JP2023073246A - Laminate, packaging material, packaging bag and stand pouch - Google Patents

Laminate, packaging material, packaging bag and stand pouch Download PDF

Info

Publication number
JP2023073246A
JP2023073246A JP2023021926A JP2023021926A JP2023073246A JP 2023073246 A JP2023073246 A JP 2023073246A JP 2023021926 A JP2023021926 A JP 2023021926A JP 2023021926 A JP2023021926 A JP 2023021926A JP 2023073246 A JP2023073246 A JP 2023073246A
Authority
JP
Japan
Prior art keywords
layer
density polyethylene
laminate
film
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023021926A
Other languages
Japanese (ja)
Inventor
憲一 山田
Kenichi Yamada
智裕 米本
Tomohiro Yonemoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2023021926A priority Critical patent/JP2023073246A/en
Publication of JP2023073246A publication Critical patent/JP2023073246A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/80Packaging reuse or recycling, e.g. of multilayer packaging

Landscapes

  • Laminated Bodies (AREA)
  • Wrappers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a laminate that can achieve a packaging material that has sufficient strength and heat resistance as a packaging material and also has excellent recyclability.
SOLUTION: A laminate has a base material and a heat seal layer. Each of the base material and the heat seal layer is composed of polyethylene. The base material comprises a five-layer co-extruded stretched film of: high-density polyethylene layer; middle-density polyethylene layer; low-density polyethylene layer, linear low-density polyethylene layer or ultra low-density polyethylene layer; middle-density polyethylene layer; and high-density polyethylene layer.
SELECTED DRAWING: Figure 1
COPYRIGHT: (C)2023,JPO&INPIT

Description

本発明は、積層体、該積層体から構成される包装材料、包装袋およびスタンドパウチに関する。 TECHNICAL FIELD The present invention relates to a laminate, a packaging material, a packaging bag and a stand pouch composed of the laminate.

従来、包装材料などは、樹脂材料から構成される樹脂フィルムを用いて作製されている。例えば、ポリエチレンから構成される樹脂フィルムは、適度な柔軟性、透明性を有すると共に、ヒートシール性に優れるため、包装材料に広く使用されている。 Conventionally, packaging materials and the like are produced using resin films made of resin materials. For example, a resin film made of polyethylene is widely used as a packaging material because it has appropriate flexibility and transparency and excellent heat-sealing properties.

通常、ポリエチレンから構成される樹脂フィルムは、強度や耐熱性の面で劣るため、基材としては使用することができず、ポリエステルやポリアミドなどから構成される樹脂フィルムなどと貼り合わせて使用されており、そのため、通常の包装材料などは、基材とヒートシール層とが異種の樹脂材料からなる積層フィルムから構成されている(例えば、特許文献1)。 Generally, resin films made of polyethylene cannot be used as base materials because they are inferior in terms of strength and heat resistance. Therefore, ordinary packaging materials and the like are composed of laminated films in which the base material and the heat seal layer are made of different resin materials (for example, Patent Document 1).

近年、循環型社会の構築を求める声の高まりとともに、高いリサイクル性を有する包装材料が求められている。しかしながら、従来の包装体は上記したように異種の樹脂材料から構成されており、樹脂材料ごとに分離するのが困難であるため、リサイクルされていないのが現状である。 In recent years, along with the increasing demand for building a recycling-oriented society, packaging materials with high recyclability are in demand. However, as described above, conventional packages are made of different types of resin materials, and it is difficult to separate them into different resin materials, so currently they are not recycled.

特開2009-202519号公報JP 2009-202519 A

本発明者らは、従来ヒートシール層として使用していたポリエチレンを、延伸フィルムにすることで基材として使用することができ、当該基材をポリエチレンから構成されるヒートシール層と積層して使用することで、十分な強度や耐熱性を有し、かつリサイクル可能な包装材料などを作製とすることができるとの知見を得た。 The present inventors have found that polyethylene, which has been conventionally used as a heat seal layer, can be used as a base material by making it into a stretched film, and the base material is laminated with a heat seal layer composed of polyethylene. By doing so, it was found that it is possible to manufacture a packaging material that has sufficient strength and heat resistance and is recyclable.

本発明は、上記知見に鑑みてなされたものであり、その解決しようとする課題は、包装材料などとして適用可能な十分な強度や耐熱性を備え、かつリサイクル性にも優れる包装材料を実現することができる積層体を提供することである。
また、本発明の解決しようとする課題は、該積層体から構成される包装材料を提供することである。
また、本発明の解決しようとする課題は、該積層体から作製される包装袋を提供することである。
さらに、本発明の解決しようとする課題は、該積層体から作製されるスタンドパウチを提供することである。
The present invention has been made in view of the above findings, and the problem to be solved is to realize a packaging material that has sufficient strength and heat resistance that can be applied as a packaging material and has excellent recyclability. An object of the present invention is to provide a laminate that can
Another problem to be solved by the present invention is to provide a packaging material composed of the laminate.
Moreover, the problem to be solved by the present invention is to provide a packaging bag made from the laminate.
Furthermore, the problem to be solved by the present invention is to provide a standing pouch made from the laminate.

本発明の積層体は、基材と、ヒートシール層とを備えた積層体であって、
基材およびヒートシール層のいずれもが、ポリエチレンから構成され、
基材が、高密度ポリエチレン層と、中密度ポリエチレン層と、低密度ポリエチレン層、直鎖状低密度ポリエチレン層または超低密度ポリエチレン層と、中密度ポリエチレン層と、
高密度ポリエチレン層と、五層共押延伸フィルムからなることを特徴とする。
The laminate of the present invention is a laminate comprising a substrate and a heat seal layer,
Both the substrate and the heat seal layer are composed of polyethylene,
The substrate comprises a high-density polyethylene layer, a medium-density polyethylene layer, a low-density polyethylene layer, a linear low-density polyethylene layer or an ultra-low-density polyethylene layer, and a medium-density polyethylene layer;
It is characterized by comprising a high-density polyethylene layer and a five-layer co-extruded stretched film.

本発明の一実施形態においては、積層体は、基材と、ヒートシール層との間に蒸着膜を備える。 In one embodiment of the invention, the laminate comprises a deposited film between the substrate and the heat seal layer.

本発明の一実施形態においては、積層体は、基材と、蒸着膜との間に接着層を備え、
蒸着膜が、アルミニウム蒸着膜であり、
接着層が、ポリエステルポリオールとイソシアネート化合物とリン酸変性化合物を含む樹脂組成物の硬化物により構成される。
In one embodiment of the present invention, the laminate comprises an adhesive layer between the substrate and the deposited film,
the deposited film is an aluminum deposited film,
The adhesive layer is composed of a cured resin composition containing a polyester polyol, an isocyanate compound and a phosphoric acid-modified compound.

本発明の一実施形態においては、積層体は、基材とヒートシール層との間に、さらに中間層を備え、中間層は、一方の面に蒸着膜を備える延伸ポリエチレンフィルムからなる。 In one embodiment of the present invention, the laminate further comprises an intermediate layer between the substrate and the heat seal layer, the intermediate layer consisting of a stretched polyethylene film provided with a vapor deposited film on one side.

本発明の一実施形態においては、積層体は、基材と、中間層との間および中間層と、ヒートシール層との間に、接着層を備える。 In one embodiment of the invention, the laminate comprises an adhesive layer between the substrate and the intermediate layer and between the intermediate layer and the heat seal layer.

本発明の一実施形態においては、蒸着膜が、アルミニウム蒸着膜であり、
蒸着膜と隣接する接着層が、ポリエステルポリオールとイソシアネート化合物とリン酸変性化合物を含む樹脂組成物の硬化物により構成される。
In one embodiment of the present invention, the deposited film is an aluminum deposited film,
An adhesive layer adjacent to the deposited film is composed of a cured resin composition containing a polyester polyol, an isocyanate compound, and a phosphoric acid-modified compound.

本発明の一実施形態においては、基材はインフレーション法により作製されたものである。 In one embodiment of the present invention, the substrate is produced by the inflation method.

本発明の一実施形態においては、積層体全体におけるポリエチレンの含有量は、90質量%以上である。 In one embodiment of the present invention, the content of polyethylene in the entire laminate is 90% by mass or more.

本発明の一実施形態においては、積層体は、包装材料用途に用いられる。 In one embodiment of the invention, the laminate is used for packaging applications.

本発明の包装材料は、上記積層体を用いて作製されたものであることを特徴とする。 A packaging material of the present invention is characterized by being produced using the laminate.

本発明の包装袋は、上記積層体を用いて作製され、
ヒートシール層の厚さが、20μm以上60μm以下である。
The packaging bag of the present invention is produced using the laminate,
The thickness of the heat seal layer is 20 μm or more and 60 μm or less.

本発明のスタンドパウチは、上記積層体を用いて作製され、
ヒートシール層の厚さが、50μm以上200μm以下である。
The stand pouch of the present invention is produced using the laminate,
The thickness of the heat seal layer is 50 μm or more and 200 μm or less.

本発明によれば、包装材料としての強度や耐熱性を有し、かつリサイクル性にも優れる包装材料を実現することができる積層体を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the laminated body which can implement|achieve the packaging material which has the intensity|strength and heat resistance as a packaging material, and is excellent also in recyclability can be provided.

本発明の積層体の一実施形態を示す断面概略図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the cross-sectional schematic which shows one Embodiment of the laminated body of this invention. 本発明の積層体の一実施形態を示す断面概略図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the cross-sectional schematic which shows one Embodiment of the laminated body of this invention. 本発明の積層体の一実施形態を示す断面概略図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the cross-sectional schematic which shows one Embodiment of the laminated body of this invention. 本発明の積層体の一実施形態を示す断面概略図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the cross-sectional schematic which shows one Embodiment of the laminated body of this invention. 本発明の積層体の一実施形態を示す断面概略図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the cross-sectional schematic which shows one Embodiment of the laminated body of this invention. 本発明の積層体を用いて作製した包装材料の一実施形態を表す斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a perspective view showing one Embodiment of the packaging material produced using the laminated body of this invention. 本発明の積層体を用いて作製した包装材料の一実施形態を表す斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a perspective view showing one Embodiment of the packaging material produced using the laminated body of this invention.

<積層体>
本発明による積層体を図面を参照しながら説明する。
図1に示すように、積層体10は、基材11と、ヒートシール層12とを備え、
基材11が、高密度ポリエチレン層13と、中密度ポリエチレン層14と、低密度ポリエチレン層、直鎖状低密度ポリエチレン層または超低密度ポリエチレン層15と、中密度ポリエチレン層16と、高密度ポリエチレン層17とを備える。
<Laminate>
A laminate according to the present invention will be described with reference to the drawings.
As shown in FIG. 1, the laminate 10 includes a base material 11 and a heat seal layer 12,
The substrate 11 comprises a high density polyethylene layer 13, a medium density polyethylene layer 14, a low density polyethylene layer, a linear low density polyethylene layer or an ultra low density polyethylene layer 15, a medium density polyethylene layer 16 and a high density polyethylene. layer 17;

また、本発明の一実施形態において、図2に示すように、積層体10は、基材11とヒートシール層12との間に、蒸着膜18を備えることができる。 Moreover, in one embodiment of the present invention, the laminate 10 can be provided with a deposited film 18 between the substrate 11 and the heat seal layer 12, as shown in FIG.

また、本発明の一実施形態において、図3に示すように、積層体10は、基材11と、ヒートシール層12または蒸着膜18との間に、接着層19を備えることができる。 In one embodiment of the present invention, the laminate 10 can also include an adhesive layer 19 between the base material 11 and the heat seal layer 12 or vapor deposited film 18, as shown in FIG.

また、本発明の一実施形態において、図4に示すように、積層体10は、基材11とヒートシール層12との間に、蒸着膜18および延伸ポリエチレンフィルム20を備える中間層21を備えることができる。 Moreover, in one embodiment of the present invention, as shown in FIG. 4, the laminate 10 comprises an intermediate layer 21 comprising a deposited film 18 and a stretched polyethylene film 20 between the substrate 11 and the heat seal layer 12. be able to.

さらに、本発明の一実施形態において、図5に示すように、積層体10は、基材11と中間層21との間および中間層21とヒートシール層12との間に、接着層19を備えることができる。 Furthermore, in one embodiment of the present invention, the laminate 10 includes an adhesive layer 19 between the substrate 11 and the intermediate layer 21 and between the intermediate layer 21 and the heat seal layer 12, as shown in FIG. be prepared.

