JP2023157238A - レーザ式ガス分析計 - Google Patents

レーザ式ガス分析計 Download PDF

Info

Publication number
JP2023157238A
JP2023157238A JP2022067017A JP2022067017A JP2023157238A JP 2023157238 A JP2023157238 A JP 2023157238A JP 2022067017 A JP2022067017 A JP 2022067017A JP 2022067017 A JP2022067017 A JP 2022067017A JP 2023157238 A JP2023157238 A JP 2023157238A
Authority
JP
Japan
Prior art keywords
gas
laser
optical interference
light
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022067017A
Other languages
English (en)
Inventor
郁洋 吉峰
Ikumi Yoshimine
直希 武田
Naoki Takeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2022067017A priority Critical patent/JP2023157238A/ja
Priority to FR2301785A priority patent/FR3134628A1/fr
Priority to DE102023104863.5A priority patent/DE102023104863A1/de
Publication of JP2023157238A publication Critical patent/JP2023157238A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • G01J3/433Modulation spectrometry; Derivative spectrometry
    • G01J3/4338Frequency modulated spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J2003/283Investigating the spectrum computer-interfaced
    • G01J2003/2843Processing for eliminating interfering spectra
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • G01J3/433Modulation spectrometry; Derivative spectrometry
    • G01J2003/4334Modulation spectrometry; Derivative spectrometry by modulation of source, e.g. current modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
    • G01N2021/396Type of laser source
    • G01N2021/399Diode laser

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】光学干渉ノイズの影響による測定誤差を低減できるレーザ式ガス分析計を提供することにある。【解決手段】本発明は、レーザ光を出射するレーザ素子(12)と、測定対象ガスの吸収線スペクトルの光吸収波長を含む波長帯域で波長が掃引され、かつ変調されるように駆動電流をレーザ素子に供給する変調光生成部(11)と、を有する発光部(10)と、レーザ光を受光する受光素子(22)と、検出信号に対し、変調周波数の逓倍の周波数でロックイン検出して得られたロックイン検波波形の振幅に基づいて、測定対象ガスの分析を行う受光信号処理部(21)と、を有する受光部(20)と、を備え、光学干渉ノイズの光学干渉波形プロファイルを取得し、ロックイン検波波形と光学干渉波形プロファイルを元に光学干渉ノイズを分離して、測定対象ガスの分析を行うことを特徴とする。【選択図】図1

