JP2013077626A - Substrate processing apparatus and substrate processing method - Google Patents

Substrate processing apparatus and substrate processing method Download PDF

Info

Publication number
JP2013077626A
JP2013077626A JP2011215260A JP2011215260A JP2013077626A JP 2013077626 A JP2013077626 A JP 2013077626A JP 2011215260 A JP2011215260 A JP 2011215260A JP 2011215260 A JP2011215260 A JP 2011215260A JP 2013077626 A JP2013077626 A JP 2013077626A
Authority
JP
Japan
Prior art keywords
substrate
liquid
processing apparatus
main surface
specific resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011215260A
Other languages
Japanese (ja)
Other versions
JP5911690B2 (en
Inventor
Masahiro Miyagi
雅宏 宮城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainippon Screen Manufacturing Co Ltd
Original Assignee
Dainippon Screen Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Screen Manufacturing Co Ltd filed Critical Dainippon Screen Manufacturing Co Ltd
Priority to JP2011215260A priority Critical patent/JP5911690B2/en
Priority to KR20120105602A priority patent/KR101450965B1/en
Priority to US13/628,650 priority patent/US9142433B2/en
Priority to TW101135845A priority patent/TWI540628B/en
Priority to CN201210369837.4A priority patent/CN103077907B/en
Publication of JP2013077626A publication Critical patent/JP2013077626A/en
Application granted granted Critical
Publication of JP5911690B2 publication Critical patent/JP5911690B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To prevent damages of a substrate due to movement of electric charges during processing by a process liquid, and to prevent adverse influence by mixing of the process liquid and another liquid.SOLUTION: In a substrate processing apparatus 1, an electricity removal liquid whose specific resistance is larger than that of an SPM liquid is supplied onto a substrate 9 by an electricity removal liquid supply part 6, the entire upper surface 91 of the substrate 9 is paddled with the electricity removal liquid, and thus the electricity of the substrate 9 is relatively gently removed. Then, by rotating the substrate 9 by a substrate rotating mechanism 5, the electricity removal liquid is removed from the substrate 9, then the SPM liquid is supplied onto the substrate 9 by a process liquid supply part 3, and SPM processing is performed. Thus, during the SPM processing, rapid movement of a large amount of electric charges from the substrate 9 to the SPM liquid is prevented, and the damages of the substrate 9 are prevented. Also, the adverse influence by mixing of the electricity removal liquid and the SPM liquid (for instance, the damages of the substrate 9 due to reaction heat between water in the electricity removal liquid and sulfuric acid in the SPM liquid) is prevented.

Description

本発明は、基板を処理する技術に関する。   The present invention relates to a technique for processing a substrate.

従来より、半導体基板(以下、単に「基板」という。)の製造工程では、基板処理装置を用いて酸化膜等の絶縁膜を有する基板に対して様々な処理が施される。例えば、表面上にレジストのパターンが形成された基板に薬液を供給することにより、基板の表面に対してエッチング等の処理が行われる。また、エッチング等の終了後、基板上のレジストを除去する処理も行われる。   Conventionally, in a manufacturing process of a semiconductor substrate (hereinafter simply referred to as “substrate”), various processes are performed on a substrate having an insulating film such as an oxide film using a substrate processing apparatus. For example, by supplying a chemical solution to a substrate having a resist pattern formed on the surface, a process such as etching is performed on the surface of the substrate. In addition, after the etching or the like is finished, a process for removing the resist on the substrate is also performed.

特許文献1の基板処理装置では、SPM(sulfuric acid / hydrogen peroxide mixture)液等の薬液による処理を行う前に、薬液よりも電気伝導率が低い液体を基板上の処理領域に供給し、当該液体が処理領域上に存在している状態で薬液を処理領域に吐出することにより、基板と薬液との接触により生じる基板の局所的なダメージの防止が図られている。基板の局所的なダメージとは、処理領域におけるフィールド酸化膜やゲート酸化膜の破壊であり、当該破壊は、薬液と薬液用ノズルとの間の摩擦帯電現象により薬液が帯電した状態で基板の処理領域に接触することにより生じる。   In the substrate processing apparatus of Patent Document 1, before processing with a chemical solution such as an SPM (sulfuric acid / hydrogen peroxide mixture) solution, a liquid having a lower electrical conductivity than the chemical solution is supplied to the processing region on the substrate, and the liquid By discharging the chemical solution to the processing region in a state where the substrate exists on the processing region, local damage to the substrate caused by contact between the substrate and the chemical solution is prevented. The local damage of the substrate is the destruction of the field oxide film or the gate oxide film in the processing region, and the destruction is the treatment of the substrate in a state where the chemical solution is charged by the frictional charging phenomenon between the chemical solution and the chemical solution nozzle. Caused by touching an area.

特開2009−200365号公報JP 2009-200365 A

ところで、特許文献1の基板処理装置では、例えば、薬液処理の前に基板上に供給される液体に水が含まれている場合、薬液処理の際に、薬液であるSPM液中の硫酸と水とが反応して反応熱により基板にダメージが生じるおそれがある。また、基板に供給された薬液が、事前に供給されている液体により希釈されて処理の質が低下したり、当該液体との部分的な混合により薬液濃度が不均一となり、基板全体における処理の均一性が低下するおそれもある。   By the way, in the substrate processing apparatus of patent document 1, for example, when water is contained in the liquid supplied onto the substrate before the chemical processing, sulfuric acid and water in the SPM liquid, which is a chemical, are used during the chemical processing. And the reaction heat may cause damage to the substrate. In addition, the chemical solution supplied to the substrate is diluted with the liquid supplied in advance, so that the quality of the process is reduced, or the concentration of the chemical solution becomes non-uniform due to partial mixing with the liquid. There is also a possibility that the uniformity is lowered.

一方、基板処理装置にて処理される基板には、基板処理装置に搬入される前に、ドライエッチングやプラズマCVD(Chemical Vapor Deposition)等のドライ工程が行われている。このようなドライ工程では、デバイス内に電荷が発生して帯電するため、基板は、帯電した状態で基板処理装置に搬入される(いわゆる、持ち込み帯電)。そして、基板処理装置において、SPM液のような比抵抗が小さい薬液が基板上に供給されると、デバイス内の電荷が、デバイスから薬液へと急激に移動し(すなわち、薬液中へと放電し)、当該移動に伴う発熱によりデバイスにダメージが生じるおそれがある。そこで、薬液を基板に供給する前に、イオナイザにより基板を除電することが考えられるが、基板の帯電量が大きい場合、効率的に除電することは困難である。   On the other hand, the substrate processed by the substrate processing apparatus is subjected to a dry process such as dry etching or plasma CVD (Chemical Vapor Deposition) before being carried into the substrate processing apparatus. In such a dry process, since charges are generated in the device and charged, the substrate is carried into the substrate processing apparatus in a charged state (so-called carry-in charging). In the substrate processing apparatus, when a chemical solution having a small specific resistance such as an SPM solution is supplied onto the substrate, the electric charge in the device rapidly moves from the device to the chemical solution (that is, discharges into the chemical solution). ), The device may be damaged by the heat generated by the movement. In view of this, it is conceivable to neutralize the substrate with an ionizer before supplying the chemical solution to the substrate. However, it is difficult to efficiently eliminate the charge when the charge amount of the substrate is large.

本発明は、上記課題に鑑みなされたものであり、処理液による処理の際に電荷の移動による基板の損傷を防止するとともに、処理液と他の液体との混合による悪影響を防止することを目的としている。   The present invention has been made in view of the above problems, and it is an object of the present invention to prevent damage to a substrate due to movement of electric charges during processing with a processing liquid and to prevent adverse effects due to mixing of the processing liquid with other liquids. It is said.

請求項1に記載の発明は、基板を処理する基板処理装置であって、主面を上側に向けた状態で基板を保持する基板保持部と、前記基板の前記主面上に処理液を供給する処理液供給部と、前記処理液よりも比抵抗が大きい除電液を前記基板の前記主面上に供給する除電液供給部と、前記基板の前記主面上の液体を除去する液体除去部と、前記処理液供給部、前記除電液供給部および前記液体除去部を制御することにより、前記除電液を前記基板の前記主面上に供給して前記基板の前記主面全体を前記除電液にてパドルした後、前記除電液を前記主面上から除去し、さらに、前記処理液を前記基板の前記主面上に供給して所定の処理を行う制御部とを備える。   The invention according to claim 1 is a substrate processing apparatus for processing a substrate, wherein a substrate holding unit that holds the substrate with the main surface facing upward, and a processing liquid is supplied onto the main surface of the substrate A treatment liquid supply unit that performs a neutralization liquid supply unit that supplies a neutralization liquid having a specific resistance larger than that of the treatment liquid onto the main surface of the substrate, and a liquid removal unit that removes the liquid on the main surface of the substrate. And controlling the treatment liquid supply unit, the neutralization liquid supply unit, and the liquid removal unit to supply the neutralization liquid onto the main surface of the substrate so that the entire main surface of the substrate is the neutralization liquid. And a controller that removes the static elimination liquid from the main surface and supplies the processing liquid onto the main surface of the substrate to perform a predetermined process.

請求項2に記載の発明は、請求項1に記載の基板処理装置であって、前記液体除去部が、前記基板の中心を通るとともに前記基板の前記主面に垂直な回転軸を中心として前記基板を前記基板保持部と共に回転することにより、前記主面上の液体を除去する基板回転機構を備える。   Invention of Claim 2 is the substrate processing apparatus of Claim 1, Comprising: The said liquid removal part passes the center of the said board | substrate, and it is centered on the rotating shaft perpendicular | vertical to the said main surface of the said board | substrate. A substrate rotation mechanism that removes the liquid on the main surface by rotating the substrate together with the substrate holding unit is provided.

請求項3に記載の発明は、請求項2に記載の基板処理装置であって、前記基板回転機構が停止した状態で、前記除電液による前記基板の前記主面全体のパドル処理が行われる。   According to a third aspect of the present invention, in the substrate processing apparatus according to the second aspect of the present invention, the entire main surface of the substrate is paddle-processed by the neutralizing liquid while the substrate rotation mechanism is stopped.

請求項4に記載の発明は、請求項1ないし3のいずれかに記載の基板処理装置であって、前記液体除去部が、前記基板の前記主面上に液状のイソプロピルアルコールを供給することにより、前記主面上の液体を前記基板のエッジから外側に押し出して除去するIPA供給部を備える。   A fourth aspect of the present invention is the substrate processing apparatus according to any one of the first to third aspects, wherein the liquid removing unit supplies liquid isopropyl alcohol onto the main surface of the substrate. And an IPA supply section for extruding and removing the liquid on the main surface from the edge of the substrate.

