JP2023125380A - 管理システム、空気調和装置の管理方法、および、プログラム - Google Patents

管理システム、空気調和装置の管理方法、および、プログラム Download PDF

Info

Publication number
JP2023125380A
JP2023125380A JP2022029429A JP2022029429A JP2023125380A JP 2023125380 A JP2023125380 A JP 2023125380A JP 2022029429 A JP2022029429 A JP 2022029429A JP 2022029429 A JP2022029429 A JP 2022029429A JP 2023125380 A JP2023125380 A JP 2023125380A
Authority
JP
Japan
Prior art keywords
air conditioner
temperature
data
set temperature
operation data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022029429A
Other languages
English (en)
Inventor
智弘 米津
Tomohiro Yonezu
紗野 津田(尾上)
Tsuda, (Onoue) Saya
岳 林田
Takeshi Hayashida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2022029429A priority Critical patent/JP2023125380A/ja
Priority to PCT/JP2023/007088 priority patent/WO2023163178A1/ja
Publication of JP2023125380A publication Critical patent/JP2023125380A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

【課題】被調和空間の快適性の維持と空気調和装置の消費エネルギーの抑制とを可能とする管理システムを提供する。【解決手段】本開示における管理システムは、空気調和装置に設定温度を設定する設定部と、空気調和装置の設定温度を変更する温度変更操作を示す操作データを取得する取得部と、所定期間に取得部によって取得された、取得済みの操作データが、空気調和装置の制御を実行するための制御パラメータを決定する処理に必要な条件を満たすか否かを判定する判定部と、取得済みの操作データが条件を満たすと判定された場合に、取得済みの操作データに基づいて、少なくとも空気調和装置の設定温度を含む制御パラメータを決定する処理部と、を備え、取得済みの操作データが条件を満たさないと判定部が判定した場合に、設定部によって空気調和装置の設定温度を変更し、取得部によって操作データの取得を行う。【選択図】図1

