィルタ124は、光学部品とも称されうる。
光学ヘッド120は、加工対象Wの表面Wa上でレーザ光Lの照射を行いながらレーザ光Lを掃引するために、加工対象Wとの相対位置を変更可能に構成されている。光学ヘッド120と加工対象Wとの相対移動は、光学ヘッド120の移動、加工対象Wの移動、または光学ヘッド120および加工対象Wの双方の移動により、実現されうる。
なお、光学ヘッド120は、図示しないガルバノスキャナ等を有することにより、表面Wa上でレーザ光Lを掃引可能に構成されてもよい。
コリメートレンズ121(121-1,121-2)は、それぞれ、光ファイバ130を介して入力されたレーザ光をコリメートする。コリメートされたレーザ光は、平行光になる。
ミラー123は、コリメートレンズ121-1で平行光となった第一レーザ光を反射する。ミラー123で反射した第一レーザ光は、Z方向の反対方向に進み、フィルタ124へ向かう。なお、第一レーザ光が光学ヘッド120においてZ方向の反対方向へ進むように入力される構成にあっては、ミラー123は不要である。
フィルタ124は、第一レーザ光を透過し、かつ第二レーザ光を透過せずに反射するハイパスフィルタである。第一レーザ光は、フィルタ124を透過してZ方向の反対方向へ進み、集光レンズ122へ向かう。他方、フィルタ124は、コリメートレンズ121-2で平行光となった第二レーザ光を反射する。フィルタ124で反射した第二レーザ光は、Z方向の反対方向に進み、集光レンズ122へ向かう。
集光レンズ122は、平行光としての第一レーザ光および第二レーザ光を集光し、レーザ光L(出力光)として、加工対象Wへ照射する。
また、レーザ加工装置100は、コントローラ141と、コントローラ141によって作動を制御される駆動機構150と、を有している。
駆動機構150は、加工対象Wに対する光学ヘッド120の相対的な位置を変更する。駆動機構150は、例えば、モータのような回転機構や、当該回転機構の回転出力を減速する減速機構、減速機構によって減速された回転を直動に変換する運動変換機構等を、有する。コントローラ141は、加工対象Wに対する光学ヘッド120のX方向、Y方向、およびZ方向における相対位置が変化するよう、駆動機構150を制御することができる。
コントローラ141は、例えば、レーザ装置111,112の作動および作動停止の切り替えや、レーザ装置111,112が出射するレーザ光のパワー等を制御してもよい。また、レーザ加工装置100が、加工対象Wの表面Waに対して不活性ガスのようなガスを供給するガス供給機構(不図示)を備えている場合、コントローラ141は、ガスの供給および供給停止を切り替えるよう、あるいは吐出するガスの流量を変更するよう、ガス供給機構を制御してもよい。
また、レーザ加工装置100は、カメラ170と、カメラ170へ光を導く光学部品としてのフィルタ127およびミラー128と、を有している。フィルタ127は、ミラー123とフィルタ124との間に設けられている。フィルタ127は、ミラー123からの第一レーザ光をフィルタ124へ向けて透過するとともに、表面Waからの光(例えば、可視光)をミラー128に向けて反射する。ミラー128で反射した光は、カメラ170に入力される。このような構成により、カメラ170は、表面Wa上の画像を撮影することができる。カメラ170による撮影画像には、例えば、表面Waの画像と、レーザ光Lによるビーム(スポット)の画像とが、含まれうる。よって、カメラ170による撮影画像は、表面Wa上に形成されるスポットの所定位置に対するずれの検出結果と言うことができ、カメラ170は、当該ずれを検出するセンサの一例であると言うことができる。なお、撮影画像の画角におけるスポットの位置が固定している場合にあっては、撮影画像には、レーザ光Lの照射目標が含まれていればよく、スポットの画像は含まれている必要は無い。
また、コントローラ141は、カメラ170による撮影画像から、スポットの所定位置に対するずれを検出し、当該ずれを補正するよう、駆動機構150を制御することができる。また、コントローラ141は、当該ずれが所定の閾値以内となるよう制御を実行するフィードバック制御を実行してもよい。この場合、コントローラ141および駆動機構150は、補正機構の一例である。このような構成により、レーザ光の照射位置の精度を高めることができる。
図1に示されるように、レーザ加工装置100は、二つの部材11の接触部分にレーザ光Lを照射し、当該二つの部材11を溶接する。図1にはバスバー10を構成する複数の部材11の中の二つの部材11が溶接部14によって溶接される1箇所のみが示されている。バスバー10に含まれる複数の部材11は、いずれも導電性を有した金属材料で作られている。部材11は、金属部材あるいは導体とも称されうる。溶接部14は、それぞれ、二つの部材11を、機械的かつ電気的に接続する。各溶接部14によって複数の部材11が接続されることにより、バスバー10が構成される。
図1の例では、二つの部材11がY方向に並んでいる。二つの部材11のZ方向の端面はY方向に面一に並び、加工対象Wの表面Waを構成している。表面Waは、Z方向と交差して広がり、光学ヘッド120と面している。光学ヘッド120から出射されたレーザ光Lは、Z方向の反対方向に進み、表面Waに照射される。溶接部14は、表面WaからZ方向の反対方向に延びる。この例では、溶接部14の深さ方向は、Z方向の反対方向である。なお、図1では、一例として、表面Waは平面であるが、表面Waは、段差面であってよい。また、表面Waは、凸曲面や凹曲面等であってもよい。
また、レーザ光Lは、表面Wa上で掃引方向SD(図1に示されている部位においてはX方向)に、掃引されることにより、溶接部14は、図1と略同様の断面形状で、掃引方向SDにも延びることになる。掃引方向SDは、溶接部14の延び方向あるいは長手方向とも称され、第一方向の一例である。また、Z方向および掃引方向SDとの直交方向(図1に示されている部位においてはY方向)は、溶接部14の幅方向とも称されうる。
