JP2023131679A - Substrate processing apparatus - Google Patents

Substrate processing apparatus Download PDF

Info

Publication number
JP2023131679A
JP2023131679A JP2022036573A JP2022036573A JP2023131679A JP 2023131679 A JP2023131679 A JP 2023131679A JP 2022036573 A JP2022036573 A JP 2022036573A JP 2022036573 A JP2022036573 A JP 2022036573A JP 2023131679 A JP2023131679 A JP 2023131679A
Authority
JP
Japan
Prior art keywords
waste liquid
processing apparatus
heat
liquid
heat generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022036573A
Other languages
Japanese (ja)
Other versions
JP7504940B2 (en
Inventor
裕次 長嶋
Yuji Nagashima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Mechatronics Corp
Original Assignee
Shibaura Mechatronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shibaura Mechatronics Corp filed Critical Shibaura Mechatronics Corp
Priority to JP2022036573A priority Critical patent/JP7504940B2/en
Priority to KR1020230022655A priority patent/KR20230132693A/en
Priority to CN202310186235.3A priority patent/CN116741661A/en
Priority to TW112108169A priority patent/TWI852386B/en
Publication of JP2023131679A publication Critical patent/JP2023131679A/en
Application granted granted Critical
Publication of JP7504940B2 publication Critical patent/JP7504940B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B13/00Accessories or details of general applicability for machines or apparatus for cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/02Cleaning by the force of jets or sprays
    • B08B3/022Cleaning travelling work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/08Cleaning involving contact with liquid the liquid having chemical or dissolving effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
    • H01L21/67346Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders characterized by being specially adapted for supporting a single substrate or by comprising a stack of such individual supports
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • H02N11/002Generators

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

To provide a substrate processing apparatus capable of efficiently generating heat from waste liquid and efficiently acquiring electric power in a single-wafer type processing apparatus.SOLUTION: A substrate processing apparatus 1 according to an embodiment includes a processing device 10 that processes substrates W one by one using a processing liquid L, a waste liquid channel 20 through which a waste liquid Lw of the processing liquid L that has processed the substrates W flows, a diluted liquid supply unit 30 that supplies a diluted liquid D to the waste liquid Lw, a heat generation unit 40 that is provided at multiple locations in the waste liquid channel 20 and generates heat in the waste liquid Lw by the diluted liquid D supplied from the diluted liquid supply unit 30, and a power generation unit 50 that generates electricity using the heat of the heat generation unit 40.SELECTED DRAWING: Figure 1

Description

本発明は、基板処理装置に関する。 The present invention relates to a substrate processing apparatus.

半導体やディスプレイなどを製造する製造工程では、半導体ウェーハ、フォトマスク用ガラス基板、ディスプレイ用ガラス基板等の基板に対し、種々の処理を行うために、基板処理装置が用いられている。 2. Description of the Related Art In manufacturing processes for manufacturing semiconductors, displays, etc., substrate processing apparatuses are used to perform various treatments on substrates such as semiconductor wafers, glass substrates for photomasks, and glass substrates for displays.

このような基板処理装置として、特許文献1に示すように、硫酸及び過酸化水素水の混合液(SPM:Sulfuric hydrogen Peroxide Mixture)等の薬液を使って、基板の表面からレジストを除去する装置が提案されている。この基板処理装置は、100℃~160℃程度まで加熱されたSPMを基板に供給することにより、レジストを除去している。また、加熱装置を使って、基板に供給されたSPMをさらに加熱することも記載されている。レジスト除去に使用されたSPMは、基板処理装置に設けられたバッファタンク内で冷却、希釈を行ってから、廃液として工場側で回収、廃棄される。 As such a substrate processing apparatus, as shown in Patent Document 1, there is an apparatus that removes resist from the surface of a substrate using a chemical solution such as a mixture of sulfuric acid and hydrogen peroxide (SPM: Sulfuric hydrogen peroxide mixture). Proposed. This substrate processing apparatus removes resist by supplying SPM heated to about 100° C. to 160° C. to the substrate. It is also described that a heating device is used to further heat the SPM provided to the substrate. The SPM used for resist removal is cooled and diluted in a buffer tank provided in the substrate processing apparatus, and then collected and disposed of as waste liquid at the factory.

ところで、近年では、SDGs(Sustainable Development Goals:持続可能な開発目標)やCSR(Corporate Social Responsibility:企業の社会的責任)の観点から、再生可能エネルギーで製品を製造したいという要望があり、そのための省電力化が必要となっている。半導体デバイス等の製造においても、多量の電力を使用するため、製造おける省電力化等を含めて、環境への対策が望まれている。 Incidentally, in recent years, from the perspective of SDGs (Sustainable Development Goals) and CSR (Corporate Social Responsibility), there has been a desire to manufacture products using renewable energy, and there is a need to manufacture products using renewable energy. Electrification is needed. The manufacturing of semiconductor devices and the like also uses a large amount of electricity, so there is a desire for environmental measures, including power saving during manufacturing.

ここで、基板処理装置では、多種多様な薬液を用いており、再利用する場合を除いては、希釈してから廃棄をしている。そこで、例えば、上記のようにレジスト除去に使用されたSPM等の処理液に関しても、冷却、希釈して廃液とするのではなく、SPMを加熱するために使用した電力を回収し、再利用することが検討されている。 Here, substrate processing apparatuses use a wide variety of chemical solutions, and unless they are to be reused, they are diluted before being disposed of. Therefore, for example, instead of cooling and diluting the processing liquid such as SPM used for resist removal as described above and disposing of it as waste, the electricity used to heat the SPM can be recovered and reused. This is being considered.

また、特許文献2に示すように、処理槽から排出される薬液(廃液)を利用して、新液を昇温することにより、エネルギーの有効利用をはかる方法が提案されている。この方法では、新液の処理温度よりも低い温度の廃液温度(処理温度とほぼ同じ)で熱交換を行ったとしても、それだけでは新液を処理温度まで昇温させることはできないので、廃液に補助液体を添加し、希釈熱、反応熱、或いは中和熱等を発生させることにより、熱交換前の廃液の温度をより高め、熱交換器のみで新液を処理温度まで昇温している。これにより、新液に対する昇温のための電力を不要にしている。 Furthermore, as shown in Patent Document 2, a method has been proposed in which a chemical solution (waste solution) discharged from a processing tank is used to raise the temperature of a new solution, thereby making effective use of energy. In this method, even if heat exchange is performed at a waste liquid temperature that is lower than the processing temperature of the new liquid (approximately the same as the processing temperature), it is not possible to raise the temperature of the new liquid to the processing temperature, so the waste liquid is By adding an auxiliary liquid and generating heat of dilution, reaction, or neutralization, the temperature of the waste liquid before heat exchange is raised, and the temperature of the new liquid is raised to the processing temperature using only the heat exchanger. . This eliminates the need for electricity to raise the temperature of the new liquid.

