JP2023113092A - 光検査装置及び光検査方法 - Google Patents

光検査装置及び光検査方法 Download PDF

Info

Publication number
JP2023113092A
JP2023113092A JP2022015263A JP2022015263A JP2023113092A JP 2023113092 A JP2023113092 A JP 2023113092A JP 2022015263 A JP2022015263 A JP 2022015263A JP 2022015263 A JP2022015263 A JP 2022015263A JP 2023113092 A JP2023113092 A JP 2023113092A
Authority
JP
Japan
Prior art keywords
light
inspection
interference
objective lens
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022015263A
Other languages
English (en)
Inventor
純一 小杉
Junichi Kosugi
順 後藤
Jun Goto
映保 楊
Ying-Bo Yang
一実 芳賀
Kazumi Haga
潤司 金野
Junji Konno
義弘 石黒
Yoshihiro Ishiguro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NANO SYSTEM SOLUTIONS KK
V Technology Co Ltd
Original Assignee
NANO SYSTEM SOLUTIONS KK
V Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NANO SYSTEM SOLUTIONS KK, V Technology Co Ltd filed Critical NANO SYSTEM SOLUTIONS KK
Priority to JP2022015263A priority Critical patent/JP2023113092A/ja
Publication of JP2023113092A publication Critical patent/JP2023113092A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

【課題】光路長差を生じさせる半導体基板の領域を高精度に検出できる光検査装置及び光検査方法を提供する。【解決手段】光源12からのコヒーレント光を検査光と参照光とに分割し、検査光をシリコンウェーハ11の一方の面に照射して透過した検査光と参照光とを干渉させて干渉光を生成する。検査光に対してシリコンウェーハ11を相対的に移動し、シリコンウェーハ11の全面を検査光で走査する。シリコンウェーハ11の各領域における干渉光の光強度に基づいて屈折率が異常となっている領域を検出する。【選択図】図1