本発明の積層体において、ポリエチレンの含有量は、90質量%以上であることが好ましい。
本発明の積層体全体におけるポリエチレンの含有量を90質量%以上とすることにより、本発明の積層体のリサイクル性を向上することができる。
なお、積層体におけるポリエチレンの含有量とは、積層体を構成する各層における樹脂材料の含有量の和に対する、ポリエチレンの含有量の割合を意味する。
The content of polyethylene in the laminate of the present invention is preferably 90% by mass or more.
By setting the content of polyethylene in the entire laminate of the present invention to 90% by mass or more, the recyclability of the laminate of the present invention can be improved.
The content of polyethylene in the laminate means the ratio of the content of polyethylene to the sum of the contents of the resin materials in the layers constituting the laminate.

以下、本発明の積層体を構成する各層について説明する。 Each layer constituting the laminate of the present invention will be described below.

<基材>
本発明の積層体が備える基材は、ポリエチレンにより構成されており、また下記するヒートシール層も同様にポリエチレンにより構成される。このような構成とすることにより、積層体のリサイクル性を向上することができる。
<Base material>
The base material of the laminate of the present invention is made of polyethylene, and the heat seal layer described below is also made of polyethylene. With such a configuration, it is possible to improve the recyclability of the laminate.

基材は、ポリエチレンにより構成される延伸フィルムを使用し、これにより積層体の耐熱性および強度を向上することができる。また、基材への印刷適性を向上することができる。
延伸フィルムとしては、一軸延伸フィルムであっても、二軸延伸フィルムであってもよい。
A stretched film made of polyethylene is used as the substrate, which can improve the heat resistance and strength of the laminate. Moreover, the printability to the base material can be improved.
The stretched film may be a uniaxially stretched film or a biaxially stretched film.

延伸フィルムの長手方向(MD)の延伸倍率は、2倍以上10倍以下であることが好ましく、3倍以上7倍以下であることが好ましい。
延伸フィルムの長手方向(MD)の延伸倍率を2倍以上とすることにより、本発明の積層体の強度および耐熱性を向上することができる。さらに、基材への印刷適性を向上することができる。また、基材の透明性を向上することができるため、基材のヒートシール層側表面に画像を形成した場合に、その視認性を向上させることができる。一方、延伸フィルムの長手方向(MD)の延伸倍率の上限値は、特に制限されるものではないが、延伸フィルムの破断限界の観点からは10倍以下とすることが好ましい。
The stretching ratio in the longitudinal direction (MD) of the stretched film is preferably 2 times or more and 10 times or less, and preferably 3 times or more and 7 times or less.
By setting the stretch ratio of the stretched film in the longitudinal direction (MD) to 2 times or more, the strength and heat resistance of the laminate of the present invention can be improved. Furthermore, the printability to the base material can be improved. Moreover, since the transparency of the base material can be improved, the visibility of an image formed on the surface of the base material on the heat seal layer side can be improved. On the other hand, the upper limit of the stretching ratio in the longitudinal direction (MD) of the stretched film is not particularly limited, but from the viewpoint of the breaking limit of the stretched film, it is preferably 10 times or less.

また、延伸フィルムの横手方向(TD)の延伸倍率は、2倍以上10倍以下であることが好ましく、3倍以上7倍以下であることが好ましい。
延伸フィルムの横手方向(TD)の延伸倍率を2倍以上とすることにより、本発明の積層体の強度および耐熱性を向上することができる。さらに、基材への印刷適性を向上することができる。また、基材の透明性を向上することができるため、基材のヒートシール層側表面に画像を形成した場合に、その視認性を向上させることができる。一方、延伸フィルムの横手方向(TD)の延伸倍率の上限値は、特に制限されるものではないが、延伸フィルムの破断限界の観点からは10倍以下とすることが好ましい。
The stretch ratio in the transverse direction (TD) of the stretched film is preferably 2 times or more and 10 times or less, and preferably 3 times or more and 7 times or less.
By setting the stretch ratio of the stretched film in the transverse direction (TD) to 2 times or more, the strength and heat resistance of the laminate of the present invention can be improved. Furthermore, the printability to the base material can be improved. Moreover, since the transparency of the base material can be improved, the visibility of an image formed on the surface of the base material on the heat seal layer side can be improved. On the other hand, the upper limit of the stretching ratio in the transverse direction (TD) of the stretched film is not particularly limited, but from the viewpoint of the breaking limit of the stretched film, it is preferably 10 times or less.

延伸フィルムのヘイズ値は、30%以下であることが好ましく、20%以下であることがより好ましい。これにより、延伸フィルムの透明性を向上することができる。
なお、本発明において、延伸フィルムのヘイズ値は、JIS K 7105に準拠して測定する。
The haze value of the stretched film is preferably 30% or less, more preferably 20% or less. Thereby, the transparency of a stretched film can be improved.
In addition, in this invention, the haze value of a stretched film is measured based on JISK7105.

基材は、その表面に画像が形成されていてもよい。
外気との接触を防止することができ、経時的な劣化を防止することができるため、下記するヒートシール層が設けられる面側に、画像が形成されていることが好ましい。
形成される画像は、特に限定されず、文字、柄、記号およびこれらの組み合わせなどが表される。
基材への画像形成は、バイオマス由来のインキを用いて行われることが好ましく、これにより本発明の積層体を用いて、環境負荷のより少ない包装材料を作製することができる。
画像の形成方法は、特に限定されるものではなく、グラビア印刷法、オフセット印刷法、フレキソ印刷法などの従来公知の印刷法を挙げることができる。これらの中でも、環境負荷の観点から、フレキソ印刷法が好ましい。
The substrate may have an image formed on its surface.
Since it is possible to prevent contact with the outside air and prevent deterioration over time, it is preferable that an image is formed on the side on which the heat seal layer described below is provided.
The image to be formed is not particularly limited, and may represent characters, patterns, symbols, combinations thereof, and the like.
Image formation on the substrate is preferably carried out using a biomass-derived ink, so that the laminate of the present invention can be used to produce a packaging material with less environmental impact.
The image forming method is not particularly limited, and conventionally known printing methods such as gravure printing, offset printing, and flexographic printing can be used. Among these, the flexographic printing method is preferable from the viewpoint of environmental load.

本発明の積層体が備える基材は、高密度ポリエチレン層と中密度ポリエチレン層と低密度ポリエチレン層、直鎖状低密度ポリエチレン層または超低密度ポリエチレン層(以下、記載簡略化のため、該段落においては、基材中間層という)と中密度ポリエチレン層と高密度ポリエチレン層との五層共押延伸フィルムからなる構成を有する。
このような構成とすることにより、フィルムの延伸適性を向上することができる。また、本発明の積層体の強度および耐熱性を向上することができる。また、基材におけるカールの発生を防止することができる。
さらに、下記するようにフィルムの生産効率を向上することができる。
このとき、高密度ポリエチレン層の厚さは、中密度ポリエチレン層の厚さよりも薄いことが好ましい。
高密度ポリエチレン層の厚さと、中密度ポリエチレン層の厚さとの比は、1/10以上1/1以下であることが好ましく、1/5以上1/2以下であることがより好ましい。
高密度ポリエチレン層の厚さと、中密度ポリエチレン層の厚さとの比を1/10以上とすることにより、本発明の積層体の強度および耐熱性を向上することができる。また、高密度ポリエチレン層の厚さと、中密度ポリエチレン層の厚さとの比を1/1以下とすることにより、フィルムの延伸適性を向上することができる。
また、高密度ポリエチレン層の厚さは、基材中間層の厚さと同じまたは中間層の厚さよりも厚いことが好ましい。
高密度ポリエチレン層の厚さと、基材中間層の厚さとの比は、1/0.25以上1/2以下であることが好ましく、1/0.5以上1/1以下であることがより好ましい。
高密度ポリエチレン層の厚さと、基材中間層の厚さとの比を1/0.25以上とすることにより、耐熱性を向上することができる。また、高密度ポリエチレン層の厚さと、基材中間層の厚さとの比を1/1以下とすることにより、層間の密着性を向上することができる。
各高密度ポリエチレン層の厚さは、1μm以上、20μm以下であることが好ましく、2μm以上、10μm以下であることがより好ましい。
高密度ポリエチレン層の厚さを、1μm以上とすることにより、本発明の積層体の強度および耐熱性をより向上することができる。また、高密度ポリエチレン層の厚さを、20μm以下とすることにより、本発明の積層体の加工適性をより向上することができる。
各中密度ポリエチレン層の厚さは、1μm以上、30μm以下であることが好ましく、5μm以上、20μm以下であることがより好ましい。
中密度ポリエチレン層の厚さを、1μm以上とすることにより、フィルムの延伸適性をより向上することができる。また、中密度ポリエチレン層の厚さを、30μm以下とすることにより、本発明の積層体の加工適性をより向上することができる。
基材中間層の厚さは、1μm以上、10μm以下であることが好ましく、2μm以上、5μm以下であることがより好ましい。
基材中間層の厚さを、1μm以上とすることにより、高密度ポリエチレン層と中密度ポリエチレン層との密着性をより向上することができる。また基材中間層の厚さを、10μm以下とすることにより、本発明の積層体の加工適性をより向上することができる。
The base material included in the laminate of the present invention includes a high-density polyethylene layer, a medium-density polyethylene layer, a low-density polyethylene layer, a linear low-density polyethylene layer, or an ultra-low-density polyethylene layer (hereinafter, for simplification of the description, the paragraph has a configuration consisting of a five-layer coextruded stretched film of a substrate intermediate layer), a medium density polyethylene layer and a high density polyethylene layer.
With such a configuration, the stretchability of the film can be improved. Moreover, the strength and heat resistance of the laminate of the present invention can be improved. Moreover, it is possible to prevent curling in the base material.
Furthermore, film production efficiency can be improved as described below.
At this time, the thickness of the high-density polyethylene layer is preferably thinner than the thickness of the medium-density polyethylene layer.
The ratio of the thickness of the high-density polyethylene layer to the thickness of the medium-density polyethylene layer is preferably 1/10 or more and 1/1 or less, more preferably 1/5 or more and 1/2 or less.
By setting the ratio of the thickness of the high-density polyethylene layer to the thickness of the medium-density polyethylene layer to 1/10 or more, the strength and heat resistance of the laminate of the present invention can be improved. Further, by setting the ratio of the thickness of the high-density polyethylene layer to the thickness of the medium-density polyethylene layer to 1/1 or less, the stretchability of the film can be improved.
Also, the thickness of the high-density polyethylene layer is preferably the same as or thicker than the thickness of the substrate intermediate layer.
The ratio of the thickness of the high-density polyethylene layer to the thickness of the substrate intermediate layer is preferably 1/0.25 or more and 1/2 or less, more preferably 1/0.5 or more and 1/1 or less. preferable.
Heat resistance can be improved by setting the ratio of the thickness of the high-density polyethylene layer to the thickness of the substrate intermediate layer to 1/0.25 or more. Further, by setting the ratio of the thickness of the high-density polyethylene layer to the thickness of the substrate intermediate layer to 1/1 or less, the adhesion between the layers can be improved.
The thickness of each high-density polyethylene layer is preferably 1 μm or more and 20 μm or less, more preferably 2 μm or more and 10 μm or less.
By setting the thickness of the high-density polyethylene layer to 1 μm or more, the strength and heat resistance of the laminate of the present invention can be further improved. Further, by setting the thickness of the high-density polyethylene layer to 20 μm or less, the processability of the laminate of the present invention can be further improved.
The thickness of each medium-density polyethylene layer is preferably 1 μm or more and 30 μm or less, more preferably 5 μm or more and 20 μm or less.
By setting the thickness of the medium-density polyethylene layer to 1 μm or more, the stretchability of the film can be further improved. Further, by setting the thickness of the medium-density polyethylene layer to 30 μm or less, the processability of the laminate of the present invention can be further improved.
The thickness of the substrate intermediate layer is preferably 1 μm or more and 10 μm or less, more preferably 2 μm or more and 5 μm or less.
By setting the thickness of the substrate intermediate layer to 1 μm or more, the adhesion between the high-density polyethylene layer and the medium-density polyethylene layer can be further improved. Further, by setting the thickness of the substrate intermediate layer to 10 μm or less, the processability of the laminate of the present invention can be further improved.

