JP2001208737A - Gas chromatograph device - Google Patents

Gas chromatograph device

Info

Publication number
JP2001208737A
JP2001208737A JP2000020629A JP2000020629A JP2001208737A JP 2001208737 A JP2001208737 A JP 2001208737A JP 2000020629 A JP2000020629 A JP 2000020629A JP 2000020629 A JP2000020629 A JP 2000020629A JP 2001208737 A JP2001208737 A JP 2001208737A
Authority
JP
Japan
Prior art keywords
sample
carrier gas
pressure
flow path
vaporization chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000020629A
Other languages
Japanese (ja)
Inventor
Kenji Hirai
研治 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2000020629A priority Critical patent/JP2001208737A/en
Publication of JP2001208737A publication Critical patent/JP2001208737A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/12Preparation by evaporation
    • G01N2030/126Preparation by evaporation evaporating sample

Abstract

PROBLEM TO BE SOLVED: To prevent a vaporized sample from diffusing and being discharged from a purge channel when pressure is raised by the injection of the sample. SOLUTION: A control valve 12 is controlled so that a detection value P1 of a first pressure sensor 13 may become a set pressure at the time of a stationary state before the injection of a sample. As a pressure difference ΔP (=P2-P1) from a detection value P2 of a second pressure sensor 14 via a flow quantity resistance 11 is reduced when the gas pressure inside a sample vaporizing chamber 1 is suddenly increased after the injection of a sample, switching is performed to control the control valve 12 so as to maintain the pressure difference ΔP at a predetermined value when the pressure difference ΔP becomes less than the predetermined value. By this constitution, it is possible to continue to supply a predetermined quantity of flow of a carrier gas larger than the quantity of purge flow for the sample vaporizing chamber 1 and to prevent the vaporized sample from diffusing.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はガスクロマトグラフ
装置に関し、更に詳しくは、ガスクロマトグラフ装置に
おいて液体試料を気化するための試料気化室を含む試料
導入部に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas chromatograph, and more particularly, to a sample introduction section including a sample vaporizing chamber for vaporizing a liquid sample in a gas chromatograph.

【0002】[0002]

【従来の技術】一般にガスクロマトグラフ装置では、カ
ラム入口に設けた試料気化室内に液体試料を注入し、気
化した試料をキャリアガスに乗せてカラム内へと送り込
む構成を有する。カラムに導入する試料の量を制御しつ
つ減少させる方法として、いわゆるスプリット導入法が
利用されている。スプリット導入を行うガスクロマトグ
ラフ装置では、試料気化室に、キャリアガスを導入する
ためのキャリアガス流路、シリコンゴム製のセプタムが
発生する不所望の成分を外部へ排出するためのパージ流
路、そしてキャリアガスと共に余分な気化試料を外部へ
排出するためのスプリット流路が接続されている。
2. Description of the Related Art Generally, a gas chromatograph has a structure in which a liquid sample is injected into a sample vaporizing chamber provided at a column inlet, and the vaporized sample is loaded on a carrier gas and sent into the column. As a method for controlling and reducing the amount of the sample to be introduced into the column, a so-called split introduction method is used. In a gas chromatograph apparatus that performs split introduction, a carrier gas flow path for introducing a carrier gas into a sample vaporization chamber, a purge flow path for discharging an undesirable component generated by a silicon rubber septum to the outside, and A split flow path for discharging an excess vaporized sample to the outside together with the carrier gas is connected.

【0003】このような装置では、略一定流量のキャリ
アガスをカラムに流通させるために、定圧制御方式(入
口圧制御方式ともいう)及び背圧制御方式という2つの
制御方式が利用されている。定圧制御方式とは、キャリ
アガス流路に圧力調節弁を設け、試料気化室の入口での
キャリアガスの供給圧力を一定に維持するように圧力調
節弁の開度を制御する方法である。一方、背圧制御方式
とは、キャリアガス流路にマスフローコントローラ(流
量調節器)を設けて一定流量のキャリアガスを試料気化
室に導入する一方、スプリット流路に圧力調節弁を設
け、試料気化室の出口(スプリット流路接続部)での圧
力を一定に維持するように圧力調節弁を制御する方法で
ある。
[0003] In such a device, two control systems, a constant pressure control system (also referred to as an inlet pressure control system) and a back pressure control system, are used to allow a carrier gas having a substantially constant flow rate to flow through the column. The constant pressure control method is a method in which a pressure control valve is provided in a carrier gas flow path and the opening of the pressure control valve is controlled so as to maintain a constant supply pressure of the carrier gas at the inlet of the sample vaporization chamber. On the other hand, in the back pressure control system, a mass flow controller (flow rate controller) is provided in the carrier gas flow path to introduce a constant flow rate of the carrier gas into the sample vaporization chamber, while a pressure control valve is provided in the split flow path to evaporate the sample. This is a method of controlling the pressure regulating valve so as to keep the pressure at the outlet of the chamber (the split flow path connection part) constant.

