JP2023102175A - 鋼部材 - Google Patents

鋼部材 Download PDF

Info

Publication number
JP2023102175A
JP2023102175A JP2022002594A JP2022002594A JP2023102175A JP 2023102175 A JP2023102175 A JP 2023102175A JP 2022002594 A JP2022002594 A JP 2022002594A JP 2022002594 A JP2022002594 A JP 2022002594A JP 2023102175 A JP2023102175 A JP 2023102175A
Authority
JP
Japan
Prior art keywords
hardness
steel
tempering
content
steel member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022002594A
Other languages
English (en)
Inventor
洋輝 成宮
Hiroki Narumiya
圭介 千葉
Keisuke Chiba
大輔 平上
Daisuke Hiragami
真吾 山▲崎▼
Shingo Yamazaki
健一郎 村松
Kenichiro Muramatsu
久佳 田和
Hisayoshi Tawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Toyota Motor Corp
Original Assignee
Nippon Steel Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Toyota Motor Corp filed Critical Nippon Steel Corp
Priority to JP2022002594A priority Critical patent/JP2023102175A/ja
Publication of JP2023102175A publication Critical patent/JP2023102175A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

【課題】軸受や歯車などとして用いられる、高い面疲労強度を有する鋼部材を提供する。【解決手段】質量%で、C:0.10~0.30%、Si:1.60~3.00%、Mn:0.20~2.00%、Cr:1.00~4.00%、Mo:0.10~1.00%、Al:0.005~0.100%、N:0.0010~0.0250%、P:0.030%以下、S:0.005~0.025%を含有する鋼に炭化物分散浸炭、冷間加工を施すことにより、摺動等により他部品と接触する部分における表面のC濃度が1.00~3.00質量%であり、300℃で焼戻したときの、他部品と接触する部分のビッカース硬さが850HV以上である鋼部材を得る。【選択図】なし

