JP2014130872A - Substrate processing apparatus, and substrate processing method - Google Patents

Substrate processing apparatus, and substrate processing method Download PDF

Info

Publication number
JP2014130872A
JP2014130872A JP2012286859A JP2012286859A JP2014130872A JP 2014130872 A JP2014130872 A JP 2014130872A JP 2012286859 A JP2012286859 A JP 2012286859A JP 2012286859 A JP2012286859 A JP 2012286859A JP 2014130872 A JP2014130872 A JP 2014130872A
Authority
JP
Japan
Prior art keywords
liquid
substrate
static elimination
temperature
substrate processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012286859A
Other languages
Japanese (ja)
Other versions
JP6262430B2 (en
Inventor
Masahiro Miyagi
雅宏 宮城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainippon Screen Manufacturing Co Ltd
Original Assignee
Dainippon Screen Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Screen Manufacturing Co Ltd filed Critical Dainippon Screen Manufacturing Co Ltd
Priority to JP2012286859A priority Critical patent/JP6262430B2/en
Priority to TW102145530A priority patent/TWI546878B/en
Priority to KR1020130158309A priority patent/KR101580369B1/en
Priority to US14/142,586 priority patent/US9972515B2/en
Priority to CN201310741211.6A priority patent/CN103915364B/en
Publication of JP2014130872A publication Critical patent/JP2014130872A/en
Application granted granted Critical
Publication of JP6262430B2 publication Critical patent/JP6262430B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent damages of a substrate due to movement of electric charges during processing by a process liquid.SOLUTION: In a substrate processing apparatus 10, a temperature of an electricity removal liquid in which its specific resistance gradually decreases with an increase in the liquid temperature, is controlled by a temperature control part 61, and the specific resistance of the electricity removal liquid becomes larger than that of a processing liquid (SPM liquid) used for the processing in a sheet processing apparatus 1. The electricity removal liquid is reserved in an electricity removal liquid reservoir part 71. Then a plurality of substrates 9 held by a cartridge 73, are immersed in the electricity removal liquid inside the electricity removal liquid reservoir part 71, and main surfaces on both sides of the substrates 9 are brought into contact with the electricity removal liquid over the entire surfaces. Thus, electricity is removed relatively gently from the substrates 9. Then, after the end of electricity removal processing and the drying processing by a substrate drying part 75, in the sheet processing apparatus 1, the SPM liquid is supplied onto an upper surface 91 of the substrate 9, and SPM processing is performed. Thus, during the SPM processing, a large amount of electric charges are prevented from rapidly moving from the substrate 9 to the SPM liquid, and damages of the substrate 9 are prevented.

Description

本発明は、基板を処理する技術に関する。   The present invention relates to a technique for processing a substrate.

従来より、半導体基板(以下、単に「基板」という。)の製造工程では、基板処理装置を用いて酸化膜等の絶縁膜を有する基板に対して様々な処理が施される。例えば、表面上にレジストのパターンが形成された基板に薬液を供給することにより、基板の表面に対してエッチング等の処理が行われる。また、エッチング等の終了後、基板上のレジストを除去する処理も行われる。   Conventionally, in a manufacturing process of a semiconductor substrate (hereinafter simply referred to as “substrate”), various processes are performed on a substrate having an insulating film such as an oxide film using a substrate processing apparatus. For example, by supplying a chemical solution to a substrate having a resist pattern formed on the surface, a process such as etching is performed on the surface of the substrate. Further, after the etching or the like is completed, a process for removing the resist on the substrate is also performed.

特許文献1の基板処理装置では、SPM(sulfuric acid / hydrogen peroxide mixture)液等の薬液による処理を行う前に、薬液よりも電気伝導率が低い液体を基板上の処理領域に供給し、当該液体が処理領域上に存在している状態で、薬液が処理領域に吐出される。これにより、基板と薬液との接触により生じる基板の局所的なダメージの防止が図られる。基板の局所的なダメージとは、処理領域のフィールド酸化膜やゲート酸化膜の局所的な破壊であり、当該破壊は、薬液と薬液用ノズルとの間の摩擦帯電現象により薬液が帯電した状態で基板の処理領域に接触することにより生じる。   In the substrate processing apparatus of Patent Document 1, before processing with a chemical solution such as an SPM (sulfuric acid / hydrogen peroxide mixture) solution, a liquid having a lower electrical conductivity than the chemical solution is supplied to the processing region on the substrate, and the liquid Is present on the processing region, and the chemical solution is discharged to the processing region. As a result, local damage to the substrate caused by contact between the substrate and the chemical solution can be prevented. The local damage of the substrate is the local destruction of the field oxide film and the gate oxide film in the processing region, and the destruction is caused by the fact that the chemical solution is charged by the frictional charging phenomenon between the chemical solution and the chemical solution nozzle. It occurs by contacting the processing area of the substrate.

特許文献2では、ウエハ上の処理領域に濃硫酸等の薬液を供給する前に、薬液よりも比抵抗値が低いCO水等の液体を処理領域に供給し、当該液体が処理領域上に存在している状態で薬液を処理領域に吐出する技術が開示されている。これにより、処理領域への薬液の接液の際に生じる静電摩擦現象による帯電の防止が図られる。 In Patent Document 2, before supplying a chemical solution such as concentrated sulfuric acid to the processing region on the wafer, a liquid such as CO 2 water having a specific resistance lower than that of the chemical solution is supplied to the processing region. A technique is disclosed in which a chemical solution is ejected to a processing region in the existing state. As a result, it is possible to prevent charging due to an electrostatic friction phenomenon that occurs when the chemical solution comes into contact with the processing region.

特許文献3では、電子デバイスの洗浄装置において、基板の表面または薬液ノズルに、イオン化された蒸気を供給することにより、基板の表面または薬液ノズルに存在する静電気を除電する技術が開示されている。特許文献4の基板液処理装置では、基板の回路形成面に対する液処理工程よりも前に、基板の回路形成面とは反対側の面に向けて除電処理液を吐出する除電処理工程が行われる。   Patent Document 3 discloses a technique for discharging static electricity present on a surface of a substrate or a chemical nozzle by supplying ionized vapor to the surface of the substrate or a chemical nozzle in an electronic device cleaning apparatus. In the substrate liquid processing apparatus of Patent Document 4, a charge removal process step of discharging a charge removal treatment liquid toward the surface opposite to the circuit formation surface of the substrate is performed before the liquid treatment step with respect to the circuit formation surface of the substrate. .

一方、特許文献5では、基板の表面に除去液を供給することにより、基板の表面に付着した有機物を除去する基板処理装置が開示されている。当該基板処理装置では、基板の温度と、基板上に供給される除去液の温度との差が所定の範囲内となるように、基板の温度を調整する温調手段が設けられる。温調手段の一例として、保持回転手段により保持された基板の裏面に、温度が調整された流体を供給する流体供給手段が挙げられている。   On the other hand, Patent Document 5 discloses a substrate processing apparatus that removes organic substances adhering to the surface of a substrate by supplying a removing liquid to the surface of the substrate. In the substrate processing apparatus, temperature adjusting means for adjusting the temperature of the substrate is provided so that the difference between the temperature of the substrate and the temperature of the removing liquid supplied onto the substrate is within a predetermined range. As an example of the temperature adjusting means, there is a fluid supply means for supplying a fluid whose temperature is adjusted to the back surface of the substrate held by the holding and rotating means.

特開2009−200365号公報JP 2009-200365 A 特開2007−134673号公報JP 2007-134673 A 特開2007−214347号公報JP 2007-214347 A 特開2011−103438号公報JP 2011-103438 A 特開2004−158588号公報JP 2004-158588 A

ところで、基板処理装置にて処理される基板には、基板処理装置に搬入される前に、ドライエッチングやプラズマCVD(Chemical Vapor Deposition)等のドライ工程が行われている。このようなドライ工程では、デバイス内に電荷が発生して帯電するため、基板は、帯電した状態で基板処理装置に搬入される(いわゆる、持ち込み帯電)。そして、基板処理装置において、SPM液のような比抵抗が小さい薬液が基板上に供給されると、デバイス内の電荷が、デバイスから薬液へと急激に移動し(すなわち、薬液中へと放電し)、当該移動に伴う発熱によりデバイスにダメージが生じるおそれがある。そこで、薬液を基板に供給する前に、イオナイザにより基板を除電することが考えられるが、基板の帯電量が大きい場合、効率的に除電することは困難である。   By the way, the substrate processed by the substrate processing apparatus is subjected to a dry process such as dry etching or plasma CVD (Chemical Vapor Deposition) before being carried into the substrate processing apparatus. In such a dry process, since charges are generated in the device and charged, the substrate is carried into the substrate processing apparatus in a charged state (so-called carry-in charging). In the substrate processing apparatus, when a chemical solution having a small specific resistance such as an SPM solution is supplied onto the substrate, the electric charge in the device rapidly moves from the device to the chemical solution (that is, discharges into the chemical solution). ), The device may be damaged by the heat generated by the movement. In view of this, it is conceivable to neutralize the substrate with an ionizer before supplying the chemical solution to the substrate. However, it is difficult to efficiently eliminate the charge when the charge amount of the substrate is large.

本発明は、上記課題に鑑みなされたものであり、処理液による処理の際に電荷の移動による基板の損傷を防止することを目的としている。   The present invention has been made in view of the above problems, and an object of the present invention is to prevent damage to a substrate due to movement of electric charges during processing with a processing liquid.

請求項1に記載の発明は、基板を処理する基板処理装置であって、基板を保持する基板保持部と、前記基板の一方の主面である第1主面上に処理液を供給する処理液供給部と、前記基板の前記第1主面および他方の主面である第2主面を、液温が上昇するに従って比抵抗が漸次減少する除電液に接触させる除電液接液部と、前記除電液の温度を調整する温度調整部と、前記処理液供給部、前記除電液接液部および前記温度調整部を制御することにより、前記除電液の温度を、前記除電液の比抵抗が前記処理液の比抵抗よりも大きくなる範囲内としつつ、前記基板の前記第1主面および前記第2主面を全面に亘って前記除電液に接触させて接液状態を維持することにより前記基板上の電荷を減少させた後、前記処理液を前記基板の前記第1主面上に供給して所定の処理を行う制御部とを備える。   The invention according to claim 1 is a substrate processing apparatus for processing a substrate, wherein the substrate holding unit that holds the substrate, and the process of supplying the processing liquid onto the first main surface that is one main surface of the substrate. A liquid-removing liquid-contacting section that brings the liquid supply section into contact with the liquid-removing liquid whose specific resistance gradually decreases as the liquid temperature rises, and the second main surface that is the first main surface and the other main surface of the substrate; By controlling the temperature adjusting unit that adjusts the temperature of the static elimination liquid, the treatment liquid supply unit, the static elimination liquid wetted part, and the temperature adjustment unit, the temperature of the static elimination liquid is determined by the specific resistance of the static elimination liquid. By maintaining the liquid contact state by bringing the first main surface and the second main surface of the substrate into contact with the charge-removing solution over the entire surface within a range larger than the specific resistance of the treatment liquid. After reducing the charge on the substrate, the treatment liquid is applied to the first main surface of the substrate. It is supplied to a control unit for performing predetermined processing.

請求項2に記載の発明は、請求項1に記載の基板処理装置であって、前記第1主面に接触する前記除電液と前記第2主面に接触する前記除電液とが前記基板上において連続している。   Invention of Claim 2 is a substrate processing apparatus of Claim 1, Comprising: The said static elimination liquid which contacts the said 1st main surface, and the said static elimination liquid which contacts the said 2nd main surface are on the said board | substrate. Is continuous.

請求項3に記載の発明は、請求項2に記載の基板処理装置であって、前記除電液接液部が、前記除電液を貯溜する除電液貯溜部を備え、前記基板が、前記除電液貯溜部に貯溜された前記除電液に浸漬されることにより、前記第1主面および前記第2主面が前記除電液に接触する。   Invention of Claim 3 is a substrate processing apparatus of Claim 2, Comprising: The said static elimination liquid contact part is equipped with the static elimination liquid storage part which stores the said static elimination liquid, The said board | substrate is said static elimination liquid The first main surface and the second main surface are in contact with the charge removal liquid by being immersed in the charge removal liquid stored in the storage section.

請求項4に記載の発明は、請求項3に記載の基板処理装置であって、前記除電液貯溜部に貯溜された前記除電液に、前記基板を含むとともにそれぞれの主面の法線方向が水平方向を向くように配列された複数の基板が浸漬される。   Invention of Claim 4 is a substrate processing apparatus of Claim 3, Comprising: The said normalization direction of each main surface is included in the said static elimination liquid stored in the said static elimination liquid storage part including the said board | substrate. A plurality of substrates arranged in the horizontal direction are immersed.

請求項5に記載の発明は、請求項1に記載の基板処理装置であって、前記除電液接液部が、前記第1主面を上側に向けた状態で前記基板保持部に保持された前記基板の前記第1主面上に前記除電液を供給して前記第1主面全体を前記除電液にてパドルする第1除電液接液部と、前記基板の前記第2主面に対向し、前記除電液を前記第2主面に向けて吐出して前記第2主面全体を前記除電液と接触させる第2除電液接液部とを備える。   Invention of Claim 5 is the substrate processing apparatus of Claim 1, Comprising: The said static elimination liquid contact part was hold | maintained at the said board | substrate holding part in the state which faced the said 1st main surface upwards A first discharge liquid contact portion that supplies the charge removal liquid onto the first main surface of the substrate and paddles the entire first main surface with the charge removal solution, and is opposed to the second main surface of the substrate. And a second discharging liquid contact portion that discharges the discharging liquid toward the second main surface and brings the entire second main surface into contact with the discharging solution.

請求項6に記載の発明は、請求項1ないし5のいずれかに記載の基板処理装置であって、前記除電液の温度を測定する除電液測定部をさらに備え、前記制御部が、前記除電液測定部の測定結果に基づいて、前記除電液の温度と所定の目標温度との差が小さくなるように前記温度調整部を制御する。   A sixth aspect of the present invention is the substrate processing apparatus according to any one of the first to fifth aspects, further comprising a static elimination liquid measuring unit that measures a temperature of the static elimination liquid, wherein the control unit includes the static elimination liquid. Based on the measurement result of the liquid measuring unit, the temperature adjusting unit is controlled so that the difference between the temperature of the static eliminating liquid and a predetermined target temperature is reduced.

請求項7に記載の発明は、請求項6に記載の基板処理装置であって、前記除電液の温度と前記目標温度との差が閾値温度差以下の場合、前記温度調整部による前記除電液の温度調整が停止される。   A seventh aspect of the present invention is the substrate processing apparatus according to the sixth aspect, wherein when the difference between the temperature of the static elimination liquid and the target temperature is equal to or less than a threshold temperature difference, the static elimination liquid by the temperature adjustment unit The temperature adjustment of is stopped.

請求項8に記載の発明は、請求項6または7に記載の基板処理装置であって、前記基板上に予め形成されているデバイスのサイズが小さいほど、より低い温度の目標温度が設定される。   The invention according to claim 8 is the substrate processing apparatus according to claim 6 or 7, wherein a lower target temperature is set as a size of a device formed in advance on the substrate is smaller. .

請求項9に記載の発明は、請求項1ないし5のいずれかに記載の基板処理装置であって、前記除電液の比抵抗を測定する除電液測定部をさらに備え、前記制御部が、前記除電液測定部の測定結果に基づいて、前記除電液の比抵抗と所定の目標比抵抗との差が小さくなるように前記温度調整部を制御する。   Invention of Claim 9 is a substrate processing apparatus in any one of Claim 1 thru | or 5, Comprising: The static elimination liquid measurement part which measures the specific resistance of the said static elimination liquid is further provided, The said control part is the said control part, Based on the measurement result of the neutralization liquid measurement unit, the temperature adjustment unit is controlled so that the difference between the specific resistance of the neutralization liquid and a predetermined target specific resistance becomes small.

請求項10に記載の発明は、請求項9に記載の基板処理装置であって、前記除電液の比抵抗と前記目標比抵抗との差が閾値比抵抗差以下の場合、前記温度調整部による前記除電液の温度調整が停止される。   A tenth aspect of the present invention is the substrate processing apparatus according to the ninth aspect, wherein when the difference between the specific resistance of the static elimination liquid and the target specific resistance is equal to or less than a threshold specific resistance difference, the temperature adjusting unit The temperature adjustment of the neutralizing liquid is stopped.

請求項11に記載の発明は、請求項9または10に記載の基板処理装置であって、前記基板上に予め形成されているデバイスのサイズが小さいほど、より高い比抵抗の目標比抵抗が設定される。   The invention according to claim 11 is the substrate processing apparatus according to claim 9 or 10, wherein the smaller the size of a device formed in advance on the substrate, the higher the target specific resistance is set. Is done.

請求項12に記載の発明は、請求項1ないし11のいずれかに記載の基板処理装置であって、前記基板の前記第1主面上の液体を除去する液体除去部をさらに備え、前記制御部が前記液体除去部を制御することにより、前記基板の前記除電液との接触と、前記処理液による前記所定の処理との間において、前記除電液が前記第1主面上から除去される。   A twelfth aspect of the present invention is the substrate processing apparatus according to any one of the first to eleventh aspects, further comprising a liquid removing unit that removes the liquid on the first main surface of the substrate, and the control. When the unit controls the liquid removing unit, the neutralizing liquid is removed from the first main surface between the contact of the substrate with the neutralizing liquid and the predetermined treatment with the processing liquid. .

請求項13に記載の発明は、請求項1ないし12のいずれかに記載の基板処理装置であって、前記除電液が純水である。   A thirteenth aspect of the present invention is the substrate processing apparatus according to any one of the first to twelfth aspects, wherein the charge removal liquid is pure water.

請求項14に記載の発明は、請求項1ないし13のいずれかに記載の基板処理装置であって、前記処理液が硫酸を含む。   The invention according to claim 14 is the substrate processing apparatus according to any one of claims 1 to 13, wherein the processing solution contains sulfuric acid.

請求項15に記載の発明は、基板を処理する基板処理方法であって、a)液温が上昇するに従って比抵抗が漸次減少する除電液の温度を、前記除電液の比抵抗が処理液の比抵抗よりも大きくなる範囲内とする工程と、b)前記a)工程よりも後に、基板の両側の主面を全面に亘って前記除電液に接触させて接液状態を維持することにより前記基板上の電荷を減少させる工程と、c)前記b)工程よりも後に、前記処理液を前記基板の一方の主面上に供給して所定の処理を行う工程とを備える。   The invention according to claim 15 is a substrate processing method for processing a substrate, wherein: a) the temperature of the static elimination liquid gradually decreasing as the liquid temperature rises, and the specific resistance of the static elimination liquid is equal to that of the processing liquid. A step in which the specific resistance is larger than the specific resistance; and b) after the step a), the main surfaces on both sides of the substrate are brought into contact with the charge removal solution over the entire surface to maintain the liquid contact state. A step of reducing the charge on the substrate, and c) a step of supplying the treatment liquid onto one main surface of the substrate and performing a predetermined treatment after the step b).

請求項16に記載の発明は、請求項15に記載の基板処理方法であって、前記基板の前記一方の主面に接触する前記除電液と前記基板の他方の主面に接触する前記除電液とが前記基板上において連続している。   A sixteenth aspect of the present invention is the substrate processing method according to the fifteenth aspect, wherein the neutralizing liquid that contacts the one main surface of the substrate and the neutralizing liquid that contacts the other main surface of the substrate. Are continuous on the substrate.

請求項17に記載の発明は、請求項16に記載の基板処理方法であって、前記b)工程において、前記基板が、除電液貯溜部に貯溜された前記除電液に浸漬されることにより、前記一方の主面および前記他方の主面が前記除電液に接触する。   Invention of Claim 17 is the substrate processing method of Claim 16, Comprising: In said b) process, the said board | substrate is immersed in the said static elimination liquid stored in the static elimination liquid storage part, The one main surface and the other main surface are in contact with the static elimination liquid.

請求項18に記載の発明は、請求項17に記載の基板処理方法であって、前記b)工程において、前記除電液貯溜部に貯溜された前記除電液に、前記基板を含むとともにそれぞれの主面の法線方向が水平方向を向くように配列された複数の基板が浸漬される。   The invention according to claim 18 is the substrate processing method according to claim 17, wherein, in the step b), the charge removal liquid stored in the charge removal liquid storage section includes the substrate and each of the main processes. A plurality of substrates arranged so that the normal direction of the surface faces the horizontal direction is immersed.