Description

本発明は、光検査装置及び光検査方法に関するものである。
半導体基板の内部欠陥の検査装置として、微分干渉方式のものが知られている(例えば特許文献1等を参照)。この検査装置では、例えば、光源からの直線偏光の光線をノマルスキープリズムで互いに直交する2つの直線偏光(常光と異常光)に分離し、これらの2つの直線偏光をコンデンサレンズを介して空間的に離して半導体基板に入射させる。半導体基板から透過した2つの直線偏光を対物レンズを介してノマルスキープリズムに入射して合波し、検光子を通すことで正常光と異常光の偏光成分同士を干渉させた干渉光を生成し、この干渉光の光強度を検出する。
一方、半導体基板の欠陥として、双晶欠陥が知られている。この双晶欠陥は、半導体基板の製品歩留まりを低下させる原因となる。このため、双晶欠陥を抑制することが検討されている。
特開平9-61370号公報
半導体基板の双晶欠陥が生じている領域の周辺には応力が生じている領域(以下、応力領域と称する)があり、応力がない正常領域に対して偏光方向に応じた屈折率の差が生じる。このため、応力領域を透過する偏光の光路長が正常領域の光路長に対して増減する。上記のような微分干渉方式の検査装置では、応力領域について干渉光の光強度が変化して、その応力領域を検出できるとも考えられる。しかしながら、微分干渉方式の検査装置は、同位相の常光と異常光とを半導体基板に入射させているため、常光と異常光との光路長差の変化に対して干渉光の光強度の変化が非常に小さく、応力領域を検出できない場合がある。また、光路長差の変化に対して干渉光の光強度の変化が非常に小さいことに加え、シャー量として規定される距離を持って常光と異常光を半導体基板に入射させているため、たとえ正常領域に対して大きな光路長差となる応力領域であっても、半導体基板の面内方向についての光路長差の変化が緩やかであれば、当該応力領域内を常光と異常光とがそれぞれ透過するような場合では、応力領域として検出できない場合がある。
本発明は、光路長差を生じさせる半導体基板の領域を高精度に検出できる光検査装置及び光検査方法を提供することを目的とする。
本発明の光検査装置は、検査対象物を検査する光検査装置において、コヒーレント光を出力する光源と、前記光源からのコヒーレント光を検査光と参照光とに分割する光分割部と、前記検査光を検査対象物の一方の面に照射して透過させる第1アームと、前記参照光が伝播する第2アームと、前記第1アームからの前記検査対象物を透過した前記検査光と前記第2アームからの前記参照光とを合波して干渉光を生成する合波干渉部と、前記干渉光の光強度を検出する光検出部と、前記検査光に対して前記検査対象物を相対的に移動する走査機構とを備えるものである。
本発明の光検査方法は、光源からのコヒーレント光を検査光と参照光とに分割し、
前記検査光を検査対象物の一方の面に照射し、前記検査対象物を透過した前記検査光と前記参照光とを干渉させて干渉光を生成するとともに、前記検査光に対して前記検査対象物を相対的に移動し、前記検査対象物の各部位における前記干渉光の光強度に基づいて前記検査対象物の各領域を検査するものである。
本発明によれば、検査対象物を透過する検査光と基準となる参照光との光路長差を調整できるようになり、検査光の光路長差の変化に対して干渉光の光強度を大きく変化するように調整できるので、光路長差を生じさせる検査対象物の領域を高精度に検出できる。
第1実施形態の光検査装置の構成を示す説明図である。 第1ビーム整形部の構成の一例を示す説明図である。 走査機構によるシリコンウェーハの移動を示す説明図である。 光路長差と干渉光の光強度の関係を示す説明図である。 シリコンウェーハに対して検査光をスポット状に照射する第2実施形態の光検査装置の構成を示す説明図である。 シリコンウェーハに対して検査光をスポット状に照射する光検査装置の別の構成を示す説明図である。
[第1実施形態]
図1において、光検査装置10は、半導体基板としてのシリコンウェーハ11を検査し、シリコンウェーハ11における屈折率が正常値からずれている異常領域(以下、欠陥領域とも称する)を検出するためのものである。屈折率のずれは、例えば、シリコンウェーハ11における双晶欠陥の周囲に生じている応力によるものであるが、他の要因によって屈折率が異常となっている領域も検出できる。
光検査装置10は、光源12、偏波保持ファイバカプラ(以下、単に「ファイバカプラ」と称する)13、第1アーム14、第2アーム15、合波部としての偏光ビームスプリッタ16、検光子17、結像レンズ18、ピンホール板19、ラインセンサ20等を備えている。この光検査装置10は、マッハツェンダー干渉計をベースに構成されており、シリコンウェーハ11を透過する第1アーム14からの検査光と、第2アーム15からの参照光とを干渉させた干渉光の光強度をシリコンウェーハ11の各領域について検出し、検出する光強度に基づいて、屈折率の異常を見つけることができる。
光源12は、検査光及び参照光となるコヒーレント光を出力する。このコヒーレント光は、シリコンウェーハ11の透過率が高い波長が選択されており、この例では中心波長が1.3μmである。また、光源12は、コヒーレント光を出力するが、レーザ光と比べて低コヒーレンスの光を出力するものが用いられている。この例では、光源12として、スーパールミネッセントダイオード(以下「SLD」と称する)を用いている。このように低コヒーレンスの光を用いることで、後述するホモジナイザによって検査光及び参照光をそれぞれライン状に変換した際の空間的強度変調を抑制している。SLDは、発光ダイオードのようにスペクトル幅が広い、すなわちコヒーレンス長が短く、その出力する光が低コヒーレンスである。
なお、光源12からの光のスペクトル半値幅は、10nm以上あることが好ましい。スペクトル半値幅の上限は、特にないが100nm以下であることが好ましい。光源12は、SLDに限らないが、SLDのように、ホモジナイザによってライン状に変換した際の干渉縞による空間的強度変調を十分に抑制できるもの、あるいは抑制することが容易であるものが好ましい。ホモジナイザに代えて非球面レンズ等でライン状に変換する場合には、光源12としては、レーザ等のように高コヒーレンスな光を出力するものも好ましい。
