JPH10202242A - Method for regulating specific resistance of ultrapure water - Google Patents

Method for regulating specific resistance of ultrapure water

Info

Publication number
JPH10202242A
JPH10202242A JP1068297A JP1068297A JPH10202242A JP H10202242 A JPH10202242 A JP H10202242A JP 1068297 A JP1068297 A JP 1068297A JP 1068297 A JP1068297 A JP 1068297A JP H10202242 A JPH10202242 A JP H10202242A
Authority
JP
Japan
Prior art keywords
flow rate
ultrapure water
specific resistance
carbon dioxide
dioxide gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1068297A
Other languages
Japanese (ja)
Inventor
Muneyuki Iwabuchi
宗之 岩渕
Shinji Hisanami
信二 久波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
N G K FUIRUTETSUKU KK
NGK Insulators Ltd
Original Assignee
N G K FUIRUTETSUKU KK
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by N G K FUIRUTETSUKU KK, NGK Insulators Ltd filed Critical N G K FUIRUTETSUKU KK
Priority to JP1068297A priority Critical patent/JPH10202242A/en
Publication of JPH10202242A publication Critical patent/JPH10202242A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve the regulating accuracy of specific resistant value by dividing the flow rate of a gaseous CO2 into the first flow rate content having a fixed flow rate corresponding to the fixed flow rate part of the flow rate of an ultrapure water and the second flow rate content having a varying flow rate corresponding to a residual flow rate part when the specific resistant value of the ultrapure water is regulated by dissolving the gaseous CO2 into the ultrapure water. SOLUTION: A part of the gaseous CO2 circulating in a cylindrical body 12 is penetrated and dissolved to the ultrapure water by penetrating a hydrophobic permeating membrane into a treating tank 11 in which the ultrapure water having the fixed flow rate is circulated. Then the specific resistant value of the ultrapure water is detected with a specific resistant value sensor 31 and solenoid valves 22a-22d are switched and controlled by a controller 32. In this case, one valve among each solenoid valve 22a-22d is always opened and remainders are controlled to be opened or closed, and the always opened solenoid valve is in charge of the first flow rate content of the gaseous CO2 and the remaining each solenoid valve is in charge of the second flow rate content of the gaseous CO2 , and the specific resistant value of the ultrapure water is regulated within a prescribed range by controlling in accordance with a flow rate variation of the ultrapure water.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超純水に炭酸ガス
を溶解して、超純水の比抵抗値を調整するための比抵抗
調整方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a specific resistance adjusting method for adjusting the specific resistance of ultrapure water by dissolving carbon dioxide gas in ultrapure water.

【0002】[0002]

【従来の技術】超純水は、半導体の製造工程において基
板の洗浄に使用されるが、超純水の比抵抗値が高い場合
には基板に静電気が発生して、基板に絶縁破壊が生じた
り、微粒子が付着する等の不都合が生じる。このため、
基板の洗浄水として使用される超純水は、その使用に先
だって比抵抗処理して、その比抵抗値を所定の範囲に調
整することが好ましい。超純水の比抵抗値を調整する方
法の一例としては、特公平5−21841号公報に示さ
れている比抵抗調整方法がある。
2. Description of the Related Art Ultrapure water is used for cleaning a substrate in a semiconductor manufacturing process. If the specific resistance of the ultrapure water is high, static electricity is generated on the substrate and dielectric breakdown occurs on the substrate. And inconveniences such as adhesion of fine particles occur. For this reason,
It is preferable that the ultrapure water used as the cleaning water for the substrate is subjected to a specific resistance treatment before its use, so that the specific resistance value is adjusted to a predetermined range. As an example of a method for adjusting the specific resistance value of ultrapure water, there is a specific resistance adjustment method disclosed in Japanese Patent Publication No. 5-21841.

【0003】当該比抵抗調整方法は、一定流量の超純水
を常時流通させる処理室内に配設された疎水性で炭酸ガ
スを透過させる疎水性透過膜にて形成された流通路に炭
酸ガスを流通させて、炭酸ガスの一部を同流通路を構成
する疎水性透過膜を透過させることにより、前記処理室
内を流通する超純水に炭酸ガスを溶解させて超純水の比
抵抗値を調整する方法である。
[0003] The method of adjusting the specific resistance is such that carbon dioxide gas is passed through a flow path formed of a hydrophobic permeable membrane provided with a hydrophobic carbon dioxide gas disposed in a processing chamber through which a constant flow of ultrapure water always flows. By allowing the carbon dioxide gas to flow through the hydrophobic permeable membrane constituting the flow passage, a part of the carbon dioxide gas is dissolved in the ultrapure water flowing in the processing chamber, and the specific resistance value of the ultrapure water is increased. How to adjust.