本実施形態のレーザ加工装置100は、加工対象Wに対して、第一レーザ光および第二レーザ光を含むレーザ光Lを照射することができるとともに、第一レーザ光のみを含むレーザ光Lを照射することもできるし、第二レーザ光のみを含むレーザ光Lを照射することもできる。第一レーザ光のみを照射する場合は、レーザ装置112は作動せず、第二レーザ光のみを照射する場合は、レーザ装置111は作動しない。また、レーザ加工装置100は、レーザ装置112や、コリメートレンズ121-2、フィルタ124等を有しない第一レーザ光のみを照射可能な装置であってもよいし、レーザ装置111や、コリメートレンズ121-1、ミラー123等を有しない第二レーザ光のみを照射可能な装置であってもよい。
図2~4は、レーザ加工装置100によって作成したバスバー10の斜視図である。図2~4の例では、バスバー10を構成する複数の部材11は、いずれも四角形状かつ平板状の形状を有している。これにより、複数の部材11を、より容易に得ることができる。ただし、複数の部材11は、このような形状には限定されない。
図2に例示されるバスバー10は、溶接部14(14-1,14-2,14-3)で溶接された四つの板状の部材11を有している。溶接部14は、それぞれ、二つの部材11を溶接している。
溶接部14-1は、二つの部材11-1,11-2を溶接している。部材11-1は、D1方向およびD2方向に延びるとともに、部材11-2は、D1方向およびD3方向に延びている。部材11-1,11-2は互いに交差するとともに互いに直交している。溶接部14-1は、部材11-1,11-2の突き合わせによって形成されるD1方向に延びる二箇所の隅部において、当該D1方向に線状に延びている。溶接部14-1においては、D1方向は、部材11-1,11-2の幅方向である。溶接部14-1の溶接に際し、レーザ光Lは、当該隅部に向けて照射され、D1方向に掃引される。そして、溶接部14-1は、部材11-1および部材11-2のD1方向の略両端間、すなわち、ほぼ一方の端部11aと他方の端部11aとの間に渡って設けられる。なお、溶接部14-1は、部材11-1の厚さ方向の両側に設けられているが、これには限定されず、二箇所の溶接部14-1のうちいずれか一方のみが設けられてもよい。溶接部14-1が厚さ方向の両側に設けられた場合には、厚さ方向の片側のみに設けられた場合よりも接合強度が高くなるとともに、電気抵抗をより小さくできる。また、二箇所の溶接部14-1は、互いに重なってもよい。溶接部14-1において、D1方向は、第一方向の一例であり、D2方向は、第二方向の一例であり、D3方向は、第三方向の一例である。
溶接部14-2は、二つの部材11-2,11-3を溶接している。部材11-2は、D1方向およびD3方向に延びるとともに、部材11-3は、D1方向およびD2方向に延びている。部材11-2,11-3は互いに交差するとともに互いに直交している。溶接部14-2は、部材11-2,11-3の突き合わせによって形成されるD1方向に延びる隅部および境界のそれぞれにおいて、当該D1方向に線状に延びている。溶接部14-2においては、D1方向は、部材11-2,11-3の幅方向である。溶接部14-2の溶接に際し、レーザ光Lは、当該隅部および境界に向けてそれぞれ照射され、D1方向に掃引される。そして、溶接部14-2は、部材11-2および部材11-3のD1方向の略両端間、すなわち、ほぼ一方の端部11aと他方の端部11aとの間に渡って設けられる。なお、溶接部14-2は、部材11-3の厚さ方向の両側に設けられているが、これには限定されず、二箇所の溶接部14-2のうちいずれか一方のみが設けられてもよい。溶接部14-2が厚さ方向の両側に設けられた場合には、厚さ方向の片側のみに設けられた場合よりも接合強度が高くなるとともに、電気抵抗をより小さくできる。また、二箇所の溶接部14-2は、互いに重なってもよい。溶接部14-2において、D1方向は、第一方向の一例であり、D3方向は、第二方向の一例であり、D2方向は、第三方向の一例である。
溶接部14-3は、二つの部材11-3,11-4を溶接している。部材11-3および部材11-4ともに、D1方向およびD2方向に延びている。部材11-3,11-4はD1方向に並べられるとともに突き合わせられている。溶接部14-3は、部材11-3,11-4の突き合わせによって形成されるD2方向に延びる境界において、D2方向に線状に延びている。溶接部14-3の溶接に際し、レーザ光Lは、当該境界に向けて照射され、D2方向に掃引される。そして、溶接部14-3は、部材11-4のD2方向の略両端間、すなわち、ほぼ一方の端部11aと他方の端部11aとの間に渡って設けられる。なお、溶接部14-3は、部材11-3および部材11-4の厚さ方向の両側に設けられてもよい。溶接部14-3において、D2方向は、第一方向の一例であり、D1方向は、第一方向と交差した同じ方向の一例である。
このような構成によれば、溶接部14は、第一方向に線状に延びるとともに、当該溶接部14が溶接する二つの部材11のうち少なくとも一つの部材11の当該第一方向の略両端間に渡って延びているため、スポット溶接される場合に比べて、溶接部14における接合強度がより高くなりやすい。
図3に例示されるバスバー10は、溶接部14(14-4)で溶接された二つの板状の部材11を有している。ただし、二つの部材11は、直交せず斜めに交差した状態で突き合わされている。この場合も、溶接部14-4は、二つの部材11のD1方向の略両端間で、D1方向に線状に延びている。このような構成においても、図2の例と同様の溶接部14によって二つの部材11が接合されることによる図2の例と同様の効果が得られる。なお、溶接部14-4は、部材11の厚さ方向の両側に設けられているが、これには限定されず、二箇所の溶接部14-4のうちいずれか一方のみが設けられてもよい。溶接部14-4が厚さ方向の両側に設けられた場合には、厚さ方向の片側のみに設けられた場合よりも接合強度が高くなる。