光源12には、その光源12からの光を第1アーム14と第2アーム15とに分割する光分割部としてのファイバカプラ13が接続されている。ファイバカプラ13は、入力側の光ファイバ13aの一端(入力端)が光源12に接続されており、この光ファイバ13aに入射する光をカプラ部13bで出力側の一対の光ファイバ13c、13dに2分割する。この例における出力側の一対の光ファイバ13c、13dへの分割比は、例えば50:50であるが、これに限定されない。光ファイバ13a、13c、13dは、いずれも直交する2つの偏波面をもつ偏波モード間で一方の偏波モードから他方への偏波モードへの結合を抑制して偏波保持特性を高めた偏波保持ファイバであって、ファイバ中を一方の偏波モードを有する直線偏光として伝播する。したがって、光源12から光ファイバ13aに入射した光は、一方の偏波モードを有する直線偏光となり、その直線偏光のまま光ファイバ13aから光ファイバ13c、13dに分岐して光ファイバ13c、13d中を伝播する。このように一方の偏波モードから他方への偏波モードへの結合を抑制することで、ラインセンサ20で検出する干渉光のコントラストの低下を抑制している。
第1アーム14は、検査対象となるシリコンウェーハ11に検査光を透過させ、検査光が透過したシリコンウェーハ11の部位における屈折率に応じて検査光の位相を変化させるユニットである。この第1アーム14は、ファイバカプラ13の出力側の一方の光ファイバ13cと、この光ファイバ13c側から順番に、コリメートレンズ23、ホモジナイザ24、第1対物レンズとしての対物レンズ25を順番に配置した構成である。カプラ部13bで光ファイバ13cに分割された光は、検査光として光ファイバ13cを伝播し、コリメートレンズ23に入射する。
コリメートレンズ23とホモジナイザ24とは、検査光をライン状に変換すなわち検査光のビーム(光線束)の伝播方向に直交する面の断面をライン状にする第1ビーム整形部26を構成する。この第1ビーム整形部26のホモジナイザ24と対物レンズ25との間に、検査対象となるシリコンウェーハ11が配される。
コリメートレンズ23は、光ファイバ13cの一端(出力端)に取り付けられており、光ファイバ13cから射出される検査光を平行光にする。ホモジナイザ24は、コリメートレンズ23からの検査光が入射し、その検査光をトップハット型の強度分布すなわち長手方向(図中A方向)の光強度が均一化されたライン状に変換する。
この例では、光源12からのビーム形状が円形や楕円形の光をライン状のビーム形状に変換するため、コリメートレンズ23、ホモジナイザ24としては、変換後の検査光の長手方向(A方向)のみに光学的パワーを有するレンズを用いている。例えば、コリメートレンズ23は、A方向のみに光学的パワーがあるシリンドリカルレンズの組み合せで構成され、検査光をA方向に幅を広げた平行光にする。
また、ホモジナイザ24は、図2に一例を示すように、コリメートレンズ23側から順番にレンズアレイ24a、24b、コンデンサレンズ24cを所定の間隔で配置した構成である。レンズアレイ24a、24bは、いずれもA方向のみに光学的パワーを有する複数のシリンドリカルレンズをA方向に並べたものであり、コンデンサレンズ24cは、A方向のみに光学的パワーを有するものである。このようなホモジナイザ24は、検査光をレンズアレイ24a、24bで分割し、分割した各光をコンデンサレンズ24cで一直線上に集光させる。なお、ホモジナイザ24は、入射する平行光を光強度が均一なライン状ビームに変換する一般的なものを用いることができる。
シリコンウェーハ11は、その表面がホモジナイザ24の光軸に対して直交する姿勢で配され、ホモジナイザ24からのライン状の検査光が照射される。これにより、シリコンウェーハ11に検査光をライン状に照射する。このように、シリコンウェーハ11には、ホモジナイザ24からの検査光がレンズアレイ24aの各シリンドリカルレンズで分割されて合波されて照射されるが、上述のように光源12として低コヒーレンスな光を出力するSLDを用いることで、干渉の影響が抑制され検査光の長手方向における光強度が均一になる。
光検査装置10には、シリコンウェーハ11をその面内方向に所定の速度で移動する走査機構27が設けられている。図3に一例を示すように、シリコンウェーハ11の検査の際には、走査機構27は、例えば、シリコンウェーハ11を、その面内方向で検査光のライン状の照射領域Lの長手方向と直交する方向に往復動させ、その往復動の1回の往動及び復動ごとに、照射領域Lの長手方向へその長手方向の長さだけ1回移動する。これにより、シリコンウェーハ11と検査光とを相対的に移動して、シリコンウェーハ11の全面をライン状の検査光で走査する。
図1に示すように、シリコンウェーハ11の裏面側に対物レンズ25が配置されている。この例では、対物レンズ25は、その焦点(前側焦点)が、検査光が照射されているシリコンウェーハ11の裏面に一致するように調整されている。なお、対物レンズ25の焦点の位置は、これに限られず、シリコンウェーハ11の内部または表面に一致するようにしてもよいし、シリコンウェーハ11の表面よりもホモジナイザ24側や裏面よりも対物レンズ25側にあってもよい。分解能を高くする観点からは、シリコンウェーハ11の表面から裏面までいずれかの位置に対物レンズ25の焦点があることが好ましく、シリコンウェーハ11の表面と裏面との中間にあることが特に好ましい。
第2アーム15は、検査光に対して基準となる位相を持つ参照光を生成するユニットである。第2アーム15は、第1アーム14と同様に構成されており、ファイバカプラ13の出力側の他方の光ファイバ13dと、この光ファイバ13d側から順番にコリメートレンズ33、ホモジナイザ34、第2対物レンズとしての対物レンズ35を順番に配置した構成である。コリメートレンズ33とホモジナイザ34とは、第2ビーム整形部36を構成する。なお、第2アーム15の各部は、それらに対応する第1アーム14の光ファイバ13c、コリメートレンズ23、ホモジナイザ24、対物レンズ25と同様であるので、それらの詳細な説明は省略する。
第2アーム15では、第2ビーム整形部36のホモジナイザ34と対物レンズ35との間に、検査対象のシリコンウェーハ11に対応する参照板37が配置されている。これにより、ホモジナイザ34からのビーム形状がライン状の参照光が参照板37の表面に照射される。参照板37は、少なくとも参照光が照射される領域において、屈折率、厚みが均一な透明な板状部材である。参照板37としては、特に限定されないが、例えば予め屈折率、厚みが均一であることを確認したシリコンウェーハを用いることができる。なお、参照板37を省略してもよい。
