JP2023133304A - 触媒及びその使用方法 - Google Patents
触媒及びその使用方法 Download PDFInfo
- Publication number
- JP2023133304A JP2023133304A JP2023110952A JP2023110952A JP2023133304A JP 2023133304 A JP2023133304 A JP 2023133304A JP 2023110952 A JP2023110952 A JP 2023110952A JP 2023110952 A JP2023110952 A JP 2023110952A JP 2023133304 A JP2023133304 A JP 2023133304A
- Authority
- JP
- Japan
- Prior art keywords
- transition metal
- iro
- electrically conductive
- metal oxide
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 187
- 229910000314 transition metal oxide Inorganic materials 0.000 claims abstract description 108
- 239000000463 material Substances 0.000 claims abstract description 76
- 239000004020 conductor Substances 0.000 claims abstract description 68
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 52
- 229910001868 water Inorganic materials 0.000 claims abstract description 48
- 239000002131 composite material Substances 0.000 claims abstract description 41
- 230000000694 effects Effects 0.000 claims abstract description 19
- 239000010936 titanium Substances 0.000 claims description 150
- 238000004519 manufacturing process Methods 0.000 claims description 48
- 229910052723 transition metal Inorganic materials 0.000 claims description 48
- 150000003624 transition metals Chemical class 0.000 claims description 48
- 238000000034 method Methods 0.000 claims description 40
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 38
- 239000002585 base Substances 0.000 claims description 32
- HTXDPTMKBJXEOW-UHFFFAOYSA-N dioxoiridium Chemical group O=[Ir]=O HTXDPTMKBJXEOW-UHFFFAOYSA-N 0.000 claims description 25
- 229910000457 iridium oxide Inorganic materials 0.000 claims description 23
- 239000012528 membrane Substances 0.000 claims description 23
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 22
- 239000000243 solution Substances 0.000 claims description 20
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 14
- 230000015572 biosynthetic process Effects 0.000 claims description 13
- 239000003792 electrolyte Substances 0.000 claims description 12
- 238000003786 synthesis reaction Methods 0.000 claims description 12
- 150000001735 carboxylic acids Chemical class 0.000 claims description 8
- 239000010411 electrocatalyst Substances 0.000 claims description 8
- 239000011148 porous material Substances 0.000 claims description 7
- 238000003487 electrochemical reaction Methods 0.000 claims description 6
- 239000008151 electrolyte solution Substances 0.000 claims description 6
- 239000012702 metal oxide precursor Substances 0.000 claims description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 5
- 239000000758 substrate Substances 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- 230000003213 activating effect Effects 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 4
- 239000007784 solid electrolyte Substances 0.000 claims description 3
- 229910052783 alkali metal Inorganic materials 0.000 claims description 2
- 150000001340 alkali metals Chemical class 0.000 claims description 2
- 150000005846 sugar alcohols Polymers 0.000 claims description 2
- 238000010586 diagram Methods 0.000 abstract description 43
- 229910010413 TiO 2 Inorganic materials 0.000 description 139
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 69
- 229910052751 metal Inorganic materials 0.000 description 53
- 239000002184 metal Substances 0.000 description 53
- 238000011282 treatment Methods 0.000 description 42
- 230000004913 activation Effects 0.000 description 40
- 238000006243 chemical reaction Methods 0.000 description 39
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 36
- 230000003647 oxidation Effects 0.000 description 35
- 238000007254 oxidation reaction Methods 0.000 description 35
- HHLFWLYXYJOTON-UHFFFAOYSA-N glyoxylic acid Chemical compound OC(=O)C=O HHLFWLYXYJOTON-UHFFFAOYSA-N 0.000 description 34
- 238000010521 absorption reaction Methods 0.000 description 33
- 239000000523 sample Substances 0.000 description 31
- 238000005868 electrolysis reaction Methods 0.000 description 29
- 239000002245 particle Substances 0.000 description 27
- 238000005259 measurement Methods 0.000 description 25
- 235000006408 oxalic acid Nutrition 0.000 description 23
- 229910052760 oxygen Inorganic materials 0.000 description 22
- 238000001228 spectrum Methods 0.000 description 22
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 21
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 21
- 239000001301 oxygen Substances 0.000 description 21
- 230000008859 change Effects 0.000 description 18