図4に例示されるバスバー10は、二箇所の溶接部14(14-5,14-6)で溶接された二つの板状の部材11を有している。ただし、二つの部材11は、いずれもD1方向およびD2方向に延びており、端部同士がD3方向に重なっている。この場合も、溶接部14-5,14-6は、二つの部材11のD1方向の略両端間で、D1方向に線状に延びている。このような構成においても、図2の例と同様の溶接部14によって二つの部材11が接合されることによる図2の例と同様の効果が得られる。
また、図2~4の例において、部材11は、押出成形によって得られた押出材であってもよい。押出材は、略一定の断面形状を有した部材であり、例えば、線材や、平角線、帯状かつ平板状の部材等である。母材20を、押出方向(長手方向)と交差する断面で切断することにより、各部材11を得ることができる。このような製造方法によれば、例えば、製造の手間およびコストをより低減することができる。
図5は、平面状の表面Wa上に照射されたレーザ光Lのビーム(スポット)を示す模式図である。ビームB1およびビームB2のそれぞれは、そのビームの光軸方向と直交する断面の径方向において、たとえばガウシアン形状のパワー分布を有する。ただし、ビームB1およびビームB2のパワー分布はガウシアン形状に限定されない。また、図5のように各ビームB1,B2を円で表している各図において、当該ビームB1,B2を表す円の直径が、各ビームB1,B2のビーム径である。各ビームB1,B2のビーム径は、そのビームのピークを含み、ピーク強度の1/e以上の強度の領域の径として定義する。なお、図示されないが、円形でないビームの場合は、掃引方向SDと垂直方向における、ピーク強度の1/e以上の強度となる領域の長さをビーム径と定義できる。また、表面Waにおけるビーム径は、スポット径と称する。
図5に示されるように、本実施形態では、一例として、レーザ光Lのビームは、表面Wa上において、第一レーザ光のビームB1と第二レーザ光のビームB2とが重なり、ビームB2がビームB1よりも大きく(広く)、かつ、ビームB2の外縁B2aがビームB1の外縁B1aを取り囲むよう、形成されている。この場合、ビームB2のスポット径d2は、ビームB1のスポット径d1よりも大きい。表面Wa上において、ビームB1は、第一スポットの一例であり、ビームB2は、第二スポットの一例である。
また、本実施形態では、図5に示されるように、表面Wa上において、レーザ光Lのビーム(スポット)は、中心点Cに対する点対称形状を有しているため、任意の掃引方向SDについて、スポットの形状は同じになる。よって、レーザ光Lの表面Wa上での掃引のために光学ヘッド120と加工対象Wとを相対的に動かす移動機構を備える場合、当該移動機構は、少なくとも相対的に並進可能な機構を有すればよく、相対的に回転可能な機構は省略できる場合がある。なお、ビームB1,B2は、両方とも第一レーザ光であってもよいし、両方とも第二レーザ光であってもよい。また、ビームは、第一レーザ光または第二レーザ光の一つのビームであってもよい。
加工対象Wとしての二つの部材11は、それぞれ、導電性を有した金属材料で作られうる。金属材料は、例えば、銅系金属材料や、アルミニウム系金属材料、などであり、具体的には、銅や、銅合金、アルミニウム、アルミニウム合金、錫めっきが施された銅、錫めっきが施された銅合金、錫めっきが施されたアルミニウム、錫めっきが施されたアルミニウム合金等である。二つの部材11は、同じ材料で作られてもよいし、異なる材料で作られてもよい。また、めっき層は、錫めっきには限定されず、例えば、ニッケルめっきのような他のめっきであってもよい。
[波長と光の吸収率]
ここで、金属材料の光の吸収率について説明する。図6は、照射するレーザ光Lの波長に対する各金属材料の光の吸収率を示すグラフである。図6のグラフの横軸は波長であり、縦軸は吸収率である。図6には、アルミニウム(Al)、銅(Cu)、金(Au)、ニッケル(Ni)、銀(Ag)、タンタル(Ta)、およびチタン(Ti)について、波長と吸収率との関係が示されている。
材料によって特性が異なるものの、図6に示されている各金属に関しては、一般的な赤外線(IR)のレーザ光(第一レーザ光)を用いるよりも、青や緑のレーザ光(第二レーザ光)を用いた方が、エネルギの吸収率がより高いことが理解できよう。この特徴は、銅(Cu)や、金(Au)等においては顕著となる。
使用波長に対して吸収率が比較的低い加工対象Wにレーザ光が照射された場合、大部分の光エネルギは反射され、加工対象Wに熱としての影響を及ぼさない。そのため、十分な深さの溶融領域を得るには比較的高いパワーを与える必要がある。その場合、ビーム中心部は急激にエネルギが投入されることで、昇華が生じ、キーホールが形成される。
他方、使用波長に対して吸収率が比較的高い加工対象Wにレーザ光が照射された場合、投入されるエネルギの多くが加工対象Wに吸収され、熱エネルギへと変換される。すなわち、過度なパワーを与える必要はないため、キーホールの形成を伴わず、熱伝導型の溶融となる。
本実施形態では、加工対象Wの第二レーザ光に対する吸収率が、第一レーザ光に対する吸収率よりも高くなるよう、第一レーザ光の波長、第二レーザ光の波長、および加工対象Wの材質が、選択される。この場合、掃引方向が図6に示される掃引方向SDである場合、レーザ光Lのスポットの掃引により、加工対象Wの溶接される部位(以下、被溶接部位と称する)には、まずは、第二レーザ光のビームB2の、図5におけるSDの前方に位置する領域B2fによって、第二レーザ光が照射される。その後、被溶接部位には、第一レーザ光のビームB1が照射され、その後、第二レーザ光のビームB2の、掃引方向SDの後方に位置する領域B2bによって、再度第二レーザ光が照射される。