第2アーム15のコリメートレンズ33は、その光軸方向の位置を調整する調整機構38が設けられている。この調整機構38は、コリメートレンズ33とともに、光路長調整部39を構成し、調整機構38によるコリメートレンズ33の光軸方向の移動によって、第2アーム15における参照光の光路長が増減される。この例では、シリコンウェーハ11として詳細を後述する基準となる屈折率及び厚みを有する校正用シリコンウェーハを第1アーム14にセットした状態で、ラインセンサ20が受光する干渉光の光強度が最大(極大)と最小(極小)の各光強度の中間となるように、調整機構38によって検査光の光路長に対する参照光の光路長の差を調整する。干渉光の光強度が最大と最小の各光強度の中間となるように設定するとは、検査光と参照光との位相差が概ねπ/2の奇数倍となるように調整することであり、検査光及び参照光の波長をλとしたときに、検査光と参照光との光路長差が概ねλ/4の奇数倍となることを意味する。検査光と参照光との光路長差がλ/4の奇数倍となるように、もちろん、ラインセンサ20が受光する干渉光の光強度が最大と最小の各光強度の中間値(算術平均)となるように調整することが最も好ましい。光路長差の調整の詳細は後述する。
図4に光路長差と干渉光の光強度との関係の一例を示すように、干渉光の光強度が最大または最小に対応する光路長差が0またはλ/2の整数倍となるようにセットした場合には、光路長差の変化に対して干渉光の光強度の変化が小さい。これに対して、光路長差がλ/4の奇数倍となるようにセットした場合には、光路長差の変化に対して干渉光の光強度の変化が大きい。したがって、上記のように調整することで、シリコンウェーハ11の所期の屈折率(正常な屈折率)からの屈折率の変化を、検査光と参照光とが干渉した干渉光の大きな光強度の変化として検出すなわち屈折率の違いを高感度に検出し、欠陥領域を高精度に検出する。また、このように調整しておくことで、所期の屈折率に対して変化している大きさとともに、光強度の増大及び減少と屈折率の増大及び減少とが対応づけられるため、屈折率が所期のものに対して大きくなっているのか小さくなっているのかを検出することができる。
なお、光強度が最大または最小、すなわち検査光と参照光との位相差がπの整数倍となるように調整して検査を行うこともできるが、屈折率の違いをより高感度に検出でき、また屈折率に関する情報が多く得られるため、上記のように位相差を調整することが好ましい。
この例においては、コリメートレンズ33の移動によって第2アーム15すなわち参照光の光路長を増減しているが、これに代えて第1アーム14のコリメートレンズ23をその光軸方向に移動することによって検査光の光路長を増減する構成としてもよい。
第1アーム14の対物レンズ25からの検査光及び第2アーム15の対物レンズ35からの参照光は、互いに直交する方向から偏光ビームスプリッタ16にそれぞれ入射する。
偏光ビームスプリッタ16は、検光子17とともに合波干渉部41を構成している。
偏光ビームスプリッタ16は、P偏光を透過してS偏光を反射する。偏光ビームスプリッタ16に対して、上記第1アーム14は、対物レンズ25からの検査光がP偏光になるように光ファイバ13cとコリメートレンズ23とを接続している。また、偏光ビームスプリッタ16に対して、第2アーム15は、対物レンズ35からの参照光が偏光ビームスプリッタ16に対してS偏光となるように、光ファイバ13dとコリメートレンズ33とを接続している。これにより、P偏光の検査光が偏光ビームスプリッタ16を透過し、S偏光の参照光が偏光ビームスプリッタ16で反射されて、偏光ビームスプリッタ16から射出される。
第2アーム15のホモジナイザ34、対物レンズ35は、後述する偏光ビームスプリッタ16の反射面に関して、第1アーム14のホモジナイザ24、対物レンズ25と面対称の関係を有するように配置されている。これにより、偏光ビームスプリッタ16において、ライン状の検査光とライン状の参照光とは、それらが互いに長手方向にずれなくライン状に重ね合わされて合波され、検査光と参照光とが重なって偏光ビームスプリッタ16から射出される。
偏光ビームスプリッタ16により、合波された検査光と参照光とは、検光子17に入射する。検光子17は、偏光ビームスプリッタ16からの互いに直交する直線偏光である検査光と参照光とのそれぞれの偏光方向に対して透過軸が45°傾いている。これにより、互いに直交した検査光と参照光とは、互いに同じ方向(検光子17の透過軸方向)の偏光成分が検光子17を透過する。したがって、それらの偏光成分が干渉した干渉光が検光子17から射出される。検光子17からの干渉光は、結像レンズ18に入射する。
結像レンズ18、ピンホール板19及びラインセンサ20は、干渉光の光強度を検出する光検出部42を構成している。結像レンズ18に入射した干渉光は、この結像レンズ18によって結像(集光)される。この例では、結像レンズ18としてチューブレンズを用いており、結像レンズ18は、対物レンズ25及び対物レンズ35と無限遠補正光学をそれぞれ構成している。
マスク部材としてのピンホール板19は、複数のピンホールがライン状に並べて形成されており、複数のピンホールは、対物レンズ25と対物レンズ35の各前側焦点と共通な共役な位置に配置されている。すなわち、対物レンズ25の前側焦点は、複数のピンホールが配された位置と共役な関係であり、また対物レンズ35の前側焦点は、複数のピンホールが配された位置と共役な関係である。
ラインセンサ20は、複数の受光素子を有しており、各受光素子の受光面がライン状に並んでいる。ラインセンサ20は、受光面に入射する干渉光の光強度に応じた検出信号を出力する。ラインセンサ20には、ピンホール板19の複数のピンホールと同じ個数及び同じピッチで受光面が設けられており、1つの受光面に1つのピンホールが対応する。ピンホール板19のピンホール及びラインセンサ20の受光面が並ぶ方向は、検査光の照射領域の延びるA方向を対物レンズ25と結像レンズ18を通して投影した向きである。ピンホール板19のピンホール及びラインセンサ20の受光面の個数及びピッチは、シリコンウェーハ11の検査光の照射領域の全域をカバーし必要な分解能が得られるように決められている。例えば、長手方向の長さが約10mmの検査光の照射領域に対して、約25μmのピッチで1024個のピンホール及び受光面が設けられている。
