JP2023147869A - 燃料改質装置 - Google Patents

燃料改質装置 Download PDF

Info

Publication number
JP2023147869A
JP2023147869A JP2022055617A JP2022055617A JP2023147869A JP 2023147869 A JP2023147869 A JP 2023147869A JP 2022055617 A JP2022055617 A JP 2022055617A JP 2022055617 A JP2022055617 A JP 2022055617A JP 2023147869 A JP2023147869 A JP 2023147869A
Authority
JP
Japan
Prior art keywords
fuel
reformer
temperature
concentration
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022055617A
Other languages
English (en)
Inventor
知英 工藤
Tomohide Kudo
公太郎 橋本
Kotaro Hashimoto
昭宏 飯室
Akihiro Iimuro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2022055617A priority Critical patent/JP2023147869A/ja
Priority to CN202310280300.9A priority patent/CN116892473A/zh
Publication of JP2023147869A publication Critical patent/JP2023147869A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M27/00Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like
    • F02M27/02Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like by catalysts

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

【課題】燃料を改質するときの燃焼性、安全性、および効率性を確保する。【解決手段】燃料改質装置100は、内燃機関5の燃料を貯留する燃料タンク1および改質燃料タンク3と、燃料タンク1から供給される燃料を温度に応じて改質する改質器2と、改質器2の温度を調整するヒータ8と、改質された燃料を燃料タンク1の気相へ導く第1流路と、改質された燃料を改質燃料タンク3へ導く第2流路と、第1、第2流路のいずれかを開放する切換弁18と、外気温を検出する外気温センサ19と、外気温に基づいて切換弁18およびヒータ8を制御するコントローラ20と、を備える。コントローラ20は、内燃機関5の始動時、外気温が所定温度を超えているとき、第1流路を開放するように切換弁18を制御し、外気温が所定温度以下のとき、第2流路を開放するように切換弁18を制御するとともに外気温に基づいてヒータ8を制御する。【選択図】図1

