JP2023112088A - 物性測定装置 - Google Patents

物性測定装置 Download PDF

Info

Publication number
JP2023112088A
JP2023112088A JP2023101948A JP2023101948A JP2023112088A JP 2023112088 A JP2023112088 A JP 2023112088A JP 2023101948 A JP2023101948 A JP 2023101948A JP 2023101948 A JP2023101948 A JP 2023101948A JP 2023112088 A JP2023112088 A JP 2023112088A
Authority
JP
Japan
Prior art keywords
physical property
cylinder
double cylinder
light
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023101948A
Other languages
English (en)
Inventor
美意 早見
Mii Hayami
卓 毛受
Taku Menju
健志 出
Kenji Ide
徳介 早見
Tokusuke Hayami
勇太 橋本
Yuta Hashimoto
雄 横山
Takeshi Yokoyama
秀昭 高橋
Hideaki Takahashi
泰久 足立
Yasuhisa Adachi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Infrastructure Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2023101948A priority Critical patent/JP2023112088A/ja
Publication of JP2023112088A publication Critical patent/JP2023112088A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】 凝集物の物性を定量的に測定することの可能な物性測定装置を提供すること。【解決手段】 実施形態によれば、物性測定装置は、二重円筒と、回転駆動機と、撮影部と、解析部とを具備する。二重円筒は、円筒状の外筒と、この外筒と軸を共有し外筒よりも直径の小さい内筒と、外筒と内筒との間の間隙に封入された試料を観察可能な透明部とを有する。回転駆動機は、二重円筒を軸周りに回転させる。撮影部は、透明部から観察される試料を撮影して画像データを得る。解析部は、画像データを解析して、試料に含まれる凝集物の物性値を算出する。【選択図】 図1A