Description

本開示は、管理システム、空気調和装置の管理方法、および、プログラムに関する。
特許文献1は、外気温度の変化に応じて空調機の設定温度が段階的に変化するように制御する空調機の温度制御装置を開示する。
特開2005-061716号公報
本開示は、被調和空間の快適性の維持と空気調和装置の消費エネルギーの抑制とを可能とする管理システムを提供する。
本開示における管理システムは、空気調和装置に設定温度を設定する設定部と、前記空気調和装置の設定温度を変更する温度変更操作を示す操作データを取得する取得部と、所定期間に前記取得部によって取得された、取得済みの前記操作データが、前記空気調和装置の制御を実行するための制御パラメータを決定する処理に必要な条件を満たすか否かを判定する判定部と、取得済みの前記操作データが前記条件を満たすと判定された場合に、取得済みの前記操作データに基づいて、少なくとも前記空気調和装置の設定温度を含む前記制御パラメータを決定する処理部と、を備え、取得済みの前記操作データが前記条件を満たさないと前記判定部が判定した場合に、前記設定部によって前記空気調和装置の設定温度を変更し、前記取得部によって前記操作データの取得を行う。
本開示における管理システムは、空気調和装置の制御パラメータを決定するために、空気調和装置の設定温度を変更する操作に関する十分なデータを取得できる。そのため、空気調和装置の制御に関して、適切な制御パラメータを決定できる。
管理システムの構成を示す図 管理サーバのブロック図 管理システムの動作を示すフローチャート 操作データ取得処理を示すシーケンス図 操作データ判定処理を示すフローチャート 回帰直線の例を示す図表 制御パラメータ生成処理の例を示すフローチャート 回帰直線の例を示す図表 制御パラメータ生成処理の別の例を示すフローチャート 制御パラメータ生成処理の別の例を示すフローチャート 制御パラメータに基づく空気調和装置の運転の様子を示す説明図 管理システムの動作を示すシーケンス図 比較データに基づく表示データの例を示す図 比較データに基づく表示データの別の例を示す図
(本開示の基礎となった知見等)
発明者らが本開示に想到するに至った当時、空気調和装置が設置された建物の外気温度を検出し、外気温度の変化に応じて空気調和装置の設定温度を変化させる技術があった。
しかしながら、外気温度は、被調和空間における快適性に影響する要素の一つに過ぎないから、外気温度に基づき空気調和装置の設定温度を変更したとしても、被調和空間の快適性が確保されない可能性が高い。そのため、被調和空間における快適性を確保するために、空気調和装置の設定温度が変更されることが多く、空気調和装置の消費エネルギーを抑制することが難しい、と言う課題を発明者らは発見し、その課題を解決するために、本開示の主題を構成するに至った。また、空気調和装置の設定温度が変更される場合には、一般的に快適性を過剰に求める傾向があり、空気調和装置の消費エネルギーが増加しやすい、と言う課題も発明者らは発見し、その課題を解決するために、本開示の主題を構成するに至った。なお、快適性を過剰に求めるとは、例えば冷房運転の際には設定温度を必要以上に低くし、暖房運転の際には設定温度を必要以上に高くすることを指す。
そこで、本開示は、被調和空間の快適性の維持と空気調和装置の消費エネルギーの抑制とを可能とする管理システムを提供する。
以下、図面を参照しながら実施形態を詳細に説明する。但し、必要以上に詳細な説明を省略する場合がある。例えば、既によく知られた事項の詳細説明、または、実質的に同一の構成に対する重複説明を省略する場合がある。
なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより特許請求の範囲に記載の主題を限定することを意図していない。
[1.空調監視システムの構成]
図1は、管理システム1000の構成を示す図である。
管理システム1000は、複数の空気調和装置10と通信可能に接続される管理サーバ100を備え、管理サーバ100によって空気調和装置10の動作に関する設定を行う、空気調和装置10の管理システムである。
管理サーバ100が管理の対象とする空気調和装置10は、管理サーバ100と通信可能に接続されていればよい。管理サーバ100に接続される空気調和装置10の数、及び、空気調和装置10の設置場所に制限はない。図1の例では、施設1Aに設置された空気調和装置10A、施設1Bに設置された空気調和装置10B、施設1Cに設置された空気調和装置10C、及び、施設1Dに設置された空気調和装置10Dを示す。空気調和装置10A、10B、10C、10Dを区別しない場合に空気調和装置10と表記する。また、空気調和装置10の具体的な構成についても制限はない。本実施形態では、空気調和装置10は、電力で稼働するパッケージエアコンまたはルームエアコンを想定して説明するが、空気調和装置10は、ガスエネルギーで稼働するGHP(ガスヒートポンプ)式の空気調和装置であってもよい。
施設1A、1B、1C、1Dは、被調和空間を有する。被調和空間は、空気調和装置10により空調が行われる空間である。施設1A、1B、1C、1Dを区別しない場合、施設1と表記する。施設1の被調和空間は建物全体であってもよいし、建物の内部において仕切られた空間であってもよい。施設1及び被調和空間の規模および種類は制限されない。被調和空間は、例えば、住宅、オフィス、店舗、医療施設、公共施設、或いは、その他の施設である。被調和室の空調とは、暖房、冷房、除湿、送風、換気等が挙げられるが、本実施形態では、空気調和装置10により被調和空間の冷房および暖房を行う場合を説明する。
管理サーバ100は、1つのサーバコンピュータで構成されてもよいし、複数のサーバコンピュータが管理サーバ100として機能する構成であってもよい。管理サーバ100は、いわゆるクラウドサーバであってもよい。
通信ネットワークNは、専用回線、公衆回線網、インターネット等を含んで構成される通信回線である。通信ネットワークNは、Wi-Fi(登録商標)ルータ、スイッチ、ルータ、ゲートウェイ、各種のサーバ装置等の不図示のネットワーク装置を含んでもよい。また、通信ネットワークNは、通信事業者が設置する無線基地局を含んでもよい。
管理システム1000は、空気調和装置10を管理する管理者が使用する装置を備える。図1の例で、管理システム1000は、管理者が使用する装置の例として、端末装置5及び携帯端末装置7を含む。端末装置5及び携帯端末装置7は、管理サーバ100と通信する機能を有する。端末装置5及び携帯端末装置7の具体的な構成は制限されない。例えば、端末装置5は、PC(Personal Computer)やスマートフォン、タブレット型コンピュータ、スマートウォッチ等のウェアラブル端末であってもよい。携帯端末装置7も同様である。管理システム1000が含む端末装置5及び携帯端末装置7の数に制限はない。
図1に示す端末装置5は、ラップトップ型のPCであり、ディスプレイ71を有する。携帯端末装置7は、スマートフォンであり、タッチパネルとして機能するディスプレイ71を有する。端末装置5及び携帯端末装置7は、管理サーバ100が生成するデータに基づいて、空気調和装置10の消費電力量や利用状態に関する情報をディスプレイ51、71に表示する。
空気調和装置10Aは、制御装置11、室外機12、室内機13、操作部14、通信装置15、及び、外気温度センサ18を備える。空気調和装置10B、10C、10D及び、その他の空気調和装置10も同様に構成される。なお、図1の構成は一例であり、空気調和装置10Aが備える室外機12及び室内機13の数に制限はない。例えば、空気調和装置10Aは、複数の室内機13により、施設1Aの複数の被調和空間の空調を行う構成であってもよい。
室外機12は、図示はしないが、圧縮機、四方弁や開閉弁等の各種の弁、室外熱交換器、及び、これらを接続する冷媒回路を含む。室内機13は、膨張弁、開閉弁等の各種の弁、室内熱交換器、及び、これらを接続する冷媒回路を含む。室外機12の冷媒回路と室内機13の冷媒回路とは接続される。
制御装置11は、室外機12、室内機13、操作部14、及び、外気温度センサ18に接続される。制御装置11は、室外機12が備える圧縮機の運転、及び、室外機12及び室内機13が備える弁の開閉を制御することによって、被調和空間の気温が、設定された目標温度となるように、空気調和装置10を運転させる。制御装置11は、例えば、メモリとプロセッサを備え、プロセッサがメモリに記憶したプログラムを実行することにより、メモリに記憶したデータに従って空気調和装置10Aを制御する。制御装置11のプロセッサは、例えば、メモリと統合されたマイクロコントローラである。制御装置11は、本開示において制御部の一例に対応する。
制御装置11には、外気温度センサ18が接続される。気温を検出する温度センサであり、外気温度センサ18の検出方式は制限されない。外気温度センサ18は、例えば、室外機12に設置される。
空気調和装置10Aにおいて設定される目標温度を、以下の説明では設定温度と呼ぶ。
操作部14は、空気調和装置10Aを操作するスイッチ等を有する。操作部14は、例えば、施設1Aに設置されるコントローラである。操作部14を操作することにより、空気調和装置10Aの運転開始、運転停止、及び、設定温度の変更を制御装置11に対して指示することができる。制御装置11は、操作部14の操作に従って、空気調和装置10Aの運転開始、運転停止、設定温度の変更等を行う。以下の説明において、操作部14によって行われる操作のうち、空気調和装置10の設定温度を変更する操作を、温度変更操作と呼ぶ。
通信装置15は、通信ネットワークNを介して管理サーバ100と通信を実行する装置である。通信装置15は、公衆回線網、WAN(Wide Area Network)、LAN(Local Area Network)、IP通信回線網等を介して通信ネットワークNに接続し、データ通信を実行する装置である。通信装置15は、セルラー通信方式、Wi-Fi等の無線通信を実行することによって通信ネットワークNに接続する無線通信装置であってもよい。通信装置15は、後述する設定データSDを管理サーバ100から受信し、管理サーバ100に対して後述する操作データRDを送信する。通信装置15は、本開示において送信部の一例に対応する。
空気調和装置10B、10C、10D、及び、管理システム1000に含まれるその他の空気調和装置10は、空気調和装置10Aと同様の構成を有する。これらの空気調和装置10は、制御装置11を備える。制御装置11は、操作部14の操作に従って、室外機12及び室内機13を運転させることにより、被調和空間の空調を行う。
管理サーバ100は、管理サーバ100に接続された空気調和装置10に設定データSDを送信する。設定データSD、及び、後述する操作データRDに関する動作は、管理サーバ100が管理する全ての空気調和装置10において共通である。
設定データSDは、空気調和装置10の設定温度を含み、詳細には、冷房運転時の設定温度、及び、暖房運転時の設定温度を含む。制御装置11は、通信装置15によって設定データSDを受信し、受信した設定データSDにより指定される設定温度で空気調和装置10を運転させる。
設定データSDは、温度変更操作に関する情報を含んでもよい。具体的には、設定データSDは、温度変更操作を許容するか否かの情報を含んでもよい。設定データSDは、温度変更操作に従って制御装置11が設定温度を変更した場合に、設定温度を変更前の温度に復帰させることを指示する情報を含んでもよい。この場合、設定データSDは、設定温度を変更してから、設定温度を変更前の温度に復帰させるまでの制限時間を指定する情報を含んでもよい。
制御装置11は、温度変更操作を許容するか否かを、設定データSDに従って決定する。設定データSDによって、温度変更操作を許容することが指定される場合、制御装置11は、温度変更操作に従って設定温度を変更する。
さらに、管理サーバ100は、制御装置11が、外気温度センサ18によって検出する外気温度に基づいて、空気調和装置10の設定温度を決定するための制御パラメータCPを空気調和装置10に送信する。制御装置11は、通信装置15によって受信した制御パラメータCPをもとに、空気調和装置10の設定温度を自律的に決定する。制御パラメータCPについては後述する。
本実施形態では、施設1において、操作部14の操作により空気調和装置10の運転開始、運転停止、冷房と暖房の切り替えを実行可能である。空気調和装置10の設定温度は、設定データSDによって指定される温度、または、制御装置11が制御パラメータCPに従って決定する温度である。また、空気調和装置10において、温度変更操作の操作に従って設定温度を変更することが許容される。制御装置11は、温度変更操作を受け付けた場合、温度変更操作に応じて設定温度を変更し、設定温度を変更してから所定の制限時間が経過した後に、設定温度を変更前の温度に復帰させる。
制御装置11は、温度変更操作を受け付けたことを示す操作データRDを生成し、通信装置15によって管理サーバ100に送信する。図1に示すように、操作データRDは、例えば、施設ID、及び、空調機IDの少なくともいずれかを含む。施設IDは、施設1A、1B、1C、1D及びその他の施設1の各々を識別する識別情報である。空調機IDは、空気調和装置10A、10B、10C、10D及びその他の空気調和装置10の各々を識別する識別情報である。
操作データRDは、温度変更操作が行われた日時、及び、操作が行われたときの外気温度を含む。操作データRDは、変更後の設定温度を含んでもよい。
管理サーバ100は、空気調和装置10が送信する操作データRDを受信し、記憶する。管理サーバ100は、操作データRDに基づいて、外気温度に対応して空気調和装置10の設定温度を決定する処理に用いる制御パラメータCPを決定する。管理サーバ100は、施設1ごと、或いは、空気調和装置10ごとに、制御パラメータCPを決定する。
空気調和装置10の設定温度を、被調和空間にいる人の快適性を優先して設定することは、省エネルギーの観点から推奨できない。具体的には、例えば、被調和空間にいる人が自由に操作部14を操作して設定温度を変更できるようにすると、空気調和装置10の消費エネルギーが考慮されないため、消費エネルギーが大きくなると考えられる。そこで、空調の設定温度を、省エネルギー化の観点から制限することが考えられる。例えば、経済産業省は、空調の設定温度を、夏季の冷房運転時は28℃、冬季の暖房運転時は20℃とすることを推奨している。しかしながら、これらの温度を空気調和装置10の設定温度とした場合、被調和空間の快適性が低くなることがあり、被調和空間の快適性と省エネルギー化の両立は課題であった。
被調和空間の室内温度は、外気温度に影響される。さらに、建物の位置、形状、建物における被調和空間の位置、被調和空間の日当たり等が被調和空間の室内温度に影響を与える。これらの影響を考慮せずに外気温度のみに基づいて空気調和装置10の設定温度を決定すると、空気調和装置10の被調和空間の快適性が低下する可能性を排除できない。
そこで、本実施形態の管理システム1000は、被調和空間の特性に合わせて、空気調和装置10の設定温度を決定することを可能とする。すなわち、管理サーバ100は、外気温度に基づいて空気調和装置10の設定温度を決定するための制御パラメータCPを、空気調和装置10ごとに生成し、空気調和装置10に送信する。空気調和装置10は、管理サーバ100が送信する制御パラメータCPに従って、外気温度センサ18が検出する外気温度から設定温度を決定する。管理サーバ100が生成する制御パラメータCPは、各々の空気調和装置10の状況に適合する。このため、各々の空気調和装置10において、被調和空間の快適性を保ちながら、消費エネルギーの抑制を図ることができる。
