JPS6312391A - Method and apparatus for controlling specific resistance of ultra-pure water - Google Patents

Method and apparatus for controlling specific resistance of ultra-pure water

Info

Publication number
JPS6312391A
JPS6312391A JP15585286A JP15585286A JPS6312391A JP S6312391 A JPS6312391 A JP S6312391A JP 15585286 A JP15585286 A JP 15585286A JP 15585286 A JP15585286 A JP 15585286A JP S6312391 A JPS6312391 A JP S6312391A
Authority
JP
Japan
Prior art keywords
carbon dioxide
ultrapure water
dioxide gas
flow rate
specific resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15585286A
Other languages
Japanese (ja)
Other versions
JPH0767554B2 (en
Inventor
Yoshiharu Oota
太田 嘉治
Tsugi Abe
嗣 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nomura Micro Science Co Ltd
Original Assignee
Nomura Micro Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nomura Micro Science Co Ltd filed Critical Nomura Micro Science Co Ltd
Priority to JP61155852A priority Critical patent/JPH0767554B2/en
Publication of JPS6312391A publication Critical patent/JPS6312391A/en
Publication of JPH0767554B2 publication Critical patent/JPH0767554B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PURPOSE:To improve the reliability of specific resistance control by subjecting the outputs of a flow rate sensor and specific resistance measuring instrument to parallel processing with a microcomputer so that a prescribed amt. of carbon dioxide can be exactly supplied to ultra-pure water. CONSTITUTION:The flow rate sensor 3, a carbon dioxide injector 2 and the specific resistance measuring instrument 4 are disposed in an ultra-pure water route 1. The outputs of the sensor 3 and the measuring instrument 4 are subjected to the parallel processing with the microcomputer 12. The prescribed mass of the carbon dioxide is then forced into the ultra-pure water by the injector 2 under the computer control. As a result, the excellent control of the specific resistance value is executed not only in the stationary stage but also when the pressure and flow rate fluctuate. The prescribed amt. of the carbon dioxide is thus exactly supplied to the ultra-pure water and the reliability of the specific resistance control is improved.

Description

【発明の詳細な説明】 本発明は、半導体や薬品等の製造に使用される超純水の
比抵抗を炭酸ガスの注入によシ所望値に制御する、超純
水の比抵抗制御装置に関するもので、超純水径路に、炭
酸ガス注入器、その上流に超純水の流量を予じめ計測す
る流量センサー、そして下流に比抵抗測定器を夫々配設
し、流量センサーと比抵抗測定器の出力をマイクロコン
ピュータ−で並列処理し、所定質量の炭酸ガスを超純水
中に圧入するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a resistivity control device for ultrapure water, which controls the resistivity of ultrapure water used for manufacturing semiconductors, chemicals, etc. to a desired value by injecting carbon dioxide gas. In the ultrapure water path, a carbon dioxide gas injector, a flow rate sensor to measure the flow rate of ultrapure water in advance upstream, and a resistivity measuring device downstream are installed. The output of the device is processed in parallel by a microcomputer, and a predetermined mass of carbon dioxide gas is pressurized into ultrapure water.