Description

本発明の実施形態は、物性測定装置に関する。
凝集は、化粧品メーカなどの各種製造業、あるいは水処理事業など、産業界で広く利用される技術である。水などの溶媒中に分散した粒子を凝集させるには、凝集剤やpH調整剤、塩類などの薬剤を添加して粒子表面の荷電状態を中和する。これにより、粒子同士が互いに接触しやすくなる。さらに、粒子を含む媒質(試料)を撹拌してせん断力を加え、粒子同士を衝突合一して粗粒化し、大きな凝集物へと成長させる。
凝集は複雑な現象である。試料への薬剤の添加率、撹拌強度、撹拌時間などの凝集条件が異なれば、形成される凝集物の物性(粒径、密度、形状)も異なる。凝集の目的に応じて凝集条件を選定し、凝集物の物性を適切にコントロールする必要がある。凝集条件と、形成される凝集物の物性との関係は、現状では定性的に把握されているにとどまっていて、定量的に明らかになっていない項目が多い。
産業界では、このような情報の不足を、実験による合わせこみや熟練技術者の経験値により補完しているのが現状である。しかし、処理量を変えたスケールアップ設計や、技術継承に課題があり、凝集条件と凝集物の物性の関係を定量的に数式化することのニーズがある。
凝集条件と凝集物の物性の関係を定量的に把握するための課題のひとつに、凝集物の物性を適切に測定するのが難しい点がある。凝集物の物性測定が難しいのは、ひとつには、凝集物が変質しやすいからである。水中に存在する凝集物は、網目状の不規則な形状をしており、粒子同士の結合の間隙に水分を保持している。このため、空気中では変質して正しい物性値を測定できない。また、凝集物は互いに衝突合一して粗粒化したり、逆に水流によって壊れて微細化したりするので、一定の形状を維持できず、測定までのわずかな時間の間に変化してしまう。
凝集物の物性の測定に関して、凝集汚泥フロックの物性のひとつである凝集強度を測定する技術が知られている。凝集汚泥フロックは、後段の汚泥脱水機で壊れないように、適切な凝集だけでなく適切な強度を維持する必要がある。この技術は、撹拌羽根を装着した駆動モータの回転による消費電力計の積算値から、汚泥凝集フロックの強度を測定するものである。
あるいは、固液分離プロセスでの凝集条件を適切に設定するための技術も発表されている。この技術によれば、水を満たした容器にフロックを入れ、回転体での回転を加え、回転前後の粒径分布の変化からフロックの強度を算出できることが示される。
特許第6453143号明細書 特許第5284242号明細書
Yasuhisa Adachi and Moriya Kamiko; Sedimentation of polystyrene latex floc, Power Technology,78(1994),129-135
上述したように、水中に存在する凝集物の物性を測定することは難しい。凝集強度を測定する技術では、凝集物の集団の全体をひとまとまりとした強度が測定されるに過ぎず、凝集物の持つ分布(つまり凝集物一粒一粒の物性や時間変化など)は考慮されない。つまり凝集物の粒径や形状、密度は測定対象とされないので、凝集条件と凝集物の物性との関係を定量的に把握することが難しい。
そこで、目的は、凝集物の物性を定量的に測定することの可能な物性測定装置を提供することにある。
実施形態によれば、物性測定装置は、二重円筒と、回転駆動機と、撮影部と、解析部とを具備する。二重円筒は、円筒状の外筒と、この外筒と軸を共有し外筒よりも直径の小さい内筒と、外筒と内筒との間の間隙に封入された試料を観察可能な透明部とを有する。回転駆動機は、二重円筒を軸周りに回転させる。撮影部は、透明部から観察される試料を撮影して画像データを得る。解析部は、画像データを解析して、試料に含まれる凝集物の物性値を算出する。
図1Aは、第1の実施形態に係わる物性測定装置の一例を示す図である。 図1Bは、二重円筒1を図1Aの(A)の位置から見た外観図である。 図2は、回転する二重円筒1の内部の試料に発生するせん断力について説明するための図である。 図3は、回転速度とせん断力との関係の一例を示す図である。 図4は、解析部7による凝集物の物性値の算出に係わる処理手順の一例を示すフローチャートである。 図5は、液体内の粒子に作用する力と粒子の沈降速度との関係を示す図である。 図6は、第2の実施形態に係わる物性測定装置の一例を示す図である。 図7Aは、外筒2と内筒3を逆方向に回転させた場合のせん断力について示す図である。 図7Bは、外筒2と内筒3を同方向に回転させた場合のせん断力について示す図である。 図8は、第5の実施形態に係わる物性測定装置の一例を示す図である。 図9は、第6の実施形態に係わる物性測定装置の一例を示す図である。 図10は、比較のためバックライト方式について説明するための図である。 図11は、第8の実施形態に係わる物性測定装置の一例を示す図である。
以下に、図面を参照して、複数の実施形態を説明する。以下の説明において、同様の機能及び構成を有する構成要素については同じ符号を付して示す。必要に応じて、重複して説明する。実施形態の技術的思想は、特許請求の範囲において、種々の変更を加えることができる。