【0004】[0004]

【発明が解決しようとする課題】ガスクロマトグラフ分
析の際に、試料気化室に液体試料を注入すると、注入さ
れた試料は気化することによって急激に体積が膨張す
る。そのため、試料気化室内の圧力は急激に上昇する。
上記定圧制御方式の場合、入口圧が急に高くなると圧力
調節弁は閉鎖されるため、試料気化室へのキャリアガス
の供給は一時的に停止する。すると、気化試料は試料気
化室内で拡散し易くなり、キャリアガス流路やパージ流
路へと流入する。このため、カラムへ送り込まれるべき
気化試料の一部がパージ流路を通して外部へ逃げたり、
或いは、時間的に遅延してカラムへ運ばれたりする。そ
の結果、定量分析の精度が低下するという問題がある。
When a liquid sample is injected into a sample vaporization chamber during gas chromatographic analysis, the volume of the injected sample rapidly expands due to vaporization. Therefore, the pressure in the sample vaporization chamber rapidly increases.
In the case of the constant pressure control method, when the inlet pressure suddenly increases, the pressure control valve is closed, so that the supply of the carrier gas to the sample vaporization chamber is temporarily stopped. Then, the vaporized sample is easily diffused in the sample vaporization chamber, and flows into the carrier gas channel and the purge channel. Therefore, a part of the vaporized sample to be sent to the column escapes to the outside through the purge channel,
Alternatively, it is carried to the column with a time delay. As a result, there is a problem that the accuracy of the quantitative analysis is reduced.

【0005】一方、背圧制御方式では、注入された試料
の気化によって試料気化室内の圧力が急激に上昇する
と、圧力調節弁を開放して試料気化室内のガスをスプリ
ット流路を介して外部へ逃がすことにより試料気化室内
の圧力を下げようとする。そのため、一時的にスプリッ
ト比が変化し、カラムへ導入される試料の割合が小さく
なるので、結果的に分析の精度が低下するという問題が
ある。
On the other hand, in the back pressure control method, when the pressure in the sample vaporization chamber rises sharply due to the vaporization of the injected sample, the pressure control valve is opened to allow the gas in the sample vaporization chamber to pass through the split flow path to the outside. Attempts to lower the pressure in the sample vaporization chamber by allowing it to escape. As a result, the split ratio temporarily changes, and the ratio of the sample introduced into the column decreases. As a result, there is a problem that the accuracy of the analysis is reduced.

【0006】即ち、何れの方式であっても従来のガスク
ロマトグラフ装置では、試料注入時の気化試料の拡散に
よって定量分析の精度が低下するという課題を有してい
た。本発明はこのような問題を解決するために成された
ものであり、その目的とするところは、試料気化時の圧
力上昇の影響を軽減して、定量分析の精度を向上させる
ことができるガスクロマトグラフ装置を提供することに
ある。
That is, the conventional gas chromatograph apparatus has a problem that the accuracy of the quantitative analysis is reduced due to the diffusion of the vaporized sample at the time of sample injection. The present invention has been made to solve such a problem, and an object of the present invention is to provide a gas chromatograph capable of reducing the influence of a pressure increase during sample vaporization and improving the accuracy of quantitative analysis. An object of the present invention is to provide a chromatography apparatus.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、本発明に係るガスクロマトグラフ装置は、試料気化
室へのキャリアガスの流入口での圧力に応じてキャリア
ガスの流量を調節するという定圧制御方式を基本とする
ものの、試料注入直後に試料気化室内のガス圧が上昇し
た場合でも、少なくとも或る所定量のキャリアガスを継
続的に試料気化室へ供給することができるようにしたも
のである。
In order to solve the above-mentioned problems, a gas chromatograph according to the present invention adjusts the flow rate of a carrier gas according to the pressure at the inlet of the carrier gas into a sample vaporization chamber. Although it is based on the constant pressure control method, even if the gas pressure in the sample vaporization chamber increases immediately after sample injection, at least a certain amount of carrier gas can be continuously supplied to the sample vaporization chamber. It is.