一般に超純水を任意の比抵抗に調整するために、特願昭
60−876号の電磁弁方式や、特開昭60−2760
3号の膜方式、特開昭60−153990号の接触塔方
式が採用されている。制御方法は炭酸ガス注入個所以降
に配置された比抵抗測定器からのフィードバック制御で
ある。一系列の超純水配管に複数の各種自動化装置が接
続される今日、各自動化装置のON、OFFにより超純
水の流量や圧力は変動し、精密な比抵抗制御は困難にな
ってきた。ダイシング工程では超純水の比抵抗は1.O
MΩ・ぼが最適と言われており、これ以上では製品(チ
ップ)の静電破壊が生じ、これ以下ではダイサーブレー
ドの消耗が激しい。製品の歩留シ向上には精密な比抵抗
制御が必須である。超純水の流量や圧力変動時にも優れ
た比抵抗制御を行うのが本発明の制御方式であシ、以下
図面に基づいて詳しく説明する。
In general, in order to adjust ultrapure water to a desired specific resistance, the solenoid valve method disclosed in Japanese Patent Application No. 60-876 and the method disclosed in Japanese Patent Application Laid-open No. 60-2760 are generally used.
The membrane system of No. 3 and the contact tower system of JP-A-60-153990 are adopted. The control method is feedback control from a resistivity measuring device placed after the carbon dioxide gas injection point. Nowadays, a plurality of various automated devices are connected to a single line of ultrapure water piping, and the flow rate and pressure of ultrapure water fluctuate depending on whether each automated device is turned on or off, making precise resistivity control difficult. In the dicing process, the specific resistance of ultrapure water is 1. O
It is said that MΩ/bo is optimal; if it is more than this, the product (chip) will be damaged by electrostatic discharge, and if it is less than this, the dicer blade will be severely worn out. Precise resistivity control is essential to improve product yield. The control method of the present invention performs excellent resistivity control even when the flow rate or pressure of ultrapure water changes, and will be explained in detail below with reference to the drawings.

超純水径路(1)に炭酸ガス注入器(2)を配置し、こ
の上流の径路mに流量センサー(3)を、下流に比抵抗
値を逐次計測する比抵抗測定器(4)を配置する。炭酸
ガス注入器(2)は、第2図のように、パルスモータ−
に連繋し応答性の優れたダイヤスラムパルプ(5)と、
このパルプ(5)を通して圧−送される炭酸ガスを径路
(1)に導びく可及的小径の注入ノズルα9とで形成さ
れ、注入ノズルα9の先ら注入ノズルa9出口端までの
二次側内容量を極めて小さくしである。
A carbon dioxide injector (2) is placed in the ultrapure water path (1), a flow rate sensor (3) is placed in the upstream path m, and a resistivity measuring device (4) that sequentially measures the specific resistance value is placed downstream. do. The carbon dioxide injector (2) is powered by a pulse motor as shown in Figure 2.
Diaslam pulp (5) with excellent responsiveness and
It is formed by an injection nozzle α9 of the smallest possible diameter that guides the carbon dioxide gas pressure-fed through this pulp (5) to the path (1), and the secondary side from the tip of the injection nozzle α9 to the outlet end of the injection nozzle a9. The content is extremely small.

CO2ボンベ(6)に、減圧弁(7)、ラインフィルタ
ー(8)、CO2マスフロメーター(9)、電磁弁α0
1t−順次配設し、上記炭酸ガス注入器(2)の−次側
に接続する。CO2マス70メーター(9)は通過気体
の比熱を用いて質量流量を計測するもので、計測値はC
O□コントローラーαυに入力される。とのCO2コン
トローラーαυはマイクロコンピュータ−02から指示
された炭酸ガス注入量を制御するもので、リアルタイム
で通過質量を計測し、炭酸ガス注入器(2)のダイヤフ
ラムバルブ(5)を開閉する。CO□コントローラー〇
υを管理下におくマイクロコンピュータ−aつは、流量
センサー(3)、比抵抗測定器(4)、希望比抵抗値や
係数を入力するキーボードa3に接続され、流量センサ
ー(3)からの入力データーを係数処理して炭酸ガス注
入量を決定すると共に、この処理と並列して、比抵抗測
定器(4)からの入力値とキーボード日からの設定値と
の差分処理により炭酸ガス注入量を決定し、この並列処
理によるデーターを演算し最終的なガス注入量を決める
ようになっている。
CO2 cylinder (6), pressure reducing valve (7), line filter (8), CO2 mass flow meter (9), solenoid valve α0
1t- sequentially arranged and connected to the next side of the carbon dioxide injector (2). The CO2 mass 70 meter (9) measures the mass flow rate using the specific heat of the passing gas, and the measured value is C
Input to O□ controller αυ. The CO2 controller αυ controls the amount of carbon dioxide gas injected as instructed by the microcomputer-02, measures the passing mass in real time, and opens and closes the diaphragm valve (5) of the carbon dioxide injector (2). The microcomputer a that controls the CO□ controller 〇υ is connected to a flow rate sensor (3), a resistivity measuring device (4), and a keyboard a3 for inputting desired resistivity values and coefficients. ) to determine the amount of carbon dioxide gas to be injected, and in parallel with this process, calculate the amount of carbon dioxide by calculating the difference between the input value from the resistivity measuring device (4) and the set value from the keyboard. The amount of gas to be injected is determined, and the data from this parallel processing is calculated to determine the final amount of gas to be injected.