したがって、被溶接部位には、まずは、領域B2fにおける吸収率が高い第二レーザ光の照射により、熱伝導型の溶融領域が生じる。その後、被溶接部位には、第一レーザ光の照射によって、より深いキーホール型の溶融領域が生じる。この場合、被溶接部位には、予め熱伝導型の溶融領域が形成されているため、当該熱伝導型の溶融領域が形成されない場合に比べて、より低いパワーの第一レーザ光によって所要の深さの溶融領域を形成することができる。さらにその後、被溶接部位には、領域B2bにおける吸収率が高い第二レーザ光の照射により、溶融状態が変化する。このような観点から、第二レーザ光の波長は550[nm]以下とするのが好ましく、500[nm]以下とするのがより好ましい。
また、発明者らの実験的な研究により、図5のようなビームのレーザ光Lの照射による溶接にあっては、スパッタやブローホールのような溶接欠陥を低減できることが確認されている。これは、ビームB1が到来する前にビームB2の領域B2fによって加工対象Wを予め加熱しておくことにより、ビームB2およびビームB1によって形成される加工対象Wの溶融池がより安定化するためであると推定できる。
[溶接方法]
レーザ加工装置100を用いた溶接にあっては、まず、二つの部材11が一体的に仮止めされた加工対象Wが、レーザ光Lが表面Waに照射されるようにセットされる。そして、レーザ光Lが表面Waに照射されている状態で、レーザ光Lと加工対象Wとが相対的に動かされる。これにより、レーザ光Lが表面Wa上に照射されながら当該表面Wa上を掃引方向SDに移動する(掃引する)。レーザ光Lが照射された部分は、溶融し、その後、温度の低下に伴って凝固することにより、二つの部材11が溶接される。二つの部材11の溶接が、一箇所以上で行われ、バスバー10が構成される。
[DOE]
また、図1に示されるように、光学ヘッド120は、コリメートレンズ121-1とミラー123との間に、DOE125を有している。
DOE125は、第一レーザ光のビームB1の形状(以下、ビーム形状と称する)を成形する。図7に概念的に例示されるよう、DOE125は、例えば、周期の異なる複数の回折格子125aが重ね合わせられた構成を備えている。DOE125は、平行光を、各回折格子125aの影響を受けた方向に曲げたり、重ね合わせたりすることにより、ビーム形状を成形することができる。DOE125は、ビームシェイパとも称されうる。
なお、光学ヘッド120は、コリメートレンズ121-2の後段に設けられ第二レーザ光のビーム形状を調整するビームシェイパや、フィルタ124の後段に設けられ第一レーザ光および第二レーザ光のビーム形状を調整するビームシェイパ等を有してもよい。ビームシェイパによってレーザ光Lのビーム形状を適宜に整えることにより、溶接において溶接欠陥の発生をより一層抑制することができる。また、DOE125により、第一レーザ光のビームを、複数のビームに分割することができる。なお、光学ヘッド120は、DOE125を有しなくてもよい。
[溶接部の断面]
図8は、加工対象Wに形成された溶接部14の一例を示す断面図である。図8は、第一レーザ光によるビームB1と第二レーザ光によるビームB2とを含むレーザ光Lを照射した場合の例である。なお、照射されるレーザ光に応じて、断面の形態は異なる。
図8は、掃引方向SD(図8ではX方向)と垂直であるとともに厚さ方向(Z方向、溶接部14の深さ方向)に沿う断面図である。溶接部14は、掃引方向SD、すなわち図8の紙面と垂直な方向にも、延びている。なお、図8は、厚さ2[mm]の1枚の銅板である加工対象Wに形成された溶接部14の断面を示している。二つの部材11を接合する溶接部14の形態は、図8に示される1枚の金属材料である加工対象Wに形成された溶接部14の形態と略同等であると推定できる。
図8に示されるように、溶接部14は、表面WaからZ方向の反対方向に延びた溶接金属14aと、当該溶接金属14aの周囲に位置される熱影響部14bと、を有している。溶接金属14aは、レーザ光Lの照射によって溶融し、その後凝固した部位である。溶接金属14aは、溶融凝固部とも称されうる。また、熱影響部14bは、加工対象Wの母材(溶接の母材)が熱影響を受けた部位であって、溶融はしていない部位である。
溶接金属14aのY方向に沿う幅は、表面Waから離れるほど狭くなっている。すなわち、溶接金属14aの断面は、Z方向の反対方向に向けて細くなるテーパ形状を有している。
また、発明者らによる当該断面の詳細な分析により、溶接金属14aは、表面Waから離れた第一部位14a1と、第一部位14a1と表面Waとの間の第二部位14a2と、を含むことが判明した。
第一部位14a1は、第一レーザ光の照射によるキーホール型の溶融によって得られた部位であり、第二部位14a2は、第二レーザ光のビームB2中の掃引方向SDの後方に位置する領域B2bの照射による溶融によって得られた部位である。EBSD法(electron back scattered diffraction pattern、電子線後方散乱回折)による解析により、第一部位14a1と第二部位14a2とでは、結晶粒のサイズが異なっており、具体的には、X方向(掃引方向SD)と直交する断面において、第二部位14a2の結晶粒の断面積の平均値は、第一部位14a1の結晶粒の断面積の平均値よりも大きいことが判明した。
発明者らは、加工対象Wに、第一レーザ光のビームB1のみが照射された場合、すなわちビームB2中の掃引方向SDの後方に位置する領域B2bの照射が無かった場合には、第二部位14a2が形成されず、第一部位14a1が表面WaからZ方向の反対方向に深く延びていることを確認した。すなわち、本実施形態にあっては、ビームB2中の掃引方向SDの後方に位置する領域B2bの照射によって、表面Waの近くに第二部位14a2が形成されるため、第一部位14a1は、当該第二部位14a2に対して表面Waとは反対側、言い換えると、表面WaからZ方向の反対方向に離れた位置に、形成されていると推定できる。
