JP2023127108A - 光電変換装置 - Google Patents

光電変換装置 Download PDF

Info

Publication number
JP2023127108A
JP2023127108A JP2022030679A JP2022030679A JP2023127108A JP 2023127108 A JP2023127108 A JP 2023127108A JP 2022030679 A JP2022030679 A JP 2022030679A JP 2022030679 A JP2022030679 A JP 2022030679A JP 2023127108 A JP2023127108 A JP 2023127108A
Authority
JP
Japan
Prior art keywords
signal
photoelectric conversion
conversion device
terminal
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022030679A
Other languages
English (en)
Inventor
秀央 小林
Hidehisa Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2022030679A priority Critical patent/JP2023127108A/ja
Priority to US18/168,347 priority patent/US20230282654A1/en
Publication of JP2023127108A publication Critical patent/JP2023127108A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14634Assemblies, i.e. Hybrid structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

【課題】出力信号の精度が向上された光電変換装置を提供すること。【解決手段】画素と、前記画素に接続された信号線と、前記信号線を介して前記画素からの信号が入力される第1信号保持部と、を有し、前記第1信号保持部は、前記信号線から第1端子に入力された信号を各々が保持する第1容量素子及び第2容量素子と、前記第1容量素子の第2端子と前記第2容量素子の第2端子とが入力端子に接続されている増幅回路と、前記第1容量素子の前記第1端子と前記増幅回路の出力端子の間に接続された第1スイッチと、前記第2容量素子の前記第1端子と前記増幅回路の前記出力端子の間に接続された第2スイッチと、前記増幅回路の前記入力端子に接続された第3スイッチと、を含む。【選択図】図3