一実施形態において、このような構成の基材は、例えば、インフレーション法により作製することができる。
具体的には、外側から、高密度ポリエチレンと、中密度ポリエチレン層と、および低密度ポリエチレン層、直鎖状低密度ポリエチレン層または超低密度ポリエチレン層とをチューブ状に共押出し、次いで、対向する低密度ポリエチレン層、直鎖状低密度ポリエチレン層または超低密度ポリエチレン層同士を、これをゴムロールなどにより、圧着することによって作製することができる。
このような方法により作製することにより、製造における欠陥品数を顕著に低減することができ、最終的には、生産効率を向上することができる。
また、インフレーション製膜機において、延伸も合わせて行うことができ、これにより、生産効率をより向上することができる。
In one embodiment, a substrate having such a configuration can be produced, for example, by an inflation method.
Specifically, from the outside, a high-density polyethylene, a medium-density polyethylene layer, and a low-density polyethylene layer, a linear low-density polyethylene layer, or an ultra-low-density polyethylene layer are coextruded into a tubular shape, and then facing each other. A low-density polyethylene layer, a linear low-density polyethylene layer, or an ultra-low-density polyethylene layer can be produced by pressing them together with a rubber roll or the like.
By manufacturing by such a method, the number of defective products in manufacturing can be remarkably reduced, and finally the production efficiency can be improved.
In addition, stretching can also be performed in the inflation film forming machine, thereby further improving production efficiency.

本発明において、高密度ポリエチレンとしては、密度が0.945g/cm以上のポリエチレンを使用することができ、中密度ポリエチレンとしては、密度が0.925g/cm以上0.945g/cm未満のポリエチレンを使用することができ、低密度ポリエチレンとしては、密度が0.900g/cm以上0.925g/cm未満のポリエチレンを使用することができ、直鎖状低密度ポリエチレンとしては、密度が0.900g/cm以上0.925g/cm未満のポリエチレンを使用することができ、超低密度ポリエチレンとしては、密度が0.900g/cm未満のポリエチレンを使用することができる。 In the present invention, as the high-density polyethylene, polyethylene having a density of 0.945 g/cm 3 or more can be used, and as the medium-density polyethylene, a density of 0.925 g/cm 3 or more and less than 0.945 g/cm 3 can be used. As the low-density polyethylene, polyethylene having a density of 0.900 g/cm 3 or more and less than 0.925 g/cm 3 can be used, and as the linear low-density polyethylene, the density of 0.900 g/cm 3 or more and less than 0.925 g/cm 3 can be used, and polyethylene with a density of less than 0.900 g/cm 3 can be used as the ultra-low density polyethylene.

上記したような密度や分岐の違うポリエチレンは、重合方法を適宜選択することによって得ることができる。例えば、重合触媒として、チーグラー・ナッタ触媒などのマルチサイト触媒や、メタロセン系触媒などのシングルサイト触媒を用いて、気相重合、スラリー重合、溶液重合、および高圧イオン重合のいずれかの方法により、1段または2段以上の多段で行うことが好ましい。 Polyethylenes having different densities and branches as described above can be obtained by appropriately selecting a polymerization method. For example, using a multi-site catalyst such as a Ziegler-Natta catalyst or a single-site catalyst such as a metallocene catalyst as a polymerization catalyst, by any of gas phase polymerization, slurry polymerization, solution polymerization, and high pressure ion polymerization, It is preferable to carry out in one stage or in multiple stages of two or more stages.

上記のシングルサイト触媒とは、均一な活性種を形成しうる触媒であり、通常、メタロセン系遷移金属化合物や非メタロセン系遷移金属化合物と活性化用助触媒とを接触させることにより、調整される。シングルサイト触媒は、マルチサイト触媒に比べて、活性点構造が均一であるため、高分子量かつ均一度の高い構造の重合体を重合することができるため好ましい。シングルサイト触媒としては、特に、メタロセン系触媒を用いることが好ましい。メタロセン系触媒は、シクロペンタジエニル骨格を有する配位子を含む周期律表第IV族の遷移金属化合物と、助触媒と、必要により有機金属化合物と、担体の各触媒成分とを含む触媒である。 The above-mentioned single-site catalyst is a catalyst capable of forming uniform active species, and is usually prepared by contacting a metallocene-based transition metal compound or a non-metallocene-based transition metal compound with an activating cocatalyst. . A single-site catalyst has a more uniform active site structure than a multi-site catalyst, and is therefore preferable because it can polymerize a polymer having a high molecular weight and a highly uniform structure. As the single-site catalyst, it is particularly preferable to use a metallocene-based catalyst. The metallocene catalyst is a catalyst containing a transition metal compound of Group IV of the periodic table containing a ligand having a cyclopentadienyl skeleton, a cocatalyst, an organometallic compound if necessary, and each catalyst component of a carrier. be.

上記のシクロペンタジエニル骨格を有する配位子を含む周期律表第IV族の遷移金属化合物において、そのシクロペンタジエニル骨格とは、シクロペンタジエニル基、置換シクロペンタジエニル基などである。置換シクロペンタジエニル基としては、炭素数1~30の炭化水素基、シリル基、シリル置換アルキル基、シリル置換アリール基、シアノ基、シアノアルキル基、シアノアリール基、ハロゲン基、ハロアルキル基、ハロシリル基などから選ばれた少なくとも一種の置換基を有するものである。その置換シクロペンタジエニル基の置換基は2個以上有していてもよく、また置換基同士が互いに結合して環を形成し、インデニル環、フルオレニル環、アズレニル環、その水添体などを形成してもよい。置換基同士が互いに結合し形成された環がさらに互いに置換基を有していてもよい。 In the transition metal compound of Group IV of the periodic table containing a ligand having a cyclopentadienyl skeleton, the cyclopentadienyl skeleton is a cyclopentadienyl group, a substituted cyclopentadienyl group, or the like. . Substituted cyclopentadienyl groups include hydrocarbon groups having 1 to 30 carbon atoms, silyl groups, silyl-substituted alkyl groups, silyl-substituted aryl groups, cyano groups, cyanoalkyl groups, cyanoaryl groups, halogen groups, haloalkyl groups and halosilyl groups. It has at least one substituent selected from groups and the like. The substituted cyclopentadienyl group may have two or more substituents, and the substituents are bonded to each other to form a ring, such as an indenyl ring, a fluorenyl ring, an azulenyl ring, and hydrogenated forms thereof. may be formed. A ring formed by combining substituents with each other may further have a substituent with each other.

シクロペンタジエニル骨格を有する配位子を含む周期律表第IV族の遷移金属化合物において、その遷移金属としては、ジルコニウム、チタン、ハフニウムなどが挙げられ、特にジルコニウム、ハフニウムが好ましい。該遷移金属化合物は、シクロペンタジエニル骨格を有する配位子としては通常2個を有し、各々のシクロペンタジエニル骨格を有する配位子は架橋基により互いに結合しているものが好ましい。なお、架橋基としては炭素数1~4のアルキレン基、シリレン基、ジアルキルシリレン基、ジアリールシリレン基などの置換シリレン基、ジアルキルゲルミレン基、ジアリールゲルミレン基などの置換ゲルミレン基などが挙げられる。好ましくは、置換シリレン基である。上記のシクロペンタジエニル骨格を有する配位子を含む周期律表第IV族の遷移金属化合物は、一種または二種以上の混合物を触媒成分とすることができる。 In the transition metal compound of Group IV of the periodic table containing a ligand having a cyclopentadienyl skeleton, examples of the transition metal include zirconium, titanium and hafnium, with zirconium and hafnium being particularly preferred. The transition metal compound usually has two ligands having a cyclopentadienyl skeleton, and each ligand having a cyclopentadienyl skeleton is preferably bonded to each other by a bridging group. The bridging group includes an alkylene group having 1 to 4 carbon atoms, a silylene group, a dialkylsilylene group, a substituted silylene group such as a diarylsilylene group, and a substituted germylene group such as a dialkylgermylene group and a diarylgermylene group. A substituted silylene group is preferred. One or a mixture of two or more of the transition metal compounds of Group IV of the periodic table containing a ligand having a cyclopentadienyl skeleton can be used as a catalyst component.

助触媒としては、上記の周期律表第IV族の遷移金属化合物を重合触媒として有効になしうる、または触媒的に活性化された状態のイオン性電荷を均衝させうるものをいう。助触媒としては、有機アルミニウムオキシ化合物のベンゼン可溶のアルミノキサンやベンゼン不溶の有機アルミニウムオキシ化合物、イオン交換性層状珪酸塩、ホウ素化合物、活性水素基含有あるいは非含有のカチオンと非配位性アニオンからなるイオン性化合物、酸化ランタンなどのランタノイド塩、酸化スズ、フルオロ基を含有するフェノキシ化合物などが挙げられる。 The co-catalyst is one that can make the above Group IV transition metal compound of the periodic table effective as a polymerization catalyst, or one that can balance the ionic charges in a catalytically activated state. Examples of co-catalysts include benzene-soluble aluminoxanes of organoaluminumoxy compounds, benzene-insoluble organoaluminumoxy compounds, ion-exchange layered silicates, boron compounds, cations containing or not containing active hydrogen groups, and non-coordinating anions. ionic compounds, lanthanide salts such as lanthanum oxide, tin oxide, and phenoxy compounds containing a fluoro group.

シクロペンタジエニル骨格を有する配位子を含む周期律表第IV族の遷移金属化合物は、無機または有機化合物の担体に担持して使用されてもよい。該担体としては無機または有機化合物の多孔質酸化物が好ましく、具体的には、モンモリロナイトなどのイオン交換性層状珪酸塩、SiO、Al、MgO、ZrO、TiO、B、CaO、ZnO、BaO、ThOなどまたはこれらの混合物が挙げられる。また更に必要により使用される有機金属化合物としては、有機アルミニウム化合物、有機マグネシウム化合物、有機亜鉛化合物などが例示される。このうち有機アルミニウムが好適に使用される。 The transition metal compound of Group IV of the periodic table containing a ligand having a cyclopentadienyl skeleton may be supported on an inorganic or organic compound carrier and used. As the carrier, porous oxides of inorganic or organic compounds are preferred, and specific examples include ion-exchange layered silicates such as montmorillonite, SiO 2 , Al 2 O 3 , MgO, ZrO 2 , TiO 2 and B 2 O. 3 , CaO, ZnO, BaO, ThO2 , etc. or mixtures thereof. Examples of organometallic compounds that may be used if necessary include organoaluminum compounds, organomagnesium compounds, and organozinc compounds. Of these, organic aluminum is preferably used.

また、本発明の特性を損なわない範囲において、エチレンと他のモノマーとの共重合体を使用することもできる。エチレン共重合体としては、エチレンと炭素数3~20のα-オレフィンとからなる共重合体が挙げられ、炭素数3~20のα-オレフィンとしては、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン、3ーメチルー1-ブテン、4-メチル-1-ペンテンおよび6-メチル-1-ヘプテンなどが挙げられる。また、本発明の目的を損なわない範囲であれば、酢酸ビニルまたはアクリル酸エステルなどとの共重合体であってもよい。 Copolymers of ethylene and other monomers can also be used as long as the properties of the present invention are not impaired. Ethylene copolymers include copolymers composed of ethylene and α-olefins having 3 to 20 carbon atoms, and α-olefins having 3 to 20 carbon atoms include propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene, 3-methyl-1-butene, 4-methyl-1-pentene and 6-methyl- 1-heptene and the like. In addition, it may be a copolymer with vinyl acetate or acrylic acid ester as long as it does not impair the purpose of the present invention.

また、本発明においては、上記ポリエチレンなどを得るための原料として、化石燃料から得られるエチレンに代えて、バイオマス由来のエチレンを用いてもよい。このようなバイオマス由来のポリエチレンはカーボニュートラルな材料であるため、より一層、環境負荷の少ない包装材料とすることができる。このようなバイオマス由来のポリエチレンは、例えば、特開2013-177531号公報に記載されているような方法にて製造することができる。また、市販されているバイオマス由来のポリエチレン(例えば。ブラスケム社から市販されているグリーンPEなど)を使用してもよい。 In addition, in the present invention, biomass-derived ethylene may be used instead of ethylene obtained from fossil fuels as a raw material for obtaining the polyethylene or the like. Since such biomass-derived polyethylene is a carbon-neutral material, it can be used as a packaging material with even less environmental impact. Such biomass-derived polyethylene can be produced, for example, by a method as described in JP-A-2013-177531. Also, commercially available biomass-derived polyethylenes, such as Green PE from Braskem, may be used.