【0004】[0004]

【発明が解決しようとする課題】ところで、当該比抵抗
調整方法においては、超純水を処理室内を常に流通させ
て処理室内での滞留をできるかぎり防止することにより
超純水の純度を保持しているが、この方式を採用する場
合には超純水の供給流量が変動することから、超純水の
変動量に対応して炭酸ガスの流通路への流量を精度よく
制御する必要がある。
In the specific resistance adjusting method, the purity of the ultrapure water is maintained by constantly flowing the ultrapure water in the processing chamber to prevent the stagnation in the processing chamber as much as possible. However, when using this method, the supply flow rate of ultrapure water fluctuates, so it is necessary to precisely control the flow rate of carbon dioxide gas to the flow passage in accordance with the fluctuation amount of ultrapure water. .

【0005】炭酸ガスの流量の制御には、流通路へ供給
する炭酸ガスの流量が微量であることから高い精度が要
求され、精度の高い制御バルブを比例制御または開閉制
御する手段が採られる。この場合、炭酸ガスの流量制御
は、処理室内に供給される超純水の全流量を基準とする
ものであって、制御幅が大きくて制御の精度が必ずしも
良くない。このため、超純水の比抵抗値の調整精度は、
必ずしも良いものとはいえない。
The control of the flow rate of the carbon dioxide gas requires high precision because the flow rate of the carbon dioxide gas supplied to the flow passage is very small, and means for proportionally controlling or opening and closing the control valve with high precision is employed. In this case, the flow rate control of the carbon dioxide gas is based on the total flow rate of the ultrapure water supplied into the processing chamber, and the control width is large and the control accuracy is not always good. For this reason, the adjustment accuracy of the specific resistance value of ultrapure water is
Not always good.

【0006】従って、本発明の目的は、当該比抵抗調整
方法において、超純水の比抵抗値の調整精度を向上させ
ることにある。
Accordingly, an object of the present invention is to improve the accuracy of adjusting the specific resistance value of ultrapure water in the specific resistance adjusting method.

【0007】[0007]

【課題を解決するための手段】本発明は超純水の比抵抗
調整方法に関し、特に、一定流量の超純水を常時流通さ
せる処理室内に配設された疎水性で炭酸ガスを透過させ
る疎水性透過膜にて形成された流通路に炭酸ガスを流通
させて、炭酸ガスの一部を同流通路を構成する疎水性透
過膜を透過させることにより、前記処理室内を流通する
超純水に炭酸ガスを溶解させて超純水の比抵抗値を調整
する超純水の比抵抗調整方法を対象するものである。
The present invention relates to a method for adjusting the resistivity of ultrapure water, and more particularly, to a method of adjusting the specific resistance of ultrapure water, which is disposed in a processing chamber through which a constant flow of ultrapure water flows constantly. The carbon dioxide gas flows through the flow path formed by the hydrophobic permeable membrane, and a part of the carbon dioxide gas passes through the hydrophobic permeable membrane forming the same flow path, so that the carbon dioxide gas flows into the ultrapure water flowing through the processing chamber. A specific resistance adjusting method for ultrapure water in which carbon dioxide gas is dissolved to adjust the specific resistance value of ultrapure water.

【0008】しかして、本発明は上記した比抵抗調整方
法において、前記流通路に流通させる炭酸ガスの流量
を、前記処理室内に流通させる超純水の流量のうちの一
定流量部に対応して設定される一定流量である第1の流
量分と、前記超純水の流量の一定流量部を除く残余の流
量部に対応して設定される変動流量である第2の流量分
とに分けて、炭酸ガスの第2の流量分を前記超純水の残
余の流量部に対応して制御することを特徴とするもので
ある。
According to the present invention, in the above specific resistance adjusting method, the flow rate of the carbon dioxide gas flowing through the flow passage corresponds to a constant flow rate portion of the flow rate of the ultrapure water flowing through the processing chamber. It is divided into a first flow rate, which is a set constant flow rate, and a second flow rate, which is a variable flow rate set corresponding to the remaining flow rate part of the ultrapure water flow rate excluding the constant flow rate part. The second flow rate of the carbon dioxide gas is controlled in accordance with the remaining flow rate portion of the ultrapure water.

【0009】本発明に係る超純水の比抵抗調整方法にお
いては、前記炭酸ガスの第2の流量分を全流量分の60
%〜95%とすることができる。
In the method for adjusting the resistivity of ultrapure water according to the present invention, the second flow rate of the carbon dioxide gas is reduced by 60 times the total flow rate.
% To 95%.