Description

本発明は、光電変換装置に関する。
画素から出力された信号を保持するサンプルホールド回路を有する固体撮像素子が、特許文献1に開示されている。
国際公開第2019/069614号
特許文献1に開示されているような信号を保持する機能を備えた光電変換装置において、出力信号の精度向上が求められている。
そこで、本発明は、出力信号の精度が向上された光電変換装置を提供することを目的とする。
本明細書の一開示によれば、光電変換により入射光に応じた信号を出力する画素と、前記画素に接続された信号線と、前記信号線を介して前記画素からの信号が入力される第1信号保持部と、を有し、前記第1信号保持部は、第1端子及び第2端子を各々が有し、前記信号線から前記第1端子に入力された信号を各々が保持する第1容量素子及び第2容量素子と、入力端子及び出力端子を有し、前記第1容量素子の前記第2端子と前記第2容量素子の前記第2端子とが前記入力端子に接続されている増幅回路と、前記第1容量素子の前記第1端子と前記増幅回路の前記出力端子の間に接続された第1スイッチと、前記第2容量素子の前記第1端子と前記増幅回路の前記出力端子の間に接続された第2スイッチと、前記増幅回路の前記入力端子に接続された第3スイッチと、を含むことを特徴とする光電変換装置が提供される。
本明細書の一開示によれば、光電変換により入射光に応じた信号を各々が出力する複数の画素と、前記複数の画素に接続された複数の信号線と、複数の第1信号保持部と、各々が、前記複数の信号線が入力側に接続され、前記複数の第1信号保持部のうちの対応する第1信号保持部が出力側に接続された、複数のマルチプレクサとを有し、前記複数の第1信号保持部の各々は、第1容量素子と、前記第1容量素子に接続された増幅回路とを有し、前記複数の第1信号保持部の一部の第1信号保持部が備える前記増幅回路と、前記複数の第1信号保持部の別の一部の第1信号保持部が備える前記増幅回路とが別の制御線に接続されることを特徴とする光電変換装置が提供される。
本発明によれば、出力信号の精度が向上された光電変換装置が提供される。
第1実施形態に係る光電変換装置の概略構成を示すブロック図である。 第1実施形態に係る画素の回路図である。 第1実施形態に係るサンプルホールド部及び変換部の構成を示す回路図である。 第1実施形態に係る光電変換装置の動作を示すタイミングチャートである。 第2実施形態に係るサンプルホールド部及び変換部の構成を示す回路図である。 第3実施形態に係る画素の回路図である。 第4実施形態に係るサンプルホールド部及び変換部の構成を示す回路図である。 第5実施形態に係る画素の回路図である。 第5実施形態に係る光電変換装置の動作を示すタイミングチャートである。 第6実施形態に係る光電変換装置の概略構成を示すブロック図である。 第6実施形態に係るサンプルホールド部及び変換部の構成を示す回路図である。 第6実施形態に係る光電変換装置の動作を示すタイミングチャートである。 第7実施形態に係る光電変換装置の概略構成を示すブロック図である。 第8実施形態に係る垂直信号線及びマルチプレクサの構成を示す模式図である。 第9実施形態に係る垂直信号線、マルチプレクサ及びサンプルホールド部の構成を示す模式図である。 第10実施形態に係るサンプルホールド部、マルチプレクサ及び変換部の構成を示す模式図である。 第11実施形態に係る光電変換装置の概略構成を示すブロック図である。 第12実施形態に係る機器のブロック図である。 第13実施形態に係る機器のブロック図である。
以下、図面を参照しつつ、本発明の実施形態を説明する。複数の図面にわたって同一の要素又は対応する要素には共通の符号が付されており、その説明は省略又は簡略化されることがある
以下に述べる第1実施形態乃至第11実施形態では、光電変換装置の一例として、撮像装置を中心に説明する。しかしながら、各実施形態における光電変換装置は撮像装置に限定されるものではなく、光電変換に基づく他の光検出装置にも適用可能である。他の光検出装置の例としては、測距装置、測光装置が挙げられる。測距装置は、例えば、焦点検出装置、TOF(Time-Of-Flight)を用いた距離測定装置等であり得る。測光装置は、装置に入射する光の光量を測定する装置であり得る。
[第1実施形態]
図1は、本実施形態に係る光電変換装置の概略構成を示すブロック図である。光電変換装置は、画素アレイ10、垂直信号線30、電流源40、サンプルホールド部50、変換部60、データ処理部90、制御回路92、垂直走査回路94及び出力回路96を有している。画素アレイ10は、画素基板1(第1基板)に配されている。電流源40、サンプルホールド部50、変換部60、データ処理部90、制御回路92、垂直走査回路94及び出力回路96は、回路基板2(第2基板)に配されている。画素基板1と回路基板2は、異なる半導体基板であり、互いに積層されている。
画素アレイ10は、複数の行及び複数の列に渡って行列状に並んで配置された複数の画素11を有している。複数の画素11の各々は、フォトダイオード等の光電変換素子からなる光電変換部を含む。画素11は、光電変換素子への入射光の光量に応じたアナログ信号である光電変換信号を出力する。また、画素11は、リセット状態におけるノイズレベルのアナログ信号であるリセット信号を出力する。ここで、行方向は、図1において左右の方向を指し、列方向は、図1において上下の方向を指す。画素アレイ10には、画素11が配されている各列に対応して、光電変換信号及びリセット信号を伝送する垂直信号線30が列方向に沿って配されている。
制御回路92は、サンプルホールド部50、変換部60、データ処理部90、垂直走査回路94及び出力回路96に、これらの動作及びタイミングを制御する制御信号を供給する。サンプルホールド部50、変換部60、データ処理部90、垂直走査回路94及び出力回路96に供給される制御信号の少なくとも一部は、光電変換装置の外部から供給されてもよい。
垂直走査回路94は、制御回路92から出力される制御信号を受け、画素11を駆動するための制御信号を生成し、画素11に供給する機能を備える走査回路である。垂直走査回路94には、シフトレジスタ、アドレスデコーダ等の論理回路が用いられ得る。垂直走査回路94は、画素アレイ10の行ごとに配された制御線を介して制御信号を画素11に供給することにより、画素11を行単位で駆動する。行単位で画素11から読み出された信号は、画素アレイ10の各列に設けられた垂直信号線30を介してサンプルホールド部50に入力される。
電流源40は、垂直信号線30のそれぞれに対応して配されている。電流源40は、垂直走査回路94の制御により選択された行の画素11に、垂直信号線30を介して信号読み出し用のバイアス電流を供給する。
サンプルホールド部50は、対応する列の画素11の光電変換素子で生成された信号を垂直信号線30を介してサンプリングして保持する。サンプルホールド部50は、リセット信号をサンプリングするサンプルホールド回路と、光電変換信号をサンプリングするサンプルホールド回路と、の2つ(後述するサンプルホールド回路50N、50S)を含む。
変換部60は、対応する列のサンプルホールド部50から出力されるアナログ信号をデジタル信号に変換するアナログデジタル変換回路を含む。アナログデジタル変換回路の例としては、スロープ型アナログデジタル変換回路、逐次比較型アナログデジタル変換回路、デルタシグマ(ΔΣ)型アナログデジタル変換回路等が挙げられるが、これらに限定されるものではない。本実施形態では、変換部60がデルタシグマ型アナログデジタル変換回路を含む場合を例示する。
データ処理部90は、各列の変換部60から出力されるデジタル信号を処理するデジタル信号処理回路である。データ処理部90は、例えば、変換部60から出力されたデジタル信号に対して、補正処理、補完処理等を行ってもよい。出力回路96は、データ処理部90において処理されたデジタル信号を光電変換装置の外部へ出力する。
図2は、本実施形態に係る画素11の回路図である。画素11は、光電変換素子PD、転送トランジスタM1、リセットトランジスタM2、増幅トランジスタM3及び選択トランジスタM4を有している。
光電変換素子PDは、例えばフォトダイオードである。光電変換素子PDのアノードは接地ノードに接続されており、光電変換素子PDのカソードは転送トランジスタM1のソースに接続されている。転送トランジスタM1のドレインは、リセットトランジスタM2のソース及び増幅トランジスタM3のゲートに接続されている。転送トランジスタM1のドレイン、リセットトランジスタM2のソース及び増幅トランジスタM3のゲートが接続されるノードFDは、いわゆる浮遊拡散部である。浮遊拡散部は、容量成分(浮遊拡散容量)を含み、電荷保持部としての機能を備える。浮遊拡散容量には、PN接合容量、配線容量等が含まれる。
リセットトランジスタM2のドレイン及び増幅トランジスタM3のドレインは、電圧VDDが供給される電源電圧ノードに接続されている。増幅トランジスタM3のソースは、選択トランジスタM4のドレインに接続されている。選択トランジスタM4のソースは、垂直信号線30に接続されている。
図2の画素構成の場合、各行の制御線は、転送トランジスタM1のゲートに接続された信号線と、リセットトランジスタM2のゲートに接続された信号線と、選択トランジスタM4のゲートに接続された信号線と、を含む。転送トランジスタM1のゲートには、垂直走査回路94から制御信号TXが供給される。リセットトランジスタM2のゲートには、垂直走査回路94から制御信号RESが供給される。選択トランジスタM4のゲートには、垂直走査回路94から制御信号SELが供給される。同じ行の複数の画素11は、共通の信号線に接続されており、共通の制御信号により同時に制御される。
なお、本実施形態では、光入射によって光電変換素子PDで生成される電子正孔対のうち、電子を信号電荷として用いる場合を想定して説明を行う。信号電荷として電子を用いる場合、画素11を構成する各トランジスタは、N型MOSトランジスタによって構成され得る。各トランジスタがN型MOSトランジスタで構成される場合、垂直走査回路94からハイレベルの制御信号が供給されると対応するトランジスタがオンになる。また、垂直走査回路94からローレベルの制御信号が供給されると対応するトランジスタがオフになる。ただし、信号電荷は電子に限られるものではなく、正孔を信号電荷として用いてもよい。信号電荷として正孔を用いる場合、各トランジスタの導電型は、本実施形態で説明するものとは逆導電型となる。また、MOSトランジスタのソース及びドレインの呼称はトランジスタの導電型又は着目する機能によって異なることがある。本実施形態において使用するソース及びドレインの名称の一部又は全部は、逆の名称で呼ばれることもある。
光電変換素子PDは、入射光をその光量に応じた量の電荷に変換(光電変換)する。転送トランジスタM1は、オンになることにより光電変換素子PDが保持する電荷をノードFDに転送する。光電変換素子PDから転送された電荷は、ノードFDの容量(浮遊拡散容量)に保持される。その結果、ノードFDは、浮遊拡散容量による電荷電圧変換によって、光電変換素子PDから転送された電荷の量に応じた電位となる。
選択トランジスタM4は、オンになることにより増幅トランジスタM3を垂直信号線30に接続する。増幅トランジスタM3は、ドレインに電圧VDDが供給され、ソースに選択トランジスタM4を介して電流源40からバイアス電流が供給される構成となっており、ゲートを入力ノードとする増幅回路(ソースフォロワ回路)を構成する。これにより増幅トランジスタM3は、ノードFDの電圧に基づく信号を、選択トランジスタM4を介して垂直信号線30に出力する。この意味で、増幅トランジスタM3及び選択トランジスタM4は、ノードFDに保持された電荷の量に応じた画素信号を出力する出力部である。
リセットトランジスタM2は、電荷保持部としてのノードFDをリセットするための電圧(電圧VDD)のノードFDへの供給を制御する機能を備える。リセットトランジスタM2は、オンになることによりノードFDを電圧VDDに応じた電圧にリセットする。
以上のように、画素11は、リセットトランジスタM2によってノードFDの電位がリセットされた状態に基づくリセット信号と、光電変換素子PDで行われた光電変換により生成された電荷に基づく信号レベルである光電変換信号とを順次出力し得る。
画素11の回路構成は、図2に示される構成に限定されるものではない。例えば、選択トランジスタM4は、電圧VDDが供給される電源電圧ノードと増幅トランジスタM3との間に接続されていてもよい。また、図2に示される回路構成は、転送トランジスタM1、リセットトランジスタM2、増幅トランジスタM3及び選択トランジスタM4を備える、いわゆる4トランジスタ型であるが、これに限られるものではない。例えば、選択トランジスタM4を省略し、増幅トランジスタM3が選択トランジスタとしても機能する3トランジスタ型の回路構成であってもよい。また、トランジスタの数が図2に示すものよりも多い、5トランジスタ型以上の回路構成であってもよい。
図3は、本実施形態に係るサンプルホールド部50及び変換部60の構成を示す回路図である。図3には、1つの垂直信号線30に対応して配されている1つのサンプルホールド部50及び1つの変換部60が抜き出して示されている。サンプルホールド部50は、リセット信号をサンプリングして保持するサンプルホールド回路50N(第2信号保持部)と、光電変換信号をサンプリングして保持するサンプルホールド回路50S(第1信号保持部)と、抵抗素子R1とを含む。
サンプルホールド回路50Sは、反転増幅器AS、容量素子CS1、CS2及びスイッチSS4、SS5を有している。反転増幅器ASは、トランジスタMS1、MS2、MS3、MS4、MS5、スイッチSS1、SS2、SS3、SS6及び電流源ISSを有している。トランジスタMS1、MS2、MS5は、P型MOSトランジスタである。トランジスタMS3、MS4は、N型MOSトランジスタである。
スイッチSS1、SS2、SS3、SS4、SS5、SS6は、これらの制御端子に入力される制御信号に応じてオン又はオフに制御される。スイッチSS1、SS2、SS3、SS4、SS5、SS6は、MOSトランジスタ等により構成され得る。スイッチSS1には、制御回路92から制御信号Hld_s1が入力される。スイッチSS2には、制御回路92から制御信号Hld_s2が入力される。スイッチSS3には、制御回路92から制御信号Smpa_sが入力される。スイッチSS4には、制御回路92から制御信号Smp_s1が入力される。スイッチSS5には、制御回路92から制御信号Smp_s2が入力される。スイッチSS6には、制御回路92から制御信号Hld_sが入力される。
スイッチSS4(第4スイッチ)の第1端子及びスイッチSS5(第5スイッチ)の第1端子は、垂直信号線30とサンプルホールド回路50Sの接続ノードであるノードNinに接続されている。スイッチSS4の第2端子は、容量素子CS1(第1容量素子)の第1端子及びスイッチSS1(第1スイッチ)の第1端子に接続されている。スイッチSS5の第2端子は、容量素子CS2(第2容量素子)の第1端子及びスイッチSS2(第2スイッチ)の第1端子に接続されている。