実施形態では、凝集物の物性、あるいは物性の時間変化などを、画像撮影手法を用いて測定する技術について開示する。凝集物は、媒質中に分散した状態で存在する粒子が凝集することで発生する。凝集は、凝集剤、pH調整剤、塩類などの薬剤を試料に混合したり、試料を撹拌することなどによってもたらされる。
[第1の実施形態]
(構成)
図1Aは、第1の実施形態に係わる物性測定装置の一例を示す図である。物性測定装置は、二重円筒1と、回転駆動機4と、光源5と、撮影部6と、解析部7とを具備する。
二重円筒1は、円筒状の外筒2と、この外筒2と軸を共有し外筒2よりも直径の小さい内筒3とを備える。外筒2と内筒3とに挟まれた間隙は、二重円筒1の両方の端部に設けられた蓋部1a,1bにより密閉される。これにより、外筒2と内筒3との間の間隙に、凝集対象の試料や凝集剤などの薬剤を注入(封入)することができる。間隙内の試料を外部から観察可能とするため、二重円筒1は、光を通す透明部を有する。
回転駆動機4は、電動モータなどにより、二重円筒1を軸周りに回転させる。二重円筒1の回転軸は、水平方向、あるいは垂直方向が想定される。
光源5は、撮影部6で試料の画像を撮影できるように、二重円筒1に向けて光を照射する。撮影部6は、二重円筒1の透明部から観察される試料を撮影して画像データを得る。解析部7は、撮影部6で得られた画像データを解析して、試料に含まれる凝集物の物性値を算出する。
図1Bは、二重円筒1を図1Aの(A)の位置から見た外観図である。二重円筒1は、光源5と撮影部6との間に配置され、光源5の光軸は、試料を照らすように調整される。二重円筒1の外筒2は、外部から間隙の中の試料を撮影できるように、透明アクリル、透明塩化ビニル、ポリカーボネート、ポリエチレン、ポリスチレンなどの合成樹脂、強化ガラスなどの透明な素材であることが好ましい。
ここで、外筒2の全ての部分が透明である必要はなく、要するに、試料を撮影できるように透明な部分が設けられていればよい。例えばSUS(ステンレス鋼)や真鍮などの金属で外筒2を作成し、撮影を行う一部分だけを透明な材料で構成しても良い。このようにすれば、耐久性を向上させ、回転による磨耗や、試料の水温や光源による温度上昇による変形を防止できる。
内筒3については、例えばその外壁を塗装して、凝集物を明確に撮影できるようにしても良い。例えばアルマイト塗装などで、黒色に塗装しても良い。この場合、光源からの光が二重円筒1を透過しないので、二重円筒1、光源5、撮影部6の位置関係は適宜調整される。
図1Aにおける回転駆動機4の回転速度(単位時間当たりの回転数)は、例えば0~3,000rpmが想定される。二重円筒1の重量や、目的とする回転速度に応じて適切な出力のモータが選定される。モータと減速機を併用しても良い。
光源5は、照度を調節可能であることが好ましい。この種の光源としては例えばLight Emitting Diode (LED)光源やハロゲンランプ、蛍光ランプなどの光源や、光ファイバなどの発光部を有するものが想定される。光源を切り替えたり、出力を切り替えたりする装置を設け、測定対象の粒子濃度や色彩に応じて出力光の波長や照度を選定し、調整できるようにしてもよい。
光源5の形状は、光源が水平に並ぶライン光源、あるいは、幅を持って光を照射する面光源であっても良い。また、必要に応じて拡散板を併用すれば照度を均一化でき、照射範囲を拡大することができる。
撮影部6は、例えば高速度カメラやwebカメラ、産業用のモニタリングカメラ、マシンビジョンカメラを使用できる。あるいは、Charge Coupled Device (CCD)イメージセンサやComplementary MOS(CMOS)イメージセンサのように機器に組み込んで使用する画像センサであっても良い。ここで、撮影部6の撮影位置は、二重円筒1の側面方向や上方、下方回転軸方向からであっても良い。撮影部6で得られた画像データは、例えばUniversal Serial Bus (USB)経由で解析部7に転送される。
解析部7は、Central Processing Unit (CPU)などのプロセッサおよびメモリを有する、コンピュータである。
(作用)
図2は、回転する二重円筒1の内部の試料に発生するせん断力について説明するための図である。二重円筒1を軸周りに回転させると、封入された試料も、粘性により追従して回転する。そして、粘性により、内筒3と外筒2との間に速度分布が生じる。この速度分布によって発生するせん断流れにより、内筒3と外筒2との間の凝集対象物(試料)にせん断力が加わる。せん断力を加え続けると、凝集対象物は互いに衝突合一して凝集し、さらに大きな凝集物へと成長していく。
図3に示すように、内筒3と外筒2との間の間隙に生じるせん断力[ニュートン:N]は、二重円筒1の回転速度[rpm]にほぼ比例して増加する(層流域)。回転速度を上げすぎるとテーラー渦が発生し、流動が乱れ測定の妨げになる(遷移域~乱流域)。回転速度を上げてゆくと、層流域では撹拌作用が働くが、さらに回転速度を増すと供回りして試料全体が一つの塊として動くと想定される。