【0010】[0010]

【発明の作用・効果】本発明に係る超純水の比抵抗調整
方法においては、処理室内の流通路に流通させる炭酸ガ
スの流量を、処理室内に流通させる超純水の流量のうち
の一定流量部に対応して設定される第1の流量分(一定
流量分)と、超純水の流量の一定流量部を除く残余の流
量部に対応して設定される第2の流量分(変動流量分)
とに分けて、炭酸ガスの第2の流量分を超純水の残余の
流量部に対応して制御する手段を採っている。
In the method for adjusting the specific resistance of ultrapure water according to the present invention, the flow rate of carbon dioxide gas flowing through the flow passage in the processing chamber is set to a constant value of the flow rate of ultrapure water flowing through the processing chamber. A first flow rate (constant flow rate) set corresponding to the flow rate part and a second flow rate (variation) set corresponding to the remaining flow rate part of the ultrapure water flow rate excluding the constant flow rate part Flow rate)
And means for controlling the second flow rate of the carbon dioxide gas in accordance with the remaining flow rate portion of the ultrapure water.

【0011】このめ、超純水の制御の対象としている変
動部分の流量が少なくて、超純水に流量変動が生じた場
合の炭酸ガスの流量の制御幅が小さく、超純水の比抵抗
値の調整精度を向上させることができる。
Since the flow rate of the variable portion to be controlled by the ultrapure water is small, the control range of the flow rate of the carbon dioxide gas when the flow rate varies in the ultrapure water is small, and the specific resistance of the ultrapure water is reduced. The value adjustment accuracy can be improved.

【0012】[0012]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(比抵抗調整装置)図1には、本発明に係る超純水の比
抵抗調整方法を実施するため使用される比抵抗調整装置
の一例が示されている。当該比抵抗調整装置は、処理槽
11、および処理槽11内に配設された疎水性透過膜に
て形成された筒体12を備えている。処理槽11は本発
明の処理室を構成し、かつ筒体12は本発明の疎水性膜
にて形成された流通路を構成しているもので、処理槽1
1には、その入口に超純水の供給管路13aが接続され
ているとともに、その出口に流出管路13bが接続され
ており、また筒体12には、その入口に炭酸ガスの供給
管路14aが接続されているとともに、その出口に流出
管路14bが接続されている。
(Specific Resistance Adjusting Apparatus) FIG. 1 shows an example of a specific resistance adjusting apparatus used for carrying out the method for adjusting the specific resistance of ultrapure water according to the present invention. The specific resistance adjusting device includes a processing tank 11 and a cylindrical body 12 formed of a hydrophobic permeable membrane provided in the processing tank 11. The treatment tank 11 constitutes the treatment chamber of the present invention, and the cylindrical body 12 constitutes the flow passage formed of the hydrophobic film of the present invention.
1 has an inlet connected to a supply pipe 13a of ultrapure water, an outlet connected to an outlet pipe 13b, and the cylinder 12 has a supply pipe for carbon dioxide gas at the inlet. The line 14a is connected, and the outlet line is connected to the outlet line 14b.

【0013】当該比抵抗調整装置においては、炭酸ガス
の供給管路14aにガス流量調整機構20が介装されて
おり、また超純水の流出管路13bには比抵抗値を検出
するための比抵抗値センサー31が介装されている。ガ
ス流量調整機構20は、互いに並列する4本の流路21
a〜21dを備え、各流路21a〜21dにはそれぞれ
電磁バルブ22a〜22dと、ガスフィルター23a〜
23dとが介装されている。各電磁バルブ22a〜22
dは電磁式の開閉バルブであり、また各ガスフィルター
23a〜23dはガス透過量をそれぞれ異にするもの
で、例えば第1ガスフィルター23aの透過量を1とし
た場合に、第2ガスフィルター23bの透過量は1/2
に、第3ガスフィルター23cの透過量は1/4に、第
4ガスフィルター23dの透過量は1/8にそれぞれ設
定されている。
In the specific resistance adjusting apparatus, a gas flow rate adjusting mechanism 20 is interposed in a carbon dioxide supply pipe 14a, and an ultrapure water outflow pipe 13b is used for detecting a specific resistance value. A specific resistance value sensor 31 is provided. The gas flow control mechanism 20 includes four flow paths 21 parallel to each other.
a to 21d, and each of the flow paths 21a to 21d has an electromagnetic valve 22a to 22d and a gas filter 23a to
23d is interposed. Each electromagnetic valve 22a-22
d is an electromagnetic on-off valve, and each of the gas filters 23a to 23d has a different gas permeation amount. For example, when the permeation amount of the first gas filter 23a is 1, the second gas filter 23b Is 透過
The transmission amount of the third gas filter 23c is set to 1/4, and the transmission amount of the fourth gas filter 23d is set to 1/8.

【0014】ガス流量調整機構20においては、コント
ローラ32からの動作信号に基づいて各電磁バルブ22
a〜22dの開閉動作が制御されて、筒体12内への炭
酸ガスの流量が制御されるもので、コントローラ32は
比抵抗値センサー31からの検出信号に基づいて各電磁
バルブ22a〜22dに対して動作信号を出力する。
In the gas flow adjusting mechanism 20, each electromagnetic valve 22 is controlled based on an operation signal from a controller 32.
The opening / closing operation of a to 22d is controlled to control the flow rate of the carbon dioxide gas into the cylinder 12, and the controller 32 controls each of the electromagnetic valves 22a to 22d based on a detection signal from the specific resistance sensor 31. An operation signal is output to the terminal.