請求項5に記載の発明は、請求項1ないし4のいずれかに記載の基板処理装置であって、前記処理液が、加熱された硫酸と過酸化水素水とを混合したSPM液であり、前記所定の処理がSPM処理である。   Invention of Claim 5 is the substrate processing apparatus in any one of Claim 1 thru | or 4, Comprising: The said process liquid is a SPM liquid which mixed the heated sulfuric acid and hydrogen peroxide water, The predetermined process is an SPM process.

請求項6に記載の発明は、請求項1ないし5のいずれかに記載の基板処理装置であって、前記除電液の目標比抵抗を設定する比抵抗設定部をさらに備え、前記除電液が、イオンを含む液体または純水であり、前記制御部による制御により、前記除電液におけるイオン濃度を制御して前記除電液の比抵抗を前記目標比抵抗に維持しつつ、前記除電液による前記基板の前記主面全体のパドル処理が行われる。   Invention of Claim 6 is a substrate processing apparatus in any one of Claim 1 thru | or 5, Comprising: The specific resistance setting part which sets the target specific resistance of the said static elimination liquid is further provided, The said static elimination liquid, It is a liquid containing ions or pure water, and is controlled by the control unit to control the ion concentration in the static elimination liquid to maintain the specific resistance of the static elimination liquid at the target specific resistance, while maintaining the target specific resistance of the substrate by the static elimination liquid. The entire main surface is subjected to paddle processing.

請求項7に記載の発明は、請求項6に記載の基板処理装置であって、前記比抵抗設定部において、前記基板上に予め形成されているデバイスのサイズが小さいほど、大きな目標比抵抗が設定される。   A seventh aspect of the present invention is the substrate processing apparatus according to the sixth aspect, wherein the specific resistance setting unit has a larger target specific resistance as a size of a device formed in advance on the substrate is smaller. Is set.

請求項8に記載の発明は、請求項6または7に記載の基板処理装置であって、前記イオンを含む液体が、純水に二酸化炭素を溶解させたものである。   The invention according to claim 8 is the substrate processing apparatus according to claim 6 or 7, wherein the liquid containing ions dissolves carbon dioxide in pure water.

請求項9に記載の発明は、基板を処理する基板処理方法であって、a)主面を上側に向けた状態で保持された基板の前記主面上に除電液を供給して前記基板の前記主面全体を前記除電液にてパドルする工程と、b)前記a)工程よりも後に、前記除電液を前記主面上から除去する工程と、c)前記b)工程よりも後に、前記除電液よりも比抵抗が小さい処理液を前記基板の前記主面上に供給して所定の処理を行う工程とを備える。   The invention according to claim 9 is a substrate processing method for processing a substrate, wherein a) a charge removing liquid is supplied onto the main surface of the substrate held with the main surface facing upward. Padding the entire main surface with the neutralization solution, b) removing the neutralization solution from the main surface after the step a), c) after the step b), Supplying a treatment liquid having a specific resistance smaller than that of the charge removal liquid onto the main surface of the substrate to perform a predetermined treatment.

本発明では、処理液による処理の際に電荷の移動による基板の損傷を防止するとともに、処理液と他の液体との混合による悪影響を防止することができる。   In the present invention, it is possible to prevent the substrate from being damaged due to the movement of electric charges during the treatment with the treatment liquid, and to prevent adverse effects due to the mixing of the treatment liquid and other liquids.

第1の実施の形態に係る基板処理装置の構成を示す図である。It is a figure which shows the structure of the substrate processing apparatus which concerns on 1st Embodiment. 基板の処理の流れを示す図である。It is a figure which shows the flow of a process of a board | substrate. 除電処理の前後における基板上の表面電位分布を示す図である。It is a figure which shows surface potential distribution on the board | substrate before and behind static elimination processing. 除電処理の前後における基板上の表面電位分布を示す図である。It is a figure which shows surface potential distribution on the board | substrate before and behind static elimination processing. 除電処理の前後における基板上の表面電位分布を示す図である。It is a figure which shows surface potential distribution on the board | substrate before and behind static elimination processing. 除電処理の前後における基板上の表面電位分布を示す図である。It is a figure which shows surface potential distribution on the board | substrate before and behind static elimination processing. 第2の実施の形態に係る基板処理装置の構成を示す図である。It is a figure which shows the structure of the substrate processing apparatus which concerns on 2nd Embodiment. 基板の処理の流れの一部を示す図である。It is a figure which shows a part of flow of a process of a board | substrate.

図1は、本発明の第1の実施の形態に係る基板処理装置1の構成を示す図である。図1に示すように、基板処理装置1は、半導体基板9(以下、単に「基板9」という。)を1枚ずつ処理する枚葉式の装置である。基板処理装置1では、基板9にSPM(sulfuric acid / hydrogen peroxide mixture)液が供給されてSPM処理、すなわち、基板9上のレジスト膜の除去処理が行われる。   FIG. 1 is a diagram showing a configuration of a substrate processing apparatus 1 according to a first embodiment of the present invention. As shown in FIG. 1, the substrate processing apparatus 1 is a single-wafer type apparatus that processes semiconductor substrates 9 (hereinafter simply referred to as “substrates 9”) one by one. In the substrate processing apparatus 1, an SPM (sulfuric acid / hydrogen peroxide mixture) solution is supplied to the substrate 9 to perform an SPM process, that is, a resist film removal process on the substrate 9.

基板処理装置1は、基板9の一方の主面91(以下、「上面91」という。)を上側に向けた状態で基板9を保持する基板保持部2、基板9の上面91に向けてSPM液等の液体を吐出する処理液供給部3、基板9および基板保持部2の周囲を囲むカップ部4、基板9を基板保持部2と共に水平に回転する基板回転機構5、基板9の上面91上に除電液を供給する除電液供給部6、除電液の目標比抵抗を設定する比抵抗設定部81、並びに、これらの機構を制御する制御部8を備える。基板9は、基板回転機構5により、基板9の中心を通るとともに基板9の上面91に垂直な回転軸を中心として基板保持部2と共に回転する。また、比抵抗設定部81は制御部8に接続される。基板処理装置1では、基板保持部2、カップ部4、基板回転機構5等が、図示省略のチャンバ内に収容される。   The substrate processing apparatus 1 includes a substrate holding unit 2 that holds the substrate 9 with one main surface 91 (hereinafter referred to as “upper surface 91”) of the substrate 9 facing upward, and an SPM toward the upper surface 91 of the substrate 9. A processing liquid supply unit 3 for discharging a liquid such as a liquid, a cup unit 4 surrounding the substrate 9 and the substrate holding unit 2, a substrate rotating mechanism 5 for horizontally rotating the substrate 9 together with the substrate holding unit 2, and an upper surface 91 of the substrate 9 A neutralization liquid supply unit 6 for supplying a neutralization liquid, a specific resistance setting unit 81 for setting a target specific resistance of the neutralization liquid, and a control unit 8 for controlling these mechanisms are provided. The substrate 9 is rotated by the substrate rotating mechanism 5 together with the substrate holding unit 2 about a rotation axis that passes through the center of the substrate 9 and is perpendicular to the upper surface 91 of the substrate 9. Further, the specific resistance setting unit 81 is connected to the control unit 8. In the substrate processing apparatus 1, the substrate holding unit 2, the cup unit 4, the substrate rotating mechanism 5 and the like are accommodated in a chamber (not shown).

処理液供給部3は、硫酸を供給する硫酸供給部31、過酸化水素水を供給する過酸化水素水供給部32、硫酸供給部31および過酸化水素水供給部32に接続される混合液生成部33、基板9の上方に配置されて基板9に向けて液体を吐出する処理液ノズル34、並びに、処理液ノズル34を回転軸351を中心として水平に回動する処理液ノズル回動機構35を備える。処理液ノズル回動機構35は、回転軸351から水平方向に延びるとともに処理液ノズル34が取り付けられるアーム352を備える。   The treatment liquid supply unit 3 generates a mixed liquid connected to the sulfuric acid supply unit 31 that supplies sulfuric acid, the hydrogen peroxide solution supply unit 32 that supplies hydrogen peroxide solution, the sulfuric acid supply unit 31, and the hydrogen peroxide solution supply unit 32. A processing liquid nozzle 34 that is disposed above the substrate 33 and that discharges liquid toward the substrate 9; and a processing liquid nozzle rotating mechanism 35 that rotates the processing liquid nozzle 34 horizontally around the rotation axis 351. Is provided. The processing liquid nozzle rotation mechanism 35 includes an arm 352 that extends in the horizontal direction from the rotation shaft 351 and to which the processing liquid nozzle 34 is attached.

硫酸供給部31は、硫酸を貯溜する硫酸貯溜部311、硫酸貯溜部311および混合液生成部33に接続される硫酸配管312、硫酸貯溜部311から硫酸配管312を介して混合液生成部33へと硫酸を供給する硫酸ポンプ313、硫酸配管312上に設けられる硫酸バルブ314、並びに、硫酸ポンプ313と硫酸バルブ314との間で硫酸配管312上に設けられて硫酸を加熱する硫酸加熱部315を備える。硫酸配管312は硫酸加熱部315と硫酸バルブ314との間で分岐して硫酸貯溜部311へと接続されており、硫酸バルブ314が閉じられている状態では、硫酸加熱部315により加熱された硫酸は、硫酸貯溜部311と硫酸加熱部315とを循環する。   The sulfuric acid supply unit 31 is connected to the sulfuric acid storage unit 311 for storing sulfuric acid, the sulfuric acid storage unit 311 and the mixed liquid generation unit 33, and the sulfuric acid storage unit 311 to the mixed liquid generation unit 33 via the sulfuric acid piping 312. And a sulfuric acid pump 313 for supplying sulfuric acid, a sulfuric acid valve 314 provided on the sulfuric acid pipe 312, and a sulfuric acid heating unit 315 provided on the sulfuric acid pipe 312 between the sulfuric acid pump 313 and the sulfuric acid valve 314 for heating sulfuric acid. Prepare. The sulfuric acid pipe 312 branches between the sulfuric acid heating unit 315 and the sulfuric acid valve 314 and is connected to the sulfuric acid storage unit 311. When the sulfuric acid valve 314 is closed, the sulfuric acid heated by the sulfuric acid heating unit 315 is connected. Circulates between the sulfuric acid storage part 311 and the sulfuric acid heating part 315.

過酸化水素水供給部32は、過酸化水素水を貯溜する過酸化水素水貯溜部321、過酸化水素水貯溜部321および混合液生成部33に接続される過酸化水素水配管322、過酸化水素水貯溜部321から過酸化水素水配管322を介して混合液生成部33へと過酸化水素水を供給する過酸化水素水ポンプ323、並びに、過酸化水素水配管322上に設けられる過酸化水素水バルブ324を備える。なお、硫酸貯溜部311および過酸化水素水貯溜部321は、基板処理装置1の外部に設けられ、硫酸供給部31および過酸化水素水供給部32がそれぞれ接続されてもよい。   The hydrogen peroxide solution supply unit 32 includes a hydrogen peroxide solution storage unit 321 for storing hydrogen peroxide solution, a hydrogen peroxide solution storage unit 321, and a hydrogen peroxide solution pipe 322 connected to the mixed solution generation unit 33. A hydrogen peroxide solution pump 323 for supplying hydrogen peroxide solution from the hydrogen water storage unit 321 to the mixed solution generating unit 33 through the hydrogen peroxide solution pipe 322, and a peroxide provided on the hydrogen peroxide solution tube 322 A hydrogen water valve 324 is provided. The sulfuric acid storage unit 311 and the hydrogen peroxide solution storage unit 321 may be provided outside the substrate processing apparatus 1, and the sulfuric acid supply unit 31 and the hydrogen peroxide solution supply unit 32 may be connected to each other.