請求項19に記載の発明は、請求項15に記載の基板処理方法であって、前記b)工程が、b1)前記一方の主面を上側に向けた状態で保持された前記基板の前記一方の主面上に前記除電液を供給して前記一方の主面全体を前記除電液にてパドルする工程と、b2)前記基板の他方の主面に向けて前記除電液を吐出して前記他方の主面全体を前記除電液と接触させる工程とを備える。   The invention according to claim 19 is the substrate processing method according to claim 15, wherein the step b) includes the step of b1) holding the one main surface upward. Supplying the neutralizing liquid onto the main surface of the substrate and paddle the entire one main surface with the neutralizing liquid; b2) discharging the neutralizing liquid toward the other main surface of the substrate and And a step of bringing the entire main surface of the liquid crystal into contact with the static elimination liquid.

請求項20に記載の発明は、請求項15ないし19のいずれかに記載の基板処理方法であって、前記a)工程が、a1)前記除電液の温度を測定する工程と、a2)前記a1)工程における測定結果に基づいて、前記除電液の温度と所定の目標温度との差が小さくなるように前記除電液の温度を調整する工程と、a3)前記a1)工程と前記a2)工程とを繰り返す工程とを備える。   The invention described in claim 20 is the substrate processing method according to any one of claims 15 to 19, wherein the step a) includes a1) a step of measuring the temperature of the charge removal solution, and a2) the a1. ) A step of adjusting the temperature of the static elimination liquid so that a difference between the temperature of the static elimination liquid and a predetermined target temperature is reduced based on the measurement result in the step; a3) the a1) step and the a2) step; The process of repeating.

請求項21に記載の発明は、請求項15ないし19のいずれかに記載の基板処理方法であって、前記a)工程が、a1)前記除電液の温度を測定する工程と、a2)前記a1)工程における測定結果に基づいて、前記除電液の温度と所定の目標温度との差が閾値温度差以下の場合、前記除電液の温度調整を行わず、前記除電液の温度と前記目標温度との前記差が前記閾値温度差よりも大きい場合、前記除電液の温度と前記目標温度との差が小さくなるように前記除電液の温度を調整する工程とを備える。   A twenty-first aspect of the present invention is the substrate processing method according to any one of the fifteenth to nineteenth aspects, wherein the step a) includes a1) a step of measuring the temperature of the charge removal solution, and a2) the a1. ) Based on the measurement result in the step, if the difference between the temperature of the static elimination liquid and a predetermined target temperature is equal to or less than the threshold temperature difference, the temperature of the static elimination liquid is not adjusted and the temperature of the static elimination liquid and the target temperature are not adjusted. A step of adjusting the temperature of the static elimination liquid so that the difference between the temperature of the static elimination liquid and the target temperature is small when the difference is larger than the threshold temperature difference.

請求項22に記載の発明は、請求項20または21に記載の基板処理方法であって、前記基板上に予め形成されているデバイスのサイズが小さいほど、より低い温度の目標温度が設定される。   The invention according to claim 22 is the substrate processing method according to claim 20 or 21, wherein a lower target temperature is set as the size of a device formed in advance on the substrate is smaller. .

請求項23に記載の発明は、請求項20ないし22のいずれかに記載の基板処理方法であって、前記a)工程よりも前に、d1)前記処理液の比抵抗を得る工程と、d2)前記除電液の温度と比抵抗との関係を得る工程と、d3)前記d2)工程にて得られた前記関係に基づいて、前記除電液の比抵抗が前記処理液の前記比抵抗に等しくなる前記除電液の温度を取得する工程と、d4)前記d3)工程にて取得された温度よりも低い仮目標温度を設定する工程と、d5)前記仮目標温度の除電液を準備する工程と、d6)試験用基板の両側の主面を全面に亘って前記仮目標温度の前記除電液に接触させて接液状態を維持することにより前記試験用基板上の電荷を減少させる工程と、d7)前記処理液を前記試験用基板の一方の主面上に供給して前記所定の処理を行う工程と、d8)前記d7)工程の終了後、前記試験用基板の前記一方の主面の状態を評価する工程と、d9)前記一方の主面の状態が良好であれば、前記仮目標温度を前記目標温度として設定し、前記一方の主面の状態が良好でなければ、前記一方の主面の状態が良好になるまで、前記仮目標温度を下げて前記d5)工程ないし前記d8)工程を繰り返し、状態が良好になった際の前記仮目標温度を前記目標温度として決定する工程とをさらに備える。   The invention described in claim 23 is the substrate processing method according to any one of claims 20 to 22, wherein d1) a step of obtaining a specific resistance of the processing solution before the step a), d2 ) Based on the relationship obtained in the step d3) d2), the specific resistance of the static elimination liquid is equal to the specific resistance of the treatment liquid. A step of acquiring the temperature of the static elimination liquid, d4) a step of setting a temporary target temperature lower than the temperature acquired in the step of d3), and d5) a step of preparing a static elimination liquid at the temporary target temperature; D6) reducing the charge on the test substrate by bringing the main surfaces on both sides of the test substrate into contact with the static elimination liquid at the temporary target temperature over the entire surface to maintain the liquid contact state; d7 ) Supply the treatment liquid onto one main surface of the test substrate. A step of performing the predetermined processing; d8) a step of evaluating the state of the one main surface of the test substrate after completion of the step d7); and d9) a state of the one main surface being good. For example, the temporary target temperature is set as the target temperature, and if the state of the one main surface is not good, the temporary target temperature is lowered until the state of the one main surface becomes good, and the d5) And the step d8) are repeated to further determine the temporary target temperature when the state becomes good as the target temperature.

請求項24に記載の発明は、請求項20ないし22のいずれかに記載の基板処理方法であって、前記a)工程よりも前に、d1)前記処理液の比抵抗を得る工程と、d2)前記処理液の前記比抵抗よりも高い仮目標比抵抗を設定する工程と、d3)前記除電液の温度と比抵抗との関係を得る工程と、d4)前記d3)工程にて得られた前記関係に基づいて、前記除電液の比抵抗が前記d2)工程にて設定された前記仮目標比抵抗に等しくなる前記除電液の温度を仮目標温度として取得する工程と、d5)前記仮目標温度の除電液を準備する工程と、d6)試験用基板の両側の主面を全面に亘って前記仮目標温度の前記除電液に接触させて接液状態を維持することにより前記試験用基板上の電荷を減少させる工程と、d7)前記処理液を前記試験用基板の一方の主面上に供給して前記所定の処理を行う工程と、d8)前記d7)工程の終了後、前記試験用基板の前記一方の主面の状態を評価する工程と、d9)前記一方の主面の状態が良好であれば、前記仮目標温度を前記目標温度として設定し、前記一方の主面の状態が良好でなければ、前記一方の主面の状態が良好になるまで、前記仮目標温度を下げて前記d5)工程ないし前記d8)工程を繰り返し、状態が良好になった際の前記仮目標温度を前記目標温度として決定する工程とをさらに備える。   A twenty-fourth aspect of the present invention is the substrate processing method according to any one of the twenty-second to twenty-second aspects, wherein d1) a step of obtaining a specific resistance of the processing solution before the step a), d2 ) Obtained by the step of setting a temporary target specific resistance higher than the specific resistance of the treatment liquid, d3) the step of obtaining the relationship between the temperature of the static elimination liquid and the specific resistance, and d4) the step of d3). A step of obtaining, as a temporary target temperature, a temperature of the static elimination liquid at which the specific resistance of the static elimination liquid becomes equal to the temporary target specific resistance set in the step d2) based on the relationship; d5) the temporary target A step of preparing a temperature neutralizing solution; and d6) on the test substrate by maintaining the liquid contact state by bringing the principal surfaces on both sides of the test substrate into contact with the neutralizing solution at the temporary target temperature over the entire surface. D7) adding the treatment liquid to the sample; Supplying the first main surface of the test substrate and performing the predetermined treatment; d8) evaluating the state of the first main surface of the test substrate after the d7) step; and d9 ) If the state of the one main surface is good, the temporary target temperature is set as the target temperature, and if the state of the one main surface is not good, the state of the one main surface becomes good Until the temporary target temperature is lowered and the steps d5) to d8) are repeated to further determine the temporary target temperature when the state becomes good as the target temperature.

請求項25に記載の発明は、請求項23または24に記載の基板処理方法であって、前記d8)工程と前記d9)工程との間に、前記一方の主面の状態が良好でなければ、前記d6)工程の処理時間を変更して前記d6)工程ないし前記d8)工程を行う工程をさらに備える。   The invention according to claim 25 is the substrate processing method according to claim 23 or 24, wherein the state of the one main surface is not good between the step d8) and the step d9). , D6) It further includes a step of changing the processing time of the step d6) to the step d8).

請求項26に記載の発明は、請求項15ないし19のいずれかに記載の基板処理方法であって、前記a)工程が、a1)前記除電液の比抵抗を測定する工程と、a2)前記a1)工程における測定結果に基づいて、前記除電液の比抵抗と所定の目標比抵抗との差が小さくなるように前記除電液の温度を調整する工程と、a3)前記a1)工程と前記a2)工程とを繰り返す工程とを備える。   The invention described in claim 26 is the substrate processing method according to any one of claims 15 to 19, wherein the step a) includes: a1) measuring a specific resistance of the charge removal solution; and a2) the step. a1) adjusting the temperature of the static elimination liquid so that the difference between the specific resistance of the static elimination liquid and a predetermined target specific resistance is reduced based on the measurement result in the step; a3) the a1) step and the a2 And a step of repeating the steps.

請求項27に記載の発明は、請求項15ないし19のいずれかに記載の基板処理方法であって、前記a)工程が、a1)前記除電液の比抵抗を測定する工程と、a2)前記a1)工程における測定結果に基づいて、前記除電液の比抵抗と所定の目標比抵抗との差が閾値比抵抗差以下の場合、前記除電液の温度調整を行わず、前記除電液の比抵抗と前記目標比抵抗との前記差が前記閾値比抵抗差よりも大きい場合、前記除電液の比抵抗と前記目標比抵抗との差が小さくなるように前記除電液の温度を調整する工程とを備える。   A twenty-seventh aspect of the present invention is the substrate processing method according to any one of the fifteenth to nineteenth aspects, wherein the step a) includes: a1) measuring a specific resistance of the charge removal solution; and a2) the step. a1) Based on the measurement result in the step, when the difference between the specific resistance of the static elimination liquid and a predetermined target specific resistance is equal to or less than a threshold specific resistance difference, the specific resistance of the static elimination liquid is not adjusted without adjusting the temperature of the static elimination liquid. And adjusting the temperature of the static elimination liquid so that the difference between the specific resistance of the static elimination liquid and the target specific resistance is smaller when the difference between the specific resistance of the static elimination liquid and the target specific resistance is larger than the threshold specific resistance difference. Prepare.

請求項28に記載の発明は、請求項26または27に記載の基板処理方法であって、前記基板上に予め形成されているデバイスのサイズが小さいほど、より大きい比抵抗の目標比抵抗が設定される。   The invention according to claim 28 is the substrate processing method according to claim 26 or 27, wherein the smaller the size of the device formed in advance on the substrate, the larger the target specific resistance is set. Is done.

請求項29に記載の発明は、請求項15ないし28のいずれかに記載の基板処理方法であって、e)前記b)工程と前記c)工程との間において、前記基板の前記第1主面上から前記除電液を除去する工程をさらに備える。   A twenty-ninth aspect of the present invention is the substrate processing method according to any one of the fifteenth to twenty-eighth aspects, wherein the first main part of the substrate is interposed between the step b) and the step c). The method further includes a step of removing the static eliminating liquid from the surface.

請求項30に記載の発明は、請求項15ないし29のいずれかに記載の基板処理方法であって、前記除電液が純水である。   A thirty-third aspect of the present invention is the substrate processing method according to any one of the fifteenth to thirty-ninth aspects, wherein the neutralizing solution is pure water.

請求項31に記載の発明は、請求項15ないし30のいずれかに記載の基板処理方法であって、前記処理液が硫酸を含む。   A thirty-first aspect of the present invention is the substrate processing method according to any one of the fifteenth to thirtieth aspects, wherein the processing solution contains sulfuric acid.

本発明では、処理液による処理の際に電荷の移動による基板の損傷を防止することができる。   In the present invention, it is possible to prevent the substrate from being damaged due to the movement of charges during the treatment with the treatment liquid.

第1の実施の形態に係る基板処理装置の構成を示す図である。It is a figure which shows the structure of the substrate processing apparatus which concerns on 1st Embodiment. 枚葉処理装置の構成を示す図である。It is a figure which shows the structure of a single wafer processing apparatus. 純水の温度と比抵抗との関係を示す図である。It is a figure which shows the relationship between the temperature of a pure water, and a specific resistance. 基板の処理の流れを示す図である。It is a figure which shows the flow of a process of a board | substrate. 基板の処理の流れの一部を示す図である。It is a figure which shows a part of flow of a process of a board | substrate. 基板の処理の流れの一部を示す図である。It is a figure which shows a part of flow of a process of a board | substrate. 除電処理の前後における基板の表面電位を示す図である。It is a figure which shows the surface potential of the board | substrate before and behind a static elimination process. 目標温度の決定の流れを示す図である。It is a figure which shows the flow of determination of target temperature. 目標温度の決定の流れを示す図である。It is a figure which shows the flow of determination of target temperature. 目標温度の決定の流れの一部を示す図である。It is a figure which shows a part of flow of determination of target temperature. 基板の処理の流れの一部を示す図である。It is a figure which shows a part of flow of a process of a board | substrate. 基板の処理の流れの一部を示す図である。It is a figure which shows a part of flow of a process of a board | substrate. 第2の実施の形態に係る基板処理装置の構成を示す図である。It is a figure which shows the structure of the substrate processing apparatus which concerns on 2nd Embodiment. 除電処理の前後における基板の表面電位を示す図である。It is a figure which shows the surface potential of the board | substrate before and behind a static elimination process. 第3の実施の形態に係る基板処理装置の構成を示す図である。It is a figure which shows the structure of the substrate processing apparatus which concerns on 3rd Embodiment. 基板の処理の流れの一部を示す図である。It is a figure which shows a part of flow of a process of a board | substrate. 基板上の除電液の様子を示す図である。It is a figure which shows the mode of the static elimination liquid on a board | substrate. 除電処理の前後における基板の表面電位を示す図である。It is a figure which shows the surface potential of the board | substrate before and behind a static elimination process.

図1は、本発明の第1の実施の形態に係る基板処理装置10の構成を示す図である。基板処理装置10は、半導体基板9(以下、単に「基板9」という。)を処理する装置である。図1に示すように、基板処理装置10は、枚葉処理装置1と、除電液接液部7と、温度調整部61と、除電液測定部62と、制御部8とを備える。   FIG. 1 is a diagram showing a configuration of a substrate processing apparatus 10 according to a first embodiment of the present invention. The substrate processing apparatus 10 is an apparatus for processing a semiconductor substrate 9 (hereinafter simply referred to as “substrate 9”). As shown in FIG. 1, the substrate processing apparatus 10 includes a single wafer processing apparatus 1, a charge removal liquid contact part 7, a temperature adjustment part 61, a charge removal liquid measurement part 62, and a control part 8.

枚葉処理装置1は、基板9を1枚ずつ処理する枚葉式の処理装置である。除電液接液部7は、基板9を除電液に接触させる。温度調整部61は、除電液の温度を調整する。除電液測定部62は、除電液の温度を測定する温度センサである。記憶部8aは目標温度や除電時間(詳細は後述)を保持しており基板処理を実行する際にこれらを制御部8に設定する。制御部8は、上記目標温度等に基づいて、枚葉処理装置1、除電液接液部7、温度調整部61および除電液測定部62等の構成を制御する。   The single wafer processing apparatus 1 is a single wafer processing apparatus that processes the substrates 9 one by one. The static elimination liquid contact part 7 brings the substrate 9 into contact with the static elimination liquid. The temperature adjustment unit 61 adjusts the temperature of the static elimination liquid. The neutralization liquid measuring unit 62 is a temperature sensor that measures the temperature of the neutralization liquid. The storage unit 8a holds a target temperature and static elimination time (details will be described later), and sets them in the control unit 8 when executing substrate processing. The control unit 8 controls the configurations of the single wafer processing apparatus 1, the charge removal liquid contact unit 7, the temperature adjustment unit 61, the charge removal liquid measurement unit 62, and the like based on the target temperature and the like.

図2は、枚葉処理装置1の構成を示す図である。枚葉処理装置1では、基板9に処理液であるSPM(sulfuric acid / hydrogen peroxide mixture)液が供給されてSPM処理、すなわち、基板9上のレジスト膜の除去処理が行われる。枚葉処理装置1は、基板保持部2と、処理液供給部3と、カップ部41と、基板回転機構42とを備える。基板保持部2は、基板9の一方の主面91(以下、「上面91」という。)を上側に向けた状態で基板9を保持する。処理液供給部3は、基板9の上面91上にSPM液等の処理液を供給する。カップ部41は、基板9および基板保持部2の周囲を囲む。基板回転機構42は、基板9を基板保持部2と共に水平に回転する。基板9は、基板回転機構42により、基板9の中心を通るとともに基板9の上面91に垂直な回転軸を中心として回転する。枚葉処理装置1では、基板保持部2、カップ部41、基板回転機構42等が、図示省略のチャンバ内に収容される。   FIG. 2 is a diagram illustrating a configuration of the single wafer processing apparatus 1. In the single wafer processing apparatus 1, an SPM (sulfuric acid / hydrogen peroxide mixture) liquid, which is a processing liquid, is supplied to the substrate 9 to perform an SPM process, that is, a resist film removal process on the substrate 9. The single wafer processing apparatus 1 includes a substrate holding unit 2, a processing liquid supply unit 3, a cup unit 41, and a substrate rotating mechanism 42. The substrate holding unit 2 holds the substrate 9 with one main surface 91 (hereinafter, referred to as “upper surface 91”) of the substrate 9 facing upward. The processing liquid supply unit 3 supplies a processing liquid such as an SPM liquid onto the upper surface 91 of the substrate 9. The cup part 41 surrounds the periphery of the substrate 9 and the substrate holding part 2. The substrate rotating mechanism 42 rotates the substrate 9 together with the substrate holding unit 2 horizontally. The substrate 9 is rotated about a rotation axis that passes through the center of the substrate 9 and is perpendicular to the upper surface 91 of the substrate 9 by the substrate rotation mechanism 42. In the single wafer processing apparatus 1, the substrate holding unit 2, the cup unit 41, the substrate rotating mechanism 42, and the like are accommodated in a chamber (not shown).

処理液供給部3は、硫酸を供給する硫酸供給部31、過酸化水素水を供給する過酸化水素水供給部32、硫酸供給部31および過酸化水素水供給部32に接続される混合液生成部33、基板9の上方に配置されて基板9に向けて液体を吐出する処理液ノズル34、並びに、処理液ノズル34を回転軸351を中心として水平に回動する処理液ノズル回動機構35を備える。処理液ノズル回動機構35は、回転軸351から水平方向に延びるとともに処理液ノズル34が取り付けられるアーム352を備える。   The treatment liquid supply unit 3 generates a mixed liquid connected to the sulfuric acid supply unit 31 that supplies sulfuric acid, the hydrogen peroxide solution supply unit 32 that supplies hydrogen peroxide solution, the sulfuric acid supply unit 31, and the hydrogen peroxide solution supply unit 32. A processing liquid nozzle 34 that is disposed above the substrate 33 and that discharges liquid toward the substrate 9; and a processing liquid nozzle rotating mechanism 35 that rotates the processing liquid nozzle 34 horizontally around the rotation axis 351. Is provided. The processing liquid nozzle rotation mechanism 35 includes an arm 352 that extends in the horizontal direction from the rotation shaft 351 and to which the processing liquid nozzle 34 is attached.