[2.管理サーバの構成]
図2は、管理サーバ100のブロック図である。
管理サーバ100は、制御部110、及び、サーバ通信装置150を備える。
制御部110は、プロセッサ120、及び、メモリ130を備える。プロセッサ120は、CPU(Central Processing Unit)、MPU(Micro-Processing Unit)、その他の演算処理装置により構成される。メモリ130は、プロセッサ120が実行するプログラムやデータを不揮発的に記憶する記憶装置である。メモリ130は、磁気的記憶装置、半導体記憶素子、或いはその他の種類の不揮発性記憶装置により構成される。具体的には、メモリ130は、HDD(Hard Disk Drive)、フラッシュROM(Read Only Memory)、フラッシュROMで構成されるSSD(Solid State Drive)等を有する。メモリ130は、プロセッサ120のワークエリアを構成するRAM(Random Access Memory)を含んでもよい。プロセッサ120は、本開示においてコンピュータの一例である。
メモリ130は、プロセッサ120より実行される制御プログラム131を記憶する。制御プログラム131は、本開示においてプログラムの一例に対応する。
メモリ130は、温度設定データ132、履歴DB(データベース)133、制御パラメータCP、及び、消費電力量DB135を記憶する。これらはプロセッサ120によって処理され、或いは生成されるデータである。
温度設定データ132は、空気調和装置10の設定温度のデータである。温度設定データ132は、設定データSDに含まれる設定温度のデータを含む。温度設定データ132は、全ての空気調和装置10に共通する設定温度のデータであってもよい。また、温度設定データ132は、空気調和装置10ごと、或いは、施設1ごとに異なる設定温度のデータを含んでもよい。
履歴DB133は、空気調和装置10における温度変更操作の履歴を含む。
図2に、履歴DB133の構成例を示す。履歴DB133は、空気調和装置10において行われた温度変更操作のデータを格納する。履歴DB133が格納するデータは、例えば、空調機IDと、設定変更履歴とが対応付けられたレコード形式のデータである。この構成は一例であり、履歴DB133が格納するレコードにおいて、空調機IDに代えて、施設IDが設定変更履歴に対応付けられてもよい。
履歴DB133に格納される1つのレコードは、1つの空気調和装置10における1回の温度変更操作に対応する。履歴DB133のレコードは、設定変更履歴は、設定変更日時、運転種別、外気温度、設定温度、及び、変更後の設定温度を含む。設定変更日時は、操作部14の操作に応じて設定温度を変更した日時であり、操作部14の操作を制御装置11が受け付けた日時とほぼ同じである。運転種別は、温度変更操作が行われたときの空気調和装置10の運転状態を示す。本実施形態では、運転種別は、冷房と暖房のいずれかである。外気温度は、温度変更操作が行われたときの外気温度である。設定温度は、温度変更操作が行われたときの空気調和装置10の設定温度である。この設定温度は、管理サーバ100が設定データSDによって空気調和装置10に指示した温度である。変更後の設定温度は、温度変更操作が行われた結果として変更された空気調和装置10の設定温度である。
このように、履歴DB133は、空調機IDに対応付けて、空気調和装置10ごとの温度変更操作の履歴を含む。図2の例では運転種別が冷房のレコードのみを例示しているが、履歴DB133は、1年間を通して管理サーバ100が受信するデータを格納することができる。
制御パラメータCPは、制御装置11が空気調和装置10の設定温度を自律的に決定するためのデータである。制御パラメータCPは、制御装置11が処理するデータであってもよい。また、制御パラメータCPは、制御装置11が実行する演算処理を規定するプログラム、或いは、制御装置11が実行する演算処理のための演算式であってもよい。また、制御パラメータCPは、制御装置11が実行する演算処理で利用される係数や定数を含んでもよい。制御パラメータCPは、少なくとも、外気温度に対応する空気調和装置10の設定温度、または、設定温度を決定するためのデータを含む。
消費電力量DB135は、空気調和装置10の消費電力量を示すデータを格納する。消費電力量DB135は、例えば、空気調和装置10の空調機IDに対応付けて、消費電力量を示すデータを格納する。消費電力量DB135が格納するデータは、例えば、日ごとの消費電力量のデータである。データの区切りは適宜に変更可能であり、消費電力量DB135が格納するデータは施設1ごとの消費電力量のデータであってもよい。
プロセッサ120は、制御プログラム131を実行することによって、管理サーバ100の各部を制御する。プロセッサ120は、機能部として、取得部121、判定部122、設定部123、及び、処理部124を備える。これらの各機能部は、プロセッサ120が制御プログラム131を実行することによって、ソフトウェアとハードウェアとの協働により実現される。
制御部110には、サーバ通信装置150が接続される。サーバ通信装置150は、通信ネットワークNに接続される通信装置である。サーバ通信装置150は、例えば、通信ケーブルを接続するコネクタと、コネクタを通じて信号を入出力するインターフェイス回路とを備える。また、例えば、サーバ通信装置150は、アンテナ及び無線回路を備え、無線通信回線を介して通信ネットワークNに接続する無線通信装置であってもよい。
取得部121は、サーバ通信装置150によって空気調和装置10と通信を実行し、空気調和装置10から操作データRDを受信する。取得部121は、操作データRDに基づいてデータを履歴DB133に追加し、履歴DB133を更新する。
また、取得部121は、サーバ通信装置150によって空気調和装置10と通信を実行し、空気調和装置10から消費電力量に関するデータを受信する。取得部121は、受信したデータに基づいてデータを消費電力量DB135に追加し、消費電力量DB135を更新する。
判定部122は、取得部121によって取得されたデータが、制御パラメータCPを決定する処理に必要な条件を満たすか否かを判定する。例えば、判定部122は、取得部121によって取得されたデータの数が、制御パラメータCPを決定する処理に必要な数以上であるか否かを判定する。
設定部123は、空気調和装置10の設定温度を設定する。例えば、設定部123は、温度設定データ132に基づいて設定データSDを生成し、サーバ通信装置150によって設定データSDを空気調和装置10に送信する。
処理部124は、履歴DB133が格納するデータに基づいて、制御パラメータCPを生成する。制御パラメータCPを生成することは、制御パラメータCPを決定することと同義である。処理部124は、例えば、空気調和装置10ごとに制御パラメータCPを生成し、メモリ130に記憶させる。メモリ130が記憶する制御パラメータCPは、温度設定データ132によって空気調和装置10に送信される。
処理部124は、空気調和装置10が制御パラメータCPに基づかない運転をした場合と、空気調和装置10が制御パラメータCPに従って運転した場合と、を比較した比較データを生成する。処理部124は、例えば、消費電力量DB135に格納されたデータに基づいて、消費電力量を比較した比較データを生成する。この場合、比較データは、空気調和装置10が設定データSDにより指定された設定温度で運転した場合の消費電力量と、制御パラメータCPに従って設定温度を決定する運転を行った場合の消費電力量とを比較するデータである。比較データは、例えば、空気調和装置10が設定データSDにより指定された設定温度で運転した場合の消費電力量と、制御パラメータCPに従って設定温度を決定する運転を行った場合の消費電力量とを、視覚的に比較したグラフや表を含む。比較データでは、端末装置5及び携帯端末装置7のいずれか又は両方に送信され、ディスプレイ51やディスプレイ71に表示される。
[3.管理システムの動作]
図3は、管理システム1000の動作を示すフローチャートである。
図3において、ステップSA1~SA2、SA4~SA9、SA11、SA13~SA15の動作は、管理サーバ100により実行される。ステップSA3、SA10、SA12の動作は管理サーバ100と空気調和装置10とによって実行される。
処理部124は、制御パラメータ生成条件を判定する(ステップSA1)。処理部124は、管理サーバ100の管理対象である各々の空気調和装置10に対応する制御パラメータCPを生成する。また、処理部124は、空気調和装置10の暖房運転用の制御パラメータCPと、冷房運転用の制御パラメータCPとを生成する。このため、ステップSA1において、処理部124は、制御パラメータCPの生成に関する条件である制御パラメータ生成条件を判定する。制御パラメータ生成条件は、具体的には、制御パラメータCPを適用する空気調和装置10の空調機IDを含む。制御パラメータ生成条件は、制御パラメータCPを適用する運転種別を含んでもよい。運転種別とは暖房または冷房である。
ステップSA1の判定によって、制御パラメータCPを生成する対象の空気調和装置10が特定される。管理サーバ100は、複数の空気調和装置10に対し、並行して図3の動作を実行可能である。以下の説明では、ステップSA1で、制御パラメータCPを生成する対象が空気調和装置10Aであると判定された場合を例に挙げて説明する。
設定部123は、制御パラメータCPを生成する対象である空気調和装置10Aに対して、設定温度を含む設定データSDを送信する(ステップSA2)。
取得部121は、空気調和装置10Aに対し、操作データ取得処理を実行する(ステップSA3)。操作データ取得処理は、空気調和装置10Aから操作データRDを取得し、履歴DB133に蓄積する処理である。
図4は、図3のステップSA3で実行される操作データ取得処理を示すシーケンス図である。図4において、ステップSB1~SB4は管理サーバ100の動作を示し、ステップSC1~SC9は空気調和装置10の動作を示す。ここでは、空気調和装置10AがステップSC1~SC9を実行する例を説明する。
制御装置11は、管理サーバ100が送信した設定データSDを受信し、設定データSDに従って空気調和装置10Aの運転を開始する(ステップSC1)。空気調和装置10Aの運転中、制御装置11は、操作部14による温度変更操作の有無を判定する(ステップSC2)。温度変更操作がされていないと判定した場合(ステップSC2;NO)、制御装置11は、後述するステップSC7に移行する。
制御装置11は、温度変更操作があったと判定した場合(ステップSC2;YES)、温度変更操作に従って空気調和装置10Aの設定温度を変更する(ステップSC3)。制御装置11は、操作部14による温度変更操作の内容を含む操作データRDを生成する(ステップSC4)。制御装置11は、設定温度を復帰する復帰タイミングに達したか否かを判定し(ステップSC5)、復帰タイミングに達していない場合は(ステップSC5;NO)、空気調和装置10Aの運転を継続しながら待機する。
復帰タイミングは、例えば、温度変更操作に従って設定温度を変更してからの制限時間により定められる。制限時間は、例えば、設定データSDにより指定される。例えば、制限時間が30分である場合、制御装置11は、ステップSC3で設定温度を変更してから30分後に復帰タイミングに達したと判定する(ステップSC5)。復帰タイミングは、時刻に基づき定められても良い。例えば、制御装置11は、設定温度を変更した後の最初の正時を復帰タイミングとしてもよいし、設定温度を変更した後の2番目の正時を復帰タイミングとしてもよい。この場合も、復帰タイミングは設定データSDにより指定される。この構成は、制御装置11がRTC(Real Time Clock)を備え、現在時刻を取得可能である場合に適用できる。
制御装置11は、復帰タイミングに達したと判定した場合(ステップSC5;YES)、空気調和装置10Aの設定温度を、変更前の設定温度に戻す(ステップSC6)。変更前の設定温度とは、ステップSC3で設定温度を変更する前の設定温度である。その後、制御装置11はステップSC6に移行する。
ステップSC6で、制御装置11は、操作データRDを送信する送信タイミングに達したか否かを判定する(ステップSC7)。送信タイミングに達していないと判定した場合(ステップSC7;NO)、制御装置11はステップSC2に戻る。送信タイミングに達したと判定した場合(ステップSC7;YES)、制御装置11は、通信装置15によって操作データRDを管理サーバ100に送信する(ステップSC8)。
送信タイミングは、設定データSDにより指定され、或いは、予め制御装置11に設定される。送信タイミングは、1日のうちの1または複数の時刻であってもよい。この場合、制御装置11は、1日に1回または複数回、操作データRDを送信する。制御装置11は、送信タイミングに達するまでに行われた温度変更操作に対応する操作データRDを生成し、管理サーバ100に送信する。制御装置11は、複数の温度変更操作に関するデータを含む操作データRDを生成してもよいし、1回の温度変更操作に対応する操作データRDを、複数、まとめて管理サーバ100に送信してもよい。送信タイミングは複数の日に1回であってもよいし、より長い周期であってもよい。また、送信タイミングは、温度変更操作の回数により定められてもよい。例えば、設定された回数の温度変更操作が行われるごとに、送信タイミングに達する構成としてもよい。
取得部121は、空気調和装置10Aが送信する操作データRDを受信する(ステップSB1)。取得部121は、受信した操作データRDに含まれる情報を、空気調和装置10Aの空調機IDに対応付けて履歴DB133に格納させ、履歴DB133を更新する(ステップSB2)。
さらに、制御装置11は、空気調和装置10Aの消費電力量を示すデータを、管理サーバ100に送信する(ステップSC9)。取得部121は、空気調和装置10Aが送信した消費電力量のデータを受信する(ステップSB3)。取得部121は、受信した消費電力量のデータを、空気調和装置10Aの空調機IDに対応付けて消費電力量DB135に格納させ、消費電力量DB135を更新する(ステップSB4)。
空気調和装置10Aは、管理サーバ100が指示を与えない限り、操作部14による運転開始の操作、運転終了の操作、及び、温度変更操作に従って運転を実行し、ステップSC1~SC10を繰り返す。
図4の動作例では、制御装置11が操作データRDを送信する頻度と、消費電力量のデータを送信する頻度とが一致する。これは一例であり、例えば、消費電力量のデータを送信するタイミングは、操作データRDの送信タイミングとは異なるタイミングであってもよい。例えば、制御装置11は、日ごとの空気調和装置10Aの消費電力量のデータを、ステップSC9で、一週間に1回や一ヶ月に1回のタイミングで管理サーバ100に送信してもよい。
また、制御装置11は、温度変更操作のうち、特定の方向への温度変更を指示する温度変更操作のみについて、操作データRDを生成する構成であってもよい。特定の方向とは、例えば、空気調和装置10Aの被調和空間の快適性を高める方向である。この場合、特定の方向への温度変更を指示する温度変更操作とは、具体的には、空気調和装置10Aの冷房運転中は設定温度を低い温度に変更させる温度変更操作であり、暖房運転中は設定温度を高い温度に変更させる温度変更操作である。また、特定の方向とは、空気調和装置10Aの消費電力量が増大する方向であってもよい。