また、間隙の大小によってもせん断力は変化する。図3の(1)は、内筒3と外筒2との間の間隙が標準的であるケースを示す。(1)において、せん断力は層流域では回転速度の増加とともに線形に増加し、遷移域から乱流域を経て或る値で収束する。これはテーラー渦などの影響による。これに対し(2)は間隙が(1)よりも狭いケースを示し、せん断力は急激に増加して早期に収束する。(3)は、間隙が(1)よりも広いケースを示し、せん断力は回転速度に対してゆるやかに増加する。
撮影部6による撮影のタイミングは、二重円筒1の回転を継続したまま、一定の頻度で連続撮影しても良い。または、撮影時に回転を一時停止しても良い。あるいは、受光素子などを別途設け、光量の変化を検知して撮影タイミングを決定しても良い。
解析部7は、撮影部6で撮影された画像データを解析し、例えば、凝集物の粒径と形状、およびその分布を算出する。
図4は、解析部7による凝集物の物性値の算出に係わる処理手順の一例を示すフローチャートである。図4において、解析部7は、撮影部6から転送された撮影画像(画像データ)を二値化したのち(ステップS1)、凝集物をナンバリングし(ステップS2)、個々の粒子(凝集物)の投影面積を算出する(ステップS3)。
次に解析部7は、粒子の投影面積から円相当径を算出し、その値を個々の粒子の粒径として算出する。さらに、解析部7は、観察された粒子群の粒径から粒径分布を算出する(ステップS4)。
次に解析部7は、粒子の形状を表す数値を算出する(ステップS5)。形状を表す数値としては、長径、短径、周囲長、包絡周囲長、外接矩形長径、外接矩形短径、骨格長、太さ等が挙げられる。さらに、これらの形状値から求められる円形度、アスペクト比、凹凸度などの値も、形状を表す数値の一例である。
次に解析部7は、観察された粒子群の形状を表す値から、形状分布を算出する(ステップS6)。次に解析部7は、凝集物の密度を算出する(ステップS7)。密度は、凝集物の投影面積から概算される体積と、凝集物に含まれる粒子の比重および投影面積に基づいて粒子重量を算出し、求めることができる。
あるいは、密度は、二重円筒1の回転を停止させ、重力によって凝集物が沈降する速度と、ステップS4で算出された粒径、粒径分布から算出することができる。
図5に示されるように、液体内の粒子の沈降速度vは粒子に作用する重力、浮力および抗力のバランスにより決まる。沈降速度v、抗力係数Cd、凝集物半径d、凝集物密度ρs、および液体密度ρwの間には一定の関係があり、この関係を表す式に基づいて凝集物密度ρsを算出することができる。
粒子の個数は、撮影された画像から粒子数をカウントすることで測定できる。総粒子数は、二重円筒1が1回転する期間に撮影された画像データの、各々の粒子数を合計して算出することができる。そして解析部7は、粒子構造を表す値を、凝集物の個数の和、つまり総粒子数に基づいて算出する。発明者らの研究によれば、総粒子数N(0)が算出できた場合、粒子構造の複雑さを表すD値を、粒子の初期の粒径dと粒子の最大粒径Dmaxとの関係から、式(1)を用いて算出することができる。
(効果)
第1の実施形態によれば、回転する二重円筒1に試料を封入することで、一定のせん断流れ場に試料を暴露することができる。そして、そのような環境下での試料の変化を撮影部6により撮影することができる。撮影部6による撮影頻度や、撮影継続時間は、適切かつ自由に調整することができるので、目的の凝集反応が完結するまでの凝集物の様子を撮影することができる。これにより、一定のせん断流れ場における、時間の経過に伴う凝集物の物性値の変化を得ることができる。従って、既存の技術では難しかった凝集対象物の凝集物1粒あたりの物性値と時間変化を測定することができる。
せん断力の強弱により凝集反応の速度が異なることは知られている。このことは、凝集物の物性を把握するという点でも重要な要素のひとつである。第1の実施形態によれば、回転駆動機4によって所定の速度で二重円筒1を回転することで、目的のせん断力を内外筒の間隙内に発生させ、撮影部6によって凝集対象物と凝集剤の反応の時間変化を撮影することができる。
さらに、二重円筒1の外筒2は透明であって、外部から撮影するため、水中の凝集物を撮影することができ、画像の解析結果から、水中での凝集物の物性を算出できる。つまり、第1の実施形態によれば、凝集物一粒あたりの凝集物の物性(粒径、密度、形状)について、媒質内での撹拌による凝集物の物性変化を画像撮影手法を用いて測定することができる。
これらのことから、凝集物の物性を定量的に測定することの可能な物性測定装置を提供することが可能になる。
[第2の実施形態]
(構成)
図6は、第2の実施形態に係わる物性測定装置の一例を示す図である。図6において、回転駆動機4aは、外筒2を軸周りに回転させる。回転駆動機4bは、内筒3を軸周りに回転させる。すなわち、回転駆動機4aの回転軸が外筒2に接続され、これにより回転駆動機4aは外筒2を回転させる。回転駆動機4bの回転軸は内筒3に接続され、これにより回転駆動機4bは、外筒2とは別個に、内筒3のみを回転させる。