Description

本発明は、内燃機関の燃料を改質する燃料改質装置に関する。
従来、内燃機関のエタノール燃料をDEE(ジエチルエーテル)に改質するようにした装置が知られている(例えば特許文献1参照)。上記特許文献1記載の装置では、シリカ/アルミナ比が20以上45以下であるMFI型ゼオライトやシリカ/アルミナ比が18以上35以下であるモルデナイト型ゼオライトを触媒としてエタノールをDEEに改質し、改質により得られたDEEを含有する燃料を、内燃機関の始動時に供給する。
特開2008-144730号公報
気候変動の緩和または影響軽減に寄与する観点では、炭素強度の高い従来の化石燃料をバイオエタノール等の再生可能燃料で代替し、炭素排出量を低減することが望ましいが、このような新しい燃料は、従来の燃料とは揮発性等の性質が異なる。持続可能な輸送システムの発展に寄与する観点では、このような新しい燃料を従来の内燃機関に適用する場合、燃焼性能を確保するために必要な改質を行うだけでなく、安全性や効率性を考慮して貯留や改質、内燃機関への供給を行うことが望ましい。しかしながら、上記特許文献1記載の装置では、この点について十分な考慮がされていない。
本発明の一態様である燃料改質装置は、内燃機関の燃料を貯留する第1貯留部および第2貯留部と、第1貯留部から供給される燃料を温度に応じて改質する改質器と、改質器の温度を調整する温度調整部と、改質器で改質された燃料を第1貯留部の気相へ導く第1流路と、改質器で改質された燃料を第2貯留部へ導く第2流路と、第1流路および第2流路のいずれかを開放する切換弁と、外気温を検出する外気温検出部と、外気温検出部により検出された外気温に基づいて切換弁および温度調整部を制御するコントローラと、を備える。コントローラは、内燃機関の始動時、外気温検出部により検出された外気温が所定温度を超えているとき、第1流路を開放するように切換弁を制御し、内燃機関の始動時、外気温検出部により検出された外気温が所定温度以下のとき、第2流路を開放するように切換弁を制御するとともに、外気温検出部により検出された外気温に基づいて温度調整部を制御する。
本発明によれば、燃料を改質するときの燃焼性、安全性、および効率性を確保することができる。
本発明の実施形態に係る燃料改質装置の全体構成の一例を模式的に示すブロック図。 本発明の実施形態に係る燃料改質装置の要部構成の一例を模式的に示すブロック図。 内燃機関の始動時の外気温と目標DEE濃度との関係について説明するための図。 改質温度とDEE濃度との関係について説明するための図。 本発明の実施形態に係る燃料改質装置により実行される処理の一例を示すフローチャート。
以下、図1~図5を参照して本発明の実施形態について説明する。本発明の実施形態に係る燃料改質装置は、内燃機関に供給される燃料を必要に応じて改質する。
地球の平均気温は、大気中の温室効果ガスにより、生物に適した温暖な状態に保たれている。具体的には、太陽光で暖められた地表面から宇宙空間へと放射される熱の一部を温室効果ガスが吸収し、地表面へと再放射することで、大気が温暖な状態に保たれている。このような大気中の温室効果ガスの濃度が増加すると、地球の平均気温が上昇する(地球温暖化)。
温室効果ガスの中でも地球温暖化への寄与が大きい二酸化炭素の大気中における濃度は、植物や化石燃料として地上や地中に固定された炭素と、二酸化炭素として大気中に存在する炭素とのバランスによって決定される。例えば、植物の生育過程での光合成により大気中の二酸化炭素が吸収されると大気中の二酸化炭素濃度が減少し、化石燃料の燃焼により二酸化炭素が大気中に放出されると大気中の二酸化炭素濃度が増加する。地球温暖化を抑制するには、化石燃料をバイオエタノール等の再生可能燃料で代替し、炭素排出量を低減することが必要となる。
バイオエタノール燃料は、トウモロコシなどの作物(植物)を原料として栽培する過程で大気中のCO2を吸収する。バイオエタノール燃料中の炭素成分は、原料作物の生育過程で大気中から吸収されたCO2に由来するため、燃焼によりCO2として大気中に再放出されても固定された炭素と大気中に存在する炭素とのバランスを変えることがない(カーボンニュートラル)。
しかしながら、エタノールは、ガソリンに比して低温での蒸気圧が低いため、そのまま内燃機関の燃料として適用されると低温始動時の燃焼性能を確保することが難しい。この点、低温始動時にはエタノールを低温での蒸気圧が十分高いDEE(ジエチルエーテル)に改質した上で内燃機関に供給することで、低温始動性を向上することができる。