この場合、制御装置11は、温度変更操作が行われたと判定した場合(ステップSC2;YES)、温度変更の方向に関わらず、ステップSC3で空気調和装置10Aの設定温度を変更する。その後、制御装置11は、設定温度を特定の方向に変更させる温度変更操作である場合はステップSC4で操作データRDを生成する。また、制御装置11は、温度変更操作が設定温度を特定の方向に変更させる操作でない場合は、ステップSC4をスキップする。これにより、履歴DB133には、特定の方向の温度変更操作に関するデータが蓄積される。
図3に戻り、判定部122は、ステップSA3の操作データ取得処理を開始してから、予め設定された所定期間が経過したか否かを判定する(ステップSA4)。所定期間は、予め設定された期間であり、例えば、1週間、1ヶ月、数ヶ月、或いは、それ以上の期間であってもよい。
判定部122は、所定期間が経過していないと判定した場合(ステップSA4;NO)、ステップSA3で取得された操作データRDの量が過多であるか否かを判定する(ステップSA5)。取得部121及び空気調和装置10Aは、所定期間が経過するまでの間、ステップSA3の操作データ取得処理を繰り返し実行する。判定部122は、所定期間が経過するまでの途中の時点において、取得された操作データRDの数が多すぎるか否かを判定する。ステップSA5で、判定部122は、例えば、ステップSA3の操作データ取得処理を開始してからの時間に対応して定められた閾値と、履歴DB133に格納されたデータの数とを比較する。
取得されたデータが過多でないと判定部122が判定した場合(ステップSA5;NO)、取得部121はステップSA3に戻り、空気調和装置10Aとの間で操作データ取得処理を実行する。
取得されたデータが過多であると判定部122が判定した場合(ステップSA5;YES)、設定部123は、空気調和装置10Aの運転条件を変更する(ステップSA6)。運転条件は、空気調和装置10Aの設定温度を含む。運転条件は、空気調和装置10Aの復帰タイミングを含む。ステップSA6で、設定部123は、変更後の空気調和装置10Aの運転条件を指定する設定データSDを空気調和装置10Aに送信する。
ステップSA6で、設定部123は、空気調和装置10Aにおける温度変更操作の回数が少なくなる、或いは、回数が増えにくくなるように運転条件を変更する。換言すれば、空気調和装置10Aの被調和空間における快適性が高くなるように、運転条件を変更する。例えば、空気調和装置10Aが冷房運転中の場合は設定温度をより低い温度に変更し、暖房運転中には設定温度をより高い温度に変更する。また、設定部123は、復帰タイミングを遅らせてもよい。この場合、温度変更操作によって変更された設定温度が変更前の温度に戻るまでの時間が長くなるので、温度変更操作を抑制することができる。
一方、所定期間が経過したと判定した場合(ステップSA4;YES)、判定部122は、操作データ判定処理を実行する(ステップSA7)。操作データ判定処理は、履歴DB133に含まれるデータが、制御パラメータCPを決定するために十分なデータであるか否かを判定する処理である。
判定部122は、上述のように、制御パラメータCPを決定するために十分なデータであるか否かを判定する基準を、温度変更操作の回数としてもよい。この場合、判定部122は、ステップSA7において、所定期間に行われた温度変更操作の回数が、予め設定された閾値以上であるか否かを判定することにより、空気調和装置10Aから取得したデータが条件を満たすか否かを判定する。そして、判定部122は、ステップSA7で、所定期間に行われた温度変更操作の回数が閾値より少ない場合に、空気調和装置10Aから取得したデータが条件を満たさないと判定し、所定期間に行われた温度変更操作の回数が閾値以上の場合に空気調和装置10Aから取得したデータが条件を満たすと判定する。所定期間に空気調和装置10Aにおいて実行された温度変更操作の回数は、履歴DB133に含まれる温度変更操作のデータから判定できる。
本実施形態では、判定部122が履歴DB133のデータの質を含めて判定を行う例を、図5を参照して説明する。図5は、図3のステップSA7で実行される操作データ判定処理を示すフローチャートである。
判定部122は、判定処理の対象である空調機IDを特定し(ステップSD1)、特定した空調機IDに対応付けられた設定変更履歴のデータを履歴DB133から抽出する(ステップSD2)。
判定部122は、ステップSD2で抽出したデータをもとに、日ごと、及び、外気温度ごとの温度変更操作の回数を集計する(ステップSD3)。これにより、判定部122は、1日あたりの温度変更操作の回数と、外気温度とを対応付ける。判定部122は、1日あたりの温度変更操作の回数と、外気温度との相関について回帰分析を行い、回帰直線を求める(ステップSD4)。
図6は、回帰直線の例を示す図表である。図6は、横軸を外気温度、縦軸を1日あたりの温度変更操作としてデータをプロットした散布図であり、図中の点P1はステップSD3で集計されたデータを示す。図6には回帰分析により得られる回帰直線の例を符号RG1で示す。回帰直線RG1は最小二乗法を用いて生成された直線であるが、これは一例である。回帰分析の手法は、最小二乗法のほか、幾何平均回帰、主成分回帰、或いはその他の手法を用いることができ、近似式としての回帰直線を得られる手法であればよい。また、判定部122は、ステップSD4において単に近似式を求める処理を行ってもよい。
回帰直線RG1の傾きの大きさは、外気温度により温度変更操作の回数が変化する度合いを示す。回帰直線RG1の傾きが大きいことは、外気温度によって温度変更操作の回数が大きく変化することを示す。ここで、回帰直線RG1の傾きの大きさとは、傾きの絶対値の大きさを意味する。図6の例では、外気温度に対し1日あたりの温度変更操作の回数が正の相関を有しているが、外気温度に対して温度変更操作の回数が負の相関を有することもあり得る。
図5に戻り、判定部122は、ステップSD4で求めた回帰直線の傾きが閾値以上であるか否かを判定する(ステップSD5)。閾値は、予め制御部110に設定された値であり、例えばメモリ130に記憶されている。回帰直線の傾きが閾値以上である場合(ステップSD5;YES)、判定部122は、操作データ取得処理で空気調和装置10Aから取得したデータが条件を満たすと判定し(ステップSD6)、図3の処理に戻る。
一方、回帰直線の傾きが閾値より小さい場合(ステップSD5;NO)、判定部122は、空気調和装置10Aから取得したデータが条件を満たさないと判定し(ステップSD7)、図3の処理に戻る。
判定部122は、操作データ判定処理の判定結果を参照する(ステップSA8)。ここで、操作データ取得処理で空気調和装置10Aから取得したデータが条件を満たすと判定された場合(ステップSA8;YES)、処理部124は、履歴DB133のデータをもとに制御パラメータ生成処理を実行する(ステップSA9)。制御パラメータ生成処理については後述する。
その後、ステップSA10で、制御パラメータCPに基づく空気調和装置10Aの運転が開始される(ステップSA10)。ここで、設定部123は、ステップSA9で生成された制御パラメータCPを空気調和装置10Aに送信し、空気調和装置10Aは、制御パラメータCPを受信する。制御装置11は、外気温度センサ18により外気温度を検出し、外気温度を制御パラメータCPに適用することによって空気調和装置10Aの設定温度を決定する。制御装置11は、制御パラメータCPにより決定した設定温度に基づく運転を実行する。
操作データ判定処理で、データが条件を満たさないと判定された場合(ステップSA8;NO)、設定部123は、空気調和装置10Aの運転条件を変更する(ステップSA11)。運転条件の詳細はステップSA6に関して説明した通りである。
ステップSA11では、操作データRDを取得しやすくなるように、操作データ取得処理における空気調和装置10Aの運転条件が変更される。つまり、設定部123は、空気調和装置10Aにおける温度変更操作の回数が多くなるように運転条件を変更する。この変更は、空気調和装置10Aの被調和空間における快適性が低くなるように、運転条件を変更することである。例えば、空気調和装置10Aが冷房運転中の場合は設定温度をより高い温度に変更し、暖房運転中には設定温度をより低い温度に変更する。また、設定部123は、復帰タイミングを早めてもよい。この場合、温度変更操作によって変更された設定温度が変更前の温度に戻るまでの時間が短くなるので、温度変更操作を促進することができる。ステップSA11で、設定部123は、変更後の空気調和装置10Aの運転条件を指定する設定データSDを空気調和装置10Aに送信する。
取得部121は、ステップSA7と同様の操作データ取得処理を実行する(ステップSA12)。その後、判定部122は、ステップSA12の操作データ取得処理を開始してから、予め設定された所定期間が経過したか否かを判定する(ステップSA13)。所定期間についてはステップSA4と同様である。
判定部122は、所定期間が経過していないと判定した場合(ステップSA13;NO)、ステップSA12に戻る。取得部121及び空気調和装置10Aは、所定期間が経過するまでの間、ステップSA12の操作データ取得処理を繰り返し実行する。
判定部122は、所定期間が経過したと判定した場合(ステップSA13;YES)、ステップSA7と同様に操作データ判定処理を実行する(ステップSA14)。その後、判定部122は、操作データ判定処理の判定結果を参照する(ステップSA15)。ここで、操作データ取得処理で空気調和装置10Aから取得したデータが条件を満たさないと判定された場合(ステップSA15;NO)、制御部110はステップSA12に戻る。ここで、制御部110は、ステップSA11に戻り、設定部123によって運転条件を変更してもよい。具体的には、操作データRDをより取得しやすくなるように、操作データ取得処理における空気調和装置10Aの運転条件を、さらに変更してもよい。
操作データ取得処理で空気調和装置10Aから取得したデータが条件を満たすと判定された場合(ステップSA15;YES)、処理部124は、ステップSA9に移行して、制御パラメータ生成処理を実行する(ステップSA9)。
図7は、図3のステップSA9で実行される制御パラメータ生成処理の例を示すフローチャートである。
処理部124は、制御パラメータCPを適用する空気調和装置10の空調機IDを特定する(ステップSE1)。ここでは、空気調和装置10Aの空調機IDを特定する。処理部124は、ステップSE1で特定した空調機IDに対応するデータを履歴DB133から抽出する(ステップSE2)。
処理部124は、ステップSE2で抽出したデータから、外気温度と、温度変更操作により変更された設定温度とをさらに抽出する(ステップSE3)。温度変更操作により変更された設定温度を、変更後の温度と呼ぶ。処理部124は、外気温度と変更後の温度との相関を求める回帰分析を実行し、回帰直線を求める(ステップSE4)。回帰分析の手法はステップSD4で説明した通りであり、一例として、最小二乗法により近似式を求める処理を採用できる。
図8は、回帰直線の例を示す図表であり、図7のステップSE4で算出される回帰直線の例を示す。図8は、横軸を外気温度、縦軸を空気調和装置10Aにおける平均設定温度としてデータをプロットした散布図である。縦軸の設定温度は、空気調和装置10Aにおいて温度変更操作による変更後の設定温度である。図7の図表においてプロットされる設定温度の値は、1つの外気温度に対応する変更後の設定温度の複数の値を平均した、平均値であってもよい。図中の点P2はステップSE3で抽出されたデータを示す。
図7には回帰分析により得られる回帰直線の例を符号RG2で示す。回帰直線RG2は最小二乗法を用いて生成された直線であるが、これは一例である。回帰分析の手法は、最小二乗法のほか、幾何平均回帰、主成分回帰、或いはその他の手法を用いることができ、近似式としての回帰直線を得られる手法であればよい。また、処理部124は、ステップSE4において単に近似式を求める処理を行ってもよい。
回帰直線RG2は、外気温度と、操作部14の操作により設定された空気調和装置10Aの設定温度との相関を示す。例えば、外気温度が高い状態で設定温度が低温に設定された場合、被調和空間にいる人が、被調和空間が暑いと感じたことを示す。
図7に戻り、処理部124は、ステップSE4で求めた回帰直線を利用して、外気温度毎の推奨設定温度を算出する(ステップSE5)。処理部124は、制御装置11が外気温度をもとに推奨設定温度を求める処理を可能とする制御パラメータCPを生成する(ステップSE6)。処理部124は、生成した制御パラメータCPを、空気調和装置10Aの空調機IDに対応付けてメモリ130に記憶させる(ステップSE7)。これにより生成される制御パラメータCPは、図8に示したように、被調和空間にいる人が設定した設定温度と外気温度との相関を反映している。その上で、制御パラメータCPは、空気調和装置10Aの消費エネルギーが小さくなるように空気調和装置10Aを運転するように、空気調和装置10Aの設定温度を定めるパラメータである。
空気調和装置10Aは、図7の処理で生成された制御パラメータCPを利用して、外気温度センサ18によって検出される外気温度に基づき、空気調和装置10Aの設定温度を決定する。空気調和装置10Aは、空気調和装置10Aが生成した操作データRDを利用して生成された制御パラメータCPを利用することにより、空気調和装置10Aの被調和空間の環境に適した制御を実行できる。従って、被調和空間を含む建物の環境や被調和空間の日当たり等の影響を含めて空気調和装置10Aを運転させることができ、これにより被調和空間の快適性を維持できる。さらに、空気調和装置10Aの設定温度が過度に低温または高温に設定されることを防止できるので、被調和空間の快適性を維持しながら、空気調和装置10Aの消費エネルギーを抑制できる。
管理システム1000において図3の動作が実行される回数は、1回に限らない。管理システム1000は、空気調和装置10が冷房運転を行う時期に図3の動作を実行して、冷房運転用の制御パラメータCPを生成し、空気調和装置10に適用してもよい。この場合、空気調和装置10が冷房運転を開始するタイミングで、図3の動作が開始される。例えば、空気調和装置10が、運転種別として冷房運転を指定する操作が行われた場合に、冷房運転の開始を示す操作データRDを管理サーバ100に送信し、この操作データRDを契機として管理サーバ100が図3の処理を実行する。同様に、管理システム1000は、空気調和装置10が暖房運転を開始するときに図3の動作を実行して、暖房運転用の制御パラメータCPを生成し、空気調和装置10に適用してもよい。
処理部124は、履歴DB133から冷房運転時のデータを抽出して利用することで冷房運転用の制御パラメータCPを生成することが可能であり、同様に、暖房運転用の制御パラメータCPを生成することもできる。
また、管理システム1000は、空気調和装置10が制御パラメータCPを利用して運転を実行する間に、図3の動作を実行してもよい。この場合、ステップSA1、SA2は省略することができる。例えば、1年、2年、或いはそれ以上の周期で、図3の動作を実行してもよい。この場合、被調和空間の環境の変化や、被調和空間の利用形態の変化に対応して、制御パラメータCPを更新できる。また、被調和空間が就業場所である場合に、被調和空間で働く人物の変化にも対応できる。さらに、操作部14の操作によって指定されたタイミングで、図3の動作が実行され、制御パラメータCPが更新される構成であってもよい。この場合、空気調和装置10を管理する管理者や被調和空間の利用者の状況に応じて、制御パラメータCPを更新できる。
