JP2023118728A - 異なる熱膨張係数を有する支持基板に薄層を移転する方法 - Google Patents

異なる熱膨張係数を有する支持基板に薄層を移転する方法 Download PDF

Info

Publication number
JP2023118728A
JP2023118728A JP2023094292A JP2023094292A JP2023118728A JP 2023118728 A JP2023118728 A JP 2023118728A JP 2023094292 A JP2023094292 A JP 2023094292A JP 2023094292 A JP2023094292 A JP 2023094292A JP 2023118728 A JP2023118728 A JP 2023118728A
Authority
JP
Japan
Prior art keywords
substrate
thermal expansion
support substrate
thick layer
thin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023094292A
Other languages
English (en)
Inventor
イサベル ヒュイエット,
Huyet Isabelle
セドリック チャールズ-アルフレッド,
Charles-Alfred Cedric
ディディエ ランドル,
Landru Didier
アレクシス ドルーイン,
Drouin Alexis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soitec SA
Soytec Co Ltd
Original Assignee
Soitec SA
Soytec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Soitec SA, Soytec Co Ltd filed Critical Soitec SA
Publication of JP2023118728A publication Critical patent/JP2023118728A/ja
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/08Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves
    • H03H3/10Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves for obtaining desired frequency or temperature coefficient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/072Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by laminating or bonding of piezoelectric or electrostrictive bodies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8536Alkaline earth metal based oxides, e.g. barium titanates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8542Alkali metal based oxides, e.g. lithium, sodium or potassium niobates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead-based oxides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead-based oxides
    • H10N30/8554Lead-zirconium titanate [PZT] based

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Acoustics & Sound (AREA)
  • Materials Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Micromachines (AREA)
  • Element Separation (AREA)

Abstract

【課題】第1の材料からなる薄層を第2の材料からなる支持基板に移転する新規な方法を提供する。【解決手段】第1及び第2の材料が異なる熱膨張係数を有する、第1の材料からなる薄層(3)を第2の材料からなる支持基板(7)に移転する方法。この方法は、第1の材料から形成された厚層(1a)とハンドリング基板(1b)との組立体から構成されるドナー基板(1)を用意するステップであって、ハンドリング基板(1b)の熱膨張係数が支持基板(7)の熱膨張係数と類似しており、ドナー基板(1)が厚層(1a)側に主面(4)を有する、ステップと、軽量種を厚層(1a)に導入して脆化面(2)と主面(4)との間に薄層(3)を画定するステップと、ドナー基板の主面(4)と支持基板(7)の1つの面(6)を組み立てるステップと、脆化面(2)から薄層(3)を分離するステップであって、熱処理を適用することを含む、ステップとを含む。【選択図】 図1C