Description

本発明は、空間内に存在する測定対象ガスの有無や濃度を分析するレーザ式ガス分析計に関する。
気体状のガス分子は、それぞれ固有の光吸収波長及び吸収強度を表す吸収線スペクトルを有する。また、レーザ光は、特定の波長でスペクトル線幅が狭い光である。レーザ式ガス分析計は、レーザ素子が、気体状のガス分子である測定対象ガスが吸収する光吸収波長のレーザ光を発光し、測定対象ガスにレーザ光を吸収させ、その光吸収波長におけるレーザ光の吸収量に基づいて測定対象ガスの有無を検出する。加えて、レーザ式ガス分析計は、光吸収波長におけるレーザ光の吸収量が測定対象ガスの濃度に比例するため濃度を検出することもできる。
このようなガス分析を行うレーザ式ガス分析計の従来技術が、例えば特許文献1に開示されている。特許文献1のレーザ式ガス分析計は、波長変調分光法により検出を行う。駆動電流によって波長を掃引し、かつ特定の周波数で変調したレーザ光を波長可変レーザ素子が出射し、そのレーザ光を受光素子が検出し、ロックイン増幅器が信号を変調周波数の逓倍でロックイン検出し、このロックイン検波波形の振幅からガス濃度を算出する。
特開2017-106742号公報
ところで、レーザ式ガス分析計では、レーザ光路上に配置される例えば、光学素子やレンズなどの光学素子の端面反射による戻り光など、異なる光路長のレーザ光が重なり合った光を受光することで、受光信号に光学干渉ノイズが重畳されることがあった。
光学干渉ノイズは、測定対象ガスのロックイン検波波形に重畳して現れるため、ガス濃度測定の誤差となった。一般的に、装置を構成する光学素子の窓やレンズに角度を付けたり、減反射コーティングするなど端面反射による戻り光を低減する対策が施される。
しかしながら、測定対象ガスの吸収線スペクトルの吸収強度が小さい場合や、低濃度ガスを測定する場合など、ロックイン検波波形の吸収振幅が小さくなると、相対的に光学干渉ノイズ影響が大きくなり、ガス濃度測定の誤差が顕著になる問題があった。
さらに、レーザの波長と電流、光量と電流の非線形性があるため、一定の正弦波ではなく、振幅が増減したり、位相が逆転したりといった変化を伴うため、単純な周波数フィルタや正弦波の当てはめによる光学干渉ノイズ除去は困難であった。
そこで、本発明は上記の課題を解決するためになされたものであり、光学干渉ノイズの影響による測定誤差を低減できるレーザ式ガス分析計を提供することにある。
本発明は、測定対象空間に存在する測定対象ガスのガス分析を行うレーザ式ガス分析計であって、前記測定対象ガスの吸収線スペクトルの光吸収波長を含む波長帯域のレーザ光を出射するレーザ素子と、前記測定対象ガスの吸収線スペクトルの光吸収波長を含む波長帯域で波長が掃引され、かつ変調されるように駆動電流を前記レーザ素子に供給する変調光生成部と、を有する発光部と、前記測定対象空間を通過した前記レーザ光を受光する受光素子と、前記受光素子から出力された検出信号に対し、変調周波数またはその逓倍の周波数でロックイン検出して得られたロックイン検波波形の振幅に基づいて、前記測定対象ガスの分析を行う受光信号処理部と、を有する受光部と、を備え、光学干渉ノイズの光学干渉波形プロファイルを取得し、前記ロックイン検波波形と前記光学干渉波形プロファイルを元に光学干渉ノイズを分離して、前記測定対象ガスの分析を行うことを特徴とする。
本発明の一態様は、測定対象ガス濃度測定時の変調振幅よりも小さい変調振幅にて光学干渉測定を行い、光学干渉のロックイン検波波形を取得した後、前記光学干渉のロックイン検波波形から干渉長及び位相情報を取得し、前記干渉長及び前記位相情報に基づいて前記光学干渉波形プロファイルを取得する、ことを特徴とする。
本発明によれば、光学干渉ノイズの影響による測定誤差を低減できる。これにより、測定対象ガスのガス濃度を、高精度且つ高安定に測定するレーザ式ガス分析計を提供できる。
本実施形態に係るレーザ式ガス分析計の全体構成図である。 光学干渉ノイズが重畳したロックイン検波信号の波形図である。 本実施形態に係るレーザ式ガス分析計を用いたフローチャート図である。 本実施形態に係るレーザ式ガス分析計における光学干渉測定時及びガス濃度測定時のレーザ掃引駆動電流の波形図である。 図4のフローチャートで取得、処理する波形図である。 本実施例と従来例におけるNH濃度と濃度算出誤差との関係を示すグラフである。 本実施形態に係るレーザ式ガス分析計の信号処理回路を示す概念図である。 本実施形態に係るレーザ式ガス分析計で実行される波形分析・フィルタリングの波形図の一例である。
以下、本発明の実施の形態に係るレーザ式ガス分析計について、添付の図面を参照しながら詳細に説明する。なお、本発明は、下記の実施の形態に限定されるものではなく、その要旨を変更しない範囲内で適宜変形して実施することができる。
<レーザ式ガス分析計の全体構成図>
図1は、本発明の実施形態に係るレーザ式ガス分析計の全体構成図である。図1に示すように、レーザ式ガス分析計1は、発光部10及び受光部20を備えている。
レーザ式ガス分析計1は、測定対象空間に存在する測定対象ガスを分析する。レーザ式ガス分析計1は、発光部10から出射されたレーザ光30が、ガス管を構成する壁50a、50bの内部(測定対象空間)を流通する測定対象ガスに照射される。測定対象ガスを透過したレーザ光30が、受光部20に入射し、検出された光量から特定のガス濃度を求めることができる。また、ガス濃度が0や所定値以下であるならば、ガスが無いことを検出できるものであり、したがって、ガスの有無も検出できる。