次に作用について説明する。半導体チップの洗浄や細断
に使用された超純水は、第1図の径路(11に流入し、
流量センサー(3)、炭酸ガス注入器(2)の注入ノズ
ルα9、カートリッジフィルター〇択比抵抗測定器(4
)を順次通過し、再び洗浄等に利用される。炭酸ガス注
入器(2)のパルプ(5)が開成すれば、CO2ボンベ
(6)からの炭酸ガスは超純水径路(1)に圧入され、
超純水に溶解し比抵抗を低下させる。径路(1)を流れ
る超純水の流量や圧力が変化しなければ、マイクロコン
ピュータ−a力は比抵抗測定器(4)からの測定値とキ
ーボードαJからの設定値を較べ、その差分に応じた炭
酸ガス注入量を決めて、CO□コントローラーaυに指
示する。CO2コントローラーαυはCO□マスフロメ
ーター(9)からの計測値をリアルタイムで処理し、指
示されたガス注入量を炭酸ガス注大器(2)よシ径路(
1)内に圧入する。
Next, the effect will be explained. The ultrapure water used for cleaning and shredding semiconductor chips flows into the path (11) shown in Figure 1.
Flow rate sensor (3), injection nozzle α9 of carbon dioxide injector (2), cartridge filter selection specific resistance measuring device (4)
) and are used again for cleaning, etc. When the pulp (5) of the carbon dioxide gas injector (2) is opened, carbon dioxide gas from the CO2 cylinder (6) is injected into the ultrapure water path (1),
Dissolves in ultrapure water to lower specific resistance. If the flow rate and pressure of the ultrapure water flowing through the path (1) do not change, the microcomputer-a compares the measured value from the resistivity measuring device (4) with the setting value from the keyboard αJ, and calculates the value according to the difference. Decide the amount of carbon dioxide gas to be injected and instruct it to the CO□ controller aυ. The CO2 controller αυ processes the measured values from the CO□ mass flow meter (9) in real time, and sends the instructed gas injection amount to the carbon dioxide gas injector (2) and the channel (
1) Press fit inside.