- 238000010304 firing Methods 0.000 description 18
- 230000003197 catalytic effect Effects 0.000 description 16
- 239000002105 nanoparticle Substances 0.000 description 16
- 238000002484 cyclic voltammetry Methods 0.000 description 13
- 238000000192 extended X-ray absorption fine structure spectroscopy Methods 0.000 description 13
- 125000004430 oxygen atom Chemical group O* 0.000 description 13
- 230000000737 periodic effect Effects 0.000 description 13
- 239000007864 aqueous solution Substances 0.000 description 12
- 230000005540 biological transmission Effects 0.000 description 10
- 238000011156 evaluation Methods 0.000 description 10
- 239000001257 hydrogen Substances 0.000 description 10
- 229910052739 hydrogen Inorganic materials 0.000 description 10
- 229910052741 iridium Inorganic materials 0.000 description 10
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 10
- 150000002736 metal compounds Chemical class 0.000 description 10
- 230000009466 transformation Effects 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 9
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 9
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 8
- 229920000557 Nafion® Polymers 0.000 description 8
- 238000003917 TEM image Methods 0.000 description 8
- 239000013078 crystal Substances 0.000 description 8
- 229910044991 metal oxide Inorganic materials 0.000 description 8
- 150000004706 metal oxides Chemical class 0.000 description 8
- 238000004998 X ray absorption near edge structure spectroscopy Methods 0.000 description 7
- 238000002441 X-ray diffraction Methods 0.000 description 7
- 125000004429 atom Chemical group 0.000 description 7
- 238000001354 calcination Methods 0.000 description 7
- 239000003575 carbonaceous material Substances 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 238000002253 near-edge X-ray absorption fine structure spectrum Methods 0.000 description 7
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 230000003247 decreasing effect Effects 0.000 description 6
- 230000007547 defect Effects 0.000 description 6
- 239000010419 fine particle Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 6
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 5
- VRIVJOXICYMTAG-IYEMJOQQSA-L iron(ii) gluconate Chemical compound [Fe+2].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O VRIVJOXICYMTAG-IYEMJOQQSA-L 0.000 description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 5
- 239000010948 rhodium Substances 0.000 description 5
- 238000001878 scanning electron micrograph Methods 0.000 description 5
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 4
- 238000000026 X-ray photoelectron spectrum Methods 0.000 description 4
- 230000002378 acidificating effect Effects 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 238000002795 fluorescence method Methods 0.000 description 4
- 238000005984 hydrogenation reaction Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 239000008188 pellet Substances 0.000 description 4
- 230000002441 reversible effect Effects 0.000 description 4
- 230000005611 electricity Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000012625 in-situ measurement Methods 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- MILUBEOXRNEUHS-UHFFFAOYSA-N iridium(3+) Chemical compound [Ir+3] MILUBEOXRNEUHS-UHFFFAOYSA-N 0.000 description 3
- 238000011068 loading method Methods 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- -1 polypropylene Polymers 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000004043 responsiveness Effects 0.000 description 3
- 238000000629 steam reforming Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229910021638 Iridium(III) chloride Inorganic materials 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 description 2
- 239000002041 carbon nanotube Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000002803 fossil fuel Substances 0.000 description 2
- 238000002173 high-resolution transmission electron microscopy Methods 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 238000001027 hydrothermal synthesis Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 150000002926 oxygen Chemical class 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229920003223 poly(pyromellitimide-1,4-diphenyl ether) Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 229910052703 rhodium Inorganic materials 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000010408 sweeping Methods 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- DANYXEHCMQHDNX-UHFFFAOYSA-K trichloroiridium Chemical compound Cl[Ir](Cl)Cl DANYXEHCMQHDNX-UHFFFAOYSA-K 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- 229920000298 Cellophane Polymers 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910003702 H2Ti2O5.H2O Inorganic materials 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 101150003085 Pdcl gene Proteins 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- YKIOKAURTKXMSB-UHFFFAOYSA-N adams's catalyst Chemical compound O=[Pt]=O YKIOKAURTKXMSB-UHFFFAOYSA-N 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000003411 electrode reaction Methods 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 230000033444 hydroxylation Effects 0.000 description 1