【0008】即ち、本発明に係る第1のガスクロマトグ
ラフ装置は、カラム入口に設けた試料気化室内に液体試
料を注入して気化させ、該気化試料をキャリアガス流に
乗せてカラムに導入するガスクロマトグラフ装置におい
て、 a)前記試料気化室にキャリアガスを供給するキャリアガ
ス流路と、 b)該キャリアガス流路上に配設された流量抵抗と、 c)該流量抵抗よりも上流側のキャリアガス流路上に配設
された調節弁と、 d)前記流量抵抗の出口側の圧力を検出する第1の圧力セ
ンサと、 e)前記流量抵抗の入口側の圧力を検出する第2の圧力セ
ンサと、 f)定常状態では第1の圧力センサの検出値に基づいて前
記調節弁を制御し、試料注入後には第2の圧力センサの
検出値、又は第1及び第2の両方の圧力センサの検出値
に基づいて前記調節弁を制御する制御手段と、を備える
ことを特徴としている。
That is, in the first gas chromatograph apparatus according to the present invention, a liquid sample is injected and vaporized into a sample vaporization chamber provided at a column inlet, and the vaporized sample is loaded on a carrier gas flow and introduced into the column. In the chromatography apparatus, a) a carrier gas flow path for supplying a carrier gas to the sample vaporization chamber, b) a flow resistance disposed on the carrier gas flow path, and c) a carrier gas upstream of the flow resistance. A regulating valve disposed on the flow path; d) a first pressure sensor for detecting a pressure on the outlet side of the flow resistance; and e) a second pressure sensor for detecting a pressure on the inlet side of the flow resistance. F) in a steady state, the control valve is controlled based on the detection value of the first pressure sensor, and after the sample is injected, the detection value of the second pressure sensor, or the detection of both the first and second pressure sensors. The control valve is controlled based on the value. It is characterized by comprising control means for, the.

【0009】また、本発明に係る第2のガスクロマトグ
ラフ装置は、カラム入口に設けた試料気化室内に液体試
料を注入して気化させ、該気化試料をキャリアガス流に
乗せてカラムに導入するガスクロマトグラフ装置におい
て、前記試料気化室にキャリアガスを供給するキャリア
ガス流路として、試料気化室側の圧力に応じて流量を調
節する調節弁を有する第1のキャリアガス流路と、所定
の一定流量のキャリアガスを流通させる流量調節手段を
有する第2のキャリアガス流路とを備え、試料注入後
に、前記調節弁の開度に拘わらず第2のキャリアガス流
路を通して試料気化室にキャリアガスを供給するように
したことを特徴としている。
In a second gas chromatograph apparatus according to the present invention, a liquid sample is injected into a sample vaporizing chamber provided at a column inlet and vaporized, and the vaporized sample is loaded on a carrier gas flow and introduced into the column. A first carrier gas flow path having a control valve for adjusting a flow rate in accordance with a pressure on the sample vaporization chamber side as a carrier gas flow path for supplying a carrier gas to the sample vaporization chamber; And a second carrier gas flow path having a flow rate adjusting means for flowing the carrier gas. After the sample is injected, the carrier gas is supplied to the sample vaporizing chamber through the second carrier gas flow path regardless of the opening degree of the control valve. It is characterized in that it is supplied.

【0010】[0010]

【発明の実施の形態】まず、本発明の第1のガスクロマ
トグラフ装置の一実施形態について図面を参照して説明
する。図1は、本実施形態によるガスクロマトグラフ装
置の試料気化室を中心とする要部の構成図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, an embodiment of a first gas chromatograph of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram of a main part of the gas chromatograph device according to the present embodiment, centering on a sample vaporization chamber.

【0011】内部が中空である試料気化室1には、セプ
タムパージ流路6、スプリット流路7、キャリアガス流
路8が接続されており、その頭部開口にはシリコンゴム
製のセプタム4が嵌挿されている。試料気化室1の内側
には円筒形状のガラスインサート5が嵌挿されており、
カラム2は試料気化室1の底部からガラスインサート5
の内側まで挿入されている。
A septum purge flow path 6, a split flow path 7, and a carrier gas flow path 8 are connected to a sample vaporization chamber 1 having a hollow interior, and a septum 4 made of silicon rubber is provided at the head opening. It is inserted. A cylindrical glass insert 5 is fitted inside the sample vaporization chamber 1,
Column 2 is a glass insert 5 from the bottom of sample vaporization chamber 1
Is inserted up to the inside.