また、メカニカルリサイクルによりリサイクルされたポリエチレンを使用することもできる。ここで、メカニカルリサイクルとは、一般に、回収されたポリエチレンフィルムなどを粉砕、アルカリ洗浄してフィルム表面の汚れ、異物を除去した後、高温・減圧下で一定時間乾燥してフィルム内部に留まっている汚染物質を拡散させ除染を行い、ポリエチレンからなるフィルムの汚れを取り除き、再びポリエチレンに戻す方法である。 Polyethylene recycled by mechanical recycling can also be used. Here, mechanical recycling generally means that the recovered polyethylene film or the like is pulverized and washed with alkali to remove dirt and foreign matter from the film surface, and then dried for a certain period of time under high temperature and reduced pressure to remain inside the film. In this method, the contaminants are diffused to decontaminate the polyethylene film, and then the dirt is removed from the polyethylene film, which is then returned to polyethylene.

基材は、本発明の特性を損なわない範囲において、添加剤を含むことができ、例えば、架橋剤、酸化防止剤、アンチブロッキング剤、滑(スリップ)剤、紫外線吸収剤、光安定剤、充填剤、補強剤、帯電防止剤、顔料および改質用樹脂などが挙げられる。 The base material may contain additives as long as they do not impair the characteristics of the present invention. agents, reinforcing agents, antistatic agents, pigments and modifying resins.

また、基材は、表面処理が施されていることが好ましい。これにより、隣接する層との密着性を向上することができる。
表面処理の方法は特に限定されず、例えば、コロナ放電処理、オゾン処理、酸素ガスおよび/または窒素ガスなどを用いた低温プラズマ処理、グロー放電処理などの物理的処理、並びに化学薬品を用いた酸化処理などの化学的処理が挙げられる。
また、基材表面に従来公知のアンカーコート剤を用いて、アンカーコート層を形成してもよい。
Moreover, it is preferable that the base material is surface-treated. This can improve adhesion with adjacent layers.
The method of surface treatment is not particularly limited, and examples include corona discharge treatment, ozone treatment, low temperature plasma treatment using oxygen gas and/or nitrogen gas, physical treatment such as glow discharge treatment, and oxidation using chemicals. Chemical treatments such as treatments are included.
Moreover, you may form an anchor-coat layer on the base-material surface using a conventionally well-known anchor-coat agent.

基材の厚さは、10μm以上50μm以下であることが好ましく、12μm以上30μm以下であることがより好ましい。
基材の厚さを10μm以上とすることにより、本発明の積層体の強度を向上することができる。また、基材の厚さを50μm以下とすることにより、本発明の積層体の加工適性を向上することができる。
The thickness of the substrate is preferably 10 μm or more and 50 μm or less, more preferably 12 μm or more and 30 μm or less.
By setting the thickness of the substrate to 10 μm or more, the strength of the laminate of the present invention can be improved. Further, by setting the thickness of the base material to 50 μm or less, the processability of the laminate of the present invention can be improved.

基材は、ポリエチレンをTダイ法またはインフレーション法などにより製膜し、フィルムを作製した後、延伸することにより作製することができる。 The substrate can be produced by forming a polyethylene film by a T-die method, an inflation method, or the like, producing a film, and then stretching the film.

Tダイ法により、基材を作製する場合、各層を構成するポリエチレンのMFRは、3g/10分以上20g/10分以下であることが好ましい。
ポリエチレンのMFRを3g/10分以上とすることにより、本発明の積層体の加工適性を向上することができる。また、ポリエチレンのMFRを20g/10分以下とすることにより、樹脂フィルムが破断してしまうことを防止することができる。
When the substrate is produced by the T-die method, the MFR of polyethylene constituting each layer is preferably 3 g/10 minutes or more and 20 g/10 minutes or less.
By setting the MFR of polyethylene to 3 g/10 minutes or more, the processability of the laminate of the present invention can be improved. Further, by setting the MFR of polyethylene to 20 g/10 minutes or less, it is possible to prevent the resin film from breaking.

インフレーション法により、基材を作製する場合、各層を構成するポリエチレンのMFRは、0.5g/10分以上5g/10分以下であることが好ましい。
ポリエチレンのMFRを0.5g/10分以上とすることにより、本発明の積層体の加工適性を向上することができる。また、ポリエチレンのMFRを5g/10分以下とすることにより、製膜性を向上することができる。
When the substrate is produced by the inflation method, the MFR of polyethylene constituting each layer is preferably 0.5 g/10 min or more and 5 g/10 min or less.
By setting the MFR of polyethylene to 0.5 g/10 minutes or more, the processability of the laminate of the present invention can be improved. Further, by setting the MFR of polyethylene to 5 g/10 minutes or less, the film formability can be improved.

なお、基材は上記方法により作製されたものに限られず、市販されるものを使用してもよい。 In addition, the base material is not limited to the one produced by the above method, and a commercially available one may be used.

<ヒートシール層>
本発明の積層体が備えるヒートシール層は、上記した基材同様、ポリエチレンにより構成されていることを特徴とする。このような構成とすることにより、包装材料として十分な強度や耐熱性を有し、かつリサイクル可能な包装材料とすることができる。
但し、延伸ポリエチレンフィルムは、未延伸のポリエチレン樹脂フィルムにより形成するか、或いはポリエチレンの溶融押出により形成する。
<Heat seal layer>
The heat-sealing layer provided in the laminate of the present invention is characterized by being made of polyethylene, like the base material described above. With such a configuration, it is possible to obtain a packaging material that has sufficient strength and heat resistance as a packaging material and is recyclable.
However, the stretched polyethylene film is formed from an unstretched polyethylene resin film or by melt extrusion of polyethylene.

ヒートシール層を構成するポリエチレンは、ヒートシール性という観点からは、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)および超密度ポリエチレン(VLDPE)が好ましい。
本発明の特性を損なわない範囲において、エチレンとその他のモノマーとの共重合体を使用することができる。
また、環境負荷の観点から、バイオマス由来のポリエチレンまたはリサイクルされたポリエチレンであることが好ましい。
Low density polyethylene (LDPE), linear low density polyethylene (LLDPE) and very high density polyethylene (VLDPE) are preferable from the viewpoint of heat sealability.
Copolymers of ethylene and other monomers can be used as long as the characteristics of the present invention are not impaired.
Moreover, from the viewpoint of environmental load, polyethylene derived from biomass or recycled polyethylene is preferable.

ヒートシール層は、本発明の特性を損なわない範囲において、上記添加剤を含むことができる。 The heat-sealing layer can contain the above-mentioned additives as long as the properties of the present invention are not impaired.

一実施形態において、ヒートシール層は多層構造を有し、中間層として、中密度ポリエチレンおよび高密度ポリエチレンの少なくとも一方を含む層を備える。
具体的には、低密度ポリエチレン、直鎖状低密度ポリエチレン、および超低密度ポリエチレンの少なくともいずれかを含む層/中密度ポリエチレンおよび高密度ポリエチレンの少なくともいずれかを含む層/低密度ポリエチレン、直鎖状低密度ポリエチレン、および超低密度ポリエチレンの少なくともいずれかを含む層からなる構成とすることができる。
このような構成とすることにより、ヒートシール性を維持しつつ、本発明の積層体の製袋適性および強度をより向上することができる。
In one embodiment, the heat-seal layer has a multi-layer structure and comprises, as an intermediate layer, a layer containing at least one of medium density polyethylene and high density polyethylene.
Specifically, a layer containing at least one of low-density polyethylene, linear low-density polyethylene, and ultra-low-density polyethylene/layer containing at least one of medium-density polyethylene and high-density polyethylene/low-density polyethylene, linear It can be configured by a layer containing at least one of low-density polyethylene and ultra-low-density polyethylene.
With such a configuration, the bag-making aptitude and strength of the laminate of the present invention can be further improved while maintaining the heat-sealing property.

また、他の実施形態において、ヒートシール層は、低密度ポリエチレン、直鎖状低密度ポリエチレン、および超低密度ポリエチレンの少なくともいずれかを含む層/バイオマス由来のポリエチレンを含む層/低密度ポリエチレン、直鎖状低密度ポリエチレン、および超低密度ポリエチレンの少なくともいずれかを含む層からなる構成とすることができる。
このような構成とすることにより、本発明の積層体を用いて作製される包装材料などの環境負荷をより低減することができる。
Also, in other embodiments, the heat seal layer is a layer comprising at least one of low density polyethylene, linear low density polyethylene, and ultra-low density polyethylene/layer comprising biomass-derived polyethylene/low density polyethylene, straight It can be configured by a layer containing at least one of linear low-density polyethylene and ultra-low-density polyethylene.
With such a configuration, the environmental load of packaging materials and the like produced using the laminate of the present invention can be further reduced.

ヒートシール層の厚さは、本発明の積層体により作製される包装材料に充填する内容物の重量に応じ適宜変更することが好ましい。
例えば、1g以上、200g以下の内容物を充填する図6に示すような包装袋20を作製する場合、ヒートシール層の厚さは、20μm以上、60μm以下であることが好ましい。
ヒートシール層の厚さを20μm以上とすることにより、充填された内容物が、ヒートシール層の破損により漏れてしまうことを防止することができる。また、ヒートシール層を60μm以下とすることにより、本発明の積層体の加工適性を向上することができる。
It is preferable that the thickness of the heat seal layer is appropriately changed according to the weight of the contents to be filled in the packaging material produced from the laminate of the present invention.
For example, when producing a packaging bag 20 as shown in FIG. 6 filled with contents of 1 g or more and 200 g or less, the thickness of the heat seal layer is preferably 20 μm or more and 60 μm or less.
By setting the thickness of the heat-seal layer to 20 μm or more, it is possible to prevent the filled content from leaking due to breakage of the heat-seal layer. Further, by setting the heat seal layer to 60 μm or less, the workability of the laminate of the present invention can be improved.

また、例えば、50g以上、2000g以下の内容物を充填する図7に示すようなスタンドパウチ30を作製する場合、ヒートシール層の厚さは、50μm以上、200μm以下であることが好ましい。
ヒートシール層の厚さを50μm以上とすることにより、充填された内容物が、ヒートシール層の破損により漏れてしまうことを防止することができる。また、ヒートシール層の厚さを200μm以下とすることにより、本発明の積層体の加工適性を向上することができる。
なお、図6および7における斜線部分は、ヒートシール部である
Further, for example, when producing a stand-up pouch 30 as shown in FIG. 7 filled with contents of 50 g or more and 2000 g or less, the thickness of the heat seal layer is preferably 50 μm or more and 200 μm or less.
By setting the thickness of the heat-seal layer to 50 μm or more, it is possible to prevent the filled content from leaking due to breakage of the heat-seal layer. Further, by setting the thickness of the heat seal layer to 200 μm or less, the workability of the laminate of the present invention can be improved.
6 and 7 are heat-sealed portions.

<蒸着膜>
本発明の積層体は、基材と、ヒートシール層との間に蒸着膜を備えることができる。これにより、積層体のガスバリア性、具体的には、酸素バリア性及び水蒸気バリア性を向上することができる。
<Deposited film>
The laminate of the present invention can have a deposited film between the substrate and the heat seal layer. Thereby, the gas barrier property of the laminate, specifically, the oxygen barrier property and the water vapor barrier property can be improved.

蒸着膜としては、アルミニウムなどの金属、並びに酸化アルミニウム、酸化珪素、酸化マグシウム、酸化カルシウム、酸化ジルコニウム、酸化チタン、酸化ホウ素、酸化ハフニウム、酸化バリウムなどの無機酸化物から構成される、蒸着膜を挙げることができる。 As the deposited film, a deposited film composed of a metal such as aluminum and an inorganic oxide such as aluminum oxide, silicon oxide, magnesium oxide, calcium oxide, zirconium oxide, titanium oxide, boron oxide, hafnium oxide, and barium oxide is used. can be mentioned.

また、蒸着膜の厚さは、1nm以上150nm以下であることが好ましく、5nm以上60nm以下であることがより好ましく、10nm以上40nm以下であることがさらに好ましい。
蒸着膜の厚さを1nm以上とすることにより、本発明の積層体の酸素バリア性および水蒸気バリア性をより向上することができる。また、蒸着膜の厚さを150nm以下とすることにより、蒸着膜におけるクラックの発生を防止することができると共に、本発明の積層体のリサイクル性を向上することができる。
Also, the thickness of the deposited film is preferably 1 nm or more and 150 nm or less, more preferably 5 nm or more and 60 nm or less, and even more preferably 10 nm or more and 40 nm or less.
By setting the thickness of the deposited film to 1 nm or more, the oxygen barrier property and water vapor barrier property of the laminate of the present invention can be further improved. Further, by setting the thickness of the vapor deposition film to 150 nm or less, it is possible to prevent the generation of cracks in the vapor deposition film and improve the recyclability of the laminate of the present invention.