図9は、溶接部14の一部の一例を示す断面図である。図9は、EBSD法によって得られた結晶粒の境界を示している。また、図9中、一例として結晶粒径が13[μm]以下の結晶粒Aは、黒色に塗られている。なお、13[μm]は、物理的特性の閾値ではなく、当該実験結果の分析のために設定した閾値である。また、図9から、結晶粒Aは、第一部位14a1には比較的多く存在し、第二部位14a2には比較的少なく存在していることが明らかである。すなわち、第二部位14a2内の結晶粒の断面積の平均値は、第一部位14a1内の結晶粒の断面積の平均値よりも大きい。発明者らは、実験的な分析により、第二部位14a2内の結晶粒の断面積の平均値は、第一部位14a1内の結晶粒の断面積の平均値の1.8倍以上であることを確認した。
図9中の領域I内に示されているように、このような比較的サイズが小さい結晶粒Aは、表面WaからZ方向に離れた位置で、Z方向に細長く延びた状態で密集している。また、X方向(掃引方向SD)の位置が異なる複数箇所での分析から、結晶粒Aが密集した領域は、掃引方向SDにも延びていることが確認されている。掃引しながらの溶接であるため、掃引方向SDには結晶が同様の形態に形成されることが推定できる。
断面における外観あるいは硬度分布等からは第一部位14a1と第二部位14a2とを判別し難い場合にあっては、図8,9のような、溶接金属14aの表面Waにおける位置および幅wbから幾何学的に定めた第一領域Z1および第二領域Z2を、それぞれ、第一部位14a1および第二部位14a2としてもよい。一例として、第一領域Z1および第二領域Z2は、掃引方向SDと直交する断面において、幅wm(Y方向における等幅)で、Z方向に延びた四角形状の領域であり、第二領域Z2は、表面WaからZ方向に深さdまでの領域とし、第一領域Z1は、深さdよりもさらに深い領域、言い換えると深さdの位置に対して表面Waとは反対側の領域とすることができる。幅wmは、例えば、溶接金属14aの表面Waでの幅wb(ビード幅の平均値)の1/3とし、第二領域Z2の深さd(高さ、厚さ)は、例えば、幅wbの1/2とすることができる。また、第一領域Z1の深さは、例えば、第二領域Z2の深さdの3倍とすることができる。発明者らは、複数サンプルに対する実験的な分析により、このような第一領域Z1および第二領域Z2の設定において、第二領域Z2における結晶粒の断面積の平均値は、第一領域Z1における結晶粒の断面積の平均値よりも大きく、かつ、1.8倍以上となっていたことを確認した。このような判別も、溶接により、溶接金属14aにおいて第一部位14a1と第二部位14a2とが形成されていることの証拠となりうる。
また、発明者らの実験を含めた研究により、溶接部14において、当該溶接部14によって溶接される二つの部材11のうち厚さが薄い方の部材11の厚さに対する、当該厚さ方向における溶接部14の深さ(溶接金属14aの当該厚さ方向における長さ)の比は、0.8以上であるのが好ましく、0.9以上であるのがより好ましいことが判明した。このような深い溶け込みを形成することにより、接合強度を確保して複雑なバスバー10の構造を実現することが可能になるとともに、電気抵抗を小さくすることが可能になる。さらに、波長が互いに異なる第一レーザ光と第二レーザ光とを含むレーザ光Lの照射により溶接を行うことにより、スパッタやブローホールのような溶接欠陥が生じるのを抑制することができる。
また、部材11の厚さは、0.5[mm]以上であるのが好ましく、1.0[mm]以上であるのがより好ましく、2.0[mm]以上であるのがより一層好ましい。本実施形態の溶接方法によれば、より深い溶け込みを形成することができるため、このような厚さの厚い二つの部材11の溶接においても、より強固な接合状態が得られるとともに、電気抵抗をより小さくすることが可能になる。さらに、波長が互いに異なる第一レーザ光と第二レーザ光とを含むレーザ光Lの照射により溶接を行うことにより、このような厚さの厚い二つの部材11の溶接においても、スパッタやブローホールのような溶接欠陥が生じるのを抑制することができる。
以上、説明したように、本実施形態のバスバー10では、二つの部材11を溶接する溶接部14は、第一方向に線状に延びるとともに、二つの部材11のうち少なくとも一つの部材11の第一方向の略両端間に渡って設けられている。
このような構成によれば、例えば、二つの部材11がスポット溶接によって接合される場合に比べて、例えば、溶接部14による接合強度をより高くすることができたり、溶接部14における電気抵抗をより小さくすることができたりといった、利点が得られる。また、仮に、バスバー10をプレスにより製造した場合には、プレスのための型の費用が嵩み、その分、バスバー10の製造のコスト、ひいてはバスバー10の価格が高くなりやすい。この点、本実施形態によれば、複数の部材11を溶接することでバスバー10を任意の形状に構成することができるため、バスバー10をより安価に製造することができるという利点も得られる。
また、本実施形態のバスバー10では、例えば、D2方向(第一方向)に延びる溶接部14-3によって溶接される二つの部材11-3,11-4は、いずれも、当該D2方向に延びるとともに当該D2方向と交差したD1方向(同じ方向)に延びてもよいし、溶接部14-1によって溶接される二つの部材11のうち一つの部材11-1は、D1方向(第一方向)に延びるとともに当該D1方向と交差したD2方向(第二方向)に延び、二つの部材11のうちもう一つの部材11-2は、D1方向に延びるとともに当該D1方向およびD2方向と交差したD3方向(第三方向)に延びてもよい。このように、本実施形態の溶接部14は、種々の姿勢で配置された二つの部材11の溶接に、適用することができ、ひいては、任意の形状のバスバー10を得ることができる。