さらに、回転駆動機4a,4bの回転速度をそれぞれ可変する調整部9が設けられる。調整部9は、例えば交流電源から回転駆動機4a,4bに加わる電力を制御して、それぞれのモータの回転速度を制御する。例えば、周波数変換機により交流周波数を調整したり、スライダックなどのコントローラーで電力を調整することで、調整部9の機能を実現できる。
外筒2、内筒3の回転速度を可変することで、封入された試料に加わるせん断力を調整することができる。外筒2と内筒3は、互いに逆方向に回転しても良いし、同じ方向に回転しても良い。あるいは、片方が停止していてもう片方が回転していても良い。
図7Aのように、外筒2と内筒3を逆方向に回転させるとせん断力を大きくできるし、図7Bのように、外筒2と内筒3を同方向に回転させるとせん断力を小さくできる。さらに、外筒2の内径と、内筒3の外径を調整することで間隙の幅を調整し、せん断力を変化させることもできる。内外筒の径の変更は、異なる径の円筒を別途用意して、部品を交換して行ってもよいし、あるいは、円筒状の部品を装着することでも、径を変更することができる。
(作用)
外筒2と内筒3との間の間隙に発生するせん断力は、式(2)で表される。
式(2)に示されるように、内筒3と外筒2の回転速度差に応じて筒の壁面の移動速度Uが決まる。内外筒の速度差が大きいほど、せん断力τは大きくなる。
また、外筒2の内径と内筒3の外径を調整すると、移動壁面からの距離を調整できる。図3に示したように、内外筒の間隙が広い場合と狭い場合とで、間隙に発生するせん断力の大きさが異なる。つまり、回転駆動機4(4a,4b)による二重円筒1の回転速度が一定でも、間隙に発生するせん断力の大きさを調整できる。
(効果)
第2の実施形態によれば、内外筒の回転速度を調整し、式(2)により、目的のせん断力を発生させることが可能になる。また、内外筒の径を調整することでも目的のせん断力を発生させることができる。目的のせん断力に対して、回転駆動機4の回転速度やトルクが不足していたり、内外筒が大き過ぎたり小さ過ぎたりして製作が困難であったり、間隙が小さすぎて凝集物が閉塞してしまうような場合は、内外筒の回転速度と内外筒の径の双方を調整することで、目的のせん断力を得ることができる。
[第3の実施形態]
(構成)
第3の実施形態では、二重円筒1の回転軸を水平方向にする。すなわち回転駆動機4は、二重円筒1を水平な軸周りに回転させる。
(作用)
第3の実施形態によれば、重力による凝集物の垂直方向分布を発生させずに、それぞれの物理量を測定することができる。
(効果)
二重円筒1内に凝集物の垂直方向分布があると、全体が混合されないため正確な物性変化を測定することが困難になる。これに対し第3の実施形態では、回転軸を水平方向にすることで試料の全体をより均一に混合でき、物性値とその変化を正確に測定することができる。
[第4の実施形態]
(構成)
第4の実施形態では、二重円筒1に対して、撮影部6を異なる方向から複数設ける。解析部7は、それぞれの撮影部6が撮影した画像を総合して凝集物の物性を測定する。つまり、多方向から撮影された画像を組み合わせて用いることで、より正確な凝集物の物性を測定可能とする。
(作用)
撮影された画像は2次元であるのに対し、実際の凝集物は3次元方向に存在する。それぞれの撮影部6で取得された画像データは、凝集物のある面の様子を捉えている。そこで、これらの複数の画像データを時間軸上で合わせこみ、タイムスタンプをそろえて統合処理することで、凝集物の形状を3次元的に捉えることができる。
(効果)
第4の実施形態によれば、凝集物を多方向から撮影することで凝集物の形状を3次元的に捉えることができ、凝集物の物性をより正確に測定することができる。
[第5の実施形態]
(構成)
図8は、第5の実施形態に係わる物性測定装置の一例を示す図である。図8に示される物性測定装置は、二重円筒1に対して様々な位置から光を照射する光源5および光学系と、二重円筒1を様々な位置から撮影する撮影部6とを具備する。つまり光源5、撮影部6は、二重円筒1に対して異なる方向から複数設けられる。光学系は、光源5から放射された光の、二重円筒1からの透過光、反射光、または側方散乱光を撮影部6に導く。光源の一例としてハーフミラー8が用いられる。
図8において、光源からの光の一部はハーフミラー8を透過し、光路(1)を辿って被写体としての二重円筒1に照射される。二重円筒1の表面で反射した散乱光(反射光)は、ハーフミラー8で反射され、光路(2)-1を辿って撮影部6で受光される。
二重円筒1の側方散乱光は、光路(2)-2を辿って別の撮影部6で受光される。さらに、二重円筒1からの透過光は、光路(2)-3を辿って、二重円筒1の後方に設けられた別の撮影部6で受光される。
光源5の照射位置としては、二重円筒1の上方、または下方、あるいは側面、二重円筒1を挟んで撮影部6と対称の位置、あるいはそのうちのいずれかを組み合わせた位置とすることができる。これにより、透過光、散乱光、または反射光を撮影することができる。