混合液生成部33は、硫酸配管312および過酸化水素水配管322が接続されるミキシングバルブ331、ミキシングバルブ331および処理液ノズル34に接続される吐出用配管332、並びに、吐出用配管332上に設けられる攪拌流通管333を備える。混合液生成部33では、硫酸供給部31からの加熱された硫酸と、過酸化水素水供給部32からの常温(すなわち、室温と同程度の温度)の過酸化水素水とが、ミキシングバルブ331において混合されて混合液であるSPM液(硫酸過水)が生成される。SPM液は攪拌流通管333および吐出用配管332を通過して処理液ノズル34へと送られる。攪拌流通管333では、SPM液が攪拌されることにより、硫酸と過酸化水素水との化学反応が促進される。処理液であるSPM液は、処理液ノズル34の先端の吐出口から基板9の上面91に向けて吐出される。本実施の形態では、硫酸加熱部315により約130℃〜150℃に加熱された硫酸が硫酸供給部31から混合液生成部33へと供給される。なお、硫酸供給部31から供給される硫酸の温度は適宜変更されてよい。   The mixed liquid generation unit 33 is provided on the mixing valve 331 to which the sulfuric acid pipe 312 and the hydrogen peroxide pipe 322 are connected, the discharge pipe 332 connected to the mixing valve 331 and the processing liquid nozzle 34, and the discharge pipe 332. A stirring flow pipe 333 is provided. In the mixed solution generation unit 33, the heated sulfuric acid from the sulfuric acid supply unit 31 and the hydrogen peroxide solution at room temperature (that is, a temperature similar to room temperature) from the hydrogen peroxide solution supply unit 32 are mixed with each other. Is mixed to produce an SPM liquid (sulfuric acid / hydrogen peroxide) as a mixed liquid. The SPM liquid passes through the stirring flow pipe 333 and the discharge pipe 332 and is sent to the processing liquid nozzle 34. In the stirring flow pipe 333, the chemical reaction between sulfuric acid and hydrogen peroxide solution is promoted by stirring the SPM liquid. The SPM liquid that is the processing liquid is discharged from the discharge port at the tip of the processing liquid nozzle 34 toward the upper surface 91 of the substrate 9. In the present embodiment, sulfuric acid heated to about 130 ° C. to 150 ° C. by the sulfuric acid heating unit 315 is supplied from the sulfuric acid supply unit 31 to the mixed liquid generation unit 33. Note that the temperature of the sulfuric acid supplied from the sulfuric acid supply unit 31 may be changed as appropriate.

除電液供給部6は、イオンを含む液体または純水(DIW:deionized water)を、処理液であるSPM液よりも比抵抗が大きい除電液として基板9の上面91上に供給する。本実施の形態では、イオンを含む液体として、純水に二酸化炭素(CO)を溶解させたものが利用される。除電液供給部6は、図示省略の純水供給部に接続される純水配管61、純水配管61に接続される二酸化炭素溶解ユニット62、純水配管61上に設けられて純水の流量を測定する流量計63、二酸化炭素溶解ユニット62に接続される除電液配管64、除電液配管64の先端に設けられる除電液ノズル65、除電液配管64上に設けられる除電液バルブ66、除電液バルブ66と除電液ノズル65との間にて除電液配管64上に設けられる比抵抗計67、および、除電液ノズル65を回転軸681を中心として水平に回動する除電液ノズル回動機構68を備える。除電液ノズル回動機構68は、回転軸681から水平方向に延びるとともに除電液ノズル65が取り付けられるアーム682を備える。 The neutralization liquid supply unit 6 supplies a liquid containing ions or pure water (DIW: deionized water) onto the upper surface 91 of the substrate 9 as a neutralization liquid having a higher specific resistance than the SPM liquid that is the treatment liquid. In the present embodiment, a liquid in which carbon dioxide (CO 2 ) is dissolved in pure water is used as the liquid containing ions. The neutralization liquid supply unit 6 is provided on a pure water pipe 61 connected to a pure water supply unit (not shown), a carbon dioxide dissolution unit 62 connected to the pure water pipe 61, and a flow rate of pure water provided on the pure water pipe 61. A flow meter 63 for measuring the charge, a charge removal liquid pipe 64 connected to the carbon dioxide dissolution unit 62, a charge removal liquid nozzle 65 provided at the tip of the charge removal liquid pipe 64, a charge removal liquid valve 66 provided on the charge removal liquid pipe 64, a charge removal liquid A resistivity meter 67 provided on the charge removal liquid pipe 64 between the valve 66 and the charge removal liquid nozzle 65, and a charge removal liquid nozzle turning mechanism 68 for turning the charge removal liquid nozzle 65 horizontally around the rotation axis 681. Is provided. The neutralization liquid nozzle rotating mechanism 68 includes an arm 682 that extends in the horizontal direction from the rotation shaft 681 and to which the neutralization liquid nozzle 65 is attached.

除電液ノズル65の先端の吐出口は、基板9の上面91の中心部上方に位置する。比抵抗計67は、除電液配管64を流れる除電液の比抵抗を測定する。比抵抗計67からの出力は制御部8へと送られる。また、制御部8には、比抵抗設定部81により設定された除電液の目標比抵抗、すなわち、後述の除電処理における除電液の好ましい比抵抗が送られ、予め記憶されている。比抵抗設定部81には、基板9上に予め形成されているデバイスのサイズと除電液の目標比抵抗との関係を示すテーブルが記憶されており、比抵抗設定部81にデバイスのサイズが入力されると、当該サイズと上記テーブルとに基づいて目標比抵抗が設定される。比抵抗設定部81では、基板9上に予め形成されているデバイスのサイズが小さいほど(すなわち、デバイスの配線の最小幅が小さいほど)、大きな目標比抵抗が設定される。本実施の形態では、目標比抵抗は、0.05〜18MΩ・cmの範囲で設定される。目標比抵抗が18MΩ・cmである場合、二酸化炭素溶解ユニット62では、純水配管61からの純水に対する二酸化炭素の溶解は行われず、当該純水が除電液として除電液ノズル65から基板9上に供給される。   The discharge outlet at the tip of the static elimination liquid nozzle 65 is located above the center of the upper surface 91 of the substrate 9. The specific resistance meter 67 measures the specific resistance of the static elimination liquid flowing through the static elimination liquid pipe 64. The output from the resistivity meter 67 is sent to the control unit 8. Further, the target specific resistance of the neutralizing liquid set by the specific resistance setting unit 81, that is, a preferable specific resistance of the neutralizing liquid in the neutralizing process described later is sent to the control unit 8 and stored in advance. The specific resistance setting unit 81 stores a table indicating the relationship between the size of a device formed in advance on the substrate 9 and the target specific resistance of the charge eliminating liquid. The specific resistance setting unit 81 inputs the size of the device. Then, the target specific resistance is set based on the size and the table. In the specific resistance setting unit 81, a larger target specific resistance is set as the size of a device formed in advance on the substrate 9 is smaller (that is, as the minimum width of the device wiring is smaller). In the present embodiment, the target specific resistance is set in the range of 0.05 to 18 MΩ · cm. When the target specific resistance is 18 MΩ · cm, the carbon dioxide dissolution unit 62 does not dissolve carbon dioxide in the pure water from the pure water pipe 61, and the pure water serves as a charge removal liquid from the charge removal liquid nozzle 65 to the substrate 9. To be supplied.

基板処理装置1では、比抵抗計67からの出力(すなわち、除電液配管64内の除電液の比抵抗の測定値)、および、上述の目標比抵抗に基づいて、制御部8により除電液供給部6の二酸化炭素溶解ユニット62がフィードバック制御されることにより、純水配管61からの純水に溶解する二酸化炭素の量が制御される。換言すれば、二酸化炭素溶解ユニット62から除電液配管64へと送られる除電液におけるイオン濃度が制御される。これにより、除電液の比抵抗が目標比抵抗に維持される。詳細には、上記フィードバック制御により、除電液の比抵抗が、実質的に目標比抵抗に等しいといえる狭い比抵抗の範囲(もちろん、目標比抵抗を含む。)内に維持される。   In the substrate processing apparatus 1, the controller 8 supplies the neutralization liquid based on the output from the specific resistance meter 67 (that is, the measured value of the specific resistance of the neutralization liquid in the neutralization liquid pipe 64) and the above-described target specific resistance. The amount of carbon dioxide dissolved in the pure water from the pure water pipe 61 is controlled by feedback control of the carbon dioxide dissolution unit 62 of the unit 6. In other words, the ion concentration in the static elimination liquid sent from the carbon dioxide dissolution unit 62 to the static elimination liquid piping 64 is controlled. Thereby, the specific resistance of the static elimination liquid is maintained at the target specific resistance. Specifically, by the feedback control, the specific resistance of the static elimination liquid is maintained within a narrow specific resistance range (of course, including the target specific resistance) that can be said to be substantially equal to the target specific resistance.

図2は、基板処理装置1における基板9の処理の流れを示す図である。基板処理装置1では、まず、基板9が搬入されて基板保持部2により保持される。基板9は、基板処理装置1に搬入される前に、ドライエッチングやプラズマCVD(Chemical Vapor Deposition)等のドライ工程を経ており、基板9は帯電した状態となっている。   FIG. 2 is a diagram illustrating a processing flow of the substrate 9 in the substrate processing apparatus 1. In the substrate processing apparatus 1, first, the substrate 9 is loaded and held by the substrate holding unit 2. The substrate 9 is subjected to a dry process such as dry etching or plasma CVD (Chemical Vapor Deposition) before being carried into the substrate processing apparatus 1, and the substrate 9 is in a charged state.