次に径路(1)を流れる超純水の流量あるいは圧力が変
動すると、流量センサー(3)はこの変化を検知しその
変化itマイクロコンピュータ−α2に伝達する。コン
ピューター(13)は予じめキーボード(13よシ入力
された係数等に基づいてガス注入量を決定し、上記並列
処理された比抵抗測定器(4)の計測値に基づくガス注
入量とを演算処理して、CO2コントローラーαυにガ
ス注入量を指示する。この指示されたガス注入量は炭酸
ガス注入器(2)を経て超純水径路(1)内に圧入され
る。流量センサー(3)により予じめ流量変動を検知し
、変化量に応じたガス注入量を演算し、過渡応答時の比
抵抗値振幅を極めて小さくしたのが本発明の特色である
。流量変動に応じた炭酸ガスが注入ノズルα9より径路
(1)内に圧入されるために、ここを通過する超純水の
比抵抗値はキーボード03からの設定値に概ね等しいこ
とになるが、比抵抗測定器(4)を通過する時に計測さ
れ、コンピューター〇ので設定値と比較され、差があれ
ばガス注入量を演算し、CO2コントローラー0υに指
示する。このような流量センサー(3)と比抵抗測定器
(4)の計測値に基づくガス注入量の演算方式では、設
定値をIMΩ・1にした時の径路(1)出口部での実測
値は第3図の点線にて示され、従来方式の一点鎖線に較
べて流量や圧力の変動に対して過渡応答の極めて小さい
比抵抗値を得ることができる。径路(1)の入口部での
比抵抗値が18 MΩ・二の超純水をIMΩ・mの設定
比抵抗値にしているラインにおいて、超純水の圧力が初
期設定時よ#)IK9/Cm2変動しても比抵抗値の変
化は±15%以内であり、また超純水の流量が変動した
り、あるいは圧力や流量が変動しない時は±10%以内
に制御できた。
Next, when the flow rate or pressure of the ultrapure water flowing through the path (1) changes, the flow rate sensor (3) detects this change and transmits the change to the IT microcomputer-α2. The computer (13) determines the amount of gas to be injected based on the coefficients etc. entered in advance through the keyboard (13), and determines the amount of gas to be injected based on the measured value of the resistivity measuring device (4) processed in parallel. It performs arithmetic processing and instructs the CO2 controller αυ to determine the amount of gas to be injected.This instructed amount of gas is injected into the ultrapure water path (1) via the carbon dioxide gas injector (2).The flow rate sensor (3) ), the flow rate fluctuation is detected in advance, the gas injection amount is calculated according to the amount of change, and the specific resistance value amplitude during the transient response is extremely small. Since the gas is pressurized into the path (1) from the injection nozzle α9, the specific resistance value of the ultrapure water passing through this is approximately equal to the value set from the keyboard 03, but the specific resistance value of the specific resistance measuring device (4 ), it is compared with the set value in the computer, and if there is a difference, the gas injection amount is calculated and instructed to the CO2 controller 0υ.Such a flow rate sensor (3) and a resistivity measuring device (4) ), the actual measured value at the outlet of path (1) when the set value is set to IMΩ・1 is shown by the dotted line in Figure 3, and the dot-dashed line of the conventional method. It is possible to obtain a specific resistance value with an extremely small transient response to fluctuations in flow rate and pressure compared to ultrapure water with a specific resistance value of 18 MΩ・2 at the inlet of path (1). In a line where the specific resistance value is set to , even if the pressure of ultrapure water changes from the initial setting #) IK9/Cm2, the change in specific resistance value is within ±15%, and the flow rate of ultrapure water When the pressure or flow rate fluctuated or did not fluctuate, it could be controlled within ±10%.

超純水の圧力変動時には、第2図に示すようにダイヤフ
ラムバルブ(5)と注入ノズルa9の先端までの炭酸ガ
ス流路(二次側)も変動するために、比抵抗制御は不安
定になシやすい。本発明では炭酸ガス注入器(2)を径
路(1)と一体化し、ダイヤフラムバルブ(5)を採用
し注入ノズル09も可及的小さなものを採用しであるた
めにこの不安定要因による影響は小さくなった。
When the pressure of ultrapure water fluctuates, as shown in Figure 2, the carbon dioxide flow path (secondary side) between the diaphragm valve (5) and the tip of injection nozzle a9 also fluctuates, making resistivity control unstable. Easy to use. In the present invention, the carbon dioxide injector (2) is integrated with the path (1), a diaphragm valve (5) is adopted, and the injection nozzle 09 is also made as small as possible, so the influence of this unstable factor is reduced. It became smaller.