この場合、管理システム1000は、各々の空気調和装置10に制御パラメータCPが適用された年月日を管理サーバ100によって管理すればよい。管理サーバ100は、適用されてから所定の期間が経過した制御パラメータCPを、図3の動作により更新する。
図9は、制御パラメータ生成処理の別の例を示すフローチャートである。図9の動作は、図7に示した動作に代えて、処理部124により実行される。
図9において、ステップSE1~SE6は図7の動作と共通である。ステップSE6で制御パラメータCPを生成した後、処理部124は、ステップSE2で抽出したデータをもとに、外気温度帯毎の温度変更操作の回数を集計する(ステップSE11)。
処理部124は、制御パラメータCPに付加する付加データを生成する(ステップSE12)。ステップSE12において、処理部124は、ステップSE11で集計した回数をもとに、外気温度帯毎の温度変更操作の許容回数、及び、温度変更操作により変更可能な温度幅を決定する。そして、処理部124は、決定した許容回数および温度幅を示す付加データを生成する。
処理部124は、ステップSE6で生成した制御パラメータCPに、ステップSE12で生成した付加データを加えることにより制御パラメータCPを更新し、更新した制御パラメータCPをメモリ130に記憶させる(ステップSE13)。
ステップSE12で決定される温度変更操作の許容回数とは、空気調和装置10Aが温度変更操作を許容するか否か、及び、1日あたり又は所定時間あたりに空気調和装置10Aが受け付ける温度変更操作の回数を指す。温度変更操作の許容回数は、例えば、1日あたり又は所定時間あたりに1回、3回、5回等とすることができる。また、処理部124は、温度変更操作の許容回数を0回とする、すなわち、温度変更操作を許容しないよう決定することも可能である。処理部124は、外気温度帯毎に、温度変更操作の許容回数を定める。外気温度帯の幅は適宜に決めればよく、例えば、5℃、2℃、或いは1℃の幅とすることができる。
温度変更操作の温度幅とは、温度変更操作によって空気調和装置10Aの設定温度を変更できる温度の範囲をいう。例えば、処理部124は、温度変更操作の回数の閾値として、第1閾値T1、第2閾値T2を有し、T1>T2とする。処理部124は、第1の外気温度帯について、ステップSE11で集計した温度変更操作の回数NTがT1<NTである場合、第1の外気温度帯で温度変更操作により変更可能な温度幅を±5℃とする。処理部124は、第2の外気温度帯について、ステップSE11で集計した温度変更操作の回数NがT2<NT<T1である場合、第2の外気温度帯で温度変更操作により変更可能な温度幅を±3℃とする。処理部124は、第3の外気温度帯について、ステップSE11で集計した温度変更操作の回数NがNT<T2である場合、第3の外気温度帯で温度変更操作により変更可能な温度幅を±1℃とする。また、処理部124は、第4の外気温度帯について、ステップSE11で集計した温度変更操作の回数NTが0である場合、第4の外気温度帯で温度変更操作により変更可能な温度幅を0℃とする。
図9の動作例によれば、制御パラメータCPに基づき空気調和装置10Aが運転される間の温度変更操作を、適切な範囲で許容することができる。従って、空気調和装置10Aの被調和空間にいる人の快適性を、より一層高めることが可能となる。
図9の動作例において、制御パラメータCPは、温度変更操作が行われてから設定温度を変更前に復帰させるまでの制限時間を含んでもよい。すなわち、温度変更操作により変更可能な温度幅に加えて、或いは、これに代えて、制限時間を示す付加データを、制御パラメータCPに含めてもよい。例えば、制御パラメータCPは、温度変更操作の回数が多い外気温度帯に対応付けて長い制限時間を指定し、温度変更操作の回数が多い外気温度帯に対応付けて短い制限時間を指定してもよい。制限時間は、例えば、30分、60分、120分等と段階的に決定すればよい。
図10は、制御パラメータ生成処理の別の例を示すフローチャートである。図10の動作は、図7または図9に示した動作に代えて、処理部124により実行される。
図10において、ステップSE1~SE5は図7の動作と共通である。
処理部124は、ステップSE5で算出した推奨設定温度をもとに、第1の制御パラメータCPを生成する処理(ステップSE21)、及び、第2の制御パラメータCPを生成する処理(ステップSE22)を実行する。
第1の制御パラメータCP及び第2の制御パラメータCPは、いずれも、空気調和装置10Aにおいて制御装置11が外気温度をもとに推奨設定温度を求める処理を可能とする。このうち、第1の制御パラメータCPは、空気調和装置10Aが通常運転を行う場合に利用される。第2の制御パラメータCPは、空気調和装置10Aが省エネルギー運転を行う場合に利用される。つまり、処理部124は、ステップSE21、SE22で、通常運転用の制御パラメータCPと、省エネルギー運転用の制御パラメータCPとを生成する。図10の処理は、空気調和装置10Aにおいて、操作部14の操作によって通常運転と省エネルギー運転とを切り替えることが可能な場合に有効である。
処理部124は、ステップSE2で抽出したデータをもとに、外気温度帯毎の温度変更操作の回数を集計する(ステップSE23)。処理部124は、制御パラメータCPに付加する付加データを生成する(ステップSE24)。ステップSE24において、処理部124は、ステップSE22で集計した回数をもとに、外気温度帯毎の温度変更操作の許容回数、及び、温度変更操作により変更可能な温度幅を決定する。この処理はステップSE12と同様である。さらに、処理部124は、ステップSE24において、第1の制御パラメータCPに適用する第1付加データと、第2の制御パラメータCPに適用する第2付加データとを生成する。
第1の制御パラメータCPは通常運転用であり、第2の制御パラメータCPは省エネルギー運転用である場合、第2付加データは第1付加データに比べて、温度変更操作を許容する範囲が狭い。例えば、第2付加データでは、第1付加データに比べて、同じ外気温度帯における温度変更操作の許容回数が少なく、変更可能な温度幅が狭い。
処理部124は、制御パラメータCPを更新してメモリ130に記憶させる処理を行う(ステップSE25)。ステップSE25で、処理部124は、第1の制御パラメータCPに第1付加データを加えることにより、第1の制御パラメータCPを更新する。また、第2の制御パラメータCPに第2付加データを加えることにより、第2の制御パラメータCPを更新する。処理部124は、更新した第1の制御パラメータCP及び第2の制御パラメータCPを、空気調和装置10Aの空調機IDに対応付けて、メモリ130に記憶させる。
図10の動作例によれば、空気調和装置10Aの管理者が、空気調和装置10Aの運転状態を、通常運転と省エネルギー運転とに切り替えることに対応して、外気温度に基づいて空気調和装置10Aの設定温度を設定できる。これにより、空気調和装置10Aの被調和空間の快適性を損なわない範囲において、被調和空間の快適性と消費エネルギーとのバランスを、管理者の要望に応じて変更できる。
図10で説明したステップSE21、SE22、SE25の処理を、図7のステップSE6、ステップSE7に適用することも可能である。この場合、温度変更操作の許容回数や変更可能な温度幅を含まない態様で、通常運転用と省エネルギー運転用の制御パラメータCPをそれぞれ生成できる。
このように、管理システム1000では、管理サーバ100が各々に空気調和装置10に適した制御パラメータCPを生成し、制御パラメータCPに基づいて空気調和装置10を運転させる。これにより、各々の空気調和装置10によって、被調和空間の快適性を維持しながら、消費エネルギーを抑制することが可能となる。
図11は、制御パラメータCPに基づく空気調和装置10の運転の様子を示す説明図である。図11には、制御パラメータCPに基づき外気温度に対応して設定される空気調和装置10の設定温度の例を示す。また、図11には、比較例として、省エネルギー運転における設定温度を示す。
図11における空調機1、2、3、4は、それぞれ異なる空気調和装置10を指す。例えば、空調機1は空気調和装置10Aを指す。同様に、空調機2は空気調和装置10Bを指し、空調機3は空気調和装置10Cを指し、空調機4は空気調和装置10Dを指すと考えてよい。また、図11には一例として、冷房運転時に制御パラメータCPを適用する場合を示す。
上述のように、省エネルギー運転における設定温度は、例えば、外気温度に関わらず28℃である。これに対し、制御パラメータCPを適用すると、空気調和装置10が、外気温度に対応して、空気調和装置10の設置環境に適する設定温度を決定できる。
例えば、図11の空調機1は、外気温度が22℃より低い場合は設定温度を25℃とし、外気温度が23℃以上で26℃より低い場合は設定温度を24℃とする。これに対し、空調機2は、外気温度が24℃より低い場合は設定温度を28℃とする。空気調和装置10A、10B、10C、10Dには、それぞれ異なる制御パラメータCPが管理サーバ100から与えられる。従って、各々の空気調和装置10は、図11に例示するように、同一の外気温度に対応して、互いに異なる設定温度を決定することが可能となる。
図11に示す空気調和装置10の冷房運転時の設定温度は、いずれも省エネルギー運転における設定温度より低いので、被調和空間における快適性は改善する。また、外気温度に対応して空気調和装置10の設定温度を変更することにより、いわゆる冷房の効きすぎを回避し、空気調和装置10の消費エネルギーの抑制を実現できる。暖房運転時においても同様の効果が得られる。
また、管理システム1000は、制御パラメータCPを適用前後における空気調和装置10の消費エネルギー、及び、被調和空間の快適性の変化を可視化して、管理者に提供する機能を有する。
図12は、管理システム1000の動作を示すシーケンス図である。図12のステップSF1~SF7は管理サーバ100の動作を示し、ステップSG1~SG3は端末装置5の動作を示す。ステップSG1~SG3の動作を携帯端末装置7が実行してもよい。
端末装置5は、端末装置5を使用する管理者の操作に従って、管理サーバ100に対して比較データ要求を送信する(ステップSG1)。比較データ要求は、比較データを生成する対象の空気調和装置10を特定する空調機IDを含む。比較データ要求は、比較データの種類を特定してもよい。比較データの種類は、例えば、消費電力量の比較、及び、温度変更操作の回数のいずれか1以上を含む。以下の説明では、比較データの種類として消費電力量の比較が指定された場合を説明する。
取得部121は、端末装置5が送信する比較データ要求を受信する(ステップSF1)。処理部124は、比較データ要求に含まれる空調機IDを特定する(ステップSF2)。処理部124は、特定した空調機IDに対応するデータを、消費電力量DB135から抽出することにより、制御パラメータCPを適用する前の空気調和装置10の消費電力量を集計する(ステップSF3)。
処理部124は、消費電力量DB135から抽出したデータに基づいて、制御パラメータCPを適用した後の空気調和装置10の消費電力量を集計する(ステップSF4)。
処理部124は、ステップSF3の集計結果とステップSF4の集計結果とをもとに、制御パラメータCPの適用前後を比較した比較データを生成する(ステップSF5)。処理部124は、比較データを可視化する処理を行うことにより、比較データに基づく表示データを生成する(ステップSF6)。処理部124は、生成した表示データを、比較データ要求を送信した端末装置5に送信する(ステップSF7)。
端末装置5は、管理サーバ100が送信する表示データを受信し(ステップSG2)、表示データをディスプレイ51に表示する(ステップSG3)。
図13は、比較データに基づく表示データの例を示す図である。
図13は、横軸を外気温度、縦軸を1日または所定期間あたりの消費電力量としてデータをプロットした散布図である。図13は、空気調和装置10Aが、制御パラメータCPを用いない通常運転、制御パラメータCPを用いない省エネルギー運転、及び、制御パラメータCPを用いた運転を実行した場合の消費電力量を比較した比較データを示す。通常運転は、操作部14の操作により温度変更操作を無制限に実行可能な状態での運転である。省エネルギー運転は、空気調和装置10Aの設定温度を、経済産業省等が定める温度にする運転である。省エネルギー運転における設定温度は、例えば、冷房運転時は28℃、暖房運転時は20℃である。省エネルギー運転においては温度変更操作が実行できないか、温度変更操作の回数または変更可能な温度幅が、通常運転よりも厳しく制限される。
図中の点P3は制御パラメータCPを用いない通常運転のデータを示し、点P4は制御パラメータCPを用いない省エネルギー運転のデータを示す。点P5は制御パラメータCPを用いた運転のデータを示す。
図13の表示データは、データの比較を容易にするため、回帰分析により得られる回帰曲線を含む。符号RG3は、点P3のデータを回帰分析した回帰曲線を示す。符号RG4は点P4のデータを回帰分析した回帰曲線であり、符号RG5は点P5のデータを回帰分析した回帰曲線である。これらの回帰曲線は、ステップSF5において処理部124が回帰分析を実行することによって得られる。回帰分析の手法は、最小二乗法、幾何平均回帰、主成分回帰、或いはその他の手法を用いることができ、上述したように適宜に選択される。回帰曲線RG3、RG4、RG5は直線であってもよい。
図13の表示データは、空気調和装置10Aが制御パラメータCPを利用する場合と利用しない場合とで、空気調和装置10Aの消費電力量が変化した様子を可視化して管理者に提示する。例えば、空気調和装置10Aが制御パラメータCPを利用することにより、制御パラメータCPを用いない省エネルギー運転を実行した場合よりも消費電力量を抑制していることが示される。
図14は、比較データに基づく表示データの別の例を示す図である。
図14は、空気調和装置10Aにおける温度変更操作の実行状況を比較した比較データを示している。すなわち、図14は、横軸を外気温度、縦軸を1日または所定時間あたりの温度変更操作の回数としてデータをプロットした散布図である。
図14のデータは、空気調和装置10Aが、制御パラメータCPを用いない通常運転、制御パラメータCPを用いない省エネルギー運転、及び、制御パラメータCPを用いた運転を実行した場合の温度変更操作を比較する。
図中の点P6は制御パラメータCPを用いない通常運転のデータを示し、点P7は制御パラメータCPを用いない省エネルギー運転のデータを示す。点P8は制御パラメータCPを用いた運転のデータを示す。
図14の表示データは、データの比較を容易にするため、回帰分析により得られる回帰曲線を含む。符号RG6は、点P6のデータを回帰分析した回帰曲線を示す。符号RG7は点P7のデータを回帰分析した回帰曲線であり、符号RG8は点P8のデータを回帰分析した回帰曲線である。これらの回帰曲線は、ステップSF5において処理部124が回帰分析を実行することによって得られる。
図14の表示データは、空気調和装置10Aが制御パラメータCPを利用する場合と利用しない場合とのそれぞれについて、被調和空間において温度変更操作が行われた回数を可視化して管理者に提示する。温度変更操作は、被調和空間にいる人が、被調和空間の快適性を改善させるために行う。従って、温度変更操作の回数が多いほど、被調和空間の快適性が低いと考えることができる。また、省エネルギーの観点からは温度変更操作を制限することが効果的であり、点P7及び回帰曲線RG7は、省エネルギー運転において温度変更操作が制限されたことを示している。