容量素子CS1の第2端子及び容量素子CS2の第2端子は、反転増幅器ASの入力端子であるノードNS1において、スイッチSS3(第3スイッチ)の第1端子及びトランジスタMS4のゲートに接続されている。トランジスタMS4のソースは接地ノードに接続されている。トランジスタMS4のドレインはトランジスタMS3のソースに接続されている。トランジスタMS3のドレインは、ノードNS3において、スイッチSS3の第2端子、トランジスタMS2のドレイン及びスイッチSS6の第1端子に接続されている。トランジスタMS2のソースはトランジスタMS1のドレインに接続されている。トランジスタMS1のソースは電源電圧ノードに接続されている。トランジスタMS1のゲート、トランジスタMS2のゲート及びトランジスタMS3のゲートの各々には、所定のバイアス電位が供給される。
スイッチSS1の第2端子及びスイッチSS2の第2端子は、反転増幅器ASの出力端子であるノードNS2において、電流源ISS及びトランジスタMS5のソースに接続されている。トランジスタMS5のドレインは、サンプルホールド回路50S及びサンプルホールド部50の出力端子であり、変換部60に接続されている。
トランジスタMS1、MS2、MS3、MS4は、ノードNS1を入力ノードとし、ノードNS3を出力ノードとするソース接地回路をなしている。また、トランジスタMS5はソースフォロワ回路をなしている。すなわち、反転増幅器ASは、ソース接地回路と、ソース接地回路の後段に配されたソースフォロワ回路とを増幅回路として含む。
サンプルホールド回路50Nは、反転増幅器AN、容量素子CN1及びスイッチSN4を有している。反転増幅器ANは、トランジスタMN1、MN2、MN3、MN4、MN5、スイッチSN1、SN3、SN6及び電流源ISNを有している。トランジスタMN1、MN2、MN5は、P型MOSトランジスタである。トランジスタMN3、MN4は、N型MOSトランジスタである。
スイッチSN1、SN3、SN4、SN6は、これらの制御端子に入力される制御信号に応じてオン又はオフに制御される。スイッチSN1、SN3、SN4、SN6は、MOSトランジスタ等により構成され得る。スイッチSN1、SN6には、制御回路92から制御信号Hld_nが入力される。スイッチSN3には、制御回路92から制御信号Smpa_nが入力される。スイッチSN4には、制御回路92から制御信号Smp_nが入力される。
スイッチSN4の第1端子は、垂直信号線30とサンプルホールド回路50Nの接続ノードであるノードNinに接続されている。スイッチSN4の第2端子は、容量素子CN1の第1端子及びスイッチSN1の第1端子に接続されている。
容量素子CN1の第2端子は、反転増幅器ANの入力端子であるノードNN1において、スイッチSN3の第1端子及びトランジスタMN4のゲートに接続されている。トランジスタMN4のソースは接地ノードに接続されている。トランジスタMN4のドレインはトランジスタMN3のソースに接続されている。トランジスタMN3のドレインは、ノードNN3において、スイッチSN3の第2端子、トランジスタMN2のドレイン及びスイッチSN6の第1端子に接続されている。トランジスタMN2のソースはトランジスタMN1のドレインに接続されている。トランジスタMN1のソースは電源電圧ノードに接続されている。トランジスタMN1のゲート、トランジスタMN2のゲート及びトランジスタMN3のゲートの各々には、所定のバイアス電位が供給される。
スイッチSN1の第2端子は、反転増幅器ANの出力端子であるノードNN2において、電流源ISN及びトランジスタMN5のソースに接続されている。トランジスタMN5のドレインは接地ノードに接続されている。
トランジスタMN1、MN2、MN3、MN4は、ノードNN1を入力ノードとし、ノードNN3を出力ノードとするソース接地回路をなしている。また、トランジスタMN5はソースフォロワ回路をなしている。すなわち、反転増幅器ANは、ソース接地回路と、ソース接地回路の後段に配されたソースフォロワ回路とを増幅回路として含む。
抵抗素子R1の第1端子はノードNN2に接続されており、抵抗素子R1の第2端子は、ノードNS2に接続されている。すなわち、抵抗素子R1は、反転増幅器ANの出力端子と反転増幅器ASの出力端子の間に配されている。このとき、抵抗素子R1を流れる電流Iは、以下の式(1)で表される。
I=(Vn-Vs)/R (1)
ここで、Vnは、ノードNN2の電位、すなわち、リセット信号の電位を示している。Vsは、ノードNS2の電位、すなわち、光電変換信号の電位を示している。Rは抵抗素子R1の抵抗値を示している。
サンプルホールド回路50N、50S及び抵抗素子R1を流れる電流Iは、変換部60(アナログデジタル変換部)に入力される。式(1)に示されているように、電流Iはリセット信号の電位Vnと光電変換信号の電位Vsの差に比例する。したがって、電流Iが変換部60に入力される段階で、相関二重サンプリングが行われている。なお、ノードNN2とノードNS2の間に配される回路素子は、抵抗素子R1に限定されるものではなく、VnとVsの電位差に応じた電流が流れ得るものであればよい。
変換部60は、デジタルアナログ変換器610、620、Gmセル630、量子化器640、デシメーションフィルタ650及び容量素子660、670を有している。デジタルアナログ変換器610は、スイッチ611及び電流源612を有している。デジタルアナログ変換器620は、スイッチ621及び電流源622を有している。スイッチ611の制御端子及びスイッチ621の制御端子には、量子化器640からフィードバックされる信号が入力される。スイッチ611及びスイッチ621はこの信号に応じてオン又はオフに制御される。
トランジスタMS5のドレインは、スイッチ611の第1端子、容量素子660の第1端子及びGmセル630の反転入力端子に接続されている。すなわち、サンプルホールド回路50Sから出力される、相関二重サンプリングによる処理後の電流Iが変換部60に入力される。スイッチ611の第2端子は、電流源612に接続されている。容量素子660の第2端子は、接地ノードに接続されている。Gmセル630の非反転入力端子には、所定の電位が入力されている。
Gmセル630の出力端子は、スイッチ621の第1端子、容量素子670の第1端子及び量子化器640の入力端子に接続されている。スイッチ621の第2端子は、電流源622に接続されている。容量素子670の第2端子は、接地ノードに接続されている。量子化器640の出力端子は、デシメーションフィルタ650の入力端子、スイッチ611の制御端子及びスイッチ621の制御端子に接続されている。
電流I及び時間経過に応じて、容量素子660には電荷が蓄積される。Gmセル630は、容量素子660の第1端子の電位に応じた電流信号を出力端子から出力する。このように、容量素子660は、第1積分器として機能する。
Gmセル630から出力される電流及び時間経過に応じて、容量素子670には電荷が蓄積される。このように、容量素子670は、第2積分器として機能する。量子化器640は、比較回路であり得る。量子化器640は、容量素子670の第1端子の電位と所定の閾値とを比較して、比較結果を示す1ビットのデジタル信号を出力する。これにより、量子化器640は、アナログデジタル変換を行う。なお、量子化器640は、所望のサンプリング周波数よりも高い周波数によるオーバーサンプリングを行う。
量子化器640から出力されるデジタル信号は、スイッチ611及びスイッチ621の制御端子にフィードバックされる。これにより、スイッチ611、621がオン又はオフに制御されることにより、容量素子660、670に蓄積される電荷が変化する。このようにして、量子化器640から出力されるデジタル信号が、第1積分器及び第2積分器にフィードバックされる。このフィードバックループは、低周波領域における量子化誤差を低減させるように動作する。
以上のように、本実施形態の変換部60は、2つの積分器を含むことにより、2次のノイズシェーピング特性を有するデルタシグマ型アナログデジタル変換回路である。また、量子化器640から出力されるデジタル信号は、デシメーションフィルタ650を通過して出力される。デシメーションフィルタ650は、量子化器640から出力される信号を間引くことにより、サンプリング周波数を下げる処理を行う。これにより、高周波領域におけるノイズが低減される。したがって、本実施形態の変換部60は、高精度なアナログデジタル変換を行い得る。
図4は、本実施形態に係る光電変換装置の動作を示すタイミングチャートである。図4には、画素11に入力される制御信号RES、TXの電位のレベルが示されている。また、図4には、サンプルホールド部50に入力される制御信号Smpa_n、Smp_n、Smpa_s、Smp_s1、Smp_s2、Hld_n、Hld_s、Hld_s1、Hld_s2の電位のレベルも示されている。なお、制御信号Hld_n、Hld_sの電位のレベルの変化タイミングは同一であるため、制御信号Hld_n、Hld_sは図4において1つにまとめて示されている。また、図4には、ノードNinにおける電位の変化も示されている。図4における各制御信号がハイレベルのとき、対応するスイッチ又はトランジスタはオン状態(導通状態)になるものとする。また、図4における各制御信号がローレベルのとき、対応するスイッチ又はトランジスタはオフ状態(非導通状態)になるものとする。
時刻t1において制御信号RESがハイレベルになり、時刻t2において制御信号RESがローレベルになる。これらの動作により、時刻t1から時刻t2の期間において、リセットトランジスタM2がオンになり、ノードFDの電位がリセットされる。この動作に応じて、ノードNinの電位は、リセット信号のレベルになる。
また、時刻t1において、制御信号Smpa_n、Smp_nがハイレベルになる。これにより、スイッチSN3、SN4がオンになり、垂直信号線30がサンプルホールド回路50Nの容量素子CN1に接続される。これ以降、サンプルホールド回路50Nは、リセット信号のサンプリングが可能な状態となる。
時刻t3において、制御信号Smpa_nがローレベルになる。これにより、スイッチSN3がオフになり、リセット信号の電位が容量素子CN1に保持される。時刻t4において、制御信号Smp_nがローレベルになる。これにより、スイッチSN4がオフになり、垂直信号線30とサンプルホールド回路50Nの容量素子CN1の接続が解除される。
時刻t5において制御信号TXがハイレベルになり、時刻t6において制御信号TXがローレベルになる。これらの動作により、時刻t5から時刻t6の期間において、転送トランジスタM1がオンになり、光電変換素子PDに蓄積されている電荷がノードFDに転送される。ノードFDの電位は、転送された電荷の量に応じて低下する。この電荷転送により、垂直信号線30の電位が低下し、ノードNinの電位は第1光電変換信号のレベルになる。
また、時刻t5において、制御信号Smpa_s、Smp_s1がハイレベルになる。これにより、スイッチSS3、SS4がオンになり、垂直信号線30がサンプルホールド回路50Sの容量素子CS1に接続される。これ以降、サンプルホールド回路50Sは、第1光電変換信号のサンプリングが可能な状態となる。
時刻t7において、制御信号Smpa_sがローレベルになる。これにより、スイッチSS3がオフになり、第1光電変換信号の電位が容量素子CS1に保持される。時刻t8において、制御信号Smp_s1がローレベルになる。これにより、スイッチSS4がオフになり、垂直信号線30とサンプルホールド回路50Sの容量素子CS1の接続が解除される。
時刻t9において制御信号TXがハイレベルになり、時刻t10において制御信号TXがローレベルになる。これらの動作により、時刻t9から時刻t10の期間において、転送トランジスタM1が再びオンになり、時刻t6から時刻t10の間に光電変換素子PDに蓄積された電荷がノードFDに更に転送される。ノードFDの電位は、転送された電荷の量に応じて更に低下する。この電荷転送により、垂直信号線30の電位が低下し、ノードNinの電位は第2光電変換信号のレベルになる。なお、電荷蓄積時間が互いに異なるため、第1光電変換信号の電位と、第2光電変換信号の電位とは互いに異なる。
また、時刻t9において、制御信号Smpa_s、Smp_s2がハイレベルになる。これにより、スイッチSS3、SS5がオンになり、垂直信号線30がサンプルホールド回路50Sの容量素子CS2に接続される。これ以降、サンプルホールド回路50Sは、第2光電変換信号のサンプリングが可能な状態となる。
時刻t11において、制御信号Smpa_sがローレベルになる。これにより、スイッチSS3がオフになり、第2光電変換信号の電位が容量素子CS2に保持される。時刻t12において、制御信号Smp_s2がローレベルになる。これにより、スイッチSS5がオフになり、垂直信号線30とサンプルホールド回路50Sの容量素子CS2の接続が解除される。
時刻t13において、制御信号Hld_nがハイレベルになる。これにより、スイッチSN6、SN1がオンになり、サンプルホールド回路50NのノードNN2からリセット信号の電位が出力される。また、これと同時に、時刻t13において、制御信号Hld_s、Hld_s1がハイレベルになる。これにより、スイッチSS6、SS1がオンになり、サンプルホールド回路50SのノードNS2から、第1光電変換信号の電位が出力される。その後、時刻t14において、制御信号Hld_s1がローレベルになり、スイッチSS1がオフになる。
したがって、時刻t13から時刻t14の期間において、ノードNN2のリセット信号の電位と、ノードNS2の第1光電変換信号の電位の差に応じた電流が変換部60へと入力される。変換部60は、この電流に基づくアナログ信号をデジタル信号に変換する。
時刻t15において、制御信号Hld_s2がハイレベルになる。これにより、スイッチSS2がオンになり、サンプルホールド回路50SのノードNS2から、第2光電変換信号の電位が出力される。その後、時刻t16において、制御信号Hld_n、Hld_s、Hld_s2がローレベルになり、スイッチSN6、SN1、SS6、SS2がオフになる。
したがって、時刻t15から時刻t16において、ノードNN2のリセット信号の電位と、ノードNS2の第2光電変換信号の電位の差に応じた電流が変換部60へと入力される。変換部60は、この電流に基づくアナログ信号をデジタル信号に変換する。
このように、本実施形態の光電変換装置は、蓄積時間の異なる2つの第1光電変換信号及び第2光電変換信号に基づく2つのデジタル信号の読み出しを行うことが可能である。この2つのデジタル信号は、ハイダイナミックレンジ等の撮像の高機能化に適用され得る。