発光部10及び受光部20は、ガス管を構成する壁50a、50bに着脱可能に取り付けられる。壁50a、50bは、特定のガスが存在する配管等の壁であり、それぞれに穴が開けられている。フランジ51a、51bは、溶接等によりそれらの穴に固定されている。発光部10及び受光部20に設けられた光軸調整フランジ52a、52bは、これらフランジ51a、51bに対して機械的に着脱可能に取り付けられる。発光部10と受光部20は、壁50a、50bを挟んで、相対する位置に配置されるが、光軸調整フランジ52a、52bにより位置調整することができる。
光軸調整フランジ52aは、レーザ光30の出射角を調整し、また、光軸調整フランジ52bは、レーザ光30の入射角を調整することができる。光軸調整フランジ52a、52bにより、発光部10から出射されるレーザ光30が受光部20において最大の光量で受光される。
[発光部10]
発光部10について説明する。図1に示すように、発光部10は、変調光生成部11と、レーザ素子12と、コリメートレンズ13と、発光部窓板14と、発光部容器15と、光軸調整フランジ52aと、を備えて構成されている。図1に示すように、変調光生成部11、レーザ素子12及びコリメートレンズ13は、発光部容器15の内部に配置されている。発光部容器15は、内蔵された各部品を外気から隔絶して風雨、塵埃、及び、汚れ等から保護する。
変調光生成部11は、測定対象ガスの吸収線スペクトルの光吸収波長を含む波長帯域で波長が繰り返し掃引され、かつ、変調されるように生成された駆動電流を生成する。そして、変調光生成部11は、変調されたレーザ光を発光するための駆動電流をレーザ素子12に供給する。これにより、ガス濃度分析には、測定対象ガスの吸光特性に応じて、波長変調された変調光を照射することができる。
レーザ素子12は、測定対象ガスが吸収する特定の吸収線スペクトルの中心波長λ1、及びその周辺の波長で発光する。レーザ素子12は、駆動電流と温度制御により、発光波長を可変制御する。
レーザ素子12は、発光中心波長が測定対象ガスの吸収線スペクトルの中心波長λ1となるように温度制御される。また、レーザ素子12から発光されるレーザ光30は、変調光生成部11から供給された駆動電流により、測定対象ガスの吸収線スペクトルの中心波長の周辺の波長を時間的に掃引するように制御され、さらに、波長変調分光法(WMS:Wavelength Modulation Spectroscopy)により高感度に測定できるように、適切な正弦波を重畳して変調されている。波長変調分光法は、2f検出法とも呼ばれる。
使用するレーザ素子12は、特に限定されないが、例えば、DFBレーザダイオード(Distributed Feedback Laser Diode)、或いは、VCSEL(Vertical Cavity Surface Emitting Laser)、又は、DBRレーザダイオード(Distributed Bragg Reflector Laser Diode)である。
コリメートレンズ13は、測定対象ガスの吸収線スペクトルの中心波長λ1、及びその周辺の波長において透過率が高い材料で構成される。コリメートレンズ13により、レーザ光30は略平行光に変換され、拡散による損失を抑えながら受光部20まで伝送することができる。
レーザ素子12の発光点は、コリメートレンズ13の焦点付近に配置されている。レーザ素子12からの出射光は、拡散しつつコリメートレンズ13に入射して、略平行光であるレーザ光30に変換される。なお、本実施の形態では、平行光変換部としてコリメートレンズ13を用いるものとして説明するが、コリメートレンズに限定する趣旨ではない。例えば、平行光変換部として、コリメートレンズ13の代わりに放物面鏡を用いることもできる。
略平行光であるレーザ光30は、発光部窓板14を透過し、壁50a、50bの内部、すなわち測定対象ガスを含むガスが存在する空間に伝播する。発光部窓板14は、発光部容器15の一部に穴を開けてそれを塞ぐように備えられている。発光部窓板14は、レーザ光30の光路内にあり、レーザ光30を透過させつつ、特定の測定対象ガスを含むガスが発光部10の内部に進入しないようにする。これにより、発光部容器15の内部に配置された各部品が直接ガスに触れないことになり、発光部容器15内の各部品が保護される。
[受光部20]
受光部20について説明する。受光部20は、受光信号処理部21と、受光素子22と、集光レンズ23と、受光部窓板24と、受光部容器25と、を備えて構成されている。受光部容器25は、内部に受光素子22、光学部品、および、電気電子回路を内蔵し、それらを外気から隔絶して風雨、塵埃、および、汚れ等から保護する。
受光部20は、受光部窓板24を透過したレーザ光30を受光し、測定対象ガスの吸光特性により吸収された光について分析する。受光部窓板24は、受光部容器25の一部に穴を開けてそれを塞ぐように備えられている。受光部窓板24は、レーザ光30の光路内にあり、レーザ光30を透過させつつ、特定の測定対象ガスを含むガスが受光部20の内部に進入しないようにする。これにより、受光部20内に配置された各部品が直接ガスに触れないことになり、内部が保護される。レーザ光30は、集光レンズ23により集光されて、受光素子22に入射する。なお、本実施の形態では、集光レンズ23を用いているが、集光レンズ23に代えて、放物面鏡や、ダブレットレンズ、或いは回折レンズなどを採用することもできる。
受光素子22は、測定対象ガスを通過したレーザ光30を受光する。測定対象ガスの吸収線スペクトルの中心波長λ、及びその周辺波長において、感度を有する受光素子を選択することができる。受光素子22からの受光信号は、受光信号処理部21に電気信号として送られる。