続いて、予め入力された基板9上のデバイスのサイズに基づいて、比抵抗設定部81により除電液の目標比抵抗が設定されて制御部8に記憶される(ステップS11)。除電液供給部6では、除電液ノズル65が基板9よりも外側の待機位置に位置した状態で、制御部8により除電液バルブ66が開かれ、除電液ノズル65から除電液の吐出が開始される。そして、比抵抗計67からの出力、および、目標比抵抗に基づいてフィードバック制御が行われ、除電液のイオン濃度が制御されて除電液の比抵抗が目標比抵抗とされる(ステップS12)。   Subsequently, based on the size of the device on the substrate 9 input in advance, the target specific resistance of the static elimination liquid is set by the specific resistance setting unit 81 and stored in the control unit 8 (step S11). In the neutralization liquid supply unit 6, the neutralization liquid valve 66 is opened by the control unit 8 in a state where the neutralization liquid nozzle 65 is positioned at the standby position outside the substrate 9, and discharge of the neutralization liquid from the neutralization liquid nozzle 65 is started. The Then, feedback control is performed based on the output from the specific resistance meter 67 and the target specific resistance, the ion concentration of the static elimination liquid is controlled, and the specific resistance of the static elimination liquid is set as the target specific resistance (step S12).

次に、除電液ノズル回動機構68により除電液ノズル65が待機位置から移動し、図1に示すように、除電液ノズル65の先端の吐出口が、基板9の上面91の中心部を向く。このとき、基板回転機構5は停止、または、小さい回転数で回転するように制御部8により制御されており、基板9は回転していない状態、または、小さい回転数(例えば、10〜200rpm)で回転している状態である。そして、除電液ノズル65から基板9の上面91上に除電液が所定の量だけ供給された後、除電液ノズル65からの除電液の供給が停止される(いわゆる、液盛りが行われる。)。除電液ノズル65から供給された除電液は、基板9の中心部から上面91全体に拡がり、上面91上に除電液の薄い層(例えば、厚さ約1mmの層)が形成されて上面91全体が除電液にてパドルされる。これにより、基板9上の電荷が、除電液へと比較的緩やかに移動し、基板9の上面91全体の除電処理(すなわち、除電液によるパドル処理)が行われる(ステップS13)。この除電液によるパドル処理は、基板回転機構5が停止、または、小さい回転数(例えば、10〜200rpm)で回転した状態で、基板9の上面91全体が除電液にてパドルされた状態を所定時間だけ維持することにより行われる。   Next, the neutralization liquid nozzle 65 is moved from the standby position by the neutralization liquid nozzle rotating mechanism 68, and the discharge port at the tip of the neutralization liquid nozzle 65 faces the center of the upper surface 91 of the substrate 9 as shown in FIG. . At this time, the substrate rotating mechanism 5 is stopped or controlled by the control unit 8 so as to rotate at a small rotational speed, and the substrate 9 is not rotated or is at a small rotational speed (for example, 10 to 200 rpm). It is in the state of rotating at. Then, after a predetermined amount of the neutralizing liquid is supplied from the neutralizing liquid nozzle 65 onto the upper surface 91 of the substrate 9, the supply of the neutralizing liquid from the neutralizing liquid nozzle 65 is stopped (so-called liquid accumulation is performed). . The neutralizing liquid supplied from the neutralizing liquid nozzle 65 spreads from the center of the substrate 9 to the entire upper surface 91, and a thin layer (for example, a layer having a thickness of about 1 mm) of the neutralizing liquid is formed on the upper surface 91, so Is padded with a charge-removing solution. As a result, the charge on the substrate 9 moves relatively slowly to the charge removal solution, and the charge removal process (that is, the paddle process using the charge removal solution) is performed on the entire upper surface 91 of the substrate 9 (step S13). This paddle treatment with the charge-removing solution is a predetermined state in which the entire upper surface 91 of the substrate 9 is paddled with the charge-removing solution while the substrate rotation mechanism 5 is stopped or rotated at a low rotation speed (for example, 10 to 200 rpm). This is done by maintaining only time.

図3.Aおよび図3.Bは、除電処理前後の基板9の表面電位分布を示す図である。図3.Aは、基板9の1つの直径上における表面電位分布を示し、図3.Bは、図3.Aに対応する直径に直交する1つの直径上における表面電位分布を示す。図3.Aおよび図3.Bの横軸は基板9の直径上の位置を示し、縦軸は当該位置における電位を示す。破線901は、除電処理前の電位分布を示し、実線902は除電処理後の電位分布を示す。図3.Aおよび図3.Bに係る上記説明は、後述する図4.Aおよび図4.Bにおいても同様である。   FIG. A and FIG. B is a diagram showing the surface potential distribution of the substrate 9 before and after the charge removal process. FIG. A shows the surface potential distribution on one diameter of the substrate 9, FIG. B is shown in FIG. The surface potential distribution on one diameter orthogonal to the diameter corresponding to A is shown. FIG. A and FIG. The horizontal axis of B shows the position on the diameter of the substrate 9, and the vertical axis shows the potential at that position. A broken line 901 indicates the potential distribution before the charge removal process, and a solid line 902 indicates the potential distribution after the charge removal process. FIG. A and FIG. The above description regarding B is described later with reference to FIG. A and FIG. The same applies to B.

図3.Aおよび図3.Bは、基板9上のデバイスのサイズが非常に小さいため、除電液として純水が利用された場合の基板9の電位分布である。図3.Aおよび図3.Bに示すように、純水を除電液として利用した上述の除電処理により、基板9上の電荷が減少し、基板9の電位が全体的に低減される。   FIG. A and FIG. B is a potential distribution of the substrate 9 when pure water is used as a charge removal solution because the size of the device on the substrate 9 is very small. FIG. A and FIG. As shown in B, the charge removal on the substrate 9 is reduced by the above-described charge removal process using pure water as a charge removal solution, and the potential of the substrate 9 is reduced as a whole.

図4.Aおよび図4.Bは、デバイスのサイズが比較的大きい(すなわち、電荷の移動によるダメージに対する耐性が比較的高い)基板に対する除電処理前後の基板の表面電位分布を示す図である。図4.Aおよび図4.Bに示す例では、比抵抗設定部81により設定された目標比抵抗となるように純水に二酸化炭素を溶解させたCO水が除電液として利用される。図4.Aおよび図4.Bに示すように、CO水を除電液として利用した上述の除電処理により、基板上の電荷が減少し、基板の電位が全体的に低減される。除電液として、純水よりも比抵抗が小さいCO水が利用されることにより、除電処理に要する時間を短くすることができる。 FIG. A and FIG. B is a diagram showing the surface potential distribution of the substrate before and after the charge removal process on the substrate having a relatively large device size (that is, relatively high resistance to damage due to charge transfer). FIG. A and FIG. In the example shown in B, CO 2 water in which carbon dioxide is dissolved in pure water so as to have the target specific resistance set by the specific resistance setting unit 81 is used as the static elimination liquid. FIG. A and FIG. As shown in B, the above-described charge removal process using CO 2 water as a charge removal liquid reduces the charge on the substrate and reduces the overall potential of the substrate. By using CO 2 water having a specific resistance smaller than that of pure water as the charge removal liquid, the time required for the charge removal process can be shortened.

基板9の除電処理が終了すると、除電液ノズル回動機構68により除電液ノズル65が待機位置へと戻される。続いて、制御部8により基板回転機構5が制御されることにより、基板9の回転が開始される(ステップS14)。上述の除電処理が、基板9が小さい回転数で回転している状態で行われた場合は、基板9の回転数を増加させる。そして、基板9の回転により、基板9の上面91上の除電液が基板9のエッジに向かって移動し、基板9のエッジから外側へと飛散して基板9上から除去される(ステップS15)。基板9から飛散した除電液はカップ部4により受けられる。基板処理装置1では、基板回転機構5が、基板9を回転することにより上面91上の液体を除去する液体除去部として働く。   When the neutralization process of the substrate 9 is completed, the neutralization liquid nozzle 65 is returned to the standby position by the neutralization liquid nozzle rotating mechanism 68. Subsequently, the substrate rotating mechanism 5 is controlled by the control unit 8 to start the rotation of the substrate 9 (step S14). When the above-described charge removal process is performed in a state where the substrate 9 is rotating at a low rotation speed, the rotation speed of the substrate 9 is increased. Then, due to the rotation of the substrate 9, the static elimination liquid on the upper surface 91 of the substrate 9 moves toward the edge of the substrate 9, scatters from the edge of the substrate 9 to the outside, and is removed from the substrate 9 (step S <b> 15). . The neutralizing liquid scattered from the substrate 9 is received by the cup portion 4. In the substrate processing apparatus 1, the substrate rotation mechanism 5 functions as a liquid removal unit that removes the liquid on the upper surface 91 by rotating the substrate 9.

除電液の除去が終了すると、基板回転機構5による基板9の回転数が減少し、SPM処理時の回転数に変更される。また、処理液ノズル回動機構35による処理液ノズル34の回動が開始され、処理液ノズル34が基板9の中心部とエッジとの間で往復運動を繰り返す。   When the removal of the charge removal liquid is completed, the number of rotations of the substrate 9 by the substrate rotation mechanism 5 is reduced and changed to the number of rotations during the SPM process. Also, the processing liquid nozzle rotating mechanism 35 starts to rotate the processing liquid nozzle 34, and the processing liquid nozzle 34 repeats reciprocating motion between the center portion and the edge of the substrate 9.

次に、制御部8により処理液供給部3が制御されることにより、硫酸供給部31の硫酸バルブ314が開かれ、硫酸加熱部315により約130℃〜150℃に加熱された硫酸が、硫酸配管312を介して混合液生成部33へと供給される。また、制御部8により過酸化水素水バルブ324が開かれ、常温の過酸化水素水が、過酸化水素水貯溜部321から過酸化水素水配管322を介してミキシングバルブ331へと供給される。ミキシングバルブ331では、加熱された硫酸と常温の過酸化水素水とが混合されてSPM液が生成される。SPM液の温度は、硫酸と過酸化水素水との反応により、硫酸供給部31から供給される硫酸の温度よりも高く、例えば、約150℃〜195℃となる。   Next, when the processing liquid supply unit 3 is controlled by the control unit 8, the sulfuric acid valve 314 of the sulfuric acid supply unit 31 is opened, and the sulfuric acid heated to about 130 ° C. to 150 ° C. by the sulfuric acid heating unit 315 is converted into sulfuric acid. The mixed liquid generation unit 33 is supplied via the pipe 312. Further, the control unit 8 opens the hydrogen peroxide solution valve 324, and normal temperature hydrogen peroxide solution is supplied from the hydrogen peroxide solution storage unit 321 to the mixing valve 331 via the hydrogen peroxide solution pipe 322. In the mixing valve 331, the heated sulfuric acid and the hydrogen peroxide solution at room temperature are mixed to generate the SPM liquid. The temperature of the SPM liquid is higher than the temperature of sulfuric acid supplied from the sulfuric acid supply unit 31 due to the reaction between sulfuric acid and hydrogen peroxide solution, and is about 150 ° C. to 195 ° C., for example.