Description

本発明は鋼部材に関し、特に、自動車等の動力伝達部品に適用される高い面疲労強度を有する歯車、無段変速機、等速ジョイント等に好適な鋼部材に関する。
たとえば自動変速機の歯車や無段変速機のシーブ、等速ジョイントなどの動力伝達部品等の鋼部品は、高い面疲労強度が要求される。一般に上記の部品には素材にJIS SCr420、SCM420等のC含有量が0.2%前後の肌焼鋼を用い、肌焼鋼に浸炭焼入れ・焼戻し処理を施して部品の表層にC含有量が0.8%前後のマルテンサイト組織の硬化層を形成して面疲労強度を高めて使用される。上記の部品は靭性よりも硬さが優先されるため、焼戻し温度は通常200℃以下である。
自動車の燃費向上を目的として、歯車等の機械構造部品の小型・軽量化が求められており、従来品と比べてより高い面疲労強度が必要とされている。歯車等の機械構造部品は、摺動部表面が摩擦発熱により300℃前後まで温度が上昇することがある。鋼の温度が300℃程度まで上昇し、下降すると、焼戻し処理を施したのと同様に鋼の硬さが低下するので、面疲労強度が低下する。面疲労強度と、鋼部材を300℃で焼戻したときの硬さ(以下「300℃焼戻し硬さ」という)にはよい相関関係があることが知られている。そのため、高い300℃焼戻し硬さを得るために、焼戻し軟化抵抗を向上させるSi、Cr、Mo等の合金元素を添加した鋼及び鋼部材が種々提案されてきた。
特許文献1は、浸炭窒化、高周波焼入れ、焼戻し処理の後、ショットピーニング処理を施すことにより、表面硬さを900~1000HVとした転動軸を開示している。
特許文献2は、浸炭焼入れ、焼戻し処理の後、ショットピーニング処理を施すことにより、表面硬さを880HV以上とした歯車を開示している。
特開2015-7265号公報 特開2010-53429号公報
特許文献1、2で開示された技術によれば、高い表面硬さを有する鋼部材を得ることができる。しかしながら、300℃で焼戻しを施した場合の硬さ低下が大きく、850HV以上の300℃焼戻し硬さを得ることは困難であった。
本発明は上記の事情に鑑みなされたものであって、軸受や歯車などとして用いられる鋼部材であって、摺動等により他部品と接触する部分の300℃焼戻し硬さが850HV以上である、高い面疲労強度を有する鋼部材を提供することを課題とする。
本発明者らは、高い面疲労強度を有する鋼部材、言い換えれば、高い300℃焼戻し硬さを有する鋼部材を得る方法について鋭意検討した。その結果、炭化物分散浸炭焼入れ処理により、マルテンサイトよりも硬く、焼戻し軟化が起こりにくい炭化物(セメンタイト)を組織中に微細分散させ、その後、焼戻し処理、冷間加工を行うことにより300℃焼戻し前の硬さを向上させ、さらに、Siの多量添加により、300℃焼戻し時のマルテンサイトの硬さ低下を大きく抑制することで、850HV以上の300℃焼戻し硬さが得られることを見出した。
本発明は上記の知見に基づきなされたものであって、その要旨は以下のとおりである。
[1]質量%で、C:0.10~0.30%、Si:1.60~3.00%、Mn:0.20~2.00%、Cr:1.00~4.00%、Mo:0.10~1.00%、Al:0.005~0.100%、N:0.0010~0.0250%、P:0.030%以下、S:0.005~0.025%を含有し、残部がFe及び不可避的不純物である鋼で構成された鋼部材であって、摺動等により他部品と接触する部分における表面のC濃度が1.00~3.00質量%であり、前記鋼部材を300℃で焼戻したときの、前記他部品と接触する部分のビッカース硬さが850HV以上であることを特徴とする鋼部材。
本発明によれば、摺動等により他部品と接触する部分における表面の300℃焼戻し硬さが850HV以上の、高い面疲労強度を有する鋼部材を得ることができる。
はじめに、本発明の鋼部材を構成する鋼の化学成分について説明する。以下、化学成分についての「%」は、「質量%」を意味するものとする。
[C:0.10~0.30%]
Cは鋼部材の強度に大きく影響する重要な元素で、浸炭焼入れ・焼戻し処理後に十分な内部硬さを確保する上で0.10%以上必要である。Cの含有量が0.30%を超えると加工性が低下するので、含有量は0.30%以下とする。
[Si:1.60~3.00%]
Siは炭化物分散浸炭時に炭化物の球状化を促進するとともに、焼戻し軟化抵抗を向上させる有用な元素である。特に、Siを多量添加すると、焼入れ後の冷間加工によって高められた硬度が焼戻しにより軟化するのを顕著に抑えることができる。上記効果は、同じく焼戻し軟化抵抗を向上させるCrやMoにはないSi特有の効果である。上記効果を得るため、Siの含有量は1.60%以上とする。上記効果をより確実に発揮させるために、Si含有量は2.00%以上であることが好ましい。Si含有量が多すぎると、加工性が低下するだけでなく、上記効果が飽和して含有量に見合う効果が期待できなくなる。そのため、Siの含有量は3.00%以下とする。上記効果の飽和をより確実に抑制するために、Si含有量は2.50%以下であることが好ましい。