特開2017-175166号公報Japanese Patent Application Publication No. 2017-175166 特開2006-66727号公報Japanese Patent Application Publication No. 2006-66727

しかしながら、上記のような方法は、処理槽に溜めた薬液中に複数の基板を浸して一括で処理する、いわゆるバッチ式の処理装置には適している。つまり、バッチ式の処理装置の場合、断続的ではあるが、処理が終わる毎に、一度に多量の廃液が熱交換器に供給される。そのため、バッチ式の処理装置は、熱交換器内を廃液で満たして、新液との熱交換を効率良く行うことができる。 However, the above method is suitable for a so-called batch-type processing apparatus in which a plurality of substrates are immersed in a chemical solution stored in a processing tank and processed at once. In other words, in the case of a batch-type processing apparatus, a large amount of waste liquid is supplied to the heat exchanger at once each time the processing is completed, albeit intermittently. Therefore, the batch type processing apparatus can fill the inside of the heat exchanger with the waste liquid and efficiently exchange heat with the new liquid.

一方、回転する基板に処理液を供給して、1枚ずつ処理する、いわゆる枚葉式の処理装置が存在する。枚葉式の処理装置は、バッチ式の処理装置よりも、各基板に対する処理の均一性を高いレベルで揃えることができる。そのため、枚葉式の処理装置は、近年の回路パターンの微細化に伴って、多く利用されている。しかし、このような枚葉式の処理装置では、廃液が処理中に連続して少量で流れてくるため、新液が廃液との熱交換による熱量を得るには廃液の量が十分ではない。つまり、少量の廃液から新液を昇温させることは、エネルギーを有効活用する手段としては適していない。 On the other hand, there is a so-called single-wafer processing apparatus that supplies processing liquid to rotating substrates and processes them one by one. A single-wafer processing apparatus can process each substrate with a higher level of uniformity than a batch processing apparatus. Therefore, single-wafer processing devices are increasingly used as circuit patterns become finer in recent years. However, in such a single-wafer type processing apparatus, a small amount of waste liquid continuously flows during processing, so the amount of waste liquid is not sufficient for the new liquid to obtain heat by heat exchange with the waste liquid. In other words, increasing the temperature of new liquid from a small amount of waste liquid is not suitable as a means of effectively utilizing energy.

また、薬液と補助液体を混合させた場合、補助液体が薬液中に拡散するまでには、ある程度の時間がかかる。このため、希釈熱、反応熱、或いは中和熱等による発熱は、急激に発生するわけではなく、徐々に発生する。バッチ式の場合、使用済みの薬液(廃液)を熱交換器に貯留して、補助液体と混合することにより、十分な温度とする時間を確保できる。しかしながら、枚葉式の場合、少量の廃液が廃液経路を流れていくため、補助液体との混合の時間を確保し難い。 Furthermore, when a medicinal liquid and an auxiliary liquid are mixed, it takes some time for the auxiliary liquid to diffuse into the medicinal liquid. Therefore, heat generation due to dilution heat, reaction heat, neutralization heat, etc. does not occur suddenly but gradually. In the case of a batch type, the used chemical liquid (waste liquid) is stored in a heat exchanger and mixed with an auxiliary liquid, thereby ensuring time to reach a sufficient temperature. However, in the case of a single-wafer type, since a small amount of waste liquid flows through the waste liquid path, it is difficult to secure time for mixing with the auxiliary liquid.

本発明の実施形態は、枚葉式の処理装置において、廃液を効率良く発熱させて、電力を効率良く取得できる基板処理装置を提供することである。 An embodiment of the present invention is to provide a substrate processing apparatus that can efficiently generate heat from waste liquid and efficiently obtain electric power in a single-wafer processing apparatus.

本発明の実施形態は、基板を処理液により1枚ずつ処理する処理装置と、前記基板を処理した前記処理液の廃液が流通する廃液流路と、前記廃液に希釈液を供給する希釈液供給部と、前記廃液流路の複数個所に設けられ、前記希釈液供給部から供給された前記希釈液により前記廃液を発熱させる発熱部と、前記発熱部の熱により、発電する発電部と、を有する基板処理装置。 An embodiment of the present invention includes a processing apparatus that processes substrates one by one with a processing liquid, a waste liquid flow path through which waste liquid of the processing liquid that has processed the substrates flows, and a diluent supply supply that supplies a diluent to the waste liquid. a heat generating section that is provided at a plurality of locations in the waste liquid flow path and that generates heat in the waste liquid using the diluent supplied from the diluent supply section; and a power generating section that generates electricity using the heat of the heat generating section. Substrate processing equipment with

本発明の実施形態は、枚葉式の処理装置において、廃液を効率良く発熱させて、電力を効率良く取得できる基板処理装置を提供することができる。 Embodiments of the present invention can provide a substrate processing apparatus that can efficiently generate heat from waste liquid and efficiently acquire electric power in a single-wafer processing apparatus.

第1の実施形態の基板処理装置を示す簡略構成図である。FIG. 1 is a simplified configuration diagram showing a substrate processing apparatus according to a first embodiment. 第2の実施形態の基板処理装置を示す簡略構成図である。FIG. 3 is a simplified configuration diagram showing a substrate processing apparatus according to a second embodiment.

以下、本発明の実施形態を、図面を参照して説明する。
[第1の実施形態]
[構成]
第1の実施形態の基板処理装置1を、図1を参照して説明する。基板処理装置1は、処理装置10、廃液流路20、希釈液供給部30、発熱部40、発電部50、冷却部60、蓄電装置70、制御装置80を有する。
Embodiments of the present invention will be described below with reference to the drawings.
[First embodiment]
[composition]
A substrate processing apparatus 1 according to a first embodiment will be described with reference to FIG. The substrate processing apparatus 1 includes a processing apparatus 10 , a waste liquid flow path 20 , a diluent supply section 30 , a heat generating section 40 , a power generation section 50 , a cooling section 60 , a power storage device 70 , and a control device 80 .

(処理装置)
処理装置10は、基板Wを1枚ずつ処理する枚葉式の装置である。処理対象となる基板Wは、例えば、半導体ウェーハ、フォトマスク用ガラス基板、ディスプレイ用ガラス基板など、下記の処理液Lにより処理される対象であれば、どのような基板でもよい。本実施形態の処理装置10は、例えば、回転する基板Wに処理液Lを供給することによって、基板Wの表面からレジストを除去する装置である。
(processing equipment)
The processing apparatus 10 is a single-wafer type apparatus that processes the substrates W one by one. The substrate W to be processed may be any substrate, such as a semiconductor wafer, a glass substrate for a photomask, a glass substrate for a display, etc., as long as it is a target to be processed by the processing liquid L described below. The processing apparatus 10 of this embodiment is an apparatus that removes resist from the surface of a substrate W by supplying a processing liquid L to the rotating substrate W, for example.

なお、以下の説明においては、処理液Lにおける処理のための有効成分を薬液と呼ぶ。本実施形態では、硫酸及び過酸化水素水の混合液(SPM:Sulfuric hydrogen Peroxide Mixture)を処理液Lとして使用する。但し、使用する処理液Lは、これには限定されず、例えば、フッ酸及び硝酸の混合液、酢酸等、酸系の液体を広く用いることができる。これらは、水により希釈されると反応して発熱する。 In addition, in the following description, the active ingredient for treatment in the treatment liquid L will be referred to as a chemical solution. In this embodiment, a mixture of sulfuric acid and hydrogen peroxide (SPM: Sulfuric hydrogen peroxide mixture) is used as the treatment liquid L. However, the processing liquid L used is not limited thereto, and a wide variety of acidic liquids can be used, such as a mixed solution of hydrofluoric acid and nitric acid, acetic acid, and the like. These react and generate heat when diluted with water.