SPM液は、吐出用配管332および攪拌流通管333を通過し、処理液ノズル34から、基板9の上面91に対して供給される。換言すれば、処理液供給部3により、加熱された硫酸と過酸化水素水とが混合されつつ基板9の上面91に供給される。SPM液は、基板9の回転により、基板9の上面91の全面に拡がり、基板9のエッジから外側へと飛散してカップ部4により受けられる。基板処理装置1では、基板9に対するSPM液の供給が所定時間だけ連続的に行われ、基板9に対するSPM処理、すなわち、SPM液に含まれるカロ酸の強酸化力による基板9上のレジスト膜の除去処理が行われる(ステップS16)。なお、基板処理装置1では、基板9の中心部の上方にて停止した処理液ノズル34からSPM液等の供給が行われてもよい。   The SPM liquid passes through the discharge pipe 332 and the stirring flow pipe 333 and is supplied from the processing liquid nozzle 34 to the upper surface 91 of the substrate 9. In other words, heated sulfuric acid and hydrogen peroxide solution are mixed and supplied to the upper surface 91 of the substrate 9 by the processing liquid supply unit 3. The SPM liquid spreads over the entire upper surface 91 of the substrate 9 by the rotation of the substrate 9, scatters from the edge of the substrate 9 to the outside, and is received by the cup portion 4. In the substrate processing apparatus 1, the supply of the SPM liquid to the substrate 9 is continuously performed for a predetermined time, and the SPM process for the substrate 9, that is, the resist film on the substrate 9 due to the strong oxidizing power of caloic acid contained in the SPM liquid. A removal process is performed (step S16). In the substrate processing apparatus 1, the SPM liquid or the like may be supplied from the processing liquid nozzle 34 stopped above the center of the substrate 9.

SPM処理が終了すると、過酸化水素水バルブ324が開かれた状態で硫酸バルブ314が閉じられ、過酸化水素水が、ミキシングバルブ331、吐出用配管332および攪拌流通管333を通過し、処理液ノズル34から、レジスト膜が除去された基板9上に供給される(ステップS17)。当該過酸化水素水供給処理により、ミキシングバルブ331、吐出用配管332、攪拌流通管333および処理液ノズル34内に残っているSPM液が除去される。また、基板9上に供給された過酸化水素水は、基板9の回転により、基板9の上面91の全面に拡がり、基板9上に残っているSPM液を、基板9のエッジから外側へと押し出して除去する。   When the SPM treatment is completed, the sulfuric acid valve 314 is closed with the hydrogen peroxide solution valve 324 opened, and the hydrogen peroxide solution passes through the mixing valve 331, the discharge pipe 332, and the stirring flow pipe 333, and the treatment liquid From the nozzle 34, the resist film is supplied onto the substrate 9 (step S17). By the hydrogen peroxide supply process, the SPM liquid remaining in the mixing valve 331, the discharge pipe 332, the stirring flow pipe 333, and the processing liquid nozzle 34 is removed. Further, the hydrogen peroxide solution supplied onto the substrate 9 spreads over the entire upper surface 91 of the substrate 9 by the rotation of the substrate 9, and the SPM liquid remaining on the substrate 9 is moved outward from the edge of the substrate 9. Extrude and remove.

過酸化水素水供給処理が終了すると、過酸化水素水バルブ324が閉じられて過酸化水素水の供給が停止され、処理液ノズル回動機構35により、処理液ノズル34が基板9の外側の待機位置へと移動される。次に、基板9の上面91にリンス液が供給されるリンス処理が行われる(ステップS18)。リンス液としては、純水が利用される。リンス液は、図示省略のリンス液供給部から供給されてもよく、除電液供給部6により供給されてもよい。リンス液は、基板9の回転により、基板9の上面91の全面に拡がる。これにより、基板9上に残っている過酸化水素水が洗い流される。リンス処理が所定時間だけ連続的に行われると、リンス液の供給が停止される。そして、基板9の回転数を増大させ、基板9の回転により基板9上に残っているリンス液を除去する乾燥処理が行われる(ステップS19)。その後、基板9の回転が停止され(ステップS20)、基板9が基板処理装置1から搬出される。   When the hydrogen peroxide solution supply process is completed, the hydrogen peroxide solution valve 324 is closed and the supply of the hydrogen peroxide solution is stopped, and the treatment solution nozzle 34 is placed on standby outside the substrate 9 by the treatment solution nozzle rotating mechanism 35. Moved to position. Next, a rinsing process in which a rinsing liquid is supplied to the upper surface 91 of the substrate 9 is performed (step S18). Pure water is used as the rinse liquid. The rinsing liquid may be supplied from a rinsing liquid supply unit (not shown) or may be supplied by the charge removal liquid supply unit 6. The rinse liquid spreads over the entire upper surface 91 of the substrate 9 by the rotation of the substrate 9. Thereby, the hydrogen peroxide remaining on the substrate 9 is washed away. When the rinsing process is continuously performed for a predetermined time, the supply of the rinsing liquid is stopped. Then, the rotational speed of the substrate 9 is increased, and a drying process is performed to remove the rinse liquid remaining on the substrate 9 by the rotation of the substrate 9 (step S19). Thereafter, the rotation of the substrate 9 is stopped (step S20), and the substrate 9 is unloaded from the substrate processing apparatus 1.

以上に説明したように、基板処理装置1では、ドライエッチングやプラズマCVD等の前処理により帯電している基板9に対し、SPM液によるSPM処理を行う前に、SPM液よりも比抵抗が大きい除電液が供給され、基板9の上面91全体が当該除電液によりパドルされる。これにより、基板9の上面91全体が比較的緩やかに除電される。除電の際には、基板9上の電荷が急激に除電液へと移動して発熱することがないため、基板9上のデバイスにダメージが生じることが防止される。   As described above, the substrate processing apparatus 1 has a specific resistance higher than that of the SPM liquid before the SPM process using the SPM liquid is performed on the substrate 9 that has been charged by a pre-process such as dry etching or plasma CVD. The neutralizing liquid is supplied, and the entire upper surface 91 of the substrate 9 is paddled by the neutralizing liquid. As a result, the entire upper surface 91 of the substrate 9 is discharged relatively slowly. At the time of static elimination, the charges on the substrate 9 do not suddenly move to the static elimination liquid and do not generate heat, so that damage to the device on the substrate 9 is prevented.

そして、除電処理が行われた後の基板9にSPM液が供給されることにより、基板9が、除電液よりも比抵抗が小さいSPM液と接触しても、基板9からSPM液へと大量の電荷が急激に移動することがないため、SPM液によるSPM処理の際にも、電荷の移動によるデバイスのダメージ、すなわち、基板9の損傷を防止することができる。また、除電液の比抵抗を目標比抵抗に維持するように除電液供給部6を制御することにより、基板9の損傷が生じない範囲で、基板9の除電効率を向上し、除電処理に要する時間を短くすることができる。   Then, by supplying the SPM liquid to the substrate 9 after the charge removal process, even if the substrate 9 comes into contact with the SPM liquid having a specific resistance smaller than that of the charge removal liquid, a large amount from the substrate 9 to the SPM liquid is obtained. Therefore, even during the SPM treatment with the SPM liquid, it is possible to prevent device damage due to charge transfer, that is, damage to the substrate 9. Further, by controlling the neutralization liquid supply unit 6 so as to maintain the specific resistance of the neutralization liquid at the target specific resistance, the neutralization efficiency of the substrate 9 is improved and required for the neutralization process within a range where the substrate 9 is not damaged. Time can be shortened.

基板処理装置1では、比抵抗設定部81において、基板9上のデバイスのサイズが小さいほど、大きな目標比抵抗が設定されることにより、SPM処理時の基板9の損傷防止と除電処理の所要時間の短縮との両立を、デバイスのサイズに合わせて適切に行うことができる。また、二酸化炭素溶解ユニット62において、純水に溶解させる二酸化炭素の量を制御することにより、除電液の比抵抗の制御を容易に実現することができる。   In the substrate processing apparatus 1, the specific resistance setting unit 81 sets a larger target specific resistance as the device size on the substrate 9 is smaller, thereby preventing damage to the substrate 9 during the SPM process and the time required for the charge removal process. It is possible to appropriately balance the reduction of the size according to the size of the device. In addition, by controlling the amount of carbon dioxide dissolved in pure water in the carbon dioxide dissolution unit 62, it is possible to easily realize the control of the specific resistance of the static elimination liquid.

上述のように、基板処理装置1では、除電液による除電処理が行われ、基板9の上面91上から除電液が除去された後に、基板9にSPM液が供給されてSPM処理が行われる。これにより、除電液とSPM液との混合による悪影響を防止することができる。当該悪影響としては、例えば、除電液中の水とSPM液中の硫酸との反応熱による基板9の損傷(いわゆる、ヒートショック)、SPM液が除電液により希釈されることによるSPM処理の質の低下、および、SPM液の除電液との部分的な混合によりSPM液の濃度が不均一となり、基板9全体におけるSPM処理の均一性が低下することが挙げられる。   As described above, in the substrate processing apparatus 1, the charge removal process using the charge removal liquid is performed, and after the charge removal liquid is removed from the upper surface 91 of the substrate 9, the SPM liquid is supplied to the substrate 9 and the SPM process is performed. Thereby, the bad influence by mixing with a static elimination liquid and a SPM liquid can be prevented. The adverse effects include, for example, damage to the substrate 9 due to reaction heat between water in the static elimination liquid and sulfuric acid in the SPM liquid (so-called heat shock), and the quality of the SPM treatment due to dilution of the SPM liquid by the static elimination liquid. It can be mentioned that the concentration of the SPM liquid becomes non-uniform due to the lowering and the partial mixing of the SPM liquid with the charge eliminating liquid, and the uniformity of the SPM process in the entire substrate 9 is reduced.

基板処理装置1では、基板回転機構5により基板9を回転することにより、基板9上の除電液を容易に除去することができる。また、SPM処理の際に基板9の回転に使用される基板回転機構5により、ステップS15における除電液の基板9上からの除去を行うことができるため、基板処理装置1の構成を簡素化することができる。さらに、基板9に対する除電処理が、基板回転機構5が停止した状態、または、小さい回転数で回転している状態で行われることにより、基板9の除電を効率的に行うことができる。基板回転機構5が小さい回転数で回転している状態とは、例えば、基板回転機構5により基板9が10〜200rpmにて回転しており、当該回転により、基板9上の除電液の層に実質的な影響が生じていない状態を意味する。   In the substrate processing apparatus 1, the neutralizing solution on the substrate 9 can be easily removed by rotating the substrate 9 by the substrate rotating mechanism 5. Further, the substrate rotating mechanism 5 used for rotating the substrate 9 during the SPM process can remove the charge removal liquid from the substrate 9 in step S15, thereby simplifying the configuration of the substrate processing apparatus 1. be able to. Furthermore, by performing the charge removal process on the substrate 9 in a state where the substrate rotation mechanism 5 is stopped or rotating at a low rotation speed, the charge removal of the substrate 9 can be performed efficiently. The state in which the substrate rotation mechanism 5 is rotating at a small number of rotations means, for example, that the substrate 9 is rotated at 10 to 200 rpm by the substrate rotation mechanism 5, and the rotation causes This means a state where no substantial effect has occurred.