【0012】セプタムパージ流路6及びスプリット流路
7にはそれぞれニードル弁9、10が設けられており、
流量抵抗が適宜に調節できるようになっている。キャリ
アガス流路8には、下流側から第1圧力センサ13、流
量抵抗11、第2圧力センサ14、調節弁12が設けら
れており、制御部15は、第1圧力センサ13の検出ガ
ス圧P1と第2圧力センサ14の検出ガス圧P2とに応
じて調節弁12の開度を制御する。第1圧力センサ13
と試料気化室1との間にはガス抵抗が殆ど無いため、検
出ガス圧P1は試料気化室1内部のガス圧とほぼ同一で
あると看做すことができる。なお、必要に応じて、セプ
タムパージ流路6及びスプリット流路7には電磁開閉弁
を設けてもよい。
Needle valves 9 and 10 are provided in the septum purge channel 6 and the split channel 7, respectively.
The flow resistance can be adjusted appropriately. A first pressure sensor 13, a flow resistance 11, a second pressure sensor 14, and a control valve 12 are provided in the carrier gas flow path 8 from the downstream side, and the control unit 15 controls the detection gas pressure of the first pressure sensor 13. The opening of the control valve 12 is controlled according to P1 and the detected gas pressure P2 of the second pressure sensor 14. First pressure sensor 13
Since there is almost no gas resistance between the sample vaporization chamber 1 and the sample vaporization chamber 1, the detected gas pressure P1 can be considered to be substantially the same as the gas pressure inside the sample vaporization chamber 1. If necessary, the septum purge flow path 6 and the split flow path 7 may be provided with an electromagnetic on-off valve.

【0013】上記構成において、ガスクロマトグラフ分
析を行なう際には、試料注入器3により液体試料をセプ
タム4を通して試料気化室1内へと注入する。注入され
た試料は適宜の温度に加熱されている試料気化室1内で
殆ど瞬時に気化し、キャリアガス流に乗ってカラム2内
へと運ばれる。そして、カラム2内を通過する過程で成
分分離される。
In the above configuration, when performing gas chromatographic analysis, a liquid sample is injected into the sample vaporizing chamber 1 through the septum 4 by the sample injector 3. The injected sample is vaporized almost instantaneously in the sample vaporization chamber 1 heated to an appropriate temperature, and is carried into the column 2 by a carrier gas flow. Then, components are separated in the process of passing through the column 2.

【0014】本ガスクロマトグラフ装置の特徴である制
御を、図3のフローチャートに従って説明する。また、
図4はこのときの試料注入前後の試料気化室1内のガス
圧の変化の一例を示す図である。液体試料を試料気化室
1に注入する以前の定常状態では、制御部15は第1圧
力センサ13による検出ガス圧P1を監視し、このガス
圧P1が設定圧力Pcになるように調節弁12を制御す
る(ステップS1)。これにより、略一定流量のキャリ
アガスがキャリアガス流路8を通して試料気化室1に供
給される。このとき、流量抵抗11の両端には、その流
量抵抗値と流量とに応じた圧力差ΔP(=P2−P1)
が生じている。
The control which is a characteristic of the gas chromatograph will be described with reference to the flowchart of FIG. Also,
FIG. 4 is a diagram showing an example of a change in gas pressure in the sample vaporization chamber 1 before and after the sample injection at this time. In a steady state before the liquid sample is injected into the sample vaporization chamber 1, the control unit 15 monitors the gas pressure P1 detected by the first pressure sensor 13, and operates the control valve 12 so that the gas pressure P1 becomes the set pressure Pc. It controls (step S1). As a result, a substantially constant flow rate of the carrier gas is supplied to the sample vaporization chamber 1 through the carrier gas flow path 8. At this time, a pressure difference ΔP (= P2−P1) corresponding to the flow resistance value and the flow rate is provided at both ends of the flow resistance 11.
Has occurred.

【0015】試料気化室1内に液体試料が注入され試料
が気化すると(ステップS2)、図4に示すように、試
料気化室1内のガス圧が急激に上昇するから、第1圧力
センサ13による検出ガス圧P1は急激に増加する。一
方、流量抵抗11を介して試料気化室1に接続される第
2圧力センサ14の検出ガス圧P2は上記ガス圧の増加
にあまり追随しないため、圧力差ΔPは減少又は場合に
よってはマイナスになる。そこで、制御部15は試料注
入後には圧力差ΔPを監視し、圧力差ΔPが所定値Pa
以下になると(ステップS3で「Y」)、検出ガス圧P
1のみを用いた制御を止め、圧力差ΔPが所定値Paに
なるように調節弁12を制御する(ステップS4)。
When a liquid sample is injected into the sample vaporization chamber 1 and the sample is vaporized (step S2), the gas pressure in the sample vaporization chamber 1 sharply increases as shown in FIG. , The detected gas pressure P1 sharply increases. On the other hand, since the detected gas pressure P2 of the second pressure sensor 14 connected to the sample vaporization chamber 1 via the flow resistance 11 does not follow the increase of the gas pressure so much, the pressure difference ΔP decreases or becomes negative in some cases. . Therefore, the control unit 15 monitors the pressure difference ΔP after the sample injection, and determines that the pressure difference ΔP is equal to the predetermined value Pa.
When the pressure becomes below (“Y” in step S3), the detected gas pressure P
The control using only 1 is stopped, and the control valve 12 is controlled so that the pressure difference ΔP becomes the predetermined value Pa (step S4).