図14の例では、空気調和装置10Aが制御パラメータCPを利用した場合に、制御パラメータCPを用いない通常運転よりも温度変更操作が減少したことが現れている。つまり、制御パラメータCPを利用することによって被調和空間の快適性が向上したといえる。
図13及び図14の表示データは、管理サーバ100に接続されるいずれか1の空気調和装置10に関するデータを視覚化したものである。これは一例であり、例えば、複数の空気調和装置10において消費電力量あるいは温度変更操作の回数を比較したデータを、1つの表示データにまとめて視覚化し、ディスプレイ51、71に表示してもよい。
[4.効果等]
以上のように、本実施形態において、管理システム1000は、空気調和装置10に設定温度を設定する設定部123と、空気調和装置10の設定温度を変更する温度変更操作を示す操作データRDを取得する取得部121と、所定期間に取得部121によって取得された、取得済みの操作データRDが、空気調和装置10の制御を実行するための制御パラメータCPを決定する処理に必要な条件を満たすか否かを判定する判定部122と、取得済みの操作データRDが条件を満たすと判定された場合に、取得済みの操作データRDに基づいて、少なくとも空気調和装置10の設定温度を含む制御パラメータCPを決定する処理部124と、を備え、取得済みの操作データRDが条件を満たさないと判定部122が判定した場合に、設定部123によって空気調和装置10の設定温度を変更し、取得部121によって操作データRDの取得を行う。
これにより、空気調和装置10の制御パラメータCPを生成するために、操作データRDを、効率よく空気調和装置10から取得することができる。これにより、管理サーバ100は、制御パラメータCPの決定または生成に必要な、温度変更操作に関する十分なデータを取得できる。そのため、空気調和装置10の制御に関して、適切な制御パラメータCPを生成できる。
本実施形態の空気調和装置10の管理方法は、空気調和装置10に設定温度を設定し、空気調和装置10の設定温度を変更する温度変更操作を示す操作データRDを取得し、所定期間に取得した、取得済みの操作データRDが、空気調和装置10の制御を実行するための制御パラメータCPを決定する処理に必要な条件を満たすか否かを判定し、取得済みの操作データRDが条件を満たすと判定した場合に、取得済みの操作データRDに基づいて、少なくとも空気調和装置10の設定温度を含む制御パラメータCPを決定し、取得済みの操作データRDが条件を満たさないと判定した場合に、空気調和装置10の設定温度を変更し、操作データRDの取得を行う。この方法によれば、空気調和装置10の制御パラメータCPを生成するために、操作データRDを、効率よく空気調和装置10から取得することができる。これにより、制御パラメータCPの決定または生成に必要な、温度変更操作に関する十分なデータを、空気調和装置10から取得することが可能となる。そのため、空気調和装置10の制御に関して、適切な制御パラメータCPを生成できる。
本実施形態の制御プログラム131は、空気調和装置10を管理するコンピュータである管理サーバ100により実行可能なプログラムである。制御プログラム131は、管理サーバ100を、空気調和装置10に設定温度を設定する設定部123と、空気調和装置10の設定温度を変更する温度変更操作を示す操作データRDを取得する取得部121と、所定期間に取得部121によって取得された、取得済みの操作データRDが、空気調和装置10の制御を実行するための制御パラメータCPを決定する処理に必要な条件を満たすか否かを判定する判定部122と、取得済みの操作データRDが条件を満たすと判定部122が判定した場合に、取得済みの操作データRDに基づいて、少なくとも空気調和装置10の設定温度を含む制御パラメータCPを決定する処理部124と、して機能させ、取得済みの操作データRDが条件を満たさないと判定部122が判定した場合に、設定部123によって空気調和装置10の設定温度を変更し、取得部121によって操作データRDの取得を行う制御を実行させる、プログラム。このプログラムによれば、空気調和装置10の制御パラメータCPを生成するために、操作データRDを、効率よく空気調和装置10から取得することができる。これにより、制御パラメータCPの決定または生成に必要な、温度変更操作に関する十分なデータを、空気調和装置10から取得することが可能となる。そのため、空気調和装置10の制御に関して、適切な制御パラメータCPを生成できる。
本実施形態のように、管理システム1000は、取得済みの操作データRDが条件を満たさないと判定部122が判定した場合に、設定部123によって、空気調和装置10の消費エネルギーが小さくなるように空気調和装置10の設定温度を変更し、取得部121によって操作データRDの取得を行ってもよい。これにより、操作データRDの取得状況に応じて、空気調和装置10の温度変更操作が行われやすいように、設定温度を変更する。そのため、制御パラメータCPの決定に必要なデータを、空気調和装置10から効率よく取得することが可能となる。
本実施形態のように、制御パラメータCPは、空気調和装置10の設置場所における外気温度と空気調和装置10の設定温度とを対応付けるデータを含み、空気調和装置10が外気温度の変化に応じて設定温度を変更する制御を実行するためのパラメータであってもよい。これにより、制御パラメータCPに従って空気調和装置10を運転させることによって、空気調和装置10の被調和空間の環境や特性に対応して、空気調和装置10の設定温度を適切に設定できる。そのため、被調和空間の快適性と空気調和装置10の消費エネルギーの抑制とを両立した、空気調和装置10の制御を実現できる。
本実施形態のように、制御パラメータCPは、空気調和装置10の設置場所における外気温度と、空気調和装置10の設定温度と、空気調和装置10が温度変更操作に応じて設定温度を変更可能な温度幅と、を対応付けるデータを含み、空気調和装置10が外気温度の変化及び温度変更操作に応じて設定温度を変更する制御を実行するためのパラメータであってもよい。これにより、制御パラメータCPに従って空気調和装置10を運転させる場合の温度変更操作を、適切な範囲で許容することができる。そのため、被調和空間の快適性をより一層高めるとともに、空気調和装置10の消費エネルギーの抑制を実現できる。
本実施形態のように、管理システム1000は、温度変更操作が行われた場合に、温度変更操作に応じて空気調和装置10の設定温度を変更し、空気調和装置10の設定温度を変更してから所定時間が経過した後に、空気調和装置10の設定温度を温度変更操作が行われる前の温度に復帰させてもよい。これにより、被調和空間の快適性を好適な状態に維持しながら、制御パラメータCPを決定するために必要なデータを効率よく取得できる。
本実施形態のように、管理システム1000は、温度変更操作が行われた場合に、温度変更操作に応じて空気調和装置10の設定温度を変更し、空気調和装置10の設定温度を変更した後の所定のタイミングで、空気調和装置10の設定温度を温度変更操作が行われる前の温度に復帰させてもよい。これにより、被調和空間の快適性を好適な状態に維持しながら、制御パラメータCPを決定するために必要なデータを効率よく取得できる。
本実施形態のように、処理部124は、空気調和装置10が暖房運転中に取得部121によって取得された操作データRDに基づいて、暖房運転用の制御パラメータCPを生成し、空気調和装置10が冷房運転中に取得部121によって取得された操作データRDに基づいて、冷房運転用の制御パラメータCPを決定してもよい。これにより、空気調和装置10の暖房運転と冷房運転との各々に対応する制御パラメータCPを決定できる。そのため、空気調和装置10が暖房運転を実行する場合、及び、冷房運転を実行する場合のいずれにおいても、被調和空間の快適性と空気調和装置10の消費エネルギーの抑制とを両立した、空気調和装置10の制御を実現できる。
本実施形態のように、処理部124は、制御パラメータCPを利用して空気調和装置10を運転させた場合の空気調和装置10の消費電力量と、制御パラメータCPを利用せず温度変更操作に応じて空気調和装置10を運転させた場合の空気調和装置10の消費電力量と、を比較した比較データを生成してもよい。これにより、空気調和装置10の管理者や利用者が、制御パラメータCPを利用する場合の消費エネルギーの抑制効果を、視覚的に把握できる。
本実施形態のように、管理システム1000は、空気調和装置10と、空気調和装置10と通信可能な管理サーバ100とを備え、空気調和装置10は、温度変更操作を受け付ける操作部14と、温度変更操作に基づき操作データRDを管理サーバ100に送信する通信装置15と、管理サーバが送信する温度設定データに基づいて、空気調和装置10を制御する制御装置11と、を備え、制御装置11は、管理サーバ100により生成された制御パラメータCPと、空気調和装置10の設置場所における外気温度とに基づいて、空気調和装置10の設定温度を変更してもよい。これにより、管理サーバ100が制御パラメータCPを空気調和装置10に送信し、空気調和装置10が、管理サーバ100によって与えられる制御パラメータCPに基づいて、外気温度に対応する設定温度で運転する。そのため、管理サーバ100の制御のもとで、空気調和装置10の設定温度を適切に設定できるので、被調和空間の快適性と空気調和装置10の消費エネルギーの抑制とを両立できる。
[5.他の実施形態]
以上のように、本出願において開示する例示として、上記実施形態を説明した。しかしながら、本開示における技術は、これに限定されず、変更、置き換え、付加、省略などを行った実施形態にも適用できる。また、上記実施形態で説明した各構成要素を組み合わせて、新たな実施形態とすることも可能である。
そこで、以下、他の実施形態を例示する。
上述した実施形態では、外気温度を外気温度センサ18により検出する構成を例示したが、これは一例である。例えば、日射や室外機12の熱の籠りなどの影響を避けて外気温度を取得するために、空気調和装置10または管理サーバ100が、クラウドサーバ等によって提供される気象情報配信サービスを利用して、施設1の設置場所における外気温度のデータを取得してもよい。管理サーバ100が外気温度のデータを取得可能な構成である場合、操作データRDに外気温度を含める必要はない。この場合、外気温度のデータを管理サーバ100から空気調和装置10に送信してもよい。
上述した実施形態では、判定部122がステップSD4(図5)で実行する回帰分析、及び、処理部124がステップSE4(図7)で実行する回帰分析の例として、線形回帰を行う構成を説明した。これは一例であり、判定部122及び処理部124は、例えば、回帰曲線を求める処理を行ってもよい。この場合、ステップSD5で回帰直線の傾きを閾値と比較する処理は、回帰曲線の傾きの最大値または平均値を閾値と比較する処理に置き換えることができる。
また、上述した実施形態では、各々の空気調和装置10が通信装置15を備える構成を説明した。この構成において、複数の空気調和装置10が、空気調和装置10とは独立して、或いは、いずれかの空気調和装置10に内蔵された通信装置に接続され、この通信装置により管理サーバ100と通信を実行する構成であってもよい。
また、上述した実施形態では、各々の空気調和装置10が、制御パラメータCPに基づいて設定温度を決定する制御装置11を備える構成を説明した。この構成において、複数の空気調和装置10を制御する中央制御装置を設けてもよい。この場合、中央制御装置は、複数の空気調和装置10のそれぞれに対応して管理サーバ100が生成する制御パラメータCPに従って、各々の空気調和装置10の設定温度を決定してもよい。
本開示における通信部の構成は、本開示の装置と外部機器との通信を可能にするものであればよい。発明の主題を表現する際に、本開示の装置と外部機器との通信を可能にするものとして、コミュニケータの他にも通信手段または通信部または送受信手段または送受信部またはそれらに類似する文言で表記する場合がある。通信装置15、サーバ通信装置150、及び、端末装置5または携帯端末装置7が備える不図示の通信部を構成するコミュニケータは、様々な態様で実現可能である。例えば、コミュニケータは、外部機器と有線で接続する態様であってもよいし、外部機器と無線で通信接続する態様であってもよい。本開示の装置と外部機器とを有線で接続するコミュニケータであれば、通信のセキュリティ性、及び、通信の安定性において有効である。有線接続のコミュニケータとしては、例えば、Ethernet(登録商標)規格に基づく有線LAN、または、光ファイバーケーブルを用いた有線接続などがある。無線接続のコミュニケータとしては、基地局等を介しての外部機器との無線接続、または、外部機器との直接無線接続などがある。基地局等を介しての外部機器との無線接続としては、例えば、Wi-Fiルータと無線通信するIEEE802.11対応の無線LAN、第3世代移動通信システム(通称3G)、第4世代移動通信システム(通称4G)、IEEE 802.16対応のWiMax(登録商標)、または、LPWA(Low Power Wide Area)などがある。本開示の装置と外部機器とを直接無線接続するコミュニケータを用いれば、通信のセキュリティ性の向上に有効であるとともに、Wi-Fiルータなどの中継機器が存在しない場所でも、本開示の装置は外部機器と通信できる。本開示の装置と外部機器とを直接無線接続するコミュニケータとしては、例えば、Bluetooth(登録商標)による通信、ループアンテナを介したNFC(Near Field Communication)による通信、または、赤外線通信などがある。
図1及び図2に示した各部は一例であって、具体的な実装形態は特に限定されない。つまり、必ずしも各部に個別に対応するハードウェアが実装される必要はなく、一つのプロセッサがプログラムを実行することで各部の機能を実現する構成とすることも勿論可能である。また、上述した実施形態においてソフトウェアで実現される機能の一部をハードウェアとしてもよく、或いは、ハードウェアで実現される機能の一部をソフトウェアで実現してもよい。その他、空気調和装置10、管理サーバ100、端末装置5、及び携帯端末装置7の他の各部の具体的な細部構成についても、本開示の趣旨を逸脱しない範囲で任意に変更可能である。
また、例えば、図3~図5、図7、図9、図10、図12に示す動作のステップ単位は、管理システム1000の各部の動作の理解を容易にするために、主な処理内容に応じて分割したものであり、処理単位の分割の仕方や名称によって、本開示が限定されることはない。
なお、上述の実施形態は、本開示における技術を例示するためのものであるから、特許請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。
以上のように、本開示に係る管理システム、空気調和装置の管理方法、および、プログラムは、空気調和装置の運転を管理する用途に利用可能である。
5 端末装置
7 携帯端末装置
10、10A、10B、10C、10D 空気調和装置
11 制御装置(制御部)
12 室外機
13 室内機
14 操作部
15 通信装置(送信部)
18 外気温度センサ
51、71 ディスプレイ
100 管理サーバ
110 制御部
120 プロセッサ
121 取得部
122 判定部
123 設定部
124 処理部
130 メモリ
131 制御プログラム(プログラム)
132 温度設定データ
150 サーバ通信装置
1000 管理システム
CP 制御パラメータ
RD 操作データ
N 通信ネットワーク
SD 設定データ