- 238000005805 hydroxylation reaction Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- LUXYLEKXHLMESQ-UHFFFAOYSA-N iridium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ir+3].[Ir+3] LUXYLEKXHLMESQ-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000013335 mesoporous material Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 1
- 239000012229 microporous material Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000002159 nanocrystal Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- HBEQXAKJSGXAIQ-UHFFFAOYSA-N oxopalladium Chemical compound [Pd]=O HBEQXAKJSGXAIQ-UHFFFAOYSA-N 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 229920005597 polymer membrane Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- XBBXDTCPEWHXKL-UHFFFAOYSA-N rhodium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[Rh+3].[Rh+3] XBBXDTCPEWHXKL-UHFFFAOYSA-N 0.000 description 1
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000003115 supporting electrolyte Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/052—Electrodes comprising one or more electrocatalytic coatings on a substrate
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/17—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
- C25B9/19—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
- C25B9/23—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/02—Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
- C25B11/03—Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
- C25B11/031—Porous electrodes
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/055—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
- C25B11/056—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of textile or non-woven fabric
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/055—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
- C25B11/057—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
- C25B11/061—Metal or alloy
- C25B11/063—Valve metal, e.g. titanium
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/055—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
- C25B11/057—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
- C25B11/067—Inorganic compound e.g. ITO, silica or titania
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
- C25B11/075—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
- C25B11/091—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
- C25B11/093—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B13/00—Diaphragms; Spacing elements
- C25B13/02—Diaphragms; Spacing elements characterised by shape or form
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B3/00—Electrolytic production of organic compounds
- C25B3/01—Products
- C25B3/07—Oxygen containing compounds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
Abstract
Description
[1]電気伝導性を有する材料と、該材料に担持された遷移金属の酸化物と、を備え、前記遷移金属の酸化物はアモルファス構造を有する複合体。
[2]前記遷移金属の酸化物は、印加された電圧に応じて遷移金属の酸化数がフレキシブルかつ可逆的に変化する[1]に記載の複合体。
[3]前記電気伝導性を有する材料と前記遷移金属の酸化物は、酸素を介してブリッジされている[1]または[2]に記載の複合体。
[4]前記電気伝導性を有する材料と前記遷移金属の酸化物の間に酸素原子が観測される前記[1]~[3]のいずれかに記載の複合体。
[5]前記電気伝導性を有する材料の表面に水酸基が存在する[1]~[4]のいずれかに記載の複合体。
[6]前記遷移金属の酸化物上に水酸基が存在する[1]~[5]のいずれかに記載の複合体。
[7]前記遷移金属の酸化物上に金属原子と酸素原子の二重結合(金属=O)の構造が存在する[1]~[5]のいずれかに記載の複合体。
[8]前記遷移金属は、周期表第8族~第10族の遷移金属の少なくとも1種である[1]~[7]のいずれかに記載の複合体。
[9]前記遷移金属の酸化物は、透過型電子顕微鏡(TEM)像から求められた平均粒径が100nm以下の粒子である[1]~[8]のいずれかに記載の複合体。
[10]前記遷移金属の酸化物は格子欠陥を含む[1]~[9]のいずれかに記載の複合体。
[11]前記電気伝導性を有する材料は、炭素系材料および金属化合物からなる群から選択される少なくとも1種である[1]~[10]のいずれかに記載の複合体。
[12]前記電気伝導性を有する材料の電気伝導度は、1×10-14Scm-2以上である[1]~[11]のいずれかに記載の複合体。
[13]前記電気伝導性を有する材料に用いられる金属化合物は酸化チタンである[11]または[12]に記載の複合体。
[14]前記酸化チタンの結晶構造がアナターゼ型である[13]に記載の複合体。
[15]電気伝導性を有する材料と、該材料に担持された遷移金属の酸化物と、を備え、前記遷移金属の酸化物はアモルファス構造を有する複合体を含む触媒。
[16]前記遷移金属の酸化物は、印加された電圧に応じて遷移金属の酸化数がフレキシブルかつ可逆的に変化する[15]に記載の触媒。
[17]前記電気伝導性を有する材料と前記遷移金属の酸化物は、酸素を介してブリッジされている[15]または[16]に記載の触媒。
[18]前記電気伝導性を有する材料と前記遷移金属の酸化物の間に酸素原子が観測される[15]~[17]のいずれかに記載の触媒。
[19]前記電気伝導性を有する材料の表面に水酸基が存在する[15]~[18]のいずれかに記載の触媒。
[20]前記遷移金属の酸化物上に水酸基が存在する[15]~[19]のいずれかに記載の触媒。