【0015】(比抵抗調整方法)当該比抵抗調整装置を
使用して超純水の比抵抗値を調整するには、被処理水で
ある一定の温度の超純水を供給管路13aを通して一定
の圧力、一定の流量で処理槽11内に供給するととも
に、流出管路13bを通して流出させ、かつ筒体12内
へは炭酸ガスをガス流量調整機構20を通して供給する
とともに、ガス流出管路14bを通して流出させる。
(Specific Resistance Adjustment Method) In order to adjust the specific resistance value of ultrapure water using the specific resistance adjusting device, ultrapure water having a constant temperature, which is to be treated, is supplied through a supply pipe 13a. At a constant flow rate and into the treatment tank 11 and flow out through the outflow pipe 13b, and supply carbon dioxide into the cylinder 12 through the gas flow control mechanism 20 and through the gas outflow pipe 14b. Let out.

【0016】この間、筒体12内を流通する炭酸ガスの
一部が疎水性透過膜を透過して処理槽11内に侵入して
超純水に溶解し、超純水の比抵抗値を所定の値に低下さ
せる。また、この間、処理槽11から流出する超純水の
比抵抗値は比抵抗値センサー31により常時検出され、
コントローラ32では、この検出信号に基づいて各電磁
バルブ22a〜22dに対して動作信号が出力されて、
筒体12内への炭酸ガスの供給量が適正に制御され、超
純水の比抵抗値が設定された所定の範囲に調整される。
During this time, part of the carbon dioxide gas flowing through the cylindrical body 12 penetrates through the hydrophobic permeable membrane, enters the treatment tank 11 and dissolves in the ultrapure water, and sets the specific resistance of the ultrapure water to a predetermined value. To the value of During this time, the specific resistance value of the ultrapure water flowing out of the processing tank 11 is constantly detected by the specific resistance value sensor 31,
The controller 32 outputs an operation signal to each of the electromagnetic valves 22a to 22d based on the detection signal.
The supply amount of carbon dioxide into the cylinder 12 is appropriately controlled, and the specific resistance value of the ultrapure water is adjusted to a predetermined range.

【0017】しかして、当該比抵抗調整方法において
は、ガス流量調整機構20を構成する各電磁バルブ22
a〜22dのいずれか1個を常時開放状態に設定して、
筒体12内へは常に所定量の炭酸ガスを供給して流通さ
せる手段を採用しており、かかる炭酸ガスの供給量を考
慮して、ガス流量調整機構20では筒体11内への炭酸
ガスの供給量を制御する手段が採られている。
According to the specific resistance adjusting method, each of the electromagnetic valves 22 constituting the gas flow rate adjusting mechanism 20 is used.
a to 22d are set to always open state,
Means for constantly supplying and circulating a predetermined amount of carbon dioxide into the cylinder 12 is adopted, and in consideration of the supply of such carbon dioxide, the gas flow rate adjusting mechanism 20 uses the carbon dioxide gas into the cylinder 11. A means for controlling the supply amount of the gas is employed.

【0018】すなわち、当該比抵抗調整方法において、
筒体12に流通させる炭酸ガスの流量を、処理室11内
に流通させる超純水の流量のうちの一定流量部に対応し
て設定される一定流量である第1の流量分と、超純水の
流量の一定流量部を除く残余の流量部に対応して設定さ
れる変動流量である第2の流量分とに分けて、炭酸ガス
の第2の流量分を、超純水の残余の流量部に対応して制
御する手段を採っている。炭酸ガスの第2の流量分は、
炭酸ガスの全流量分の20%〜80%の範囲内である。
That is, in the specific resistance adjusting method,
The flow rate of the carbon dioxide gas flowing through the cylinder 12 is equal to a first flow rate which is a constant flow rate set in accordance with a constant flow rate portion of the flow rate of the ultrapure water flowing through the processing chamber 11, and The second flow rate of the carbon dioxide gas is divided into a second flow rate which is a variable flow rate which is set corresponding to the remaining flow rate section excluding the constant flow rate section of the water flow rate. Means for controlling corresponding to the flow rate unit is adopted. The second flow rate of carbon dioxide is
It is in the range of 20% to 80% of the total flow rate of the carbon dioxide gas.