[Mn:0.20~2.00%]
Mnは、鋼の焼入れ性を高めると同時に、赤熱脆性を抑制し熱間延性を向上させる有用な元素である。この効果を得るためには、含有量は0.20%以上とする必要がある。ただし、含有量が2.00%を超えると加工性が低下するので、Mnの含有量は2.00%以下とする。
[Cr:1.00~4.00%]
Crは鋼の焼入れ性及び焼戻し軟化抵抗を向上させる有用な元素である。さらに、Crは炭化物析出元素であり、浸炭の際の炭化物析出反応を促進する。上記効果を得るため、Cr含有量は1.00%以上とする。上記効果をより高く得るため、Cr含有量は1.50%以上であることが好ましい。含有量が4.00%を超えると加工性が低下するので、Crの含有量は4.00%以下とする。
[Mo:0.10~1.00%]
Moは、鋼材の焼入れ性及び焼戻し軟化抵抗を高める有用な元素である。特に、Moは炭化物(セメンタイト)中に分配されにくいため、炭化物分散浸炭焼入れにおいて懸念される不完全焼入れ組織の生成を抑制する。上記効果を得るため、含有量は0.10%以上とする。ただし、含有量が1.00%を超えると加工性が低下するため、Moの含有量は1.00%以下とする。
[Al:0.005~0.100%]
Alは脱酸作用を有するとともに、熱処理の際、Nと結合してAlNを形成することによりオーステナイト粒の粗大化を防止し、靭性を高める効果を持つ。この効果を得るためには、含有量を0.005%以上とする必要がある。含有量が0.100%を超えると、鋼の清浄度が低下するとともに、上記効果が飽和するので、Alの含有量は0.100%以下とする。
[N:0.0010~0.0250%]
NはAlと結合してAlNを形成することによりオーステナイト粒の粗大化を防止し、靭性を高める効果を持つ。この効果を得るためには、含有量を0.0010%以上とする必要がある。含有量が0.0250%を超えると上記効果が飽和するので、Nの含有量は0.0250%以下とする。
[P:0.030%以下]
Pは不純物として含まれる元素である。Pは粒界に偏析して粒界強度を下げるため、P含有量はなるべく低い方が良い。そのため、Pの含有量を0.030%以下とする。
[S:0.005~0.025%]
Sは被削性を向上させるため、0.005%以上を含有させる。しかし、S含有量が多すぎると、Mnによって固定されなかったSがFeSとして粒界に生成することで、熱間延性が低下する。また、大量に生成したMnSによって、耐摩耗性及び冷間延性が低下する。そのため、Sの含有量を0.025%以下とする。
上記の化学成分の残部は、鉄(Fe)及び不純物である。ここで、不純物とは、鋼の原料として利用される鉱石やスクラップ、又は、製造工程の環境等から混入する成分であって、鋼材に意図的に含有させた成分ではない成分を意味する。
次に、炭化物分散浸炭焼入れ、焼戻し処理及び冷間加工について説明する。
炭化物分散浸炭焼入れ、焼戻し処理の条件は、摺動等により他部品と接触する部分における表面のC濃度が1.00~3.00%となるような条件を選択する必要がある。850HV以上の300℃焼戻し硬さを得るため、C濃度は1.00%以上とする。より高い300℃焼戻し硬さを得るため、C濃度は1.50%以上であることが好ましい。逆に、C濃度が3.00%を超えると、炭化物割合が過剰になり冷間化加工時に割れが発生する可能性が高まるため、C濃度は3.00%以下とする。
適切な焼入れ温度範囲は、摺動等により他部品と接触する部分の化学成分によって変化するが、700~1000℃である必要がある。焼入れ温度が700℃未満だと、オーステナイトが存在しない状態で鋼が焼入れられるため、硬質なマルテンサイト組織が得られない。焼入れ温度が1000℃を超えると、炭化物が存在しない状態で鋼が焼入れられるため、あるいは、オーステナイト中のC濃度が過剰な状態で鋼が焼入れられ、冷間加工後も多量の未変態オーステナイトが残存するため、あるいは、それら両方の理由により、850HV以上の300℃焼戻し硬さが得られない。
表面のC濃度が1.00~3.00%となるような浸炭条件は、たとえば、アセチレンガスを用いて1000℃で、浸炭期20分、拡散期3分の真空浸炭を行えばよい。真空浸炭後は、一度A1変態点以下の温度に冷却してオーステナイトをパーライト等に変態させてから再び加熱し、たとえば、840℃で10分保持してから油焼入れすればよい。上記の真空浸炭及び焼入れ処理により、マルテンサイト中に炭化物(セメンタイト)が微細分散した組織が得られる。焼戻しは、たとえば、160℃で1時間保持すればよい。
表面のC濃度は、以下のように測定する。まず、摺動等により他部品と接触する部分の表面に対して垂直な面で鋼部材を切断し、切断面を鏡面研磨する。その後、加速電圧を15kV、照射電流を50nA、電子ビーム径を10μmとした電子線マイクロアナライザ(EPMA:Electron Probe Micro Analyzer)により、表面から50μm深い位置におけるC濃度を10μmピッチで100点測定し、その平均値を表面C濃度とする。