(作用)
図8の構成によれば、撮影部6によって検知される光の種類(透過光、反射光、または側方散乱光)を選定することができる。これにより、例えば、光源5の波長や光強度、凝集物の粒径分布や形状、種類、粒子部分と透明なゲル化部分の割合によって変わる吸収波長とその大きさ、凝集物の個数濃度によって起こる干渉作用などを考慮して、最適な種類の光で撮影することが可能になる。
(効果)
従って第5の実施形態によれば、様々な凝集物の撮影が可能になるほか、測定の精度を向上させることができる。
[第6の実施形態]
(構成)
図9は、第6の実施形態に係わる物性測定装置の一例を示す図である。図9において、光源50が、内筒3の内側の空洞部分100に設けられる。また、内筒3および外筒2は、透明の部材で形成される。よって光源50からの光は、内筒3の内側から内筒3、および外筒2を透過して撮影部6に到達する。
(作用)
上記構成によれば、撮影領域(撮影部6の焦点範囲)に限定して光を照射することができる。従って、被写体(凝集物)を捉えた撮影画像に不要な像(破線)が写りこむことを防止できる。
図10は、比較のためバックライト方式について説明するための図である。被写体の後方から光を照射するバックライト方式は、被写体の輪郭を捉えやすい性質を持つ。しかしながら光が二重円筒1の後方から照射されるため、焦点範囲の外にある、本来、写ってはならない凝集物が写りこんでしまうことがある。例えば、撮影部6から見て、二重円筒1の中心に対して180°付近に存在する凝集物などが写りこんでしまうおそれがある。誤撮影された凝集物は、本来の被写体よりも、撮影領域から内筒3の直径以上離れているため、実際よりも小さく写る傾向にある。このように不要な像が写りこんでしまうと、画像解析に悪影響がもたらされる。
(効果)
第6の実施形態によれば、目的の撮影領域以外に存在する凝集物の画像への写りこみを防ぐことができるので、より正確な測定データを得ることができる。また、二重円筒1の内筒3の内部空間(空洞部分)を有効に活用し、光源5の設置スペースを小さくできるという効果がある。
[第7の実施形態]
(構成)
第7の実施形態では、目的とする凝集状態になった後に二重円筒1の回転を停止し、二重円筒1を水平方向から垂直方向に置き換え、凝集物の粒径や、移動速度(沈降速度)を測定する。つまり、凝集物を生成する過程では二重円筒1を水平軸周りに回転させる。そして、画像解析などにより凝集物の発生したことが確認されると、回転駆動機4を停止し、二重円筒1の軸を垂直にする。撮影部6は、この状態で観察される試料を撮影する。軸を水平から垂直に変化させるには、人手を介しても良いし、相応の回転駆動機構を設けても良い。
二重円筒1の軸を垂直にすることで、凝集物は重力による沈降を始める。図5に示されるように、凝集物の大きさ(半径)と沈降速度から、凝集物の密度を計算することができる。解析部7は、撮影部6で撮影された複数の画像のタイムスタンプと移動量を参照し、凝集物の位置の変化の速度から沈降速度を算出する。
(効果)
凝集物の大きさ(半径)、形状値、密度を測定することができる。
[第8の実施形態]
(構成)
図11は、第8の実施形態に係わる物性測定装置の一例を示す図である。第8の実施形態においては、光学系は、光源5から撮影部6に入射する光への影響を補償する。光への影響とは、例えば、光路における屈折率差、あるいは、二重円筒1の歪曲収差などが挙げられる。光学系は、これらの影響の少なくともいずれかが、撮影画像に与える影響を補償する。
光学系は、一例として水槽10である。水槽10には水が満たされており、二重円筒1が丸ごとその中に沈められている。すなわち光学系は、二重円筒1を、透明な溶媒ごと保持する透明な容器である。ここで、水槽10を、二重円筒1に封入された溶媒(例えば水)と同じ溶媒で満たすことが、屈折率の差を最小にする観点から好ましい。また、水槽は直方体または立方体であることが、光収差を最小にする観点から好ましい。
(作用)
二重円筒1が空気中に存在していると、二重円筒1は円柱形をしているので、歪曲収差の影響により、撮影される形状が凝集物の存在位置に依存して変わってしまう。また、空気と溶媒の屈折率の違いから、実際の大きさから乖離した形状で撮影されてしまう。第8の実施形態によれば、このような影響を低減することができる。
(効果)
第8の実施形態によれば、歪曲収差や屈折率差に伴う撮影誤差を低減し、より正確な凝集物の性状を測定することができる。
[第9の実施形態]
(構成)
第9の実施形態では、光源5として、コヒーレント(coherent)光を発生するレーザ光源を用いる。すなわち第9の実施形態では、コヒーレント光を発生する第1光源と、インコヒーレント(incoherent)光を発生する第2光源と、切り替え部とを具備する。そして、切り替え部により光源を切り替え、被写体に照射される照射光を、コヒーレント光またはインコヒーレント光のいずれかに切り替える。