処理装置10は、容器であるチャンバ10aに構成された回転部11、供給部12、回収部13を有する。回転部11は、回転体11a、駆動源11cを有する。回転体11aは、チャックピンなどの保持部11bにより基板Wの縁を保持して、基板Wの処理面に直交する軸を中心に回転する回転テーブルである。駆動源11cは、回転体11aを回転させるモータである。 The processing apparatus 10 includes a rotating section 11, a supply section 12, and a recovery section 13, which are configured in a chamber 10a, which is a container. The rotating section 11 includes a rotating body 11a and a drive source 11c. The rotating body 11a is a rotating table that rotates around an axis perpendicular to the processing surface of the substrate W while holding the edge of the substrate W using a holding portion 11b such as a chuck pin. The drive source 11c is a motor that rotates the rotating body 11a.

供給部12は、ノズル12a、アーム12bを有する。ノズル12aは、回転する基板Wの処理面に向けて、処理液Lを吐出する吐出部である。アーム12bは、先端にノズル12aが設けられ、ノズル12aを回転体11aの中心上方と、回転体11aから退避する位置との間で揺動させる。ノズル12aは、図示しない供給配管を介して処理液供給装置からの処理液Lが供給される。 The supply section 12 has a nozzle 12a and an arm 12b. The nozzle 12a is a discharge section that discharges the processing liquid L toward the processing surface of the rotating substrate W. The arm 12b is provided with a nozzle 12a at its tip, and swings the nozzle 12a between a position above the center of the rotating body 11a and a position where it is retracted from the rotating body 11a. The nozzle 12a is supplied with the processing liquid L from a processing liquid supply device via a supply pipe (not shown).

回収部13は、回転体11aを包囲するように設けられ、基板Wの処理面から漏れた処理液Lを、その底部から回収する筐体である。回収部13の底部及びチャンバ10aの底部には開口10bが設けられ、この開口10bに後述の廃液流路20が接続されている。なお、ここではSPMの処理液Lを選択的に排出する開口10bを示している。その他の処理液Lを排出する開口及び流路については図示を省略している。 The recovery unit 13 is a casing that is provided so as to surround the rotating body 11a, and recovers the processing liquid L leaking from the processing surface of the substrate W from the bottom thereof. Openings 10b are provided at the bottom of the recovery section 13 and the bottom of the chamber 10a, and a waste liquid channel 20, which will be described later, is connected to the openings 10b. Note that here, an opening 10b for selectively discharging the SPM processing liquid L is shown. Other openings and channels for discharging the processing liquid L are not illustrated.

(廃液流路)
廃液流路20は、基板Wを処理した処理液Lの廃液Lwが流通する。廃液流路20は、チャンバ10aの開口10bに接続された配管であり、工場の回収経路に接続されている。廃液流路20には、処理装置10からの廃液Lwの流量を測定する流量計21が設けられている。なお、基板Wを連続して又は並行に処理可能となるように、本実施形態の基板処理装置1は、上記の処理装置10を複数有する。そして、複数の処理装置10におけるチャンバ10aの開口10bは、共通の廃液流路20に合流する配管に接続されている。つまり、廃液流路20は、複数の処理装置10に接続されている。
(Waste liquid flow path)
A waste liquid Lw of the processing liquid L that has processed the substrate W flows through the waste liquid flow path 20 . The waste liquid flow path 20 is a pipe connected to the opening 10b of the chamber 10a, and is connected to the recovery path of the factory. The waste liquid channel 20 is provided with a flow meter 21 that measures the flow rate of the waste liquid Lw from the processing device 10 . Note that the substrate processing apparatus 1 of this embodiment includes a plurality of the above-mentioned processing apparatuses 10 so that the substrates W can be processed continuously or in parallel. The openings 10b of the chambers 10a in the plurality of processing apparatuses 10 are connected to a pipe that joins a common waste liquid channel 20. In other words, the waste liquid channel 20 is connected to a plurality of processing devices 10.

(希釈液供給部)
希釈液供給部30は、廃液Lwに希釈液Dを供給する。希釈液供給部30は、希釈流路31、マスフローコントローラ(MFC)32を有する。希釈流路31は、希釈液Dである水の供給源に接続された配管である。希釈流路31は、廃液流路20の複数の箇所に間隔を空けて接続されている。これにより、希釈流路31は、廃液流路20の廃液Lwに希釈液Dを流入させる。
(Diluent supply section)
The diluent supply unit 30 supplies the diluent D to the waste liquid Lw. The diluent supply section 30 has a dilution channel 31 and a mass flow controller (MFC) 32. The dilution channel 31 is a pipe connected to a supply source of water, which is the diluent D. The dilution channel 31 is connected to a plurality of locations in the waste liquid channel 20 at intervals. Thereby, the dilution flow path 31 causes the dilution liquid D to flow into the waste liquid Lw of the waste liquid flow path 20.

(発熱部)
発熱部40は、廃液流路20の複数個所に設けられ、希釈液供給部30に供給された希釈液Dにより廃液Lwを発熱させる。発熱部40は、廃液流路20に直列に複数配置されている。発熱部40の配置位置は、廃液流路20における複数の希釈流路31が接続された位置のそれぞれの下流となっている。発熱部40は、廃液Lwが廃棄可能な濃度まで希釈されるだけの数が設けられる。各処理装置10から廃液Lwが排出されるタイミングは、都合よく順番に行なわれるものではない。例えば、廃液Lwが排出されるタイミングが2つ重なることや廃液Lwが排出されるタイミングが3つ重なることがある。そのため、すべての処理装置10の廃液Lwが排出されるタイミングが重なったときでも問題なく廃液Lwが廃液流路20を流れるように、廃液流路20の流路径は設定される。したがって、すべての処理装置10から同時に廃液Lwが排出されたときでも十分に希釈ができる数の発熱部40が必要になる。発熱部40の数は、予め実験等により求めておくとよい。また、本実施形態の発熱部40は、コイル状の流路である。これにより、発熱部40は、発電部50の長さ分の距離において廃液Lwが滞留する時間を長くなるようにして、廃液Lwへの希釈液Dの拡散を促進することができる。つまり、発熱部40は、廃液Lwと希釈液Dとを効率良く反応させて廃液Lwを発熱させることができる。例えば、硫酸溶液は比較的粘度が高いため、希釈液Dの硫酸溶液中への拡散に時間がかかるが、この時間を確保できる。なお、発熱部40がコイル状の場合、発熱部40内で廃液Lwが停滞するおそれがある。この場合、発熱部40内にエアーやNガスを流し、廃液Lwを押し出すようにしてもよい。
(heat generating part)
The heat generating units 40 are provided at a plurality of locations in the waste liquid flow path 20, and generate heat in the waste liquid Lw by the diluent D supplied to the diluent supply unit 30. A plurality of heat generating parts 40 are arranged in series in the waste liquid flow path 20. The heat generating portions 40 are arranged downstream of the positions in the waste liquid flow path 20 to which the plurality of dilution flow paths 31 are connected. The number of heat generating units 40 is provided in such a number that the waste liquid Lw is diluted to a concentration that can be discarded. The timing at which the waste liquid Lw is discharged from each treatment device 10 is not conveniently performed sequentially. For example, the timing at which the waste liquid Lw is discharged may overlap two times, or the timing at which the waste liquid Lw is discharged may overlap three times. Therefore, the flow path diameter of the waste liquid flow path 20 is set so that the waste liquid Lw flows through the waste liquid flow path 20 without any problem even when the waste liquid Lw of all the processing devices 10 is discharged at the same time. Therefore, even when the waste liquid Lw is discharged from all the processing apparatuses 10 at the same time, a sufficient number of heat generating parts 40 are required to sufficiently dilute the waste liquid Lw. The number of heat generating parts 40 is preferably determined in advance through experiments or the like. Moreover, the heat generating part 40 of this embodiment is a coil-shaped flow path. Thereby, the heat generating section 40 can increase the time during which the waste liquid Lw stays at a distance corresponding to the length of the power generation section 50, thereby promoting the diffusion of the diluent D into the waste liquid Lw. In other words, the heat generating unit 40 can cause the waste liquid Lw and the diluent liquid D to react efficiently and generate heat in the waste liquid Lw. For example, since the sulfuric acid solution has a relatively high viscosity, it takes time for the diluent D to diffuse into the sulfuric acid solution, but this time can be ensured. In addition, when the heat generating part 40 is coil-shaped, there is a possibility that the waste liquid Lw stagnates within the heat generating part 40. In this case, air or N 2 gas may be flowed into the heat generating section 40 to push out the waste liquid Lw.