以上のように本発明は、CO2ボンベ(6)とCO2マ
スフロメーター(9)そして炭酸ガス注入器(2)から
なる炭酸ガス圧入手段と、炭酸ガス注入器(2)の上流
に位置し制御すべき超純水の流量を予じめ計測する流量
センサー(3)と、炭酸ガス注入器(2)の下流に位置
し炭酸ガスを溶解した超純水の比抵抗を逐次計測する比
抵抗測定器(4)と、超純水径路(1)内の圧力や流量
の変動等に応じて炭酸ガス注入量を適宜選定する処理手
段とを有するため、定常時はもとより、圧力や流量の変
動時にも優れた比抵抗値の制御ができる。特に、CO2
コントローラー〇〇とCO□マスフロメーター(9)、
二次側の内容量(流路)を小さくした炭酸ガス注入器(
2)、とによる応答性に優れた炭酸ガス注入システムは
、所定量の炭酸ガスを正確に超純水に供給でき、比抵抗
制御の信頼性を高める。
As described above, the present invention includes a carbon dioxide gas injection means consisting of a CO2 cylinder (6), a CO2 mass flow meter (9), and a carbon dioxide gas injector (2), and a carbon dioxide gas injection means located upstream of the carbon dioxide gas injector (2) and controlled. A flow rate sensor (3) that measures the flow rate of ultrapure water in advance, and a resistivity measurement device that is located downstream of the carbon dioxide gas injector (2) and sequentially measures the specific resistance of ultrapure water with dissolved carbon dioxide gas. (4) and a processing means that appropriately selects the amount of carbon dioxide gas to be injected according to changes in the pressure and flow rate in the ultrapure water path (1), so it can be It also allows for excellent control of resistivity. In particular, CO2
Controller 〇〇 and CO□ mass flow meter (9),
A carbon dioxide injector with a smaller internal capacity (flow path) on the secondary side (
2) The carbon dioxide injection system with excellent responsiveness can accurately supply a predetermined amount of carbon dioxide to ultrapure water, increasing the reliability of resistivity control.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明実施の一例を示すものにして、第1図はフ
ローシート、第2図は炭酸ガス注入器の説明図、第3図
はIMΩ・儂を設定値に採った時の実測値のグラフ図で
ある。
The drawings show an example of the implementation of the present invention. Fig. 1 is a flow sheet, Fig. 2 is an explanatory diagram of a carbon dioxide injector, and Fig. 3 is an illustration of actual measured values when IMΩ・I is taken as the set value. It is a graph diagram.

Claims (5)

【特許請求の範囲】[Claims] (1)超純水径路中に流量センサーと炭酸ガス注入器そ
して比抵抗測定器を配設し、流量センサーと比抵抗測定
器の出力をマイクロコンピューターで並列処理し、所定
質量の炭酸ガスをコンピューター管理下にあるガス注入
器より超純水中に圧入する、超純水の比抵抗制御方法。
(1) A flow rate sensor, a carbon dioxide gas injector, and a resistivity measuring device are installed in the ultrapure water path, and the outputs of the flow rate sensor and resistivity measuring device are processed in parallel by a microcomputer, and a predetermined mass of carbon dioxide gas is collected by the computer. A resistivity control method for ultrapure water that is injected into ultrapure water using a controlled gas injector.
(2)炭酸ガス注入器を取りつけた超純水径路の上流に
流量センサーを配し、下流に比抵抗測定器を配してなる
、特許請求の範囲第1項記載の超純水の比抵抗制御方法
(2) The specific resistance of ultrapure water according to claim 1, wherein a flow rate sensor is arranged upstream of the ultrapure water path to which the carbon dioxide gas injector is attached, and a specific resistance measuring device is arranged downstream. Control method.
(3)CO_2ボンベと炭酸ガス注入器とのあいだにC
O_2マスフロメーターを配し、このマスフロメーター
に接続しガス注入器を管理するCO_2コントローラー
で、所定質量の炭酸ガスを超純水径路中に圧入する、特
許請求の範囲第2項記載の超純水の比抵抗制御方法。
(3) C between the CO_2 cylinder and the carbon dioxide injector
The ultrapure water system according to claim 2, wherein a predetermined mass of carbon dioxide gas is injected into the ultrapure water path by a CO_2 controller which is equipped with an O_2 mass flow meter and is connected to the mass flow meter and manages a gas injector. Method for controlling resistivity of pure water.
(4)CO_2ボンベとCO_2マスフロメーターそし
て炭酸ガス注入器とからなる炭酸ガス圧入手段と、炭酸
ガス注入器の上流に位置し制御すべき超純水の流量を予
じめ計測する流量センサーと、炭酸ガス注入器の下流に
位置し炭酸ガスを溶解した超純水の比抵抗を逐次計測す
る比抵抗測定器と、超純水径路内の圧力や流量の変動等
に応じて炭酸ガス注入量を適宜選定する処理手段とから
なる、超純水の比抵抗制御装置。
(4) A carbon dioxide gas injection means consisting of a CO_2 cylinder, a CO_2 mass flow meter, and a carbon dioxide gas injector, and a flow rate sensor located upstream of the carbon dioxide gas injector to measure in advance the flow rate of ultrapure water to be controlled. , a resistivity measuring device located downstream of the carbon dioxide gas injector that sequentially measures the resistivity of ultrapure water with carbon dioxide dissolved in it, and a resistivity measuring device that measures the specific resistance of ultrapure water in which carbon dioxide gas is dissolved, and the amount of carbon dioxide gas injected according to changes in pressure and flow rate in the ultrapure water path. A resistivity control device for ultrapure water, comprising a treatment means for appropriately selecting
(5)応答性の優れたダイヤフラムバルブとこのバルブ
を通して圧送される炭酸ガスを超純水径路に導びく可及
的小径の注入ノズルとで炭酸ガス注入器を形成する、特
許請求の範囲第4項記載の超純水の比抵抗制御装置。
(5) A carbon dioxide gas injector is formed by a diaphragm valve with excellent responsiveness and an injection nozzle with a diameter as small as possible that guides carbon dioxide gas pumped through this valve to an ultrapure water path. Ultrapure water resistivity control device as described in .
JP61155852A 1986-07-02 1986-07-02 Method and apparatus for controlling resistivity of ultrapure water Expired - Lifetime JPH0767554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61155852A JPH0767554B2 (en) 1986-07-02 1986-07-02 Method and apparatus for controlling resistivity of ultrapure water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61155852A JPH0767554B2 (en) 1986-07-02 1986-07-02 Method and apparatus for controlling resistivity of ultrapure water