上記ピンホール板19により、シリコンウェーハ11を透過する検査光及び参照板37を透過する参照光のうちピンホール板19の各ピンホールと共役関係にある位置を透過した光線の偏光成分同士が干渉した干渉光が各ピンホールを通ってラインセンサ20の受光面にそれぞれ入射する。このように、ピンホール板19を設けることで、ピンホールと共役関係にある、対物レンズ25、35の焦点近傍以外からの光をカットし、検出信号のS/Nを向上させている。受光面に入射する干渉光の光強度は、検査光と参照光との光路長差に応じて増減する。なお、受光面ごとに開口が設けられたラインセンサ20を用いる場合には、それらの開口をピンホール板のピンホールとみなすことができ、この場合にはピンホール板19を省略することができる。
上記のように結像レンズ18、ピンホール板19、ラインセンサ20を配置することにより、シリコンウェーハ11における検査光のライン状の照射領域は、ラインセンサ20の受光面に対応して複数の小領域に仮想的に分割される。同様に、参照板37における参照光の照射領域は、ラインセンサ20の受光面に対応して複数の小領域に仮想的に分割される。対応する検査光の光線と参照光の光線、すなわち1つの受光面に対応するシリコンウェーハ11の小領域及び参照板37の各小領域を透過した検査光の光線と参照光の光線とが偏光ビームスプリッタ16により合波され、それら各光線の互いに干渉する偏光成分が干渉した干渉光が検光子17、結像レンズ18を介して、当該受光面に入射する。これにより、ラインセンサ20の各受光素子は、その受光面に対応する小領域を透過した検査光と参照光との各光線に基づく干渉光を受光する。上述のように、シリコンウェーハ11を走査機構27によって移動することによって、シリコンウェーハ11の全領域についての干渉光がラインセンサ20で受光される。
この例では、ラインセンサ20に画像処理部40が接続されている。この画像処理部40は、シリコンウェーハ11を走査して得られる検出信号に基づいて、シリコンウェーハ11における光強度の分布を示すマップ画像を生成して表示する。このマップ画像を参照することにより、シリコンウェーハ11の偏光方向に応じた屈折率の分布を知ることができ、屈折率が異常となっている欠陥領域を特定できる。なお、光強度が一定値以上変化したものだけを欠陥領域として判別して表示してもよい。
上記光検査装置10における光路長差の調整は、シリコンウェーハ11の検査に先だって行うが、シリコンウェーハ11の種類(厚み)が変わるごとに行えばよい。光路長差の調整では、基準となる屈折率及び厚みとして所期となる屈折率及び厚みを有することが予め確認されている校正用のシリコンウェーハをシリコンウェーハ11として第1アーム14にセットした状態で、ラインセンサ20の出力すなわちラインセンサ20の受光面における干渉光の光強度を参照しながら行う。なお、ラインセンサ20の出力は、複数の受光面(受光素子)に対応して複数の検出信号があるが、そのうちの1つの検出信号を参照すればよい。また、この調整の際に走査機構27でシリコンウェーハ11を移動する必要はないので、検査光の照射領域と同じ大きさの範囲が所期の屈折率及び厚みを有するシリコンウェーハ11等を用いてもよい。
光路長差の調整は、調整機構38を操作して、例えば、コリメートレンズ33を少しずつ移動させ、干渉光の最大(極大)の光強度と最小(極小)の光強度とを特定し、その最大の光強度と最小の光強度の中間の光強度となる位置にコリメートレンズ33をセットする。これにより、検査光と参照光との光路長差がほぼλ/4の奇数倍となるようにコリメートレンズ33がセットされる。なお、調整機構38の操作量に対してコリメートレンズ33の移動量が比例する場合には、干渉光の最大の光強度から最小の光強度に移動させる操作量の1/2の操作量だけ操作してコリメートレンズ33を移動させてセットしてもよい。なお、ラインセンサ20からの検出信号に基づいて、調整機構38を駆動する制御部を設け、この制御部によって、上述の手法で光路長差を調整してもよい。
上記のように構成される光検査装置10では、シリコンウェーハ11の各々の小領域を透過する検査光の光線の光路長は、それらが透過する小領域におけるシリコンウェーハ11の屈折率及び厚みに応じて変化する。一方、参照板37の各々の小領域を透過する参照光の光線の光路長は、調整された長さで一定である。このため、各小領域におけるシリコンウェーハ11の屈折率の高低に応じて、それらの小領域を透過した検査光の各光線と、その検査光の各光線にそれぞれ対応する参照光の光線との間の位相差が変化する。この結果、シリコンウェーハ11の屈折率が所期の値から高くまたは低くなることによって、ラインセンサ20の各受光面で受光される干渉光の光強度が所期の光強度から変化する。
このように、各小領域におけるシリコンウェーハ11の屈折率の違いがラインセンサ20の各受光面で受光される干渉光の光強度の違いとして検出される。そして、シリコンウェーハ11の屈折率が所期の値であるときに、検査光と参照光との光路長差がπ/4の奇数倍となるように調整しているので、僅かな屈折率の変化が大きな干渉光の光強度の変化として検出され、屈折率の異常が高感度で欠陥領域として検出される。また、微分干渉方式のように小領域の周囲の屈折率との相対的な差ではなく、検査光が透過する小領域の屈折率そのものによって干渉光の光強度を変化させているから、屈折率が緩やかに変化しているような領域も欠陥領域として検出される。このように、光検査装置10では、欠陥領域が高精度に検出される。しかも、ライン状に検査光を照射しているため、シリコンウェーハ11の全領域を短時間で検査できる。
例えば、光源12が出力する光の波長をλとして、ラインセンサ20からの検出信号に対する分解能に対応した検査光の光路長の変化量が「λ/20」であるとし、波長λを1.3μm、シリコンウェーハ11の所期の屈折率nを3.5、厚みdを775μmとした場合では、概ね±0.002%の屈折率の変化を検出できる。
[第2実施形態]
第2実施形態は、シリコンウェーハに対して検査光をスポット状に照射するように構成したものである。なお、以下に詳細を説明する他は、第1実施形態と同様であり、第1実施形態と実質的に同じ部材には、同一の符号を付して、その詳細な説明を省略する。