蒸着膜が、アルミニウム蒸着膜であるには、そのOD値は、2以上3.5以下であることが好ましい。これにより、本発明の積層体の生産性を維持しつつ、酸素バリア性および水蒸気バリア性を向上することができる。なお、本発明において、OD値は、JIS-K-7361に準拠して測定することができる。 In order for the deposited film to be an aluminum deposited film, the OD value is preferably 2 or more and 3.5 or less. Thereby, the oxygen barrier property and the water vapor barrier property can be improved while maintaining the productivity of the laminate of the present invention. In the present invention, the OD value can be measured according to JIS-K-7361.

蒸着膜は、従来公知の方法を用いて形成することができ、例えば、真空蒸着法、スパッタリング法およびイオンプレーティング法などの物理気相成長法(Physical Vapor Deposition法、PVD法)、並びにプラズマ化学気相成長法、熱化学気相成長法および光化学気相成長法などの化学気相成長法(Chemical Vapor Deposition法、CVD法)などを挙げることができる。 The deposited film can be formed using a conventionally known method, for example, a physical vapor deposition method (Physical Vapor Deposition method, PVD method) such as a vacuum deposition method, a sputtering method and an ion plating method, and a plasma chemical method. Chemical vapor deposition methods (Chemical Vapor Deposition method, CVD method) such as vapor deposition method, thermal chemical vapor deposition method, and photochemical vapor deposition method can be mentioned.

また、例えば、物理気相成長法と化学気相成長法の両者を併用して異種の無機酸化物の蒸着膜の2層以上からなる複合膜を形成して使用することもできる。蒸着チャンバーの真空度としては、酸素導入前においては、10-2~10-8mbar程度が好ましく、酸素導入後においては、10-1~10-6mbar程度が好ましい。なお、酸素導入量などは、蒸着機の大きさなどによって異なる。導入する酸素には、キャリヤーガスとしてアルゴンガス、ヘリウムガス、窒素ガスなどの不活性ガスを支障のない範囲で使用してもよい。フィルムの搬送速度は、10~800m/min程度とすることができる。 Further, for example, both physical vapor deposition and chemical vapor deposition may be used in combination to form a composite film composed of two or more layers of deposited films of different inorganic oxides. The degree of vacuum in the deposition chamber is preferably about 10-2 to 10-8 mbar before introducing oxygen, and about 10-1 to 10-6 mbar after introducing oxygen. The amount of oxygen to be introduced and the like differ depending on the size of the vapor deposition machine and the like. As the oxygen to be introduced, an inert gas such as argon gas, helium gas, nitrogen gas, or the like may be used as a carrier gas as long as it does not interfere. The transport speed of the film can be about 10 to 800 m/min.

蒸着膜の表面は、上記表面処理が施されていることが好ましい。これにより、隣接する層との密着性を向上することができる。 The surface of the deposited film is preferably subjected to the surface treatment described above. This can improve adhesion with adjacent layers.

<接着層>
一実施形態において、本発明の積層体は、任意の層間に、接着層を備えることができる。これにより、これら層間の密着性を向上することができる。
<Adhesive layer>
In one embodiment, the laminate of the present invention can have an adhesive layer between any layers. Thereby, the adhesion between these layers can be improved.

接着層は、少なくとも1種の接着剤を含み、1液硬化型若しくは2液硬化型、または非硬化型のいずれも接着剤であってもよい。また、接着剤は、無溶剤型の接着剤であっても、溶剤型の接着剤であってもよいが、環境負荷の観点からは、無溶剤型の接着剤が好ましく使用できる。
無溶剤型接着剤としては、例えば、ポリエーテル系接着剤、ポリエステル系接着剤、シリコーン系接着剤、エポキシ系接着剤およびウレタン系接着剤などが挙げられ、これらのなかでも2液硬化型のウレタン系接着剤を好ましく使用することができる。
溶剤型接着剤としては、例えば、ゴム系接着剤、ビニル系接着剤、シリコーン系接着剤、エポキシ系接着剤、フェノール系接着剤およびオレフィン系接着剤などが挙げられる。
The adhesive layer contains at least one kind of adhesive, and may be either a one-component curing type, a two-component curing type, or a non-curing type adhesive. The adhesive may be a non-solvent type adhesive or a solvent type adhesive, but the non-solvent type adhesive can be preferably used from the viewpoint of environmental load.
Examples of solventless adhesives include polyether adhesives, polyester adhesives, silicone adhesives, epoxy adhesives and urethane adhesives. system adhesives can be preferably used.
Examples of solvent-based adhesives include rubber-based adhesives, vinyl-based adhesives, silicone-based adhesives, epoxy-based adhesives, phenol-based adhesives, and olefin-based adhesives.

また、アルミニウム蒸着膜である蒸着膜と隣接するように接着層を設ける場合には、接着層を、ポリエステルポリオールとイソシアネート化合物とリン酸変性化合物を含む樹脂組成物の硬化物により構成することが好ましい。
接着層をこのような構成とすることにより、本発明の積層体の酸素バリア性および水蒸気バリア性をより一層向上させることができる。
また、蒸着膜を備えた積層体を包装材料に適用する際には、成形機などにより積層体に屈曲負荷がかかるため、アルミニウム蒸着膜に亀裂などが生じる恐れがある。上記したような特定の接着剤を使用することで、アルミニウム蒸着膜に亀裂が生じた場合であっても、酸素バリア性および水蒸気バリア性の低下を抑制することができる。
Further, when the adhesive layer is provided so as to be adjacent to the evaporated aluminum film, it is preferable that the adhesive layer is composed of a cured product of a resin composition containing a polyester polyol, an isocyanate compound and a phosphoric acid-modified compound. .
By configuring the adhesive layer in such a manner, the layered product of the present invention can be further improved in oxygen barrier properties and water vapor barrier properties.
In addition, when a laminate having a vapor deposition film is applied to a packaging material, a bending load is applied to the laminate by a molding machine or the like, and cracks or the like may occur in the aluminum vapor deposition film. By using the specific adhesive as described above, it is possible to suppress deterioration of oxygen barrier properties and water vapor barrier properties even when cracks occur in the aluminum deposition film.

ポリエステルポリオールは、官能基として1分子中に水酸基を2個以上有する。また、イソシアネート化合物は、官能基として1分子中にイソシアネート基を2個以上有する。
ポリエステルポリオールは、主骨格として、例えばポリエステル構造、またはポリエステルポリウレタン構造を有する。
A polyester polyol has two or more hydroxyl groups in one molecule as a functional group. Also, the isocyanate compound has two or more isocyanate groups in one molecule as functional groups.
A polyester polyol has, for example, a polyester structure or a polyester polyurethane structure as a main skeleton.

ポリエステルポリオール、イソシアネート化合物およびリン酸変性化合物を含有する樹脂組成物の具体例としては、DIC株式会社から販売されている、パスリム(PASLIM)のシリーズが使用できる。 As a specific example of the resin composition containing a polyester polyol, an isocyanate compound and a phosphoric acid-modified compound, the PASLIM series sold by DIC Corporation can be used.

該樹脂組成物は、板状無機化合物、カップリング剤、シクロデキストリンおよび/またはその誘導体などをさらに含んでいてもよい。 The resin composition may further contain plate-like inorganic compounds, coupling agents, cyclodextrins and/or derivatives thereof, and the like.

官能基として1分子中に水酸基を2個以上有するポリエステルポリオールとしては、例えば下記の〔第1例〕~〔第3例〕を用いることができる。
〔第1例〕オルト配向多価カルボン酸またはその無水物と、多価アルコールとを重縮合して得られるポリエステルポリオール
〔第2例〕グリセロール骨格を有するポリエステルポリオール
〔第3例〕イソシアヌル環を有するポリエステルポリオール
以下、各ポリエステルポリオールについて説明する。
As polyester polyols having two or more hydroxyl groups in one molecule as functional groups, for example, the following [first example] to [third example] can be used.
[Example 1] Polyester polyol obtained by polycondensation of an ortho-oriented polycarboxylic acid or its anhydride and a polyhydric alcohol [Example 2] Polyester polyol having a glycerol skeleton [Example 3] Having an isocyanuric ring Polyester Polyol Each polyester polyol will be described below.

第1例に係るポリエステルポリオールは、オルトフタル酸およびその無水物を少なくとも1種以上含む多価カルボン酸成分と、エチレングリコール、プロピレングリコール、ブチレングリコール、ネオペンチルグリコール、およびシクロヘキサンジメタノールからなる群から選ばれる少なくとも1種を含む多価アルコール成分とを重縮合して得られる重縮合体である。
特に、オルトフタル酸およびその無水物の、多価カルボン酸全成分に対する含有率が70~100質量%であるポリエステルポリオールが好ましい。
The polyester polyol according to the first example is selected from the group consisting of a polyvalent carboxylic acid component containing at least one or more of orthophthalic acid and its anhydride, and ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, and cyclohexanedimethanol. It is a polycondensate obtained by polycondensation with a polyhydric alcohol component containing at least one of the polycondensates.
In particular, a polyester polyol having a content of 70 to 100% by mass of orthophthalic acid and its anhydride relative to the total polyvalent carboxylic acid component is preferred.

第1例に係るポリエステルポリオールは、多価カルボン酸成分としてオルトフタル酸およびその無水物を必須とするが、本実施の形態の効果を損なわない範囲において、他の多価カルボン酸成分を共重合させてもよい。
具体的には、コハク酸、アジピン酸、アゼライン酸、セバシン酸およびドデカンジカルボン酸など脂肪族多価カルボン酸、無水マレイン酸、マレイン酸およびフマル酸などの不飽和結合含有多価カルボン酸、1,3-シクロペンタンジカルボン酸および1,4-シクロヘキサンジカルボン酸などの脂環族多価カルボン酸、テレフタル酸、イソフタル酸、ピロメリット酸、トリメリット酸、1,4-ナフタレンジカルボン酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、ナフタル酸、ビフェニルジカルボン酸、1,2-ビス(フェノキシ)エタン-p,p’-ジカルボン酸、これらジカルボン酸の無水物およびこれらジカルボン酸のエステル形成性誘導体などの芳香族多価カルボン酸、p-ヒドロキシ安息香酸、p-(2-ヒドロキシエトキシ)安息香酸およびこれらのジヒドロキシカルボン酸のエステル形成性誘導体などの多塩基酸などが挙げられる。これらの中でも、コハク酸、1,3-シクロペンタンジカルボン酸、イソフタル酸が好ましい。
なお、上記その他の多価カルボン酸を2種以上使用してもよい。
The polyester polyol according to the first example essentially contains orthophthalic acid and its anhydride as the polyvalent carboxylic acid component. may
Specifically, aliphatic polycarboxylic acids such as succinic acid, adipic acid, azelaic acid, sebacic acid and dodecanedicarboxylic acid, unsaturated bond-containing polycarboxylic acids such as maleic anhydride, maleic acid and fumaric acid, 1, Alicyclic polycarboxylic acids such as 3-cyclopentanedicarboxylic acid and 1,4-cyclohexanedicarboxylic acid, terephthalic acid, isophthalic acid, pyromellitic acid, trimellitic acid, 1,4-naphthalenedicarboxylic acid, 2,5- Naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, naphthalic acid, biphenyldicarboxylic acid, 1,2-bis(phenoxy)ethane-p,p'-dicarboxylic acid, anhydrides of these dicarboxylic acids and ester formation of these dicarboxylic acids polybasic acids such as aromatic polycarboxylic acids such as polyvalent derivatives, p-hydroxybenzoic acid, p-(2-hydroxyethoxy)benzoic acid and ester-forming derivatives of these dihydroxycarboxylic acids. Among these, succinic acid, 1,3-cyclopentanedicarboxylic acid and isophthalic acid are preferred.
In addition, you may use 2 or more types of said other polyhydric carboxylic acid.