【0019】従って、ガス流量調整機構20において
は、各電磁バルブ22a〜22dのうちのいずれか1個
が常時開放状態とされ、残りの電磁バルブを開閉制御す
る手段が採られる。常時開放された電磁バルブは炭酸ガ
スの第1の流量分を受持ち、残りの各電磁バルブが炭酸
ガスの第2の流量分を受持ち、これらの各電磁バルブが
超純水の流量の変動に対応して炭酸ガスの流量を制御す
る。
Therefore, in the gas flow rate adjusting mechanism 20, one of the electromagnetic valves 22a to 22d is always opened, and a means for controlling the opening and closing of the remaining electromagnetic valves is employed. The electromagnetic valves that are always open take charge of the first flow rate of carbon dioxide gas, the remaining solenoid valves take charge of the second flow rate of carbon dioxide gas, and these solenoid valves respond to fluctuations in the flow rate of ultrapure water. To control the flow rate of carbon dioxide gas.

【0020】このように、当該比抵抗調整方法によれ
ば、処理室11内の筒体12に流通させる炭酸ガスの流
量を、処理室11内に流通させる超純水の流量のうちの
一定流量部に対応して設定される第1の流量分(一定流
量分)と、超純水の流量の一定流量部を除く残余の流量
部に対応して設定される第2の流量分(変動流量分)と
に分けて、炭酸ガスの第2の流量分を超純水の残余の流
量部に対応して制御する手段を採っているため、超純水
の制御の対象としている変動部分の流量が少なくて、超
純水に流量変動が生じた場合の炭酸ガスの流量の制御幅
が小さく、超純水の比抵抗値の調整の精度を向上させる
ことができる。
As described above, according to the specific resistance adjusting method, the flow rate of the carbon dioxide gas flowing through the cylindrical body 12 in the processing chamber 11 is changed to the constant flow rate of the ultrapure water flowing through the processing chamber 11. The first flow rate (constant flow rate) that is set corresponding to the flow rate and the second flow rate (variable flow rate) that is set corresponding to the remaining flow rate part of the ultrapure water flow rate other than the constant flow rate part And means for controlling the second flow rate of the carbon dioxide gas in accordance with the remaining flow rate portion of the ultrapure water, so that the flow rate of the variable portion to be controlled by the ultrapure water is controlled. The control range of the flow rate of carbon dioxide gas when the flow rate fluctuation occurs in the ultrapure water is small, and the precision of the adjustment of the specific resistance value of the ultrapure water can be improved.

【0021】(実験)本実験では、図1に示す比抵抗調
整装置を使用し、かつ筒体12としてポリプロピレン製
の疎水性透過膜にて形成された筒体12を使用して、超
純水の比抵抗値を調整する実験を試みた。
(Experiment) In this experiment, the specific resistance adjusting device shown in FIG. 1 was used, and the cylindrical body 12 formed of a hydrophobic permeable membrane made of polypropylene was used as the cylindrical body 12. An experiment was conducted to adjust the specific resistance of.

【0022】本実験においては、水温25.3℃で比抵
抗値が17.5MΩ・cmの超純水を用い、超純水を1
2l/minの流量で処理室11内を流動させ、この間
炭酸ガスを0.8kg/cm2の圧力でガス供給管路1
4aに供給して筒体12内に流し、超純水の比抵抗値を
0.1MΩ・cmに調整した。この間、超純水の流量を
2分間だけ12l/minから3分間2l/minに低
減して、また2分間12l/minに戻すことによっ
て、超純水の全体の流量を変動させた。
In this experiment, ultrapure water having a water temperature of 25.3 ° C. and a specific resistance of 17.5 MΩ · cm was used.
The inside of the processing chamber 11 is caused to flow at a flow rate of 2 l / min, and carbon dioxide gas is supplied at a pressure of 0.8 kg / cm 2 during the gas supply line 1.
4a and supplied into the cylindrical body 12 to adjust the specific resistance of the ultrapure water to 0.1 MΩ · cm. During this time, the flow rate of the ultrapure water was reduced by reducing the flow rate of the ultrapure water from 12 l / min for 2 minutes to 2 l / min for 3 minutes and returning the flow rate to 12 l / min for 2 minutes.

【0023】なお、比抵抗値センサー31は流出管路1
3bにおける処理槽11側の接続部から400mm下流
側に設置している。
The specific resistance value sensor 31 is connected to the outflow line 1.
It is installed 400 mm downstream from the connection on the processing tank 11 side in 3b.

【0024】また、本実験においては、ガス流量調整機
構20を構成する全ての電磁バルブ22a〜22dを開
閉制御する第1制御方法と、第1電磁バルブ22aを常
時開放し、残りの各電磁バルブ22b〜22dを開閉制
御する第2制御方法との2通りの制御方法を採用した。
なお、第1電磁バルブ22aを常時開放させる場合、炭
酸ガス圧力は0.8kg/cm2で、流量60cc/m
inとなる。
In this experiment, the first control method for controlling the opening and closing of all the electromagnetic valves 22a to 22d constituting the gas flow rate adjusting mechanism 20, the first electromagnetic valve 22a is always opened, and the remaining electromagnetic valves are opened. Two control methods, a second control method for controlling the opening and closing of 22b to 22d, were adopted.
When the first electromagnetic valve 22a is always opened, the carbon dioxide gas pressure is 0.8 kg / cm 2 and the flow rate is 60 cc / m 2.
in.