さらに、解析部7からの情報を切り替え部に渡し、凝集物の物性値に基づいて、コヒーレント光またはインコヒーレント光のいずれかに切り替えるようにしてもよい。つまり、凝集の初期段階ではレーザ光を照射して、微粒子の存在を捉えやすくし、中期~後期段階ではインコヒーレント光に切り換えて、凝集物の形状を正しくとらえるようにする。
(作用)
例えばシングルモード発光するレーザ光源から出力されるコヒーレント光は、位相が揃っていて、拡散せずに直進性に富むことが知られている。よってコヒーレント光を用いれば、非常にサイズの小さい微粒子を撮影することが可能になる。ただしコヒーレント光は拡散性に乏しいことから、形状に関する情報を厳密に捉えるには不向きと言える。形状に関する情報を取得するには、拡散性に富むインコヒーレント光を用いるほうが好ましい。そこで第9の実施形態では、性質の異なる複数の光を照射できるようにすることで、より多くの情報を捉えることができる。
(効果)
第9の実施形態によれば、凝集の各段階に応じて適切な光源を切り替え運用できるので、凝集物の物性をさらに正確に測定することができる。
以上説明したように、各実施形態の物性測定装置によれば、凝集物の物性を定量的に測定することが可能になる。
なお、この発明はこれらの実施形態に限定されるものではない。例えば第9の実施形態において、光の性質だけでなく、波長そのものを切り替えられるようにしても良い。固定的な波長で発光する発光素子を複数設けても良いし、一つの光源の波長を変化させるようにしても良い。
本発明のいくつかの実施形態を説明したが、これらの実施形態は例として提示するものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 以下に、本願出願の当初の特許請求の範囲に記載された発明を付記する。
[1]
円筒状の外筒と、前記外筒と軸を共有し前記外筒よりも直径の小さい内筒と、前記外筒と内筒との間の間隙に封入された試料を観察可能な透明部とを有する二重円筒と、
前記二重円筒を前記軸周りに回転させる回転駆動機と、
前記透明部から観察される前記試料を撮影して画像データを得る撮影部と、
前記画像データを解析して、前記試料に含まれる凝集物の物性値を算出する解析部とを具備する、物性測定装置。
[2]
前記解析部は、前記凝集物の粒径、前記凝集物の形状を表す数値、前記凝集物の密度、または、前記凝集物の粒子構造を表す値の少なくともいずれかを前記物性値として算出する、付記[1]に記載の物性測定装置。
[3]
前記解析部は、前記粒子構造を表す値を、前記凝集物の個数の和に基づいて算出する、付記[2]に記載の物性測定装置。
[4]
前記二重円筒の回転速度を可変して、前記間隙の試料に加わるせん断力を調整する調整部をさらに具備する、付記[1]に記載の物性測定装置。
[5]
前記回転駆動機は、前記二重円筒を水平な軸周りに回転させる、付記[1]に記載の物性測定装置。
[6]
前記回転駆動機は、前記二重円筒を垂直な軸周りに回転させる、付記[1]に記載の物性測定装置。
[7]
前記回転駆動機は、前記外筒を前記軸周りに回転させる第1駆動機と、前記内筒を前記軸周りに回転させる第2駆動機とを備える、付記[1]に記載の物性測定装置。
[8]
前記撮影部は、前記二重円筒に対して異なる方向から複数設けられる、付記[1]に記載の物性測定装置。
[9]
前記二重円筒に光を照射する光源をさらに具備する、付記[1]に記載の物性測定装置。
[10]
前記光の前記二重円筒からの透過光、反射光、または側方散乱光を前記撮影部に導く光学系をさらに具備する、付記[9]に記載の物性測定装置。
[11]
前記光源は、前記内筒の内側の空洞部分に設けられる、付記[9]に記載の物性測定装置。
[12]
前記撮影部は、前記二重円筒の回転を停止させ、当該二重円筒の軸を垂直にした状態で観察される前記試料を撮影する、付記[5]に記載の物性測定装置。
[13]
前記解析部は、前記凝集物の粒径、または前記凝集物の移動速度の少なくともいずれかを測定する、付記[12]に記載の物性測定装置。
[14]
前記撮影部に入射する光への光路における屈折率差、または前記二重円筒の歪曲収差の少なくともいずれかの影響を補償する光学系をさらに具備する、付記[9]に記載の物性測定装置。
[15]
前記光学系は、前記二重円筒を、透明な溶媒ごと保持する透明な容器である、付記[14]に記載の物性測定装置。
[16]
前記光源は、コヒーレント光を発生するレーザ光源である、付記[9]に記載の物性測定装置。
[17]
前記光源は、コヒーレント光を発生する第1光源と、インコヒーレント光を発生する第2光源とを備え、
前記照射される光を前記コヒーレント光または前記インコヒーレント光のいずれかに切り替える切り替え部をさらに具備する、付記[9]に記載の物性測定装置。
[18]
前記切り替え部は、前記照射される光を、前記凝集物の物性値に基づいて切り替える、付記[17]に記載の物性測定装置。
1…二重円筒、1a…蓋部、1b…蓋部、2…外筒、3…内筒、4…回転駆動機、4a…回転駆動機、4b…回転駆動機、5…光源、6…撮影部、7…解析部、8…ハーフミラー、9…調整部、10…水槽、50…光源、100…空洞部分。