一方、DEEは沸点が低く(DEEの沸点:約35℃、エタノールの沸点:約78℃)、気化しやすいため、過剰な改質によりDEE濃度が高まると、DEEのベーパーロックにより、かえって燃焼性能を低下させるおそれがある。また、エタノールを改質して得られたDEEを必要以上に消費すると、装置全体の効率が低下する。
また、エタノールは、ガソリンに比して内燃機関の使用が想定される温度域(概ね100℃以下)での蒸気圧が低いため、ガソリンであれば燃料タンク内で酸素不足となるような状況であっても、エタノールでは爆発範囲に入ってしまう。このため、エタノールでは燃料タンク内を爆発範囲外に維持することがガソリンの場合よりも難しい。
そこで本実施形態では、低温では適切な改質を行い、一定温度以上では燃料タンク内を爆発範囲外に維持することで、燃料を改質するときの燃焼性、安全性、および効率性を確保することができるよう、以下のように燃料改質装置を構成する。
図1は、本発明の実施形態に係る燃料改質装置100の全体構成の一例を模式的に示すブロック図である。図1に示すように、燃料改質装置100は、エタノールを主成分とする燃料を貯留する燃料タンク1と、燃料を改質する改質器2と、改質後の燃料を貯留する改質燃料タンク3と、改質前後の燃料と空気とを混合して混合気を生成する混合器4と、を有する。混合器4により生成された混合気は、内燃機関5の燃焼室に供給される。混合器4は、燃焼室に燃料を直接噴射する直噴式の内燃機関5の一部として構成してもよい。
燃料タンク1の液相と改質器2の入口とは、配管6を介して接続され、配管6に設けられた電動ポンプ7により、配管6を介して、燃料タンク1に貯留された燃料が改質器2に供給される。電動ポンプ7の動作は、コントローラ20(図2)により制御される。
改質器2には、下式の分子間脱水反応(吸熱反応)を促進する適宜な触媒が充填される。改質器2には、改質器2の温度を調整するヒータ8が設けられ、温度に応じた改質率で、燃料タンク1から供給された燃料に含まれるエタノールをDEEに改質する。改質後の燃料には、改質率に応じた割合で、反応後のDEEとともに未反応のエタノールが含まれる。なお、改質温度は100℃以上であり、改質後の燃料は気体となる。ヒータ8の動作は、コントローラ20(図2)により制御される。
2C25OH(l)→C25OC25(g)+H2O(g)
改質器2の出口と燃料タンク1の気相とは、配管9を介して接続され、改質器2の出口と改質燃料タンク3とは、配管10を介して接続される。改質器2で改質された改質後の燃料は、配管9を通る第1流路を介して燃料タンク1の気相に供給され、配管10を通る第2流路を介して改質燃料タンク3に供給される。
燃料タンク1の気相は、さらに、逆止弁11aが設けられた配管11を介して、適宜な吸着材が充填されたキャニスタ12に接続される。改質器2で改質された改質後の燃料が配管9(第1流路)を介して燃料タンク1の気相に流入すると、給油時等に混入して燃料タンク1の気相に存在していた空気が掃気され、配管11を介して流出する。空気とともに流出する燃料成分はキャニスタ12で吸着、回収され、燃料成分が回収された後の空気は大気開放される。燃料タンク1には濃度センサ1aが設けられ、燃料タンク1の気相のDEE濃度(分圧)を検出する。濃度センサ1aによる検出結果を示す信号は、コントローラ20(図2)に送信される。
改質器2と改質燃料タンク3との間の配管10(第2流路)には、凝縮器13が設けられる。改質後の気体の燃料は、凝縮器13で凝縮し、液体として改質燃料タンク3に貯留される。改質燃料タンク3には濃度センサ3aが設けられ、改質燃料タンク3に液体として貯留された改質後の燃料のDEE濃度(改質後のDEE濃度)を検出する。濃度センサ3aによる検出結果を示す信号は、コントローラ20(図2)に送信される。
燃料タンク1の液相は、さらに、配管14を介して混合器4に接続される。燃料タンク1に貯留された改質前の燃料は、配管14に設けられた電動ポンプ15により、配管14を介して混合器4に供給される。改質燃料タンク3の液相は、配管16を介して混合器4に接続される。改質燃料タンク3に貯留された改質後の燃料は、配管16に設けられた電動ポンプ17により、配管16を介して混合器4に供給される。電動ポンプ15,17の動作は、コントローラ20(図2)により制御される。
混合器4には濃度センサ4aが設けられ、混合器4で生成された混合気中のエタノール濃度およびDEE濃度を検出する。濃度センサ4aによる検出結果を示す信号は、コントローラ20(図2)に送信される。