Description

本発明は、異なる熱膨張係数を有する2つの基板を組み合わせた異質構造の分野に関する。より詳細には、本発明は、薄層を支持基板に移転する方法に関する。この製造方法は、例えば、マイクロエレクトロニクス、マイクロメカニクス、フォトニクスなどの分野に使用される。
支持基板に薄層を形成する様々な方法が従来技術から知られている。そのような方法は、例えば、分子線エピタキシ、プラズマスパッタリング、プラズマ堆積(レーザパルス堆積(laser pulsed deposition))、又は、軽量種の注入によってバルク基板内に形成される脆弱ゾーン(又は脆化面)での割れによりバルク基板から薄層を得るスマートカット(Smart Cut(商標))技法の適用であり得る。
本発明は、より詳細には、仏国特許出願公開第2914492号において教示されるような方法を適用することによって得られる強誘電性材料で作製された薄層の形成に関する。
スマートカット法の適用は、移転が望まれる薄層の材料の熱膨張係数が、移転が行われる支持基板の熱膨張係数と類似している場合に特に適している。
逆の場合、支持基板とドナー基板から形成される組立体が受けることができる温度は制限される。したがって、仏国特許出願公開第2856192号は、材料の熱膨張係数の値によって決定される温度を上回る熱処理が、基板のうちの1つの制御されない割れ及び/又はドナー基板若しくは薄層の剥離を引き起こすおそれがあることを想起させる。スマートカット法では、例えば支持基板へのドナー基板の接着を強化する又は脆化面でのドナー基板の割れを促進するために、十分な温度で少なくとも1つの熱処理を行うことが必要となり得るので、これは問題となる。
本発明の1つの目標は、上述の問題を少なくとも部分的に解決する、第1及び第2の材料が異なる熱膨張係数を有する、第1の材料からなる薄層を第2の材料からなる支持基板に移転する方法を提案することである。特に、強誘電性材料で作製された薄層をこの薄層が構成される材料の膨張係数とは異なる膨張係数を有する支持体、例えばシリコンで作製された支持基板に移転することでのこの方法の適用を見出すことである。
これらの目標のうちの一つを達成する目的で、本発明の主題は、第1及び第2の材料が異なる熱膨張係数を有する、第1の材料からなる薄層を第2の材料からなる支持基板に移転する方法を提案する。本発明によれば、薄層を移転する方法は、第1の材料から形成された厚層とハンドリング基板との組立体から構成されるドナー基板を用意するステップであって、ハンドリング基板の熱膨張係数が支持基板の熱膨張係数と類似しており、ドナー基板が厚層側に主面を有する、ステップと、軽量種を厚層に導入して、厚層内に脆化面を生成し、脆化面とドナー基板の主面との間に薄層を画定するステップと、ドナー基板の主面と支持基板の1つの面を組み立てるステップと、脆化面から薄層を分離するステップであって、熱処理を適用することを含む分離するステップとを含む。
ドナー基板及び支持体から形成された組立体は、従来技術による「直接的な」アプローチの文脈において適用される温度よりもかなり高い温度にさらすことができ、それにより、基板のうちの1つの制御されない割れ又はドナー基板若しくは薄層の剥離の危険なしに、ドナー基板がハンドリング基板を一切含まなくなる。この組立体の熱膨張係数の観点から平衡な構造により、特に、比較的高い温度に組立体をさらすことにより薄層を分離するステップを助長することが可能になる。
以下を単独で又は任意の技術的に実施可能な組み合わせで得られる、本発明の他の利点及び非限定的な特徴によれば、
厚層を構成する第1の材料の熱膨張係数と、支持基板を構成する第2の材料の熱膨張係数が、室温で少なくとも10%異なり、
ハンドリング基板の構成要素の熱膨張係数と支持体の構成要素の熱膨張係数との差が、絶対値で、厚層の熱膨張と支持基板の熱膨張の差よりも小さく、
注入される軽量種が、水素イオン及び/又はヘリウムイオンであり、
第1の材料が、LiTaO3、LiNbO3、LiAlO3、BaTiO3、PbZrTiO3、KNbO3、BaZrO3、CaTiO3、PbTiO3又はKTaO3などの強誘電性材料であり、
支持基板の材料が、シリコンであり、
ハンドリング基板が、支持基板と同じ性質のものであり、
ハンドリング基板が、支持基板の厚さと等しい厚さを有し、
厚層が、1つ又は複数の薄層のサンプリングを可能にするように10~400マイクロメートルの間の厚さを有し、
ドナー基板が、ソース基板とハンドリング基板を接合することによって得られ、
接合することが、分子接着(molecular adhesion)によって達成され、
ソース基板を薄化して、厚層を形成するステップが含まれ、
薄化するステップが、ミリング、並びに/又は機械化学的な研磨及び/若しくはエッチングによって実行される。
本発明の他の特徴及び利点は、添付の図面を参照して与えられる、以下にある本発明の詳細な説明から明らかになるであろう。
本発明による方法の一実施形態の図である。 本発明による方法の一実施形態の図である。 本発明による方法の一実施形態の図である。 本発明による方法の一実施形態の図である。 本発明によるドナー基板を形成する方法の概略図である。