硫酸供給部31は、硫酸を貯溜する硫酸貯溜部311、硫酸貯溜部311および混合液生成部33に接続される硫酸配管312、硫酸貯溜部311から硫酸配管312を介して混合液生成部33へと硫酸を供給する硫酸ポンプ313、硫酸配管312上に設けられる硫酸バルブ314、並びに、硫酸ポンプ313と硫酸バルブ314との間で硫酸配管312上に設けられて硫酸を加熱する硫酸加熱部315を備える。硫酸配管312は硫酸加熱部315と硫酸バルブ314との間で分岐して硫酸貯溜部311へと接続されており、硫酸バルブ314が閉じられている状態では、硫酸加熱部315により加熱された硫酸は、硫酸貯溜部311と硫酸加熱部315とを循環する。   The sulfuric acid supply unit 31 is connected to the sulfuric acid storage unit 311 for storing sulfuric acid, the sulfuric acid storage unit 311 and the mixed liquid generation unit 33, and the sulfuric acid storage unit 311 to the mixed liquid generation unit 33 via the sulfuric acid piping 312. And a sulfuric acid pump 313 for supplying sulfuric acid, a sulfuric acid valve 314 provided on the sulfuric acid pipe 312, and a sulfuric acid heating unit 315 provided on the sulfuric acid pipe 312 between the sulfuric acid pump 313 and the sulfuric acid valve 314 for heating sulfuric acid. Prepare. The sulfuric acid pipe 312 branches between the sulfuric acid heating unit 315 and the sulfuric acid valve 314 and is connected to the sulfuric acid storage unit 311. When the sulfuric acid valve 314 is closed, the sulfuric acid heated by the sulfuric acid heating unit 315 is connected. Circulates between the sulfuric acid storage part 311 and the sulfuric acid heating part 315.

過酸化水素水供給部32は、過酸化水素水を貯溜する過酸化水素水貯溜部321、過酸化水素水貯溜部321および混合液生成部33に接続される過酸化水素水配管322、過酸化水素水貯溜部321から過酸化水素水配管322を介して混合液生成部33へと過酸化水素水を供給する過酸化水素水ポンプ323、並びに、過酸化水素水配管322上に設けられる過酸化水素水バルブ324を備える。なお、硫酸貯溜部311および過酸化水素水貯溜部321は、基板処理装置10の外部に設けられ、硫酸配管312および過酸化水素水配管322がそれぞれ接続されてもよい。   The hydrogen peroxide solution supply unit 32 includes a hydrogen peroxide solution storage unit 321 for storing hydrogen peroxide solution, a hydrogen peroxide solution storage unit 321, and a hydrogen peroxide solution pipe 322 connected to the mixed solution generation unit 33. A hydrogen peroxide solution pump 323 for supplying hydrogen peroxide solution from the hydrogen water storage unit 321 to the mixed solution generating unit 33 through the hydrogen peroxide solution pipe 322, and a peroxide provided on the hydrogen peroxide solution tube 322 A hydrogen water valve 324 is provided. The sulfuric acid reservoir 311 and the hydrogen peroxide solution reservoir 321 may be provided outside the substrate processing apparatus 10, and the sulfuric acid pipe 312 and the hydrogen peroxide solution pipe 322 may be connected to each other.

混合液生成部33は、硫酸配管312および過酸化水素水配管322が接続されるミキシングバルブ331、ミキシングバルブ331および処理液ノズル34に接続される吐出用配管332、並びに、吐出用配管332上に設けられる攪拌流通管333を備える。混合液生成部33では、硫酸供給部31からの加熱された硫酸と、過酸化水素水供給部32からの常温(すなわち、室温と同程度の温度)の過酸化水素水とが、ミキシングバルブ331において混合されて混合液であるSPM液(硫酸過水)が生成される。   The mixed liquid generation unit 33 is provided on the mixing valve 331 to which the sulfuric acid pipe 312 and the hydrogen peroxide pipe 322 are connected, the discharge pipe 332 connected to the mixing valve 331 and the processing liquid nozzle 34, and the discharge pipe 332. A stirring flow pipe 333 is provided. In the mixed solution generation unit 33, the heated sulfuric acid from the sulfuric acid supply unit 31 and the hydrogen peroxide solution at room temperature (that is, a temperature similar to room temperature) from the hydrogen peroxide solution supply unit 32 are mixed with each other. Is mixed to produce an SPM liquid (sulfuric acid / hydrogen peroxide) as a mixed liquid.

SPM液は攪拌流通管333および吐出用配管332を通過して処理液ノズル34へと送られる。攪拌流通管333では、SPM液が攪拌されることにより、SPM液に含まれる硫酸と過酸化水素水との化学反応が促進される。処理液であるSPM液は、処理液ノズル34の先端の吐出口から基板9の上面91に向けて吐出される。本実施の形態では、硫酸加熱部315により約130℃〜150℃に加熱された硫酸が硫酸供給部31から混合液生成部33へと供給される。なお、硫酸供給部31から供給される硫酸の温度は適宜変更されてよい。   The SPM liquid passes through the stirring flow pipe 333 and the discharge pipe 332 and is sent to the processing liquid nozzle 34. In the stirring flow pipe 333, the chemical reaction between sulfuric acid and hydrogen peroxide contained in the SPM liquid is promoted by stirring the SPM liquid. The SPM liquid that is the processing liquid is discharged from the discharge port at the tip of the processing liquid nozzle 34 toward the upper surface 91 of the substrate 9. In the present embodiment, sulfuric acid heated to about 130 ° C. to 150 ° C. by the sulfuric acid heating unit 315 is supplied from the sulfuric acid supply unit 31 to the mixed liquid generation unit 33. Note that the temperature of the sulfuric acid supplied from the sulfuric acid supply unit 31 may be changed as appropriate.

図1に示すように、除電液接液部7は、除電液を貯溜する除電液貯溜部71、除電液貯溜部71に除電液を供給する除電液供給部72、複数の基板9を保持するカートリッジ73、および、基板9に対する減圧乾燥処理を行う基板乾燥部75を備える。図1では、カートリッジ73を保持して移動するカートリッジ移動部の図示を省略している。除電液接液部7では、除電液として純水(DIW:deionized water)が利用される。   As shown in FIG. 1, the static elimination liquid contact part 7 holds the static elimination liquid storage part 71 that stores the static elimination liquid, the static elimination liquid supply part 72 that supplies the static elimination liquid to the static elimination liquid storage part 71, and a plurality of substrates 9. A cartridge 73 and a substrate drying unit 75 that performs a vacuum drying process on the substrate 9 are provided. In FIG. 1, illustration of a cartridge moving unit that holds and moves the cartridge 73 is omitted. In the static elimination liquid wetted part 7, pure water (DIW: deionized water) is used as the static elimination liquid.

図3は、純水の温度と比抵抗との関係を示す図である。図3に示すように、純水の比抵抗は、液温が上昇するに従って漸次減少する。純水の比抵抗は、純水の凝固点以上沸点以下の全範囲において、上述のSPM液の比抵抗よりも大きい。除電液接液部7で使用される除電液は、液温が上昇するに従って比抵抗が漸次減少する液体であれば、純水には限定されない。また、除電液の比抵抗は、除電液の凝固点以上沸点以下の少なくとも所定の温度範囲において、枚葉処理装置1にて利用される処理液の比抵抗よりも大きければよい。除電液としては、例えば、純水に二酸化炭素(CO)を溶解させたCO水のようなイオンを含む液体が利用されてもよい。他の実施の形態においても同様である。 FIG. 3 is a diagram showing the relationship between the temperature of pure water and the specific resistance. As shown in FIG. 3, the specific resistance of pure water gradually decreases as the liquid temperature increases. The specific resistance of pure water is greater than the specific resistance of the SPM liquid described above in the entire range from the freezing point of pure water to the boiling point. The neutralizing liquid used in the neutralizing liquid wetted part 7 is not limited to pure water as long as the specific resistance gradually decreases as the liquid temperature rises. In addition, the specific resistance of the static elimination liquid only needs to be larger than the specific resistance of the treatment liquid used in the single wafer processing apparatus 1 in at least a predetermined temperature range from the freezing point to the boiling point of the static elimination liquid. As the charge removal liquid, for example, a liquid containing ions such as CO 2 water in which carbon dioxide (CO 2 ) is dissolved in pure water may be used. The same applies to other embodiments.

図1に示すように、除電液供給部72は、除電液配管721と、流量計722と、除電液バルブ724とを備える。除電液配管721は、図示省略の除電液供給源に接続される。除電液配管721の先端から吐出される除電液は、除電液貯溜部71に供給されて貯溜される。除電液配管721上には、除電液供給源から除電液貯溜部71に向かって、流量計722、温度調整部61、除電液バルブ724および除電液測定部62が順に配置される。流量計722は、除電液配管721内を流れる除電液の流量を測定する。温度調整部61は、除電液配管721内を流れる除電液を必要に応じて加熱または冷却することにより、除電液配管721内の除電液の温度を調整する。除電液バルブ724は、除電液配管721内を流れる除電液の流量を調整する。除電液測定部62は、除電液配管721内を流れる除電液の温度を測定する。   As shown in FIG. 1, the charge removal liquid supply unit 72 includes a charge removal liquid pipe 721, a flow meter 722, and a charge removal liquid valve 724. The neutralization liquid pipe 721 is connected to a neutralization liquid supply source (not shown). The static elimination liquid discharged from the tip of the static elimination liquid piping 721 is supplied to the static elimination liquid storage part 71 and stored therein. On the static elimination liquid pipe 721, a flow meter 722, a temperature adjustment unit 61, a static elimination liquid valve 724, and a static elimination liquid measuring unit 62 are sequentially arranged from the static elimination liquid supply source toward the static elimination liquid storage unit 71. The flow meter 722 measures the flow rate of the static elimination liquid flowing through the static elimination liquid pipe 721. The temperature adjustment unit 61 adjusts the temperature of the static elimination liquid in the static elimination liquid pipe 721 by heating or cooling the static elimination liquid flowing in the static elimination liquid pipe 721 as necessary. The neutralization liquid valve 724 adjusts the flow rate of the neutralization liquid flowing through the neutralization liquid pipe 721. The neutralization liquid measuring unit 62 measures the temperature of the neutralization liquid flowing in the neutralization liquid pipe 721.

除電液測定部62の測定結果(すなわち、除電液の温度)は、制御部8へと送られる。制御部8は、記憶部8aに記憶されている除電液の目標温度、すなわち、後述の除電処理における除電液の好ましい温度、に基づいて枚葉処理装置1、除電液接液部7、温度調整部61および除電液測定部62等の構成を制御する。除電液の目標温度は、除電処理における除電液の好ましい比抵抗(すなわち、目標比抵抗)を実現するための温度である。除電液の目標比抵抗は、枚葉処理装置1にて利用される処理液の比抵抗よりも大きい。目標温度は、目標比抵抗や図3に示す除電液の温度と比抵抗との関係等に基づいて求められる。目標温度の具体的な求め方については後述する。   The measurement result of the neutralization liquid measuring unit 62 (that is, the temperature of the neutralization liquid) is sent to the control unit 8. Based on the target temperature of the neutralization liquid stored in the storage unit 8a, that is, the preferred temperature of the neutralization liquid in the neutralization process described later, the control unit 8 adjusts the temperature of the single wafer processing apparatus 1, the neutralization liquid wetted part 7, and the temperature adjustment. The configuration of the unit 61 and the neutralization liquid measuring unit 62 is controlled. The target temperature of the static elimination liquid is a temperature for realizing a preferable specific resistance (that is, a target specific resistance) of the static elimination liquid in the static elimination treatment. The target specific resistance of the static elimination liquid is larger than the specific resistance of the processing liquid used in the single wafer processing apparatus 1. The target temperature is obtained on the basis of the target specific resistance, the relationship between the temperature of the neutralizing liquid and the specific resistance shown in FIG. A specific method for obtaining the target temperature will be described later.

目標比抵抗は、基板9の上面91上に予め形成されているデバイスのサイズが小さいほど(すなわち、デバイスの配線の最小幅が小さいほど)、大きく設定される。したがって、目標温度は、基板9の上面91上に予め形成されているデバイスのサイズが小さいほど、低く設定される。本実施の形態では、目標比抵抗は、約1〜18MΩ・cmの範囲で設定され、目標温度は、約25〜100℃の範囲で設定される。   The target specific resistance is set to be larger as the size of a device formed in advance on the upper surface 91 of the substrate 9 is smaller (that is, as the minimum width of the device wiring is smaller). Therefore, the target temperature is set to be lower as the size of the device formed in advance on the upper surface 91 of the substrate 9 is smaller. In the present embodiment, the target specific resistance is set in a range of about 1 to 18 MΩ · cm, and the target temperature is set in a range of about 25 to 100 ° C.

基板処理装置10では、除電液測定部62の測定結果、および、上述の目標温度に基づいて、制御部8により温度調整部61がフィードバック制御される。温度調整部61では、除電液配管721内の除電液の温度と目標温度との差が小さくなるように、除電液の温度が調整される。これにより、除電液貯溜部71に供給される除電液の温度が、およそ目標温度に維持される。換言すれば、上記フィードバック制御により、除電液の温度が、実質的に目標温度に等しいといえる狭い温度範囲(もちろん、目標温度を含む。)内に維持される。   In the substrate processing apparatus 10, the temperature adjustment unit 61 is feedback-controlled by the control unit 8 based on the measurement result of the static elimination liquid measuring unit 62 and the above-described target temperature. In the temperature adjustment unit 61, the temperature of the static elimination liquid is adjusted so that the difference between the temperature of the static elimination liquid in the static elimination liquid pipe 721 and the target temperature is small. Thereby, the temperature of the static elimination liquid supplied to the static elimination liquid storage part 71 is maintained at about target temperature. In other words, the above-described feedback control maintains the temperature of the static elimination liquid within a narrow temperature range (of course, including the target temperature) that can be said to be substantially equal to the target temperature.

基板処理装置10では、除電液の温度が目標温度から多少ずれていても許容されるケースがある。このようなケースでは、除電液測定部62により測定された除電液の温度と目標温度との差が閾値温度差以下である場合、制御部8により温度調整部61による除電液の温度調整が停止され、除電液の温度と目標温度との差が閾値温度差よりも大きい場合のみ、温度調整部61による除電液の温度調整が行われる。目標温度よりも閾値温度差だけ低い温度を「下限温度」と呼び、目標温度よりも閾値温度差だけ高い温度を「上限温度」と呼ぶと、上記温度調整により、除電液貯溜部71に供給される除電液の温度は、下限温度以上かつ上限温度以下の範囲内におよそ維持される。上限温度における除電液の比抵抗は、枚葉処理装置1にて利用される処理液の比抵抗よりも大きい。   In the substrate processing apparatus 10, there are cases where the temperature of the static elimination liquid is allowed even if it is slightly deviated from the target temperature. In such a case, when the difference between the temperature of the static elimination liquid measured by the static elimination liquid measuring unit 62 and the target temperature is equal to or less than the threshold temperature difference, the temperature adjustment of the static elimination liquid by the temperature adjustment unit 61 is stopped by the control unit 8. Only when the difference between the temperature of the static elimination liquid and the target temperature is larger than the threshold temperature difference, the temperature adjustment unit 61 adjusts the temperature of the static elimination liquid. When the temperature lower than the target temperature by the threshold temperature difference is called “lower limit temperature” and the temperature higher than the target temperature by the threshold temperature difference is called “upper limit temperature”, the temperature is adjusted and supplied to the static elimination liquid storage unit 71. The temperature of the neutralizing liquid is approximately maintained within the range of the lower limit temperature and the upper limit temperature. The specific resistance of the static elimination liquid at the upper limit temperature is larger than the specific resistance of the processing liquid used in the single wafer processing apparatus 1.

このように、除電液供給部72では、制御部8が温度調整部61を制御することにより、除電液の温度を、除電液の比抵抗が上記処理液の比抵抗よりも大きくなる範囲内とする。   Thus, in the static elimination liquid supply part 72, when the control part 8 controls the temperature adjustment part 61, the temperature of static elimination liquid is made into the range in which the specific resistance of static elimination liquid becomes larger than the specific resistance of the said process liquid. To do.

除電液接液部7では、除電液貯溜部71の上方に配置されたカートリッジ73により、複数の基板9が、主面が平行となるように配列された状態で保持される。そして、カートリッジ移動部によりカートリッジ73が下降し、複数の基板9が、それぞれの主面の法線方向が水平方向を向くように配列された状態で、除電液貯溜部71に貯溜された除電液に浸漬される。   In the static elimination liquid contact part 7, the plurality of substrates 9 are held in a state in which the principal surfaces are arranged in parallel by the cartridge 73 disposed above the static elimination liquid storage part 71. Then, the cartridge 73 is lowered by the cartridge moving part, and the neutralizing liquid stored in the static eliminating liquid storage part 71 in a state in which the plurality of substrates 9 are arranged so that the normal direction of each main surface faces the horizontal direction. Soaked in.

基板乾燥部75では、除電液に浸漬された後の基板9に対して減圧乾燥処理が行われる。基板乾燥部75では、カートリッジ73に保持された状態の複数の基板9に対して減圧乾燥処理が行われてもよく、カートリッジ73から取り外された基板9が1枚ずつ乾燥されてもよい。基板乾燥部75では、減圧乾燥処理以外の様々な方法により乾燥処理が行われてもよい。減圧乾燥処理が行われた基板9は、枚葉処理装置1に搬入される。なお、図1では、基板乾燥部75と枚葉処理装置1との間において基板9を搬送する搬送機構等の図示を省略している。   In the substrate drying unit 75, a reduced-pressure drying process is performed on the substrate 9 after being immersed in the charge removal solution. In the substrate drying unit 75, reduced-pressure drying processing may be performed on the plurality of substrates 9 held in the cartridge 73, and the substrates 9 removed from the cartridge 73 may be dried one by one. In the substrate drying unit 75, the drying process may be performed by various methods other than the vacuum drying process. The substrate 9 subjected to the vacuum drying process is carried into the single wafer processing apparatus 1. In FIG. 1, illustration of a transport mechanism for transporting the substrate 9 between the substrate drying unit 75 and the single wafer processing apparatus 1 is omitted.

次に、基板処理装置10における基板9の処理の流れについて図4を参照しつつ説明する。まず、使用する基板9に対応する目標温度と除電時間が記憶部8aから読み出されて制御部8に設定される(ステップS11)。本実施形態では目標温度と除電時間が記憶部8aに予め記憶されており、基板処理を開始する時点で記憶部8aから読み出されて制御部8に設定される。しかし、目標温度と除電時間を記憶部8aに記憶させず、基板処理を開始する都度、作業者が図示しない入力手段を使って制御部8に設定するようにしてもよい。   Next, the flow of processing of the substrate 9 in the substrate processing apparatus 10 will be described with reference to FIG. First, the target temperature and static elimination time corresponding to the substrate 9 to be used are read from the storage unit 8a and set in the control unit 8 (step S11). In this embodiment, the target temperature and the static elimination time are stored in advance in the storage unit 8a, and are read from the storage unit 8a and set in the control unit 8 when the substrate processing is started. However, the target temperature and the charge removal time may not be stored in the storage unit 8a, and the operator may set the control unit 8 using an input unit (not shown) every time substrate processing is started.

また、目標温度を記憶部8aに記憶させる代わりに、基板9上のデバイスのサイズと除電液の目標温度との関係を示すテーブルを記憶部8aに予め記憶させておいてもよい。この場合には、基板9の基板処理を開始する前に記憶部8aに処理対象の基板9上のデバイスのサイズが入力され、次に当該デバイスのサイズと前記テーブルとに基づいて基板9に対応する目標温度が決定され、最後に当該目標温度が制御部8に設定される。目標温度と除電時間の決定および制御部8への設定(あるいは、後述する目標比抵抗の決定および設定)については、後述する他の基板処理装置においても同様である。   Further, instead of storing the target temperature in the storage unit 8a, a table indicating the relationship between the size of the device on the substrate 9 and the target temperature of the charge removal liquid may be stored in the storage unit 8a in advance. In this case, before the substrate processing of the substrate 9 is started, the size of the device on the substrate 9 to be processed is input to the storage unit 8a, and then the substrate 9 is handled based on the size of the device and the table. The target temperature is determined, and finally, the target temperature is set in the control unit 8. The determination of the target temperature and static elimination time and the setting to the control unit 8 (or the determination and setting of the target specific resistance described later) are the same in other substrate processing apparatuses described later.

続いて、複数の基板9が保持されたカートリッジ73が、基板処理装置10に搬入される。各基板9は、基板処理装置10に搬入される前に、ドライエッチングやプラズマCVD(Chemical Vapor Deposition)等のドライ工程を経ており、基板9は帯電した状態となっている。   Subsequently, the cartridge 73 holding the plurality of substrates 9 is carried into the substrate processing apparatus 10. Each substrate 9 is subjected to a dry process such as dry etching or plasma CVD (Chemical Vapor Deposition) before being carried into the substrate processing apparatus 10, and the substrate 9 is in a charged state.