次に、本発明の第2の実施の形態に係る基板処理装置について説明する。図5は、第2の実施の形態に係る基板処理装置1aの構成を示す図である。基板処理装置1aでは、図1に示す基板処理装置1の構成に加えて、基板9の上面91上に液状のイソプロピルアルコール(以下、「IPA」という。)を供給するIPA供給部7を備える。その他の構成は、図1に示す基板処理装置1と同様であり、以下の説明では、対応する構成に同符号を付す。図5では、図示の都合上、処理液供給部3の図示を省略しているが、処理液供給部3の構成も図1に示す基板処理装置1と同様である。また、図5では、制御部8および比抵抗設定部81の図示も省略している。   Next, a substrate processing apparatus according to a second embodiment of the present invention will be described. FIG. 5 is a diagram showing a configuration of a substrate processing apparatus 1a according to the second embodiment. In addition to the configuration of the substrate processing apparatus 1 shown in FIG. 1, the substrate processing apparatus 1 a includes an IPA supply unit 7 that supplies liquid isopropyl alcohol (hereinafter referred to as “IPA”) onto the upper surface 91 of the substrate 9. Other configurations are the same as those of the substrate processing apparatus 1 shown in FIG. 1, and the same reference numerals are given to the corresponding configurations in the following description. In FIG. 5, the processing liquid supply unit 3 is not shown for the sake of illustration, but the configuration of the processing liquid supply unit 3 is the same as that of the substrate processing apparatus 1 shown in FIG. In FIG. 5, illustration of the control unit 8 and the specific resistance setting unit 81 is also omitted.

IPA供給部7は、図示省略のIPA貯溜部に接続されるIPA配管71、IPA配管71の先端に接続されるIPAノズル72、IPA配管71上に設けられるIPAバルブ73、および、IPAノズル72を回転軸741を中心として水平に回動するIPAノズル回動機構74を備える。IPAノズル回動機構74は、回転軸741から水平方向に延びるとともにIPAノズル72が取り付けられるアーム742を備える。   The IPA supply unit 7 includes an IPA pipe 71 connected to an IPA storage unit (not shown), an IPA nozzle 72 connected to the tip of the IPA pipe 71, an IPA valve 73 provided on the IPA pipe 71, and an IPA nozzle 72. An IPA nozzle rotation mechanism 74 that rotates horizontally around the rotation shaft 741 is provided. The IPA nozzle rotation mechanism 74 includes an arm 742 that extends in the horizontal direction from the rotation shaft 741 and to which the IPA nozzle 72 is attached.

図6は、基板処理装置1aにおける基板9の処理の流れの一部を示す図である。基板処理装置1aでは、図2に示すステップS11〜S13と同様の工程が行われた後、図6中のステップS31〜S33が行われ、その後、図2に示すステップS16〜S20と同様の工程が行われる。   FIG. 6 is a diagram showing a part of the processing flow of the substrate 9 in the substrate processing apparatus 1a. In the substrate processing apparatus 1a, after steps similar to steps S11 to S13 shown in FIG. 2 are performed, steps S31 to S33 in FIG. 6 are performed, and thereafter steps similar to steps S16 to S20 shown in FIG. Is done.

具体的には、まず、比抵抗設定部81(図1参照)において、基板9上のデバイスのサイズ等に基づいて除電液の目標比抵抗が設定され、制御部8に記憶される(ステップS11)。除電液供給部6では、比抵抗計67からの出力、および、目標比抵抗に基づいて除電液のイオン濃度が制御され、除電液の比抵抗が目標比抵抗とされる(ステップS12)。そして、基板9上に除電液が供給され、基板9の上面91全体が除電液にてパドルされて除電処理が行われる(ステップS13)。   Specifically, first, in the specific resistance setting unit 81 (see FIG. 1), the target specific resistance of the static elimination liquid is set based on the size of the device on the substrate 9 and stored in the control unit 8 (step S11). ). In the neutralization liquid supply unit 6, the ion concentration of the neutralization liquid is controlled based on the output from the specific resistance meter 67 and the target specific resistance, and the specific resistance of the neutralization liquid is set as the target specific resistance (step S12). Then, the neutralizing liquid is supplied onto the substrate 9, and the entire upper surface 91 of the substrate 9 is padded with the neutralizing liquid, and the neutralizing process is performed (step S13).

基板9の除電処理が終了すると、除電液ノズル回動機構68により除電液ノズル65が回動し、図5に示す位置から基板9の外側の待機位置へと戻される。また、IPAノズル回動機構74によりIPAノズル72が待機位置から移動し、図5に示すように、IPAノズル72の先端の吐出口が、基板9の上面91の中心部を向く。続いて、制御部8により、IPA供給部7のIPAバルブ73が開かれ、IPAが基板9上に供給される。基板9上では、上面91の中心部に供給されるIPAにより、除電液が基板9のエッジに向かって移動し、当該エッジから基板9の外側に押し出されて基板9の上面91上から除去される(ステップS31)。このように、IPA供給部7は、基板9上の除電液等の液体をIPAと置換することにより、基板9の上面91上から除去する液体除去部として機能する。   When the neutralization process of the substrate 9 is completed, the neutralization liquid nozzle 65 is rotated by the neutralization liquid nozzle rotation mechanism 68 and returned from the position shown in FIG. 5 to the standby position outside the substrate 9. Further, the IPA nozzle 72 is moved from the standby position by the IPA nozzle rotating mechanism 74, and the discharge port at the tip of the IPA nozzle 72 faces the center of the upper surface 91 of the substrate 9 as shown in FIG. 5. Subsequently, the control unit 8 opens the IPA valve 73 of the IPA supply unit 7 so that IPA is supplied onto the substrate 9. On the substrate 9, due to the IPA supplied to the central portion of the upper surface 91, the static elimination liquid moves toward the edge of the substrate 9 and is pushed out of the substrate 9 from the edge and removed from the upper surface 91 of the substrate 9. (Step S31). As described above, the IPA supply unit 7 functions as a liquid removing unit that removes the liquid such as the charge removing liquid on the substrate 9 from the upper surface 91 of the substrate 9 by replacing the liquid with the IPA.

除電液の除去が終了すると、IPAノズル72が待機位置へと戻され、制御部8により基板回転機構5が制御されることにより、基板9の回転が開始される(ステップS32)。そして、基板9の回転により、基板9の上面91上のIPAが基板9のエッジに向かって移動し、基板9のエッジから外側へと飛散して基板9上から除去される(ステップS33)。   When the removal of the charge removal liquid is completed, the IPA nozzle 72 is returned to the standby position, and the substrate rotating mechanism 5 is controlled by the control unit 8, whereby the rotation of the substrate 9 is started (step S32). Then, due to the rotation of the substrate 9, the IPA on the upper surface 91 of the substrate 9 moves toward the edge of the substrate 9, scatters outward from the edge of the substrate 9, and is removed from the substrate 9 (step S33).

IPAの除去が終了すると、基板回転機構5による基板9の回転数が減少し、SPM処理時の回転数に変更される。また、図1に示す処理液ノズル回動機構35による処理液ノズル34の回動が開始され、処理液ノズル34が基板9の中心部とエッジとの間で往復運動を繰り返す。そして、処理液ノズル34から基板9の上面91上にSPM液が供給され、基板9に対するSPM処理が行われる(ステップS16)。なお、基板9に対するSPM液の供給は、基板9上にIPAが残留している状態で開始されてもよい。   When the removal of the IPA is completed, the number of rotations of the substrate 9 by the substrate rotation mechanism 5 is reduced and is changed to the number of rotations during the SPM process. Further, the processing liquid nozzle 34 starts rotating by the processing liquid nozzle rotating mechanism 35 shown in FIG. 1, and the processing liquid nozzle 34 repeats reciprocating motion between the center portion and the edge of the substrate 9. Then, the SPM liquid is supplied from the processing liquid nozzle 34 onto the upper surface 91 of the substrate 9, and the SPM process is performed on the substrate 9 (step S16). The supply of the SPM liquid to the substrate 9 may be started in a state where IPA remains on the substrate 9.

SPM処理が終了すると、処理液ノズル34から基板9上へと過酸化水素水が供給され、基板9上のSPM液が除去される(ステップS17)。過酸化水素水供給処理が終了すると、処理液ノズル34が基板9の外側の待機位置へと戻され、基板9の上面91にリンス液(純水)が供給されるリンス処理が行われることにより、基板9上から過酸化水素水が除去される(ステップS18)。そして、基板9の回転数を増大させ、基板9の回転により基板9上に残っているリンス液を除去する乾燥処理が行われる(ステップS19)。その後、基板9の回転が停止され(ステップS20)、基板9が基板処理装置1aから搬出される。   When the SPM process is completed, hydrogen peroxide is supplied from the process liquid nozzle 34 onto the substrate 9, and the SPM liquid on the substrate 9 is removed (step S17). When the hydrogen peroxide solution supply process is completed, the process liquid nozzle 34 is returned to the standby position outside the substrate 9, and a rinse process is performed in which the rinse liquid (pure water) is supplied to the upper surface 91 of the substrate 9. Then, the hydrogen peroxide solution is removed from the substrate 9 (step S18). Then, the rotational speed of the substrate 9 is increased, and a drying process is performed to remove the rinse liquid remaining on the substrate 9 by the rotation of the substrate 9 (step S19). Thereafter, the rotation of the substrate 9 is stopped (step S20), and the substrate 9 is unloaded from the substrate processing apparatus 1a.

基板処理装置1aでは、図1に示す基板処理装置1と同様に、ドライエッチングやプラズマCVD等の前処理により帯電している基板9に対し、SPM液によるSPM処理を行う前に、SPM液よりも比抵抗が大きい除電液が供給され、基板9の上面91全体が当該除電液によりパドルされる。これにより、基板9の上面91全体が比較的緩やかに除電される。そして、除電処理が行われた後の基板9に対してSPM処理が行われることにより、電荷の移動によるデバイスのダメージ、すなわち、基板9の損傷を防止することができる。また、除電液の比抵抗を目標比抵抗に維持するように除電液供給部6を制御することにより、基板9の損傷が生じない範囲で、基板9の除電効率を向上し、除電処理に要する時間を短くすることができる。   In the substrate processing apparatus 1a, similarly to the substrate processing apparatus 1 shown in FIG. 1, before the SPM treatment with the SPM liquid is performed on the substrate 9 charged by the pretreatment such as dry etching or plasma CVD, the SPM liquid is used. In addition, the neutralization liquid having a large specific resistance is supplied, and the entire upper surface 91 of the substrate 9 is padded with the neutralization liquid. As a result, the entire upper surface 91 of the substrate 9 is discharged relatively slowly. Then, by performing the SPM process on the substrate 9 after the charge removal process, it is possible to prevent device damage due to charge transfer, that is, damage to the substrate 9. Further, by controlling the neutralization liquid supply unit 6 so as to maintain the specific resistance of the neutralization liquid at the target specific resistance, the neutralization efficiency of the substrate 9 is improved and required for the neutralization process within a range where the substrate 9 is not damaged. Time can be shortened.