改質器2の出口には、配管9を通る第1流路と配管10を通る第2流路とを切り換える切換弁18が設けられる。切換弁18は、第1流路および第2流路のいずれか一方を開放するほか、第1流路および第2流路の両方を閉鎖することができる。切換弁18は、電磁弁として構成され、切換弁18の動作は、コントローラ20(図2)により制御される。
図2は、本発明の実施形態に係る燃料改質装置100の要部構成の一例を模式的に示すブロック図である。図2に示すように、燃料改質装置100は、図1に示す各部のほかに、外気温を検出する外気温センサ19と、コントローラ20と、を有する。外気温センサ19による検出結果を示す信号は、コントローラ20に送信される。コントローラ20には、濃度センサ1a,3a,4aと、外気温センサ19と、電動ポンプ7,15,17と、ヒータ8と、切換弁18とが接続される。
コントローラ20は、電子制御ユニット(ECU)により構成される。より具体的には、コントローラ20は、CPU等の処理部21と、ROM,RAM等の記憶部22と、I/Oインターフェース等の図示しないその他の周辺回路とを有するコンピュータを含んで構成される。コントローラ20は、内燃機関5の動作を制御するエンジン制御用ECUの一部として構成してもよい。
図3は、内燃機関5の始動時の外気温と目標DEE濃度との関係について説明するための図であり、内燃機関5の使用が想定される低温域における改質後のDEE濃度の目標値を示す。図3に示すように、例えば、外気温-12℃での目標DEE濃度は、10[mol%]に設定される。このような特性は、予め定められ、コントローラ20の記憶部22に記憶される。
図4は、改質温度とDEE濃度との関係について説明するための図であり、改質温度を変えて改質反応を行ったときの改質後のDEE濃度の試験結果を示す。また、改質器2に充填される触媒の種類として、アンバーリスト(登録商標)、シリカ/アルミナ比が18のH-モルデナイト、シリカ/アルミナ比が24のH-ZSM-5ゼオライト、およびシリカ/アルミナ比が40のH-ZSM-5ゼオライトを用いた。これらはすべて交換基を水素イオン形に転換したH型の固形酸触媒である。
図4に示すように、例えば、外気温-12℃での目標DEE濃度10[mol%]を達成するために必要な改質温度は、モルデナイトの場合は約145℃、アンバーリスト(登録商標)の場合は158℃となる。このような特性は、改質器2に充填される触媒の種類に応じて予め試験により定められ、コントローラ20の記憶部22に記憶される。
ここで、適切な触媒の種類について検討するために発明者らが行った、ピリジン吸着法による触媒表面の酸点量の比較試験について説明する。比較試験は、以下の(i)~(iv)の触媒サンプルについて行った。比較試験では、ピリジンを吸着させた各触媒サンプルについて赤外拡散反射測定を行い、測定結果を比較することで各触媒サンプル表面のブレンステッド酸点およびルイス酸点の量を比較した。
(i)シリカ/アルミナ比が40のH-ZSM-5ゼオライト
(ii)活性アルミナ
(iii)シリカ/アルミナ比が18のH-モルデナイト
(iv)シリカ/アルミナ比が24のH-ZSM-5ゼオライト
(v)硫酸化ジルコニア
(vi)H-モルデナイト(W)
比較試験の結果、ブレンステッド酸点の量は、(iii)>(iv)>(i)>(v)>(vi)>(ii)の順に多く、シリカ/アルミナ比が18のH-モルデナイトが最も多く、次いでシリカ/アルミナ比が24のH-ZSM-5ゼオライトが多かった。また、活性アルミナについては検出下限以下であった。ルイス酸点の量は、(ii)>>(v)>(iv)>(iii)>(i)>(vi)の順に多く、活性アルミナが最も多く、H-モルデナイト(W)については検出下限以下であった。
図4の試験結果に示されるように、シリカ/アルミナ比が18のH-モルデナイトとシリカ/アルミナ比が24のH-ZSM-5ゼオライトは、比較的低い改質温度で高い改質率(DEE濃度)を達成している。したがって、触媒表面の酸点量の比較試験結果を併せて考慮すると、改質器2に充填される触媒の種類としては、シリカ/アルミナ比が24のH-ZSM-5ゼオライトよりブレンステッド酸点の量が多い触媒を用いることが好ましい。