除電液接液部7では、除電液配管721の先端が除電液貯溜部71から外れた位置に向けられた状態で、制御部8により除電液バルブ724が開かれ、除電液配管721から除電液(純水)の吐出が開始される。そして、除電液測定部62の測定結果である除電液の温度、および、上述の目標温度に基づいて、温度調整部61に対するフィードバック制御が行われる。これにより、除電液の温度が、除電液の比抵抗が枚葉処理装置1にて利用される処理液(SPM液)の比抵抗よりも大きくなる温度範囲内に調整される(ステップS12)。   In the static elimination liquid contact part 7, the static elimination valve 724 is opened by the control unit 8 with the tip of the static elimination liquid pipe 721 facing away from the static elimination liquid storage part 71, and the static elimination liquid is discharged from the static elimination liquid pipe 721. (Pure water) discharge is started. Then, feedback control for the temperature adjustment unit 61 is performed based on the temperature of the neutralization solution, which is the measurement result of the neutralization solution measuring unit 62, and the above-described target temperature. Thereby, the temperature of the static elimination liquid is adjusted within a temperature range in which the specific resistance of the static elimination liquid is larger than the specific resistance of the treatment liquid (SPM liquid) used in the single wafer processing apparatus 1 (step S12).

図5は、除電液の温度調整(ステップS12)の流れを示す図である。まず、除電液測定部62により、除電液配管721内を流れる除電液の温度が測定される(ステップS121)。続いて、ステップS121における測定結果に基づいて、除電液配管721内の除電液の温度と目標温度との差が小さくなるように、温度調整部61により除電液の温度が調整される(ステップS122)。そして、ステップS121とステップS122とが繰り返されることにより、除電液の温度が、およそ目標温度に調整されて維持される(ステップS123)。   FIG. 5 is a diagram showing a flow of temperature adjustment (step S12) of the static elimination liquid. First, the temperature of the neutralizing liquid flowing through the neutralizing liquid pipe 721 is measured by the neutralizing liquid measuring unit 62 (step S121). Subsequently, based on the measurement result in step S121, the temperature adjustment unit 61 adjusts the temperature of the static elimination liquid so that the difference between the temperature of the static elimination liquid in the static elimination liquid pipe 721 and the target temperature becomes small (step S122). ). And step S121 and step S122 are repeated, and the temperature of a static elimination liquid is adjusted and maintained by about target temperature (step S123).

上述のように、除電液の温度が目標温度から多少ずれていても許容されるケースでは、図5のステップS121〜S123に代えて、図6に示すように温度調整が行われる。まず、除電液測定部62により、除電液配管721内を流れる除電液の温度が測定される(ステップS124)。続いて、ステップS124における測定結果に基づいて、除電液配管721内の除電液の温度と目標温度との差が求められ、上述の閾値温度差と比較される(ステップS125)。   As described above, in a case where the temperature of the static elimination liquid is allowed to be slightly deviated from the target temperature, temperature adjustment is performed as shown in FIG. 6 instead of steps S121 to S123 in FIG. First, the temperature of the static elimination liquid flowing through the static elimination liquid pipe 721 is measured by the static elimination liquid measuring unit 62 (step S124). Subsequently, based on the measurement result in step S124, the difference between the temperature of the static elimination liquid in the static elimination liquid piping 721 and the target temperature is obtained and compared with the above-described threshold temperature difference (step S125).

除電液の温度と目標温度との差が閾値温度差以下の場合、温度調整部61による除電液の温度調整は行われない。除電液の温度と目標温度との差が閾値温度差よりも大きい場合、除電液の温度と目標温度との差が小さくなるように、温度調整部61により除電液の温度が調整される(ステップS126)。そして、ステップS124〜S126が繰り返されることにより、除電液の温度が、目標温度よりも閾値温度差だけ低い下限温度以上、かつ、目標温度よりも閾値温度差だけ高い上限温度以下の温度範囲内におよそ調整されて維持される。   When the difference between the temperature of the static elimination liquid and the target temperature is equal to or less than the threshold temperature difference, the temperature adjustment unit 61 does not adjust the temperature of the static elimination liquid. When the difference between the temperature of the static elimination liquid and the target temperature is larger than the threshold temperature difference, the temperature adjustment unit 61 adjusts the temperature of the static elimination liquid so that the difference between the temperature of the static elimination liquid and the target temperature becomes small (step) S126). Then, by repeating steps S124 to S126, the temperature of the static elimination liquid is within a temperature range not less than the lower limit temperature lower than the target temperature by a threshold temperature difference and not more than the upper limit temperature that is higher than the target temperature by the threshold temperature difference. Approximately adjusted and maintained.

除電液の温度調整が終了すると、除電液配管721の先端が除電液貯溜部71に向けられ、除電液が、除電液供給部72から除電液貯溜部71に所定の量だけ供給されて貯溜される(ステップS13)。除電液接液部7では、除電液貯溜部71内の除電液の温度を測定する補助測定部と、除電液貯溜部71内の除電液の温度を調整する補助調整部とがさらに設けられてもよい。この場合、補助測定部の測定結果に基づいて補助調整部が制御され、除電液貯溜部71内の除電液が所望の温度(例えば、目標温度)となるように、必要に応じて当該除電液が補助調整部により加熱または冷却される。   When the temperature adjustment of the static elimination liquid is completed, the tip of the static elimination liquid pipe 721 is directed to the static elimination liquid storage part 71, and the static elimination liquid is supplied from the static elimination liquid supply part 72 to the static elimination liquid storage part 71 and stored. (Step S13). The neutralization liquid wetted part 7 further includes an auxiliary measurement unit that measures the temperature of the neutralization liquid in the neutralization liquid storage part 71 and an auxiliary adjustment unit that adjusts the temperature of the neutralization liquid in the neutralization liquid storage part 71. Also good. In this case, the auxiliary adjusting unit is controlled on the basis of the measurement result of the auxiliary measuring unit, and the neutralizing liquid as necessary so that the neutralizing liquid in the neutralizing liquid storage unit 71 has a desired temperature (for example, a target temperature). Is heated or cooled by the auxiliary adjustment unit.

その後、カートリッジ移動部が制御部8により制御され、除電液貯溜部71の上方に配置されたカートリッジ73が、除電液貯溜部71に向けて下降する。そして、カートリッジ73に保持された複数の基板9が、除電液貯溜部71内の除電液に浸漬される。各基板9は、カートリッジ73に保持された状態におけるエッジの下部から徐々に除電液に浸漬され、基板9の全体が浸漬されることにより、基板9の両側の主面が全面に亘って除電液に接触する。また、基板9の両側の主面に接触する除電液は、基板9のエッジ上において連続する。   Thereafter, the cartridge moving unit is controlled by the control unit 8, and the cartridge 73 disposed above the static elimination liquid storage unit 71 is lowered toward the static elimination liquid storage unit 71. Then, the plurality of substrates 9 held by the cartridge 73 are immersed in the charge removal liquid in the charge removal liquid storage section 71. Each substrate 9 is gradually immersed in the charge removal liquid from the lower part of the edge held in the cartridge 73, and the whole substrate 9 is immersed, so that the main surfaces on both sides of the substrate 9 are entirely covered. To touch. Further, the static elimination liquid that contacts the main surfaces on both sides of the substrate 9 continues on the edge of the substrate 9.

基板9において、デバイスが設けられている主面を「第1主面」と呼び、他方の主面を「第2主面」と呼ぶと、基板9が除電液に浸漬されることにより、第1主面および第2主面が全面に亘って除電液に接触する。第1主面に接触する除電液は、第2主面に接触する除電液と、基板9のエッジ上において連続する。このように、基板9が除電液と接触することにより、基板9上の電荷が、除電液へと比較的緩やかに移動する。基板処理装置10では、基板9の除電液に対する接液状態が所定の時間だけ維持されることにより、基板9上のデバイスにダメージを与えることなく、基板9上の電荷が減少する。換言すれば、基板9の除電処理が行われる(ステップS14)。   In the substrate 9, when the main surface on which the device is provided is referred to as a “first main surface” and the other main surface is referred to as a “second main surface”, the substrate 9 is immersed in the charge removal solution. The first main surface and the second main surface are in contact with the charge removal solution over the entire surface. The static elimination liquid that contacts the first main surface is continuous with the static elimination liquid that contacts the second main surface on the edge of the substrate 9. In this way, when the substrate 9 comes into contact with the charge removal solution, the charges on the substrate 9 move relatively slowly to the charge removal solution. In the substrate processing apparatus 10, since the liquid contact state of the substrate 9 with respect to the charge removal liquid is maintained for a predetermined time, the charge on the substrate 9 is reduced without damaging the devices on the substrate 9. In other words, the charge removal process is performed on the substrate 9 (step S14).

図7は、基板処理装置10による除電処理の前後における基板9の上面91の表面電位を示す図である。図7では、基板9の中心部における表面電位の絶対値を示す(図13および図17においても同様)。上述の除電処理により、基板9上の電荷が減少し、基板9の電位が全体的に低減される。基板処理装置10では、基板9上のデバイスのサイズが比較的小さい場合、除電液の温度は、例えば約25℃に維持され、除電液の比抵抗は約18MΩ・cmとなる。また、基板9上のデバイスのサイズが比較的大きい(すなわち、電荷の移動によるダメージに対する耐性が比較的高い)場合、除電液の温度は、例えば100℃よりも少し低い温度に維持され、除電液の比抵抗は約1MΩ・cmとなる。このように、除電液の温度を高くして比抵抗を比較的小さくすることにより、基板9から除電液への電荷の移動速度が増大する。その結果、基板9の除電処理に要する時間を短くすることができる。   FIG. 7 is a diagram illustrating the surface potential of the upper surface 91 of the substrate 9 before and after the charge removal process by the substrate processing apparatus 10. FIG. 7 shows the absolute value of the surface potential at the center of the substrate 9 (the same applies to FIGS. 13 and 17). By the above-described charge removal process, the charge on the substrate 9 is reduced, and the potential of the substrate 9 is reduced as a whole. In the substrate processing apparatus 10, when the size of the device on the substrate 9 is relatively small, the temperature of the static elimination liquid is maintained at about 25 ° C., for example, and the specific resistance of the static elimination liquid is about 18 MΩ · cm. Further, when the size of the device on the substrate 9 is relatively large (that is, the resistance against damage due to the movement of electric charges is relatively high), the temperature of the static elimination liquid is maintained at a temperature slightly lower than, for example, 100 ° C. The specific resistance is about 1 MΩ · cm. In this way, by increasing the temperature of the neutralization solution and making the specific resistance relatively small, the movement speed of charges from the substrate 9 to the neutralization solution increases. As a result, the time required for the charge removal process of the substrate 9 can be shortened.

基板9の除電処理が終了すると、制御部8により制御される基板乾燥部75により、基板9に対する減圧乾燥処理が行われ、基板9の上面91全体および下面92全体から除電液が除去される(ステップS15)。換言すれば、基板乾燥部75は、基板9の上面91上および下面92上の液体を除去する液体除電液供給部72である。続いて、1枚の基板9が、図2に示す枚葉処理装置1へと搬入され、上面91を上側に向けた状態で基板保持部2に保持される。次に、制御部8により基板回転機構42が制御されることにより、基板9の回転が開始される(ステップS16)。また、処理液ノズル回動機構35による処理液ノズル34の回動が開始され、処理液ノズル34が基板9の中心部とエッジとの間で往復運動を繰り返す。   When the neutralization process of the substrate 9 is completed, the substrate drying unit 75 controlled by the control unit 8 performs a decompression drying process on the substrate 9 to remove the neutralization liquid from the entire upper surface 91 and the entire lower surface 92 of the substrate 9 ( Step S15). In other words, the substrate drying unit 75 is a liquid discharger supplying unit 72 that removes liquid on the upper surface 91 and the lower surface 92 of the substrate 9. Subsequently, one substrate 9 is carried into the single wafer processing apparatus 1 shown in FIG. 2, and is held by the substrate holding unit 2 with the upper surface 91 facing upward. Next, the substrate rotating mechanism 42 is controlled by the control unit 8 to start the rotation of the substrate 9 (step S16). Also, the processing liquid nozzle rotating mechanism 35 starts to rotate the processing liquid nozzle 34, and the processing liquid nozzle 34 repeats reciprocating motion between the center portion and the edge of the substrate 9.

次に、制御部8により処理液供給部3が制御されることにより、硫酸供給部31の硫酸バルブ314が開かれ、硫酸加熱部315により約130℃〜150℃に加熱された硫酸が、硫酸配管312を介して混合液生成部33のミキシングバルブ331へと供給される。また、制御部8により過酸化水素水バルブ324が開かれ、常温の過酸化水素水が、過酸化水素水貯溜部321から過酸化水素水配管322を介してミキシングバルブ331へと供給される。ミキシングバルブ331では、加熱された硫酸と常温の過酸化水素水とが混合されてSPM液が生成される。SPM液の温度は、硫酸と過酸化水素水との反応により、硫酸供給部31から供給される硫酸の温度よりも高い約150℃〜195℃となる。   Next, when the processing liquid supply unit 3 is controlled by the control unit 8, the sulfuric acid valve 314 of the sulfuric acid supply unit 31 is opened, and the sulfuric acid heated to about 130 ° C. to 150 ° C. by the sulfuric acid heating unit 315 is converted into sulfuric acid. The mixture is supplied to the mixing valve 331 of the mixed liquid generation unit 33 via the pipe 312. Further, the control unit 8 opens the hydrogen peroxide solution valve 324, and normal temperature hydrogen peroxide solution is supplied from the hydrogen peroxide solution storage unit 321 to the mixing valve 331 via the hydrogen peroxide solution pipe 322. In the mixing valve 331, the heated sulfuric acid and the hydrogen peroxide solution at room temperature are mixed to generate the SPM liquid. The temperature of the SPM solution is about 150 ° C. to 195 ° C., which is higher than the temperature of sulfuric acid supplied from the sulfuric acid supply unit 31 due to the reaction between sulfuric acid and hydrogen peroxide.

SPM液は、吐出用配管332および攪拌流通管333を通過し、処理液ノズル34から、基板9の上面91に対して供給される。換言すれば、処理液供給部3により、加熱された硫酸と過酸化水素水とが混合されつつ基板9の上面91に供給される。SPM液は、基板9の回転により、基板9の上面91の全面に拡がり、基板9のエッジから外側へと飛散してカップ部41により受けられる。枚葉処理装置1では、基板9に対するSPM液の供給が所定時間だけ連続的に行われ、基板9に対するSPM処理、すなわち、SPM液に含まれるカロ酸の強酸化力による基板9上のレジスト膜の除去処理が行われる(ステップS17)。なお、枚葉処理装置1では、基板9の中心部の上方にて停止した処理液ノズル34からSPM液等の供給が行われてもよい。   The SPM liquid passes through the discharge pipe 332 and the stirring flow pipe 333 and is supplied from the processing liquid nozzle 34 to the upper surface 91 of the substrate 9. In other words, heated sulfuric acid and hydrogen peroxide solution are mixed and supplied to the upper surface 91 of the substrate 9 by the processing liquid supply unit 3. The SPM liquid spreads over the entire upper surface 91 of the substrate 9 by the rotation of the substrate 9, scatters from the edge of the substrate 9 to the outside, and is received by the cup portion 41. In the single wafer processing apparatus 1, the supply of the SPM liquid to the substrate 9 is continuously performed for a predetermined time, and the resist film on the substrate 9 due to the SPM process for the substrate 9, that is, the strong oxidizing power of caloic acid contained in the SPM liquid. Is removed (step S17). In the single wafer processing apparatus 1, the SPM liquid or the like may be supplied from the processing liquid nozzle 34 stopped above the center of the substrate 9.

SPM処理が終了すると、過酸化水素水バルブ324が開かれた状態で硫酸バルブ314が閉じられ、過酸化水素水が、ミキシングバルブ331、吐出用配管332および攪拌流通管333を通過し、処理液ノズル34から、レジスト膜が除去された基板9上に供給される(ステップS18)。当該過酸化水素水供給処理により、ミキシングバルブ331、吐出用配管332、攪拌流通管333および処理液ノズル34内に残っているSPM液が除去される。また、基板9上に供給された過酸化水素水は、基板9の回転により、基板9の上面91の全面に拡がり、基板9上に残っているSPM液を、基板9のエッジから外側へと押し出して除去する。   When the SPM treatment is completed, the sulfuric acid valve 314 is closed with the hydrogen peroxide solution valve 324 opened, and the hydrogen peroxide solution passes through the mixing valve 331, the discharge pipe 332, and the stirring flow pipe 333, and the treatment liquid From the nozzle 34, the resist film is supplied onto the substrate 9 (step S18). By the hydrogen peroxide supply process, the SPM liquid remaining in the mixing valve 331, the discharge pipe 332, the stirring flow pipe 333, and the processing liquid nozzle 34 is removed. Further, the hydrogen peroxide solution supplied onto the substrate 9 spreads over the entire upper surface 91 of the substrate 9 by the rotation of the substrate 9, and the SPM liquid remaining on the substrate 9 is moved outward from the edge of the substrate 9. Extrude and remove.

過酸化水素水供給処理が終了すると、過酸化水素水バルブ324が閉じられて過酸化水素水の供給が停止され、処理液ノズル回動機構35により、処理液ノズル34が基板9の外側の待機位置へと移動される。次に、図示省略のリンス液供給部から基板9の上面91にリンス液が供給されるリンス処理が行われる(ステップS19)。リンス液としては、例えば、純水やCO水が利用される。リンス液は、基板9の回転により、基板9の上面91の全面に拡がる。これにより、基板9上に残っている過酸化水素水が洗い流される。リンス処理が所定時間だけ連続的に行われると、リンス液の供給が停止される。そして、基板9の回転数を増大させ、基板9の回転により基板9上に残っているリンス液を除去する乾燥処理が行われる(ステップS20)。その後、基板9の回転が停止され(ステップS21)、基板9が基板処理装置10から搬出される。 When the hydrogen peroxide solution supply process is completed, the hydrogen peroxide solution valve 324 is closed and the supply of the hydrogen peroxide solution is stopped, and the treatment solution nozzle 34 is placed on standby outside the substrate 9 by the treatment solution nozzle rotating mechanism 35. Moved to position. Next, a rinsing process is performed in which a rinsing liquid is supplied from an unillustrated rinsing liquid supply unit to the upper surface 91 of the substrate 9 (step S19). As the rinse liquid, for example, pure water or CO 2 water is used. The rinse liquid spreads over the entire upper surface 91 of the substrate 9 by the rotation of the substrate 9. Thereby, the hydrogen peroxide remaining on the substrate 9 is washed away. When the rinsing process is continuously performed for a predetermined time, the supply of the rinsing liquid is stopped. Then, the number of rotations of the substrate 9 is increased, and a drying process is performed to remove the rinse liquid remaining on the substrate 9 by the rotation of the substrate 9 (step S20). Thereafter, the rotation of the substrate 9 is stopped (step S21), and the substrate 9 is unloaded from the substrate processing apparatus 10.

以上に説明したように、基板処理装置10では、ドライエッチングやプラズマCVD等の前処理により帯電している基板9に対し、枚葉処理装置1における処理液による処理(すなわち、SPM液によるSPM処理)を行う前に、当該処理液よりも比抵抗が大きい除電液に基板9の両側の主面を全面に亘って接触させて接液状態が維持される。これにより、基板9の両側の主面全体が比較的緩やかに除電される。除電の際には、基板9上の電荷が急激に除電液へと移動して発熱することがないため、基板9上のデバイスにダメージが生じることが防止される。   As described above, in the substrate processing apparatus 10, the substrate 9 that has been charged by the pretreatment such as dry etching or plasma CVD is processed with the processing liquid in the single wafer processing apparatus 1 (that is, the SPM processing with the SPM liquid). ), The main surface on both sides of the substrate 9 is brought into contact with the charge-removing solution having a higher specific resistance than that of the processing solution over the entire surface to maintain the liquid contact state. As a result, the entire main surface on both sides of the substrate 9 is discharged relatively slowly. At the time of static elimination, the charges on the substrate 9 do not suddenly move to the static elimination liquid and do not generate heat, so that damage to the device on the substrate 9 is prevented.

そして、除電処理が行われた後の基板9に対し、上記処理液が供給されることにより、基板9が、除電液よりも比抵抗が小さい当該処理液と接触しても、基板9から処理液へと大量の電荷が急激に移動することがない。このため、枚葉処理装置1における処理液による処理の際にも、電荷の移動によるデバイスのダメージ、すなわち、基板9の損傷を防止することができる。   Then, even if the substrate 9 comes into contact with the treatment liquid having a specific resistance smaller than that of the charge removal liquid by supplying the treatment liquid to the substrate 9 after the charge removal process, the treatment is performed from the substrate 9. A large amount of charge does not move rapidly into the liquid. For this reason, also in the process by the process liquid in the single wafer processing apparatus 1, the damage of the device by the movement of electric charges, that is, the damage of the substrate 9 can be prevented.