[21]前記遷移金属の酸化物上に金属原子と酸素原子の二重結合(金属=O)の構造が存在する[15]~[20]のいずれかに記載の触媒。
[22]前記遷移金属は、周期表第8族~第10族の遷移金属の少なくとも1種である[15]~[21]のいずれかに記載の触媒。
[23]前記遷移金属の酸化物は、透過型電子顕微鏡(TEM)像から求められた平均粒径が100nm以下の粒子である[15]~[22]のいずれかに記載の触媒。
[24]前記遷移金属の酸化物は格子欠陥を含む[15]~[23]のいずれかに記載の触媒。
[25]前記電気伝導性を有する材料は、炭素系材料および金属化合物からなる群から選択される少なくとも1種である[15]~[24]のいずれかに記載の触媒。
[26]前記電気伝導性を有する材料の電気伝導度は、1×10-14Scm-2以上である[15]~[25]のいずれかに記載の触媒。
[27]前記電気伝導性を有する材料に用いられる金属化合物は酸化チタンである[25]または[26]に記載の触媒。
[28]前記酸化チタンの結晶構造がアナターゼ型である[27]に記載の触媒。
[29]電気伝導性を有する材料と、該材料に担持された遷移金属の酸化物とを備える複合体が、電気伝導性を有する基材に保持された構造体であって、前記遷移金属は、周期表第8族~第10族の遷移金属の少なくとも1種であり、前記遷移金属の酸化物はアモルファス構造を有し、前記基材は多孔質材料である構造体。
[30]前記遷移金属の酸化物は、印加された電圧に応じてフレキシブルかつ可逆的に変化する[29]に記載の構造体。
[31]前記電気伝導性を有する材料と前記遷移金属の酸化物は、酸素を介してブリッジされている[29]または[30]に記載の構造体。
[32]前記電気伝導性を有する材料と前記遷移金属の酸化物の間に酸素原子が観測される[29]~[31]のいずれかに記載の構造体。
[33]前記電気伝導性を有する材料の表面に水酸基が存在する[29]~[32]のいずれかに記載の構造体。
[34]前記遷移金属の酸化物上に水酸基が存在する[29]~[33]のいずれかに記載の構造体。
[35]前記遷移金属の酸化物上に金属原子と酸素原子の二重結合(金属=O)の構造が存在する[29]~[34]のいずれかに記載の構造体。
[36]前記遷移金属の酸化物は、透過型電子顕微鏡(TEM)像から求められた平均粒径が100nm以下の粒子である[29]~[35]のいずれかに記載の構造体。
[37]前記遷移金属の酸化物は格子欠陥を含む[29]~[36]のいずれかに記載の構造体。
[38]前記電気伝導性を有する材料は、炭素系材料および金属化合物からなる群から選択される少なくとも1種である[29]~[37]のいずれかに記載の構造体。
[39]前記電気伝導性を有する材料の電気伝導度は、1×10-14Scm-2以上である[29]~[38]のいずれかに記載の構造体。
[40]前記電気伝導性を有する材料に用いられる金属化合物は酸化チタンである[38]または[39]に記載の構造体。
[41]前記酸化チタンの結晶構造がアナターゼ型である[40]に記載の構造体。
[42]電気伝導性を有する材料と、該材料に担持された遷移金属の酸化物とを備える複合体が、電気伝導性を有する基材に保持された触媒であって、前記遷移金属は、周期表第8族~第10族の遷移金属の少なくとも1種であり、前記遷移金属の酸化物はアモルファス構造を有し、前記基材は多孔質材料である触媒。
[43]前記遷移金属の酸化物は、印加された電圧に応じてフレキシブルかつ可逆的に変化する[42]に記載の触媒。
[44]前記電気伝導性を有する材料と前記遷移金属の酸化物は、酸素を介してブリッジされている[42]または[43]に記載の触媒。
[45]前記電気伝導性を有する材料と前記遷移金属の酸化物の間に酸素原子が観測される前記[42]~[44]のいずれかに記載の触媒。
[46]前記電気伝導性を有する材料の表面に水酸基が存在する[42]~[45]のいずれかに記載の触媒。
[47]前記遷移金属の酸化物上に水酸基が存在する[42]~[46]のいずれかに記載の触媒。
[48]前記遷移金属の酸化物上に金属原子と酸素原子の二重結合金属=O(金属カルボニル)の構造が存在する[42]~[47]のいずれかに記載の触媒。
[49]前記遷移金属の酸化物は、透過型電子顕微鏡(TEM)像から求められた平均粒径が100nm以下の粒子である[42]~[48]のいずれかに記載の触媒。
[50]前記遷移金属の酸化物は格子欠陥を含む[42]~[49]のいずれかに記載の触媒。
[51]前記電気伝導性を有する材料は、炭素系材料および金属化合物からなる群から選択される少なくとも1種である[42]~[50]のいずれかに記載の触媒。
[52]前記電気伝導性を有する材料の電気伝導度は、1×10-14Scm-2以上である[42]~[51]のいずれかに記載の触媒。
[53]前記電気伝導性を有する材料に用いられる金属化合物は酸化チタンである[51]または[52]に記載の触媒。
[54]前記酸化チタンの結晶構造がアナターゼ型である[53]に記載の触媒。
[55]前記触媒が、水の電気分解触媒である[42]~[54]のいずれかに記載の触媒。
[56]電気伝導性を有する材料と、該材料に担持された遷移金属の酸化物とを備える複合体が、電気伝導性を有する基材に保持された電極であって、前記遷移金属は、周期表第8族~第10族の遷移金属の少なくとも1種であり、前記遷移金属の酸化物はアモルファス構造を有し、前記基材は多孔質材料である電極触媒。
[57]前記遷移金属の酸化物は、印加された電圧に応じてフレキシブルかつ可逆的に変化する[56]に記載の電極触媒。
[58]前記電気伝導性を有する材料と前記遷移金属の酸化物は、酸素を介してブリッジされている[56]または[57]に記載の電極触媒。
[59]前記電気伝導性を有する材料と前記遷移金属の酸化物の間に酸素原子が観測される前記[56]~[58]のいずれかに記載の電極触媒。
[60]前記電気伝導性を有する材料の表面に水酸基が存在する[56]~[59]のいずれかに記載の電極触媒。
[61]前記遷移金属の酸化物上に水酸基が存在する[56]~[60]のいずれかに記載の電極触媒。
[62]前記遷移金属の酸化物上に金属原子と酸素原子の二重結合(金属=O)の構造が存在する[56]~[61]のいずれかに記載の電極触媒。
[63]前記遷移金属の酸化物は、透過型電子顕微鏡(TEM)像から求められた平均粒径が100nm以下の粒子である[56]~[62]のいずれかに記載の電極触媒。
[64]前記遷移金属の酸化物は格子欠陥を含む[56]~[63]のいずれかに記載の電極触媒。
[65]前記電気伝導性を有する材料は、炭素系材料および金属化合物からなる群から選択される少なくとも1種である[56]~[64]のいずれかに記載の電極触媒。
[66]前記電気伝導性を有する材料の電気伝導度は、1×10-14Scm-2以上である[56]~[65]のいずれかに記載の電極触媒。
[67]前記電気伝導性を有する材料に用いられる金属化合物は酸化チタンである[65]または[66]に記載の電極触媒。
[68]前記酸化チタンの結晶構造がアナターゼ型である[67]に記載の電極触媒。
[69]アノードである[56]~[68]のいずれかに記載の電極触媒。
[70][56]~[68]のいずれかに記載の電極をアノードに用いた電気化学反応装置。
[71]標準電極と、前記電極との間に接続され、水を含む電解液、水を酸化して酸素を発生する前記電極および前記標準電極を備えた反応槽と、前記電極と前記標準電極との間のオンセット電位に対して、印加電圧を-3.0V~1.0Vの範囲で1往復以上掃引し得る電位可変装置と、を具備する[70]に記載の電気化学反応装置。
[72]電気伝導性を有する材料と、該材料に担持された遷移金属の酸化物とを備える複合体が、電気伝導性を有する基材に保持された構造体を含む[69]に記載のアノードと、カソードと、前記アノードと前記カソードとの間に設けられた電解質膜と、を具備する膜電極接合体。
[73]アルコール合成用である[72]に記載の膜電極接合体。
[74][72]または[73]に記載の膜電極接合体を備え、前記アノードに水または水蒸気を供給する第1の供給手段と、前記カソードにカルボン酸類を提供する第2の供給手段と、前記カソードにおいて生成されたアルコールを回収する手段と、を備えるアルコール合成装置。
[75]標準電極と、前記アノードの標準電極に対するオンセット電圧の測定系、および前記アノードと前記標準電極との間のオンセット電位に対して、印加電圧を-3.0V~1.0Vの範囲で1往復以上掃引し得る電位可変装置と、を具備する[74]に記載のアルコール合成装置。
[75][29]~[41]のいずれかに記載の構造体の製造方法であって、電気伝導性を有する材料を、遷移金属の酸化物の前駆体の溶液に浸漬し、前記材料を浸漬した前記溶液を加熱する工程を有する構造体の製造方法。
[76][56]~[69]のいずれかに記載の電極触媒の製造方法であって、遷移金属の酸化物の前駆体をアルカリ金属の水溶液または多価アルコール水で処理して得られた遷移金属により得られた遷移金属を固体電解質膜に塗布し、電気伝導性を有する材料を保持した基材を併せて接合する工程を有する電極触媒の製造方法。
[77]前記電気伝導性を有する材料が酸化チタンであり、前記遷移金属の酸化物が酸化イリジウムであり、前記多孔質構造の電気伝導性基材がチタンである[76]に記載の電極触媒の製造方法。
[78]電極触媒の活性化方法であって、電解液中に設けた[56]~[69]のいずれかに記載の電極触媒と標準電極の系において、オンセット電位に対し、印加電圧を-3.0V~1.5Vの範囲で1往復以上掃引する電極触媒の活性化方法。
本明細書においては、担体に担持された触媒の構造を「触媒/担体」と記載し、これが基材である電極などに付された構造を「触媒/担体-基材」と記載する。また、触媒/担体を「触媒」と記載することがあり、触媒/担体-基材のことを触媒と記載することがある。また、基材が電極である場合については、電極触媒と記載することがある。
本発明の複合体は、電気伝導性を有する材料と、該材料に担持された遷移金属の酸化物と、を備え、前記遷移金属の酸化物はアモルファス構造を有する。
本発明の複合体において、前記遷移金属酸化物と前記材料との間には酸素原子が存在していることが観測される。この酸素原子は、遷移金属酸化物の由来であるか、前記材料由来のものであるか、についてはいずれでも良い。また、発明者らは、電位中において遷移金属の酸化数が変化するとき、この酸素原子は、全体の電荷のバランスを保持するのに寄与している、と考えている。