【0025】第2制御方法においては、処理室11内に
流通させる超純水の流量のうちの2l/minの流量を
一定流量部とし、これに対応する炭酸ガスの流量である
90cc/minの流量を第1電磁バルブ22aを通し
て供給するように設定し、超純水の流量の一定流量部を
除く残余の流量部を10l/minの流量として、これ
に対応する炭酸ガスの流量である350cc/minの
流量を第2電磁バルブ22b〜第2電磁バルブ22dを
通して、制御された状態で供給するように設定してい
る。
In the second control method, a flow rate of 2 l / min of the flow rate of the ultrapure water flowing through the processing chamber 11 is set as a constant flow rate section, and a flow rate of 90 cc / min, which is a flow rate of carbon dioxide gas corresponding thereto, is set. The flow rate is set so as to be supplied through the first electromagnetic valve 22a, and the remaining flow rate part of the ultrapure water flow rate, excluding the constant flow rate part, is set to a flow rate of 10 l / min, and the flow rate of the corresponding carbon dioxide gas is 350 cc / min. The flow rate of min is set to be supplied in a controlled manner through the second electromagnetic valve 22b to the second electromagnetic valve 22d.

【0026】これらの2通りの制御方法において、超純
水の流量の変化時に示す比抵抗値の変動状態を図2
(a),(b)のグラフに示す。これらのグラフにおい
て、同図(a)に示すグラフは第2制御方法の場合であ
り、同図(b)に示すグラフは第1制御方法の場合であ
って、各グラフを参照すれば明らかなように、同図
(a)に示す第2制御方法の場合は比抵抗値の変動幅が
小さい。このことは、第2制御方法を採用した場合に
は、第1制御方法を採用した場合に比較して炭酸ガス供
給量の変動幅を小さくし得て、超純水の比抵抗値をより
精度よく調整できることを意味している。
In these two control methods, the fluctuation state of the specific resistance value when the flow rate of the ultrapure water changes is shown in FIG.
This is shown in the graphs of (a) and (b). In these graphs, the graph shown in FIG. 3A shows the case of the second control method, and the graph shown in FIG. 3B shows the case of the first control method. As described above, in the case of the second control method shown in FIG. This means that, when the second control method is adopted, the fluctuation range of the carbon dioxide gas supply amount can be made smaller than when the first control method is adopted, and the specific resistance value of the ultrapure water can be more accurately determined. It means that you can adjust well.

【0027】超純水流量が2l/minの時の比抵抗値
の変動は、炭酸ガスを供給して比抵抗値を測定し、さら
に炭酸ガスを供給して比抵抗値を測定し、さらに炭酸ガ
スの供給量を変えるという動作のハンチングである。こ
れは、超純水流量が少ない時に発生する現象である。一
般的には、超純水流量が変動した時には、超純水の比抵
抗値は一時的に変動するが、すぐに設定された比抵抗値
に復帰して一定となるものである。
When the flow rate of the ultrapure water is 2 l / min, the fluctuation of the specific resistance is measured by supplying carbon dioxide gas, measuring the specific resistance value, further supplying carbon dioxide gas, measuring the specific resistance value, and further measuring the specific resistance value. This is a hunting of the operation of changing the gas supply amount. This is a phenomenon that occurs when the flow rate of ultrapure water is small. Generally, when the flow rate of ultrapure water fluctuates, the specific resistance value of the ultrapure water temporarily fluctuates, but immediately returns to the set specific resistance value and becomes constant.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る超純水の比抵抗調整方法を実施す
るために使用する比抵抗調整装置の一例を示す概略構成
図である。
FIG. 1 is a schematic configuration diagram showing an example of a specific resistance adjusting device used for performing a specific resistance adjusting method of ultrapure water according to the present invention.

【図2】超純水の比抵抗調整方法における比抵抗値の変
動量を示すグラフで、同図(a)は超純水の一定流量を
除く残余の流量を制御の対象として炭酸ガスを制御した
場合の比抵抗値の変動量の状態、同図(b)は供給され
る超純水の全量を基準として炭酸ガス量を制御した場合
の比抵抗値の変動量の状態を示す。
FIG. 2 is a graph showing the amount of change in the specific resistance value in the method of adjusting the specific resistance of ultrapure water. FIG. 2 (a) shows the control of carbon dioxide gas with the remaining flow rate other than a constant flow rate of ultrapure water being controlled. FIG. 3B shows the state of the variation of the specific resistance value when the carbon dioxide gas amount is controlled based on the total amount of the supplied ultrapure water.