Publications (2)

Publication Number Publication Date
JPS6312391A true JPS6312391A (en) 1988-01-19
JPH0767554B2 JPH0767554B2 (en) 1995-07-26

Family

ID=15614905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61155852A Expired - Lifetime JPH0767554B2 (en) 1986-07-02 1986-07-02 Method and apparatus for controlling resistivity of ultrapure water

Country Status (1)

Country Link
JP (1) JPH0767554B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020093397A (en) * 2001-06-08 2002-12-16 (주)보명하이텍 Apparatus annexing carbon dioxide to deionizer water
WO2011086727A1 (en) * 2010-01-15 2011-07-21 岩谷産業株式会社 Specific-resistance adjusting method for ultrapure water and ultrapure-water treatment device
JP2011143368A (en) * 2010-01-15 2011-07-28 Toraitekku:Kk Specific resistance adjusting method of ultrapure water, and ultrapure water treatment apparatus
JP2011143369A (en) * 2010-01-15 2011-07-28 Toraitekku:Kk Method for regulating specific resistance of ultrapure water and apparatus for treating ultrapure water
JP2013077624A (en) * 2011-09-29 2013-04-25 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and substrate processing method
JP2013077626A (en) * 2011-09-29 2013-04-25 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and substrate processing method
JP2013077625A (en) * 2011-09-29 2013-04-25 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and substrate processing method
US9142433B2 (en) 2011-09-29 2015-09-22 SCREEN Holdings Co., Ltd. Substrate processing apparatus and substrate processing method
JP2020058980A (en) * 2018-10-10 2020-04-16 株式会社ディスコ Mixing device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101406411B1 (en) * 2006-10-17 2014-06-13 엠케이에스 인스트루먼츠, 인코포레이티드 Systems and methods for carbonation of deionized water
JP4964829B2 (en) * 2008-06-09 2012-07-04 三菱レイヨン・クリンスイ株式会社 Carbonated water production method and carbonated water production equipment
JP2011245425A (en) * 2010-05-27 2011-12-08 Disco Corp Mixer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5372364A (en) * 1976-12-08 1978-06-27 Narasaki Shipbuilding Co Ltd Method of controlling charged chemicals in waste water purifier
JPS587831A (en) * 1981-07-07 1983-01-17 Sumitomo Shoji Kk Washing method for wafer by high pressured water and device thereof
JPS59166285A (en) * 1983-03-14 1984-09-19 Kurita Water Ind Ltd Control device for specific resistance of ultrapure water