導電性を有する材料と、遷移金属の酸化物との中間に存在する酸素原子がどのような構造で存在しているかを明確に知ることは困難であるが、XPSなどの分析により、遷移金属酸化物の表面には水酸基や遷移金属の酸化物上に金属原子と酸素原子の二重結合(金属=O)の存在が明らかとされている。例えば、計算化学的な手法により、酸化チタンと酸化イリジウムとの間には、Ti-O-H-O-Ir結合のようなブリッジ構造の存在を示すことができることから、前記遷移金属酸化物と前記材料の間に介在する酸素が、前記遷移金属酸化物と前記材料を結合している場合も考えられる。
本発明の複合体は、触媒、更には電極としての機能を有する。
前記電気伝導性を有する材料としては、特に制限はないが、例えば、アセチレンブラック、ケッツェンブラック(登録商標)、カーボンナノチューブ、グラファイト、グラフェン等の炭素系材料、Ni、V、Ti、Co、Mo、Fe、Cu、Zn、Sn、W、Zr等の遷移金属、およびその酸化物、炭化物、窒化物、担窒化物等が挙げられる。これらの1種を単独で、または2種以上を組み合わせて使用してもよい。
本発明の複合体において、前記材料に担持されるのは、周期表第8族~第10族の遷移金属の酸化物である。前記材料に周期表第8族~第10族の遷移金属の酸化物が担持されると、特に高い触媒活性が得られる。
一方、得られた触媒を焼成した場合には、触媒に含まれる遷移金属酸化物は結晶構造になると考えられる。
前記材料に担持される成分は、例えば、酸化ルテニウム(RuO2)、酸化ロジウム(Rh2O3)、酸化白金(PtO2)、酸化パラジウム(PdO)が好ましく、金属イリジウム、酸化イリジウム(IV:二酸化イリジウム(IrO2))、酸化イリジウム(III:三酸化二イリジウム(Ir2O3))及び/又はそれらの混合物がより好ましい。さらに、バルクのイリジウム酸化物から大きく乱れた不規則性な結晶構造を有する酸化物を含むことができる。前記材料に担持する成分が前記条件を満たすと、遷移金属の酸化数のフレキシブルな変化が生じやすい。
前記複合体は、電極となる基材に保持することにより電極触媒として用いることができる。
前記複合体を電極触媒として用いる場合、前記電気伝導性を有する材料は担体として機能し、前記材料に担持する遷移金属の酸化物等は触媒成分として機能する。複合体が基材に保持されると、電極触媒となる。
オンセット電位とは、前記電極触媒を用いたときに得られる電流電圧曲線において、酸素発生反応に由来する電流密度の増加をX軸に対して外挿したときに、電流密度が0になる電位とする。
本発明の触媒を用いた前記電極は、アノード触媒とカソード触媒との境目に電解質膜を用いれば、電気分解で生じたプロトンを、電解質膜を介してカソード触媒層に輸送し、適切なカソード触媒を用いれば、そのプロトンを用いて還元反応を行うことができる。例えば、カルボン酸の水素化触媒と組み合わせることにより、図2に示すようなアルコール電解合成セルを構成することができる。電解質膜には公知の電解質膜であれば特に制限はないが、図2に示すように、ナフィオン(NAFION(登録商標)、パーフルオロアルキルスルホン酸系ポリマー)膜を電解質膜とすることが好ましい。この電解質膜をカソードおよびアノードで挟み、カソード触媒層およびアノード触媒層が前記電解質膜に密着するように熱圧着して、膜電極接合体(MEA)を形成する。アノード触媒層として本発明の触媒からなる触媒層を使用する。図2においては、本発明の触媒として、炭素からなる担体に酸化イリジウムを担持してなる触媒が使用されている。カソード触媒層は、例えば、TiO2層とすることができる。膜電極接合体の両側にシリコンラバーを挟んで、アノード側に電解反応槽を装着し、カソード側にカルボン酸の水素化反応槽を取り付ける。電解反応槽に水を供給し、水素化反応槽にカルボン酸を供給して、両電極間に電圧をかける。そうすると、アノード側で水の電気分解が起こり、発生したプロトンが電解質膜を通ってカソードに供給され、カソード側でカルボン酸の水素化が行われ、アルコールが生成される。本発明の触媒は、水の電気分解触媒として特に高い活性を有することから、このアルコール電解合成セルにより効率的なアルコール合成が可能である。
かかる装置を本明細書において、PEAECと称することがある。
PEAECとしては、国際公開第2017/154743号に記載されているものを用いることができる。
アノード側の流路に液溜めがある装置を用い、参照電極(Ag/AgCl電極)を液溜め中に挿入する(図48参照)。装置のアノード側に支持電解質(例えば、0.2mol/L Na2SO4)を含む水を流通させるとともに、カソード側に水を流通させて、アノードに所望の電位範囲で電位を複数サイクル掃引することで、アノード触媒を活性化することができる。その後、アノード側に水を流通させるとともに、カソード側にカルボン酸水溶液を流通させることにより、通常のアルコール電気化学合成を行うことができる。
本発明の構造体は、電極として作用する基材に電気伝導性の材料である担体を保持させた後に、触媒である遷移金属酸化物を担持させて製造することができるし、逆に、電気伝導性の材料に遷移金属酸化物を担持させ、これを基材に保持させるという工程で製造してもよい。前者の方法は、基材の表面を、積極的に化学処理を施して担体としての電気伝導性材料を生成させてもよいし、基材の表面が自然に酸化されて酸化物の被膜が生成しているのを利用してもよい。酸化物の皮膜を利用する場合、酸化物は電気伝導性が低いため薄いほど電極触媒としての性能がよい。基材にチタンメッシュを用いる場合は、アルカリ水溶液で高温処理をすると表面に針状の酸化チタンが成長し、これに遷移金属酸化物の前駆体を反応させて担持する方法を用いることができる。
また、この構造体を膜電極接合体のアノードとする場合には、遷移金属酸化物の前駆体から遷移金属酸化物を製造し、これを固体電解質膜に塗布し、表面が空気中で自然酸化したチタンペーパーを合わせて構造体とすることもできる。遷移金属酸化物は、アルカリ処理により水酸化物として焼成したものを用いてもよいし、ナノパーティクルを形成して焼成した物を用いてもよい。
本発明の電極触媒は、遷移金属をアモルファス化する必要がある。
触媒の活性化のために、電解液(例えば、0.05mmol/LのH2SO4水溶液)中に設けた電極触媒と標準電極の系において、オンセット電位に対し、印加電圧を-3.0V~1.5Vの範囲で1往復以上掃引する。活性化のための電圧掃引条件としては、オンセット電位に対して-3.0V~1.5Vの範囲で1往復以上掃引することが好ましく、-3.0V~0.5Vの範囲で5往復以上掃引することがより好ましく、-0.4V~0.5Vの範囲で10往復以上掃引することがさらに好ましい。
オンセット電位とは、前記電極触媒を用いたときに得られる電流電圧曲線において、酸素発生反応に由来する電流密度の増加をX軸に対して外挿したときに、電流密度が0になる電位とする。
TiO2-Tiメッシュは、2段階の水熱合成法によって調製した。
まず、第1のステップとして、1M NaOH水溶液30mLを入れたオートクレーブにTiメッシュ(面積:2cm×2cm)を入れた。
次いで、オートクレーブを12時間、220℃に加熱して、Tiメッシュ上にH2Ti2O5・H2Oを成長させた。その後、Tiメッシュを水で洗浄し、0.1M HCl水溶液に10分間浸漬した後、水とエタノールで洗浄し、空気乾燥した。
その後、水とエタノールで洗浄した後、TiO2を保持したTiメッシュを空気中で乾燥させた。
得られたTiO2-Ti(1)およびIrOx/TiO2-Tiメッシュ触媒(1A)の電子顕微鏡写真像の一例を図3に示す。図3(a)は、TiO2-TiメッシュのSEM像であり、図3(b)は、IrOx/TiO2-Tiメッシュ触媒(1A)のSEM像であり、図3(c)は、IrOx/TiO2-Tiメッシュ触媒(1A)の高解像度TEM像である。
前記IrOxの担持量(単位:mg/cm2)の異なる数種のIrOx/TiO2-Tiメッシュ触媒に対してサイクリックボルタモグラム(CV)曲線を求めた。結果を図4に示す。図4(a)は、IrOx/TiO2-Tiメッシュ触媒のサイクリックボルタモグラム(CV)曲線であり、図4(b)は掃引速度10mV/sにおけるIrOx/TiO2-Tiメッシュ触媒(IrOx担持量:0.58mg/cm2、(1A))のターフェルプロットである。ターフェルプロットは、電気化学反応の速度と過電圧との間の関係を記述するため、測定された電流の絶対値の対数値と印加電位の関係を示したものである。ある電流値を得るためにどれだけの電圧を印加する必要があるのかを定量的に評価することができ、この勾配が小さいことは、触媒の効率が高いことを意味する。
(1)表面水酸(OH)基の存在
酸素発生反応(OER)は、特に酸性媒体中の複数のエネルギー変換デバイスにおいて重要である。これまで関連触媒が種々報告されているが、触媒メカニズムは依然として不明な点が多い。ここでは、前記触媒の触媒メカニズムを明らかにするために、いくつかのX線光電子分光分析(XPS)およびXAFS(X線吸収微細構造)解析を行った。
触媒の状態を詳細に調べるため、触媒のXAFS(X線吸収微細構造)解析実験を行なった。
試料の測定法として、透過法、蛍光法、転換電子収量法を用い、試料形態および測定元素種に適切な方法をそれぞれ適用した。
・TiO2-Tiメッシュ(IrOx担持前)→IrOx/TiO2-Tiメッシュ(未焼成・活性化処理前)→IrOx/TiO2-Tiメッシュ(未焼成・活性化処理後)
・TiO2-Tiメッシュ(IrOx担持前)→IrOx/TiO2-Tiメッシュ(未焼成・活性化処理前)→IrOx/TiO2-Tiメッシュ(焼成・活性化処理前)、IrOx/TiO2-Tiメッシュ(焼成・活性化処理後)
標準試料に関する操作は、全て上記と同様の条件で行った。in situ条件における測定は、全て蛍光法を用いて行った。
電極試料は、IrOx/TiO2-Tiメッシュ(未焼成・活性化処理後)、IrOx/TiO2-Tiメッシュ(焼成・活性化処理後)を用い、サイズは2cm×1cmとした。
・XAFS測定(電極のみ)