以下の説明を単純にするために、従来技術において、又は提示の方法の様々な実施形態において、同一の要素又は同じ機能を果たす要素について同じ参照符号が用いられる。
図面は、見やすくするために、縮尺通りではなく概略的に示されている。特に、層の厚さは、それらの層の横寸法に対して縮尺通りにはなっていない。
この説明の他の部分において、層又は基板に関して用いられる用語「熱膨張係数」は、この層又はこの基板を画定する主面における定められた方向での膨張係数について言及する。材料が異方性の場合、保持される係数値は、最大の振幅の値となる。係数値は、室温で測定される値である。
本発明は、第2の材料からなる支持基板7に第1の材料からなる薄層3を移転する方法に関する。第1及び第2の材料が異なる熱膨張係数を有する。用語「異なる」は、これらの係数が少なくとも10%異なることを意味する。
この説明の文脈では、一例として、薄層3は、強誘電性材料から作られており、支持体7は、シリコン(熱膨張係数は、2.6×10-6-1と予想される)から作られていると考えることにする。
強誘電性材料は、自然な状態で電気分極を持つ材料であり、この分極は外部電場が加えられると反転することができることが想起される。強誘電分域は、分極が均一である(すべての双極子モーメントが、所与の方向に互いに平行に整列している)材料の各連続領域を示す。したがって、強誘電性材料は、この材料が、分極が均一である単一領域からなる場合、「単分域」、又は、強誘電性材料が、異なることもあり得る極性を有する複数の領域を含む場合、「多分域」と特徴付けられ得る。
一般に、全体的に、単分域の性質の強誘電性薄層を有することが望まれる。
図1Aを参照すると、ドナー基板1は、例えばLiTaO3(2×10-6-1(z)、16×10-6-1(x、y))、LiNbO3、LiAlO3、BaTiO3、PbZrTiO3、KNbO3、BaZrO3、CaTiO3、PbTiO3又はKTaO3である強誘電性材料の厚層1a、及びハンドリング基板1bから構成される。ドナー基板1は、例えば直径150mm又は200mmである標準サイズの円形ウェハの形をとることができる。しかし、本発明は、これらの寸法又はこの形に何ら限定されるものではない。材料の厚層1aは、強誘電性材料のインゴットからサンプリングしたものとすることができ、このサンプリングは、厚層1aが所定の結晶配向を有するように実施される。この配向は、所期の用途に応じて選ばれる。したがって、薄層の特性を利用してSAWフィルタを形成することが望まれる場合、配向42°RYを選ぶのが一般的な方法である。しかし、本発明は、特定の結晶配向に何ら限定されるものではない。
ハンドリング基板1bは、支持基板7を構成する材料の熱膨張係数と近い熱膨張係数を与える1つ(又は複数)の材料からなることが有利である。用語「近い」は、絶対値として、ハンドリング基板1bの熱膨張係数と支持体7の熱膨張係数の差が、厚層1aの熱膨張係数と支持基板7の熱膨張の差よりも小さいことを意味する。
ハンドリング基板1b及び支持基板は、同一の熱膨張係数を有することが優先される。ドナー基板及び支持体の組み立ての間、比較的高い温度での熱処理に耐えることができる構造が形成される。実施しやすくするために、これは、ハンドリング基板1bを、支持基板7の材料と同じ材料からなるように選択することによって達成することができる。
ドナー基板1を形成するには、強誘電性材料のバルクブロックを、例えば分子接着接合技術によって、ハンドリング基板1bとともに事前に組み立てる。次に、例えばミリング、並びに/又は機械化学的な研磨及び/若しくはエッチングによって、薄化することによって、強誘電性材料の層1aを形成する。図2には、この方法が概略的に示されている。組み立ての前に、(例えば、酸化シリコン及び/又は窒化シリコンの堆積により)接触する面のうちの一方及び/又は他方に接着層を形成しておくことを想定することができる。組み立ては、低温熱処理(例えば、50~300℃、典型的には100℃)の適用を含むことができ、この低温熱処理によって後に続く薄化するステップを可能にするのに十分となるほど接合エネルギーを強くすることができる。
ハンドリング基板1bは、支持基板7の厚さと実質的に等しい厚さを有するように選ぶことができる。薄化するステップは、厚層1aが、方法の他のところで適用される熱処理の間に生成される応力により厚層1aの強度が低下されるのに十分なほど小さい厚さを有するように実行される。それと同時に、この厚さは、薄層3又は複数のそうした層をその厚みからサンプリングすることができるほど十分に大きい。この厚さは、例えば5~400ミクロンとすることができる。
方法は、少なくとも1つの軽量種をドナー基板1に導入することを含む。この導入は、水素イオン及び/又はヘリウムイオンなどの軽量種の、ドナー基板1の主面4への注入、すなわちイオン衝撃に相当することができる。
図1Bに示されるようなそれ自体知られている方法では、注入イオンは、主面4側に位置する移転されるべき強誘電性材料の薄層3と、基板の他の部分を構成する他の部分5との境界を定める脆化面2を形成する役割を果たす。