【0016】即ち、検出ガス圧P1のみを用いた制御を
継続していると、検出ガス圧P1が急激に上昇したこと
によって最悪の場合、調節弁12が閉鎖されてキャリア
ガスの供給が完全に停止する可能性がある。キャリアガ
スが流入しなくなると、図2(b)に示すように、気化
試料が試料気化室1内の上方にまで拡散し、セプタムパ
ージ流路6に流れ込んで外部へ排出されてしまう恐れが
ある。これに対し、圧力差ΔPを所定値に維持するよう
な制御に切り替えると、この圧力差ΔPと流量抵抗11
の抵抗値で決まるほぼ一定流量のキャリアガスを試料気
化室1へ供給し続けることができる。そのため、図2
(a)に示すように、試料気化室1内で気化した試料は
キャリアガス流によって上方への拡散が抑制され、決め
られたスプリット比に応じてカラム2とスプリット流路
7へと流れる。また、このキャリアガスの最低流量はセ
プタムパージ流路6を通して排出されるガス流量以上に
設定しておくことが好ましい。そうすれば、キャリアガ
スが優先的にセプタムパージ流路6に流れるため、気化
試料がセプタムパージ流路6に流れ込んで排出されてし
まうことを一層効果的に防止できる。
That is, if the control using only the detected gas pressure P1 is continued, in the worst case, the control valve 12 is closed due to the sudden rise of the detected gas pressure P1 and the supply of the carrier gas is completely completed. May stop. When the carrier gas stops flowing, as shown in FIG. 2B, the vaporized sample may be diffused upward in the sample vaporization chamber 1, flow into the septum purge flow path 6, and may be discharged to the outside. . On the other hand, when the pressure difference ΔP is switched to control to maintain the pressure difference ΔP at a predetermined value, the pressure difference ΔP and the flow resistance 11
, The carrier gas having a substantially constant flow rate determined by the resistance value can be continuously supplied to the sample vaporization chamber 1. Therefore, FIG.
As shown in (a), the sample vaporized in the sample vaporization chamber 1 is suppressed from diffusing upward by the carrier gas flow, and flows to the column 2 and the split channel 7 according to the determined split ratio. Further, it is preferable that the minimum flow rate of the carrier gas is set to be equal to or higher than the gas flow rate discharged through the septum purge passage 6. Then, since the carrier gas preferentially flows into the septum purge flow path 6, it is possible to more effectively prevent the vaporized sample from flowing into the septum purge flow path 6 and being discharged.

【0017】上述したようにガス圧が急激に上昇してス
テップS4の制御が行われたあと、図4に示したよう
に、試料気化室1内のガス圧つまり検出ガス圧P1が緩
やかに下降して設定圧力Pcに戻ったならば(ステップ
S5で「Y」)、制御部15は再び検出ガス圧P1が設
定圧力Pcになるように調節弁12を制御する(ステッ
プS6)。例えば、注入される液体試料がごく微量であ
る等、試料注入直後に圧力差ΔPがPa以下にならなけ
ればステップS3→S6と進み、検出ガス圧P1が設定
圧力Pcになるような制御が継続して行われる。
As described above, after the gas pressure rises sharply and the control in step S4 is performed, as shown in FIG. 4, the gas pressure in the sample vaporization chamber 1, ie, the detected gas pressure P1, gradually decreases. When the pressure returns to the set pressure Pc ("Y" in step S5), the control unit 15 controls the control valve 12 again so that the detected gas pressure P1 becomes the set pressure Pc (step S6). For example, if the pressure difference ΔP does not become Pa or less immediately after sample injection, such as when the injected liquid sample is extremely small, the process proceeds from step S3 to step S6, and control continues so that the detected gas pressure P1 becomes the set pressure Pc. It is done.

【0018】次に、上記制御の具体例を数値を挙げて説
明する。いま、セプタムパージ流路6に流れるパージ流
量が2mL/分、スプリット流路7に流れるスプリット
流量が47mL/分、カラム2に流れる流量が1mL/
分であるとすると、キャリアガス流路8を通して試料気
化室1へ供給すべきキャリアガス流量は50mL/分と
なる。このときの試料気化室1のガス圧(つまり設定圧
力Pc)は100kPaであるものとし、このとき圧力
差ΔPは10kPaであるとする。すると、この圧力差
ΔPのうち、パージ流量の寄与、つまり上記パージ流量
を確保するために必要な流量抵抗11両端の圧力差は1
0×2/50=0.4kPaと求まる。そこで、ΔPの
判定閾値Paはこの0.4kPaよりも大きな1kPa
と定めておく。
Next, a specific example of the above control will be described with reference to numerical values. Now, the purge flow rate flowing to the septum purge flow path 6 is 2 mL / min, the split flow rate flowing to the split flow path 7 is 47 mL / min, and the flow rate flowing to the column 2 is 1 mL / min.
In this case, the flow rate of the carrier gas to be supplied to the sample vaporizing chamber 1 through the carrier gas flow path 8 is 50 mL / min. At this time, the gas pressure in the sample vaporization chamber 1 (that is, the set pressure Pc) is assumed to be 100 kPa, and the pressure difference ΔP is assumed to be 10 kPa. Then, of the pressure difference ΔP, the contribution of the purge flow rate, that is, the pressure difference between both ends of the flow resistance 11 required to secure the purge flow rate is 1
0 × 2/50 = 0.4 kPa is obtained. Therefore, the determination threshold Pa of ΔP is 1 kPa, which is larger than 0.4 kPa.
It is determined.