集光レンズ23は、測定対象ガスの吸収線スペクトルの中心波長λ1、及びその周辺の波長において、透過率が高い材料で構成する。集光レンズ23により、レーザ光30は受光素子22に集光されるため、高い信号強度を得ることができる。
受光信号処理部21は、受光素子22で受光した電気信号を処理して、ガス濃度を算出する。
<本実施の形態に至る経緯>
レーザ式ガス分析計1では、測定対象ガスの吸収線スペクトルの光吸収波長を含む波長帯域で波長を線形に掃引し、変調周波数またはその逓倍の周波数(一般的には、第2高調波)でロックイン検出して、検出されたロックイン検波波形の振幅が、スパンガス波形の何倍かを算出することでガス濃度を計算する。
図2は、ロックイン検波信号の波形図である。図2に示すように、ロックイン検波信号が波打つ場合がある。これは、レーザ式ガス分析計1では、光学素子の端面反射等により異なる光路長のレーザ光を受光することで、異なる光路長の波が重なり合い、強め合ったり弱めあったりすることで、光学干渉ノイズが重畳したためである。なお、光学干渉ノイズは、図2に示すロックイン検波信号の全体に重畳している。また図2に示す横軸は、時間を、縦軸は、ロックイン検波波形の信号レベルを示している。
図2に示すロックイン検波波形は、吸収線スペクトルの2階微分で近似される形状をしている。図2に示すように、測定対象ガスの吸収を示す信号に対し、光学干渉特有の波状の波形が重畳している。これにより、ガス濃度測定時に誤差が生じ、特に、測定対象ガスの吸収線の吸収強度が小さい場合や、低濃度ガスを測定する場合など、ロックイン検波波形の吸収振幅が小さくなると、相対的に、光学干渉ノイズの影響が大きくなり誤差が顕著になる。
そこで、本発明者らは、鋭意研究を重ねた結果、ロックイン検波信号から光学干渉ノイズを分離して、光学干渉ノイズの影響による測定誤差を低減できるレーザ式ガス分析計を提供するに至った。
<光学干渉ノイズの分離について>
図3は、本実施形態に係るレーザ式ガス分析計を用いたフローチャート図である。図4は、本実施形態に係るレーザ式ガス分析計における光学干渉測定時及びガス濃度測定時の駆動電流の波形図である。図5は、図4のフローチャートで取得、処理する波形図である。
図3に示す光学干渉測定ステップS01では、レーザ素子12に供給されるレーザ掃引駆動電流の変調振幅を小さく設定して、測定対象ガスの吸収を極小化させ、信号波形に光学干渉のみが現れるように調整して受光波形を取得する。ここで、「変調振幅が小さい」とは、ガス濃度測定時に供給されるレーザ掃引駆動電流の変調振幅よりも小さいことを意味し、限定されるものではないが、通常のガス濃度測定時の1/10~1/50の変調振幅に調整される。変調振幅が小さく調整されたレーザ掃引駆動電流が図4(a)に示されている。このように、レーザ掃引駆動電流をガス濃度測定時の変調振幅よりも小さくすることで、測定対象ガスの吸収を無視できるほど小さくでき、変調振幅を小さく設定して取得したロックイン検波波形には光学干渉のみが現れるように調整できる。これにより、光学干渉測定ステップS01では、例えば、図5(a)に示す光学干渉のロックイン検波波形を取得できる。図5(a)に示すように、光学干渉のロックイン検波波形のベースラインが傾いている場合、多項式フィッティングによりベースラインの傾きを補正することが好ましい。
具体的には、ロックイン検波波形がゼロと交差する点を抽出し、各点間の平均時間を光学干渉の周期として取得する。そして、取得した周期(ΔT)から、図4(a)に示すレーザ掃引駆動電流プロファイル、及びレーザ素子12の特性(波長λ∝電流I)を考慮し、波長換算して、Δλ(干渉の繰り返しピッチ(nm))を算出し、図5(b)に示すように、ベースラインの傾きを補正する。
続いて、測定対象ガスの吸収波長(中心波長)をλ1として、光学干渉の干渉長L(干渉している光の光路差)を、以下の(式1)から算出する。
L=λ1/Δλ (式1)
さらに、基準時刻(例えば、レーザの発光開始時刻)の変位量から光学干渉波形の位相Θを取得する。
次に、図3に示す光学干渉プロファイル取得ステップS02では、取得した干渉長L及び位相情報に基づき、ガス濃度測定時のレーザ掃引駆動電流プロファイル(図4(b)(c)参照)やレーザ特性、及び受光素子特性を加味して、図5(c)に示すような受光波形の光学干渉プロファイルを取得する。すなわち、図3の光学干渉測定ステップS01では、レーザ素子12に供給されるレーザ掃引駆動電流の変調振幅を小さく設定して、光学干渉のロックイン検波波形を取得しているため、実際のガス濃度測定時の変調振幅に基づいた光学干渉プロファイルを導出することが必要となる。
ここで、ガス濃度測定は、例えば、図4(b)(c)に示すように、光学干渉測定後に複数回(n回、nは2以上)行うことができ、光学干渉測定を行うタイミングや回数などは適宜調整できる。例えば、光学干渉測定は、測定環境条件等に応じて、干渉の時間的な変化が大きい場合には、一分間に1回、変化が小さい場合は一日に1回等の任意に設定可能な頻度で周期的に行うことで、安定して測定することができる。
次に、図3に示す光学干渉ノイズ分離ステップS03では、ステップS02で取得した光学干渉プロファイルを用いて、フィッティングにより、対象ガス吸収波形を分離する。