また、本実施形態のバスバー10では、二つの部材11のうち少なくとも一つの部材11の表面には、めっき層が設けられてもよいし、二つの部材11のうち少なくとも一つの部材11の表面には、例えば、サンドブラストや、ショットピーニング、レーザ加工、ケミカルエッチング等の表面処理により、微少な凹凸(凹凸テクスチャ)が設けられてもよい。本実施形態の溶接部14は、このような二つの部材11の接合に、適用することができる。また、このような構成によれば、例えば、部材11の表面にめっき層が設けられていることによる損傷あるいは腐食の防止効果や、部材11の表面に微少な凹凸が設けられていることによる放熱性の向上効果等を、得ることができる。なお、めっき層や凹凸を形成する表面処理は、溶接部14によって溶接する前の平板状の部材11に施すのが好適である。これにより、アセンブリされたバスバー10に表面処理を施す場合に比べてより容易に表面処理を施すことができたり、あるいは場所ごとに所要の特性を得るのに適した条件で表面処理を施したりすることができる。
また、本実施形態のバスバー10の製造方法にあっては、例えば、複数のビームを含むレーザ光の照射によって、溶接部14を形成してもよい。このような製造方法によれば、例えば、主ビームの前に照射する副ビームの予熱効果により、スパッタやブローホールが抑制された、より高品質な溶接部14を形成することができる。
また、本実施形態のバスバーの製造方法にあっては、例えば、複数のビームは、DOE125(ビームシェイパ)によって形成してもよい。このような製造方法によれば、一つのレーザ光から複数のビームを形成することができるので、例えば、より簡素な構成のレーザ加工装置100によってより高品質な溶接部14を溶接できたり、レーザ加工装置100の溶接によるエネルギ消費をより少なくできる場合もあったり、といった利点が得られる。
また、本実施形態のバスバーでは、溶接部14は、溶接金属14aと、熱影響部14bとを有し、溶接金属14aは、第一部位14a1と、当該第一部位14a1よりも溶接部14の深さ方向に沿った断面における結晶粒の断面積の平均値が大きい第二部位14a2と、を有してもよい。
また、本実施形態のバスバーの製造方法にあっては、複数のビームB1,B2は、800[nm]以上かつ1200[nm]以下の波長の第一レーザ光によるビームB1と、400[nm]以上かつ500[nm]以下の波長の第二レーザ光によるビームB2と、を含んでもよい。
上述したように、発明者らは、表面Wa上にこのようなビームB1,B2を形成するレーザ光Lのビームの照射による溶接にあっては、溶接欠陥をより一層低減でき、溶接部14において、第一部位14a1および第二部位14a2を有する溶接金属14aと、熱影響部14bとが形成されることを確認した。これは、上述したように、第一レーザ光によるビームB1が到来する前に第二レーザ光によるビームB2の領域B2fによって加工対象Wを予め加熱しておくことにより、ビームB2およびビームB1によって形成される加工対象Wの溶融池がより一層安定化するためであると推定できる。よって、このようなビームB1,B2を有したレーザ光Lによれば、例えば、より溶接欠陥の少ないより溶接品質の高い溶接を実行することができる。このような効果は、一つのレーザ光をDOE125(ビームシェイパ)によって分割する場合よりも顕著であるし、複数のビームB1,B2をDOE125によってさらに分割する場合には、より一層顕著となる。また、このようなビームB1,B2の設定によれば、例えば、第一レーザ光のパワーをより低くすることができるという利点も得られる。また、ビームB1とビームB2とが同軸で照射される場合にあっては、光学ヘッド120と加工対象Wとの相対的な回転が不要となるという利点も得られる。
また、本実施形態では、例えば、二つの部材11のそれぞれは、銅系金属材料、およびアルミニウム系金属材料のうちのいずれか一つで作られる。バスバー10が、例えば、振動が大きい環境下で使用されるような場合には、当該振動によりバスバー10と他の部材との接続箇所等が損傷する虞がある。このような場合には、バスバー10を構成する複数の部材11のうちの少なくとも一つをばね性の高い材料で作ることにより、バスバー10の柔軟性を高めることができ、ひいてはバスバー10や当該バスバー10と接続される他の部材に、振動による不都合な事象が生じるのを抑制することができる。この場合、要求される機械的特性や電気的特性等に応じて適宜に材料を選択したり組み合わせたりすることにより、より好適なバスバー10を作製することができる。なお、ばね性の高い材料としては、例えば、リン青銅や、ベリリウム銅、C7025、C64770、C18142、C18045等がある。
また、本実施形態では、例えば、溶接部14の溶接を、カメラ170による撮影画像に基づいて制御してもよい。このような製造方法によれば、溶接部14をより精度よく形成することができる。
[第2実施形態]
図10は、本実施形態の複数の部材11の製造方法を示す斜視図である。図10に示されるように、複数の部材11は、レーザ光Lの照射により母材20(切断の母材)を切断して形成することができる。仮に、部材11をプレスにより形成した場合には、プレスのための型の費用が嵩み、その分、部材11およびバスバー10の製造のコスト、ひいてはバスバー10の価格が高くなりやすい。この点、本実施形態によれば、母材20をレーザ切断することで複数の部材11を形成することができるため、当該複数の部材11ひいてはバスバー10をより安価に製造することができるという利点も得られる。