基板処理装置1aでは、除電処理に利用された除電液が基板9の上面91上から除去された後に、基板9にSPM液が供給されてSPM処理が行われる。これにより、除電液とSPM液との混合によるヒートショックのような既述の悪影響を防止することができる。また、ステップS31において、基板9上にIPAを供給することにより、基板9を回転することなく除電液を除去することができる。ところで、基板9を回転させることにより除電液を除去しようとすると、基板9上のデバイスの配線パターンの幅が小さい場合、除電液の表面張力により配線パターンが倒壊する可能性がある。基板処理装置1aでは、上述のように、純水等に比べて表面張力が小さいIPAにより除電液を基板9上から除去した後、IPAを基板9の回転により除去するため、除電液の除去の際における配線パターンの倒壊等の基板の損傷を防止することができる。   In the substrate processing apparatus 1a, after the static elimination liquid used for the static elimination process is removed from the upper surface 91 of the substrate 9, the SPM liquid is supplied to the substrate 9 to perform the SPM process. Thereby, the above-mentioned bad influence like the heat shock by mixing with a static elimination liquid and a SPM liquid can be prevented. Further, by supplying IPA onto the substrate 9 in step S31, the charge removal liquid can be removed without rotating the substrate 9. By the way, when it is going to remove the static elimination liquid by rotating the board | substrate 9, when the width | variety of the wiring pattern of the device on the board | substrate 9 is small, a wiring pattern may collapse by the surface tension of a static elimination liquid. In the substrate processing apparatus 1a, as described above, since the static eliminating liquid is removed from the substrate 9 by the IPA having a surface tension smaller than that of pure water or the like, the IPA is removed by the rotation of the substrate 9, so that the static eliminating liquid is removed. It is possible to prevent substrate damage such as collapse of the wiring pattern at the time.

なお、基板処理装置1aは、基板回転機構5およびIPA供給部7を備えているため、基板9上のデバイスのサイズ等に合わせて、基板回転機構5およびIPA供給部7の一方を選択して液体除去部として利用してもよい。すなわち、基板処理装置1aでは、液体除去部が基板回転機構5およびIPA供給部7を備える。   Since the substrate processing apparatus 1a includes the substrate rotation mechanism 5 and the IPA supply unit 7, one of the substrate rotation mechanism 5 and the IPA supply unit 7 is selected according to the size of the device on the substrate 9 and the like. You may utilize as a liquid removal part. That is, in the substrate processing apparatus 1a, the liquid removal unit includes the substrate rotation mechanism 5 and the IPA supply unit 7.

以上、本発明の実施の形態について説明してきたが、本発明は上記実施の形態に限定されるものではなく、様々な変更が可能である。   As mentioned above, although embodiment of this invention has been described, this invention is not limited to the said embodiment, A various change is possible.

例えば、ステップS13における除電処理は、基板9上における除電液の層が崩れずに維持されるのであれば、基板9が回転している状態にて行われてもよい。換言すれば、基板9の回転は、除電処理よりも前に開始されてもよい。また、除電液の目標比抵抗は、デバイスのサイズ以外の条件(例えば、基板処理装置に搬入される前に基板に対して行われた処理の種類)に基づいて設定されてもよい。   For example, the neutralization process in step S13 may be performed while the substrate 9 is rotating as long as the layer of the neutralization solution on the substrate 9 is maintained without collapsing. In other words, the rotation of the substrate 9 may be started before the charge removal process. In addition, the target specific resistance of the static elimination liquid may be set based on conditions other than the size of the device (for example, the type of processing performed on the substrate before being loaded into the substrate processing apparatus).

基板処理装置1,1aでは、基板9の上面91に向けてシート状のエアを噴射し、基板9上の液体を飛散させて除去するエアナイフが、液体除去部として設けられてもよい。   In the substrate processing apparatuses 1 and 1a, an air knife that ejects sheet-like air toward the upper surface 91 of the substrate 9 and scatters and removes the liquid on the substrate 9 may be provided as a liquid removal unit.

基板処理装置1,1aでは、ステップS16において、SPM液以外の処理液が基板9上に供給され、基板9に対する他の処理が行われてもよい。例えば、レジスト膜が形成された基板9上に処理液としてバッファードフッ酸(BHF)が供給され、基板9のエッチング処理が行われてもよい。基板処理装置1,1aでは、上述のように、帯電した基板9と処理液との接触による電荷の急激な移動に伴う基板9の損傷を防止することができるため、基板処理装置1の構造は、SPM液やバッファードフッ酸のように、比抵抗が非常に小さい処理液による処理が行われる装置に特に適している。   In the substrate processing apparatuses 1 and 1a, in step S16, a processing liquid other than the SPM liquid may be supplied onto the substrate 9, and other processing may be performed on the substrate 9. For example, the substrate 9 may be etched by supplying buffered hydrofluoric acid (BHF) as a treatment liquid onto the substrate 9 on which the resist film is formed. In the substrate processing apparatuses 1 and 1a, as described above, since the substrate 9 can be prevented from being damaged due to a rapid movement of charges due to contact between the charged substrate 9 and the processing liquid, the structure of the substrate processing apparatus 1 is as follows. In particular, the present invention is particularly suitable for an apparatus that performs treatment with a treatment liquid having a very small specific resistance, such as SPM liquid or buffered hydrofluoric acid.

除電液として利用されるイオンを含む液体は、純水に二酸化炭素を溶解させたものには限定されない。例えば、純水にアンモニアを溶解させたものや純水に微量の希塩酸を加えたものが除電液として利用されてもよく、また、他の様々なイオンを含む液体が除電液として利用されてもよい。さらに、除電液は、処理液よりも比抵抗が大きいものであれば、イオンを含む液体または純水には限定されず、様々な種類の液体が除電液として利用されてよい。   The liquid containing ions used as a static elimination liquid is not limited to a liquid in which carbon dioxide is dissolved in pure water. For example, a solution obtained by dissolving ammonia in pure water or a solution obtained by adding a small amount of dilute hydrochloric acid to pure water may be used as a static elimination liquid, or a liquid containing various other ions may be used as a static elimination liquid. Good. Furthermore, the neutralization liquid is not limited to a liquid containing ions or pure water as long as the specific resistance is higher than that of the treatment liquid, and various types of liquids may be used as the neutralization liquid.

基板処理装置1,1aでは、処理液よりも比抵抗が大きい除電液により除電処理が行われるのであれば、必ずしも、除電液の比抵抗を目標比抵抗に維持する必要はない。この場合、比抵抗設定部81は省略されてよい。   In the substrate processing apparatuses 1 and 1 a, it is not always necessary to maintain the specific resistance of the static elimination liquid at the target specific resistance as long as the static elimination treatment is performed with the static elimination liquid having a specific resistance higher than that of the treatment liquid. In this case, the specific resistance setting unit 81 may be omitted.

上記実施の形態および各変形例における構成は、相互に矛盾しない限り適宜組み合わされてよい。   The configurations in the above-described embodiments and modifications may be combined as appropriate as long as they do not contradict each other.

1,1a 基板処理装置
2 基板保持部
3 処理液供給部
5 基板回転機構
6 除電液供給部
7 IPA供給部
8 制御部
9 基板
81 比抵抗設定部
91 上面
S11〜S20,S31〜S33 ステップ
DESCRIPTION OF SYMBOLS 1,1a Substrate processing apparatus 2 Substrate holding part 3 Processing liquid supply part 5 Substrate rotation mechanism 6 Static elimination liquid supply part 7 IPA supply part 8 Control part 9 Substrate 81 Resistivity setting part 91 Upper surface S11-S20, S31-S33 Step

Claims (9)