本実施形態における効果についてより詳細に説明する。一般的に、スイッチがオフになる際には、スイッチを構成するトランジスタ等からスイッチに接続されたノードへの電荷注入が生じる場合がある。時刻t7にスイッチSS3がオフになる際には、容量素子CS1に蓄積されている第1光電変換信号に対して電荷注入の影響が生じ得る。また、時刻t11にスイッチSS3がオフになる際には、容量素子CS2に蓄積されている第2光電変換信号に対して電荷注入の影響が生じ得る。しかしながら、時刻t7及び時刻t11の2つの時点において、スイッチSS3の両端の電圧は垂直信号線30の電位によらず略同一であるため、電荷注入量は同程度である。これにより、第1光電変換信号と第2光電変換信号とを比較すると、両者間のゲイン成分の相対的な誤差は小さい。
また、時刻t8においてスイッチSS4がオフになる際には、容量素子CS1の両端がハイインピーダンス状態となっているため、スイッチSS4がオフになることによる電荷注入の影響は小さい。同様に、時刻t12においてスイッチSS5がオフになる際には、容量素子CS2の両端がハイインピーダンス状態となっているため、スイッチSS5がオフになることによる電荷注入の影響は小さい。このように、容量素子CS1、CS2に信号を保持する期間において、スイッチSS4、SS5がスイッチSS3よりも先にオフになっているため、スイッチSS4、SS5がオフになる際の電荷注入の影響が低減されている。
以上のように、本実施形態のサンプルホールド回路50N、50Sの回路構成では、2つの出力信号を出力する際における、スイッチからの電荷注入によるゲイン成分の相対的な誤差が低減されている。これにより、本実施形態によれば、出力信号の精度が向上された光電変換装置が提供される。
本実施形態の光電変換装置から出力される電荷蓄積時間が互いに異なる2つの信号は、ハイダイナミックレンジ撮像に用いられ得る。本実施形態では、これらの2つの信号のゲイン成分の相対的な誤差を低減することができるため、HDR画像の画質が向上し得る。
[第2実施形態]
本実施形態に係る光電変換装置について説明する。本実施形態の光電変換装置は、第1実施形態の光電変換装置のサンプルホールド部50の構成を変形した例である。
図5は、本実施形態に係るサンプルホールド部50及び変換部60の構成を示す回路図である。図5に示されているように、本実施形態においては、スイッチSS3、SN3の接続が図3に示されている例と異なっている。
スイッチSS3の第1端子はノードNS1に接続されている。また、スイッチSS3の第2端子は所定の参照電圧Vrefが供給される参照電圧ノードに接続されており、ノードNS3には接続されていない。
スイッチSN3の第1端子はノードNN1に接続されている。また、スイッチSN3の第2端子は所定の参照電圧Vrefが供給される参照電圧ノードに接続されており、ノードNN3には接続されていない。
このように、本実施形態では、第1実施形態の図3の例とは異なり、スイッチSS3、SN3の第2端子に所定の参照電圧が供給されている。この場合においても、時刻t7及び時刻t11の2つの時点において、スイッチSS3、SN3の両端の電圧は垂直信号線30の電位によらず略同一である。したがって、図3の例と同様に、2つの出力信号を出力する際の、スイッチからの電荷注入によるゲイン成分の相対的な誤差が低減される。したがって、本実施形態においても第1実施形態と同様に、出力信号の精度が向上された光電変換装置が提供される。
[第3実施形態]
本実施形態に係る光電変換装置について説明する。本実施形態の光電変換装置は、第1実施形態の光電変換装置の画素11の構成を変形した例である。
図6は、本実施形態に係る画素11の回路図である。図6に示されているように、本実施形態においては、容量制御トランジスタM5が、第1実施形態の図2に示されている画素11の回路に追加されている。
容量制御トランジスタM5のソースはノードFDに接続されており、容量制御トランジスタM5のドレインは、リセットトランジスタM2のソースに接続されている。各行の制御線は、容量制御トランジスタM5のゲートに接続された信号線を含む。容量制御トランジスタM5のゲートには、垂直走査回路94から制御信号FDINCが供給される。制御信号FDINCがハイレベルになり、容量制御トランジスタM5がオンになると、ノードFDに付加される寄生容量が増大する。これにより、ノードFDにおける電荷電圧変換のゲインが小さくなる。このように、本実施形態の画素11は、制御信号FDINCに応じて電荷電圧変換のゲインを可変とする機能を有している。
これにより、本実施形態では、第1光電変換信号の読み出しの際の電荷電圧変換のゲインと、第2光電変換信号の読み出しの際の電荷電圧変換のゲインとを互いに異ならせることができる。例えば図4のタイミングチャートにおいて、時刻t9よりも前の期間は制御信号FDINCをローレベルとし、時刻t9よりも後の期間は制御信号FDINCをハイレベルとすることで、そのような駆動方法が実現される。あるいは、時刻t9よりも前の期間は制御信号FDINCをハイレベルとし、時刻t9よりも後の期間は制御信号FDINCをローレベルとしてもよい。
このように、本実施形態によれば、第1実施形態と同様に出力信号の精度が向上された光電変換装置が提供されることに加え、画素11における電荷電圧変換のゲインを可変とすることができる。これにより、異なるゲインで読み出された2つのデジタル信号の読み出しを行うことが可能である。この2つのデジタル信号は、ハイダイナミックレンジ等の撮像の高機能化に適用され得る。
[第4実施形態]
本実施形態に係る光電変換装置について説明する。本実施形態の光電変換装置は、第1実施形態の光電変換装置のサンプルホールド部50の構成を変形した例である。
図7は、本実施形態に係るサンプルホールド部50及び変換部60の構成を示す回路図である。図7に示されているように、本実施形態においては、サンプルホールド部50が、4つのサンプルホールド回路50NA、50SA、50NB、50SBを有している。また、サンプルホールド部50は、抵抗素子R1及びスイッチS1、S2、S3、S4、S5、S6を更に有している。スイッチS1、S2、S3、S4、S5、S6は、MOSトランジスタ等により構成され得る。スイッチS1、S2、S3、S4、S5、S6は、制御回路92から入力される制御信号によりオン又はオフに制御される。
サンプルホールド回路50NA、50NBの内部の回路構成は図3におけるサンプルホールド回路50Nと同一である。また、サンプルホールド回路50SA、50SBの内部の回路構成は図3におけるサンプルホールド回路50Sと同一である。
サンプルホールド回路50SA及びサンプルホールド回路50SBにおいて、スイッチSS4の第1端子及びスイッチSS5の第1端子は、ノードNinに接続されている。また、サンプルホールド回路50NA及びサンプルホールド回路50NBにおいて、スイッチSN4の第1端子は、ノードNinに接続されている。
スイッチS1の第1端子はサンプルホールド回路50NAのノードNN2に接続されており、スイッチS4の第1端子はサンプルホールド回路50NBのノードNN2に接続されている。スイッチS1の第2端子及びスイッチS4の第2端子は、抵抗素子R1の第1端子に接続されている。抵抗素子R1の第2端子は、スイッチS2の第1端子及びスイッチS5の第1端子に接続されている。スイッチS2の第2端子はサンプルホールド回路50SAのノードNS2に接続されており、スイッチS5の第2端子は、サンプルホールド回路50SBのノードNS2に接続されている。
スイッチS3の第1端子は、サンプルホールド回路50SAのトランジスタMS5のドレインに接続されている。スイッチS6の第1端子は、サンプルホールド回路50SBのトランジスタMS5のドレインに接続されている。スイッチS3の第2端子及びスイッチS6の第2端子は、サンプルホールド部50の出力端子であり、変換部60に接続されている。
スイッチS1、S2、S3がオンになり、スイッチS4、S5、S6がオフになると、サンプルホールド回路50NA及びサンプルホールド回路50SAが抵抗素子R1及び変換部60に接続された状態となる。このとき、変換部60は、サンプルホールド回路50NA及びサンプルホールド回路50SAに保持された信号に基づくAD変換を行うことができる。これと並行して、サンプルホールド回路50NB及びサンプルホールド回路50SBは、これらの内部のスイッチを第1実施形態で述べたように動作させることで、画素11からの信号のサンプリングを行うことができる。
また、スイッチS4、S5、S6がオンになり、スイッチS1、S2、S3がオフになると、サンプルホールド回路50NB及びサンプルホールド回路50SBが抵抗素子R1及び変換部60に接続された状態となる。このとき、変換部60は、サンプルホールド回路50NB及びサンプルホールド回路50SBに保持された信号に基づくAD変換を行うことができる。これと並行して、サンプルホールド回路50NA及びサンプルホールド回路50SAは、これらの内部のスイッチを第1実施形態で述べたように動作させることで、画素11からの信号のサンプリングを行うことができる。
このように、本実施形態では、サンプルホールド回路50NA、50SAと、サンプルホールド回路50NB、50SBの一方が抵抗素子R1に選択的に接続されるような動作が可能である。また、本実施形態では、サンプルホールド回路50NA、50SAと、サンプルホールド回路50NB、50SBの一方が垂直信号線30に選択的に接続され、サンプリングを行うような動作が可能である。これにより、サンプルホールド回路50NA、50SAと、サンプルホールド回路50NB、50SBの一方でサンプリングを行いつつ、他方から変換部60に信号を出力するようなインターリーブ動作を行うことができる。例えば、図4のタイミングチャートにおいて、時刻t13から時刻t16の期間にスイッチS1、S2、S3がオンになり、スイッチS4、S5、S6がオフになるような制御を行うことが一例として挙げられる。この場合、サンプルホールド回路50NB、50SBでサンプリングを行いつつ、サンプルホールド回路50NA、50SAから変換部60に信号を出力することができる。
このように、本実施形態によれば、第1実施形態と同様に出力信号の精度が向上された光電変換装置が提供されることに加え、インターリーブ動作を行うことにより、読み出しを高速化することができる。また、図7に示されているように、サンプルホールド回路50NA、50SAと、サンプルホールド回路50NB、50SBが1つの抵抗素子R1を共有している。これにより、サンプルホールド回路50NA、50SAが信号を出力する場合と、サンプルホールド回路50NB、50SBが信号を出力する場合との間での読み出しゲイン差を低減することができる。
[第5実施形態]
本実施形態に係る光電変換装置について説明する。本実施形態の光電変換装置は、第1実施形態の光電変換装置の画素11の構成を変形して、複数の光電変換素子を含む構成とした例である。
図8は、本実施形態に係る画素11の回路図である。図8に示されているように、本実施形態においては、画素11は、2つの光電変換素子PDA、PDBと、2つの転送トランジスタM1A、M1Bとを有している。
光電変換素子PDA、PDBのアノードは接地ノードに接続されている。光電変換素子PDAのカソードは転送トランジスタM1Aのソースに接続されており、光電変換素子PDBのカソードは転送トランジスタM1Bのソースに接続されている。転送トランジスタM1A、M1Bのドレインは、ノードFDに接続されている。各行の制御線は、転送トランジスタM1Aのゲートに接続された信号線と、転送トランジスタM1Bのゲートに接続された信号線とを含む。転送トランジスタM1Aのゲートには垂直走査回路94から制御信号TXAが供給され、転送トランジスタM1Bのゲートには垂直走査回路94から制御信号TXBが供給される。このように、本実施形態においては、2つの光電変換素子PDA、PDBが1つの浮遊拡散部を共有している。
図9は、本実施形態に係る光電変換装置の動作を示すタイミングチャートである。図9には、図4のタイミングチャートの制御信号TXに代えて制御信号TXA、TXBの電位のレベルが示されている。制御信号TXA、TXB以外の制御信号のタイミングは図4と同一であるため、適宜説明を省略又は簡略化する。
時刻t5において制御信号TXAがハイレベルになり、時刻t6において制御信号TXAがローレベルになる。これらの動作により、時刻t5から時刻t6の期間において、転送トランジスタM1Aがオンになり、光電変換素子PDAに蓄積されている電荷がノードFDに転送される。ノードFDの電位は、転送された電荷の量に応じて低下する。この電荷転送により、垂直信号線30の電位が低下し、ノードNinの電位は光電変換素子PDAに蓄積された電荷に基づく第1光電変換信号のレベルになる。
時刻t5から時刻t8において、図4と同様の動作により、光電変換素子PDAに蓄積された電荷に基づく第1光電変換信号の電位が容量素子CS1に保持される。
時刻t9において制御信号TXBがハイレベルになり、時刻t10において制御信号TXBがローレベルになる。これらの動作により、時刻t9から時刻t10の期間において、転送トランジスタM1Bがオンになり、光電変換素子PDBに蓄積されている電荷が更にノードFDに転送される。ノードFDの電位は、転送された電荷の量に応じて低下する。この電荷転送により、垂直信号線30の電位が低下し、ノードNinの電位は光電変換素子PDAに蓄積された電荷と光電変換素子PDBに蓄積された電荷の合計に基づく第2光電変換信号のレベルになる。
時刻t9から時刻t12において、図4と同様の動作により、光電変換素子PDA及び光電変換素子PDBに蓄積された電荷に基づく第2光電変換信号の電位が容量素子CS2に保持される。
時刻t13以降、図4と同様の動作により、2つの第1光電変換信号及び第2光電変換信号に基づく2つのデジタル信号の読み出しが行われる。ここで取得されるデジタル信号は、光電変換素子PDAに蓄積された電荷に基づくデジタル信号と、光電変換素子PDA及び光電変換素子PDBに蓄積された電荷に基づくデジタル信号の2つである。データ処理部90又は光電変換装置外部の信号処理回路等において、2つのデジタル信号の差を算出することにより光電変換素子PDBに蓄積された電荷に基づくデジタル信号を取得することができる。
このように、本実施形態によれば、第1実施形態と同様に出力信号の精度が向上された光電変換装置が提供されることに加え、2つの光電変換素子PDA、PDBに基づく2種の信号をまとめて出力することができる。これにより、読み出しの動作が高速化される。
2つの光電変換素子PDA、PDBは、図8に模式的に示されているように、同一のマイクロレンズMLを通過した光が入射されるように配されていてもよい。この場合、2つの光電変換素子PDA、PDBの各々に基づく信号はオートフォーカス用の信号として用いられ得る。しかしながら、これに限られるものではなく、2つの光電変換素子PDA、PDBのそれぞれに個別のマイクロレンズMLが配されていてもよい。
また、本実施形態において、第4実施形態のような4つのサンプルホールド回路50NA、50SA、50NB、50SBを有するサンプルホールド部50の構成を適用してもよい。これにより、第4実施形態と同様にインターリーブ動作を行うことができ、更に読み出しの動作が高速化される。