コントローラ20の処理部21は、外気温センサ19により検出された外気温が所定温度以下のとき、図1の配管10を通る第2流路を開放するように切換弁18を制御する。所定温度は、図3に示される目標DEE濃度が0[mol%]となる温度であり、例えば14℃である。また、記憶部22に記憶された図3の特性を参照し、外気温センサ19により検出された外気温に基づいて目標DEE濃度を決定し、図4の特性を参照して目標DEE濃度の達成に必要な改質温度を決定し、改質温度に応じてヒータ8を制御する。これにより改質率が適切に調整されるため、過剰なDEEが生成されることがなく、DEEのベーパーロックを確実に防止することができる。
コントローラ20の処理部21は、外気温センサ19により検出された外気温が所定温度を超えているとき、図1の配管9を通る第1流路を開放するように切換弁18を制御する。これにより改質後の燃料が燃料タンク1の気相に流入し、給油時等に混入していた空気が燃料タンク1の気相から外部に掃気される。
その後、コントローラ20の処理部21は、濃度センサ1aにより検出されたDEE濃度が爆発上限界(48[vol%])以上であることを条件として、第1流路を閉鎖するように切換弁18を制御する。すなわち、燃料タンク1の気相におけるDEE濃度が爆発上限界を超えるまで改質後の燃料を流入させ、空気を掃気する。これにより、燃料タンク1の気相における可燃性ガス濃度が爆発範囲外に維持され、燃料タンク1内で気化したエタノールと酸素(空気)との反応が確実に防止される。
コントローラ20の処理部21は、外気温にかかわらず、濃度センサ4aにより検出されたエタノール濃度およびDEE濃度が爆発範囲内となるように混合器4(電動ポンプ7,15,17)を制御する。より具体的には、濃度センサ4aにより検出されたエタノール濃度およびDEE濃度が下式を満たすように、混合器4に燃料を供給する電動ポンプ7,15,17を制御する。このように、内燃機関5に供給される混合気の可燃性ガス濃度を爆発範囲内とすることで、内燃機関5の燃焼性能が確保される。
エタノール濃度/エタノールの爆発下限界+DEE濃度/DEEの爆発下限界≧1
図5は、本発明の実施形態に係る燃料改質装置100により実行される処理の一例を示すフローチャートであり、コントローラ20の処理部21で実行される処理の一例を示す。図5の処理は、例えばコントローラ20が起動すると開始される。
図5に示すように、先ずステップS1で、内燃機関5の始動時であるか否かを判定する。ステップS1で否定されると、ステップS2に進み、第1流路および第2流路の両方を閉鎖するように切換弁18を制御して処理を終了する。
ステップS1で肯定されると、ステップS3に進み、外気温センサ19により検出された外気温が所定温度を超えているか否かを判定する。ステップS3で肯定されると、ステップS4に進み、第1流路を開放するように切換弁18を制御し、ステップS5に進み、濃度センサ1aにより検出された気相のDEE濃度が爆発上限界以上であるか否かを判定する。ステップS5は、肯定されるまで繰り返される。ステップS5で肯定されると、ステップS2に進み、第1流路および第2流路の両方を閉鎖するように切換弁18を制御して処理を終了する。
ステップS3で否定されると、ステップS6に進み、第2流路を開放するように切換弁18を制御し、ステップS7に進む。ステップS7では、記憶部22に記憶された図3の特性を参照し、外気温センサ19により検出された外気温に基づいて改質後の目標DEE濃度を決定し、ステップS8に進む。ステップS8では、記憶部22に記憶された図4の特性を参照してステップS7で決定された目標DEE濃度の達成に必要な改質温度を決定し、決定された改質温度に応じてヒータ8を制御する。
次いでステップS9に進み、濃度センサ3aにより検出された改質後のDEE濃度が目標濃度であるか否かを判定する。ステップS9で否定されると、ステップS7に戻り、ステップS9で肯定されると、ステップS2に進み、第1流路および第2流路の両方を閉鎖するように切換弁18を制御して処理を終了する。
本実施形態によれば以下のような作用効果を奏することができる。
(1)燃料改質装置100は、内燃機関5の燃料を貯留する燃料タンク1および改質燃料タンク3と、燃料タンク1から供給される燃料を温度に応じて改質する改質器2と、改質器2の温度を調整するヒータ8と、改質器2で改質された燃料を燃料タンク1の気相へ導く第1流路と、改質器2で改質された燃料を改質燃料タンク3へ導く第2流路と、第1流路および第2流路のいずれかを開放する切換弁18と、外気温を検出する外気温センサ19と、外気温センサ19により検出された外気温に基づいて切換弁18およびヒータ8を制御するコントローラ20と、を備える(図1、図2)。