実際、注入される種の用量及び注入エネルギーは、移転が望まれる層の厚さ及びドナー基板の物理化学的性質に応じて選ばれる。したがって、LiTaO3から作製されたドナー基板1の場合、200~2000nmの程度の薄層3の境界を定めるために、30~300keVのエネルギーで116~517at/cmの用量の水素を注入することが選ばれ得る。
図1Cに示される次のステップでは、ドナー基板1の主面4を、支持基板7の1つの面6とともに組み立てる。支持基板7は、ドナー基板と同じ寸法及び同じ形状を有することができる。有用性及びコストの理由から、支持基板7は、単結晶又は多結晶のシリコンウェハである。しかし、より一般的に、支持基板7は、例えばシリコン、サファイア又はガラスである任意の材料からなってもよく、任意の形状を有することもできる。
このステップの前に、清浄化、ブラッシング、乾燥、研磨又はプラズマ活性化のステップにより、組み立てられるべき基板の面を準備することを想定することができる。
組み立てるステップは、ドナー基板1を、分子接着及び/又は静電接合によって、支持基板7と密に接して配置することに相当することができる。任意選択で、特に2つの基板1、7が直接接合により組み立てられるとき、2つの基板1、7を組み立てやすくするために、組み立て前に、少なくとも1つの中間層を、ドナー基板1の主面4、又は支持基体7の組み立てられるべき平坦面6、又はその両方に形成することもできる。この中間層は、例えば、酸化シリコン、窒化シリコン又は多結晶シリコンからなり、数ナノメートルから数ミクロンの間の厚さを有する。中間層は、熱酸化処理、熱窒化処理又は化学堆積など(PECVD、LPCVDなど)、従来技術において知られている様々な技法に従って生成することができる。
この組み立てるステップの最後において、支持基板7の平坦面6がドナー基板1の主面4に接着した2つの結合基板を含む、図1Cに示される組立体が得られる。
次いで、組立体は、例えば脆化面2における劈開により、ドナー基板1から強誘電性材料の薄層3を分離するように処理される。
したがって、この分離するステップは、80℃~500℃程度の温度範囲での熱処理を組立体に適用し、支持基板7への薄層3の移転を可能にすることを含むことができる。熱処理に加えて、このステップは、脆化面2へのブレード又は気体若しくは液体の流体の噴射の適用を含むことができる。強誘電性材料の場合、薄層の特性を悪化させないように、強誘電性材料の強誘電性材料のキュリー温度を超えないように注意が払われる。
この分離するステップの後、図1Dに示される構造9が得られる。この構造9は、第1の自由面8と支持基板7に対して配置された主面4とを含む強誘電性材料の薄層3を含む。
ドナー基板1及び支持体7から形成された組立体は、従来技術による「直接的な」アプローチの文脈において適用される温度よりもかなり高い温度にさらすことができ、それにより、基板のうちの1つの制御されない割れ又はドナー基板1若しくは薄層3の剥離の危険なしに、ドナー基板がハンドリング基板を一切含まなくなる。したがって、この組立体の熱膨張係数の観点から平衡な構造により、例えば80℃~500℃である比較的高い温度に組立体をさらすことにより薄層3を分離するステップを助長することが可能になる。
次いで、この薄層の所望の特性を修復及び/又は向上させるために、薄層3及び特に薄膜の自由面8の仕上げステップを実行することができる。それ自体周知であるように、この仕上げは、中性、還元性又は酸化性の雰囲気下での研磨、エッチング、犠牲酸化又は焼鈍を含むことができる。
ここまで述べてきた薄層3が強誘電性材料から作られる例の文脈において、この仕上げステップは、薄層3の熱処理の後に続く研磨に相当することができ、このシーケンスは、例えば移転後の薄層3が42°RYの配向を継ぐなど、厚層1aが有していた初期の単分域性を回復させることができる。しかし、本発明は、特定の仕上げシーケンスに何ら限定されるものではない。
熱処理は、薄層3に存在する結晶欠陥の修正を可能にする。加えて、熱処理は、薄層3と支持体7との間の接合の固結に貢献する。熱処理は、構造を、10秒間~10時間のある時間の間に300℃から強誘電性材料のキュリー温度の間の温度まで至らせる。この熱処理は、薄層3の自由面を酸化性又は中性のガス雰囲気にさらすことにより実行されることが優先である。
準備の方法は、熱処理後に薄層3を薄化することをさらに含む。この薄化は、例えば機械的、機械化学的及び/又は化学的なエッチング薄化技法により、薄層3の第1の自由面8を研磨することに相当することができる。これは、自由面8の粗さが、原子間力測定(atomic force measurement)(AFM)による5×5μmに対して例えば0.5nmRMS未満のわずかであるように、自由面8を準備し、薄層3の第1の自由面8の残留欠陥を含みがちな表面部を除去することを可能にする。
当然ながら、本発明は、記載の例に限定されず、特許請求の範囲によって定められるような本発明の範囲から逸脱することなく、実施形態の変形形態が本発明に導入されてもよい。
さらに、本発明は、例えば、シリコンオン石英又はシリコンオンサファイア構造の場合である、薄層3と支持基板7との間に熱膨張係数の違いがある任意の「異質」構造に適用される。
1…ドナー基板、1a…厚層、1b…ハンドリング基板、3…薄層、4…ドナー基板の主面、6…支持基板の1つの面、7…支持基板。