また、本実施形態では画素11が2つの光電変換素子PDA、PDBを有する例を説明したが、光電変換素子の個数は2つよりも多くてもよい。例えば、光電変換素子の個数は4つ又は8つでもよい。光電変換素子の個数は4つである場合、それらの光電変換素子の2次元的な配列の例としては、1×4、2×2が挙げられる。光電変換素子の個数は8つである場合、それらの光電変換素子の2次元的な配列の例としては、1×8、2×4が挙げられる。
[第6実施形態]
本実施形態に係る光電変換装置について説明する。本実施形態の光電変換装置は、第1実施形態の光電変換装置に垂直信号線を選択するマルチプレクサを追加した例である。
図10は、本実施形態に係る光電変換装置の概略構成を示すブロック図である。光電変換装置は、マルチプレクサ36(第1マルチプレクサ)を更に有している。マルチプレクサ36は、回路基板2に配されている。制御回路92は、マルチプレクサ36の動作及びタイミングを制御する制御信号を供給する。本実施形態では、複数の垂直信号線のうち、奇数列の画素11に対応するものを垂直信号線30とし、偶数列の画素11に対応するものを垂直信号線31とする。マルチプレクサ36、サンプルホールド部50及び変換部60の各々は、垂直信号線30、31の組に対応して配されている。
図11は、本実施形態に係るサンプルホールド部50及び変換部60の構成を示す回路図である。図11には、2つの垂直信号線30、31に対応して配されている1つのマルチプレクサ36、1つのサンプルホールド部50及び1つの変換部60が抜き出して示されている。
垂直信号線30は、ノードN30において、マルチプレクサ36の第1入力端子に接続されている。垂直信号線31は、ノードN31において、マルチプレクサ36の第2入力端子に接続されている。第1入力端子、第2入力端子は、マルチプレクサ36の入力側に設けられた端子である。マルチプレクサ36の出力端子は、ノードNinに接続されている。マルチプレクサ36の出力端子は、マルチプレクサ36の出力側に設けられた端子である。マルチプレクサ36の制御端子には、制御回路92から制御信号Muxが入力される。制御信号Muxがハイレベルのとき、マルチプレクサ36はノードN30の信号を出力し、制御信号Muxがローレベルのとき、マルチプレクサ36はノードN31の信号を出力するものとする。このように、マルチプレクサ36は、垂直信号線30、31と、サンプルホールド部50の間の接続関係を切り替える機能有している。
サンプルホールド回路50S、変換部60の回路構成は、図3と同様であるため説明を省略する。サンプルホールド回路50Nは、図3の構成に加え、スイッチSN2、SN5及び容量素子CN2を更に有している。これら以外の回路構成は図3と同様であるため説明を省略する。
スイッチSN2、SN5は、これらの制御端子に入力される制御信号に応じてオン又はオフに制御される。スイッチSN2、SN5は、MOSトランジスタ等により構成され得る。スイッチSN1には、制御回路92から制御信号Hld_n1が入力される。スイッチSN2には、制御回路92から制御信号Hld_n2が入力される。スイッチSN4には、制御回路92から制御信号Smp_n1が入力される。スイッチSN5には、制御回路92から制御信号Smp_n2が入力される。
スイッチSN5の第1端子は、ノードNinに接続されている。スイッチSN5の第2端子は、容量素子CN2の第1端子及びスイッチSN2の第1端子に接続されている。容量素子CN2の第2端子は、ノードNN1に接続されている。スイッチSN2の第2端子は、ノードNN2に接続されている。
このように、本実施形態においては、サンプルホールド回路50Nが2つの垂直信号線30、31から、それぞれ2つのリセット信号(第1リセット信号、第2リセット信号)をサンプリングすることができる。また、サンプルホールド回路50Sが2つの垂直信号線30、31から、それぞれ2つの光電変換信号(第1光電変換信号、第2光電変換信号)をサンプリングすることができる。
図12は、本実施形態に係る光電変換装置の動作を示すタイミングチャートである。図12の説明において、図4と同様の事項についての説明は省略又は簡略化されることがある。図12には、制御信号RES、TXの電位のレベル及び制御信号Muxの電位のレベルが示されている。また、図12には、制御信号Smpa_n、Smp_n1、Smp_n2、Smpa_s、Smp_s1、Smp_s2、Hld_n1、Hld_n2、Hld_s1、Hld_s2、Hld_n、Hld_sの電位のレベルも示されている。また、図12には、ノードN30、N31における電位の変化も示されている。ノードN30、N31の電位のレベルの変化タイミングは同一であるため、ノードN30、N31における電位の変化は図12において1つにまとめて示されている。
時刻t21において制御信号RESがハイレベルになり、時刻t22において制御信号RESがローレベルになる。これらの動作により、時刻t21から時刻t22の期間において、リセットトランジスタM2がオンになり、ノードFDの電位がリセットされる。この動作に応じて、ノードN30、N31の電位は、それぞれ第1リセット信号、第2リセット信号のレベルになる。
また、時刻t21において、制御信号Smpa_n、Smp_n1がハイレベルになる。これにより、スイッチSN3、SN4がオンになる。また、時刻t21において、制御信号Muxがハイレベルになる。これらにより、垂直信号線30がサンプルホールド回路50Nの容量素子CN1に接続される。これ以降、サンプルホールド回路50Nは、第1リセット信号のサンプリングが可能な状態となる。
時刻t23において、制御信号Smpa_nがローレベルになる。これにより、スイッチSN3がオフになり、第1リセット信号の電位が容量素子CN1に保持される。時刻t24において、制御信号Smp_n1がローレベルになる。これにより、スイッチSN4がオフになり、垂直信号線30とサンプルホールド回路50Nの容量素子CN1の接続が解除される。
時刻t25において、制御信号Smpa_n、Smp_n2がハイレベルになる。これにより、スイッチSN3、SN5がオンになる。また、時刻t25において、制御信号Muxがローレベルになる。これらにより、垂直信号線31がサンプルホールド回路50Nの容量素子CN2に接続される。これ以降、サンプルホールド回路50Nは、第2リセット信号のサンプリングが可能な状態となる。
時刻t26において、制御信号Smpa_nがローレベルになる。これにより、スイッチSN3がオフになり、第2リセット信号の電位が容量素子CN2に保持される。時刻t27において、制御信号Smp_n2がローレベルになる。これにより、スイッチSN5がオフになり、垂直信号線31とサンプルホールド回路50Nの容量素子CN2の接続が解除される。
時刻t28において制御信号TXがハイレベルになり、時刻t29において制御信号TXがローレベルになる。これらの動作により、時刻t28から時刻t29の期間において、転送トランジスタM1がオンになり、光電変換素子PDに蓄積されている電荷がノードFDに転送される。ノードFDの電位は、転送された電荷の量に応じて低下する。この電荷転送により、垂直信号線30、31の電位が低下し、ノードN30、N31の電位は、それぞれ第1光電変換信号、第2光電変換信号のレベルになる。
また、時刻t28において、制御信号Smpa_s、Smp_s1がハイレベルになる。これにより、スイッチSS3、SS4がオンになる。また、時刻t28において、制御信号Muxがハイレベルになる。これらにより、垂直信号線30がサンプルホールド回路50Sの容量素子CS1に接続される。これ以降、サンプルホールド回路50Sは、第1光電変換信号のサンプリングが可能な状態となる。
時刻t30において、制御信号Smpa_sがローレベルになる。これにより、スイッチSS3がオフになり、第1光電変換信号の電位が容量素子CS1に保持される。時刻t31において、制御信号Smp_s1がローレベルになる。これにより、スイッチSS4がオフになり、垂直信号線30とサンプルホールド回路50Sの容量素子CS1の接続が解除される。
時刻t32において、制御信号Smpa_s、Smp_s2がハイレベルになる。これにより、スイッチSS3、SS5がオンになる。また、時刻t32において、制御信号Muxがローレベルになる。これらにより、垂直信号線31がサンプルホールド回路50Sの容量素子CS2に接続される。これ以降、サンプルホールド回路50Sは、第2光電変換信号のサンプリングが可能な状態となる。
時刻t33において、制御信号Smpa_sがローレベルになる。これにより、スイッチSS3がオフになり、第2光電変換信号の電位が容量素子CS2に保持される。時刻t34において、制御信号Smp_s2がローレベルになる。これにより、スイッチSS5がオフになり、垂直信号線31とサンプルホールド回路50Sの容量素子CS2の接続が解除される。
時刻t35において、制御信号Hld_n、Hld_n1がハイレベルになる。これにより、スイッチSN6、SN1がオンになり、サンプルホールド回路50NのノードNN2から第1リセット信号の電位が出力される。また、これと同時に、時刻t35において、制御信号Hld_s、Hld_s1がハイレベルになる。これにより、スイッチSS6、SS1がオンになり、サンプルホールド回路50SのノードNS2から、第1光電変換信号の電位が出力される。その後、時刻t36において、制御信号Hld_n1、Hld_s1がローレベルになり、スイッチSN1、SS1がオフになる。
したがって、時刻t35から時刻t36の期間において、ノードNN2の第1リセット信号の電位と、ノードNS2の第1光電変換信号の電位の差に応じた電流が変換部60へと入力される。変換部60は、この電流に基づくアナログ信号をデジタル信号に変換する。
時刻t37において、制御信号Hld_n2がハイレベルになる。これにより、スイッチSN2がオンになり、サンプルホールド回路50NのノードNN2から第2リセット信号の電位が出力される。また、これと同時に、時刻t37において、制御信号Hld_s2がハイレベルになる。これにより、スイッチSS2がオンになり、サンプルホールド回路50SのノードNS2から、第2光電変換信号の電位が出力される。その後、時刻t38において、制御信号Hld_n、Hld_s、Hld_n2、Hld_s2がローレベルになり、スイッチSN6、SS6、SN2、SS2がオフになる。
したがって、時刻t37から時刻t38において、ノードNN2の第2リセット信号の電位と、ノードNS2の第2光電変換信号の電位の差に応じた電流が変換部60へと入力される。変換部60は、この電流に基づくアナログ信号をデジタル信号に変換する。
このように、本実施形態の光電変換装置は、2つの列の垂直信号線30、31をマルチプレクサ36で切り替えてサンプルホールド部50に接続することができる。これにより、垂直信号線30から第1リセット信号及び第1光電変換信号を読み出し、垂直信号線31から第2リセット信号及び第2光電変換信号を読み出して、AD変換を行うことができ、2列分のデジタル信号の読み出しを行うことができる。したがって、2つの列で1つのサンプルホールド部50及び変換部60を共有することができるため、サンプルホールド部50及び変換部60の個数を少なくすることができ、消費電力が低減される。
このように、本実施形態によれば、第1実施形態と同様に出力信号の精度が向上された光電変換装置が提供されることに加え、消費電力を低減することができる。
[第7実施形態]
本実施形態に係る光電変換装置について説明する。本実施形態の光電変換装置は、第6実施形態の光電変換装置のサンプルホールド部50及び変換部60の構成を変形した例である。
図13は、本実施形態に係る光電変換装置の概略構成を示すブロック図である。本実施形態では、サンプルホールド部50及び変換部60が各列に対応して配されている点が第6実施形態との相違点である。また、本実施形態では、奇数列のサンプルホールド部50及び変換部60と、偶数列のサンプルホールド部50及び変換部60との一方を省電力化する動作が可能である。ここで、省電力化とは、通常の動作状態よりも少ない消費電力で動作させること、及び動作を停止することの両方を含み得る。すなわち、本実施形態では、奇数列のサンプルホールド部50及び変換部60の消費電力と、偶数列のサンプルホールド部50及び変換部60の消費電力とが互いに異なるようにこれらの回路が制御され得ると言い換えることもできる。
制御回路92は、奇数列のサンプルホールド部50に接続された信号線を介して奇数列のサンプルホールド部50の省電力動作の可否を制御する制御信号pwr1を出力する。また、制御回路92は、偶数列のサンプルホールド部50に接続された信号線を介して偶数列のサンプルホールド部50の省電力動作の可否を制御する制御信号pwr2を出力する。これにより、制御回路92は、奇数列のサンプルホールド部50又は偶数列のサンプルホールド部50のいずれか一方を省電力化することができる。あるいは、制御回路92は、奇数列のサンプルホールド部50及び偶数列のサンプルホールド部50のいずれも省電力化しないこともできる。
制御回路92は、奇数列の変換部60に接続された信号線を介して奇数列の変換部60の省電力動作の可否を制御する制御信号apwr1を一の制御線を介して出力する。また、制御回路92は、偶数列の変換部60に接続された信号線を介して偶数列の変換部60の省電力動作の可否を制御する制御信号apwr2を別の一の制御線を介して出力する。これにより、制御回路92は、奇数列の変換部60又は偶数列の変換部60のいずれか一方を省電力化することができる。あるいは、制御回路92は、奇数列の変換部60及び偶数列の変換部60のいずれも省電力化しないこともできる。
例えば、光電変換装置を省電力モードで動作させる場合には、制御回路92は、偶数列のサンプルホールド部50と偶数列の変換部60を省電力動作に切り替える。そして、マルチプレクサ36は、奇数列の垂直信号線30と偶数列の垂直信号線31から読み出された信号がいずれも奇数列のサンプルホールド部50に出力されるように動作を行う。これにより、偶数列のサンプルホールド部50と偶数列の変換部60を省電力化することができ、光電変換装置の消費電力が低減される。なお、この省電力モードの動作において、偶数列と奇数列の動作が逆であってもよい。すなわち、奇数列のサンプルホールド部50と奇数列の変換部60を省電力化してもよい。
このように、本実施形態によれば、第1実施形態と同様に出力信号の精度が向上された光電変換装置が提供されることに加え、消費電力を低減することができる。
また、光電変換装置を通常電力モードで動作させる場合には、制御回路92は、偶数列と奇数列の両方のサンプルホールド部50及び変換部60を省電力動作しないように切り替える。そして、マルチプレクサ36は、奇数列の垂直信号線30から読み出された信号がいずれも奇数列のサンプルホールド部50に出力され、偶数列の垂直信号線31から読み出された信号がいずれも偶数列のサンプルホールド部50に出力されるように動作を行う。通常電力モードでは、省電力モードに比べて消費電力が増加するものの、偶数列と奇数列を並行して読み出すことができるため、読み出し速度が向上する。通常電力モードは、例えば、ハイダイナミックレンジ等の高精度な撮像モードに適用することができる。