図7にIr-L3吸収端におけるXANES測定の結果を示す。全ての電極試料の吸収端のピークトップの位置が金属IrとIrO2の中間の位置にあることから、作製した電極試料におけるIr種は、0価と4価の中間の価数を有することがわかった。活性化処理前後の未焼成IrOx/TiO2-Tiメッシュのスペクトルに着目すると、吸収端のピークトップの位置が活性化処理により低エネルギー側にシフトしたことから、活性化処理によりIr種が若干還元された状態に変化することが示唆された。焼成前後おけるIrOx/TiO2-Tiメッシュのスペクトルに着目すると、未焼成IrOx/TiO2-TiメッシュのスペクトルはIrO2のスペクトルに近く、焼成IrOx/TiO2-Tiメッシュのスペクトルは金属Irに近いことから、未焼成IrOx/TiO2-TiメッシュにおけるIr種のほうがより高い酸化状態であることが示唆された。
IrOx/TiO2-Tiメッシュ(未焼成・活性化処理後)を用いたときの電圧印加時および無印加時におけるIr-L3吸収端のXANES測定の結果を図11に示す。よりポジティブな電圧を印加するほどスペクトルが高エネルギー側にシフトしたことから、ポジティブな電圧の印加するほどIr種の価数がより高い酸化状態に変化することが明らかとなった。Ir-L3のXANES吸収端における変曲点を印加電圧に対してプロットしたグラフを図12に示す。電圧無印加時および1.05V vs RHEにおける変曲点は、IrO4の変曲点よりも低エネルギー側にあったのに対し、1.2V vs RHE以上の電圧印加時は、IrO2の変曲点よりも高エネルギー側に変曲点がシフトした。すなわち、IrOx/TiO2-Tiメッシュ(未焼成・活性化処理後)におけるIr種は、電圧の印加に伴って価数が変化し、1.2V vs RHE以上の電圧印加時はIr4+以上の価数を有することが明らかとなった。また、測定における電圧を印加した順序は電圧の順序とは異なるにも関わらず、Ir種の価数は印加電圧に対して比例的に依存した。これら結果から、IrOx/TiO2-Tiメッシュ(未焼成・活性化処理後)におけるIr種のレドックス能が非常にフレキシブルであり、可逆的な電圧応答性を有することが明らかとなった。
既報(J Nanopart Res(2011)13:1639-1646)を参考に、H2IrCl6・nH2O(10g),19.4mM)粉末を最初にイオン交換水200mLに溶解した。
すなわち、上記の方法により、IrOxナノ粒子を得た。
4mgの前記IrOx-lab、24μLのナフィオン(登録商標)溶液(5質量%)、240μLの2-プロパノールおよび240μLの水を含む混合物を数十分間超音波処理した。
0.2M Na2SO4水溶液中における、実施例2で得られたIrOx/Cおよび実施例3で得られたIrOx/ TiO2-TiのLSV測定結果を図23に示す。IrOx-Cは、市販のIrO2粒子を使って合成した電極(IrO2-wako-C)と比較して高い性能を示すことがわかった。また、IrOx/TiO2-Tiは、IrOx/Cと比較して、さらに高い触媒能を示した。IrOx/TiO2-Tiのより高い触媒活性は、主にカーボン紙よりもTiペーパーの電気抵抗率が低いことによると考えられる。
図24に、実施例3で得られたIrOx/TiO2-Ti(図中ではIrO2(Yamauchi))と市販されているDSEとのOER特性を示す。IrOx/TiO2-Ti上での過電圧(オーバーポテンシャル)は市販されているアノードよりも低く、高い電流密度を示すことがわかった。したがって、IrOx/TiO2-Tiは優れたOER能を示すことが明らかとなった。
図25に、実施例3で得られたIrOx/TiO2-Tiの、市販OER電極をポリマー電解質アルコール電解合成セル(PEAEC)に用いた場合の、PEAEC性能を示す。全て同じ条件で実験したところ、IrOx/TiO2-Tiが最も優れた触媒能を示すことがわかった。
また、本触媒の耐久性試験を行った(図26)。多くの水電解触媒が20時間以下と低いのに対して(参考論文およびそのSupporting data:T.Fujigaya,Y.Shi,J.Yang,H.Li,K.Ito、N.Nakashima,“A highly efficient and durable carbon nanotube-based anode electrocatalyst for water electrolyzers” J.Mater.Chem.A,2017,5,10584-10590.DOI:10.1039/c7ta01318c)、本触媒は、100時間後も水電解電位はほとんど変化せず、本触媒が極めて高いOER耐久性を示すことを示している。
実施例2で、原料としてH2IrCl6・nH2O1.0g(1.9mmol)とし、溶媒量を実施例2の1/10としたこと以外は実施例2と同様な方法により、IrO2微粒子を得た。なお、実施例8では、図27に示す方法(a)により、IrO2微粒子を合成した。
H2IrCl6・nH2O1.0g(1.9mmol)を15mLのエチレングリコールと10mLの水の混合溶液に溶解し、窒素気流中、140℃で6時間乾留し、黒色のサスペンジョンを得た。これを濾取した後、水で洗浄し、イリジウムのナノ粒子を得た。得られたイリジウムのナノ粒子を空気中、400℃で1時間焼成して、IrO2微粒子を得た。実施例9では、図27に示す方法(b)により、IrO2微粒子を合成した。
実施例2で得られたIrO2をIrO2-large(a)、実施例8で得られたIrO2をIrO2-small(b)と表示し、実施例9で得られたIrO2をIrO2-metal(c)と表示し、TEMおよびXRDを比較した。IrO2-large(a)、IrO2-small(b)およびIrO2-metal(c)のXRDパターンを図28に、TEM像を図29に示す。
実施例2で、原料としてH2IrCl6・nH2O1.0g(1.9mmol)とRuCl3・nH2O55mg(0.22mmol)を用いたこと以外は実施例2と同様な方法により、Ir-RuO2を得た。得られたIr-RuO2を、Ir-RuO2-smallと記す。
実施例9で、原料としてH2IrCl6・nH2O1.0g(1.9mmol)とRuCl3・nH2O55mg(0.22mmol)を用いたこと以外は実施例9と同様な方法により、Ir-RuO2を得た。得られたIr-RuO2を、Ir-RuO2-metalと記す。
実施例11で得られたIr-RuO2をIr-RuO2-small(a)、実施例12で得られたIr-RuO2をIr-RuO2-metal(b)と表示し、XRDを比較した。Ir-RuO2-small(a)およびIr-RuO2-metal(b)のXRDパターンを図30に示す。
実施例1で得られたTiO2-Tiメッシュを、IrCl3・nH2O(24mg、68μmol)とRh(C2H4O2)x・H2O(2.2mg、7.6μmol)のエチレングリコール45mLと水30mLの混合液に浸漬し、窒素気流中、140℃で6時間還流し、Ir-RhOx/TiO2-Tiメッシュを得た。
実施例14で用いたRh化合物の代わりに、PdCl2(1.3mg、7.6μmol)を用いたこと以外は実施例14と同様な方法により、Ir-PdOx/TiO2-Tiメッシュを得た。
実施例14で用いたRh化合物の代わりに、19.4mmol/L H2PtCl6aq.(0.40mL、7.6μmol)を用いたこと以外は実施例14と同様な方法により、Ir-PtOx/TiO2-Tiメッシュを得た。
IrO2-largeを搭載したPEAECの性能評価を行った。
図31に評価に用いたPEAECの構造を示す。
IrO2-smallを用いたこと以外は実施例17と同様な方法により、IrO2-smallを搭載したPEAECの性能評価を行った。
図34に、電流密度の時間変化を示す。図35に、各電位におけるシュウ酸の転化率、グリコール酸生成のファラデー効率、グリオキシル酸生成のファラデー効率を示す。
IrO2-metalを用いたこと以外は実施例17と同様な方法により、IrO2-metalを搭載したPEAECの性能評価を行った。
図36に、電流密度の時間変化を示す。図37に、各電位におけるシュウ酸の転化率、グリコール酸生成のファラデー効率、グリオキシル酸生成のファラデー効率を示す。
Ir-RuO2-smallを用いたこと以外は実施例17と同様な方法により、Ir-RuO2-smallを搭載したPEAECの性能評価を行った。
図38に、電流密度の時間変化を示す。図39に、各電位におけるシュウ酸の転化率、グリコール酸生成のファラデー効率、グリオキシル酸生成のファラデー効率を示す。
Ir-RuO2-metalを用いたこと以外は実施例17と同様な方法により、Ir-RuO2-metalを搭載したPEAECの性能評価を行った。
図40に、電流密度の時間変化を示す。図41に、各電位におけるシュウ酸の転化率、グリコール酸生成のファラデー効率、グリオキシル酸生成のファラデー効率を示す。
Ir-RhOx/TiO2-Tiメッシュ(2cm×2cm)、ナフィオン(登録商標)およびTiO2-Tiメッシュ(2cm×2cm)をこの順に重ね合わせて熱プレスし、MEAを作製したこと以外は実施例17と同様な方法により、Ir-RhOx/TiO2-Tiメッシュを搭載したPEAECの性能評価を行った。
Ir-PdOx/TiO2-Tiメッシュ(2cm×2cm)、ナフィオン(登録商標)およびTiO2-Tiメッシュ(2cm×2cm)をこの順に重ね合わせて熱プレスし、MEAを作製したこと以外は実施例17と同様な方法により、Ir-PdOx/TiO2-Tiメッシュを搭載したPEAECの性能評価を行った。
Ir-PtOx/TiO2-Tiメッシュ(2cm×2cm)、ナフィオン(登録商標)およびTiO2-Tiメッシュ(2cm×2cm)をこの順に重ね合わせて熱プレスし、MEAを作製したこと以外は実施例17と同様な方法により、Ir-PtOx/TiO2-Tiメッシュを搭載したPEAECの性能評価を行った。
Claims (11)
- 電気伝導性を有する材料と、該材料に担持された遷移金属の酸化物と、を備え、前記遷移金属の酸化物はアモルファス構造を有する複合体。
- 電気伝導性を有する材料と、該材料に担持された遷移金属の酸化物と、を備え、前記遷移金属の酸化物はアモルファス構造を有する複合体を含む触媒。
- 電気伝導性を有する材料と、該材料に担持された遷移金属の酸化物とを備える複合体が、電気伝導性を有する基材に保持された構造体であって、前記遷移金属は、周期表第8~第10族の遷移金属の少なくとも1種であり、前記遷移金属の酸化物はアモルファス構造を有し、前記基材は多孔質材料である構造体。
- 電気伝導性を有する材料と、該材料に担持された遷移金属の酸化物とを備える複合体が、電気伝導性を有する基材に保持された電極であって、前記遷移金属は、周期表第8~第10族の遷移金属の少なくとも1種であり、前記遷移金属の酸化物はアモルファス構造を有し、前記基材は多孔質材料である電極触媒。