処理装置10からの廃液Lwは、複数の発熱部40を順次経ることにより、廃棄可能な状態にまで希釈される。本実施形態では、処理装置10側である上流側から廃棄側である下流側へ、3つの発熱部40が設けられている。これにより、各発熱部40において、希釈液Dが廃液Lwに混合され発熱させることができる。 The waste liquid Lw from the processing device 10 is diluted to a state where it can be disposed of by sequentially passing through the plurality of heat generating parts 40. In this embodiment, three heat generating parts 40 are provided from the upstream side, which is the processing device 10 side, to the downstream side, which is the waste side. Thereby, in each heat generating section 40, the diluent D is mixed with the waste liquid Lw and can generate heat.

(発電部)
発電部50は、発熱部40の熱により発電する。発電部50としては、例えば、ペルチェ素子などの発電素子を用いる。発電部50は、発電素子の一方の面が発熱部40に接する位置に設けられている。つまり、発電部50は、発熱部40の加熱により生じる温度差により発電する発電素子である。
(Power generation department)
The power generation section 50 generates power using the heat of the heat generation section 40. As the power generation section 50, for example, a power generation element such as a Peltier element is used. The power generation section 50 is provided at a position where one surface of the power generation element is in contact with the heat generation section 40 . In other words, the power generation section 50 is a power generation element that generates power using a temperature difference caused by heating the heat generation section 40 .

(冷却部)
冷却部60は、冷却液Cが流通する配管である。冷却部60は、発電部50の発電素子の他方の面に接する位置に設けられている。冷却部60により発電素子の他方の面が冷却されることにより、加熱された一方の面との温度差を生じさせる。冷却部60は、冷却液Cである水の供給源に接続されている。なお、発熱した廃液Lwとの温度差が得られればよいため、冷却液Cは常温で良い。
(cooling section)
The cooling unit 60 is a pipe through which the cooling liquid C flows. The cooling unit 60 is provided at a position in contact with the other surface of the power generation element of the power generation unit 50. The other side of the power generation element is cooled by the cooling unit 60, thereby creating a temperature difference with the heated one side. The cooling unit 60 is connected to a water supply source, which is a cooling liquid C. Note that the cooling liquid C may be at room temperature because it is sufficient to obtain a temperature difference from the waste liquid Lw that generates heat.

(蓄電装置)
蓄電装置70は、発電部50の発電による電力を蓄える。蓄電装置70は、処理液Lを加熱するヒータの電源とする、処理装置10の駆動源11cの電源とする、工場の照明や機器の電源とする、停電時のバックアップ電源とする等、種々の電源として利用できる。
(Power storage device)
The power storage device 70 stores electric power generated by the power generation unit 50. The power storage device 70 can be used for various purposes such as powering a heater that heats the processing liquid L, powering the drive source 11c of the processing device 10, powering factory lighting and equipment, and serving as a backup power source during a power outage. Can be used as a power source.

(制御装置)
制御装置80は、基板処理装置1の各部を制御する。制御装置80は、基板処理装置1の各部を制御すべく、プログラムを実行するプロセッサ、プログラムや動作条件などの各種情報を記憶するメモリ、各要素を駆動する駆動回路を有する。制御装置80は、処理液Lの濃度を予め記憶することができる。また、制御装置80は、発電部50の耐熱温度を予め記憶することができる。制御装置80は、廃液Lwに追加した希釈液Dの量から廃液Lwの温度が何度まで上昇するか演算することができる。例えば、制御装置80は、流量計21により測定される廃液Lwの流量に基づいて、希釈液Dによって希釈された廃液Lwの温度が発電部50の耐熱温度を超えないよう、MFC32によって希釈液Dの流量が調整されるように制御する。なお、図示はしないが、制御装置80は、情報を入力する入力部、情報を出力する出力部が接続されている。
(Control device)
The control device 80 controls each part of the substrate processing apparatus 1 . The control device 80 has a processor that executes a program, a memory that stores various information such as programs and operating conditions, and a drive circuit that drives each element in order to control each part of the substrate processing apparatus 1. The control device 80 can store the concentration of the processing liquid L in advance. Further, the control device 80 can store the allowable temperature limit of the power generation section 50 in advance. The control device 80 can calculate how high the temperature of the waste liquid Lw will rise based on the amount of diluent D added to the waste liquid Lw. For example, based on the flow rate of the waste liquid Lw measured by the flowmeter 21, the control device 80 controls the diluent D by the MFC 32 so that the temperature of the waste liquid Lw diluted with the diluent D does not exceed the heat-resistant temperature of the power generation unit 50. control so that the flow rate is adjusted. Although not shown, the control device 80 is connected to an input section for inputting information and an output section for outputting information.

[動作]
以上のような本実施形態の動作を説明する。
(基板処理)
まず、処理装置10による基板処理を説明する。処理対象となる基板Wは、搬送ロボットによって回転体11a上に搬入され、保持部11bによって保持される。駆動源11cが回転体11aを回転させることにより基板Wが回転する。処理液供給装置からの処理液Lが、ノズル12aから基板Wの処理面に供給されることにより、レジスト除去処理がなされる。所定の処理時間が経過すると、処理液Lの供給を停止する。その後、基板Wが回転を停止して、保持部11bによる保持が解放された基板Wを、搬送ロボットがチャンバ10aから搬出する。
[motion]
The operation of this embodiment as described above will be explained.
(Substrate processing)
First, substrate processing by the processing apparatus 10 will be explained. The substrate W to be processed is carried onto the rotating body 11a by a transfer robot and held by the holding section 11b. The substrate W is rotated by the drive source 11c rotating the rotating body 11a. The resist removal process is performed by supplying the processing liquid L from the processing liquid supply device to the processing surface of the substrate W from the nozzle 12a. When a predetermined processing time has elapsed, the supply of the processing liquid L is stopped. Thereafter, the substrate W stops rotating, and the transfer robot carries out the substrate W released from the holding part 11b from the chamber 10a.