炭化物の有無は、以下のように確認する。まず、摺動等により他部品と接触する部分の表面に対して垂直な面で鋼部材を切断し、切断面を研磨する。その後、ピクラール腐食を行い、走査型電子顕微鏡(SEM:Scanning Electron Microscope)により表面から50μm深い位置を倍率5000倍で観察し、視野全体に白く写る組織があれば、それを炭化物と判断する。
炭化物分散浸炭焼入れ、焼戻し処理後の冷間加工は、ショットピーニングが好適であるが、その他、ローラーバニシング、圧下押込み等が適用できる。冷間加工後の表面硬さは950HV以上であることが好ましく、1050HV以上であることがより好ましい。
焼戻しと冷間加工の順序は逆でもよい。
最後に、300℃焼戻し硬さの測定方法について説明する。300℃焼戻しは、鋼部材を300℃で1時間保持した後、放冷する。この際、Si多量添加と炭化物の微細分散により、300℃焼戻しによる硬さの低下が大きく抑制される。その後、摺動等により他部品と接触する部分の表面に対して垂直な面で鋼部材を切断し、切断面を研磨する。さらに、表面から50μm深い位置で、JIS Z 2244:2009に規定された方法に即して、荷重0.3kgfでビッカース硬さを測定する。前記手順で5点のビッカース硬さを測定し、その平均値を300℃焼戻し硬さとする。
以上により、上述の化学成分の鋼を炭化物分散浸炭焼入れ、焼戻し、冷間加工することにより、高い面疲労強度を有する鋼部材を得ることができる。面疲労強度は300℃焼戻し後のビッカース硬さで評価することができ、本発明の鋼部材は、850HV以上の高い300℃焼戻し硬さを有する。
続いて、実施例及び比較例を示しながら、本発明の実施形態に係る鋼部材について、具体的に説明する。なお、以下に示す実施例は、本発明の実施形態に係る鋼部材のあくまでも一例にすぎず、本発明の実施形態に係る鋼部材が下記に示す例に限定されるものではない。
表1に記載の成分を有する鋼を真空溶解した後、鋳型を用いて鋳造し、10kgの鋼塊を製造した。得られた鋼塊を1200℃に加熱して1時間保持した後、外径30mmの丸棒に熱間鍛伸した。この丸棒から直径15mm×高さ20mmの丸棒試験片を機械加工にて作製した。その後、表面C濃度が表2に示す狙い値になるよう種々の条件で真空浸炭処理を行い、120℃の油で焼入れ処理した。再び表2に示す焼入れ温度に加熱して10分保持した後、120℃の油で焼入れを行い、160℃×1時間の焼戻し処理を行った。さらに、一部の試験片を除いて、両端面にショットピーニングによる冷間加工を施した。ショットピーニングは、φ0.8mm、700HVの鋼球を用いて、投射圧0.4MPa、カバレージ300%の条件で行った。
次に、中心軸を通る平面で丸棒試験片を切断し、切断面を鏡面研磨した。加速電圧を15kV、照射電流を50nA、電子ビーム径を10μmとしたEPMAにより、端面から50μm深さの位置におけるC濃度を10μmピッチで100点測定し、その平均値を実際の表面C濃度とした。さらに、JIS Z 2244:2009に規定された方法に即して、端面から50μm深い位置のビッカース硬さを0.5mmピッチで5点、荷重0.3kgfで測定し、その平均値を300℃焼戻し前硬さとした。
さらに、ピクラール腐食を行い、SEMにより表面から50μm深い位置を倍率5000倍で観察し、視野全体に白く写る組織があれば、それを炭化物と判断した。その後、300℃×1時間の300℃焼戻しを行い、JIS Z 2244:2009に規定された方法に即して、端面から50μm深い位置のビッカース硬さを0.5mmピッチで5点、荷重0.3kgfで測定し、その平均値を300℃焼戻し硬さとした。
Figure 2023102175000001
300℃焼戻し硬さの測定結果等を表2に示す。
Figure 2023102175000002
表2のNo.1~No.6が実施例であり、その他(No.7~No.12)は、比較例である。
比較例No.7及びNo.8は、Si含有量が低いため300℃焼戻し時の硬さ低下が大きく、十分な300℃焼戻し硬さが得られなかった例である。比較例No.9は、表面のC濃度が低いため、十分な300℃焼戻し硬さが得られなかった例である。比較例No.10は、焼入れ温度が高く冷間加工後も多量の未変態オーステナイトが残存していたため300℃焼戻し前硬さが若干低く、さらに、炭化物が存在しないため300℃焼戻し時の硬さ低下が若干大きく、十分な300℃焼戻し硬さが得られなかった例である。比較例No.11及びNo.12は、ショットピーニングを行わなかったため300℃焼戻し前硬さが低く、十分な300℃焼戻し硬さが得られなかった例である。
一方、本発明の実施例に該当するNo.1~No.6については、焼戻し前の硬さが高く、さらに、300℃焼戻し時の硬さ低下が小さく、その結果、300℃焼戻し硬さが高い、すなわち、高い面疲労強度を有することが確認できた。
以上、本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
本発明によれば、面疲労強度に優れた鋼部材を得ることができ、産業上の利用価値は大である。