第2例に係るポリエステルポリオールとして、一般式(1)で表されるグリセロール骨格を有するポリエステルポリオールを挙げることができる。

Figure 2023073246000002
一般式(1)において、R1、R2、R3は、各々独立に、H(水素原子)または下記の一般式(2)で表される基である。
Figure 2023073246000003
As a polyester polyol according to the second example, a polyester polyol having a glycerol skeleton represented by general formula (1) can be mentioned.
Figure 2023073246000002
In general formula (1), R1, R2 and R3 are each independently H (hydrogen atom) or a group represented by general formula (2) below.
Figure 2023073246000003

式(2)において、nは1~5の整数を表し、Xは、置換基を有してもよい1,2-フェニレン基、1,2-ナフチレン基、2,3-ナフチレン基、2,3-アントラキノンジイル基、および2,3-アントラセンジイル基から成る群から選ばれるアリーレン基を表し、Yは炭素原子数2~6のアルキレン基を表す)で表される基を表す。
但し、R1、R2、R3のうち少なくとも一つは、一般式(2)で表される基を表す。
In formula (2), n represents an integer of 1 to 5, X is a 1,2-phenylene group which may have a substituent, a 1,2-naphthylene group, a 2,3-naphthylene group, 2, represents an arylene group selected from the group consisting of a 3-anthraquinonediyl group and a 2,3-anthracenediyl group, and Y represents an alkylene group having 2 to 6 carbon atoms).
At least one of R1, R2 and R3 represents a group represented by general formula (2).

一般式(1)において、R1、R2、R3の少なくとも1つは一般式(2)で表される基である必要がある。中でも、R1、R2、R3全てが一般式(2)で表される基であることが好ましい。 In general formula (1), at least one of R1, R2 and R3 must be a group represented by general formula (2). Among them, it is preferable that all of R1, R2 and R3 are groups represented by general formula (2).

また、R1、R2、R3のいずれか1つが一般式(2)で表される基である化合物と、R1、R2、R3のいずれか2つが一般式(2)で表される基である化合物と、R1、R2、R3の全てが一般式(2)で表される基である化合物の、いずれか2つ以上の化合物が混合物となっていてもよい。 Further, a compound in which any one of R1, R2, and R3 is a group represented by general formula (2), and a compound in which any two of R1, R2, and R3 are groups represented by general formula (2) and a compound in which all of R1, R2, and R3 are groups represented by general formula (2).

Xは、1,2-フェニレン基、1,2-ナフチレン基、2,3-ナフチレン基、2,3-アントラキノンジイル基および2,3-アントラセンジイル基から成る群から選ばれ、置換基を有していてもよいアリーレン基を表す。
Xが置換基によって置換されている場合、1または複数の置換基で置換されていてもよく、該置換基は、X上の、遊離基とは異なる任意の炭素原子に結合している。該置換基としては、クロロ基、ブロモ基、メチル基、エチル基、i-プロピル基、ヒドロキシル基、メトキシ基、エトキシ基、フェノキシ基、メチルチオ基、フェニルチオ基、シアノ基、ニトロ基、アミノ基、フタルイミド基、カルボキシル基、カルバモイル基、N-エチルカルバモイル基、フェニル基およびナフチル基などが挙げられる。
X is selected from the group consisting of a 1,2-phenylene group, a 1,2-naphthylene group, a 2,3-naphthylene group, a 2,3-anthraquinonediyl group and a 2,3-anthracenediyl group, and has a substituent; represents an arylene group which may be
When X is substituted by substituents, it may be substituted by one or more substituents, which are attached to any carbon atom on X that is different from the radical. The substituents include chloro, bromo, methyl, ethyl, i-propyl, hydroxyl, methoxy, ethoxy, phenoxy, methylthio, phenylthio, cyano, nitro, amino, phthalimido group, carboxyl group, carbamoyl group, N-ethylcarbamoyl group, phenyl group, naphthyl group and the like.

一般式(2)において、Yは、エチレン基、プロピレン基、ブチレン基、ネオペンチレン基、1,5-ペンチレン基、3-メチル-1,5-ペンチレン基、1,6-ヘキシレン基、メチルペンチレン基およびジメチルブチレン基などの炭素原子数2~6のアルキレン基を表す。Yは、中でも、プロピレン基およびエチレン基が好ましくエチレン基が最も好ましい。 In general formula (2), Y is an ethylene group, a propylene group, a butylene group, a neopentylene group, a 1,5-pentylene group, a 3-methyl-1,5-pentylene group, a 1,6-hexylene group, methylpentylene. and alkylene groups having 2 to 6 carbon atoms such as dimethylbutylene group. Among them, Y is preferably a propylene group or an ethylene group, most preferably an ethylene group.

一般式(1)で表されるグリセロール骨格を有するポリエステル樹脂化合物は、グリセロールと、カルボン酸がオルト位に置換された芳香族多価カルボン酸またはその無水物と、多価アルコール成分とを必須成分として反応させることにより合成することができる。 A polyester resin compound having a glycerol skeleton represented by the general formula (1) includes glycerol, an aromatic polycarboxylic acid or an anhydride thereof in which the carboxylic acid is substituted at the ortho position, and a polyhydric alcohol component as essential components. It can be synthesized by reacting as

カルボン酸がオルト位に置換された芳香族多価カルボン酸またはその無水物としては、オルトフタル酸またはその無水物、ナフタレン2,3-ジカルボン酸またはその無水物、ナフタレン1,2-ジカルボン酸またはその無水物、アントラキノン2,3-ジカルボン酸またはその無水物、および2,3-アントラセンカルボン酸またはその無水物などが挙げられる。
これらの化合物は、芳香環の任意の炭素原子に置換基を有していても良い。該置換基としては、クロロ基、ブロモ基、メチル基、エチル基、i-プロピル基、ヒドロキシル基、メトキシ基、エトキシ基、フェノキシ基、メチルチオ基、フェニルチオ基、シアノ基、ニトロ基、アミノ基、フタルイミド基、カルボキシル基、カルバモイル基、N-エチルカルバモイル基、フェニル基およびナフチル基などが挙げられる。
Examples of aromatic polyvalent carboxylic acids or anhydrides thereof in which the carboxylic acid is substituted at the ortho position include orthophthalic acid or anhydride thereof, naphthalene 2,3-dicarboxylic acid or anhydride thereof, naphthalene 1,2-dicarboxylic acid or anhydride thereof. anhydride, anthraquinone 2,3-dicarboxylic acid or its anhydride, and 2,3-anthracenecarboxylic acid or its anhydride.
These compounds may have a substituent at any carbon atom of the aromatic ring. The substituents include chloro, bromo, methyl, ethyl, i-propyl, hydroxyl, methoxy, ethoxy, phenoxy, methylthio, phenylthio, cyano, nitro, amino, phthalimido group, carboxyl group, carbamoyl group, N-ethylcarbamoyl group, phenyl group, naphthyl group and the like.

また、多価アルコール成分としては炭素原子数2~6のアルキレンジオールが挙げられる。例えば、エチレングリコール、プロピレングリコール、ブチレングリコール、ネオペンチルグリコール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、メチルペンタンジオールおよびジメチルブタンジオールなどのジオールを例示することができる。 Further, the polyhydric alcohol component includes alkylenediol having 2 to 6 carbon atoms. Diols such as, for example, ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, methylpentanediol and dimethylbutanediol can be exemplified.

第3例に係るポリエステルポリオールは、下記一般式(3)で表されるイソシアヌル環を有するポリエステルポリオールである。

Figure 2023073246000004
一般式(3)において、R1、R2、R3は、各々独立に、「-(CH2)n1-OH(但しn1は2~4の整数を表す)」、または、一般式(4)の構造を表す。
Figure 2023073246000005
The polyester polyol according to the third example is a polyester polyol having an isocyanuric ring represented by the following general formula (3).
Figure 2023073246000004
In general formula (3), R1, R2, and R3 each independently represent "-(CH2)n1-OH (where n1 represents an integer of 2 to 4)", or the structure of general formula (4) show.
Figure 2023073246000005

一般式(4)中、n2は2~4の整数を表し、n3は1~5の整数を表し、Xは1,2-フェニレン基、1,2-ナフチレン基、2,3-ナフチレン基、2,3-アントラキノンジイル基および2,3-アントラセンジイル基から成る群から選ばれ、置換基を有していてもよいアリーレン基を表し、Yは炭素原子数2~6のアルキレン基を表す)で表される基を表す。但しR1、R2、R3の少なくとも1つは一般式(4)で表される基である。 In general formula (4), n2 represents an integer of 2 to 4, n3 represents an integer of 1 to 5, X represents a 1,2-phenylene group, a 1,2-naphthylene group, a 2,3-naphthylene group, represents an optionally substituted arylene group selected from the group consisting of a 2,3-anthraquinonediyl group and a 2,3-anthracenediyl group, and Y represents an alkylene group having 2 to 6 carbon atoms) Represents a group represented by However, at least one of R1, R2 and R3 is a group represented by general formula (4).

一般式(3)において、-(CH2)n1-で表されるアルキレン基は、直鎖状であっても分岐状でもよい。n1は、中でも2または3が好ましく、2が最も好ましい。 In general formula (3), the alkylene group represented by -(CH2)n1- may be linear or branched. n1 is preferably 2 or 3, most preferably 2.

一般式(4)において、n2は2~4の整数を表し、n3は1~5の整数を表す。
Xは1,2-フェニレン基、1,2-ナフチレン基、2,3-ナフチレン基、2,3-アントラキノンジイル基、および2,3-アントラセンジイル基から成る群から選ばれ、置換基を有していてもよいアリーレン基を表す。
In general formula (4), n2 represents an integer of 2-4, and n3 represents an integer of 1-5.
X is selected from the group consisting of a 1,2-phenylene group, a 1,2-naphthylene group, a 2,3-naphthylene group, a 2,3-anthraquinonediyl group, and a 2,3-anthracenediyl group, and has a substituent; represents an arylene group which may be

Xが置換基によって置換されている場合、1または複数の置換基で置換されていてもよく、該置換基は、X上の、遊離基とは異なる任意の炭素原子に結合している。該置換基としては、クロロ基、ブロモ基、メチル基、エチル基、i-プロピル基、ヒドロキシル基、メトキシ基、エトキシ基、フェノキシ基、メチルチオ基、フェニルチオ基、シアノ基、ニトロ基、アミノ基、フタルイミド基、カルボキシル基、カルバモイル基、N-エチルカルバモイル基、フェニル基およびナフチル基などが挙げられる。
Xの置換基は、中でもヒドロキシル基、シアノ基、ニトロ基、アミノ基、フタルイミド基、カルバモイル基、N-エチルカルバモイル基およびフェニル基が好ましくヒドロキシル基、フェノキシ基、シアノ基、ニトロ基、フタルイミド基およびフェニル基が最も好ましい。
When X is substituted by substituents, it may be substituted by one or more substituents, which are attached to any carbon atom on X that is different from the radical. The substituents include chloro, bromo, methyl, ethyl, i-propyl, hydroxyl, methoxy, ethoxy, phenoxy, methylthio, phenylthio, cyano, nitro, amino, phthalimido group, carboxyl group, carbamoyl group, N-ethylcarbamoyl group, phenyl group, naphthyl group and the like.
Among the substituents of X, hydroxyl group, cyano group, nitro group, amino group, phthalimido group, carbamoyl group, N-ethylcarbamoyl group and phenyl group are preferable. Phenyl groups are most preferred.

一般式(4)において、Yは、エチレン基、プロピレン基、ブチレン基、ネオペンチレン基、1,5-ペンチレン基、3-メチル-1,5-ペンチレン基、1,6-ヘキシレン基、メチルペンチレン基およびジメチルブチレン基などの炭素原子数2~6のアルキレン基を表す。Yは、中でも、プロピレン基およびエチレン基が好ましくエチレン基が最も好ましい。 In general formula (4), Y is an ethylene group, a propylene group, a butylene group, a neopentylene group, a 1,5-pentylene group, a 3-methyl-1,5-pentylene group, a 1,6-hexylene group, methylpentylene. and alkylene groups having 2 to 6 carbon atoms such as dimethylbutylene group. Among them, Y is preferably a propylene group or an ethylene group, most preferably an ethylene group.

一般式(3)において、R1、R2、R3の少なくとも1つは一般式(4)で表される基である。中でも、R1、R2、R3全てが一般式(4)で表される基であることが好ましい。 In general formula (3), at least one of R1, R2 and R3 is a group represented by general formula (4). Among them, it is preferable that all of R1, R2 and R3 are groups represented by general formula (4).