図5(d-1)に光学干渉波形と、図5(d-2)にガス濃度測定時の測定波形を示す。図5(d-1)は、図4(a)の光学干渉測定時に取得されたロックイン検波波形であり、図5(d―2)は、図4(b)(c)のガス濃度測定時に取得されたロックイン検波波形である。図5(d-2)に示す測定波形は、光学干渉がない(光学干渉を除いた)スパンガス波形と、光学干渉波形の定数倍の重ね合わせとなっている。そこで、図3のステップS02で取得した光学干渉プロファイルを用い、フィッティング処理(行列計算)により、図5(d-2)に示すガス濃度測定時の吸収波形から光学干渉ノイズを分離して、図5(d―3)に示す対象ガス吸収波形を得る。これにより、光学干渉ノイズが重畳していない対象ガス吸収波形を取得することができる。
次に、図3に示す濃度演算ステップS04では、光学干渉ノイズを分離した対象ガス吸収波形とスパンガス波形の比を求めて、ガス濃度を算出する。例えば、図5(e)に示すように、ロックイン検波波形X、Yそれぞれの振幅(Ax、Ay)の二乗和平方根(合成ベクトルの大きさ)が濃度情報を有するため、ガス濃度測定時に分離した対象ガス吸収波形と、スパンガス測定時の吸収波形から得られる値の比から、測定対象ガス濃度を算出することができる。
図6は、吸収線データベースの吸収断面積を元に、アンモニア15ppm計(光路長1m)、光学干渉ノイズの干渉長を100mmと仮定したときのNH濃度と濃度算出誤差との関係を示すシミュレーション結果である。従来例では、光学干渉ノイズの分離は行っておらず、ガス濃度測定時に得られたロックイン検波波形に基づいて濃度計算を行っている。図6に示すように、従来例では、吸収振幅が小さく相対的に光学干渉の割合が増加する濃度ゼロ付近で誤差が大きくなった。一方、実施例では、図3に示す各ステップを実行し、光学干渉ノイズの分離を行っている。これにより、実施例での濃度算出誤差はほぼ一定で低減されており、特に、従来例にて誤差が大きくなる濃度ゼロ付近においても濃度算出誤差を十分に低く設定できた。
本実施形態において、光学干渉分離を効果的に実現する際には、図1に示す変調光生成部11は、低歪のデジタル-アナログ変換器(DAC)で構成されることが望ましい。特許文献1に開示されたレーザ式ガス分析計では、変調されたレーザ光が測定対象ガスの吸収により歪が生じることを利用し、変調周波数の高調波成分(一般的には、第2高調波)を測定することで濃度検出しているという性質から、特定の周波数で発振する低歪アナログ発振器を用いることが多かった。一方で、近年はハイレゾリューションオーディオ等の分野でDAC素子の高精度、低歪化が進んでおり、従来の低歪アナログ発振器の全高調波歪率(-80~-90dB程度)を大きく下回る低歪率を達成しているものが存在する(例えば、型番AK4499EQ(旭化成株式会社製);全高調波歪率-125dB)。このような低歪率の高精度DACを用いることで、ガス濃度測定に必要な低歪の変調性能を備えながら、任意の波形でレーザを駆動することが可能となるため、回路の大規模化を招くことなく、対応が可能となる。
本実施形態では、光学干渉ノイズの影響による測定誤差を低減し、正確なガス濃度を算出することができる。また、本実施形態では、光学干渉ノイズ以外に、例えば、ロックイン検波波形に、測定対象ガスとは別のガス干渉ノイズが重畳している場合でも各ノイズ成分を図7に示す波形分析・フィルタリングによる処理部で分析し分離することができる。
図7は、信号処理回路の一例であり、ロックイン検波後に、波形分析・フィルタリングを行い、その後、濃度算出される。波形分析・フィルタリングを行う処理部は、濃度演算する処理部内に組み込まれていてもよいし別途独立した回路処理部であってもよい。波形分析・フィルタリングを行う処理部は、ロックイン検波波形を分析し、フィッティング処理により、ガス濃度測定時測定波形を、対象ガス吸収波形と光学干渉ノイズ等の各種ノイズとに分離する。
図8(a)に示すガス濃度測定時のロックイン検波波形には、図8(b)に示すオフセット・ベース、図8(c)に示す光学干渉ノイズ、図8(d)に示すガス干渉ノイズ等が重畳する場合がある。このとき、測定条件を、各干渉ノイズの種類に合わせて適宜変えないと特定・分離は難しいため、測定条件を適宜変更することで、図7に示す信号処理回路の波形分析・フィルタリングを行う処理部にて、ノイズ波形を適切に分析し、光学干渉ノイズやガス干渉ノイズ等の各ノイズを適宜分離でき、各種ノイズが重畳していない対象ガス吸収波形を得ることができる(図8(e))。また、図7に示す通信線40により、発光部と受光部との間でデータ共有や連携を行うことで、例えば、図4(b)(c)に示すガス濃度測定時のレーザ掃引駆動電流からガス干渉ノイズの変調波長が外れるように調整することで、次回からのガス濃度測定時に、他のガス干渉ノイズが重畳しないように制御でき、測定誤差の低減を高精度に図ることが可能になる。
本発明のレーザ式ガス分析計は、ボイラ、ゴミ焼却等の燃焼排ガス測定用、燃焼制御用として最適である。その他、鉄鋼用ガス分析[高炉、転炉、熱処理炉、焼結(ペレット設備)、コークス炉]、青果貯蔵および熟成、生化学(微生物)[発酵]、大気汚染[焼却炉、排煙脱硫・脱硝]、自動車・船等の内燃機関の排ガス(除テスタ)、防災[爆発性ガス検知、有毒ガス検知、新建築材燃焼ガス分析]、植物育成用、化学用分析[石油精製プラント、石油化学プラント、ガス発生プラント]、環境用[着地濃度、トンネル内濃度、駐車場、ビル管理]、理化学各種実験用などの分析計としても有用である。
1 :レーザ式ガス分析計
10 :発光部
11 :変調光生成部
12 :レーザ素子
13 :コリメートレンズ
14 :発光部窓板
15 :発光部容器
20 :受光部
21 :受光信号処理部
22 :受光素子
23 :集光レンズ
24 :受光部窓板
25 :受光部容器
30 :レーザ光
40 :通信線
50a、50b :壁
51a、51b :フランジ
52a、52b :光軸調整フランジ