また、母材20をレーザ切断して複数の部材11を得るためのレーザ光Lは、レーザ加工装置100の光学ヘッド120から照射することができる。この場合、母材20に対するレーザ切断の場合と、二つの部材11に対するレーザ溶接、すなわち溶接部14の形成の場合とで、レーザ加工装置100の各部の設定は変更される。例えば、レーザ切断の際には第一レーザ光(ビームB1)のみを照射するのに対してレーザ溶接の際には第一レーザ光(ビームB1)および第二レーザ光(ビームB2)を照射したり、レーザ溶接の際にはレーザ切断の際よりもレーザ装置111,112の出力をより小さく設定したりすることができる。また、レーザ加工装置100は、レーザ切断時に、必要に応じて、光学ヘッド120からあるいは光学ヘッド120とは別のノズルから加工対象Wに向けて不活性ガスを吹き付けることが可能なガス供給機構を備えてもよい。なお、レーザ切断とレーザ溶接との場合でのレーザ加工装置100の設定の違いは、これらには限定されない。
以上、本発明の実施形態が例示されたが、上記実施形態は一例であって、発明の範囲を限定することは意図していない。上記実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、組み合わせ、変更を行うことができる。また、各構成や、形状、等のスペック(構造や、種類、方向、型式、大きさ、長さ、幅、厚さ、高さ、数、配置、位置、材質等)は、適宜に変更して実施することができる。
例えば、加工対象に対してレーザ光を掃引する際に、公知のウォブリングやウィービングや出力変調等により掃引を行い、溶融池の表面積を調節するようにしてもよい。
10…バスバー
11,11-1~11-4…部材
11a…端部
14,14-1~14-6…溶接部
14a…溶接金属
14a1…第一部位
14a2…第二部位
14b…熱影響部
20…(切断の)母材
100…レーザ加工装置
111…レーザ装置(第一レーザ発振器)
112…レーザ装置(第二レーザ発振器)
120…光学ヘッド
121,121-1,121-2…コリメートレンズ
122…集光レンズ
123…ミラー
124…フィルタ
125…DOE(回折光学素子)
125a…回折格子
127…フィルタ
128…ミラー
130…光ファイバ
141…コントローラ
150…駆動機構
170…カメラ
A…結晶粒
B1…ビーム(第一スポット)
B1a…外縁
B2…ビーム(第二スポット)
B2a…外縁
B2b…領域
B2f…領域
C…中心点
d1…スポット径(外径)
d2…スポット径(外径)
d…深さ
D1~D3…方向
L…レーザ光
SD…掃引方向
W…加工対象
Wa…表面
wb…(溶接金属の表面での)幅
wm…(第一領域および第二領域の)幅
X…方向
Y…方向
Z…方向
Z1…第一領域(第一部位)
Z2…第二領域(第二部位)

Claims (14)

  1. 板状の複数の部材と、当該複数の部材に含まれる二つの部材を溶接した線状の溶接部と、を有したバスバーの製造方法であって、
    前記二つの部材のうち一の部材の厚さ方向と交差した方向の端部と、前記二つの部材のうちの他の部材と、が隣接した状態で、複数のビームを含むレーザ光の照射によって、当該一の部材の厚さ方向と交差した方向の端部と当該他の部材との間に当該端部に沿う線状の前記溶接部を形成する、バスバーの製造方法。
  2. 前記一の部材の厚さ方向と交差した方向の端部と、前記他の部材の厚さ方向の端部とが隣接した状態で、前記溶接部を形成する、請求項1に記載のバスバーの製造方法。
  3. 前記一の部材の厚さ方向と交差した方向の端部と、前記他の部材の厚さ方向と交差した方向の端部とが隣接した状態で、前記溶接部を形成する、請求項1に記載のバスバーの製造方法。
  4. 前記一の部材の厚さ方向と交差した方向の端部と、前記他の部材の厚さ方向と交差した方向の端部とが隣接し、かつ前記一の部材の厚さ方向と前記他の部材の厚さ方向とが平行である状態で、前記溶接部を形成する、請求項3に記載のバスバーの製造方法。
  5. 前記一の部材の厚さ方向と交差した方向の端部と、前記他の部材の厚さ方向と交差した方向の端部とが隣接し、かつ前記一の部材の厚さ方向と前記他の部材の厚さ方向とが非平行である状態で、前記溶接部を形成する、請求項3に記載のバスバーの製造方法。
  6. 前記一の部材と前記他の部材とが互いの厚さ方向に重ねられた状態で、前記溶接部を形成する、請求項1に記載のバスバーの製造方法。
  7. 前記一の部材の厚さ方向と交差した方向の端部において厚さ方向の一方の端部と他の部材との間のみに前記溶接部を形成する、請求項1~6のうちいずれか一つに記載のバスバーの製造方法。
  8. 前記一の部材の厚さ方向と交差した方向の端部において厚さ方向の一方および他方の端部のそれぞれと他の部材との間に前記溶接部を形成する、請求項1~5のうちいずれか一つに記載のバスバーの製造方法。
  9. 前記複数のビームは、ビームシェイパによって形成される、請求項1~8のうちいずれか一つに記載のバスバーの製造方法。
  10. 前記複数のビームは、800[nm]以上かつ1200[nm]以下の波長の第一レーザ光によるビームと、550[nm]以下の波長の第二レーザ光によるビームと、を含む、請求項1~9のうちいずれか一つに記載のバスバーの製造方法。
  11. 前記第二レーザ光の波長は、400[nm]以上かつ500[nm]以下である、請求項10に記載のバスバーの製造方法。
  12. 前記複数の部材を、母材からレーザ切断によって切断することにより形成する、請求項1~11のうちいずれか一つに記載のバスバーの製造方法。
  13. 前記複数の部材を、平板状の押出材の切断により形成する、請求項1~11のうちいずれか一つに記載のバスバーの製造方法。
  14. 前記溶接部の溶接を、カメラによる撮影画像に基づいて制御する、請求項1~13のうちいずれか一つに記載のバスバーの製造方法。
JP2023126453A 2020-06-25 2023-08-02 バスバーの製造方法 Pending JP2023157915A (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020109783 2020-06-25
JP2020109783 2020-06-25
JP2022532543A JP7326617B2 (ja) 2020-06-25 2021-06-24 バスバーおよびバスバーの製造方法