このように、本実施形態によれば、要求される信号取得の条件に応じて、省電力モードと通常電力モードの切り替えが可能である。
[第8実施形態]
本実施形態に係る光電変換装置について説明する。本実施形態の光電変換装置は、第7実施形態の光電変換装置に同一列の2つの垂直信号線のいずれかを選択するマルチプレクサを更に追加した例である。
図14は、本実施形態に係る垂直信号線及びマルチプレクサの構成を示す模式図である。図14には、光電変換装置のブロック図のうちの、画素、垂直信号線及びマルチプレクサの構成が抜き出して示されている。
奇数列の垂直信号線30は2本の垂直信号線30a、30bに分割されている。垂直信号線30aは、1つの列に配された複数の画素11のうちの一部の範囲(図14の例では上半分)に接続されている。垂直信号線30bは、1つの列に配された複数の画素11のうちの他の一部の範囲(図14の例では下半分)に接続されている。
偶数列の垂直信号線31は、2本の垂直信号線31a、31bに分割されている。垂直信号線31aは、1つの列に配された複数の画素11のうちの一部の範囲(図14の例では上半分)に接続されている。垂直信号線31bは、1つの列に配された複数の画素11のうちの他の一部の範囲(図14の例では下半分)に接続されている。
光電変換装置には、垂直信号線30a、30bのいずれかを選択するマルチプレクサ37と、垂直信号線31a、31bのいずれかを選択するマルチプレクサ38とが更に配されている。マルチプレクサ37、38は、制御回路92から出力される制御信号に応じて制御される。
マルチプレクサ37の2つの入力端子には、それぞれ垂直信号線30a、30bが接続されている。マルチプレクサ38の2つの入力端子には、それぞれ垂直信号線31a、31bが接続されている。マルチプレクサ37の出力端子及びマルチプレクサ38の出力端子は、マルチプレクサ36の2つの入力端子に接続されている。
本実施形態によれば、第1実施形態と同様に出力信号の精度が向上された光電変換装置が提供されることに加え、第7実施形態と同様に消費電力を低減することができる。また、本実施形態では、1つの列の垂直信号線が2つの領域に分割されており、マルチプレクサを制御することにより、その一方から信号を読み出すことができる。これにより、読み出しの自由度が向上する。
[第9実施形態]
本実施形態に係る光電変換装置について説明する。本実施形態の光電変換装置は、第7実施形態の光電変換装置において同一列に2つの垂直信号線が並行して配されている例である。
図15は、本実施形態に係る垂直信号線、マルチプレクサ及びサンプルホールド部の構成を示す模式図である。図15には、光電変換装置のブロック図のうちの、画素、垂直信号線、マルチプレクサ及びサンプルホールド部の構成が抜き出して示されている。
本実施形態では、1つの列の画素11に対応して2つの垂直信号線30、31が配されている。奇数行の画素11は、垂直信号線31に接続されており、偶数行の画素11は垂直信号線30に接続されている。
また、本実施形態では、1つの列の画素11に対応して2つのサンプルホールド部50、51が配されている。垂直信号線30に出力された信号はサンプルホールド部50に保持され、垂直信号線31に出力された信号はサンプルホールド部51に保持される。サンプルホールド部50、51の各々は、制御信号pwr1、pwr2により個別に制御される。
本実施形態によれば、第1実施形態と同様に出力信号の精度が向上された光電変換装置が提供されることに加え、第7実施形態と同様に消費電力を低減することができる。また、本実施形態では、1つの列に2つの垂直信号線が配されており、2つの垂直信号線から同時に信号を読み出す、2つの垂直信号線の一方のみから信号を読み出す等の制御が可能である。これにより、読み出しの自由度が向上する。
[第10実施形態]
本実施形態に係る光電変換装置について説明する。本実施形態の光電変換装置は、第7実施形態の光電変換装置においてサンプルホールド部と変換部の間に更にマルチプレクサが配されている例である。
図16は、本実施形態に係るサンプルホールド部、マルチプレクサ及び変換部の構成を示す模式図である。図16には、光電変換装置のブロック図のうちの、サンプルホールド部、マルチプレクサ及び変換部の構成が抜き出して示されている。
図16に示されているように、2列(奇数列及び偶数列)の画素11に対応する2つのサンプルホールド部50の出力端子と1つの変換部60の入力端子の間にマルチプレクサ39(第2マルチプレクサ)が更に配されている。これにより、1つの変換部60が2つのサンプルホールド部50に共有されている。マルチプレクサ39は、制御回路92から出力される制御信号に応じて制御される。
本実施形態によれば、第1実施形態と同様に出力信号の精度が向上された光電変換装置が提供されることに加え、第7実施形態と同様に消費電力を低減することができる。また、2つのサンプルホールド部50と1つの変換部60の間の接続の切り替えが可能であり、読み出しの自由度が向上する。
マルチプレクサ39の動作の一例を説明する。複数のサンプルホールド部50の各々が低ゲイン信号と高ゲイン信号を保持する構成であるものとする。このとき、信号出力順序を、「奇数列のサンプルホールド部50から低ゲイン信号→偶数列のサンプルホールド部50から低ゲイン信号→偶数列のサンプルホールド部50から高ゲイン信号→奇数列のサンプルホールド部50から高ゲイン信号」とする。このような信号出力順序となるようにサンプルホールド部50、マルチプレクサ39及び変換部60の制御を行うことにより、変換部60における低ゲイン信号と高ゲイン信号の間の動作切り替え回数が低減され、動作が簡略化される。
[第11実施形態]
本実施形態に係る光電変換装置について説明する。本実施形態の光電変換装置は、第7実施形態の光電変換装置を3つの基板の積層構造に変形したものである。
図17は、本実施形態に係る光電変換装置の概略構成を示すブロック図である。本実施形態では、光電変換装置は、画素基板1(第1基板)、回路基板2a(第2基板)及び回路基板2b(第3基板)により構成されている。画素基板1、回路基板2a、回路基板2bは互いに異なる半導体基板であり、互いに積層されている。また、第7実施形態における制御回路92は、本実施形態では、制御回路92a、92bに分割されている。
画素アレイ10は、画素基板1に配されている。電流源40、マルチプレクサ36、サンプルホールド部50、垂直走査回路94及び制御回路92aは、回路基板2aに配されている。変換部60、データ処理部90(信号処理回路)、制御回路92b、及び出力回路96は、回路基板2bに配されている。
本実施形態によれば、第1実施形態と同様に出力信号の精度が向上された光電変換装置が提供されることに加え、第7実施形態と同様に消費電力を低減することができる。また、回路基板が2つの基板に分割されていることにより、光電変換装置のチップが小型化し得る。
なお、図17の回路構成は一例であり、各基板に配される回路の組み合わせは図17に示されているものに限定されない。例えば、変換部60を構成する回路の一部又は全部が回路基板2aに配されていてもよい。
[第12実施形態]
上述の実施形態における光電変換装置は種々の機器に適用可能である。機器として、デジタルスチルカメラ、デジタルカムコーダ、カメラヘッド、複写機、ファックス、携帯電話、車載カメラ、観測衛星、監視カメラ等があげられる。図18に、機器の例としてデジタルスチルカメラのブロック図を示す。
図18に示す機器70は、バリア706、レンズ702、絞り704、撮像装置700(光電変換装置の一例)を含む。また、機器70は、更に、信号処理部(処理装置)708、タイミング発生部720、全体制御・演算部718(制御装置)、メモリ部710(記憶装置)、記録媒体制御I/F部716、記録媒体714、外部I/F部712を含む。バリア706、レンズ702、絞り704の少なくとも1つは、機器に対応する光学装置である。バリア706はレンズ702を保護し、レンズ702は被写体の光学像を撮像装置700に結像させる。絞り704はレンズ702を通った光量を可変にする。撮像装置700は上述の実施形態のように構成され、レンズ702により結像された光学像を画像データ(画像信号)に変換する。信号処理部708は撮像装置700より出力された撮像データに対し各種の補正、データ圧縮等を行う。タイミング発生部720は撮像装置700及び信号処理部708に、各種タイミング信号を出力する。全体制御・演算部718はデジタルスチルカメラ全体を制御し、メモリ部710は画像データを一時的に記憶する。記録媒体制御I/F部716は記録媒体714に画像データの記録又は読み出しを行うためのインターフェースであり、記録媒体714は撮像データの記録又は読み出しを行うための半導体メモリ等の着脱可能な記録媒体である。外部I/F部712は外部コンピュータ等と通信するためのインターフェースである。タイミング信号等は機器の外部から入力されてもよい。また、更に機器70は光電変換装置で得られた情報を表示する表示装置(モニター、電子ビューファインダ等)を備えてもよい。機器は少なくとも光電変換装置を備える。更に、機器70は、光学装置、制御装置、処理装置、表示装置、記憶装置、及び光電変換装置で得られた情報に基づいて動作する機械装置の少なくともいずれかを備える。機械装置は、光電変換装置の信号を受けて動作する可動部(たとえばロボットアーム)である。
それぞれの画素が、複数の光電変換部(第1の光電変換部と、第2の光電変換部)を含んでもよい。信号処理部708は、第1の光電変換部で生じた電荷に基づく画素信号と、第2の光電変換部で生じた電荷に基づく画素信号とを処理し、撮像装置700から被写体までの距離情報を取得するように構成されてもよい。
[第13実施形態]
図19(a)、図19(b)は、本実施形態における車載カメラに関する機器のブロック図である。機器80は、上述した実施形態の撮像装置800(光電変換装置の一例)と、撮像装置800からの信号を処理する信号処理装置(処理装置)を有する。機器80は、撮像装置800により取得された複数の画像データに対し、画像処理を行う画像処理部801と、機器80より取得された複数の画像データから視差(視差画像の位相差)の算出を行う視差算出部802を有する。また、機器80は、算出された視差に基づいて対象物までの距離を算出する距離計測部803と、算出された距離に基づいて衝突可能性があるか否かを判定する衝突判定部804とを有する。ここで、視差算出部802、距離計測部803は、対象物までの距離情報を取得する距離情報取得手段の一例である。すなわち、距離情報とは、視差、デフォーカス量、対象物までの距離等に関する情報である。衝突判定部804はこれらの距離情報のいずれかを用いて、衝突可能性を判定してもよい。距離情報取得手段は、専用に設計されたハードウェアによって実現されてもよいし、ソフトウェアモジュールによって実現されてもよい。また、FPGA(Field Programmable Gate Array)、ASIC(Application Specific Integrated Circuit)によって実現されてもよいし、これらの組合せによって実現されてもよい。
機器80は車両情報取得装置810と接続されており、車速、ヨーレート、舵角などの車両情報を取得することができる。また、機器80には、衝突判定部804での判定結果に基づいて、車両に対して制動力を発生させる制御信号を出力する制御装置である制御ECU820が接続されている。また、機器80は、衝突判定部804での判定結果に基づいて、ドライバーへ警報を発する警報装置830とも接続されている。例えば、衝突判定部804の判定結果として衝突可能性が高い場合、制御ECU820はブレーキをかける、アクセルを戻す、エンジン出力を抑制するなどして衝突を回避、被害を軽減する車両制御を行う。警報装置830は音等の警報を鳴らす、カーナビゲーションシステム等の画面に警報情報を表示する、シートベルトやステアリングに振動を与えるなどしてユーザに警告を行う。機器80は上述のように車両を制御する動作の制御を行う制御手段として機能する。
本実施形態では車両の周囲、例えば前方又は後方を機器80で撮像する。図19(b)は、車両前方(撮像範囲850)を撮像する場合の機器を示している。撮像制御手段としての車両情報取得装置810が、撮像動作を行うように機器80又は撮像装置800に指示を送る。このような構成により、測距の精度をより向上させることができる。
上述では、他の車両と衝突しないように制御する例を説明したが、他の車両に追従して自動運転する制御、車線からはみ出さないように自動運転する制御等にも適用可能である。更に、機器は、自動車等の車両に限らず、例えば、船舶、航空機、人工衛星、産業用ロボット及び民生用ロボット等の移動体(移動装置)に適用することができる。加えて、移動体に限らず、高度道路交通システム(ITS)、監視システム等、広く物体認識又は生体認識を利用する機器に適用することができる。
[変形実施形態]
本発明は、上述の実施形態に限らず種々の変形が可能である。例えば、いずれかの実施形態の一部の構成を他の実施形態に追加した例や、いずれかの実施形態の一部の構成を他の実施形態の一部の構成と置換した例も、本発明の実施形態である。
光電変換装置に配される画素アレイ10及び画素11の構成は上述の実施形態のものに限られない。例えば、1列の画素11に対応して複数の垂直信号線が配されていてもよく、更に1つの画素11に複数の選択トランジスタM4が配されていてもよい。その場合、複数の選択トランジスタM4のいずれかをオンにすることにより信号を出力する垂直信号線を選択することができる。また、変換部60の構成は上述の実施形態のようなデルタシグマ型のアナログデジタル変換回路に限られない。変換部60は比較回路により入力信号と参照信号の比較を行うことにより入力信号のアナログデジタル変換を行うスロープ型のアナログデジタル変換回路であってもよい。その場合、比較回路は、オートゼロ動作用に、容量素子及びスイッチを有していてもよい。
本明細書の開示内容は、本明細書に記載した概念の補集合を含んでいる。すなわち、本明細書に例えば「AはBである」旨(A=B)の記載があれば、「AはBではない」旨(A≠B)の記載を省略しても、本明細書は「AはBではない」旨を開示又は示唆しているものとする。なぜなら、「AはBである」旨を記載している場合には、「AはBではない」場合を考慮していることが前提だからである。
本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサがプログラムを読み出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
なお、上述の実施形態は、いずれも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。
11 画素
30 垂直信号線
50 サンプルホールド部
50S サンプルホールド回路
AS 反転増幅器
CS1、CS2 容量素子
SS1、SS2、SS3、SS4、SS5 スイッチ