(廃液発電)
次に、処理装置10からの廃液Lwを利用した発電を説明する。処理装置10において処理に使用された処理液Lは、チャンバ10aの開口10bから廃液Lwとして排出されて、廃液流路20に流入する。廃液流路20を流れる廃液Lwには、複数個所の希釈流路31から希釈液Dが流入する。これにより、廃液Lwと希釈液Dが混合された状態で、各発熱部40に流入する。発熱部40を通過する過程において、廃液Lwに希釈液Dが拡散することにより反応が進んで発熱する。これにより、各発電部50の発電素子の一方の面が加熱されるので、発電素子の一方の面と他方の面との間で温度差が生じる。発電素子内部で生じた温度差によって発電素子内部で起電力が発生する。その結果、各発電部50において発電が行われる。
(waste liquid power generation)
Next, power generation using the waste liquid Lw from the processing device 10 will be explained. The processing liquid L used for processing in the processing apparatus 10 is discharged from the opening 10b of the chamber 10a as a waste liquid Lw, and flows into the waste liquid flow path 20. The diluent D flows into the waste liquid Lw flowing through the waste liquid flow path 20 from the dilution flow paths 31 at a plurality of locations. As a result, the waste liquid Lw and the diluent liquid D flow into each heat generating section 40 in a mixed state. In the process of passing through the heat generating section 40, the diluent D diffuses into the waste liquid Lw, causing the reaction to proceed and generate heat. As a result, one surface of the power generation element of each power generation section 50 is heated, so that a temperature difference occurs between one surface and the other surface of the power generation element. An electromotive force is generated inside the power generating element due to the temperature difference generated inside the power generating element. As a result, each power generation section 50 generates power.

また、冷却部60には、冷却液Cが流通しており、発電部50の発電素子の他方の面が冷却されている。このため、空冷の場合に比べて、発電部50の発電素子に生じる温度差が大きくなり、発電量がより大きくなる。各発電部50の発電による電力は蓄電装置70に蓄えられる。 Further, the cooling liquid C is flowing through the cooling section 60, and the other surface of the power generation element of the power generation section 50 is cooled. Therefore, compared to the case of air cooling, the temperature difference generated in the power generation elements of the power generation section 50 becomes larger, and the amount of power generation becomes larger. Electric power generated by each power generation unit 50 is stored in the power storage device 70.

なお、廃液Lwの流量は流量計21によって計測され、これに応じて、各希釈流路31からの希釈液Dの流量がMFC32によって調整され、廃液Lwが廃棄可能な濃度まで希釈される。例えば、上流側の発熱部40から順次、50%程度、30%程度、20%程度に希釈される。これにより、廃液Lwの発熱も効率良く生じさせることができる。 The flow rate of the waste liquid Lw is measured by the flow meter 21, and the flow rate of the diluent D from each dilution channel 31 is adjusted by the MFC 32 accordingly, so that the waste liquid Lw is diluted to a concentration that can be discarded. For example, starting from the heat generating section 40 on the upstream side, it is diluted to about 50%, about 30%, and then about 20%. Thereby, it is possible to efficiently generate heat in the waste liquid Lw.

[効果]
(1)本実施形態の基板処理装置1は、基板Wを処理液Lにより1枚ずつ処理する処理装置10と、基板Wを処理した処理液Lの廃液Lwが流通する廃液流路20と、廃液Lwに希釈液Dを供給する希釈液供給部30と、廃液流路20の複数個所に設けられ、希釈液供給部30から供給された希釈液Dにより廃液Lwを発熱させる発熱部40と、発熱部40の熱により、発電する発電部50と、を有する。
[effect]
(1) The substrate processing apparatus 1 of the present embodiment includes a processing apparatus 10 that processes substrates W one by one using a processing liquid L, a waste liquid channel 20 through which waste liquid Lw of the processing liquid L that has processed the substrates W flows, a diluent supply unit 30 that supplies diluted liquid D to the waste liquid Lw; a heat generating unit 40 that is provided at multiple locations in the waste liquid flow path 20 and causes the waste liquid Lw to generate heat with the diluted liquid D supplied from the diluted liquid supply unit 30; It has a power generation section 50 that generates electricity using the heat of the heat generation section 40.

このため、枚葉式の処理装置10において、処理中に少量であっても連続して流れてくる廃液Lwに対して、複数個所で段階的に希釈液Dを混合、発熱させることができる。このため、廃液Lwを効率良く発熱させて、電力を効率良く取得できる。また、このような発熱の過程で、廃液Lwを廃棄可能な程度まで希釈化させることができる。 Therefore, in the single-wafer type processing apparatus 10, the diluted liquid D can be mixed in stages at multiple locations to generate heat with respect to the waste liquid Lw that continuously flows even in small amounts during processing. Therefore, the waste liquid Lw can be efficiently generated to generate heat, and electric power can be efficiently obtained. Further, in the process of generating heat, the waste liquid Lw can be diluted to the extent that it can be disposed of.

(2)廃液Lwは、硫酸、リン酸、硝酸、フッ酸の少なくとも一種を含み、希釈液Dは水である。このため、酸系の液体を、廃棄のための希釈に用いられる水を利用して、発熱させることにより、低コストで電力を取得できる。 (2) The waste liquid Lw contains at least one of sulfuric acid, phosphoric acid, nitric acid, and hydrofluoric acid, and the diluent D is water. Therefore, electric power can be obtained at low cost by generating heat in the acid-based liquid using water used for diluting it for disposal.

(3)発熱部40は、コイル状の流路である。このため、経路長を長くして、廃液Lwに希釈液Dを拡散させるための時間を確保することができ、比較的小さなスペースで熱を効率良く発電部50に伝達させることができる。なお、発熱部40の周囲を断熱材で覆うようにしてもよい。このようにすることで、発熱部40で発生した熱が逃げにくくなる。断熱材で発熱部40を覆う場合、発熱部40と発電部50とが接触している部分は、断熱材で覆わないようにすることが好ましい。 (3) The heat generating section 40 is a coil-shaped flow path. Therefore, the path length can be increased to ensure time for the diluent D to diffuse into the waste liquid Lw, and heat can be efficiently transferred to the power generation section 50 in a relatively small space. Note that the heat generating section 40 may be surrounded by a heat insulating material. By doing so, it becomes difficult for the heat generated in the heat generating section 40 to escape. When covering the heat generating part 40 with a heat insulating material, it is preferable not to cover the portion where the heat generating part 40 and the power generating part 50 are in contact with the heat insulating material.

(4)発電部50は、発熱部40の加熱により生じる温度差により発電する発電素子である。このため、簡素な構成で発電を行うことができ、低コスト化、省スペース化が可能となる。さらに、冷却部60によって、発熱部40との温度差をより大きくすることができるので、発電効率を高めることができる。 (4) The power generation unit 50 is a power generation element that generates power using a temperature difference caused by heating the heat generation unit 40. For this reason, power generation can be performed with a simple configuration, making it possible to reduce costs and save space. Furthermore, since the cooling section 60 can increase the temperature difference with the heat generating section 40, power generation efficiency can be increased.