また、R1、R2、R3のいずれか1つが一般式(4)で表される基である化合物と、R1、R2、R3のいずれか2つが一般式(4)で表される基である化合物と、R1、R2、R3の全てが一般式(4)で表される基である化合物の、いずれか2つ以上の化合物が混合物となっていてもよい。 Further, a compound in which any one of R1, R2, and R3 is a group represented by general formula (4), and a compound in which any two of R1, R2, and R3 are groups represented by general formula (4) and a compound in which all of R1, R2, and R3 are groups represented by general formula (4), and any two or more compounds may form a mixture.

一般式(3)で表されるイソシアヌル環を有するポリエステルポリオールは、イソシアヌル環を有するトリオールと、カルボン酸がオルト位に置換された芳香族多価カルボン酸またはその無水物と、多価アルコール成分とを必須成分として反応させることにより合成することができる The polyester polyol having an isocyanuric ring represented by the general formula (3) includes a triol having an isocyanuric ring, an aromatic polycarboxylic acid or an anhydride thereof in which the carboxylic acid is substituted at the ortho position, and a polyhydric alcohol component. can be synthesized by reacting as an essential component

イソシアヌル環を有するトリオールとしては、例えば、1,3,5-トリス(2-ヒドロキシエチル)イソシアヌル酸および1,3,5-トリス(2-ヒドロキシプロピル)イソシアヌル酸などのイソシアヌル酸のアルキレンオキサイド付加物などが挙げられる。 Examples of triols having an isocyanuric ring include alkylene oxide adducts of isocyanuric acid such as 1,3,5-tris(2-hydroxyethyl)isocyanuric acid and 1,3,5-tris(2-hydroxypropyl)isocyanuric acid. etc.

また、カルボン酸がオルト位に置換された芳香族多価カルボン酸またはその無水物としては、オルトフタル酸またはその無水物、ナフタレン2,3-ジカルボン酸またはその無水物、ナフタレン1,2-ジカルボン酸またはその無水物、アントラキノン2,3-ジカルボン酸またはその無水物、および2,3-アントラセンカルボン酸またはその無水物などが挙げられる。これらの化合物は、芳香環の任意の炭素原子に置換基を有していても良い。 Further, the aromatic polyvalent carboxylic acid or its anhydride in which the carboxylic acid is substituted at the ortho-position includes orthophthalic acid or its anhydride, naphthalene 2,3-dicarboxylic acid or its anhydride, and naphthalene 1,2-dicarboxylic acid. or its anhydride, anthraquinone 2,3-dicarboxylic acid or its anhydride, and 2,3-anthracenecarboxylic acid or its anhydride. These compounds may have a substituent at any carbon atom of the aromatic ring.

該置換基としては、クロロ基、ブロモ基、メチル基、エチル基、i-プロピル基、ヒドロキシル基、メトキシ基、エトキシ基、フェノキシ基、メチルチオ基、フェニルチオ基、シアノ基、ニトロ基、アミノ基、フタルイミド基、カルボキシル基、カルバモイル基、N-エチルカルバモイル基、フェニル基およびナフチル基などが挙げられる。 The substituents include chloro, bromo, methyl, ethyl, i-propyl, hydroxyl, methoxy, ethoxy, phenoxy, methylthio, phenylthio, cyano, nitro, amino, phthalimido group, carboxyl group, carbamoyl group, N-ethylcarbamoyl group, phenyl group and naphthyl group;

また、多価アルコール成分としては炭素原子数2~6のアルキレンジオールが挙げられる。例えば、エチレングリコール、プロピレングリコール、ブチレングリコール、ネオペンチルグリコール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、メチルペンタンジオールおよびジメチルブタンジオールなどのジオールが挙げられる。
中でも、イソシアヌル環を有するトリオール化合物として1,3,5-トリス(2-ヒドロキシエチル)イソシアヌル酸、または1,3,5-トリス(2-ヒドロキシプロピル)イソシアヌル酸を使用し、カルボン酸がオルト位に置換された芳香族多価カルボン酸またはその無水物としてオルトフタル酸無水物を使用し、多価アルコールとしてエチレングリコールを使用したイソシアヌル環を有するポリエステルポリオール化合物が、酸素バリア性や接着性に特に優れ好ましい。
Further, the polyhydric alcohol component includes alkylenediol having 2 to 6 carbon atoms. Diols such as, for example, ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, methylpentanediol and dimethylbutanediol is mentioned.
Among them, 1,3,5-tris(2-hydroxyethyl)isocyanuric acid or 1,3,5-tris(2-hydroxypropyl)isocyanuric acid is used as a triol compound having an isocyanuric ring, and the carboxylic acid is at the ortho position. A polyester polyol compound with an isocyanuric ring that uses orthophthalic anhydride as the substituted aromatic polycarboxylic acid or its anhydride and ethylene glycol as the polyhydric alcohol has particularly excellent oxygen barrier properties and adhesion. preferable.

イソシアヌル環は高極性であり且つ3官能であり、系全体の極性を高めることができ、且つ、架橋密度を高めることができる。このような観点からイソシアヌル環を接着剤樹脂全固形分に対し5質量%以上含有することが好ましい。 The isocyanuric ring is highly polar and trifunctional, which can increase the polarity of the overall system and increase the crosslink density. From this point of view, it is preferable that the isocyanuric ring content is 5% by mass or more based on the total solid content of the adhesive resin.

イソシアネート化合物は、分子内にイソシアネート基を2個以上有する。
また、イソシアネート化合物は、芳香族であっても、脂肪族であってもよく、低分子化合物であっても、高分子化合物であってもよい。
さらに、イソシアネート化合物は、公知のイソシアネートブロック化剤を用いて公知慣用の適宜の方法より付加反応させて得られたブロック化イソシアネート化合物であってもよい。
中でも、接着性や耐レトルト性の観点から、イソシアネート基を3個以上有するポリイソシアネート化合物が好ましく、酸素バリア性および水蒸気バリア性の観点からは、芳香族であることが好ましい。
The isocyanate compound has two or more isocyanate groups in its molecule.
Also, the isocyanate compound may be aromatic or aliphatic, and may be a low-molecular-weight compound or a high-molecular-weight compound.
Furthermore, the isocyanate compound may be a blocked isocyanate compound obtained by addition reaction using a known isocyanate blocking agent by a known and commonly used appropriate method.
Among them, a polyisocyanate compound having 3 or more isocyanate groups is preferable from the viewpoint of adhesiveness and retort resistance, and an aromatic compound is preferable from the viewpoint of oxygen barrier properties and water vapor barrier properties.

イソシアネート化合物の具体的な化合物としては、例えば、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、トルエンジイソシアネート、ジフェニルメタンジイソシアネート、水素化ジフェニルメタンジイソシアネート、メタキシリレンジイソシアネート、水素化キシリレンジイソシアネート、イソホロンジイソシアネート、およびこれらのイソシアネート化合物の3量体、並びにこれらのイソシアネート化合物と、低分子活性水素化合物若しくはそのアルキレンオキシド付加物、または高分子活性水素化合物とを反応させて得られるアダクト体、ビュレット体およびアロファネート体などが挙げられる。
低分子活性水素化合物としては、例えば、エチレングリコール、プロピレングリコール、メタキシリレンアルコール、1,3-ビスヒドロキシエチルベンゼン、1,4-ビスヒドロキシエチルベンゼン、トリメチロールプロパン、グリセロール、ペンタエリスリトール、エリスリトール、ソルビトール、エチレンジアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミンおよびメタキシリレンジアミンなどが挙げられ、分子活性水素化合物としては、各種ポリエステル樹脂、ポリエーテルポリオールおよびポリアミドの高分子活性水素化合物などが挙げられる。
Specific isocyanate compounds include, for example, tetramethylene diisocyanate, hexamethylene diisocyanate, toluene diisocyanate, diphenylmethane diisocyanate, hydrogenated diphenylmethane diisocyanate, meta-xylylene diisocyanate, hydrogenated xylylene diisocyanate, isophorone diisocyanate, and these isocyanate compounds. trimers, and these isocyanate compounds and low-molecular-weight active hydrogen compounds or their alkylene oxide adducts, or adducts obtained by reacting high-molecular-weight active hydrogen compounds, burettes and allophanates.
Low-molecular-weight active hydrogen compounds include, for example, ethylene glycol, propylene glycol, metaxylylene alcohol, 1,3-bishydroxyethylbenzene, 1,4-bishydroxyethylbenzene, trimethylolpropane, glycerol, pentaerythritol, erythritol, sorbitol, Examples thereof include ethylenediamine, monoethanolamine, diethanolamine, triethanolamine and m-xylylenediamine. Examples of molecularly active hydrogen compounds include polymeric active hydrogen compounds of various polyester resins, polyether polyols and polyamides.

リン酸変性化合物は、例えば下記の一般式(5)または(6)で表される化合物である。

Figure 2023073246000006
一般式(5)において、R1、R2、R3は、水素原子、炭素数1~30のアルキル基、(メタ)アクリロイル基、置換基を有してもよいフェニル基および(メタ)アクリロイルオキシ基を有する炭素数1~4のアルキル基から選ばれる基であるが、少なくとも一つは水素原子であり、nは、1~4の整数を表す。
Figure 2023073246000007
式中、R4、R5は、水素原子、炭素数1~30のアルキル基、(メタ)アクリロイル基、置換基を有してもよいフェニル基および(メタ)アクリロイルオキシ基を有する炭素数1~4のアルキル基から選ばれる基であり、nは1~4の整数、xは0~30の整数、yは0~30の整数を表すが、xとyが共に0である場合を除く。 A phosphoric acid-modified compound is, for example, a compound represented by the following general formula (5) or (6).
Figure 2023073246000006
In general formula (5), R1, R2, and R3 are a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, a (meth)acryloyl group, a phenyl group which may have a substituent, and a (meth)acryloyloxy group. A group selected from alkyl groups having 1 to 4 carbon atoms, at least one of which is a hydrogen atom, and n represents an integer of 1 to 4.
Figure 2023073246000007
In the formula, R4 and R5 are hydrogen atoms, alkyl groups having 1 to 30 carbon atoms, (meth)acryloyl groups, optionally substituted phenyl groups and (meth)acryloyloxy groups having 1 to 4 carbon atoms. wherein n is an integer of 1 to 4, x is an integer of 0 to 30, and y is an integer of 0 to 30, except when both x and y are 0.

より具体的には、リン酸、ピロリン酸、トリリン酸、メチルアシッドホスフェート、エチルアシッドホスフェート、ブチルアシッドホスフェート、ジブチルホスフェート、2-エチルヘキシルアシッドホスフェート、ビス(2-エチルヘキシル)ホスフェート、イソドデシルアシッドホスフェート、ブトキシエチルアシッドホスフェート、オレイルアシッドホスフェート、テトラコシルアシッドホスフェート、2-ヒドロキシエチルメタクリレートアシッドホスフェートおよびポリオキシエチレンアルキルエーテルリン酸などが挙げられ、これらの1種または2種以上を用いることができる。 More specifically, phosphoric acid, pyrophosphoric acid, triphosphoric acid, methyl acid phosphate, ethyl acid phosphate, butyl acid phosphate, dibutyl phosphate, 2-ethylhexyl acid phosphate, bis(2-ethylhexyl) phosphate, isododecyl acid phosphate, butoxy Ethyl acid phosphate, oleyl acid phosphate, tetracosyl acid phosphate, 2-hydroxyethyl methacrylate acid phosphate, polyoxyethylene alkyl ether phosphoric acid and the like can be mentioned, and one or more of these can be used.

樹脂組成物におけるリン酸変性化合物の含有量は、0.005質量%以上10質量%以下が好ましく、0.01質量%以上1質量%以下であることがより好ましい。
リン酸変性化合物の含有量を0.005質量%以上とすることにより、本発明の積層体の酸素バリア性および水蒸気バリア性を向上することができる。また、リン酸変性化合物の含有量を10質量%以下とすることにより、接着層の接着性を向上することができる。
The content of the phosphoric acid-modified compound in the resin composition is preferably 0.005% by mass or more and 10% by mass or less, and more preferably 0.01% by mass or more and 1% by mass or less.
By setting the content of the phosphoric acid-modified compound to 0.005% by mass or more, the laminate of the present invention can have improved oxygen barrier properties and water vapor barrier properties. Also, by setting the content of the phosphoric acid-modified compound to 10% by mass or less, the adhesiveness of the adhesive layer can be improved.