Claims (13)

  1. 第1の材料からなる薄層(3)を第2の材料からなる支持基板(7)に移転する方法であって、前記第1の材料及び前記第2の材料が異なる熱膨張係数を有する、方法において、
    a 前記第1の材料から形成された厚層(1a)とハンドリング基板(1b)との組立体から構成されるドナー基板(1)を用意するステップであって、前記ハンドリング基板(1b)の前記熱膨張係数が前記支持基板(7)の前記熱膨張係数と類似しており、前記ドナー基板(1)が前記厚層(1a)側に主面(4)を有する、ステップと、
    b 軽量種を前記厚層(1a)に導入して、前記厚層(1a)内に脆化面(2)を生成し、前記脆化面(2)と前記ドナー基板(1)の前記主面(4)との間に前記薄層(3)を画定するステップと、
    c 前記ドナー基板の前記主面(4)と前記支持基板(7)の1つの面(6)を組み立てるステップと、
    d 前記脆化面(2)から前記薄層(3)を分離するステップであって、熱処理を適用することを含む、ステップと、
    を含むことを特徴とする、方法。
  2. 前記厚層(1a)を構成する前記第1の材料の前記熱膨張係数と、前記支持基板(7)を構成する前記第2の材料の前記熱膨張係数が、室温で少なくとも10%異なる、請求項1に記載の方法。
  3. 前記ハンドリング基板(1b)の構成要素の熱膨張係数と前記支持体(7)の構成要素の熱膨張係数との差が、絶対値で、前記厚層(1a)の前記熱膨張と前記支持基板(7)の前記熱膨張の差よりも小さい、請求項1又は2に記載の方法。
  4. 注入される前記軽量種が、水素イオン及び/又はヘリウムイオンである、請求項1~3のいずれか一項に記載の方法。
  5. 前記第1の材料が、LiTaO3、LiNbO3、LiAlO3、BaTiO3、PbZrTiO3、KNbO3、BaZrO3、CaTiO3、PbTiO3又はKTaO3などの強誘電性材料である、請求項1~4のいずれか一項に記載の方法。
  6. 前記支持基板(7)の前記材料が、シリコンである、請求項1~5のいずれか一項に記載の方法。
  7. 前記ハンドリング基板(1b)が、前記支持基板(7)と同じ性質のものである、請求項1~6のいずれか一項に記載の方法。
  8. 前記ハンドリング基板(1b)が、前記支持基板(7)の厚さと等しい厚さを有する、請求項1~7のいずれか一項に記載の方法。
  9. 前記厚層(1a)が、1つ又は複数の薄層のサンプリングを可能にするように10~400マイクロメートルの間の厚さを有する、請求項1~8のいずれか一項に記載の方法。
  10. 前記ドナー基板(1)が、ソース基板(10)と前記ハンドリング基板(1b)を接合することによって得られる、請求項1~9のいずれか一項に記載の方法。
  11. 前記接合することが、分子接着によって達成される、請求項10に記載の方法。
  12. 前記ソース基板(10)を薄化して、前記厚層(1a)を形成するステップを含む、請求項10又は11に記載の方法。
  13. 薄化する前記ステップが、ミリング、並びに/又は機械化学的な研磨及び/若しくはエッチングによって実行される、請求項12に記載の方法。