【符号の説明】[Explanation of symbols]

11…処理槽、12…筒体、13a…水供給管路、13
b…水流出管路、14a…ガス供給管路、14b…ガス
流出管路、20…ガス流量調整機構、21a〜21d…
流路、22a〜22d…電磁バルブ、23a〜23d…
ガスフィルター、31…比抵抗値センサー、32…コン
トローラ。
11: treatment tank, 12: cylindrical body, 13a: water supply pipe, 13
b ... water outflow line, 14a ... gas supply line, 14b ... gas outflow line, 20 ... gas flow rate adjustment mechanism, 21a-21d ...
Channels, 22a to 22d ... electromagnetic valves, 23a to 23d ...
Gas filter, 31: specific resistance value sensor, 32: controller.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI G05F 1/00 G05F 1/00 Z H01L 21/304 341 H01L 21/304 341S ────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 6 Identification code FI G05F 1/00 G05F 1/00 Z H01L 21/304 341 H01L 21/304 341S

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】一定流量の超純水を常時流通させる処理室
内に配設された疎水性で炭酸ガスを透過させる疎水性透
過膜にて形成された流通路に炭酸ガスを流通させて、炭
酸ガスの一部を同流通路を構成する疎水性透過膜を透過
させることにより、前記処理室内を流通する超純水に炭
酸ガスを溶解させて超純水の比抵抗値を調整する超純水
の比抵抗調整方法において、前記流通路に流通させる炭
酸ガスの流量を、前記処理室内に流通させる超純水の流
量のうちの一定流量部に対応して設定される一定流量で
ある第1の流量分と、前記超純水の流量の一定流量部を
除く残余の流量部に対応して設定される変動流量である
第2の流量分とに分けて、炭酸ガスの第2の流量分を前
記超純水の残余の流量部に対応して制御することを特徴
とする超純水の比抵抗調整方法。
A carbon dioxide gas is circulated through a flow passage formed by a hydrophobic permeable membrane, which is provided in a processing chamber and constantly passes a ultra-pure water at a constant flow rate and is permeable to carbon dioxide gas. Ultrapure water that adjusts the specific resistance value of ultrapure water by dissolving carbon dioxide in ultrapure water flowing through the processing chamber by allowing a part of the gas to permeate through the hydrophobic permeable membrane forming the flow passage In the specific resistance adjusting method, the flow rate of the carbon dioxide gas flowing through the flow passage is a constant flow rate set in accordance with a constant flow rate portion of the flow rate of the ultrapure water flowing through the processing chamber. The second flow rate of the carbon dioxide gas is divided into a flow rate part and a second flow rate part which is a variable flow rate set corresponding to the remaining flow part except the constant flow part of the ultrapure water flow rate. The ratio of ultrapure water, wherein the ratio is controlled according to the remaining flow rate of the ultrapure water Anti-adjustment method.
【請求項2】請求項1に記載の超純水の比抵抗調整方法
において、前記炭酸ガスの第2の流量分を全流量分の6
0%〜95%とすることを特徴とする超純水の比抵抗調
整方法。
2. A method according to claim 1, wherein the second flow rate of said carbon dioxide gas is reduced to 6 times the total flow rate.
A method for adjusting the specific resistance of ultrapure water, wherein the specific resistance is 0% to 95%.
JP1068297A 1997-01-23 1997-01-23 Method for regulating specific resistance of ultrapure water Pending JPH10202242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1068297A JPH10202242A (en) 1997-01-23 1997-01-23 Method for regulating specific resistance of ultrapure water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1068297A JPH10202242A (en) 1997-01-23 1997-01-23 Method for regulating specific resistance of ultrapure water

Publications (1)

Publication Number Publication Date
JPH10202242A true JPH10202242A (en) 1998-08-04

Family

ID=11757042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1068297A Pending JPH10202242A (en) 1997-01-23 1997-01-23 Method for regulating specific resistance of ultrapure water

Country Status (1)