- 電気伝導性を有する材料と、該材料に担持された遷移金属の酸化物とを備える複合体が、電気伝導性を有する基材に保持された構造体を含む電極をアノードに用いた電気化学反応装置。
- 電気伝導性を有する材料と、該材料に担持された遷移金属の酸化物とを備える複合体が、電気伝導性を有する基材に保持された構造体を含むアノードと、カソードと、前記アノードと前記カソードとの間に設けられた電解質膜と、を具備する膜電極接合体。
- 請求項6に記載の膜電極接合体を備え、前記アノードに水または水蒸気を供給する第1の供給手段と、前記カソードにカルボン酸類を提供する第2の供給手段と、前記カソードにおいて生成されたアルコールを回収する手段と、を備えるアルコール合成装置。
- 電気伝導性を有する材料と、該材料に担持された遷移金属の酸化物と、を備える複合体が、多孔質構造で電気伝導性基材に保持された構造体の製造方法であって、
電気伝導性を有する材料を、遷移金属の酸化物の前駆体の溶液に浸漬し、前記材料を浸漬した前記溶液を加熱する工程を有する構造体の製造方法。 - 電気伝導性を有する材料と、該材料に担持された遷移金属の酸化物と、を備える複合体が、多孔質構造の電気伝導性基材に保持された電極触媒の製造方法であって、
遷移金属の酸化物の前駆体をアルカリ金属の水溶液または多価アルコール水で処理して得られた遷移金属により得られた遷移金属を固体電解質膜に塗布し、電気伝導性を有する材料を保持した基材を併せて接合する工程を有する電極触媒の製造方法。 - 前記電気伝導性を有する材料が酸化チタンであり、前記遷移金属の酸化物が酸化イリジウムであり、前記多孔質構造の電気伝導性基材がチタンである請求項9に記載の電極触媒の製造方法。
- 電極触媒の活性化方法であって、
電解液中に設けた請求項4に記載の電極触媒と標準電極の系において、オンセット電位に対し、印加電圧を-3.0V~1.5Vの範囲で1往復以上掃引する電極触媒の活性化方法。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018112139 | 2018-06-12 | ||
JP2018112139 | 2018-06-12 | ||
PCT/JP2019/023369 WO2019240200A1 (ja) | 2018-06-12 | 2019-06-12 | 触媒及びその使用方法 |
JP2020525636A JP7315240B2 (ja) | 2018-06-12 | 2019-06-12 | 触媒及びその使用方法 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020525636A Division JP7315240B2 (ja) | 2018-06-12 | 2019-06-12 | 触媒及びその使用方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2023133304A true JP2023133304A (ja) | 2023-09-22 |
Family
ID=68842975
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020525636A Active JP7315240B2 (ja) | 2018-06-12 | 2019-06-12 | 触媒及びその使用方法 |
JP2023110952A Pending JP2023133304A (ja) | 2018-06-12 | 2023-07-05 | 触媒及びその使用方法 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020525636A Active JP7315240B2 (ja) | 2018-06-12 | 2019-06-12 | 触媒及びその使用方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11965255B2 (ja) |
EP (1) | EP3808449A4 (ja) |
JP (2) | JP7315240B2 (ja) |
CN (1) | CN112368073B (ja) |
WO (1) | WO2019240200A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3933068A4 (en) * | 2019-02-28 | 2023-04-12 | Japan Science and Technology Agency | ELECTRODE CATALYST AND METHOD FOR PRODUCING AN AMINO COMPOUND |
WO2023208026A1 (zh) * | 2022-04-28 | 2023-11-02 | 中国石油化工股份有限公司 | 一种过渡金属掺杂的铱基复合催化剂及其制备和应用 |
CN116116405A (zh) * | 2022-11-04 | 2023-05-16 | 佛山东佛表面科技有限公司 | 一种用于co还原no的单原子团簇型贵金属整体式丝网催化剂 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN85107320A (zh) * | 1984-09-13 | 1987-04-15 | 埃尔特克系统公司 | 特别适用于电解电极的复合催化材料及其制造方法 |
US7879753B2 (en) * | 2003-05-27 | 2011-02-01 | Industrie De Nora S.P.A. | Catalyst for oxygen reduction |
KR100787276B1 (ko) | 2003-10-08 | 2007-12-20 | 악조 노벨 엔.브이. | 전극 |
KR101082859B1 (ko) | 2003-10-29 | 2011-11-11 | 우미코레 아게 운트 코 카게 | 물 가수분해를 위한 귀금속 산화물 촉매 |
KR100649092B1 (ko) * | 2005-11-02 | 2006-11-27 | 한국과학기술연구원 | 금속산화물 코팅 산화티타늄 초극세섬유로 구성된 금속산화물 계 슈퍼커패시터 및 그 제조방법 |
CN101474557B (zh) * | 2009-01-06 | 2011-02-02 | 上海汽车工业(集团)总公司 | 燃料电池用电催化剂载体、电催化剂、电极,及其制备 |
GB0914562D0 (en) | 2009-08-20 | 2009-09-30 | Johnson Matthey Plc | Catalyst layer |
CN102302932B (zh) | 2011-06-22 | 2013-01-02 | 南京师范大学 | 海水电解反应阳极Sn-Ru-Ir/TiO2纳米粒子催化剂的制备方法 |
CN102251252A (zh) * | 2011-07-20 | 2011-11-23 | 南京师范大学 | 海水电解反应阳极IrO2-RuO2-SnO2-TiO2纳米粒子涂层的制备方法 |
WO2013029186A1 (en) | 2011-09-01 | 2013-03-07 | Trudel Simon | Electrocatalytic materials and methods for manufacturing same |
AU2012361801A1 (en) | 2011-12-26 | 2014-06-26 | Industrie De Nora S. P. A. | High-load durable anode for oxygen generation and manufacturing method for the same |
EP2634290A1 (en) * | 2012-02-28 | 2013-09-04 | Fritz Haber Institute of the Max Planck Society Department of Inorganic Chemistry | Electrolytic water splitting using a carbon-supported MnOx-composite |
KR101438891B1 (ko) * | 2012-07-03 | 2014-09-05 | 현대자동차주식회사 | 연료전지용 애노드의 제조방법 |
US10041179B2 (en) * | 2012-08-08 | 2018-08-07 | University of Pittsburgh—of the Commonwealth System of Higher Education | Non-noble metal based electro-catalyst compositions for proton exchange membrane based water electrolysis and methods of making |
US9790605B2 (en) * | 2013-06-27 | 2017-10-17 | Yale University | Iridium complexes for electrocatalysis |
WO2016020759A1 (en) * | 2014-08-04 | 2016-02-11 | King Abdullah University Of Science And Technology | Catalytic structures and methods of generating hydrogen gas |
GB201415846D0 (en) | 2014-09-08 | 2014-10-22 | Johnson Matthey Fuel Cells Ltd | Catalyst |
KR20160069238A (ko) * | 2014-12-08 | 2016-06-16 | 서강대학교산학협력단 | 비정질 이리듐 산화물 및 비정질 코발트 산화물 함유 복합체 및 이의 용도 |
EP3427826B1 (en) | 2016-03-08 | 2020-11-25 | Japan Science and Technology Agency | Catalyst and use of same |
JP2018112139A (ja) | 2017-01-12 | 2018-07-19 | トヨタ自動車株式会社 | 内燃機関の制御装置 |