基板処理装置10では、温度調整部61により除電液の温度を調整することにより、除電液の比抵抗を、枚葉処理装置1にて利用される処理液の比抵抗よりも大きい状態に維持しつつ、基板9の両側の主面と除電液との接触が行われる。これにより、上述のように、デバイスにダメージを与えることなく、基板9の除電処理を行うことができる。また、デバイスにダメージを与えない範囲で、除電液の温度を高くして比抵抗を小さくすることにより、基板9から除電液への電荷の移動速度を増大させることができる。その結果、基板9の除電処理に要する時間を短くすることができる。   In the substrate processing apparatus 10, by adjusting the temperature of the static elimination liquid by the temperature adjustment unit 61, the specific resistance of the static elimination liquid is maintained in a state larger than the specific resistance of the treatment liquid used in the single wafer processing apparatus 1. Meanwhile, the main surface on both sides of the substrate 9 is brought into contact with the charge eliminating liquid. As a result, as described above, it is possible to perform the charge removal process on the substrate 9 without damaging the device. Further, by increasing the temperature of the neutralization solution and decreasing the specific resistance within a range that does not damage the device, the charge transfer rate from the substrate 9 to the neutralization solution can be increased. As a result, the time required for the charge removal process of the substrate 9 can be shortened.

除電液の比抵抗の調整は、例えば、純水に二酸化炭素(CO)等を溶解させたイオンを含む液体を除電液として利用し、除電液のイオン濃度を調整することによっても可能である。しかしながら、この方法では、二酸化炭素等を使用するため、除電処理に要するコストが増大するおそれがある。また、同じ温度の純水に比べて、除電液の比抵抗を大きくすることはできない。これに対し、上述の基板処理装置10では、除電液の温度を調整することにより除電液の比抵抗を調整するため、除電液の比抵抗を容易に、かつ、低コストにて調整することができる。 The specific resistance of the static elimination liquid can be adjusted, for example, by using a liquid containing ions obtained by dissolving carbon dioxide (CO 2 ) or the like in pure water as the static elimination liquid and adjusting the ion concentration of the static elimination liquid. . However, since this method uses carbon dioxide or the like, the cost required for the charge removal process may increase. In addition, the specific resistance of the static elimination liquid cannot be increased as compared with pure water at the same temperature. On the other hand, in the substrate processing apparatus 10 described above, the specific resistance of the static elimination liquid is adjusted by adjusting the temperature of the static elimination liquid. Therefore, the specific resistance of the static elimination liquid can be easily adjusted at low cost. it can.

上述のように、基板処理装置10では、基板9上のデバイスのサイズが小さいほど、より低い温度が除電液の目標温度として決定され、より高い比抵抗が目標比抵抗として決定される。これにより、枚葉処理装置1における処理時の基板9の損傷防止と除電処理の所要時間の短縮との両立を、デバイスのサイズに合わせて適切に行うことができる。   As described above, in the substrate processing apparatus 10, the smaller the device size on the substrate 9, the lower the temperature is determined as the target temperature of the static elimination liquid, and the higher specific resistance is determined as the target specific resistance. Thereby, it is possible to appropriately perform both the prevention of damage to the substrate 9 during processing in the single wafer processing apparatus 1 and the reduction of the time required for the static elimination processing in accordance with the size of the device.

除電液接液部7では、基板9の一方の主面に接触する除電液と他方の主面に接触する除電液とが、基板9のエッジ上において連続している。これにより、基板9の一方の主面に接触する除電液と他方の主面に接触する除電液とが連続していない場合に比べて、除電処理により基板9の表面電位(の絶対値)を、より小さくすることができる。   In the static elimination liquid contact part 7, the static elimination liquid that contacts one main surface of the substrate 9 and the static elimination liquid that contacts the other main surface are continuous on the edge of the substrate 9. As a result, the surface potential (absolute value) of the substrate 9 can be reduced by the neutralization process as compared with the case where the neutralization liquid in contact with one main surface of the substrate 9 and the neutralization solution in contact with the other main surface are not continuous. , Can be smaller.

除電液接液部7では、基板9全体が除電液に浸漬されることにより、基板9の一方の主面に接触する除電液と他方の主面に接触する除電液とを容易に連続させることができる。また、基板9の単位面積当たりに接触する除電液の量を容易に大きくすることができるため、基板9の表面電位(の絶対値)を、より一層小さくすることができる。   In the static elimination liquid contact part 7, the whole of the substrate 9 is immersed in the static elimination liquid, so that the static elimination liquid in contact with one main surface of the substrate 9 and the static elimination liquid in contact with the other main surface are easily continued. Can do. In addition, since the amount of the neutralizing liquid that contacts the unit area of the substrate 9 can be easily increased, the surface potential (absolute value) of the substrate 9 can be further reduced.

上述のように、除電液接液部7では、複数の基板9を除電液貯溜部71内の除電液に一度に浸漬することにより、複数の基板9の除電処理を効率良く行うことができる。また、除電液貯溜部71への除電液の供給を頻繁に行う必要がないため、除電液と除電液配管721との摩擦により除電液中に電荷が生じることを抑制することができる。さらに、各基板9がエッジから徐々に浸漬されるため、万一、基板9から除電液への電荷の移動により基板9にダメージが生じたとしても、基板9上のデバイスに対して影響が少ない基板9のエッジ近傍のみにダメージが生じる。このため、デバイスの歩留まりを向上することができる。   As described above, in the static elimination liquid contact part 7, the plurality of substrates 9 are immersed in the static elimination liquid in the static elimination liquid storage part 71 at a time, so that the static elimination treatment of the plurality of substrates 9 can be performed efficiently. In addition, since it is not necessary to frequently supply the neutralization liquid to the neutralization liquid reservoir 71, it is possible to suppress the generation of electric charges in the neutralization liquid due to friction between the neutralization liquid and the neutralization liquid pipe 721. Furthermore, since each substrate 9 is gradually immersed from the edge, even if the substrate 9 is damaged due to the movement of electric charge from the substrate 9 to the charge removal liquid, the influence on the devices on the substrate 9 is small. Damage occurs only in the vicinity of the edge of the substrate 9. For this reason, the yield of devices can be improved.

除電液接液部7では、上記ステップS121〜S123に示す温度調整が行われることにより、除電液の温度を精度良く調整することができる。また、ステップS124〜S126に示す温度調整が行われる場合は、ステップS121〜S123に示す温度調整を行う場合に比べて、制御部8による温度調整部61の制御を簡素化することができる。   In the static elimination liquid contact part 7, the temperature of the static elimination liquid can be accurately adjusted by performing the temperature adjustment shown in the above steps S121 to S123. Moreover, when the temperature adjustment shown to step S124-S126 is performed, control of the temperature adjustment part 61 by the control part 8 can be simplified compared with the case where the temperature adjustment shown to step S121-S123 is performed.

上述のように、除電液接液部7では、除電液として純水が利用される。これにより、除電液として、純水に二酸化炭素(CO)等を溶解させたイオンを含む液体を利用する場合に比べて、除電液の使用に係るコストを低減することができる。 As described above, in the static elimination liquid wetted part 7, pure water is used as the static elimination liquid. Thus, as anti-static liquid, as compared with the case of using a liquid containing pure water were dissolved carbon dioxide (CO 2) and ion, it is possible to reduce the cost of the use of anti-static liquid.

基板処理装置10では、ステップS14における除電処理と、ステップS17における処理液による処理(SPM処理)との間において、ステップS15における乾燥処理により、基板9上の除電液が除去される。これにより、基板9上における除電液と処理液との混合による悪影響を防止することができる。当該悪影響としては、例えば、除電液である純水とSPM液に含まれる硫酸との反応熱による基板9の損傷(いわゆる、ヒートショック)、SPM液が除電液により希釈されることによるSPM処理の質の低下、および、SPM液の除電液との部分的な混合によりSPM液の濃度が不均一となり、基板9全体におけるSPM処理の均一性が低下することが挙げられる。   In the substrate processing apparatus 10, the charge removal liquid on the substrate 9 is removed by the drying process in step S <b> 15 between the charge removal process in step S <b> 14 and the process using the process liquid in step S <b> 17 (SPM process). Thereby, the bad influence by mixing of the static elimination liquid and processing liquid on the board | substrate 9 can be prevented. The adverse effects include, for example, damage to the substrate 9 due to the reaction heat between pure water as a static elimination liquid and sulfuric acid contained in the SPM liquid (so-called heat shock), and SPM treatment due to dilution of the SPM liquid with the static elimination liquid. For example, the concentration of the SPM liquid becomes non-uniform due to the deterioration of the quality and the partial mixing of the SPM liquid with the charge eliminating liquid, and the uniformity of the SPM treatment in the entire substrate 9 is reduced.

図8.Aおよび図8.Bは、図4中のステップS11において制御部8に設定される目標温度の決定の流れの一例を示す図である。目標温度の決定処理では、まず、ステップS17にて使用される予定の処理液(SPM液)の比抵抗が測定されて得られる(ステップS611)。続いて、図3に示す除電液(純水)の温度と比抵抗との関係も取得される(ステップS612)。そして、ステップS612にて得られた関係に基づいて、除電液の比抵抗が処理液の比抵抗に等しくなる除電液の温度が取得される(ステップS613)。   FIG. A and FIG. B is a diagram illustrating an example of a flow of determining a target temperature set in the control unit 8 in step S11 in FIG. In the target temperature determination process, first, the specific resistance of the processing liquid (SPM liquid) to be used in step S17 is measured and obtained (step S611). Subsequently, the relationship between the temperature of the static eliminating liquid (pure water) shown in FIG. 3 and the specific resistance is also acquired (step S612). Then, based on the relationship obtained in step S612, the temperature of the static elimination liquid at which the specific resistance of the static elimination liquid becomes equal to the specific resistance of the treatment liquid is acquired (step S613).

次に、ステップS613にて取得された温度よりもわずかに低い仮目標温度が設定され、仮目標温度の除電液が準備される(ステップS614,S615)。除電液の準備と並行して、上記基板9と同様の構造を有する試験用基板が準備される。試験用基板は、貯溜部に貯溜された仮目標温度の除電液に浸漬される。これにより、試験用基板の両側の主面が、全面に亘って除電液に接触し、当該接液状態が所定の時間だけ維持されることにより、試験用基板上の電荷が減少する。換言すれば、試験用基板の除電処理が行われる(ステップS616)。   Next, a temporary target temperature slightly lower than the temperature acquired in step S613 is set, and a static elimination liquid having the temporary target temperature is prepared (steps S614 and S615). In parallel with the preparation of the charge removal liquid, a test substrate having the same structure as the substrate 9 is prepared. The test substrate is immersed in a static elimination liquid having a temporary target temperature stored in the storage unit. As a result, the main surfaces on both sides of the test substrate are in contact with the neutralization solution over the entire surface, and the liquid contact state is maintained for a predetermined time, whereby the charge on the test substrate is reduced. In other words, the charge removal process is performed on the test substrate (step S616).

除電処理が終了すると、試験用基板が除電液中から取り出され、乾燥処理が行われることにより、試験用基板の両面上から除電液が除去される。続いて、試験用基板の上面(すなわち、デバイスが予め形成されている面)上に処理液が供給され、ステップS17と同様に所定の処理(SPM処理)が行われる(ステップS617)。   When the neutralization process is completed, the test substrate is taken out of the neutralization solution and dried, whereby the neutralization solution is removed from both surfaces of the test substrate. Subsequently, the processing liquid is supplied onto the upper surface of the test substrate (that is, the surface on which the device is formed in advance), and a predetermined process (SPM process) is performed as in step S17 (step S617).

SPM処理が終了すると、試験用基板の上面の状態が観察される等して評価され(ステップS618)、上面の状態が良好であれば(ステップS619)、仮目標温度が目標温度として決定される。当該目標温度は記憶部8aに記憶される(ステップS623)。ステップS619では、試験用基板において、上面上のデバイスの損傷が生じていない場合、上面の状態が良好であると評価され、デバイスの損傷が生じている場合、上面の状態が良好ではないと評価される。   When the SPM process is completed, the state of the upper surface of the test substrate is evaluated by being observed (step S618). If the state of the upper surface is good (step S619), the temporary target temperature is determined as the target temperature. . The target temperature is stored in the storage unit 8a (step S623). In step S619, when the device on the upper surface is not damaged in the test substrate, it is evaluated that the state of the upper surface is good, and when the device is damaged, it is evaluated that the state of the upper surface is not good. Is done.

試験用基板の上面の状態が良好ではない場合(ステップS619)、ステップS616の除電処理の時間(すなわち、試験用基板の除電液に対する接液状態を維持する時間)が長くなるように変更され、新たな試験用基板に対する除電処理が行われる(ステップS620,S621,S616)。そして、SPM処理および試験用基板の上面の状態の評価が行われる(ステップS617,S618)。除電処理の時間を変更しての除電処理、SPM処理および試験用基板の評価は、所定の回数だけ繰り返される(ステップS619〜S621)。ただし、所定回数の繰り返しが終了する前に、ステップS619において試験用基板の上面の状態が良好であると判断された場合は、仮目標温度が目標温度として決定され、最新のステップS616における除電処理の時間が、ステップS14における除電時間の時間として決定される。当該除電時間は記憶部8aに記憶される。(ステップS623)。   When the state of the upper surface of the test substrate is not good (step S619), the time for the charge removal process in step S616 (that is, the time for maintaining the liquid contact state with respect to the charge removal solution of the test substrate) is changed to be long, A static elimination process is performed on a new test substrate (steps S620, S621, and S616). Then, the SPM process and the evaluation of the state of the upper surface of the test substrate are performed (steps S617 and S618). The static elimination process, the SPM process, and the evaluation of the test substrate with the static elimination process time changed are repeated a predetermined number of times (steps S619 to S621). However, if it is determined in step S619 that the state of the upper surface of the test substrate is good before the predetermined number of repetitions is completed, the temporary target temperature is determined as the target temperature, and the charge removal process in the latest step S616 is performed. Is determined as the static elimination time in step S14. The static elimination time is stored in the storage unit 8a. (Step S623).

一方、所定回数の繰り返しが終了しても、試験用基板の上面の状態が良好であると判断されなかった場合は、仮目標温度が下げられる(ステップS619,S620,S622)。換言すれば、最新の仮目標温度よりも低い温度が仮目標温度として設定される。そして、新たな試験用基板に対する除電処理、SPM処理および試験用基板の評価が行われる(ステップS616〜S618)。試験用基板の上面の状態が良好になれば、仮目標温度が目標温度として決定される(ステップS619,S623)。また、試験用基板の上面の状態が良好ではない場合は、除電時間を長く変更し(ステップS619〜S621)、除電処理、SPM処理および試験用基板の評価が所定回数だけ繰り返される(ステップS616〜S621)。   On the other hand, if it is not determined that the state of the upper surface of the test substrate is good even after the predetermined number of repetitions, the temporary target temperature is lowered (steps S619, S620, S622). In other words, a temperature lower than the latest temporary target temperature is set as the temporary target temperature. And the static elimination process with respect to a new test board | substrate, SPM process, and the evaluation of a test board | substrate are performed (step S616-S618). If the state of the upper surface of the test substrate becomes good, the temporary target temperature is determined as the target temperature (steps S619 and S623). If the state of the upper surface of the test substrate is not good, the static elimination time is changed longer (steps S619 to S621), and the static elimination process, the SPM process, and the evaluation of the test substrate are repeated a predetermined number of times (steps S616 to S616). S621).

このように、ステップS616〜S622が繰り返されることにより、SPM処理後の試験用基板の上面の状態が良好となる仮目標温度および除電時間が、目標温度および除電時間として決定される(ステップS623)。そして、基板処理装置10において、当該目標温度の除電液を利用して除電処理を行うことにより、処理液による処理の際に、基板9の損傷を防止することができる。また、設定された除電時間だけ除電処理を行うことにより、除電時間を過剰に長くすることが防止される。   As described above, by repeating Steps S616 to S622, the temporary target temperature and the static elimination time at which the state of the upper surface of the test substrate after the SPM processing becomes favorable are determined as the target temperature and the static elimination time (Step S623). . And in the substrate processing apparatus 10, by performing the static elimination process using the static elimination liquid of the said target temperature, the damage of the board | substrate 9 can be prevented in the process by a process liquid. Further, by performing the static elimination process for the set static elimination time, it is possible to prevent the static elimination time from being excessively increased.

また、本目標除電温度決定処理においては、比抵抗が処理液に等しくなる除電液の温度よりもわずかに低い温度を目標除電温度取得処理開始時点での仮目標温度とし(ステップS614)、当該仮目標温度を少しずつ下げていき(ステップS622)、試験用基板の上面が良好となった時点での仮目標温度を最終的な目標温度としている(ステップS622)。除電液の温度が高ければ高いほど除電時間を短くすることができるため、試験用基板の上面に損傷を与えない温度範囲のうちで最も除電時間が短くなる温度を最終的な目標温度として決定することができる。   In this target static elimination temperature determination process, a temperature slightly lower than the temperature of the static elimination liquid at which the specific resistance is equal to the treatment liquid is set as a temporary target temperature at the start of the target static elimination temperature acquisition process (step S614). The target temperature is gradually lowered (step S622), and the temporary target temperature at the time when the upper surface of the test substrate becomes satisfactory is set as the final target temperature (step S622). The higher the temperature of the charge removal solution, the shorter the charge removal time. Therefore, the temperature at which the charge removal time is the shortest in the temperature range that does not damage the upper surface of the test substrate is determined as the final target temperature. be able to.

図9は、目標温度の決定の他の例を示す図である。図9では、目標温度の決定の流れの一部を示す。まず、ステップS17にて使用される予定の処理液(SPM液)の比抵抗が測定されて得られる(ステップS631)。続いて、処理液の比抵抗よりもわずかに高い比抵抗が仮目標比抵抗として設定される(ステップS632)。また、図3に示す除電液(純水)の温度と比抵抗との関係も取得される(ステップS633)。そして、ステップS633にて得られた関係に基づいて、除電液の比抵抗がステップS632にて設定された比抵抗に等しくなる除電液の温度が、仮目標温度として取得される(ステップS634)。   FIG. 9 is a diagram illustrating another example of determining the target temperature. FIG. 9 shows a part of the flow for determining the target temperature. First, the specific resistance of the processing liquid (SPM liquid) to be used in step S17 is measured and obtained (step S631). Subsequently, a specific resistance slightly higher than the specific resistance of the processing liquid is set as the temporary target specific resistance (step S632). Moreover, the relationship between the temperature of the static elimination liquid (pure water) shown in FIG. 3 and specific resistance is also acquired (step S633). Based on the relationship obtained in step S633, the temperature of the static elimination liquid at which the specific resistance of the static elimination liquid becomes equal to the specific resistance set in step S632 is acquired as a temporary target temperature (step S634).

以下、上述のステップS615〜S623と同様の工程が行われ、SPM処理後の試験用基板の上面の状態が良好となる仮目標温度および除電時間が、目標温度および除電時間として決定される。そして、基板処理装置10において、当該目標温度の除電液を利用して除電処理を行うことにより、処理液による処理の際に、基板9の損傷を防止することができる。また、設定された除電時間だけ除電処理を行うことにより、除電時間を過剰に長くすることが防止される。図8.A、図8.Bおよび図9に示す目標温度の決定処理は、基板処理装置10において行われてもよく、基板処理装置10を用いることなく行われてもよい。   Thereafter, the same processes as those in steps S615 to S623 described above are performed, and the temporary target temperature and the static elimination time at which the state of the upper surface of the test substrate after the SPM process is good are determined as the target temperature and the static elimination time. And in the substrate processing apparatus 10, by performing the static elimination process using the static elimination liquid of the said target temperature, the damage of the board | substrate 9 can be prevented in the process by a process liquid. Further, by performing the static elimination process for the set static elimination time, it is possible to prevent the static elimination time from being excessively increased. FIG. A, FIG. The target temperature determination process shown in B and FIG. 9 may be performed in the substrate processing apparatus 10 or may be performed without using the substrate processing apparatus 10.