コントローラ20は、内燃機関5の始動時、外気温センサ19により検出された外気温が所定温度(14℃)を超えているとき、第1流路を開放するように切換弁18を制御する(図3)。また、内燃機関5の始動時、外気温センサ19により検出された外気温が所定温度以下のとき、第2流路を開放するように切換弁18を制御するとともに、外気温センサ19により検出された外気温に基づいてヒータ8を制御する(図3、図4)。これにより、燃料を改質するときの燃焼性、安全性、および効率性を確保することができる。
(2)燃料タンク1の液相に貯留される燃料は、主成分としてエタノールを含む。改質器2は、燃料タンク1から供給される燃料に含まれるエタノールを、温度に応じた改質率でDEEに改質する。改質温度を調整し、改質率を適切に調整することで、過剰なDEEによるベーパーロックを確実に防止することができる。
(3)燃料改質装置100は、燃料タンク1の気相のDEE濃度を検出する濃度センサ1aをさらに備える(図1、図2)。コントローラ20は、内燃機関5の始動時、外気温センサ19により検出された外気温が所定温度を超えているとき、濃度センサ1aにより検出されたDEE濃度が爆発上限界以上であることを条件として、第1流路を閉鎖するように切換弁18を制御する。これにより燃料タンク1の気相における可燃性ガス濃度が爆発範囲外に維持され、燃料タンク1内で気化したエタノールと酸素(空気)との反応が確実に防止される。
(4)燃料改質装置100は、燃料タンク1および改質燃料タンク3に貯留された燃料と空気とを混合し、混合気を生成する混合器4と、混合器4により生成された混合気中のエタノール濃度およびDEE濃度を検出する濃度センサ4aと、をさらに備える(図1、図2)。コントローラ20は、濃度センサ4aにより検出されたエタノール濃度およびDEE濃度が爆発範囲内となるように混合器4(電動ポンプ7,15,17)を制御する。このように、内燃機関5に供給される混合気の可燃性ガス濃度が爆発範囲内とすることで、内燃機関5の燃焼性能を確保することができる。
(5)改質器2には、シリカ/アルミナ比が24のH-ZSM-5ゼオライトよりブレンステッド酸点の量が多い触媒が充填される。これにより、目標DEE濃度を達成するために必要な改質温度を低く抑え、ヒータ8によるエネルギー消費を抑制することができる。
(6)燃料改質装置100は、第2流路に設けられ、改質器で改質された燃料を凝縮させる凝縮器13をさらに備える。これにより改質後の燃料を液体として改質燃料タンク3に貯留することができる。
上記実施形態では、図1等でヒータ8により改質器2の温度を調整する例を説明したが、改質器の温度を調整する温度調整部は、このようなものに限らない。例えば、内燃機関5の排気や冷却水を介して廃熱を利用してもよい。
上記実施形態では、第1流路および第2流路の両方を閉鎖可能な切換弁18を用いる例を説明したが、切換弁は、第1流路および第2流路のいずれかを開放できるものであればよく、これらを閉鎖不能なものであってもよい。
上記実施形態では、コントローラ20が、濃度センサ1aにより検出された燃料タンク1の気相のDEE濃度が所定濃度(48[vol%])以上であることを条件として第1流路を閉鎖するように切換弁18を制御する例を説明したが、これに限らない。例えば、燃料タンク1の気相のDEE濃度に代えて酸素濃度を検出する濃度センサを設け、気相の酸素濃度に応じて第1流路を閉鎖してもよい。すなわち、燃料タンク1の気相のDEE濃度が爆発上限界48[vol%]のとき、空気濃度は52[vol%]、酸素濃度は約10%であるため、気相の酸素濃度が所定濃度(10[vol%])以下であることを条件として第1流路を閉鎖するように切換弁18を制御してもよい。
以上の説明はあくまで一例であり、本発明の特徴を損なわない限り、上述した実施形態および変形例により本発明が限定されるものではない。上記実施形態と変形例の1つまたは複数を任意に組み合わせることも可能であり、変形例同士を組み合わせることも可能である。
1 燃料タンク、1a,3a,4a 濃度センサ、2 改質器、3 改質燃料タンク、4 混合器、5 内燃機関、6,9,10,11,14,16 配管、7,15,17 電動ポンプ、8 ヒータ、11a 逆止弁、12 キャニスタ、13 凝縮器、18 切換弁、19 外気温センサ、20 コントローラ、21 処理部、22 記憶部、100 燃料改質装置