Country Link
JP (1) JPH10202242A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7329312B2 (en) 2002-05-16 2008-02-12 Kurita Water Industries, Ltd. Apparatus for supplying water containing dissolved gas
WO2008049001A3 (en) * 2006-10-17 2008-06-05 Mks Intruments Inc Devices, systems, and methods for carbonation of deionized water
JP2009285651A (en) * 2001-08-28 2009-12-10 Mitsubishi Rayon Co Ltd Apparatus for manufacturing liquid containing gas dissolved therein for carbonate spring
CN102024693A (en) * 2009-09-11 2011-04-20 东京毅力科创株式会社 Liquid processing apparatus for substrate, and method for generating processing liquid
WO2011086727A1 (en) * 2010-01-15 2011-07-21 岩谷産業株式会社 Specific-resistance adjusting method for ultrapure water and ultrapure-water treatment device
JP2011143369A (en) * 2010-01-15 2011-07-28 Toraitekku:Kk Method for regulating specific resistance of ultrapure water and apparatus for treating ultrapure water
JP2011143368A (en) * 2010-01-15 2011-07-28 Toraitekku:Kk Specific resistance adjusting method of ultrapure water, and ultrapure water treatment apparatus
JP2012176359A (en) * 2011-02-25 2012-09-13 Kurita Water Ind Ltd Production unit of gas dissolved water
US8448925B2 (en) 2006-10-17 2013-05-28 Mks Instruments, Inc. Devices, systems, and methods for carbonation of deionized water
JP2014057103A (en) * 2005-04-25 2014-03-27 Nikon Corp Exposure device and liquid supply method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009285651A (en) * 2001-08-28 2009-12-10 Mitsubishi Rayon Co Ltd Apparatus for manufacturing liquid containing gas dissolved therein for carbonate spring
US7329312B2 (en) 2002-05-16 2008-02-12 Kurita Water Industries, Ltd. Apparatus for supplying water containing dissolved gas
JP2014057103A (en) * 2005-04-25 2014-03-27 Nikon Corp Exposure device and liquid supply method
US8448925B2 (en) 2006-10-17 2013-05-28 Mks Instruments, Inc. Devices, systems, and methods for carbonation of deionized water
WO2008049001A3 (en) * 2006-10-17 2008-06-05 Mks Intruments Inc Devices, systems, and methods for carbonation of deionized water
US7731161B2 (en) 2006-10-17 2010-06-08 Mks Instruments, Inc. Devices, systems, and methods for carbonation of deionized water
US8727323B2 (en) 2006-10-17 2014-05-20 Mks Instruments, Inc. Devices, systems, and methods for carbonation of deionized water
JP4920751B2 (en) * 2006-10-17 2012-04-18 エム ケー エス インストルメンツ インコーポレーテッド Apparatus, system and method for carbonating deionized water
CN102024693A (en) * 2009-09-11 2011-04-20 东京毅力科创株式会社 Liquid processing apparatus for substrate, and method for generating processing liquid
JP2011143369A (en) * 2010-01-15 2011-07-28 Toraitekku:Kk Method for regulating specific resistance of ultrapure water and apparatus for treating ultrapure water
JP2011143368A (en) * 2010-01-15 2011-07-28 Toraitekku:Kk Specific resistance adjusting method of ultrapure water, and ultrapure water treatment apparatus
WO2011086727A1 (en) * 2010-01-15 2011-07-21 岩谷産業株式会社 Specific-resistance adjusting method for ultrapure water and ultrapure-water treatment device
JP2012176359A (en) * 2011-02-25 2012-09-13 Kurita Water Ind Ltd Production unit of gas dissolved water

Similar Documents

Publication Publication Date Title
JP6891121B2 (en) Water purification system and method
JPH10202242A (en) Method for regulating specific resistance of ultrapure water
CN108027618A (en) Pressure flow-rate controller and its method for detecting abnormality
JPH05180733A (en) Method and apparatus for supplying gas into superhigh-accuracy analyzer
KR20060067052A (en) Mass flow controller
CN107427786B (en) Resistivity value adjusting device and resistivity value adjusting method
TWI733966B (en) Specific resistance value adjusting device and specific resistance value adjusting method
JP2018065073A (en) Diluted hydrogen gas generation device
JP2004275917A (en) Manufacturing apparatus for treatment liquid, manufacturing method and treatment apparatus for substrate
CN109641186B (en) Resistivity value adjusting device and resistivity value adjusting method
JPS6312391A (en) Method and apparatus for controlling specific resistance of ultra-pure water
KR20180067150A (en) Water purifying apparatus and flow rate control method thereof
US20210001264A1 (en) Ozone generating apparatus and ozone generating method
JP2000070887A (en) Supply of pure water containing carbon dioxide gas dissolved therein, unit for supplying pure water containing carbon dioxide gas dissolved therein, and substrate processing apparatus equipped with the same
JP3875596B2 (en) Functional ultrapure water production method and apparatus used therefor
US20230075109A1 (en) Flow control for reverse osmosis filter
JP2003167635A (en) Back pressure control valve
JP2001208737A (en) Gas chromatograph device
JPH10202075A (en) Method of maintaining permeability of hydrophobic permeation membrane
TW202200511A (en) Dilute solution production apparatus
JPS63274488A (en) Controlling device for specific resistance of ultrapure water
JPH10202071A (en) Method for recovering permeation performance of hydrophobic permeation membrane
JPS63197597A (en) Method for controlling water quality of made water of water making plant
JPS643522B2 (en)
JPH0440288A (en) Waste water treatment apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20051129

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20060328

Free format text: JAPANESE INTERMEDIATE CODE: A02