図1に示す基板処理装置10では、除電液測定部62として比抵抗計が利用され、除電液測定部62により除電液の比抵抗が測定されてもよい。この場合、基板処理装置10では、図4に示すステップS11に代えて、図10に示すように、除電処理における除電液の好ましい比抵抗である目標比抵抗が、制御部8に設定される(ステップS31)。また、図3に示すような除電液の温度と比抵抗との関係も、制御部8に記憶される。   In the substrate processing apparatus 10 illustrated in FIG. 1, a specific resistance meter may be used as the static elimination liquid measuring unit 62, and the specific resistance of the static elimination liquid may be measured by the static elimination liquid measuring unit 62. In this case, in the substrate processing apparatus 10, instead of step S <b> 11 shown in FIG. 4, as shown in FIG. 10, a target specific resistance that is a preferable specific resistance of the charge removal solution in the charge removal process is set in the control unit 8 ( Step S31). Further, the relationship between the temperature of the neutralizing solution and the specific resistance as shown in FIG.

続いて、図5に示すステップS121〜S123に代えて、除電液測定部62により、除電液配管721内を流れる除電液の比抵抗が測定される(ステップS321)。次に、ステップS321における測定結果、および、除電液の温度と比抵抗との関係に基づいて、除電液配管721内の除電液の比抵抗と目標比抵抗との差が小さくなるように、温度調整部61により除電液の温度が調整される(ステップS322)。そして、ステップS321とステップS322とが繰り返されることにより、除電液の比抵抗が、およそ目標比抵抗に調整されて維持される(ステップS323)。これにより、除電液の比抵抗を精度良く調整することができる。   Subsequently, in place of steps S121 to S123 shown in FIG. 5, the specific resistance of the neutralizing liquid flowing in the neutralizing liquid pipe 721 is measured by the neutralizing liquid measuring unit 62 (step S321). Next, based on the measurement result in step S321 and the relationship between the temperature of the neutralizing liquid and the specific resistance, the temperature is set so that the difference between the specific resistance of the neutralizing liquid in the neutralizing liquid pipe 721 and the target specific resistance becomes small. The temperature of the static elimination liquid is adjusted by the adjustment unit 61 (step S322). And by repeating step S321 and step S322, the specific resistance of a static elimination liquid is adjusted and maintained by the target specific resistance (step S323). Thereby, the specific resistance of a static elimination liquid can be adjusted accurately.

除電液の比抵抗が目標比抵抗から多少ずれていても許容されるケースでは、図10のステップS321〜S323に代えて、図11に示すように温度調整が行われる。まず、除電液測定部62により、除電液配管721内を流れる除電液の比抵抗が測定される(ステップS324)。続いて、ステップS324における測定結果に基づいて、除電液配管721内の除電液の比抵抗と目標比抵抗との差が求められ、予め設定された所定の閾値比抵抗差と比較される(ステップS325)。   In a case where the specific resistance of the charge removal liquid is allowed to be slightly deviated from the target specific resistance, temperature adjustment is performed as shown in FIG. 11 instead of steps S321 to S323 in FIG. First, the specific resistance of the neutralizing liquid flowing through the neutralizing liquid pipe 721 is measured by the neutralizing liquid measuring unit 62 (step S324). Subsequently, based on the measurement result in step S324, the difference between the specific resistance of the static elimination liquid in the static elimination liquid pipe 721 and the target specific resistance is obtained and compared with a predetermined threshold specific resistance difference (step). S325).

除電液の比抵抗と目標比抵抗との差が閾値比抵抗差未以下の場合、温度調整部61による除電液の温度調整は行われない。除電液の比抵抗と目標比抵抗との差が閾値比抵抗差よりも大きい場合、除電液の比抵抗と目標比抵抗との差が小さくなるように、温度調整部61により除電液の温度が調整される(ステップS326)。目標比抵抗よりも閾値比抵抗差だけ小さい比抵抗を「下限比抵抗」と呼び、目標比抵抗よりも閾値比抵抗差だけ大きい比抵抗を「上限比抵抗」と呼ぶと、ステップS324〜S326が繰り返されることにより、除電液の比抵抗が、下限比抵抗以上かつ上限比抵抗以下の範囲内におよそ調整されて維持される。これにより、ステップS321〜S323に示す温度調整を行う場合に比べて、制御部8による温度調整部61の制御を簡素化することができる。   When the difference between the specific resistance of the static elimination liquid and the target specific resistance is not more than the threshold specific resistance difference, the temperature adjustment unit 61 does not adjust the temperature of the static elimination liquid. When the difference between the specific resistance of the static elimination liquid and the target specific resistance is larger than the threshold specific resistance difference, the temperature adjustment unit 61 adjusts the temperature of the static elimination liquid so that the difference between the specific resistance of the static elimination liquid and the target specific resistance becomes small. Adjustment is made (step S326). When a specific resistance that is smaller than the target specific resistance by the threshold specific resistance is called a “lower limit specific resistance” and a specific resistance that is larger than the target specific resistance by the threshold specific resistance is called an “upper limit specific resistance”, steps S324 to S326 are performed. By being repeated, the specific resistance of the static elimination liquid is adjusted and maintained within the range of the lower limit specific resistance and the upper limit specific resistance. Thereby, compared with the case where the temperature adjustment shown to step S321-S323 is performed, control of the temperature adjustment part 61 by the control part 8 can be simplified.

基板処理装置10では、上述のステップS31,S321〜S323が行われる場合、基板9上のデバイスのサイズが小さいほど、除電液の目標比抵抗が大きく設定される。これにより、枚葉処理装置1における処理時の基板9の損傷防止と除電処理の所要時間の短縮との両立を、デバイスのサイズに合わせて適切に行うことができる。また、ステップS31,S324〜S326が行われる場合も同様である。   In the substrate processing apparatus 10, when the above-described steps S <b> 31 and S <b> 321 to S <b> 323 are performed, the target specific resistance of the static elimination liquid is set to be larger as the device size on the substrate 9 is smaller. Thereby, it is possible to appropriately perform both the prevention of damage to the substrate 9 during processing in the single wafer processing apparatus 1 and the reduction of the time required for the static elimination processing in accordance with the size of the device. The same applies when steps S31 and S324 to S326 are performed.

次に、本発明の第2の実施の形態に係る基板処理装置10aについて説明する。図12は、基板処理装置10aの構成を示す図である。基板処理装置10aでは、除電液接液部7において、図1に示す除電液貯溜部71よりも小さい除電液貯溜部71aが設けられる。除電液貯溜部71aに貯溜された除電液には、1枚の基板9が浸漬される。基板処理装置10aでは、図1に示すカートリッジ73等が省略される。その他の構成は、図1に示す基板処理装置10と同様であり、以下の説明では、対応する構成に同符号を付す。   Next, a substrate processing apparatus 10a according to a second embodiment of the present invention will be described. FIG. 12 is a diagram showing a configuration of the substrate processing apparatus 10a. In the substrate processing apparatus 10a, the static elimination liquid contact part 7 is provided with a static elimination liquid storage part 71a smaller than the static elimination liquid storage part 71 shown in FIG. One substrate 9 is immersed in the charge removal liquid stored in the charge removal liquid storage section 71a. In the substrate processing apparatus 10a, the cartridge 73 and the like shown in FIG. 1 are omitted. Other configurations are the same as those of the substrate processing apparatus 10 shown in FIG. 1, and the same reference numerals are given to the corresponding configurations in the following description.

基板処理装置10aにおける基板処理の流れは、図4に示すものとほぼ同様であり、ステップS14において、制御部8の制御により除電液貯溜部71a内の除電液に基板9を浸漬する際に、1枚の基板9が上面91とは反対側の主面(以下、「下面92」という。)から浸漬される点のみが異なる。   The flow of the substrate processing in the substrate processing apparatus 10a is substantially the same as that shown in FIG. 4, and when the substrate 9 is immersed in the charge removal liquid in the charge removal liquid storage section 71a under the control of the control section 8 in step S14. The only difference is that one substrate 9 is immersed from a main surface opposite to the upper surface 91 (hereinafter referred to as “lower surface 92”).

図13は、基板処理装置10aによる除電処理の前後における基板9の上面91の表面電位を示す図である。上述の除電処理により、基板9上の電荷が減少し、基板9の電位が全体的に低減される。これにより、図1に示す基板処理装置10と同様に、除電処理が行われた後の基板9に対する枚葉処理装置1におけるSPM処理の際に、電荷の移動によるデバイスのダメージ、すなわち、基板9の損傷を防止することができる。また、除電液接液部7では、基板9の上面91および下面92に接触する除電液が、基板9のエッジ上において連続している。これにより、除電処理により基板9の表面電位(の絶対値)を、より小さくすることができる。さらに、除電液接液部7では、基板9全体が除電液に浸漬されることにより、基板9の表面電位(の絶対値)を、より一層小さくすることができる。   FIG. 13 is a diagram showing the surface potential of the upper surface 91 of the substrate 9 before and after the charge removal process by the substrate processing apparatus 10a. By the above-described charge removal process, the charge on the substrate 9 is reduced, and the potential of the substrate 9 is reduced as a whole. As a result, similarly to the substrate processing apparatus 10 shown in FIG. 1, device damage due to the movement of charges, that is, the substrate 9 during the SPM process in the single wafer processing apparatus 1 for the substrate 9 after the charge removal process is performed. Can prevent damage. Further, in the static elimination liquid contact portion 7, the static elimination liquid that contacts the upper surface 91 and the lower surface 92 of the substrate 9 is continuous on the edge of the substrate 9. Thereby, the surface potential (absolute value) of the substrate 9 can be further reduced by the charge removal process. Furthermore, in the static elimination liquid wetted part 7, the surface potential (absolute value) of the substrate 9 can be further reduced by immersing the entire substrate 9 in the static elimination liquid.

次に、本発明の第3の実施の形態に係る基板処理装置10bについて説明する。図14は、基板処理装置10bの構成を示す図である。基板処理装置10bでは、除電液接液部7に代えて、枚葉処理装置1に除電液接液部7aが設けられる。除電液接液部7aでは、除電液貯溜部や基板乾燥部等は設けられず、図1に示す除電液供給部72と一部構造が異なる除電液供給部72aが設けられる。その他の構成は、図1に示す基板処理装置10と同様であり、以下の説明では、対応する構成に同符号を付す。   Next, a substrate processing apparatus 10b according to a third embodiment of the present invention will be described. FIG. 14 is a diagram showing the configuration of the substrate processing apparatus 10b. In the substrate processing apparatus 10b, instead of the static elimination liquid wetted part 7, the single wafer processing apparatus 1 is provided with the static elimination liquid wetted part 7a. In the static elimination liquid contact part 7a, a static elimination liquid storage part, a board | substrate drying part, etc. are not provided, but the static elimination liquid supply part 72a from which the static elimination liquid supply part 72 shown in FIG. Other configurations are the same as those of the substrate processing apparatus 10 shown in FIG. 1, and the same reference numerals are given to the corresponding configurations in the following description.

図14に示す除電液供給部72aは、図1に示す除電液供給部72と同様に、除電液配管721と、流量計722と、除電液バルブ724とを備え、除電液配管721は、図示省略の除電液供給源に接続される。また、除電液供給部72aは、除電液配管721の先端に設けられる除電液ノズル725と、除電液ノズル725を回転軸7281を中心として水平に回動する除電液ノズル回動機構728を備える。除電液ノズル回動機構728は、回転軸7281から水平方向に延びるとともに除電液ノズル725が取り付けられるアーム7282を備える。除電液配管721上には、除電液供給源から除電液ノズル725に向かって、流量計722、温度調整部61、除電液バルブ724および除電液測定部62が順に配置される。   As in the case of the neutralization liquid supply unit 72 shown in FIG. 1, the neutralization liquid supply unit 72a includes a neutralization liquid pipe 721, a flow meter 722, and a neutralization liquid valve 724. It is connected to the omitted neutralizer supply source. The neutralization liquid supply unit 72 a includes a neutralization liquid nozzle 725 provided at the tip of the neutralization liquid pipe 721, and a neutralization liquid nozzle rotation mechanism 728 that rotates the neutralization liquid nozzle 725 horizontally around the rotation axis 7281. The neutralization liquid nozzle rotation mechanism 728 includes an arm 7282 that extends in the horizontal direction from the rotation shaft 7281 and to which the neutralization liquid nozzle 725 is attached. On the static elimination liquid pipe 721, a flow meter 722, a temperature adjustment unit 61, a static elimination liquid valve 724, and a static elimination liquid measurement unit 62 are sequentially arranged from the static elimination liquid supply source toward the static elimination liquid nozzle 725.

枚葉処理装置1では、基板9の外縁部の一部が基板保持部2により支持されており、基板保持部2と接触する当該一部を除き、基板9の下面92と基板保持部2とは離間している。除電液供給部72aは、基板9の下面92へと除電液を供給する下面接液部761をさらに備える。下面接液部761は、基板9の下面92の中心部と対向する位置に配置され、下面92に向けて除電液を吐出する。下面接液部761は、下面用配管762を介して除電液配管721に接続され、下面用配管762上には下面用バルブ763が設けられる。   In the single wafer processing apparatus 1, a part of the outer edge portion of the substrate 9 is supported by the substrate holding unit 2, and the lower surface 92 of the substrate 9 and the substrate holding unit 2 are excluded except for the part that comes into contact with the substrate holding unit 2. Are separated. The neutralization liquid supply unit 72 a further includes a lower surface liquid contact part 761 that supplies the neutralization liquid to the lower surface 92 of the substrate 9. The lower surface liquid contact portion 761 is disposed at a position facing the center portion of the lower surface 92 of the substrate 9, and discharges the neutralizing liquid toward the lower surface 92. The lower surface wetted part 761 is connected to the static elimination liquid pipe 721 via the lower surface pipe 762, and a lower surface valve 763 is provided on the lower surface pipe 762.

除電液接液部7aでは、除電液接液部7と同様に、目標温度が設定された制御部8により温度調整部61が制御されることにより、除電液の温度が調整され(図4:ステップS11,S12)、およそ目標温度に維持される。これにより、除電液の比抵抗が、およそ目標比抵抗に維持される。あるいは、除電液の温度は、下限温度以上かつ上限温度以下の範囲内におよそ維持されてもよい。除電液接液部7aでは、図10または図11に示すように制御部8に目標比抵抗が設定され(ステップS31)、当該目標比抵抗に基づいて除電液の温度が調整されてもよい(ステップS321〜S323、または、ステップS324〜S326)。   In the static elimination liquid wetted part 7a, the temperature adjustment unit 61 is controlled by the control part 8 in which the target temperature is set, as in the static neutralizing liquid wetted part 7, thereby adjusting the temperature of the static elimination liquid (FIG. 4: Steps S11 and S12) are maintained at approximately the target temperature. Thereby, the specific resistance of the static elimination liquid is maintained at a target specific resistance. Or the temperature of a static elimination liquid may be maintained approximately in the range below the upper limit temperature and below the upper limit temperature. In the static elimination liquid contact part 7a, as shown in FIG. 10 or FIG. 11, a target specific resistance is set in the control unit 8 (step S31), and the temperature of the static elimination liquid may be adjusted based on the target specific resistance ( Steps S321 to S323 or Steps S324 to S326).

温度調整された除電液は、除電液ノズル725および下面接液部761に送られ、基板9の上面91の中心部上方に向けられた除電液ノズル725の先端の吐出口から、基板9の上面91に除電液が供給され、また、基板9の下面92の中心部と対向する下面接液部761から、基板9の下面92に除電液が供給される。除電液ノズル725および下面接液部761をそれぞれ第1除電液接液部および第2除電液接液部と呼ぶと、除電液接液部7aでは、第1除電液接液部および第2除電液接液部により、基板9の上面91および下面92が除電液に接触する。   The neutralized liquid whose temperature has been adjusted is sent to the neutralizing liquid nozzle 725 and the lower surface wetted part 761, and the upper surface of the substrate 9 is ejected from the discharge port at the tip of the neutralizing liquid nozzle 725 directed to the upper part of the upper surface 91 of the substrate 9. A static elimination liquid is supplied to 91, and a static elimination liquid is supplied to the lower surface 92 of the substrate 9 from a lower surface wetted portion 761 facing the center of the lower surface 92 of the substrate 9. When the static elimination liquid nozzle 725 and the lower surface wetted part 761 are respectively referred to as a first static elimination liquid wetted part and a second static elimination liquid wetted part, in the static elimination liquid wetted part 7a, the first static elimination liquid wetted part and the second static elimination liquid wetted part, respectively. Due to the liquid contact portion, the upper surface 91 and the lower surface 92 of the substrate 9 come into contact with the static elimination liquid.

図15は、基板処理装置10bにおける基板9の処理の流れの一部を示す図である。まず、図1に示す基板処理装置10と同様に、基板9上のデバイスのサイズ等に基づいて決定された除電液の目標温度が、制御部8に設定される(ステップS41)。続いて、帯電した状態の基板9が基板処理装置10bに搬入され、枚葉処理装置1の基板保持部2により保持される。   FIG. 15 is a diagram showing a part of the processing flow of the substrate 9 in the substrate processing apparatus 10b. First, similarly to the substrate processing apparatus 10 shown in FIG. 1, the target temperature of the static elimination liquid determined based on the size of the device on the substrate 9 is set in the control unit 8 (step S41). Subsequently, the charged substrate 9 is carried into the substrate processing apparatus 10 b and is held by the substrate holding unit 2 of the single wafer processing apparatus 1.

除電液接液部7aでは、除電液ノズル725が基板9よりも外側の待機位置に位置した状態で、除電液ノズル725から除電液(純水)の吐出が開始される。そして、除電液測定部62の測定結果である除電液の温度、および、上述の目標温度に基づいて、温度調整部61に対するフィードバック制御が行われる。これにより、除電液の温度が、除電液の比抵抗が処理液(SPM液)の比抵抗よりも大きくなる温度範囲内に調整される(ステップS42)。除電液の温度調整の詳細は、図5中のステップS121〜S123、または、図6中のステップS124〜S126と同様である。   In the neutralization liquid wetted part 7a, discharge of the neutralization liquid (pure water) from the neutralization liquid nozzle 725 is started in a state where the neutralization liquid nozzle 725 is positioned at the standby position outside the substrate 9. Then, feedback control for the temperature adjustment unit 61 is performed based on the temperature of the neutralization solution, which is the measurement result of the neutralization solution measuring unit 62, and the above-described target temperature. Thereby, the temperature of the static elimination liquid is adjusted within a temperature range in which the specific resistance of the static elimination liquid is larger than the specific resistance of the treatment liquid (SPM liquid) (step S42). The details of the temperature adjustment of the static elimination liquid are the same as steps S121 to S123 in FIG. 5 or steps S124 to S126 in FIG.

除電液の温度調整が終了すると、図14に示す基板回転機構42により基板9の回転が開始される。続いて、図16に示すように、下面用バルブ763が開放され、下面接液部761の先端の吐出口から基板9の下面92に向けて、上述のように温度調整された除電液95の吐出が開始される。基板9の回転速度は、後述のSPM処理時における回転速度よりも低い。基板9の下面92に接触した除電液95は、基板9の回転により、基板9の下面92の中心部から全面に拡がる。除電液95が基板9の下面92全体に拡がると、除電液95の吐出および基板9の回転が停止される。これにより、基板9の下面92全体(ただし、基板保持部2との接触部分を除く。)が除電液95に接触した状態が維持され、その結果、基板9の下面92の電荷が、除電液95へと比較的緩やかに移動し、基板9の下面92全体の除電処理が行われる(ステップS43)。   When the temperature adjustment of the neutralizing liquid is completed, the substrate 9 starts rotating by the substrate rotating mechanism 42 shown in FIG. Subsequently, as shown in FIG. 16, the lower surface valve 763 is opened, and the discharge liquid 95 whose temperature is adjusted as described above from the discharge port at the tip of the lower surface wetted part 761 toward the lower surface 92 of the substrate 9. Discharge is started. The rotation speed of the substrate 9 is lower than the rotation speed during the SPM process described later. The neutralizing liquid 95 that has come into contact with the lower surface 92 of the substrate 9 spreads from the central portion of the lower surface 92 of the substrate 9 to the entire surface by the rotation of the substrate 9. When the static elimination liquid 95 spreads over the entire lower surface 92 of the substrate 9, the discharge of the static elimination liquid 95 and the rotation of the substrate 9 are stopped. As a result, the state in which the entire lower surface 92 of the substrate 9 (excluding the contact portion with the substrate holding unit 2) is in contact with the charge removal liquid 95 is maintained, and as a result, the charge on the lower surface 92 of the substrate 9 is reduced. It moves relatively slowly to 95, and the charge removal process is performed on the entire lower surface 92 of the substrate 9 (step S43).