【0019】試料注入前、制御部15は検出ガス圧P1
が設定圧力Pc=100kPaとなるように調節弁12
を制御している。これにより、キャリアガス流路8を通
して試料気化室1には50mL/分の流量でキャリアガ
スが供給され、パージ流量は2mL/分となる。試料注
入によって検出ガス圧P1が急上昇し、圧力差ΔPが1
kPa以下になると、制御部15はP1の値に拘わらず
ΔPが1kPaになるように調節弁12を制御する。従
って、定められた2mL/分というパージ流量よりも大
きな略一定流量のキャリアガスが確実に試料気化室1に
供給され続け、このキャリアガスにより上述したように
気化試料の拡散が抑制される。
Before the sample injection, the control unit 15 controls the detected gas pressure P1.
Control valve 12 such that the set pressure Pc = 100 kPa.
Is controlling. Thereby, the carrier gas is supplied to the sample vaporizing chamber 1 through the carrier gas flow path 8 at a flow rate of 50 mL / min, and the purge flow rate becomes 2 mL / min. The detected gas pressure P1 sharply rises due to the sample injection, and the pressure difference ΔP becomes 1
When the pressure becomes equal to or less than kPa, the control unit 15 controls the control valve 12 so that ΔP becomes 1 kPa regardless of the value of P1. Accordingly, a carrier gas having a substantially constant flow rate larger than the predetermined purge flow rate of 2 mL / min is surely supplied to the sample vaporization chamber 1, and the diffusion of the vaporized sample is suppressed by the carrier gas as described above.

【0020】なお、図4に点線で示すカーブは従来の定
圧制御方式によるガス圧制御を行った場合の例であっ
て、本発明によるガスクロマトグラフ装置では、試料注
入直後にもキャリアガスが確実に供給され続けることに
より、従来よりも試料気化室1内のガス圧自体は高くな
ることを示している。
The curve shown by the dotted line in FIG. 4 is an example in the case where the gas pressure is controlled by the conventional constant pressure control method. In the gas chromatograph according to the present invention, the carrier gas is surely provided immediately after the sample injection. This indicates that the gas pressure in the sample vaporization chamber 1 itself becomes higher than in the past by continuing to supply the gas.

【0021】図5は、本発明の第2のガスクロマトグラ
フ装置の一実施形態を示す構成図である。この実施形態
では、調節弁12を設けたキャリアガス主流路81とマ
スフローコントローラ16を設けたキャリアガス副流路
82とを並設し、キャリアガス副流路82を通して最低
限の流量(少なくともパージ流量以上)のキャリアガス
を試料気化室1へと供給する。これにより、試料注入直
後に調節弁12が閉鎖されてもキャリアガス副流路82
を通して一定流量のキャリアガスを試料気化室1へ導入
することができる。
FIG. 5 is a block diagram showing an embodiment of the second gas chromatograph apparatus of the present invention. In this embodiment, the carrier gas main flow path 81 provided with the control valve 12 and the carrier gas sub flow path 82 provided with the mass flow controller 16 are arranged in parallel, and the minimum flow rate (at least the purge flow rate) is passed through the carrier gas sub flow path 82. The above carrier gas is supplied to the sample vaporization chamber 1. Thereby, even if the control valve 12 is closed immediately after sample injection, the carrier gas sub-flow path 82
A constant flow rate of carrier gas can be introduced into the sample vaporization chamber 1 through

【0022】なお、上記実施形態は何れも一例であっ
て、本発明の趣旨の範囲で適宜変更や修正を行うことが
できることは明らかである。
It should be noted that each of the above embodiments is merely an example, and it is apparent that changes and modifications can be made as appropriate within the scope of the present invention.