Claims (2)

  1. 測定対象空間に存在する測定対象ガスのガス分析を行うレーザ式ガス分析計であって、
    前記測定対象ガスの吸収線スペクトルの光吸収波長を含む波長帯域のレーザ光を出射するレーザ素子と、
    前記測定対象ガスの吸収線スペクトルの光吸収波長を含む波長帯域で波長が掃引され、かつ変調されるように駆動電流を前記レーザ素子に供給する変調光生成部と、を有する発光部と、
    前記測定対象空間を通過した前記レーザ光を受光する受光素子と、
    前記受光素子から出力された検出信号に対し、変調周波数またはその逓倍の周波数でロックイン検出して得られたロックイン検波波形の振幅に基づいて、前記測定対象ガスの分析を行う受光信号処理部と、を有する受光部と、を備え、
    光学干渉ノイズの光学干渉波形プロファイルを取得し、前記ロックイン検波波形と前記光学干渉波形プロファイルを元に光学干渉ノイズを分離して、前記測定対象ガスの分析を行うことを特徴とするレーザ式ガス分析計。
  2. 測定対象ガス濃度測定時の変調振幅よりも小さい変調振幅にて光学干渉測定を行い、光学干渉のロックイン検波波形を取得した後、前記光学干渉のロックイン検波波形から干渉長及び位相情報を取得し、前記干渉長及び前記位相情報に基づいて前記光学干渉波形プロファイルを取得する、ことを特徴とする請求項1に記載のレーザ式ガス分析計。