Claims (9)

  1. 内燃機関の燃料を貯留する第1貯留部および第2貯留部と、
    前記第1貯留部から供給される燃料を温度に応じて改質する改質器と、
    前記改質器の温度を調整する温度調整部と、
    前記改質器で改質された燃料を前記第1貯留部の気相へ導く第1流路と、
    前記改質器で改質された燃料を前記第2貯留部へ導く第2流路と、
    前記第1流路および前記第2流路のいずれかを開放する切換弁と、
    外気温を検出する外気温検出部と、
    前記外気温検出部により検出された外気温に基づいて前記切換弁および前記温度調整部を制御するコントローラと、を備え、
    前記コントローラは、
    前記内燃機関の始動時、前記外気温検出部により検出された外気温が所定温度を超えているとき、前記第1流路を開放するように前記切換弁を制御し、
    前記内燃機関の始動時、前記外気温検出部により検出された外気温が前記所定温度以下のとき、前記第2流路を開放するように前記切換弁を制御するとともに、前記外気温検出部により検出された外気温に基づいて前記温度調整部を制御することを特徴とする燃料改質装置。
  2. 請求項1に記載の燃料改質装置において、
    前記第1貯留部の液相に貯留される燃料は、アルコールを含み、
    前記改質器は、前記第1貯留部から供給される燃料に含まれるアルコールを、温度に応じた改質率でエーテルに改質することを特徴とする燃料改質装置。
  3. 請求項2に記載の燃料改質装置において、
    前記第1貯留部の気相のエーテル濃度を検出する濃度検出部をさらに備え、
    前記コントローラは、前記内燃機関の始動時、前記外気温検出部により検出された外気温が前記所定温度を超えているとき、前記濃度検出部により検出されたエーテル濃度が爆発上限界以上であることを条件として、前記第1流路を閉鎖するように前記切換弁を制御することを特徴とする燃料改質装置。
  4. 請求項2または3に記載の燃料改質装置において、
    前記第1貯留部および前記第2貯留部に貯留された燃料と空気とを混合し、混合気を生成する混合器と、
    前記混合器により生成された混合気中のアルコール濃度を検出するアルコール濃度検出部と、
    前記混合器により生成された混合気中のエーテル濃度を検出するエーテル濃度検出部と、をさらに備え、
    前記コントローラは、前記アルコール濃度検出部により検出されたアルコール濃度および前記エーテル濃度検出部により検出されたエーテル濃度が爆発範囲内となるように前記混合器を制御することを特徴とする燃料改質装置。
  5. 請求項2~4のいずれか1項に記載の燃料改質装置において、
    前記アルコールは、エタノールであり、
    前記エーテルは、ジエチルエーテルであることを特徴とする燃料改質装置。
  6. 請求項1~5のいずれか1項に記載の燃料改質装置において、
    前記所定温度は、摂氏14度であることを特徴とする燃料改質装置。
  7. 請求項1~6のいずれか1項に記載の燃料改質装置において、
    前記改質器には、ブレンステッド酸点の量が所定量より多い触媒が充填されることを特徴とする燃料改質装置。
  8. 請求項7に記載の燃料改質装置において、
    前記所定量は、シリカアルミナ比が24のH-ZSM-5ゼオライトのブレンステッド酸点の量であることを特徴とする燃料改質装置。
  9. 請求項1~8のいずれか1項に記載の燃料改質装置において、
    前記第2流路に設けられ、前記改質器で改質された燃料を凝縮させる凝縮器をさらに備えることを特徴とする燃料改質装置。
JP2022055617A 2022-03-30 2022-03-30 燃料改質装置 Pending JP2023147869A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022055617A JP2023147869A (ja) 2022-03-30 2022-03-30 燃料改質装置
CN202310280300.9A CN116892473A (zh) 2022-03-30 2023-03-21 燃料改性装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022055617A JP2023147869A (ja) 2022-03-30 2022-03-30 燃料改質装置