図5において、光検査装置50は、光源12、ファイバカプラ13、第1アーム54、第2アーム55、偏光ビームスプリッタ16、検光子17、センサ57、走査機構27、調整機構38、画像処理部40を備えている。光検査装置50では、第1実施形態のようにホモジナイザを用いてビーム形状を変換しないため、コヒーレンスな光を出力するものであれば、SLDのように低コヒーレンスの光を出力するもの、高コヒーレンスの光を出力するレーザ装置等のいずれも好ましく用いることができる。
この例においても、第1アーム54は、検査対象となるシリコンウェーハ11に検査光を透過させ、検査光が透過したシリコンウェーハ11の部位における屈折率に応じて検査光の位相を変化させるユニットである。また、第2アーム55は、検査光に対して基準となる位相を持つ参照光を生成するユニットである。
第1アーム54は、ファイバカプラ13の出力側の光ファイバ13c、この光ファイバ13c側から順番に、照射側のコリメートレンズ61、受光側のコリメートレンズ(集光レンズ)62、このコリメートレンズ62と偏波保持ファイバ63によって接続されたコリメートレンズ64を有している。検査対象となるシリコンウェーハ11は、コリメートレンズ61とコリメートレンズ62との間に、その表面がコリメートレンズ61の光軸に対して直交する姿勢で配される。シリコンウェーハ11は、走査機構27によりスポット状の検査光が全領域に照射されるように移動される。
コリメートレンズ61は、光ファイバ13cの一端(出力端)に取り付けられており、光ファイバ13cから射出される検査光を所定の断面サイズの平行光にする。これにより、コリメートレンズ61から射出される検査光をスポット状にシリコンウェーハ11に照射する。この例では、コリメートレンズ61は、光軸に直交しかつ互いに直交する2方向に光学的パワーを有するレンズが用いられており、検査光を断面形状が略円形となる平行光にする。コリメートレンズ61から射出される検査光の径は、分解能を高くする観点からは小さくすることが好ましい。なお、コリメートレンズ62、64についても、コリメートレンズ61と同様に2方向に光学的パワーを持つものが用いられている。
コリメートレンズ62は、その光軸がコリメートレンズ61の光軸と一致するように配されており、シリコンウェーハ11を透過した検査光を集光して偏波保持ファイバ63に入射させる。コリメートレンズ64は、偏波保持ファイバ63を伝播した検査光を平行光にして偏光ビームスプリッタ16に入射する。
第2アーム55は、第1アーム54と同様に構成されており、ファイバカプラ13の出力側の他方の光ファイバ13dと、この光ファイバ13d側から順番に、照射側のコリメートレンズ71、受光側のコリメートレンズ(集光レンズ)72、コリメートレンズ72と偏波保持ファイバ73によって接続されたコリメートレンズ74を有している。これら第2アーム55の各部は、それらに対応する第1アーム54の各部と同様である。この第2アーム55では、コリメートレンズ71とコリメートレンズ72との間に参照板37が配置されているが、参照板37を省略してもよい。
この例では、調整機構38とコリメートレンズ72とにより光路長調整部39が構成され、調整機構38によってコリメートレンズ72をその光軸方向の位置を第1実施形態と同様に調整する。なお、コリメートレンズ72に代えて、コリメートレンズ61、62、64、71、74のいずれかをその光軸方向に移動することによって検査光の光路長を増減する構成としてもよい。
偏光ビームスプリッタ16に対して、上記第1アーム54は、コリメートレンズ64からの検査光がP偏光になるように、また第2アーム55は、コリメートレンズ74らの参照光がS偏光となるように入射し、検査光と参照光とを合波する。偏光ビームスプリッタ16により合波された検査光と参照光とは、検光子17を介してセンサ57に入射する。光検出部42としてのセンサ57は、1個の受光素子が設けられている。これにより、検査光と参照光との検光子17を透過した偏光成分が干渉した干渉光がセンサ57の受光面に入射する。画像処理部40は、シリコンウェーハ11を走査して得られるセンサ57からの検出信号に基づいて、シリコンウェーハ11における光強度の分布を示すマップ画像を生成して表示する。
この構成によれば、スポット状に照射されている領域のシリコンウェーハ11の屈折率の違いがセンサ57の受光面で受光される干渉光の光強度の違いとして検出される。そして、この例においても、欠陥領域が高精度に検出される。
図6は、第1アーム54に対物レンズ81を設けた例を示している。この例では、コリメートレンズ61と対物レンズ81との間にシリコンウェーハ11を配し、シリコンウェーハ11を透過した検査光を対物レンズ82により集光する。第2アーム55には、対物レンズ81に対応した対物レンズ82が設けられている。また、検光子17とセンサ57との間に、検光子17側から結像レンズ83と、ピンホール板84とを順番に配置しており、結像レンズ83、ピンホール板84及びセンサ57とで光検出部42を構成している。ピンホール板84のピンホールは、対物レンズ82の焦点と共役な位置に配置されており、結像レンズ83によって集光される光のうちピンホールを通る光がセンサ57によって受光される。シリコンウェーハ11は、コリメートレンズ61と対物レンズ82との間にあればよいが、分解能を高くする観点からは、シリコンウェーハ11の表面から裏面までいずれかの位置に対物レンズ81の焦点があることが好ましく、シリコンウェーハ11の表面と裏面との中間にあることが特に好ましい。
上記各実施形態では、光分割部としてファイバカプラを用いているが、これに限定されるものではなく、光分割部は、例えば1/2波長板と偏光ビームスプリッタとから構成してもよく、無偏光ハーフビームスプリッタを用いてもよい。また、偏波保持ファイバに代えてミラーやリレー光学系を用いてもよい。
上記では半導体基板としてシリコンウェーハの例を説明しているが、半導体基板は、これに限定されない。また、検査対象物は、欠陥等の検出対象によって検査光の光路長が増減するものであれば、半導体基板に限定されない。
10、50 光検査装置
11 シリコンウェーハ
12 光源
13 ファイバカプラ
14、54 第1アーム
15、55 第2アーム
16 偏光ビームスプリッタ
17 検光子
18、83 結像レンズ
19、84 ピンホール板
20 ラインセンサ
24、34 ホモジナイザ
25、35、81、82 対物レンズ
26 第1ビーム整形部
27 走査機構
36 第2ビーム整形部
38 調整機構
39 光路長調整部
41 合波干渉部
42 光検出部
57 センサ