【0023】[0023]

【発明の効果】本発明に係る第1及び第2のガスクロマ
トグラフ装置によれば、試料気化室に液体試料が注入さ
れた直後に急激に圧力が上昇しても、試料気化室へキャ
リアガスが供給され続けるので、気化試料の拡散が抑制
され、所定量又は所定スプリット比に応じた量の気化試
料を確実にカラムへ送り込むことができる。このため、
高精度の定量分析が行え、再現性も向上する。
According to the first and second gas chromatograph apparatuses according to the present invention, even if the pressure rises immediately after the liquid sample is injected into the sample vaporizing chamber, the carrier gas is supplied to the sample vaporizing chamber. Since the supply is continued, the diffusion of the vaporized sample is suppressed, and the vaporized sample in a predetermined amount or in an amount corresponding to the predetermined split ratio can be reliably sent to the column. For this reason,
Performs high-precision quantitative analysis and improves reproducibility.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1のガスクロマトグラフ装置の一
実施形態における試料気化室を中心とする要部の構成
図。
FIG. 1 is a configuration diagram of a main part mainly of a sample vaporization chamber in an embodiment of a first gas chromatograph device of the present invention.

【図2】 本発明の第1のガスクロマトグラフ装置と従
来の装置とにおける気化試料の挙動を示す模式図。
FIG. 2 is a schematic diagram showing the behavior of a vaporized sample in a first gas chromatograph device of the present invention and a conventional device.

【図3】 本実施形態のガスクロマトグラフ装置におけ
るガス圧制御のフローチャート。
FIG. 3 is a flowchart of gas pressure control in the gas chromatograph device of the present embodiment.

【図4】 試料注入前後の試料気化室内のガス圧の変化
を示す図。
FIG. 4 is a diagram showing a change in gas pressure in a sample vaporization chamber before and after sample injection.

【図5】 本発明の第2のガスクロマトグラフ装置の一
実施形態における要部の構成図。
FIG. 5 is a configuration diagram of a main part in an embodiment of the second gas chromatograph device of the present invention.

【符号の説明】[Explanation of symbols]

1…試料気化室 2…カラム 6…セプタムパージ流路 7…スプリット
流路 8…キャリアガス流路 9、10…ニー
ドル弁 11…流量抵抗 12…調節弁 13…第1圧力センサ 14…第2圧力
センサ 15…制御部 16…マスフロ
ーコントローラ 81…キャリアガス主流路 82…キャリア
ガス副流路
DESCRIPTION OF SYMBOLS 1 ... Sample vaporization chamber 2 ... Column 6 ... Septum purge flow path 7 ... Split flow path 8 ... Carrier gas flow path 9, 10 ... Needle valve 11 ... Flow resistance 12 ... Control valve 13 ... 1st pressure sensor 14 ... 2nd pressure Sensor 15 Control part 16 Mass flow controller 81 Carrier gas main flow path 82 Carrier gas sub flow path

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 カラム入口に設けた試料気化室内に液体
試料を注入して気化させ、該気化試料をキャリアガス流
に乗せてカラムに導入するガスクロマトグラフ装置にお
いて、 a)前記試料気化室にキャリアガスを供給するキャリアガ
ス流路と、 b)該キャリアガス流路上に配設された流量抵抗と、 c)該流量抵抗よりも上流側のキャリアガス流路上に配設
された調節弁と、 d)前記流量抵抗の出口側の圧力を検出する第1の圧力セ
ンサと、 e)前記流量抵抗の入口側の圧力を検出する第2の圧力セ
ンサと、 f)定常状態では第1の圧力センサの検出値に基づいて前
記調節弁を制御し、試料注入後には第2の圧力センサの
検出値、又は第1及び第2の両方の圧力センサの検出値
に基づいて前記調節弁を制御する制御手段と、 を備えることを特徴とするガスクロマトグラフ装置。
1. A gas chromatograph device for injecting and vaporizing a liquid sample into a sample vaporization chamber provided at a column inlet, placing the vaporized sample on a carrier gas flow and introducing the sample into a column, comprising the steps of: A carrier gas flow path for supplying gas, b) a flow resistance disposed on the carrier gas flow path, c) a control valve disposed on a carrier gas flow path upstream of the flow resistance, d. A) a first pressure sensor for detecting the pressure on the outlet side of the flow resistor; e) a second pressure sensor for detecting the pressure on the inlet side of the flow resistor; and f) a first pressure sensor in the steady state. Control means for controlling the control valve based on the detected value, and controlling the control valve based on the detected value of the second pressure sensor or the detected values of both the first and second pressure sensors after sample injection. And a gask comprising: Chromatograph apparatus.
【請求項2】 カラム入口に設けた試料気化室内に液体
試料を注入して気化させ、該気化試料をキャリアガス流
に乗せてカラムに導入するガスクロマトグラフ装置にお
いて、前記試料気化室にキャリアガスを供給するキャリ
アガス流路として、試料気化室側の圧力に応じて流量を
調節する調節弁を有する第1のキャリアガス流路と、所
定の一定流量のキャリアガスを流通させる流量調節手段
を有する第2のキャリアガス流路とを備え、試料注入後
に、前記調節弁の開度に拘わらず第2のキャリアガス流
路を通して試料気化室にキャリアガスを供給するように
したことを特徴とするガスクロマトグラフ装置。
2. A gas chromatograph device for injecting and vaporizing a liquid sample into a sample vaporization chamber provided at a column inlet, placing the vaporized sample on a carrier gas flow and introducing the vaporized sample into a column, wherein a carrier gas is introduced into the sample vaporization chamber. As a carrier gas flow path to be supplied, a first carrier gas flow path having a control valve for adjusting a flow rate according to the pressure on the sample vaporization chamber side, and a flow rate control means having a flow rate adjusting means for flowing a predetermined constant flow rate of a carrier gas. A second carrier gas flow path, wherein after the sample is injected, a carrier gas is supplied to the sample vaporization chamber through the second carrier gas flow path regardless of the degree of opening of the control valve. apparatus.
JP2000020629A 2000-01-28 2000-01-28 Gas chromatograph device Pending JP2001208737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000020629A JP2001208737A (en) 2000-01-28 2000-01-28 Gas chromatograph device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000020629A JP2001208737A (en) 2000-01-28 2000-01-28 Gas chromatograph device