Claims (23)

  1. 光電変換により入射光に応じた信号を出力する画素と、
    前記画素に接続された信号線と、
    前記信号線を介して前記画素からの信号が入力される第1信号保持部と、
    を有し、
    前記第1信号保持部は、
    第1端子及び第2端子を各々が有し、前記信号線から前記第1端子に入力された信号を各々が保持する第1容量素子及び第2容量素子と、
    入力端子及び出力端子を有し、前記第1容量素子の前記第2端子と前記第2容量素子の前記第2端子とが前記入力端子に接続されている増幅回路と、
    前記第1容量素子の前記第1端子と前記増幅回路の前記出力端子の間に接続された第1スイッチと、
    前記第2容量素子の前記第1端子と前記増幅回路の前記出力端子の間に接続された第2スイッチと、
    前記増幅回路の前記入力端子に接続された第3スイッチと、
    を含む
    ことを特徴とする光電変換装置。
  2. 前記第1信号保持部は、
    前記信号線と前記第1容量素子の前記第1端子の間に接続された第4スイッチと、
    前記信号線と前記第2容量素子の前記第1端子の間に接続された第5スイッチと、
    を更に含む
    ことを特徴とする請求項1に記載の光電変換装置。
  3. 前記画素からの信号が前記第1容量素子に保持される期間において、前記第4スイッチがオフになるよりも前に前記第3スイッチがオフになり、
    前記画素からの信号が前記第2容量素子に保持される期間において、前記第5スイッチがオフになるよりも前に前記第3スイッチがオフになる
    ことを特徴とする請求項2に記載の光電変換装置。
  4. 前記信号線を介して前記画素のリセット状態に基づく信号が入力される第2信号保持部を更に有する
    ことを特徴とする請求項1乃至3のいずれか1項に記載の光電変換装置。
  5. 前記第1信号保持部と前記第2信号保持部とを流れる電流が入力されるアナログデジタル変換部を更に有する
    ことを特徴とする請求項4に記載の光電変換装置。
  6. 前記アナログデジタル変換部は、デルタシグマ型アナログデジタル変換回路である
    ことを特徴とする請求項5に記載の光電変換装置。
  7. 前記増幅回路は、ソース接地回路と、前記ソース接地回路の後段に配されたソースフォロワ回路とを含み、
    前記第3スイッチは、前記増幅回路の前記入力端子と、前記ソース接地回路の出力ノードとの間に接続されている
    ことを特徴とする請求項1乃至6のいずれか1項に記載の光電変換装置。
  8. 前記第3スイッチは、前記増幅回路の前記入力端子と、所定の電圧が供給される参照電圧ノードとの間に接続されている
    ことを特徴とする請求項1乃至6のいずれか1項に記載の光電変換装置。
  9. 複数の前記第1信号保持部を有し、
    1つの前記信号線が、複数の前記第1信号保持部のうちの1つに選択的に接続される
    ことを特徴とする請求項1乃至8のいずれか1項に記載の光電変換装置。
  10. 複数の前記第1信号保持部に共通に配された回路素子を更に有し、
    前記回路素子は、複数の前記第1信号保持部のうちの1つに選択的に接続される
    ことを特徴とする請求項9に記載の光電変換装置。
  11. 前記画素は、
    前記入射光に応じた電荷を生成する光電変換素子と、
    前記電荷が転送される浮遊拡散部と、
    前記浮遊拡散部に転送された前記電荷に基づく信号を出力する増幅トランジスタと
    前記浮遊拡散部の容量を制御する容量制御トランジスタと、
    を有する
    ことを特徴とする請求項1乃至10のいずれか1項に記載の光電変換装置。
  12. 前記画素は、複数の光電変換素子を含む
    ことを特徴とする請求項1乃至11のいずれか1項に記載の光電変換装置。
  13. 前記画素に対応して配されたマイクロレンズを有し、
    前記複数の光電変換素子の各々には、同一のマイクロレンズを通過した光が入射する
    ことを特徴とする請求項12に記載の光電変換装置。
  14. 複数の前記画素と、複数の前記信号線と、を有し、
    複数の前記信号線と前記第1信号保持部との間の接続関係を切り替える第1マルチプレクサを更に有する
    ことを特徴とする請求項1乃至13のいずれか1項に記載の光電変換装置。
  15. 複数の前記第1信号保持部を有し、
    前記第1マルチプレクサは、複数の前記信号線と複数の前記第1信号保持部との間の接続関係を切り替え、
    複数の前記第1信号保持部のうちの一部と他の一部の消費電力が異なるように、複数の前記第1信号保持部が制御される
    ことを特徴とする請求項14に記載の光電変換装置。
  16. 光電変換により入射光に応じた信号を各々が出力する複数の画素と、
    前記複数の画素に接続された複数の信号線と、
    複数の第1信号保持部と、
    各々が、前記複数の信号線が入力側に接続され、前記複数の第1信号保持部のうちの対応する第1信号保持部が出力側に接続された、複数のマルチプレクサとを有し、
    前記複数の第1信号保持部の各々は、
    第1容量素子と、前記第1容量素子に接続された増幅回路とを有し、
    前記複数の第1信号保持部の一部の第1信号保持部が備える前記増幅回路と、前記複数の第1信号保持部の別の一部の第1信号保持部が備える前記増幅回路とが別の制御線に接続される
    ことを特徴とする光電変換装置。
  17. 複数の前記画素は複数の列をなすように配されており、
    複数の前記信号線は、前記複数の列にそれぞれ対応するように配されている
    ことを特徴とする請求項15又は16に記載の光電変換装置。
  18. 複数の前記画素は複数の列をなすように配されており、
    複数の前記信号線のうちの2つが、前記複数の列のうちの1つに対応するように配されている
    ことを特徴とする請求項15又は16に記載の光電変換装置。
  19. 複数の前記第1信号保持部を有し、
    前記第1信号保持部から入力されるアナログ信号をデジタル信号に変換するアナログデジタル変換部と、
    複数の前記第1信号保持部と前記アナログデジタル変換部との間の接続関係を切り替える第2マルチプレクサと、
    を更に有する
    ことを特徴とする請求項14乃至18のいずれか1項に記載の光電変換装置。
  20. 前記画素は第1基板に配されており、
    前記第1信号保持部は、前記第1基板に積層された第2基板に配されている
    ことを特徴とする請求項1乃至19のいずれか1項に記載の光電変換装置。
  21. 前記第1信号保持部に保持された信号を処理する信号処理回路を更に有し、
    前記信号処理回路は、前記第1基板及び前記第2基板に積層された第3基板に配されている
    ことを特徴とする請求項20に記載の光電変換装置。
  22. 請求項1乃至21のいずれか1項に記載の光電変換装置と、
    前記光電変換装置に対応した光学装置、
    前記光電変換装置を制御する制御装置、
    前記光電変換装置から出力された信号を処理する処理装置、
    前記光電変換装置で得られた情報を表示する表示装置、
    前記光電変換装置で得られた情報を記憶する記憶装置、及び
    前記光電変換装置で得られた情報に基づいて動作する機械装置、の少なくともいずれかと、を備えることを特徴とする機器。
  23. 前記処理装置は、複数の光電変換部にて生成された画像信号をそれぞれ処理し、前記光電変換装置から被写体までの距離情報を取得することを特徴とする請求項22に記載の機器。
JP2022030679A 2022-03-01 2022-03-01 光電変換装置 Pending JP2023127108A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022030679A JP2023127108A (ja) 2022-03-01 2022-03-01 光電変換装置
US18/168,347 US20230282654A1 (en) 2022-03-01 2023-02-13 Photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022030679A JP2023127108A (ja) 2022-03-01 2022-03-01 光電変換装置