Claims (11)

  1. 空気調和装置に設定温度を設定する設定部と、
    前記空気調和装置の設定温度を変更する温度変更操作を示す操作データを取得する取得部と、
    所定期間に前記取得部によって取得された、取得済みの前記操作データが、前記空気調和装置の制御を実行するための制御パラメータを決定する処理に必要な条件を満たすか否かを判定する判定部と、
    取得済みの前記操作データが前記条件を満たすと判定された場合に、取得済みの前記操作データに基づいて、少なくとも前記空気調和装置の設定温度を含む前記制御パラメータを決定する処理部と、を備え、
    取得済みの前記操作データが前記条件を満たさないと前記判定部が判定した場合に、前記設定部によって前記空気調和装置の設定温度を変更し、前記取得部によって前記操作データの取得を行う、
    管理システム。
  2. 取得済みの前記操作データが前記条件を満たさないと前記判定部が判定した場合に、前記設定部によって、前記空気調和装置の消費エネルギーが小さくなるように前記空気調和装置の設定温度を変更し、前記取得部によって前記操作データの取得を行う、請求項1に記載の管理システム。
  3. 前記制御パラメータは、前記空気調和装置の設置場所における外気温度と前記空気調和装置の設定温度とを対応付けるデータを含み、前記空気調和装置が外気温度の変化に応じて設定温度を変更する制御を実行するためのパラメータである、
    請求項1または2に記載の管理システム。
  4. 前記制御パラメータは、前記空気調和装置の設置場所における外気温度と、前記空気調和装置の設定温度と、前記空気調和装置が前記温度変更操作に応じて設定温度を変更可能な温度幅と、を対応付けるデータを含み、前記空気調和装置が外気温度の変化及び前記温度変更操作に応じて設定温度を変更する制御を実行するためのパラメータである、
    請求項1または2に記載の管理システム。
  5. 前記温度変更操作が行われた場合に、前記温度変更操作に応じて前記空気調和装置の設定温度を変更し、前記空気調和装置の設定温度を変更してから所定時間が経過した後に、前記空気調和装置の設定温度を前記温度変更操作が行われる前の温度に復帰させる、
    請求項1から請求項4のいずれかに記載の管理システム。
  6. 前記温度変更操作が行われた場合に、前記温度変更操作に応じて前記空気調和装置の設定温度を変更し、前記空気調和装置の設定温度を変更した後の所定のタイミングで、前記空気調和装置の設定温度を前記温度変更操作が行われる前の温度に復帰させる、
    請求項1から請求項4のいずれかに記載の管理システム。
  7. 前記処理部は、前記空気調和装置が暖房運転中に前記取得部によって取得された前記操作データに基づいて、暖房運転用の前記制御パラメータを決定し、前記空気調和装置が冷房運転中に前記取得部によって取得された前記操作データに基づいて、冷房運転用の前記制御パラメータを決定する、
    請求項1から請求項6のいずれかに記載の管理システム。
  8. 前記処理部は、前記制御パラメータを利用して前記空気調和装置を運転させた場合の前記空気調和装置の消費電力量と、前記制御パラメータを利用せず前記温度変更操作に応じて前記空気調和装置を運転させた場合の前記空気調和装置の消費電力量と、を比較した比較データを生成する、
    請求項1から請求項7のいずれかに記載の管理システム。
  9. 前記空気調和装置と、前記空気調和装置と通信可能な管理サーバとを備え、
    前記空気調和装置は、
    前記温度変更操作を受け付ける操作部と、
    前記温度変更操作に基づき前記操作データを前記管理サーバに送信する送信部と、
    前記管理サーバが送信する温度設定データに基づいて、前記空気調和装置を制御する制御部と、を備え、
    前記制御部は、前記管理サーバにより生成された前記制御パラメータと、前記空気調和装置の設置場所における外気温度とに基づいて、前記空気調和装置の設定温度を変更する、
    請求項1から請求項8のいずれかに記載の管理システム。
  10. 空気調和装置に設定温度を設定し、
    前記空気調和装置の設定温度を変更する温度変更操作を示す操作データを取得し、
    所定期間に取得した、取得済みの前記操作データが、前記空気調和装置の制御を実行するための制御パラメータを決定する処理に必要な条件を満たすか否かを判定し、
    取得済みの前記操作データが前記条件を満たすと判定した場合に、取得済みの前記操作データに基づいて、少なくとも前記空気調和装置の設定温度を含む前記制御パラメータを決定し、
    取得済みの前記操作データが前記条件を満たさないと判定した場合に、前記空気調和装置の設定温度を変更し、前記操作データの取得を行う、
    空気調和装置の管理方法。
  11. 空気調和装置を管理するコンピュータにより実行可能なプログラムであって、
    前記コンピュータを、
    前記空気調和装置に設定温度を設定する設定部と、
    前記空気調和装置の設定温度を変更する温度変更操作を示す操作データを取得する取得部と、
    所定期間に前記取得部によって取得された、取得済みの前記操作データが、前記空気調和装置の制御を実行するための制御パラメータを決定する処理に必要な条件を満たすか否かを判定する判定部と、
    取得済みの前記操作データが前記条件を満たすと前記判定部が判定した場合に、取得済みの前記操作データに基づいて、少なくとも前記空気調和装置の設定温度を含む前記制御パラメータを決定する処理部と、して機能させ、
    取得済みの前記操作データが前記条件を満たさないと前記判定部が判定した場合に、前記設定部によって前記空気調和装置の設定温度を変更し、前記取得部によって前記操作データの取得を行う制御を実行させる、
    プログラム。
JP2022029429A 2022-02-28 2022-02-28 管理システム、空気調和装置の管理方法、および、プログラム Pending JP2023125380A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022029429A JP2023125380A (ja) 2022-02-28 2022-02-28 管理システム、空気調和装置の管理方法、および、プログラム
PCT/JP2023/007088 WO2023163178A1 (ja) 2022-02-28 2023-02-27 管理システム、空気調和装置の管理方法、および、プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022029429A JP2023125380A (ja) 2022-02-28 2022-02-28 管理システム、空気調和装置の管理方法、および、プログラム