Publications (1)

Publication Number Publication Date
JP2001208737A true JP2001208737A (en) 2001-08-03

Family

ID=18547157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000020629A Pending JP2001208737A (en) 2000-01-28 2000-01-28 Gas chromatograph device

Country Status (1)

Country Link
JP (1) JP2001208737A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011242175A (en) * 2010-05-14 2011-12-01 Shimadzu Corp Gas chromatograph mass spectrometer
JP2012522988A (en) * 2009-04-01 2012-09-27 ブルカー ケミカル アナリシス ベーフェー Gas chromatography check valves and systems
JP2012237600A (en) * 2011-05-10 2012-12-06 Shimadzu Corp Gas chromatography apparatus
JP2014134392A (en) * 2013-01-08 2014-07-24 Shimadzu Corp Gas chromatograph device
US9360462B2 (en) 2012-10-26 2016-06-07 Shimadzu Corporation Gas chromatograph mass spectrometer
CN114324700A (en) * 2021-12-15 2022-04-12 广州首诺科学仪器有限公司 FID air feeder

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012522988A (en) * 2009-04-01 2012-09-27 ブルカー ケミカル アナリシス ベーフェー Gas chromatography check valves and systems
JP2011242175A (en) * 2010-05-14 2011-12-01 Shimadzu Corp Gas chromatograph mass spectrometer
JP2012237600A (en) * 2011-05-10 2012-12-06 Shimadzu Corp Gas chromatography apparatus
US9360462B2 (en) 2012-10-26 2016-06-07 Shimadzu Corporation Gas chromatograph mass spectrometer
JP2014134392A (en) * 2013-01-08 2014-07-24 Shimadzu Corp Gas chromatograph device
CN114324700A (en) * 2021-12-15 2022-04-12 广州首诺科学仪器有限公司 FID air feeder

Similar Documents

Publication Publication Date Title
JPH09133668A (en) Gas chromatography system or method for conveying material sample for analysis to gas chromatrgraphy system
JP3543532B2 (en) Gas chromatograph
JP2015206774A (en) Flow rate adjustment device and gas chromatograph equipped therewith
JP2001208737A (en) Gas chromatograph device
JP3424432B2 (en) Gas chromatograph
JP3581250B2 (en) Flow type supply method of target concentration mixed gas by two kinds of gas
JP2008190942A (en) Gas chromatograph system
JP2008014788A (en) Liquid chromatograph mass spectrometer
JP3202225U (en) Gas chromatograph
JPH04105062A (en) Carrier gas rate-of-flow control method of gas chromatograph
JP6583515B2 (en) Gas chromatograph
JP2674671B2 (en) Gas chromatograph with splitter
JP4403638B2 (en) Liquid chromatograph
JP4179189B2 (en) Gas chromatograph
JP3463431B2 (en) Gas chromatograph
JP6281450B2 (en) Gas chromatograph and flow control device used therefor
JP2000249693A (en) Gas chromatograph apparatus
JP2862120B2 (en) Gas chromatograph
JP2870947B2 (en) Gas chromatograph with splitter
JPH08101177A (en) Capillary gas chromatograph
JPH09236590A (en) Automatic sample injecting device for gas chromatograph
JPS5918454A (en) Carrier gas controlling apparatus for on-column capillary chromatograph
JP2600572Y2 (en) Sample introduction device for gas chromatograph
JP2001289832A (en) Gas chromatograph
JP2017194461A (en) Chromatography sampler and method of operating the same