(5)廃液流路20には、複数の処理装置10が接続されている。このため、複数の処理装置10の間で処理の開始にずれが生じると、処理装置10の処理により生じる廃液Lwの廃液流路20に排出されるタイミングに複数の処理装置10の間でずれが生じる。これにより、廃液流路20に廃液Lwが連続的に流れる時間を比較的長くすることができるので、発熱及び発電の時間を長時間確保できる。 (5) A plurality of processing devices 10 are connected to the waste liquid channel 20. Therefore, if there is a lag in the start of processing between the plurality of processing apparatuses 10, there will be a lag between the plurality of processing apparatuses 10 in the timing at which the waste liquid Lw generated by the processing of the processing apparatus 10 is discharged into the waste liquid flow path 20. arise. As a result, the time during which the waste liquid Lw continuously flows through the waste liquid flow path 20 can be made relatively long, so that the time for heat generation and power generation can be secured for a long time.

(6)廃液Lwは、複数の発熱部40を順次経ることにより、廃棄可能な状態にまで希釈される。これにより、各発熱部40において、希釈液Dが廃液Lwに混合されるため、各発熱部40において廃液Lwの発熱量を調整することができる。このようにすることで、各発熱部40において希釈液Dによって希釈された廃液Lwの温度が各発電部50の耐熱温度を超えないように調整することができる。また、廃液Lwが廃棄可能な濃度まで希釈される間に、廃液Lwから発生する熱量を効率良く発電部50に伝えることができる。なお、下流側の発熱部40において、その内部を流れる廃液Lwの温度を温度計等でモニターするようにしてもよい。あるいは、下流側の発熱部40の内部に流入する直前の廃液Lwの温度を予め実験等で測定しておき、制御装置80に記憶させておくようにしてもよい。 (6) The waste liquid Lw is diluted to a state where it can be disposed of by successively passing through the plurality of heat generating parts 40. Thereby, the diluent D is mixed with the waste liquid Lw in each heat generating part 40, so that the calorific value of the waste liquid Lw can be adjusted in each heat generating part 40. By doing so, the temperature of the waste liquid Lw diluted with the diluent D in each heat generating part 40 can be adjusted so as not to exceed the allowable temperature limit of each power generating part 50. Further, while the waste liquid Lw is diluted to a concentration that can be disposed of, the amount of heat generated from the waste liquid Lw can be efficiently transmitted to the power generation unit 50. Note that in the heat generating section 40 on the downstream side, the temperature of the waste liquid Lw flowing therein may be monitored with a thermometer or the like. Alternatively, the temperature of the waste liquid Lw just before it flows into the heat generating section 40 on the downstream side may be measured in advance through an experiment or the like, and the temperature may be stored in the control device 80.

[第2の実施形態]
次に、本発明の第2の実施形態を、図2を参照して説明する。本実施形態の基板処理装置1は、基本的には、上記の第1の実施形態と同様の構成である。このため、図2で示した図1と同一の構成部については、同一の符号を付して説明を省略する。
[Second embodiment]
Next, a second embodiment of the present invention will be described with reference to FIG. 2. The substrate processing apparatus 1 of this embodiment basically has the same configuration as the first embodiment described above. Therefore, the same components shown in FIG. 2 as those shown in FIG.

但し、本実施形態においては、発熱部90が、廃液Lwを貯留するタンクである。タンクは、廃液流路20の複数個所に設けられ、廃液Lwが流入し、一時的に貯留される所定の容積を持った容器である。発熱部90は、上記の発熱部40と同様に、廃液流路20に直列に複数配置されている。発熱部90の配置位置は、廃液流路20における複数の希釈流路31が接続された位置のそれぞれの下流となっている。また、発熱部90の下流の位置には不図示のバルブが設けられている。このバルブは、例えば、発熱部90内の廃液Lwと希釈液Dの量が一定量を超えたら開く。一定量は、例えば、発熱部90の体積の8割程度である。あるいは、基板Wがウェーハである場合、一定量は、基板Wを所定枚数、例えば13枚処理した際に排出される廃液Lwおよび希釈液Dの量とすることができる。発熱部90内の廃液Lwと希釈液Dの量は、流量計21の計測値から算出する。 However, in this embodiment, the heat generating section 90 is a tank that stores the waste liquid Lw. The tank is a container having a predetermined volume, which is provided at a plurality of locations in the waste liquid channel 20, into which the waste liquid Lw flows and is temporarily stored. A plurality of heat generating units 90 are arranged in series in the waste liquid channel 20, similar to the above-described heat generating units 40. The heat generating portions 90 are arranged downstream of the positions in the waste liquid flow path 20 to which the plurality of dilution flow paths 31 are connected. Further, a valve (not shown) is provided downstream of the heat generating section 90. This valve opens, for example, when the amounts of waste liquid Lw and diluent D in the heat generating part 90 exceed a certain amount. The fixed amount is, for example, about 80% of the volume of the heat generating section 90. Alternatively, when the substrate W is a wafer, the fixed amount can be the amount of waste liquid Lw and diluent D discharged when a predetermined number of substrates W, for example 13, are processed. The amounts of waste liquid Lw and diluent D in the heat generating part 90 are calculated from the measured values of the flow meter 21.

また、基板処理装置1が稼働しない時間が長くなる場合、発熱部90内の廃液Lwと希釈液Dの量に関係無くバルブが開く。そして、上流の発熱部90から下流の発熱部90へと廃液Lwが排出される。下流の発熱部90では、廃液Lwに所定の希釈液Dを加える。そして、希釈液Dを供給してから所定の時間が経過すると、さらに下流の発熱部90へと廃液Lwを排出するために、不図示のバルブが開く。このようにして、最後の発熱部90まで廃液Lwが排出される。基板処理装置1が稼働しない時間は、例えば、前工程の装置からの信号から算出する。 Furthermore, when the substrate processing apparatus 1 does not operate for a long time, the valve is opened regardless of the amount of waste liquid Lw and diluent D in the heat generating part 90. Then, the waste liquid Lw is discharged from the upstream heat generating section 90 to the downstream heat generating section 90. In the downstream heat generating section 90, a predetermined diluent D is added to the waste liquid Lw. Then, when a predetermined period of time has elapsed after the dilution liquid D was supplied, a valve (not shown) opens to discharge the waste liquid Lw to the heat generating section 90 further downstream. In this way, the waste liquid Lw is discharged to the last heat generating section 90. The time during which the substrate processing apparatus 1 is not operating is calculated, for example, from a signal from a device in a previous process.

また、水平方向に垂直な方向において、上流側に位置する発熱部90の方が下流側に位置する発熱部90よりも高い位置に設けられる。発熱部90がこのように設けられることで、発熱部90から排出された廃液Lwが下流の発熱部90に滑らかに流れ込むことができる。 Moreover, in the direction perpendicular to the horizontal direction, the heat generating part 90 located on the upstream side is provided at a higher position than the heat generating part 90 located on the downstream side. By providing the heat generating part 90 in this way, the waste liquid Lw discharged from the heat generating part 90 can smoothly flow into the downstream heat generating part 90.

また、発熱部90の上面周辺の側面にも排出側の流路を設けるようにしてもよい。この場合、液面が排出側の流路まで上昇すると、廃液Lwがオーバーフローして次の発熱部90に流れるようになる。このようにすることで、不図示のバルブが故障しても廃液Lwの排出を続けることができる。廃液Lwがオーバーフローするタイミングと量は、流量計21の計測値から求められる。これらの値に基づいて、次の発熱部90に流れ込む廃液Lwに対する希釈液Dの供給タイミングを決定することができる。 Further, a discharge side flow path may also be provided on the side surface around the upper surface of the heat generating section 90. In this case, when the liquid level rises to the discharge side flow path, the waste liquid Lw overflows and flows to the next heat generating section 90. By doing so, it is possible to continue discharging the waste liquid Lw even if a valve (not shown) breaks down. The timing and amount of overflow of the waste liquid Lw are determined from the measured value of the flow meter 21. Based on these values, the timing of supplying the diluent D to the waste liquid Lw flowing into the next heat generating section 90 can be determined.