Claims (7)

  1. 検査対象物を検査する光検査装置において、
    コヒーレント光を出力する光源と、
    前記光源からのコヒーレント光を検査光と参照光とに分割する光分割部と、
    前記検査光を検査対象物の一方の面に照射して透過させる第1アームと、
    前記参照光が伝播する第2アームと、
    前記第1アームからの前記検査対象物を透過した前記検査光と前記第2アームからの前記参照光とを合波して干渉光を生成する合波干渉部と、
    前記干渉光の光強度を検出する光検出部と、
    前記検査光に対して前記検査対象物を相対的に移動する走査機構と
    を備えることを特徴とする光検査装置。
  2. 前記第1アームにおける前記検査光の光路長に対する前記第2アームにおける前記参照光の光路長を相対的に増減する光路長調整部を備えることを特徴とする請求項1に記載の光検査装置。
  3. 前記第1アームは、前記光分割部側から順に前記検査光をライン状に変換する第1ビーム整形部と第1対物レンズとを有し、前記第1ビーム整形部と前記第1対物レンズとの間に配された前記検査対象物にライン状に前記検査光を照射し、
    前記第2アームは、前記光分割部側から順に前記参照光をライン状に変換する第2ビーム整形部と第2対物レンズとを有し、
    前記合波干渉部は、前記第1対物レンズからのライン状の前記検査光と、前記第2対物レンズからのライン状の前記参照光とをライン状に重ね合わせて合波し、ライン状の前記干渉光を射出し、
    前記光検出部は、前記合波干渉部側から順に、前記合波干渉部からの前記干渉光を集光する結像レンズと、前記干渉光の長手方向に複数のピンホールがライン状に並べられたマスク部材と、前記複数のピンホールに対応して複数の受光面がライン状に並べられたラインセンサとを有し、前記複数のピンホールが前記第1対物レンズ及び前記第2対物レンズの前側焦点に対して共通な共役な位置に配され、前記複数の受光面には、対応するピンホールを通った前記干渉光がそれぞれ入射し、前記複数の受光面に入射した前記干渉光の光強度に応じた検出信号を前記ラインセンサがそれぞれ出力する
    ことを特徴とする請求項1または2に記載の光検査装置。
  4. 前記光源は、スーパールミネッセントダイオードであることを特徴とする請求項3に記載の光検査装置。
  5. 光源からのコヒーレント光を検査光と参照光とに分割し、
    前記検査光を検査対象物の一方の面に照射し、
    前記検査対象物を透過した前記検査光と前記参照光とを干渉させて干渉光を生成するとともに、
    前記検査光に対して前記検査対象物を相対的に移動し、
    前記検査対象物の各部位における前記干渉光の光強度に基づいて前記検査対象物の各領域を検査する
    ことを特徴とする光検査方法。
  6. 基準となる屈折率及び厚みを有する前記検査対象物について、前記干渉光の光強度が最大と最小の各光強度の中間となるように、前記検査光の光路長に対する前記参照光の光路長の差を調整した状態で、検査の対象となる前記検査対象物の検査を行うことを特徴とする請求項5に記載の光検査方法。
  7. 前記検査光をライン状に変換して前記検査対象物にライン状に前記検査光を照射して前記検査対象物を透過した前記検査光を第1対物レンズで集光するとともに、前記参照光をライン状に変換してこの変換された前記参照光を第2対物レンズで集光し、
    前記干渉光を生成する際に、前記第1対物レンズからの前記検査光と前記第2対物レンズからの前記参照光とをライン状に重ね合わせ、
    生成されるライン状の前記干渉光を結像レンズで集光し、
    前記第1対物レンズ及び第2対物レンズの前側焦点に対して共通な共役な位置に配された複数のピンホールを通った前記結像レンズからの前記干渉光の光強度をそれぞれ検出する
    ことを特徴とする請求項5または6に記載の光検査方法。