Publications (1)

Publication Number Publication Date
JP2023127108A true JP2023127108A (ja) 2023-09-13

Family

ID=87849949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022030679A Pending JP2023127108A (ja) 2022-03-01 2022-03-01 光電変換装置

Country Status (2)

Country Link
US (1) US20230282654A1 (ja)
JP (1) JP2023127108A (ja)

Also Published As

Publication number Publication date
US20230282654A1 (en) 2023-09-07

Similar Documents

Publication Publication Date Title
JP7374639B2 (ja) 光電変換装置及び撮像システム
US10659714B2 (en) Image sensor and electronic device with active reset circuit, and method of operating the same
US10841517B2 (en) Solid-state imaging device and imaging system
WO2013058213A1 (ja) 撮像素子およびカメラシステム
CN102202190A (zh) 固态成像器件、用于驱动固态成像器件的方法和电子装置
WO2015111398A1 (ja) 固体撮像装置
EP4109889A1 (en) Solid-state imaging device and imaging apparatus using same
JP2018186335A (ja) 光電変換装置及び撮像システム
US9258505B2 (en) Imaging apparatus, imaging system, method for driving imaging apparatus, and method for driving imaging system
JP2020014117A (ja) 固体撮像装置及びその駆動方法
JP2021136541A (ja) 比較器、ad変換器、光電変換装置及び撮像システム
JP4661212B2 (ja) 物理情報取得方法および物理情報取得装置並びに半導体装置
JP6595793B2 (ja) 光電変換装置、その駆動方法、焦点検出センサ及び撮像システム
JP2016111376A (ja) 撮像装置、撮像システム、及び撮像装置の駆動方法
JP2023127108A (ja) 光電変換装置
JP2022119484A (ja) 光電変換装置
JP2019009672A (ja) 撮像装置及びその駆動方法
JP2022142433A (ja) 光電変換装置及び撮像システム
JP7303103B2 (ja) 固体撮像装置、およびそれを用いるカメラシステム
JP5177198B2 (ja) 物理情報取得方法および物理情報取得装置
JP4650445B2 (ja) クランプ信号生成装置およびクランプ信号生成方法
JP7490708B2 (ja) 光電変換装置
WO2022113469A1 (ja) 撮像装置
JP2022119469A (ja) 光電変換装置
JP2022158042A (ja) 光電変換装置

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20220630