JP2022067017A 2022-04-14 2022-04-14 レーザ式ガス分析計 Pending JP2023157238A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022067017A JP2023157238A (ja) 2022-04-14 2022-04-14 レーザ式ガス分析計
FR2301785A FR3134628A1 (fr) 2022-04-14 2023-02-27 Analyseur de gaz à laser
DE102023104863.5A DE102023104863A1 (de) 2022-04-14 2023-02-28 Lasergasanalysator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022067017A JP2023157238A (ja) 2022-04-14 2022-04-14 レーザ式ガス分析計

Publications (1)

Publication Number Publication Date
JP2023157238A true JP2023157238A (ja) 2023-10-26

Family

ID=88191871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022067017A Pending JP2023157238A (ja) 2022-04-14 2022-04-14 レーザ式ガス分析計

Country Status (3)

Country Link
JP (1) JP2023157238A (ja)
DE (1) DE102023104863A1 (ja)
FR (1) FR3134628A1 (ja)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6624505B2 (ja) 2015-12-07 2019-12-25 富士電機株式会社 レーザ式ガス分析計

Also Published As

Publication number Publication date
DE102023104863A1 (de) 2023-10-19
FR3134628A1 (fr) 2023-10-20

Similar Documents

Publication Publication Date Title
JP6624505B2 (ja) レーザ式ガス分析計
JP5907442B2 (ja) レーザ式ガス分析計
US7728977B2 (en) Optical gas detection
EP0262140B1 (en) Method and apparatus for determining parameters of gaseous substances
JP6128361B2 (ja) 多成分用レーザ式ガス分析計
WO2014106940A1 (ja) ガス吸収分光装置及びガス吸収分光方法
JP6044760B2 (ja) レーザ式ガス分析計
CN111829982A (zh) 多组分气体浓度检测及温度误差修正方法
US5550636A (en) Self-tuning method for monitoring the density of a gas vapor component using a tunable laser
JP7334502B2 (ja) レーザ式ガス分析計
JP2014102152A (ja) レーザ式ガス分析計
JP5234381B1 (ja) レーザ式酸素ガス分析計
JP7395846B2 (ja) レーザ式ガス分析計
JP2023157238A (ja) レーザ式ガス分析計
JP7215632B1 (ja) レーザ式ガス分析計
US8928880B2 (en) Tuned dynamic eigen spectroscopy systems
Bekal et al. Experimental demonstration of nitric oxide measurement at elevated temperature in the coal-fired boiler exhaust
US20230288328A1 (en) Laser gas analyzer
JP2024076605A (ja) レーザ式ガス分析計
JP2023132453A (ja) レーザ式ガス分析計
JP6791211B2 (ja) 掃引信号発生装置
JP2023159724A (ja) レーザ式ガス分析計
Werle High frequency modulation spectroscopy: a sensitive detection technique for atmospheric pollutants
JP2021128141A (ja) レーザ式ガス分析計
JP2021139868A (ja) レーザ式ガス分析計

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20231019