JP2023094292A 2017-06-30 2023-06-07 異なる熱膨張係数を有する支持基板に薄層を移転する方法 Pending JP2023118728A (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR1756116A FR3068508B1 (fr) 2017-06-30 2017-06-30 Procede de transfert d'une couche mince sur un substrat support presentant des coefficients de dilatation thermique differents
FR1756116 2017-06-30
JP2019568021A JP2020526008A (ja) 2017-06-30 2018-06-21 異なる熱膨張係数を有する支持基板に薄層を移転する方法
PCT/EP2018/066552 WO2019002080A1 (fr) 2017-06-30 2018-06-21 Procédé de transfert d'une couche mince sur un substrat support présentant des coefficients de dilatation thermique différents

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019568021A Division JP2020526008A (ja) 2017-06-30 2018-06-21 異なる熱膨張係数を有する支持基板に薄層を移転する方法

Publications (1)

Publication Number Publication Date
JP2023118728A true JP2023118728A (ja) 2023-08-25

Family

ID=59930523

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019568021A Pending JP2020526008A (ja) 2017-06-30 2018-06-21 異なる熱膨張係数を有する支持基板に薄層を移転する方法
JP2023094292A Pending JP2023118728A (ja) 2017-06-30 2023-06-07 異なる熱膨張係数を有する支持基板に薄層を移転する方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019568021A Pending JP2020526008A (ja) 2017-06-30 2018-06-21 異なる熱膨張係数を有する支持基板に薄層を移転する方法

Country Status (8)