基板を処理する基板処理装置であって、
主面を上側に向けた状態で基板を保持する基板保持部と、
前記基板の前記主面上に処理液を供給する処理液供給部と、
前記処理液よりも比抵抗が大きい除電液を前記基板の前記主面上に供給する除電液供給部と、
前記基板の前記主面上の液体を除去する液体除去部と、
前記処理液供給部、前記除電液供給部および前記液体除去部を制御することにより、前記除電液を前記基板の前記主面上に供給して前記基板の前記主面全体を前記除電液にてパドルした後、前記除電液を前記主面上から除去し、さらに、前記処理液を前記基板の前記主面上に供給して所定の処理を行う制御部と、
を備えることを特徴とする基板処理装置。
A substrate processing apparatus for processing a substrate,
A substrate holding part for holding the substrate with the main surface facing upward;
A treatment liquid supply unit for supplying a treatment liquid onto the main surface of the substrate;
A static elimination liquid supply unit for supplying a static elimination liquid having a specific resistance larger than that of the treatment liquid onto the main surface of the substrate;
A liquid removal unit for removing liquid on the main surface of the substrate;
By controlling the treatment liquid supply unit, the neutralization liquid supply unit, and the liquid removal unit, the neutralization liquid is supplied onto the main surface of the substrate, and the entire main surface of the substrate is used as the neutralization liquid. After the paddle, a controller that removes the static elimination liquid from the main surface, and further supplies the processing liquid onto the main surface of the substrate to perform a predetermined process;
A substrate processing apparatus comprising:
請求項1に記載の基板処理装置であって、
前記液体除去部が、前記基板の中心を通るとともに前記基板の前記主面に垂直な回転軸を中心として前記基板を前記基板保持部と共に回転することにより、前記主面上の液体を除去する基板回転機構を備えることを特徴とする基板処理装置。
The substrate processing apparatus according to claim 1,
The substrate that removes the liquid on the main surface by rotating the substrate together with the substrate holding unit about the rotation axis that passes through the center of the substrate and is perpendicular to the main surface of the substrate. A substrate processing apparatus comprising a rotation mechanism.
請求項2に記載の基板処理装置であって、
前記基板回転機構が停止した状態で、前記除電液による前記基板の前記主面全体のパドル処理が行われることを特徴とする基板処理装置。
The substrate processing apparatus according to claim 2,
The substrate processing apparatus, wherein a paddle process is performed on the entire main surface of the substrate by the charge eliminating liquid while the substrate rotating mechanism is stopped.
請求項1ないし3のいずれかに記載の基板処理装置であって、
前記液体除去部が、前記基板の前記主面上に液状のイソプロピルアルコールを供給することにより、前記主面上の液体を前記基板のエッジから外側に押し出して除去するIPA供給部を備えることを特徴とする基板処理装置。
A substrate processing apparatus according to any one of claims 1 to 3,
The liquid removing unit includes an IPA supply unit that pushes and removes the liquid on the main surface from the edge of the substrate by supplying liquid isopropyl alcohol onto the main surface of the substrate. A substrate processing apparatus.
請求項1ないし4のいずれかに記載の基板処理装置であって、
前記処理液が、加熱された硫酸と過酸化水素水とを混合したSPM液であり、前記所定の処理がSPM処理であることを特徴とする基板処理装置。
The substrate processing apparatus according to claim 1, wherein:
The substrate processing apparatus, wherein the processing liquid is an SPM liquid obtained by mixing heated sulfuric acid and hydrogen peroxide water, and the predetermined processing is SPM processing.
請求項1ないし5のいずれかに記載の基板処理装置であって、
前記除電液の目標比抵抗を設定する比抵抗設定部をさらに備え、
前記除電液が、イオンを含む液体または純水であり、
前記制御部による制御により、前記除電液におけるイオン濃度を制御して前記除電液の比抵抗を前記目標比抵抗に維持しつつ、前記除電液による前記基板の前記主面全体のパドル処理が行われることを特徴とする基板処理装置。
A substrate processing apparatus according to any one of claims 1 to 5,
A specific resistance setting unit for setting a target specific resistance of the static elimination liquid;
The static elimination liquid is a liquid containing ions or pure water,
Under the control of the controller, the ion concentration in the static elimination liquid is controlled to maintain the specific resistance of the static elimination liquid at the target specific resistance, and the entire main surface of the substrate is padded with the static elimination liquid. A substrate processing apparatus.
請求項6に記載の基板処理装置であって、
前記比抵抗設定部において、前記基板上に予め形成されているデバイスのサイズが小さいほど、大きな目標比抵抗が設定されることを特徴とする基板処理装置。
The substrate processing apparatus according to claim 6,
The substrate processing apparatus, wherein the specific resistance setting unit sets a larger target specific resistance as the size of a device formed in advance on the substrate is smaller.
請求項6または7に記載の基板処理装置であって、
前記イオンを含む液体が、純水に二酸化炭素を溶解させたものであることを特徴とする基板処理装置。
The substrate processing apparatus according to claim 6 or 7, wherein
The substrate processing apparatus, wherein the liquid containing ions is obtained by dissolving carbon dioxide in pure water.
基板を処理する基板処理方法であって、
a)主面を上側に向けた状態で保持された基板の前記主面上に除電液を供給して前記基板の前記主面全体を前記除電液にてパドルする工程と、
b)前記a)工程よりも後に、前記除電液を前記主面上から除去する工程と、
c)前記b)工程よりも後に、前記除電液よりも比抵抗が小さい処理液を前記基板の前記主面上に供給して所定の処理を行う工程と、
を備えることを特徴とする基板処理方法。
A substrate processing method for processing a substrate, comprising:
a) supplying a charge-removing solution onto the main surface of the substrate held with the main surface facing upward, and padding the entire main surface of the substrate with the charge-removing solution;
b) After the step a), the step of removing the static elimination liquid from the main surface;
c) after the step b), supplying a treatment liquid having a specific resistance smaller than that of the charge removal liquid onto the main surface of the substrate to perform a predetermined treatment;
A substrate processing method comprising:
JP2011215260A 2011-09-29 2011-09-29 Substrate processing apparatus and substrate processing method Active JP5911690B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011215260A JP5911690B2 (en) 2011-09-29 2011-09-29 Substrate processing apparatus and substrate processing method
KR20120105602A KR101450965B1 (en) 2011-09-29 2012-09-24 Substrate Processing Apparatus and Substrate Processing Method
US13/628,650 US9142433B2 (en) 2011-09-29 2012-09-27 Substrate processing apparatus and substrate processing method
TW101135845A TWI540628B (en) 2011-09-29 2012-09-28 Substrate processing apparatus and substrate processing method
CN201210369837.4A CN103077907B (en) 2011-09-29 2012-09-28 Substrate board treatment and substrate processing method using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011215260A JP5911690B2 (en) 2011-09-29 2011-09-29 Substrate processing apparatus and substrate processing method

Publications (2)

Publication Number Publication Date
JP2013077626A true JP2013077626A (en) 2013-04-25
JP5911690B2 JP5911690B2 (en) 2016-04-27

Family

ID=48480899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011215260A Active JP5911690B2 (en) 2011-09-29 2011-09-29 Substrate processing apparatus and substrate processing method

Country Status (1)

Country Link
JP (1) JP5911690B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013077624A (en) * 2011-09-29 2013-04-25 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and substrate processing method
JP2014130872A (en) * 2012-12-28 2014-07-10 Dainippon Screen Mfg Co Ltd Substrate processing apparatus, and substrate processing method
JP2014130873A (en) * 2012-12-28 2014-07-10 Dainippon Screen Mfg Co Ltd Substrate processing apparatus, and substrate processing method
JP2015082650A (en) * 2013-10-24 2015-04-27 株式会社Screenホールディングス Method for processing substrate and apparatus for processing substrate
WO2015093365A1 (en) * 2013-12-20 2015-06-25 株式会社Screenホールディングス Substrate treatment device and substrate treatment method
US9142433B2 (en) 2011-09-29 2015-09-22 SCREEN Holdings Co., Ltd. Substrate processing apparatus and substrate processing method
WO2015147237A1 (en) * 2014-03-28 2015-10-01 株式会社Screenホールディングス Substrate treatment device and substrate treatment method
JP2018014518A (en) * 2013-11-13 2018-01-25 東京エレクトロン株式会社 Substrate processing device and substrate processing method
US9972515B2 (en) 2012-12-28 2018-05-15 SCREEN Holdings Co., Ltd. Substrate processing apparatus and substrate processing method
US10328546B2 (en) 2013-11-13 2019-06-25 Tokyo Electron Limited Polishing cleaning mechanism, substrate processing apparatus, and substrate processing method
US10464107B2 (en) 2013-10-24 2019-11-05 SCREEN Holdings Co., Ltd. Substrate processing method and substrate processing apparatus
JP2020184590A (en) * 2019-05-09 2020-11-12 株式会社Screenホールディングス Substrate processing apparatus and chuck member

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6312391A (en) * 1986-07-02 1988-01-19 Nomura Micro Sci Kk Method and apparatus for controlling specific resistance of ultra-pure water
JP2007227467A (en) * 2006-02-21 2007-09-06 Dainippon Screen Mfg Co Ltd Substrate processing method and substrate processor
JP2011514684A (en) * 2008-03-17 2011-05-06 エーシーエム リサーチ (シャンハイ) インコーポレーテッド Solution preparation apparatus and method for processing semiconductor workpieces
JP2011103438A (en) * 2009-10-16 2011-05-26 Tokyo Electron Ltd Substrate liquid processing apparatus, substrate liquid processing method, and computer-readable storage medium having substrate liquid processing program stored therein

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6312391A (en) * 1986-07-02 1988-01-19 Nomura Micro Sci Kk Method and apparatus for controlling specific resistance of ultra-pure water
JP2007227467A (en) * 2006-02-21 2007-09-06 Dainippon Screen Mfg Co Ltd Substrate processing method and substrate processor
JP2011514684A (en) * 2008-03-17 2011-05-06 エーシーエム リサーチ (シャンハイ) インコーポレーテッド Solution preparation apparatus and method for processing semiconductor workpieces
JP2011103438A (en) * 2009-10-16 2011-05-26 Tokyo Electron Ltd Substrate liquid processing apparatus, substrate liquid processing method, and computer-readable storage medium having substrate liquid processing program stored therein

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9142433B2 (en) 2011-09-29 2015-09-22 SCREEN Holdings Co., Ltd. Substrate processing apparatus and substrate processing method
JP2013077624A (en) * 2011-09-29 2013-04-25 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and substrate processing method
US9972515B2 (en) 2012-12-28 2018-05-15 SCREEN Holdings Co., Ltd. Substrate processing apparatus and substrate processing method
JP2014130873A (en) * 2012-12-28 2014-07-10 Dainippon Screen Mfg Co Ltd Substrate processing apparatus, and substrate processing method
JP2014130872A (en) * 2012-12-28 2014-07-10 Dainippon Screen Mfg Co Ltd Substrate processing apparatus, and substrate processing method
JP2015082650A (en) * 2013-10-24 2015-04-27 株式会社Screenホールディングス Method for processing substrate and apparatus for processing substrate
US10464107B2 (en) 2013-10-24 2019-11-05 SCREEN Holdings Co., Ltd. Substrate processing method and substrate processing apparatus
JP2018014518A (en) * 2013-11-13 2018-01-25 東京エレクトロン株式会社 Substrate processing device and substrate processing method
US10328546B2 (en) 2013-11-13 2019-06-25 Tokyo Electron Limited Polishing cleaning mechanism, substrate processing apparatus, and substrate processing method
WO2015093365A1 (en) * 2013-12-20 2015-06-25 株式会社Screenホールディングス Substrate treatment device and substrate treatment method
JP2015119128A (en) * 2013-12-20 2015-06-25 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method
TWI634607B (en) * 2013-12-20 2018-09-01 斯克林集團公司 Substrate processing apparatus and substrate processing method
WO2015147237A1 (en) * 2014-03-28 2015-10-01 株式会社Screenホールディングス Substrate treatment device and substrate treatment method
JP2020184590A (en) * 2019-05-09 2020-11-12 株式会社Screenホールディングス Substrate processing apparatus and chuck member

Also Published As

Publication number Publication date
JP5911690B2 (en) 2016-04-27

Similar Documents

Publication Publication Date Title
JP5911690B2 (en) Substrate processing apparatus and substrate processing method
JP5911689B2 (en) Substrate processing apparatus and substrate processing method
TWI540628B (en) Substrate processing apparatus and substrate processing method
US9972515B2 (en) Substrate processing apparatus and substrate processing method
JP6483348B2 (en) Substrate processing apparatus and substrate processing method
JP2007059816A (en) Method and device of removing resist
JP6624609B2 (en) Substrate processing apparatus and substrate processing method
TW200823990A (en) Substrate treatment apparatus and substrate treatment method
JP5837787B2 (en) Substrate processing equipment
JP6990034B2 (en) Board processing method and board processing equipment
JP2010129809A (en) Substrate processing method, and substrate processing apparatus
JP6032878B2 (en) Substrate processing apparatus and substrate processing method
JP2009200365A (en) Processing method for substrate
JP2019061988A (en) Chemical solution production method, chemical solution production device, and substrate processing device
JP2010067636A (en) Substrate treatment apparatus
JP6195788B2 (en) Substrate processing apparatus and substrate processing method
JP2009054635A (en) Substrate treating equipment and substrate treating method
JP6262431B2 (en) Substrate processing apparatus and substrate processing method
JP6262430B2 (en) Substrate processing apparatus and substrate processing method
JP2008235737A (en) Substrate processor and substrate processing method
JP2014187253A (en) Substrate processing apparatus and substrate processing method
JP6556525B2 (en) Substrate processing method and substrate processing apparatus
JP2023107358A (en) Substrate processing method and substrate processing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160330

R150 Certificate of patent or registration of utility model

Ref document number: 5911690

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250