JP2022015263A 2022-02-02 2022-02-02 光検査装置及び光検査方法 Pending JP2023113092A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022015263A JP2023113092A (ja) 2022-02-02 2022-02-02 光検査装置及び光検査方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022015263A JP2023113092A (ja) 2022-02-02 2022-02-02 光検査装置及び光検査方法

Publications (1)

Publication Number Publication Date
JP2023113092A true JP2023113092A (ja) 2023-08-15

Family

ID=87565379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022015263A Pending JP2023113092A (ja) 2022-02-02 2022-02-02 光検査装置及び光検査方法

Country Status (1)

Country Link
JP (1) JP2023113092A (ja)

Similar Documents

Publication Publication Date Title
US7633053B2 (en) Microscope, particularly a laser scanning microscope with adaptive optical arrangement
JP5882674B2 (ja) 多波長干渉計、計測装置および計測方法
US9658054B2 (en) Optical measuring apparatus
US10585363B2 (en) Alignment system
US7123345B2 (en) Automatic focusing apparatus
US12000752B2 (en) Deflectometry measurement system
JP2009162539A (ja) 光波干渉測定装置
WO1997045698A1 (en) Interferometer for measuring thickness variations of semiconductor wafers
JPWO2020017017A1 (ja) 光計測装置および試料観察方法
JP2008032668A (ja) 走査型形状計測機
JP4721685B2 (ja) 形状測定方法及び形状測定装置
US20190072375A1 (en) Optical image measuring apparatus
JP4223349B2 (ja) 耐振動型干渉計装置
JP5827507B2 (ja) 偏光解析システム
JP2000241128A (ja) 面間隔測定方法および装置
JP5353708B2 (ja) 干渉計
JP2011519040A (ja) 被測定物に照射するための光学装置、および被測定物の面を測定するための干渉測定装置
JP2023113092A (ja) 光検査装置及び光検査方法
JP2008082781A (ja) 干渉型表面形状測定装置
JPH05277075A (ja) 眼軸長測定装置
JP2024040947A (ja) 取得装置、取得方法および光学系の製造方法
JP2009244227A (ja) 光波干渉測定装置
JP2000186912A (ja) 微小変位測定方法および装置
JP2005017127A (ja) 干渉計および形状測定装置
JP2010223775A (ja) 干渉計