Publications (1)

Publication Number Publication Date
JP2023125380A true JP2023125380A (ja) 2023-09-07

Family

ID=87766229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022029429A Pending JP2023125380A (ja) 2022-02-28 2022-02-28 管理システム、空気調和装置の管理方法、および、プログラム

Country Status (2)

Country Link
JP (1) JP2023125380A (ja)
WO (1) WO2023163178A1 (ja)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228225A (ja) * 2001-01-26 2002-08-14 Yamatake Building Systems Co Ltd 省エネルギー効果実績演算方法および装置
JP4960736B2 (ja) * 2007-03-27 2012-06-27 パナソニック株式会社 空調制御システム及びサーバ
JP5434247B2 (ja) * 2009-05-12 2014-03-05 ダイキン工業株式会社 空気調和機
JP7370173B2 (ja) * 2019-05-31 2023-10-27 三菱電機株式会社 空気調和機管理装置、空気調和システム、空気調和機管理方法およびプログラム
JP7431535B2 (ja) * 2019-09-06 2024-02-15 シャープ株式会社 サーバおよび制御システム、並びに制御プログラム

Also Published As

Publication number Publication date
WO2023163178A1 (ja) 2023-08-31

Similar Documents

Publication Publication Date Title
US10551080B2 (en) Household electrical appliance and household electrical system
JP6005304B2 (ja) 換気制御装置および換気制御方法
JP6125039B2 (ja) 空調制御装置
JP5951526B2 (ja) 空調制御装置及び制御プログラム
JP5940295B2 (ja) 空調制御システム及び空調制御方法
JP2011179722A (ja) 空調制御システム
JP6415596B2 (ja) 空気制御システム
JP2016017656A (ja) 空調制御装置、空調制御方法、及びプログラム
JPWO2018220830A1 (ja) 空気調和機
JPWO2011080986A1 (ja) 制御装置、使用電力制御システム、および制御方法
JP7008476B2 (ja) 室内環境調整システム、サーバ、室内環境調整方法及びプログラム
JP2008215705A (ja) 空調制御システム及び空調制御方法
WO2014118909A1 (ja) 制御装置、制御システム、制御方法及びプログラム
JP2012026594A (ja) 空調制御装置
JP2023125380A (ja) 管理システム、空気調和装置の管理方法、および、プログラム
JP2012132599A (ja) 空調システムおよび空調方法
JP2020067207A (ja) 制御プログラム、制御方法および制御装置
JP6956205B2 (ja) 空気調和装置、制御装置、及び情報処理方法
JPWO2018179350A1 (ja) 制御装置、空調システム、空調制御方法及びプログラム
JP7392394B2 (ja) 空気調和システム及び空気調和機
JP2017089996A (ja) 空調制御システム、空調制御方法及び制御プログラム
JP6188662B2 (ja) 制御装置、制御方法及びプログラム
JP6125696B2 (ja) 空調制御装置及び制御プログラム
CN108375163B (zh) 空调系统及其控制方法
JP2020186897A (ja) 制御装置、空調機、空調システム、空調制御方法及びプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240418