Country Link
US (2) US11742817B2 (ja)
EP (1) EP3646374B1 (ja)
JP (2) JP2020526008A (ja)
KR (1) KR102552244B1 (ja)
CN (2) CN110770893B (ja)
FR (1) FR3068508B1 (ja)
SG (1) SG11201913016SA (ja)
WO (1) WO2019002080A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11121139B2 (en) * 2017-11-16 2021-09-14 International Business Machines Corporation Hafnium oxide and zirconium oxide based ferroelectric devices with textured iridium bottom electrodes
FR3091618B1 (fr) 2019-01-09 2021-09-24 Soitec Silicon On Insulator Procédé de fabrication d’un substrat receveur pour une structure de type semi-conducteur sur isolant pour applications radiofrequences et procédé de fabrication d’une telle structure
FR3094573B1 (fr) * 2019-03-29 2021-08-13 Soitec Silicon On Insulator Procede de preparation d’une couche mince de materiau ferroelectrique
FR3120159B1 (fr) 2021-02-23 2023-06-23 Soitec Silicon On Insulator Procédé de préparation du résidu d’un substrat donneur ayant subi un prélèvement d’une couche par délamination
FR3126809A1 (fr) 2021-09-06 2023-03-10 Soitec Procede de transfert d’une couche utile sur une face avant d’un substrat support
FR3129033B1 (fr) 2021-11-10 2023-12-29 Soitec Silicon On Insulator Procede de preparation d’une couche mince en materiau ferroelectrique
FR3135564A1 (fr) 2022-05-11 2023-11-17 Soitec Roue d’implantation pour former un plan de fragilisation dans une pluralité de plaquettes donneuses
FR3140474A1 (fr) 2022-09-30 2024-04-05 Soitec Substrat donneur et Procédé de fabrication d’un substrat donneur pour être utilisé dans un procédé de transfert de couche mince piézoélectrique.

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3194822B2 (ja) * 1993-09-14 2001-08-06 松下電器産業株式会社 複合基板材料の製造方法
FR2748850B1 (fr) * 1996-05-15 1998-07-24 Commissariat Energie Atomique Procede de realisation d'un film mince de materiau solide et applications de ce procede
US7407869B2 (en) * 2000-11-27 2008-08-05 S.O.I.Tec Silicon On Insulator Technologies Method for manufacturing a free-standing substrate made of monocrystalline semiconductor material
US6593212B1 (en) * 2001-10-29 2003-07-15 The United States Of America As Represented By The Secretary Of The Navy Method for making electro-optical devices using a hydrogenion splitting technique
FR2834123B1 (fr) 2001-12-21 2005-02-04 Soitec Silicon On Insulator Procede de report de couches minces semi-conductrices et procede d'obtention d'une plaquette donneuse pour un tel procede de report
US20030186521A1 (en) * 2002-03-29 2003-10-02 Kub Francis J. Method of transferring thin film functional material to a semiconductor substrate or optimized substrate using a hydrogen ion splitting technique
FR2856192B1 (fr) 2003-06-11 2005-07-29 Soitec Silicon On Insulator Procede de realisation de structure heterogene et structure obtenue par un tel procede
US20040262686A1 (en) * 2003-06-26 2004-12-30 Mohamad Shaheen Layer transfer technique
US9011598B2 (en) * 2004-06-03 2015-04-21 Soitec Method for making a composite substrate and composite substrate according to the method
JP2006007861A (ja) 2004-06-23 2006-01-12 Mazda Motor Corp 車体構造
FR2910702B1 (fr) * 2006-12-26 2009-04-03 Soitec Silicon On Insulator Procede de fabrication d'un substrat mixte
FR2914492A1 (fr) * 2007-03-27 2008-10-03 Soitec Silicon On Insulator Procede de fabrication de structures avec couches ferroelectriques reportees.
FR2914494A1 (fr) * 2007-03-28 2008-10-03 Soitec Silicon On Insulator Procede de report d'une couche mince de materiau
FR2918793B1 (fr) * 2007-07-11 2009-10-09 Commissariat Energie Atomique Procede de fabrication d'un substrat semiconducteur-sur- isolant pour la microelectronique et l'optoelectronique.
FR2921749B1 (fr) * 2007-09-27 2014-08-29 Soitec Silicon On Insulator Procede de fabrication d'une structure comprenant un substrat et une couche deposee sur l'une de ses faces.
FR2926672B1 (fr) * 2008-01-21 2010-03-26 Soitec Silicon On Insulator Procede de fabrication de couches de materiau epitaxie
FR2926674B1 (fr) * 2008-01-21 2010-03-26 Soitec Silicon On Insulator Procede de fabrication d'une structure composite avec couche d'oxyde de collage stable
CN101521155B (zh) 2008-02-29 2012-09-12 信越化学工业株式会社 制备具有单晶薄膜的基板的方法
JP5297219B2 (ja) * 2008-02-29 2013-09-25 信越化学工業株式会社 単結晶薄膜を有する基板の製造方法
FR2938702B1 (fr) 2008-11-19 2011-03-04 Soitec Silicon On Insulator Preparation de surface d'un substrat saphir pour la realisation d'heterostructures
FR2977069B1 (fr) * 2011-06-23 2014-02-07 Soitec Silicon On Insulator Procede de fabrication d'une structure semi-conductrice mettant en oeuvre un collage temporaire
WO2013126927A2 (en) * 2012-02-26 2013-08-29 Solexel, Inc. Systems and methods for laser splitting and device layer transfer
FR3007892B1 (fr) * 2013-06-27 2015-07-31 Commissariat Energie Atomique Procede de transfert d'une couche mince avec apport d'energie thermique a une zone fragilisee via une couche inductive
JP6396852B2 (ja) 2015-06-02 2018-09-26 信越化学工業株式会社 酸化物単結晶薄膜を備えた複合ウェーハの製造方法
JP6396854B2 (ja) 2015-06-02 2018-09-26 信越化学工業株式会社 酸化物単結晶薄膜を備えた複合ウェーハの製造方法
FR3042647B1 (fr) 2015-10-20 2017-12-01 Soitec Silicon On Insulator Structure composite et procede de fabrication associe