-
2019
- 2019-06-12 US US16/973,890 patent/US11965255B2/en active Active
- 2019-06-12 WO PCT/JP2019/023369 patent/WO2019240200A1/ja unknown
- 2019-06-12 CN CN201980038544.8A patent/CN112368073B/zh active Active
- 2019-06-12 EP EP19820465.3A patent/EP3808449A4/en active Pending
- 2019-06-12 JP JP2020525636A patent/JP7315240B2/ja active Active
-
2023
- 2023-07-05 JP JP2023110952A patent/JP2023133304A/ja active Pending
Also Published As
Publication number | Publication date |
---|---|
CN112368073A (zh) | 2021-02-12 |
CN112368073B (zh) | 2024-04-09 |
WO2019240200A1 (ja) | 2019-12-19 |
US11965255B2 (en) | 2024-04-23 |
JP7315240B2 (ja) | 2023-07-26 |
US20210371993A1 (en) | 2021-12-02 |
JPWO2019240200A1 (ja) | 2021-07-15 |
EP3808449A1 (en) | 2021-04-21 |
EP3808449A4 (en) | 2022-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Raveendran et al. | A comprehensive review on the electrochemical parameters and recent material development of electrochemical water splitting electrocatalysts | |
Liu et al. | Synthesis of Cu2O nanostructures with tunable crystal facets for electrochemical CO2 reduction to alcohols | |
Bhowmik et al. | CoFe layered double hydroxide supported on graphitic carbon nitrides: an efficient and durable bifunctional electrocatalyst for oxygen evolution and hydrogen evolution reactions | |
Zhao et al. | Enhancing oxygen evolution electrocatalysis via the intimate hydroxide–oxide interface | |
Rajeshkhanna et al. | Remarkable bifunctional oxygen and hydrogen evolution electrocatalytic activities with trace-level Fe doping in Ni-and Co-layered double hydroxides for overall water-splitting | |
Xu et al. | A nickel iron diselenide-derived efficient oxygen-evolution catalyst | |
Anantharaj et al. | Core-oxidized amorphous cobalt phosphide nanostructures: an advanced and highly efficient oxygen evolution catalyst | |
Lin et al. | Effect of Chromium Doping on Electrochemical Water Oxidation Activity by Co3–x Cr x O4 Spinel Catalysts | |
Sumboja et al. | One-step facile synthesis of cobalt phosphides for hydrogen evolution reaction catalysts in acidic and alkaline medium | |
Chi et al. | Vertically aligned FeOOH/NiFe layered double hydroxides electrode for highly efficient oxygen evolution reaction | |
Shen et al. | Self-supported stainless steel nanocone array coated with a layer of Ni–Fe oxides/(oxy) hydroxides as a highly active and robust electrode for water oxidation | |
Samanta et al. | IrO2-Modified RuO2 nanowires/nitrogen-doped carbon composite for effective overall water splitting in all pH | |
JP2023133304A (ja) | 触媒及びその使用方法 | |
Demir et al. | Ceria supported ruthenium (0) nanoparticles: Highly efficient catalysts in oxygen evolution reaction | |
Yang et al. | Core–shell NiFe-LDH@ NiFe-Bi nanoarray: in situ electrochemical surface derivation preparation toward efficient water oxidation electrocatalysis in near-neutral media | |
Wang et al. | Ni3N-coated Ni nanorod arrays for hydrogen and oxygen evolution in electrochemical water splitting | |
Babar et al. | Spray-coated thin-film Ni-oxide nanoflakes as single electrocatalysts for oxygen evolution and hydrogen generation from water splitting | |
Bhavanari et al. | CuFe electrocatalyst for hydrogen evolution reaction in alkaline electrolysis | |
Jia et al. | Porous flower-like Mo-doped NiS heterostructure as highly efficient and robust electrocatalyst for overall water splitting | |
Hashemi et al. | Anodization of a NiFe foam: An efficient and stable electrode for oxygen-evolution reaction | |
Li et al. | Engineering amorphous/crystalline rod-like core–shell electrocatalysts for overall water splitting | |
Lin et al. | Nickel–Cobalt Selenide Electrocatalytic Electrode toward Glucose Oxidation Coupling with Alkaline Hydrogen Production | |
Huang et al. | Photodeposition fabrication of hierarchical layered Co-doped Ni oxyhydroxide (Ni x Co 1− x OOH) catalysts with enhanced electrocatalytic performance for oxygen evolution reaction | |
Adam et al. | Engineering self-supported ruthenium-titanium alloy oxide on 3D web-like titania as iodide oxidation reaction electrocatalyst to boost hydrogen production | |
Tong et al. | Optimized hierarchical nickel sulfide as a highly active bifunctional catalyst for overall water splitting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230804 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230804 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240903 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20241105 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20250107 |