基板9の下面92への除電液95の供給が終了すると、除電液ノズル回動機構728により除電液ノズル725が待機位置から移動し、除電液ノズル725の先端の吐出口が、基板9の上面91の中心部を向く。そして、除電液ノズル725から基板9の上面91上に除電液95が所定の量だけ供給された後、除電液ノズル725からの除電液95の供給が停止される(いわゆる、液盛りが行われる。)。除電液ノズル725から供給された除電液95は、基板9の中心部から上面91全体に拡がり、上面91上に除電液95の薄い層(例えば、厚さ約1mmの層)が形成されて上面91全体が除電液95にてパドルされる(ステップS44)。これにより、基板9の上面91の電荷が、除電液95へと比較的緩やかに移動し、基板9の上面91全体の除電処理が行われる。なお、基板9の下面92に接触している除電液95と、基板9の上面91に接触している除電液95とは、基板9上において連続していない。   When the supply of the neutralization liquid 95 to the lower surface 92 of the substrate 9 is completed, the neutralization liquid nozzle 725 is moved from the standby position by the neutralization liquid nozzle rotating mechanism 728, and the discharge port at the tip of the neutralization liquid nozzle 725 is moved to the upper surface of the substrate 9. It faces the center of 91. Then, after a predetermined amount of the neutralizing liquid 95 is supplied from the neutralizing liquid nozzle 725 onto the upper surface 91 of the substrate 9, the supply of the neutralizing liquid 95 from the neutralizing liquid nozzle 725 is stopped (so-called liquid accumulation is performed). .) The neutralizing liquid 95 supplied from the neutralizing liquid nozzle 725 spreads from the center of the substrate 9 to the entire upper surface 91, and a thin layer (for example, a layer having a thickness of about 1 mm) of the neutralizing liquid 95 is formed on the upper surface 91. The whole 91 is paddled with the charge removal liquid 95 (step S44). As a result, the charge on the upper surface 91 of the substrate 9 moves relatively slowly to the charge removal liquid 95, and the charge removal process for the entire upper surface 91 of the substrate 9 is performed. It should be noted that the neutralizing liquid 95 that is in contact with the lower surface 92 of the substrate 9 and the neutralizing liquid 95 that is in contact with the upper surface 91 of the substrate 9 are not continuous on the substrate 9.

基板処理装置10bでは、基板回転機構42が停止した状態で、基板9の上面91全体が除電液95にてパドルされるとともに、基板9の下面92全体が除電液95と接触している状態を所定時間だけ維持することにより、基板9の上面91全体および下面92全体の除電処理が行われる。   In the substrate processing apparatus 10b, in a state where the substrate rotating mechanism 42 is stopped, the entire upper surface 91 of the substrate 9 is padded with the neutralizing liquid 95, and the entire lower surface 92 of the substrate 9 is in contact with the neutralizing liquid 95. By maintaining for a predetermined time, the charge removal process is performed on the entire upper surface 91 and the entire lower surface 92 of the substrate 9.

除電処理が終了すると、基板9の回転が開始され(図4:ステップS16)、基板9の上面91および下面92上の除電液が、基板9の回転により除去される。これにより、次のSPM処理の際に、基板9の上面91にて除電液とSPM液とが混ざることが防止される。その結果、基板9上における除電液と処理液との混合による上述の悪影響を防止することができる。   When the neutralization process is completed, the rotation of the substrate 9 is started (FIG. 4: step S16), and the neutralizing liquid on the upper surface 91 and the lower surface 92 of the substrate 9 is removed by the rotation of the substrate 9. This prevents the charge-removing solution and the SPM solution from being mixed on the upper surface 91 of the substrate 9 during the next SPM process. As a result, it is possible to prevent the above-described adverse effects due to the mixing of the charge removal liquid and the treatment liquid on the substrate 9.

除電液の除去が終了すると、図14に示す処理液供給部3からSPM液が基板9の上面91上に供給されてSPM処理が行われる(ステップS17)。続いて、処理液供給部3から過酸化水素水が基板9の上面91上に供給されて過酸化水素水供給処理が行われた後、リンス液(純水)が基板9の上面91上に供給されてリンス処理が行われる(ステップS18,S19)。リンス液は、図示省略のリンス液供給部から供給されてもよく、除電液接液部7aの除電液ノズル725から供給されてもよい。その後、基板9の回転により基板9上のリンス液を除去する乾燥処理が行われ、基板9の回転が停止される(ステップS20,S21)。   When the removal of the static elimination liquid is completed, the SPM liquid is supplied onto the upper surface 91 of the substrate 9 from the processing liquid supply unit 3 shown in FIG. 14 and the SPM process is performed (step S17). Subsequently, after the hydrogen peroxide solution is supplied from the treatment liquid supply unit 3 onto the upper surface 91 of the substrate 9 and the hydrogen peroxide solution supply process is performed, the rinse solution (pure water) is applied onto the upper surface 91 of the substrate 9. The supplied rinse process is performed (steps S18 and S19). The rinsing liquid may be supplied from a rinsing liquid supply unit (not shown) or may be supplied from the static elimination liquid nozzle 725 of the static elimination liquid contact part 7a. Thereafter, a drying process for removing the rinse liquid on the substrate 9 is performed by the rotation of the substrate 9, and the rotation of the substrate 9 is stopped (steps S20 and S21).

図17は、基板処理装置10bによる除電処理の前後における基板9の上面91の表面電位を示す図である。上述の除電処理により、基板9上の電荷が減少し、基板9の電位が全体的に低減される。これにより、図1に示す基板処理装置10と同様に、除電処理が行われた後の基板9に対するSPM処理の際に、電荷の移動によるデバイスのダメージ、すなわち、基板9の損傷を防止することができる。また、基板処理装置10bでは、除電液接液部7aを枚葉処理装置1に設けることにより、基板処理装置10bを小型化することができる。   FIG. 17 is a diagram illustrating the surface potential of the upper surface 91 of the substrate 9 before and after the charge removal process by the substrate processing apparatus 10b. By the above-described charge removal process, the charge on the substrate 9 is reduced, and the potential of the substrate 9 is reduced as a whole. Thereby, similarly to the substrate processing apparatus 10 shown in FIG. 1, device damage due to the movement of charges, that is, damage to the substrate 9 is prevented during the SPM process for the substrate 9 after the charge removal process. Can do. Moreover, in the substrate processing apparatus 10b, the substrate processing apparatus 10b can be reduced in size by providing the neutralization liquid wetted part 7a in the single wafer processing apparatus 1.

基板処理装置10bでは、基板9に対する除電処理は、実質的に基板回転機構42が停止した状態で行われる。これにより、基板9の除電を効率的に行うことができる。基板回転機構42が実質的に停止した状態とは、上述のように、基板回転機構42による基板9の回転が完全に停止している状態のみならず、基板回転機構42により基板9が低い回転数(例えば、10〜200rpm)にて回転しており、当該回転により、基板9上の除電液の層に実質的な影響が生じていない状態を含む。   In the substrate processing apparatus 10b, the charge removal process on the substrate 9 is performed in a state where the substrate rotation mechanism 42 is substantially stopped. Thereby, the charge removal of the board | substrate 9 can be performed efficiently. The state in which the substrate rotation mechanism 42 is substantially stopped is not only the state in which the rotation of the substrate 9 by the substrate rotation mechanism 42 is completely stopped as described above, but also the substrate 9 is rotated at a low speed by the substrate rotation mechanism 42. The number of rotations (for example, 10 to 200 rpm) includes a state in which the rotation does not substantially affect the layer of the charge removal liquid on the substrate 9.

上述の基板処理装置10,10a,10bは、様々な変更が可能である。   The substrate processing apparatuses 10, 10a, and 10b described above can be variously changed.

基板処理装置10では、例えば、除電液測定部62により、除電液貯溜部71に貯溜された除電液の温度または比抵抗が測定されてもよい。また、除電液貯溜部71内の除電液を必要に応じて加熱または冷却する機構が、温度調整部61として設けられてもよい。   In the substrate processing apparatus 10, for example, the temperature or specific resistance of the static elimination liquid stored in the static elimination liquid storage part 71 may be measured by the static elimination liquid measuring part 62. In addition, a mechanism for heating or cooling the static elimination liquid in the static elimination liquid storage part 71 as necessary may be provided as the temperature adjustment part 61.

基板処理装置10bにおける除電処理では、基板9の上面91上における除電液の層が崩れずに維持されるのであれば、上面91への除電液の供給およびパドル処理が、基板9が回転している状態において行われてもよい。また、基板9の上面91の除電液によるパドル処理は、基板9の下面92への除電液の供給よりも前に、あるいは、並行して行われてもよい。   In the charge removal process in the substrate processing apparatus 10b, if the layer of the charge removal liquid on the upper surface 91 of the substrate 9 is maintained without breaking, the supply of the charge removal liquid to the upper surface 91 and the paddle process are performed by rotating the substrate 9. It may be performed in a state where Further, the paddle treatment with the charge removal liquid on the upper surface 91 of the substrate 9 may be performed before or in parallel with the supply of the charge removal liquid to the lower surface 92 of the substrate 9.

除電液と処理液との混合により悪影響が生じないのであれば、基板処理装置10において、ステップS15の乾燥処理は省略されてもよい。また、基板処理装置10bでは、ステップS16において除電液の基板9上からの除去を行うことなく、ステップS17の処理が行われてもよい。   If no adverse effect occurs due to the mixing of the charge removal liquid and the processing liquid, the drying process in step S15 may be omitted in the substrate processing apparatus 10. Moreover, in the substrate processing apparatus 10b, the process of step S17 may be performed without removing the charge removal solution from the substrate 9 in step S16.

上述の基板処理装置では、SPM液以外の処理液が基板9上に供給され、基板9に対する他の処理が行われてもよい。例えば、レジスト膜が形成された基板9上に処理液としてバッファードフッ酸(BHF)が供給され、基板9のエッチング処理が行われてもよい。基板処理装置では、上述のように、帯電した基板9と処理液との接触による電荷の急激な移動に伴う基板9の損傷を防止することができるため、基板処理装置の構造は、SPM液やバッファードフッ酸のように、比抵抗が非常に小さい処理液による処理が行われる装置に特に適している。   In the above-described substrate processing apparatus, a processing liquid other than the SPM liquid may be supplied onto the substrate 9 and other processing may be performed on the substrate 9. For example, the substrate 9 may be etched by supplying buffered hydrofluoric acid (BHF) as a treatment liquid onto the substrate 9 on which the resist film is formed. In the substrate processing apparatus, as described above, since the substrate 9 can be prevented from being damaged due to the rapid movement of the electric charge due to the contact between the charged substrate 9 and the processing liquid, the structure of the substrate processing apparatus includes an SPM liquid, It is particularly suitable for an apparatus such as buffered hydrofluoric acid in which processing with a processing solution having a very low specific resistance is performed.

上述の基板処理装置では、除電液として、純水にアンモニアを溶解させたものや純水に微量の希塩酸を加えたものが利用されてもよく、また、他の様々なイオンを含む液体が利用されてもよい。さらに、除電液は、凝固点以上沸点以下の少なくとも所定の温度範囲において、枚葉処理装置1にて利用される処理液よりも比抵抗が大きくなるものであれば、純水またはイオンを含む液体には限定されず、様々な種類の液体が除電液として利用されてよい。   In the above-described substrate processing apparatus, a neutralizing solution obtained by dissolving ammonia in pure water or a solution obtained by adding a small amount of diluted hydrochloric acid to pure water may be used, or a liquid containing various other ions may be used. May be. Furthermore, the neutralizing liquid is pure water or a liquid containing ions, as long as the specific resistance is higher than that of the processing liquid used in the single wafer processing apparatus 1 in at least a predetermined temperature range from the freezing point to the boiling point. Is not limited, and various types of liquids may be used as the charge removal liquid.

基板処理装置では、除電液の目標温度および目標比抵抗は、デバイスのサイズ以外の条件(例えば、基板処理装置に搬入される前に基板に対して行われた処理の種類)に基づいて決定されてもよい。   In the substrate processing apparatus, the target temperature and target specific resistance of the static elimination liquid are determined based on conditions other than the size of the device (for example, the type of processing performed on the substrate before being carried into the substrate processing apparatus). May be.

上記実施の形態および各変形例における構成は、相互に矛盾しない限り適宜組み合わされてよい。   The configurations in the above-described embodiments and modifications may be combined as appropriate as long as they do not contradict each other.

2 基板保持部
3 処理液供給部
7,7a 除電液接液部
8 制御部
9 基板
10,10a,10b 基板処理装置
61 温度調整部
62 除電液測定部
71,71a 除電液貯溜部
91 上面
92 下面
95 除電液
725 除電液ノズル
761 下面接液部
S11〜S21,S31,S41〜S44,S121〜S126,S321〜S326,S611〜S623,S631〜S634 ステップ
DESCRIPTION OF SYMBOLS 2 Substrate holding | maintenance part 3 Processing liquid supply part 7, 7a Electrostatic removal liquid contact part 8 Control part 9 Substrate 10, 10a, 10b Substrate processing apparatus 61 Temperature adjustment part 62 Electric discharge liquid measurement part 71, 71a Electric discharge liquid storage part 91 Upper surface 92 Lower surface 95 Static elimination liquid 725 Static elimination liquid nozzle 761 Lower surface liquid contact part S11-S21, S31, S41-S44, S121-S126, S321-S326, S611-S623, S631-S634 Step

Claims (31)