Claims (1)

  1. 円筒状の外筒と、前記外筒と軸を共有し前記外筒よりも直径の小さい内筒と、前記外筒と内筒との間の間隙に封入された試料を観察可能な透明部とを有する二重円筒と、
    前記二重円筒を前記軸周りに回転させる回転駆動機と、
    前記透明部から観察される前記試料を撮影して画像データを得る撮影部と、
    前記画像データを解析して、前記試料に含まれる凝集物の物性値を算出する解析部とを具備する、物性測定装置。
JP2023101948A 2019-08-26 2023-06-21 物性測定装置 Pending JP2023112088A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023101948A JP2023112088A (ja) 2019-08-26 2023-06-21 物性測定装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019153728A JP7303066B2 (ja) 2019-08-26 2019-08-26 物性測定装置
JP2023101948A JP2023112088A (ja) 2019-08-26 2023-06-21 物性測定装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019153728A Division JP7303066B2 (ja) 2019-08-26 2019-08-26 物性測定装置

Publications (1)

Publication Number Publication Date
JP2023112088A true JP2023112088A (ja) 2023-08-10

Family

ID=74675670

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019153728A Active JP7303066B2 (ja) 2019-08-26 2019-08-26 物性測定装置
JP2023101948A Pending JP2023112088A (ja) 2019-08-26 2023-06-21 物性測定装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019153728A Active JP7303066B2 (ja) 2019-08-26 2019-08-26 物性測定装置

Country Status (1)

Country Link
JP (2) JP7303066B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114594027A (zh) * 2022-03-03 2022-06-07 华北科技学院(中国煤矿安全技术培训中心) 一种高浓度浆体颗粒动态沉降速度的测定装置及测定方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01116435A (ja) * 1987-10-30 1989-05-09 Toonichi Consultant:Kk 分散系液体の凝集・分散度測定方法とその装置
JP2000146817A (ja) * 1998-11-12 2000-05-26 Nikkiso Co Ltd 粒度分布測定装置
JP2004125502A (ja) * 2002-09-30 2004-04-22 Seiko Epson Corp 粒子分析装置
JP2011125285A (ja) * 2009-12-18 2011-06-30 Kirin Brewery Co Ltd 酵母早期凝集因子の迅速測定方法およびその測定装置
JP6150167B2 (ja) * 2013-08-20 2017-06-21 株式会社リコー 微粒子分散性評価装置及び微粒子分散性評価方法

Also Published As

Publication number Publication date
JP7303066B2 (ja) 2023-07-04
JP2021032728A (ja) 2021-03-01

Similar Documents

Publication Publication Date Title
JP2023112088A (ja) 物性測定装置
KR101884108B1 (ko) 산란광(pta)을 이용한 입자 추적 분석 방법 및 모든 유형의 액체 내에서 나노미터 크기 오더의 입자를 검출 및 식별하기 위한 장치
US7430047B2 (en) Small container fluid dynamics to produce optimized inspection conditions
CN105928847B (zh) 一种多相体系中颗粒浓度和粒径的在线测量方法
Krüger et al. Measurement of drag coefficients of non-spherical particles with a camera-based method
JP2014525583A5 (ja)
US20230271199A1 (en) Method and apparatus for controlling a focus point of a stationary beam focusing on a sample in a rotating cartridge placed in a rotating disc
EP1120647A2 (en) Toner characterization cell
JP4507799B2 (ja) 粒度分布測定装置
JP2010101705A (ja) 粒子物性測定装置
JP7254558B2 (ja) 沈降速度測定方法
CN107543781A (zh) 散射光强分布探测系统
JP2010525342A (ja) 少なくとも1つの撮像器械を使用して媒体を光学的に分析するための分析装置
Formánek et al. Image analysis of particle size: effect of light source type
KR20130075543A (ko) 이미지 계측을 통한 플럭 특성 분석 장치, 방법 및 측정 장치
JP2006349385A (ja) 粒子計測装置
JP7389570B2 (ja) 水処理装置、および水処理方法
JP2005114866A5 (ja)
CN1934436A (zh) 改善的探测装置
JP2006047064A (ja) 粒子径分布測定方法および粒子径分布測定装置
JPH0614005B2 (ja) 凝集沈澱反応測定方法及びその装置
WO2022097477A1 (ja) 気泡測定装置及び気泡測定方法
畠山幸太 Study of flow-induced particle distribution and internal structure in dispersions
Nichols et al. The Centrifugal Method for the Determination of the Distribution of Size of Particle of Suspended Material
JP2627969B2 (ja) 水中懸濁物形状測定装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230721

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20241004