Claims (1)

  1. 質量%で、
    C :0.10~0.30%、
    Si:1.60~3.00%、
    Mn:0.20~2.00%、
    Cr:1.00~4.00%、
    Mo:0.10~1.00%、
    Al:0.005~0.100%、
    N :0.0010~0.0250%、
    P :0.030%以下、
    S :0.005~0.025%
    を含有し、残部がFe及び不可避的不純物である鋼で構成された鋼部材であって、
    摺動等により他部品と接触する部分における表面のC濃度が1.00~3.00質量%であり、
    前記鋼部材を300℃で焼戻したときの、前記他部品と接触する部分のビッカース硬さが850HV以上である
    ことを特徴とする鋼部材。
JP2022002594A 2022-01-11 2022-01-11 鋼部材 Pending JP2023102175A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022002594A JP2023102175A (ja) 2022-01-11 2022-01-11 鋼部材

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022002594A JP2023102175A (ja) 2022-01-11 2022-01-11 鋼部材

Publications (1)

Publication Number Publication Date
JP2023102175A true JP2023102175A (ja) 2023-07-24

Family

ID=87425510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022002594A Pending JP2023102175A (ja) 2022-01-11 2022-01-11 鋼部材

Country Status (1)

Country Link
JP (1) JP2023102175A (ja)

Similar Documents

Publication Publication Date Title
KR101129370B1 (ko) 고온에서의 면압 피로 강도가 우수한 침탄 질화 고주파 담금질 강 부품 및 그 제조 방법
JP5994924B2 (ja) 高周波焼入れ部品の素形材及びその製造方法
JP5432105B2 (ja) 肌焼鋼およびその製造方法
US9890446B2 (en) Steel for induction hardening roughly shaped material for induction hardening
WO2014192117A1 (ja) 軟窒化高周波焼入れ鋼部品
KR20070108569A (ko) 침탄 고주파 담금질 부품
JP5477111B2 (ja) 窒化高周波焼入れ用鋼及び窒化高周波焼入れ部品
JPWO2012077705A1 (ja) 面疲労強度に優れたガス浸炭鋼部品、ガス浸炭用鋼材およびガス浸炭鋼部品の製造方法
JP2011208225A (ja) 低サイクル疲労強度に優れるTi、B添加鋼を用いた高強度部品の製造方法
JPWO2003056054A1 (ja) 浸炭焼入部材およびその製造方法
JP2019026881A (ja) 鋼部材
JP2023102175A (ja) 鋼部材
JPH11229032A (ja) 軟窒化用鋼材の製造方法及びその鋼材を用いた軟窒化部品
JP2023102145A (ja) 鋼部材
JPWO2015199103A1 (ja) ピニオンシャフト及びその製造方法
JP2019183211A (ja) 浸炭部品
JP6881496B2 (ja) 部品およびその製造方法
JP6881497B2 (ja) 部品およびその製造方法
JP6881498B2 (ja) 部品およびその製造方法
JP7175182B2 (ja) 静捩り強度ならびに捩り疲労強度に優れた浸炭用鋼材による自動車用機械部品
JP7368697B2 (ja) 浸炭歯車用鋼、浸炭歯車及び浸炭歯車の製造方法
JP3607583B2 (ja) 動力伝達部品用鋼および動力伝達部品
JP2009079253A (ja) シャフト及びその製造方法
JP6601359B2 (ja) 耐摩耗性に優れた浸炭部品およびその製造方法
JP2024072443A (ja) 歯車及び歯車の製造方法