PCT/JP2021/023998 WO2021261565A1 (ja) 2020-06-25 2021-06-24 バスバーおよびバスバーの製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2022532543A Division JP7326617B2 (ja) 2020-06-25 2021-06-24 バスバーおよびバスバーの製造方法

Publications (1)

Publication Number Publication Date
JP2023157915A true JP2023157915A (ja) 2023-10-26

Family

ID=79281366

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2022532543A Active JP7326617B2 (ja) 2020-06-25 2021-06-24 バスバーおよびバスバーの製造方法
JP2023126453A Pending JP2023157915A (ja) 2020-06-25 2023-08-02 バスバーの製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2022532543A Active JP7326617B2 (ja) 2020-06-25 2021-06-24 バスバーおよびバスバーの製造方法

Country Status (4)

Country Link
US (1) US20230096039A1 (ja)
JP (2) JP7326617B2 (ja)
CN (1) CN115697623A (ja)
WO (1) WO2021261565A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022208482A1 (de) 2022-08-16 2024-02-22 Zf Friedrichshafen Ag Schaltring für eine elektrische Maschine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3384743B2 (ja) * 1998-04-13 2003-03-10 株式会社オートネットワーク技術研究所 バスバーのレーザ溶接構造
JP2001321973A (ja) 2000-05-17 2001-11-20 Sumitomo Wiring Syst Ltd レーザ溶接接合構造
JP2017123318A (ja) 2016-01-08 2017-07-13 株式会社神戸製鋼所 異種導電部材の製造方法
JP2019025520A (ja) 2017-07-31 2019-02-21 株式会社Uacj 異種金属の接合方法およびレーザ溶接装置

Also Published As

Publication number Publication date
JP7326617B2 (ja) 2023-08-15
JPWO2021261565A1 (ja) 2021-12-30
WO2021261565A1 (ja) 2021-12-30
US20230096039A1 (en) 2023-03-30
CN115697623A (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
JP7335923B2 (ja) 溶接方法および溶接装置
JP5551792B2 (ja) 2つの金属構成部材の溶接方法、および2つの金属構成部材を有する接合構成体
JP2023157915A (ja) バスバーの製造方法
WO2022004827A1 (ja) 金属箔のレーザ切断方法およびレーザ切断装置
CN110936016B (zh) 用于激光焊接的方法和设备
JP7336035B2 (ja) 溶接方法および溶接装置
JP2023041676A (ja) 溶接方法およびレーザ溶接システム
US20230101343A1 (en) Welding method, welding device, metal stacked body, electrical component, and electrical product
JP2021186861A (ja) 溶接方法、溶接装置、および製品
JP7223171B2 (ja) 金属箔の溶接方法
US20230001508A1 (en) Welding method and welding apparatus
JP2022011883A (ja) 溶接方法、溶接装置、および金属導体の溶接構造
JP7186898B2 (ja) 積層造形装置
JP2022013800A (ja) 半導体装置および溶接方法
JP7369915B2 (ja) レーザ溶接装置及びそれを用いたレーザ溶接方法
JP2021191589A (ja) 溶接方法、溶接装置、および電池アセンブリ
KR20180040594A (ko) 전도성 트랙을 형성하는 방법 및 장치
WO2022085632A1 (ja) レーザ溶接方法およびレーザ溶接装置
WO2023085336A1 (ja) 溶接方法、溶接装置、および金属積層体
WO2022211133A1 (ja) レーザ溶接方法およびレーザ溶接装置
JP2023059864A (ja) レーザ溶接方法およびレーザ溶接装置
JP2023112742A (ja) レーザ溶接装置及びこれを用いたレーザ溶接方法
JP2024052263A (ja) レーザ溶接方法およびレーザ溶接装置
JP2021159931A (ja) 溶接方法および溶接装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240319