Also Published As

Publication number Publication date
US20200186117A1 (en) 2020-06-11
CN110770893B (zh) 2023-12-08
KR20200019677A (ko) 2020-02-24
CN110770893A (zh) 2020-02-07
US20230353115A1 (en) 2023-11-02
FR3068508A1 (fr) 2019-01-04
CN117497482A (zh) 2024-02-02
KR102552244B1 (ko) 2023-07-06
WO2019002080A1 (fr) 2019-01-03
US11742817B2 (en) 2023-08-29
EP3646374B1 (fr) 2021-05-19
SG11201913016SA (en) 2020-01-30
FR3068508B1 (fr) 2019-07-26
JP2020526008A (ja) 2020-08-27
EP3646374A1 (fr) 2020-05-06

Similar Documents

Publication Publication Date Title
JP2023118728A (ja) 異なる熱膨張係数を有する支持基板に薄層を移転する方法
WO2017134980A1 (ja) 複合基板および複合基板の製造方法
KR102658526B1 (ko) 산화물 단결정 박막을 구비한 복합 웨이퍼의 제조 방법
US20240072753A1 (en) Method for preparing a thin layer of ferroelectric material
US20070029043A1 (en) Pre-made cleavable substrate method and structure of fabricating devices using one or more films provided by a layer transfer process
US20220285520A1 (en) Process for preparing a thin layer of ferroelectric material
KR20120117843A (ko) 다층 결정질 구조물의 제조 방법
US8951809B2 (en) Method of transfer by means of a ferroelectric substrate
FR3054930A1 (ja)
TW202338916A (zh) 用於製備鐵電材料薄膜之方法
US7863156B2 (en) Method of producing a strained layer
JP2008532328A (ja) 半導体材料の少なくとも1つの厚い層を含むヘテロ構造の製造方法
TWI762755B (zh) 可分離結構及應用所述結構之分離方法
US20230073003A1 (en) Method for preparing the remainder of a donor substrate, substrate produced by said method, and use of such a substrate

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230707

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230707