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5372364A (en) * 1976-12-08 1978-06-27 Narasaki Shipbuilding Co Ltd Method of controlling charged chemicals in waste water purifier
JPS587831A (en) * 1981-07-07 1983-01-17 Sumitomo Shoji Kk Washing method for wafer by high pressured water and device thereof
JPS59166285A (en) * 1983-03-14 1984-09-19 Kurita Water Ind Ltd Control device for specific resistance of ultrapure water

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020093397A (en) * 2001-06-08 2002-12-16 (주)보명하이텍 Apparatus annexing carbon dioxide to deionizer water
WO2011086727A1 (en) * 2010-01-15 2011-07-21 岩谷産業株式会社 Specific-resistance adjusting method for ultrapure water and ultrapure-water treatment device
JP2011143368A (en) * 2010-01-15 2011-07-28 Toraitekku:Kk Specific resistance adjusting method of ultrapure water, and ultrapure water treatment apparatus
JP2011143369A (en) * 2010-01-15 2011-07-28 Toraitekku:Kk Method for regulating specific resistance of ultrapure water and apparatus for treating ultrapure water
JP2013077624A (en) * 2011-09-29 2013-04-25 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and substrate processing method
JP2013077626A (en) * 2011-09-29 2013-04-25 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and substrate processing method
JP2013077625A (en) * 2011-09-29 2013-04-25 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and substrate processing method
US9142433B2 (en) 2011-09-29 2015-09-22 SCREEN Holdings Co., Ltd. Substrate processing apparatus and substrate processing method
US9165798B2 (en) 2011-09-29 2015-10-20 SCREEN Holdings Co., Ltd. Substrate processing apparatus and substrate processing method
JP2020058980A (en) * 2018-10-10 2020-04-16 株式会社ディスコ Mixing device

Also Published As

Publication number Publication date
JPH0767554B2 (en) 1995-07-26

Similar Documents

Publication Publication Date Title
JPS6312391A (en) Method and apparatus for controlling specific resistance of ultra-pure water
US7264006B2 (en) Ozonated water flow and concentration control apparatus and method
JPH08335117A (en) Method and device for controlling mass flow rate while using sonic velocity nozzle
WO1999038057A1 (en) Fluid supply apparatus
US11504676B2 (en) Systems and methods for gas disposal
JPH10202242A (en) Method for regulating specific resistance of ultrapure water
US5592841A (en) Shot peening method
JP3080820B2 (en) Gas injection equipment for nuclear power plants
JP2542695B2 (en) Plasma etching equipment
JP3656320B2 (en) Ejector device
JP3875596B2 (en) Functional ultrapure water production method and apparatus used therefor
JPS56129729A (en) Electronically controlled fuel injection system
US20030195650A1 (en) Change-and-wait controller
JP2566638B2 (en) Desulfurization control device
WO2002033361A3 (en) Apparatus and method for maintaining a constant pressure drop across a gas metering unit
JPH0928141A (en) Liquid-agrochemical injection apparatus
JPH11159756A (en) Water injection control device for oil fired dln combustor
JP3655009B2 (en) Boiler feed pipe corrosion prevention film forming device
JPH0440288A (en) Waste water treatment apparatus
JPH07110106A (en) Chemical feeder in steam-powder plant
JPS59212606A (en) Controller for temperature of steam
JPS5916584A (en) Control device for concentration of hydrogen ion in desalting device for sea water
CN115547888A (en) Liquid supply system for single-wafer etching cleaning and control method thereof
JPH0128841B2 (en)
JPS628209A (en) Rate controller