基板を処理する基板処理装置であって、
基板を保持する基板保持部と、
前記基板の一方の主面である第1主面上に処理液を供給する処理液供給部と、
前記基板の前記第1主面および他方の主面である第2主面を、液温が上昇するに従って比抵抗が漸次減少する除電液に接触させる除電液接液部と、
前記除電液の温度を調整する温度調整部と、
前記処理液供給部、前記除電液接液部および前記温度調整部を制御することにより、前記除電液の温度を、前記除電液の比抵抗が前記処理液の比抵抗よりも大きくなる範囲内としつつ、前記基板の前記第1主面および前記第2主面を全面に亘って前記除電液に接触させて接液状態を維持することにより前記基板上の電荷を減少させた後、前記処理液を前記基板の前記第1主面上に供給して所定の処理を行う制御部と、
を備えることを特徴とする基板処理装置。
A substrate processing apparatus for processing a substrate,
A substrate holder for holding the substrate;
A processing liquid supply unit for supplying a processing liquid onto the first main surface which is one main surface of the substrate;
A neutralization liquid wetted part for contacting the first major surface of the substrate and the second major surface, which is the other major surface, with a neutralization liquid whose specific resistance gradually decreases as the liquid temperature rises;
A temperature adjusting unit for adjusting the temperature of the static elimination liquid;
By controlling the treatment liquid supply unit, the neutralization liquid wetted part, and the temperature adjustment unit, the temperature of the neutralization liquid is set within a range in which the specific resistance of the neutralization liquid is larger than the specific resistance of the treatment liquid. Meanwhile, after the charge on the substrate is reduced by maintaining the liquid contact state by bringing the first main surface and the second main surface of the substrate into contact with the charge removal solution over the entire surface, the treatment liquid A control unit that performs a predetermined process by supplying the first main surface of the substrate,
A substrate processing apparatus comprising:
請求項1に記載の基板処理装置であって、
前記第1主面に接触する前記除電液と前記第2主面に接触する前記除電液とが前記基板上において連続していることを特徴とする基板処理装置。
The substrate processing apparatus according to claim 1,
The substrate processing apparatus, wherein the static elimination liquid in contact with the first main surface and the static elimination liquid in contact with the second main surface are continuous on the substrate.
請求項2に記載の基板処理装置であって、
前記除電液接液部が、前記除電液を貯溜する除電液貯溜部を備え、
前記基板が、前記除電液貯溜部に貯溜された前記除電液に浸漬されることにより、前記第1主面および前記第2主面が前記除電液に接触することを特徴とする基板処理装置。
The substrate processing apparatus according to claim 2,
The static elimination liquid contact part includes a static elimination liquid storage part for storing the static elimination liquid,
The substrate processing apparatus according to claim 1, wherein the first main surface and the second main surface are in contact with the charge removal solution by immersing the substrate in the charge removal solution stored in the charge removal solution storage section.
請求項3に記載の基板処理装置であって、
前記除電液貯溜部に貯溜された前記除電液に、前記基板を含むとともにそれぞれの主面の法線方向が水平方向を向くように配列された複数の基板が浸漬されることを特徴とする基板処理装置。
The substrate processing apparatus according to claim 3, wherein
A substrate characterized in that a plurality of substrates including the substrate and arranged so that the normal direction of each main surface faces a horizontal direction is immersed in the charge removal solution stored in the charge removal liquid storage unit Processing equipment.
請求項1に記載の基板処理装置であって、
前記除電液接液部が、
前記第1主面を上側に向けた状態で前記基板保持部に保持された前記基板の前記第1主面上に前記除電液を供給して前記第1主面全体を前記除電液にてパドルする第1除電液接液部と、
前記基板の前記第2主面に対向し、前記除電液を前記第2主面に向けて吐出して前記第2主面全体を前記除電液と接触させる第2除電液接液部と、
を備えることを特徴とする基板処理装置。
The substrate processing apparatus according to claim 1,
The static elimination liquid wetted part is
The neutralization liquid is supplied onto the first principal surface of the substrate held by the substrate holding portion with the first principal surface facing upward, and the entire first principal surface is padded with the neutralization liquid. A first static elimination liquid wetted part
A second discharge liquid wetted part facing the second main surface of the substrate and discharging the discharge liquid toward the second main surface to bring the entire second main surface into contact with the discharge liquid;
A substrate processing apparatus comprising:
請求項1ないし5のいずれかに記載の基板処理装置であって、
前記除電液の温度を測定する除電液測定部をさらに備え、
前記制御部が、前記除電液測定部の測定結果に基づいて、前記除電液の温度と所定の目標温度との差が小さくなるように前記温度調整部を制御することを特徴とする基板処理装置。
A substrate processing apparatus according to any one of claims 1 to 5,
A static elimination liquid measuring unit for measuring the temperature of the static elimination liquid;
The substrate processing apparatus, wherein the control unit controls the temperature adjusting unit so that a difference between the temperature of the neutralizing liquid and a predetermined target temperature is reduced based on a measurement result of the neutralizing liquid measuring unit. .
請求項6に記載の基板処理装置であって、
前記除電液の温度と前記目標温度との差が閾値温度差以下の場合、前記温度調整部による前記除電液の温度調整が停止されることを特徴とする基板処理装置。
The substrate processing apparatus according to claim 6,
The substrate processing apparatus according to claim 1, wherein when the difference between the temperature of the static elimination liquid and the target temperature is equal to or less than a threshold temperature difference, temperature adjustment of the static elimination liquid by the temperature adjustment unit is stopped.
請求項6または7に記載の基板処理装置であって、
前記基板上に予め形成されているデバイスのサイズが小さいほど、より低い温度の目標温度が設定されることを特徴とする基板処理装置。
The substrate processing apparatus according to claim 6 or 7, wherein
A substrate processing apparatus, wherein a lower target temperature is set as a size of a device formed in advance on the substrate is smaller.
請求項1ないし5のいずれかに記載の基板処理装置であって、
前記除電液の比抵抗を測定する除電液測定部をさらに備え、
前記制御部が、前記除電液測定部の測定結果に基づいて、前記除電液の比抵抗と所定の目標比抵抗との差が小さくなるように前記温度調整部を制御することを特徴とする基板処理装置。
A substrate processing apparatus according to any one of claims 1 to 5,
A static elimination liquid measuring unit for measuring the specific resistance of the static elimination liquid;
The substrate, wherein the control unit controls the temperature adjusting unit so that a difference between a specific resistance of the neutralizing liquid and a predetermined target specific resistance becomes small based on a measurement result of the neutralizing liquid measuring unit. Processing equipment.
請求項9に記載の基板処理装置であって、
前記除電液の比抵抗と前記目標比抵抗との差が閾値比抵抗差以下の場合、前記温度調整部による前記除電液の温度調整が停止されることを特徴とする基板処理装置。
The substrate processing apparatus according to claim 9, comprising:
The substrate processing apparatus, wherein when the difference between the specific resistance of the static elimination liquid and the target specific resistance is equal to or less than a threshold specific resistance difference, temperature adjustment of the static elimination liquid by the temperature adjustment unit is stopped.
請求項9または10に記載の基板処理装置であって、
前記基板上に予め形成されているデバイスのサイズが小さいほど、より高い比抵抗の目標比抵抗が設定されることを特徴とする基板処理装置。
The substrate processing apparatus according to claim 9 or 10, wherein
The substrate processing apparatus, wherein a target specific resistance having a higher specific resistance is set as a size of a device formed in advance on the substrate is smaller.
請求項1ないし11のいずれかに記載の基板処理装置であって、
前記基板の前記第1主面上の液体を除去する液体除去部をさらに備え、
前記制御部が前記液体除去部を制御することにより、前記基板の前記除電液との接触と、前記処理液による前記所定の処理との間において、前記除電液が前記第1主面上から除去されることを特徴とする基板処理装置。
A substrate processing apparatus according to claim 1,
A liquid removal unit for removing liquid on the first main surface of the substrate;
The control unit controls the liquid removing unit to remove the static eliminating liquid from the first main surface between the contact of the substrate with the static eliminating liquid and the predetermined treatment with the processing liquid. A substrate processing apparatus.
請求項1ないし12のいずれかに記載の基板処理装置であって、
前記除電液が純水であることを特徴とする基板処理装置。
The substrate processing apparatus according to any one of claims 1 to 12,
The substrate processing apparatus, wherein the charge eliminating liquid is pure water.
請求項1ないし13のいずれかに記載の基板処理装置であって、
前記処理液が硫酸を含むことを特徴とする基板処理装置。
The substrate processing apparatus according to claim 1,
The substrate processing apparatus, wherein the processing liquid contains sulfuric acid.
基板を処理する基板処理方法であって、
a)液温が上昇するに従って比抵抗が漸次減少する除電液の温度を、前記除電液の比抵抗が処理液の比抵抗よりも大きくなる範囲内とする工程と、
b)前記a)工程よりも後に、基板の両側の主面を全面に亘って前記除電液に接触させて接液状態を維持することにより前記基板上の電荷を減少させる工程と、
c)前記b)工程よりも後に、前記処理液を前記基板の一方の主面上に供給して所定の処理を行う工程と、
を備えることを特徴とする基板処理方法。
A substrate processing method for processing a substrate, comprising:
a) a step of setting the temperature of the static elimination liquid at which the specific resistance gradually decreases as the liquid temperature rises within a range in which the specific resistance of the static elimination liquid is larger than the specific resistance of the treatment liquid;
b) After the step a), reducing the charge on the substrate by bringing the main surfaces on both sides of the substrate into contact with the charge-removing solution over the entire surface and maintaining the liquid contact state;
c) after the step b), supplying the processing liquid onto one main surface of the substrate to perform a predetermined process;
A substrate processing method comprising:
請求項15に記載の基板処理方法であって、
前記基板の前記一方の主面に接触する前記除電液と前記基板の他方の主面に接触する前記除電液とが前記基板上において連続していることを特徴とする基板処理方法。
The substrate processing method according to claim 15, comprising:
The substrate processing method, wherein the static elimination liquid that contacts the one main surface of the substrate and the static elimination liquid that contacts the other main surface of the substrate are continuous on the substrate.
請求項16に記載の基板処理方法であって、
前記b)工程において、前記基板が、除電液貯溜部に貯溜された前記除電液に浸漬されることにより、前記一方の主面および前記他方の主面が前記除電液に接触することを特徴とする基板処理方法。
The substrate processing method according to claim 16, comprising:
In the step b), the one main surface and the other main surface are in contact with the charge removal solution by immersing the substrate in the charge removal solution stored in the charge removal solution storage section. Substrate processing method.
請求項17に記載の基板処理方法であって、
前記b)工程において、前記除電液貯溜部に貯溜された前記除電液に、前記基板を含むとともにそれぞれの主面の法線方向が水平方向を向くように配列された複数の基板が浸漬されることを特徴とする基板処理方法。
The substrate processing method according to claim 17,
In the step b), a plurality of substrates including the substrate and arranged so that the normal direction of each main surface thereof is in the horizontal direction are immersed in the charge removal solution stored in the charge removal solution storage section. And a substrate processing method.
請求項15に記載の基板処理方法であって、
前記b)工程が、
b1)前記一方の主面を上側に向けた状態で保持された前記基板の前記一方の主面上に前記除電液を供給して前記一方の主面全体を前記除電液にてパドルする工程と、
b2)前記基板の他方の主面に向けて前記除電液を吐出して前記他方の主面全体を前記除電液と接触させる工程と、
を備えることを特徴とする基板処理方法。
The substrate processing method according to claim 15, comprising:
Step b)
b1) supplying the charge-removing solution onto the one principal surface of the substrate held with the one principal surface facing upward, and padding the entire one principal surface with the charge-removing solution; ,
b2) discharging the static elimination liquid toward the other main surface of the substrate to bring the entire other main surface into contact with the static elimination liquid;
A substrate processing method comprising:
請求項15ないし19のいずれかに記載の基板処理方法であって、
前記a)工程が、
a1)前記除電液の温度を測定する工程と、
a2)前記a1)工程における測定結果に基づいて、前記除電液の温度と所定の目標温度との差が小さくなるように前記除電液の温度を調整する工程と、
a3)前記a1)工程と前記a2)工程とを繰り返す工程と、
を備えることを特徴とする基板処理方法。
The substrate processing method according to any one of claims 15 to 19,
Step a)
a1) a step of measuring the temperature of the static elimination liquid;
a2) adjusting the temperature of the static elimination liquid so that the difference between the temperature of the static elimination liquid and a predetermined target temperature is reduced based on the measurement result in the a1) step;
a3) repeating the a1) step and the a2) step;
A substrate processing method comprising:
請求項15ないし19のいずれかに記載の基板処理方法であって、
前記a)工程が、
a1)前記除電液の温度を測定する工程と、
a2)前記a1)工程における測定結果に基づいて、前記除電液の温度と所定の目標温度との差が閾値温度差以下の場合、前記除電液の温度調整を行わず、前記除電液の温度と前記目標温度との前記差が前記閾値温度差よりも大きい場合、前記除電液の温度と前記目標温度との差が小さくなるように前記除電液の温度を調整する工程と、
を備えることを特徴とする基板処理方法。
The substrate processing method according to any one of claims 15 to 19,
Step a)
a1) a step of measuring the temperature of the static elimination liquid;
a2) Based on the measurement result in the step a1), when the difference between the temperature of the static elimination liquid and a predetermined target temperature is equal to or less than a threshold temperature difference, the temperature of the static elimination liquid is not adjusted without adjusting the temperature of the static elimination liquid. When the difference from the target temperature is larger than the threshold temperature difference, adjusting the temperature of the static elimination liquid so as to reduce the difference between the temperature of the static elimination liquid and the target temperature;
A substrate processing method comprising:
請求項20または21に記載の基板処理方法であって、
前記基板上に予め形成されているデバイスのサイズが小さいほど、より低い温度の目標温度が設定されることを特徴とする基板処理方法。
The substrate processing method according to claim 20 or 21,
A substrate processing method, wherein a lower target temperature is set as a size of a device formed in advance on the substrate is smaller.
請求項20ないし22のいずれかに記載の基板処理方法であって、
前記a)工程よりも前に、
d1)前記処理液の比抵抗を得る工程と、
d2)前記除電液の温度と比抵抗との関係を得る工程と、
d3)前記d2)工程にて得られた前記関係に基づいて、前記除電液の比抵抗が前記処理液の前記比抵抗に等しくなる前記除電液の温度を取得する工程と、
d4)前記d3)工程にて取得された温度よりも低い仮目標温度を設定する工程と、
d5)前記仮目標温度の除電液を準備する工程と、
d6)試験用基板の両側の主面を全面に亘って前記仮目標温度の前記除電液に接触させて接液状態を維持することにより前記試験用基板上の電荷を減少させる工程と、
d7)前記処理液を前記試験用基板の一方の主面上に供給して前記所定の処理を行う工程と、
d8)前記d7)工程の終了後、前記試験用基板の前記一方の主面の状態を評価する工程と、
d9)前記一方の主面の状態が良好であれば、前記仮目標温度を前記目標温度として設定し、前記一方の主面の状態が良好でなければ、前記一方の主面の状態が良好になるまで、前記仮目標温度を下げて前記d5)工程ないし前記d8)工程を繰り返し、状態が良好になった際の前記仮目標温度を前記目標温度として決定する工程と、
をさらに備えることを特徴とする基板処理方法。
The substrate processing method according to any one of claims 20 to 22,
Prior to step a)
d1) obtaining a specific resistance of the treatment liquid;
d2) obtaining a relationship between the temperature of the static elimination liquid and the specific resistance;
d3) obtaining the temperature of the static elimination liquid at which the specific resistance of the static elimination liquid becomes equal to the specific resistance of the treatment liquid based on the relationship obtained in the step d2);
d4) setting a temporary target temperature lower than the temperature acquired in the step d3);
d5) preparing a static elimination liquid at the temporary target temperature;
d6) reducing the charge on the test substrate by bringing the main surfaces on both sides of the test substrate into contact with the static elimination liquid at the temporary target temperature over the entire surface to maintain the liquid contact state;
d7) supplying the processing liquid onto one main surface of the test substrate to perform the predetermined processing;
d8) a step of evaluating the state of the one main surface of the test substrate after completion of the step d7);
d9) If the state of the one main surface is good, the temporary target temperature is set as the target temperature. If the state of the one main surface is not good, the state of the one main surface is good. Until the temporary target temperature is lowered, the steps d5) to d8) are repeated, and the temporary target temperature when the state becomes good is determined as the target temperature;
A substrate processing method, further comprising:
請求項20ないし22のいずれかに記載の基板処理方法であって、
前記a)工程よりも前に、
d1)前記処理液の比抵抗を得る工程と、
d2)前記処理液の前記比抵抗よりも高い仮目標比抵抗を設定する工程と、
d3)前記除電液の温度と比抵抗との関係を得る工程と、
d4)前記d3)工程にて得られた前記関係に基づいて、前記除電液の比抵抗が前記d2)工程にて設定された前記仮目標比抵抗に等しくなる前記除電液の温度を仮目標温度として取得する工程と、
d5)前記仮目標温度の除電液を準備する工程と、
d6)試験用基板の両側の主面を全面に亘って前記仮目標温度の前記除電液に接触させて接液状態を維持することにより前記試験用基板上の電荷を減少させる工程と、
d7)前記処理液を前記試験用基板の一方の主面上に供給して前記所定の処理を行う工程と、
d8)前記d7)工程の終了後、前記試験用基板の前記一方の主面の状態を評価する工程と、
d9)前記一方の主面の状態が良好であれば、前記仮目標温度を前記目標温度として設定し、前記一方の主面の状態が良好でなければ、前記一方の主面の状態が良好になるまで、前記仮目標温度を下げて前記d5)工程ないし前記d8)工程を繰り返し、状態が良好になった際の前記仮目標温度を前記目標温度として決定する工程と、
をさらに備えることを特徴とする基板処理方法。
The substrate processing method according to any one of claims 20 to 22,
Prior to step a)
d1) obtaining a specific resistance of the treatment liquid;
d2) setting a temporary target specific resistance higher than the specific resistance of the treatment liquid;
d3) obtaining a relationship between the temperature of the static elimination liquid and the specific resistance;
d4) Based on the relationship obtained in the step d3), the temperature of the static elimination liquid at which the specific resistance of the static elimination liquid becomes equal to the temporary target specific resistance set in the step d2). As a process of obtaining as
d5) preparing a static elimination liquid at the temporary target temperature;
d6) reducing the charge on the test substrate by bringing the main surfaces on both sides of the test substrate into contact with the static elimination liquid at the temporary target temperature over the entire surface to maintain the liquid contact state;
d7) supplying the processing liquid onto one main surface of the test substrate to perform the predetermined processing;
d8) a step of evaluating the state of the one main surface of the test substrate after completion of the step d7);
d9) If the state of the one main surface is good, the temporary target temperature is set as the target temperature. If the state of the one main surface is not good, the state of the one main surface is good. Until the temporary target temperature is lowered, the steps d5) to d8) are repeated, and the temporary target temperature when the state becomes good is determined as the target temperature;
A substrate processing method, further comprising:
請求項23または24に記載の基板処理方法であって、
前記d8)工程と前記d9)工程との間に、前記一方の主面の状態が良好でなければ、前記d6)工程の処理時間を変更して前記d6)工程ないし前記d8)工程を行う工程をさらに備えることを特徴とする基板処理方法。
25. The substrate processing method according to claim 23 or 24, wherein:
If the state of the one main surface is not good between the step d8) and the step d9), the processing time of the step d6) is changed and the steps d6) to d8) are performed. A substrate processing method, further comprising:
請求項15ないし19のいずれかに記載の基板処理方法であって、
前記a)工程が、
a1)前記除電液の比抵抗を測定する工程と、
a2)前記a1)工程における測定結果に基づいて、前記除電液の比抵抗と所定の目標比抵抗との差が小さくなるように前記除電液の温度を調整する工程と、
a3)前記a1)工程と前記a2)工程とを繰り返す工程と、
を備えることを特徴とする基板処理方法。
The substrate processing method according to any one of claims 15 to 19,
Step a)
a1) a step of measuring the specific resistance of the static elimination liquid;
a2) a step of adjusting the temperature of the static elimination liquid so that a difference between a specific resistance of the static elimination liquid and a predetermined target specific resistance is reduced based on a measurement result in the a1) step;
a3) repeating the a1) step and the a2) step;
A substrate processing method comprising:
請求項15ないし19のいずれかに記載の基板処理方法であって、
前記a)工程が、
a1)前記除電液の比抵抗を測定する工程と、
a2)前記a1)工程における測定結果に基づいて、前記除電液の比抵抗と所定の目標比抵抗との差が閾値比抵抗差以下の場合、前記除電液の温度調整を行わず、前記除電液の比抵抗と前記目標比抵抗との前記差が前記閾値比抵抗差よりも大きい場合、前記除電液の比抵抗と前記目標比抵抗との差が小さくなるように前記除電液の温度を調整する工程と、
を備えることを特徴とする基板処理方法。
The substrate processing method according to any one of claims 15 to 19,
Step a)
a1) a step of measuring the specific resistance of the static elimination liquid;
a2) Based on the measurement result in the step a1), when the difference between the specific resistance of the static elimination liquid and a predetermined target specific resistance is less than or equal to a threshold specific resistance difference, the temperature of the static elimination liquid is not adjusted, and the static elimination liquid When the difference between the specific resistance and the target specific resistance is larger than the threshold specific resistance difference, the temperature of the static elimination liquid is adjusted so that the difference between the specific resistance of the static elimination liquid and the target specific resistance is small. Process,
A substrate processing method comprising:
請求項26または27に記載の基板処理方法であって、
前記基板上に予め形成されているデバイスのサイズが小さいほど、より大きい比抵抗の目標比抵抗が設定されることを特徴とする基板処理方法。
28. A substrate processing method according to claim 26 or 27, wherein:
A substrate processing method, wherein a target specific resistance having a larger specific resistance is set as a size of a device formed in advance on the substrate is smaller.
請求項15ないし28のいずれかに記載の基板処理方法であって、
e)前記b)工程と前記c)工程との間において、前記基板の前記第1主面上から前記除電液を除去する工程をさらに備えることを特徴とする基板処理方法。
A substrate processing method according to any one of claims 15 to 28, comprising:
e) A substrate processing method further comprising a step of removing the charge removal solution from the first main surface of the substrate between the step b) and the step c).
請求項15ないし29のいずれかに記載の基板処理方法であって、
前記除電液が純水であることを特徴とする基板処理方法。
A substrate processing method according to any one of claims 15 to 29, comprising:
A substrate processing method, wherein the charge eliminating liquid is pure water.
請求項15ないし30のいずれかに記載の基板処理方法であって、
前記処理液が硫酸を含むことを特徴とする基板処理方法。
A substrate processing method according to any one of claims 15 to 30, comprising:
A substrate processing method, wherein the processing liquid contains sulfuric acid.
JP2012286859A 2012-12-28 2012-12-28 Substrate processing apparatus and substrate processing method Active JP6262430B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012286859A JP6262430B2 (en) 2012-12-28 2012-12-28 Substrate processing apparatus and substrate processing method
TW102145530A TWI546878B (en) 2012-12-28 2013-12-11 Substrate processing apparatus and substrate processing method
KR1020130158309A KR101580369B1 (en) 2012-12-28 2013-12-18 Substrate processing apparatus and substrate processing method
US14/142,586 US9972515B2 (en) 2012-12-28 2013-12-27 Substrate processing apparatus and substrate processing method
CN201310741211.6A CN103915364B (en) 2012-12-28 2013-12-27 Substrate board treatment and substrate processing method using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012286859A JP6262430B2 (en) 2012-12-28 2012-12-28 Substrate processing apparatus and substrate processing method

Publications (2)

Publication Number Publication Date
JP2014130872A true JP2014130872A (en) 2014-07-10
JP6262430B2 JP6262430B2 (en) 2018-01-17

Family

ID=51409039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012286859A Active JP6262430B2 (en) 2012-12-28 2012-12-28 Substrate processing apparatus and substrate processing method

Country Status (1)

Country Link
JP (1) JP6262430B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61156740A (en) * 1984-12-27 1986-07-16 Toshiba Corp Semiconductor manufacturing device
JPH0283926A (en) * 1988-09-21 1990-03-26 Hitachi Ltd Method for erasing static electricity on wafer
JP2004321971A (en) * 2003-04-25 2004-11-18 Dainippon Screen Mfg Co Ltd Cleaning device and board treating apparatus
WO2006082780A1 (en) * 2005-02-07 2006-08-10 Ebara Corporation Substrate processing method, substrate processing apparatus and control program
JP2009200365A (en) * 2008-02-23 2009-09-03 Sony Corp Processing method for substrate
JP2011103438A (en) * 2009-10-16 2011-05-26 Tokyo Electron Ltd Substrate liquid processing apparatus, substrate liquid processing method, and computer-readable storage medium having substrate liquid processing program stored therein
JP2013077626A (en) * 2011-09-29 2013-04-25 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and substrate processing method
JP2013077625A (en) * 2011-09-29 2013-04-25 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and substrate processing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61156740A (en) * 1984-12-27 1986-07-16 Toshiba Corp Semiconductor manufacturing device
JPH0283926A (en) * 1988-09-21 1990-03-26 Hitachi Ltd Method for erasing static electricity on wafer
JP2004321971A (en) * 2003-04-25 2004-11-18 Dainippon Screen Mfg Co Ltd Cleaning device and board treating apparatus
WO2006082780A1 (en) * 2005-02-07 2006-08-10 Ebara Corporation Substrate processing method, substrate processing apparatus and control program
JP2009200365A (en) * 2008-02-23 2009-09-03 Sony Corp Processing method for substrate
JP2011103438A (en) * 2009-10-16 2011-05-26 Tokyo Electron Ltd Substrate liquid processing apparatus, substrate liquid processing method, and computer-readable storage medium having substrate liquid processing program stored therein
JP2013077626A (en) * 2011-09-29 2013-04-25 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and substrate processing method
JP2013077625A (en) * 2011-09-29 2013-04-25 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and substrate processing method

Also Published As

Publication number Publication date
JP6262430B2 (en) 2018-01-17

Similar Documents

Publication Publication Date Title
JP5911689B2 (en) Substrate processing apparatus and substrate processing method
US9972515B2 (en) Substrate processing apparatus and substrate processing method
JP5911690B2 (en) Substrate processing apparatus and substrate processing method
KR101450965B1 (en) Substrate Processing Apparatus and Substrate Processing Method
JP6483348B2 (en) Substrate processing apparatus and substrate processing method
JP2010129809A (en) Substrate processing method, and substrate processing apparatus
JP6032878B2 (en) Substrate processing apparatus and substrate processing method
JP4840020B2 (en) Substrate processing method
JP6195788B2 (en) Substrate processing apparatus and substrate processing method
JP6262431B2 (en) Substrate processing apparatus and substrate processing method
JP6441176B2 (en) Substrate processing method, substrate processing apparatus, and storage medium
JP6262430B2 (en) Substrate processing apparatus and substrate processing method
JP2016072465A (en) Method of manufacturing semiconductor device and substrate processing apparatus
JP6867818B2 (en) Substrate processing equipment and substrate processing method
TW201421563A (en) Cleaning fluid generating device, cleaning fluid generating method, substrate cleaning device and substrate cleaning method
JP2014187253A (en) Substrate processing apparatus and substrate processing method
WO2006016448A1 (en) Apparatus for evaluating semiconductor wafer
JP2018078200A (en) Substrate processing method, substrate processing device and storage medium
JP2016171213A (en) Cleaning equipment and cleaning method of semiconductor wafer
JP2007012887A (en) Substrate processing method, substrate processor, and method for removing electricity from peripheral member
JP6556525B2 (en) Substrate processing method and substrate processing apparatus
JP2023182121A (en) Cleaning time calculation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160719

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171214

R150 Certificate of patent or registration of utility model

Ref document number: 6262430

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250