各発熱部90に流入した廃液Lwと希釈液Dの混合液は、タンク内で貯留されている間に希釈液Dの拡散による反応が進行して発熱した後、廃液流路20に排出される。これにより、第1の実施形態と同様に、各発電部50における発電が行われて、蓄電装置70に蓄電される。 The mixed liquid of waste liquid Lw and diluted liquid D that has flowed into each heat generating part 90 is discharged into the waste liquid flow path 20 after a reaction due to diffusion of diluted liquid D progresses and heat is generated while it is stored in the tank. . As a result, similarly to the first embodiment, each power generation unit 50 generates power, and the power is stored in the power storage device 70.

このように、本実施形態では、発熱部90のタンク内で、廃液Lwに希釈液Dを拡散させる時間を確保できるため、配管内で拡散させる第1の実施形態に比べて、より反応を進行させてから次の発熱部90に流入させることができる。このため、廃液Lwの発熱を効率良く利用でき、発電効率を向上させることができる。また、希釈位置は発熱部90のタンク下部にすることが好ましい。一般的に希釈液Dは、廃液Lwよりも比重が軽い。そのため、希釈位置を発熱部90のタンク下部にすることで、廃液Lw全体に希釈液Dを行き渡らすことできる。つまり、発熱部90全体に効率的に発熱反応を起こすことができる。なお、発熱部90の発電部50と接触する部分以外を断熱材で覆うようにしてもよい。 In this way, in this embodiment, it is possible to secure time for the diluent D to diffuse into the waste liquid Lw in the tank of the heat generating part 90, so that the reaction can proceed more easily than in the first embodiment in which the diluent D is diffused in the piping. After that, it can be made to flow into the next heat generating section 90. Therefore, the heat generated by the waste liquid Lw can be used efficiently, and power generation efficiency can be improved. Further, the dilution position is preferably at the bottom of the tank of the heat generating part 90. Generally, the diluent D has a lighter specific gravity than the waste liquid Lw. Therefore, by setting the dilution position at the bottom of the tank of the heat generating part 90, the diluent D can be distributed throughout the waste liquid Lw. In other words, an exothermic reaction can be efficiently caused in the entire heat generating section 90. Note that the heat generating section 90 may be covered with a heat insulating material other than the portion that comes into contact with the power generating section 50.

[変形例]
上記の実施形態は、以下のような変形例も構成可能である。
(1)コイル状の発熱部40は、筒状のものには限定されない。例えば、螺旋状に巻回された形状であってもよい。また、発熱部40を、流路が蛇行した形状とすることにより、距離を確保した形状としてもよい。
[Modified example]
The above embodiment can also be configured in the following modified examples.
(1) The coil-shaped heat generating section 40 is not limited to a cylindrical shape. For example, it may have a spirally wound shape. Alternatively, the heat generating section 40 may have a meandering flow path to ensure a certain distance.

(2)冷却部60に流通させる冷却液Cは、希釈液Dと共通にして、共通の供給源から供給してもよい。また、冷却部60の冷却源として、処理装置10からの希釈する必要がなく、廃液Lwの温度よりも低温の廃液を用いてもよい。つまり、上記の廃液Lwと区別して排出される液を、冷却液Cとして使用してもよい。例えば、アルカリ系の処理液を冷却液Cとして用いてもよい。さらに、冷却部60を設けずに、発電部50の他方の面を空冷としてもよい。この場合にも、廃液Lwは高温となるため、室温との温度差により、発電は可能である。 (2) The cooling liquid C and the diluting liquid D may be supplied in common to the cooling unit 60 from a common source. Further, as a cooling source for the cooling unit 60, the waste liquid from the processing device 10 that does not need to be diluted and whose temperature is lower than the temperature of the waste liquid Lw may be used. In other words, a liquid discharged separately from the waste liquid Lw may be used as the cooling liquid C. For example, an alkaline processing liquid may be used as the cooling liquid C. Furthermore, the other surface of the power generation section 50 may be air-cooled without providing the cooling section 60. In this case as well, since the waste liquid Lw has a high temperature, power generation is possible due to the temperature difference from room temperature.

(3)発電部50として、発電素子ではない発電装置を用いてもよい。例えば、発熱部40、90の加熱温度よりも沸点の低い媒体を、発熱部40、90により加熱して蒸発させて、その蒸気でタービンを回して発電機で発電する発電装置を用いることもできる。 (3) As the power generation section 50, a power generation device other than a power generation element may be used. For example, it is also possible to use a power generation device in which a medium having a boiling point lower than the heating temperature of the heat generating parts 40, 90 is heated and evaporated by the heat generating parts 40, 90, and the steam is used to rotate a turbine to generate electricity using a generator. .

(4)発熱部40、90、発電部50の数は、複数であればよく、上記の態様で例示した数には限定されない。処理装置10の数は、1つであってもよい。 (4) The number of heat generating units 40, 90 and power generating units 50 may be plural, and is not limited to the number exemplified in the above embodiment. The number of processing devices 10 may be one.

[他の実施形態]
以上、本発明の実施形態及び各部の変形例を説明したが、この実施形態や各部の変形例は、一例として提示したものであり、発明の範囲を限定することは意図していない。前述したこれら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明に含まれる。
[Other embodiments]
The embodiments of the present invention and modifications of each part have been described above, but these embodiments and modifications of each part are presented as examples, and are not intended to limit the scope of the invention. These novel embodiments described above can be implemented in various other forms, and various omissions, substitutions, and changes can be made without departing from the gist of the invention. These embodiments and their modifications are included within the scope and gist of the invention, and are also included in the invention described in the claims.

1 基板処理装置
10 処理装置
10a チャンバ
10b 開口
11 回転部
11a 回転体
11b 保持部
11c 駆動源
12 供給部
12a ノズル
12b アーム
13 回収部
20 廃液流路
21 流量計
30 希釈液供給部
31 希釈流路
40 発熱部
50 発電部
60 冷却部
70 蓄電装置
80 制御装置
90 発熱部
C 冷却液
D 希釈液
L 処理液
Lw 廃液
W 基板

1 Substrate processing apparatus 10 Processing apparatus 10a Chamber 10b Opening 11 Rotating part 11a Rotating body 11b Holding part 11c Drive source 12 Supply part 12a Nozzle 12b Arm 13 Recovery part 20 Waste liquid flow path 21 Flowmeter 30 Diluent supply part 31 Dilution flow path 40 Heat generating unit 50 Power generation unit 60 Cooling unit 70 Power storage device 80 Control device 90 Heat generating unit C Coolant D Diluent L Processing liquid Lw Waste liquid W Substrate

本発明の実施形態に係る基板処理装置は、基板を処理液により1枚ずつ処理する処理装置と、前記基板を処理した前記処理液の廃液が流通する廃液流路と、前記廃液に希釈液を供給する希釈液供給部と、前記廃液流路の複数個所に設けられ、前記希釈液供給部から供給された前記希釈液により前記廃液を発熱させる発熱部と、前記発熱部で生じた熱により、発電する発電部と、を有する。

A substrate processing apparatus according to an embodiment of the present invention includes a processing apparatus that processes substrates one by one with a processing liquid, a waste liquid flow path through which waste liquid of the processing liquid that has been used to process the substrates, and a diluent liquid that is added to the waste liquid. A diluent supply unit that supplies the waste liquid, a heat generating unit that is provided at a plurality of locations in the waste liquid flow path and causes the waste liquid to generate heat by the diluent supplied from the diluent supply unit, and the heat generated in the heat generating unit, A power generation section that generates power .