Publications (1)

Publication Number Publication Date
JP2023147869A true JP2023147869A (ja) 2023-10-13

Family

ID=88288179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022055617A Pending JP2023147869A (ja) 2022-03-30 2022-03-30 燃料改質装置

Country Status (2)

Country Link
JP (1) JP2023147869A (ja)
CN (1) CN116892473A (ja)

Also Published As

Publication number Publication date
CN116892473A (zh) 2023-10-17

Similar Documents

Publication Publication Date Title
KR100783345B1 (ko) 수소이용 내연기관
RU2205861C1 (ru) Непрерывная дегидратация спирта до простого эфира и воды, применяемых как топливо для дизельных двигателей
EP2048339B1 (en) Internal combustion engine
US20080098985A1 (en) Internal combustion engine system
US7771675B2 (en) Fuel supply device for internal combustion and control method therefor
US4282835A (en) Internal combustion engine with gas synthesizer
MX2012000074A (es) Motores de etanol reformado.
Li et al. A novel strategy for hydrous-ethanol utilization: Demonstration of a spark-ignition engine fueled with hydrogen-rich fuel from an onboard ethanol/steam reformer
JP2021522440A (ja) 自動車内燃機関用燃料の車上改質による水素の生産量を増加させるための水注入
JP4840307B2 (ja) エンジンシステム
JP2008019848A (ja) 内燃機関システム
CN114810438A (zh) 燃料重整装置
US10801447B2 (en) Low-temperature fuel reforming unit based on combined external reformer of an engine
Masum et al. Impact of denatured anhydrous ethanol–gasoline fuel blends on a spark-ignition engine
US9353678B2 (en) Reformer enhanced alcohol engine
JP2023147869A (ja) 燃料改質装置
JP4407913B2 (ja) 液化天然ガスの気化供給システム
JP2013130179A (ja) 内燃機関の制御装置
JP2004516628A (ja) 併用炭化水素燃料組成物
EP3514874B1 (en) Fuel cell system
JP2019052550A (ja) 燃料改質システム
JP5916109B2 (ja) エタノールエンジンシステム
JP2008286097A (ja) エタノール改質システム
JP7229281B2 (ja) 燃料改質装置
JP4506416B2 (ja) 内燃機関