Claims (9)

基板を処理液により1枚ずつ処理する処理装置と、
前記基板を処理した前記処理液の廃液が流通する廃液流路と、
前記廃液に希釈液を供給する希釈液供給部と、
前記廃液流路の複数個所に設けられ、前記希釈液供給部から供給された前記希釈液により前記廃液を発熱させる発熱部と、
前記発熱部の熱により、発電する発電部と、
を有する基板処理装置。
a processing device that processes substrates one by one with a processing solution;
a waste liquid channel through which waste liquid of the processing liquid that has processed the substrate flows;
a diluent supply unit that supplies a diluent to the waste liquid;
a heat generating unit that is provided at a plurality of locations in the waste liquid flow path and causes the waste liquid to generate heat by the diluent supplied from the diluent supply unit;
a power generation section that generates electricity using the heat of the heat generation section;
A substrate processing apparatus having:
前記廃液は、硫酸、リン酸、硝酸、フッ酸の少なくとも一種を含み、
前記希釈液は水である請求項1記載の基板処理装置。
The waste liquid contains at least one of sulfuric acid, phosphoric acid, nitric acid, and hydrofluoric acid,
The substrate processing apparatus according to claim 1, wherein the diluent is water.
前記発熱部は、コイル状の流路である請求項1又は請求項2記載の基板処理装置。 3. The substrate processing apparatus according to claim 1, wherein the heat generating section is a coil-shaped flow path. 前記発熱部は、前記廃液を貯留するタンクである請求項1又は請求項2記載の基板処理装置。 3. The substrate processing apparatus according to claim 1, wherein the heat generating section is a tank that stores the waste liquid. 前記発電部は、前記発熱部の加熱により生じる温度差により発電する発電素子である請求項1乃至4のいずれかに記載の基板処理装置。 5. The substrate processing apparatus according to claim 1, wherein the power generation section is a power generation element that generates power by a temperature difference caused by heating of the heat generation section. 前記発熱部との前記温度差を生じさせる冷却部を有する請求項5記載の基板処理装置。 The substrate processing apparatus according to claim 5, further comprising a cooling section that generates the temperature difference with the heat generating section. 前記冷却部の冷却源として、前記処理装置からの希釈する必要のない廃液を用いる請求項6記載の基板処理装置。 7. The substrate processing apparatus according to claim 6, wherein waste liquid from the processing apparatus that does not need to be diluted is used as a cooling source for the cooling section. 前記発電部は、前記発熱部の加熱温度よりも沸点の低い媒体を、前記発熱部が加熱することにより生じる蒸気でタービンを回して発電する発電装置である請求項1乃至4のいずれかに記載の基板処理装置。 The power generation unit is a power generation device that generates electricity by rotating a turbine with steam generated when the heat generation unit heats a medium having a boiling point lower than the heating temperature of the heat generation unit, according to any one of claims 1 to 4. substrate processing equipment. 前記廃液流路には、複数の前記処理装置が接続されている請求項1乃至8のいずれかに記載の基板処理装置。


9. The substrate processing apparatus according to claim 1, wherein a plurality of said processing apparatuses are connected to said waste liquid channel.


JP2022036573A 2022-03-09 2022-03-09 Substrate Processing Equipment Active JP7504940B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022036573A JP7504940B2 (en) 2022-03-09 2022-03-09 Substrate Processing Equipment
KR1020230022655A KR20230132693A (en) 2022-03-09 2023-02-21 Substrate processing apparatus
CN202310186235.3A CN116741661A (en) 2022-03-09 2023-03-01 Substrate processing apparatus
TW112108169A TWI852386B (en) 2022-03-09 2023-03-07 Substrate processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022036573A JP7504940B2 (en) 2022-03-09 2022-03-09 Substrate Processing Equipment

Publications (2)

Publication Number Publication Date
JP2023131679A true JP2023131679A (en) 2023-09-22
JP7504940B2 JP7504940B2 (en) 2024-06-24

Family

ID=87917537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022036573A Active JP7504940B2 (en) 2022-03-09 2022-03-09 Substrate Processing Equipment

Country Status (3)

Country Link
JP (1) JP7504940B2 (en)
KR (1) KR20230132693A (en)
CN (1) CN116741661A (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066727A (en) 2004-08-27 2006-03-09 Toshiba Corp Semiconductor manufacturing device and chemical exchanging method
CN102187429A (en) 2008-10-16 2011-09-14 应用材料公司 Methods and apparatus for recovering heat from processing systems
JP3160926U (en) 2010-03-30 2010-07-15 東京エレクトロン株式会社 Heat treatment equipment
JP2017175166A (en) 2017-06-23 2017-09-28 株式会社Screenホールディングス Substrate processing method and substrate processing device

Also Published As

Publication number Publication date
KR20230132693A (en) 2023-09-18
TW202336904A (en) 2023-09-16
CN116741661A (en) 2023-09-12
JP7504940B2 (en) 2024-06-24

Similar Documents

Publication Publication Date Title
JP5911689B2 (en) Substrate processing apparatus and substrate processing method
CN112088422B (en) Method for producing ozone water
JP6587865B2 (en) Substrate processing apparatus and substrate processing method
CN104934350A (en) Substrate processing apparatus and substrate processing method using substrate processing apparatus
JP2018139259A (en) Processing liquid supply device, substrate processing device, and processing liquid supply method
JP2011014906A (en) Method and apparatus for processing substrate
JP2013077626A (en) Substrate processing apparatus and substrate processing method
JP2014053592A (en) Cleaning solution generator, cleaning solution generating method, substrate cleaning device and substrate cleaning method
JP6483348B2 (en) Substrate processing apparatus and substrate processing method
JP2007017097A (en) Method and device for vapor generation, vapor processing device, and storage medium for vapor generation
JP2015167161A (en) Liquid treatment device, liquid treatment method and storage medium
JP2021103700A (en) Pipe cleaning method
JP7504940B2 (en) Substrate Processing Equipment
CN101943868B (en) Method for removing photoresist and device thereof
KR100831683B1 (en) Apparatus of removing haze in photomask and method of removing the haze
TWI852386B (en) Substrate processing apparatus
JP2013021198A (en) Chemical liquid temperature control device and method
JP2009081366A (en) Batch processing apparatus
JP2013077624A (en) Substrate processing apparatus and substrate processing method
TW201944486A (en) Substrate treatment method and substrate treatment apparatus
JP2016189434A (en) Substrate processing apparatus
JP4412540B2 (en) Substrate processing equipment
JP2014015351A (en) Carbonation cure equipment, and supply method of co2 inclusion gas for carbonation cure
WO2019167516A1 (en) Substrate treatment device and substrate treatment method
JP2002367944A (en) Substrate treatment system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230831

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240612

R150 Certificate of patent or registration of utility model

Ref document number: 7504940

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150