ポリエステルポリオール、イソシアネート化合物およびリン酸変性化合物を含有する樹脂組成物は、板状無機化合物を含んでいてもよく、これにより、接着層の接着性を向上することができる。また、本発明の積層体の耐屈曲負荷性を向上させることができる。
板状無機化合物としては、例えば、カオリナイト-蛇紋族粘土鉱物(ハロイサイト、カオリナイト、エンデライト、ディッカイト、ナクライト、アンチゴライト、クリソタイルなど)およびパイロフィライト-タルク族(パイロフィライト、タルク、ケロライなど)などが挙げられる。
A resin composition containing a polyester polyol, an isocyanate compound and a phosphoric acid-modified compound may contain a plate-like inorganic compound, thereby improving the adhesiveness of the adhesive layer. Moreover, the bending load resistance of the laminate of the present invention can be improved.
Plate-like inorganic compounds include, for example, kaolinite-serpentine clay minerals (halloysite, kaolinite, endellite, dickite, nacrite, antigorite, chrysotile, etc.) and pyrophyllite-talcs (pyrophyllite, talc, Kerorai, etc.).

カップリング剤としては、例えば、下記一般式(7)であらわされるシラン系カップリング剤、チタン系カップリング剤およびアルミニウム系カップリング剤などが挙げられる。なお、これらのカップリング剤は、単独でも、2種類以上組み合わせてもよい。

Figure 2023073246000008
Examples of the coupling agent include silane-based coupling agents, titanium-based coupling agents and aluminum-based coupling agents represented by the following general formula (7). These coupling agents may be used alone or in combination of two or more.
Figure 2023073246000008

シラン系カップリング剤としては、例えば、ビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-メタクリロキシトリメトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルメチルジエトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-クロロプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシランおよび3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)などが挙げられる。 Examples of silane coupling agents include vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ -glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-methacryloxytrimethoxysilane, γ-methacryloxypropylmethyldimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxy Propylmethyldiethoxysilane, γ-Methacryloxypropyltriethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-β (amino ethyl) γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, γ-chloropropyltrimethoxysilane, γ-mercaptopropyl trimethoxysilane, 3-isocyanatopropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane and 3-triethoxysilyl-N-(1,3-dimethyl-butylidene), and the like.

また、チタン系カップリング剤としては、例えば、イソプロピルトリイソステアロイルチタネート、イソプロピルトリ(N-アミノエチル-アミノエチル)チタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、テトラオクチルビス(ジドデシルホスファイト)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、イソプロピルトリオクタイノルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルイソステアロイルジアクリルチタネート、ジイソステアロイルエチレンチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリクミルフェニルチタネートおよびジクミルフェニルオキシアセテートチタネートなどが挙げられる。 Examples of titanium-based coupling agents include isopropyltriisostearoyl titanate, isopropyltri(N-aminoethyl-aminoethyl)titanate, isopropyltridodecylbenzenesulfonyltitanate, isopropyltris(dioctylpyrophosphate)titanate, tetraoctylbis (didodecylphosphite) titanate, tetraoctylbis(ditridecylphosphite) titanate, bis(dioctylpyrophosphate)oxyacetate titanate, bis(dioctylpyrophosphate)ethylene titanate, isopropyltrioctynortitanate, isopropyldimethacrylisostearoyl titanate , isopropyl isostearoyl diacryl titanate, diisostearoyl ethylene titanate, isopropyl tri(dioctyl phosphate) titanate, isopropyl tricumylphenyl titanate and dicumylphenyloxyacetate titanate.

また、アルミニウム系カップリング剤の具体例としては、例えば、アセトアルコキシアルミニウムジイソプロピレート、ジイソプロポキシアルミニウムエチルアセトアセテート、ジイソプロポキシアルミニウムモノメタクリレート、イソプロポキシアルミニウムアルキルアセトアセテートモノ(ジオクチルホスフェート)、アルミニウム-2-エチルヘキサノエートオキサイドトリマー、アルミニウムステアレートオキサイドトリマーおよびアルキルアセトアセテートアルミニウムオキサイドトリマーなどが挙げられる。 Specific examples of aluminum-based coupling agents include acetoalkoxyaluminum diisopropylate, diisopropoxyaluminum ethylacetoacetate, diisopropoxyaluminum monomethacrylate, isopropoxyaluminum alkylacetoacetate mono(dioctylphosphate), aluminum -2-ethylhexanoate oxide trimer, aluminum stearate oxide trimer and alkylacetoacetate aluminum oxide trimer, and the like.

樹脂組成物は、シクロデキストリンおよび/またはその誘導体を含むことができ、これにより、接着層の接着性を向上することができる。また、本発明の積層体の耐屈曲負荷性をより向上できる。
具体的には、例えば、シクロデキストリン、アルキル化シクロデキストリン、アセチル化シクロデキストリンおよびヒドロキシアルキル化シクロデキストリンなどのシクロデキストリンのグルコース単位の水酸基の水素原子を他の官能基で置換したものなどを用いることができる。また、分岐環状デキストリンも用いることができる。
また、シクロデキストリンおよびシクロデキストリン誘導体におけるシクロデキストリン骨格は、6個のグルコース単位からなるα-シクロデキストリン、7個のグルコース単位からなるβ-シクロデキストリン、8個のグルコース単位からなるγ-シクロデキストリンのいずれであってもよい。
これらの化合物は単独で用いても2種以上を併用してもよい。また、これらシクロデキストリンおよび/またはその誘導体を以降、デキストリン化合物と総称する場合がある。
The resin composition can contain cyclodextrin and/or its derivatives, which can improve the adhesion of the adhesive layer. In addition, the bending load resistance of the laminate of the present invention can be further improved.
Specifically, for example, cyclodextrins such as cyclodextrin, alkylated cyclodextrin, acetylated cyclodextrin and hydroxyalkylated cyclodextrin in which the hydrogen atom of the hydroxyl group of the glucose unit of the cyclodextrin is substituted with another functional group can be used. can be done. Branched cyclic dextrins can also be used.
The cyclodextrin backbone in cyclodextrins and cyclodextrin derivatives is α-cyclodextrin consisting of 6 glucose units, β-cyclodextrin consisting of 7 glucose units, and γ-cyclodextrin consisting of 8 glucose units. Either can be used.
These compounds may be used alone or in combination of two or more. Moreover, hereinafter, these cyclodextrins and/or derivatives thereof may be collectively referred to as dextrin compounds.

樹脂組成物への相溶性および分散性の観点から、シクロデキストリン化合物としては、シクロデキストリン誘導体を用いることが好ましい。 From the viewpoint of compatibility and dispersibility in the resin composition, it is preferable to use a cyclodextrin derivative as the cyclodextrin compound.

アルキル化シクロデキストリンとしては、例えば、メチル-α-シクロデキストリン、メチル-β-シクロデキストリンおよびメチル-γ-シクロデキストリンなどが挙げられる。これらの化合物は単独で用いても2種以上を併用してもよい。 Alkylated cyclodextrins include, for example, methyl-α-cyclodextrin, methyl-β-cyclodextrin and methyl-γ-cyclodextrin. These compounds may be used alone or in combination of two or more.

アセチル化シクロデキストリンとしては、例えば、モノアセチル-α-シクロデキストリン、モノアセチル-β-シクロデキストリンおよびモノアセチル-γ-シクロデキストリンなどが挙げられる。これらの化合物は単独で用いても2種以上を併用してもよい。 Acetylated cyclodextrins include, for example, monoacetyl-α-cyclodextrin, monoacetyl-β-cyclodextrin and monoacetyl-γ-cyclodextrin. These compounds may be used alone or in combination of two or more.

ヒドロキシアルキル化シクロデキストリンとしては、例えば、ヒドロキシプロピル-α-シクロデキストリン、ヒドロキシプロピル-β-シクロデキストリンおよびヒドロキシプロピル-γ-シクロデキストリンなどが挙げられる。これらの化合物は単独で用いても2種以上を併用してもよい。 Hydroxyalkylated cyclodextrins include, for example, hydroxypropyl-α-cyclodextrin, hydroxypropyl-β-cyclodextrin and hydroxypropyl-γ-cyclodextrin. These compounds may be used alone or in combination of two or more.

接着層の厚さは、0.5μm以上6μm以下であることが好ましく、0.8μm以上5μm以下であることがより好ましく、1μm以上4.5μm以下であることがさらに好ましい。
接着層の厚さを0.5μm以上とすることにより、接着層の接着性を向上することができる。また、ポリエステルポリオールとイソシアネート化合物とリン酸変性化合物を含む樹脂組成物の硬化物からなる接着層を、アルミニウム蒸着膜と隣接するように設けた場合には、積層体の耐屈曲負荷性を向上することができる。
接着層の厚さを6μm以下とすることにより、積層体の加工適性を向上することができる。
The thickness of the adhesive layer is preferably 0.5 μm or more and 6 μm or less, more preferably 0.8 μm or more and 5 μm or less, and even more preferably 1 μm or more and 4.5 μm or less.
By setting the thickness of the adhesive layer to 0.5 μm or more, the adhesiveness of the adhesive layer can be improved. Further, when an adhesive layer made of a cured product of a resin composition containing a polyester polyol, an isocyanate compound and a phosphoric acid-modified compound is provided adjacent to the aluminum deposition film, the bending load resistance of the laminate is improved. be able to.
By setting the thickness of the adhesive layer to 6 μm or less, the workability of the laminate can be improved.

接着層は、例えば、ダイレクトグラビアロールコート法、グラビアロールコート法、キスコート法、リバースロールコート法、フォンテン法およびトランスファーロールコート法など従来公知の方法により、基材などの上に塗布、乾燥することにより形成することができる。 The adhesive layer is applied onto a base material or the like by a conventionally known method such as a direct gravure roll coating method, a gravure roll coating method, a kiss coating method, a reverse roll coating method, a fonten method and a transfer roll coating method, and then dried. can be formed by

<中間層>
一実施形態において、本発明の積層体は、基材と、ヒートシール層との間に、一方の面に蒸着膜を備える延伸ポリエチレンフィルムからなる、中間層を備えることができる。これにより、積層体の強度、酸素バリア性及び水蒸気バリア性をより向上することができる。
<Middle layer>
In one embodiment, the laminate of the present invention can comprise an intermediate layer between the substrate and the heat-sealable layer, consisting of a stretched polyethylene film with a deposited film on one side. This can further improve the strength, oxygen barrier properties, and water vapor barrier properties of the laminate.

(蒸着膜)
中間層は、蒸着膜を備え、これにより、ガスバリア性、とりわけ酸素バリア性および水蒸気バリア性を向上することができる。
(evaporation film)
The intermediate layer comprises a vapor-deposited film, which can improve gas barrier properties, especially oxygen barrier properties and water vapor barrier properties.

蒸着膜としては、アルミニウムなどの金属、並びに酸化アルミニウム、酸化珪素、酸化マグシウム、酸化カルシウム、酸化ジルコニウム、酸化チタン、酸化ホウ素、酸化ハフニウム、酸化バリウムなどの無機酸化物から構成される、蒸着膜を挙げることができる。 The deposited film includes metals such as aluminum and inorganic oxides such as aluminum oxide, silicon oxide, magnesium oxide, calcium oxide, zirconium oxide, titanium oxide, boron oxide, hafnium oxide, and barium oxide. can be mentioned.

また、蒸着膜の厚さは、1nm以上150nm以下であることが好ましく、5nm以上60nm以下であることがより好ましく、10nm以上40nm以下であることがさらに好ましい。
蒸着膜の厚さを1nm以上とすることにより、本発明の積層体の酸素バリア性および水蒸気バリア性をより向上することができる。また、蒸着膜の厚さを150nm以下とすることにより、蒸着膜におけるクラックの発生を防止することができると共に、本発明の積層体のリサイクル性を向上することができる。
Also, the thickness of the deposited film is preferably 1 nm or more and 150 nm or less, more preferably 5 nm or more and 60 nm or less, and even more preferably 10 nm or more and 40 nm or less.
By setting the thickness of the deposited film to 1 nm or more, the oxygen barrier property and water vapor barrier property of the laminate of the present invention can be further improved. Further, by setting the thickness of the vapor deposition film to 150 nm or less, it is possible to prevent the generation of cracks in the vapor deposition film and improve the recyclability of the laminate of the present invention.

蒸着膜が、アルミニウム蒸着膜であるには、そのOD値は、2以上3.5以下であることが好ましい。これにより、本発明の積層体の生産性を維持しつつ、酸素バリア性および水蒸気バリア性を向上することができる。なお、本発明において、OD値は、JIS-K-7361に準拠して測定することができる。 In order for the deposited film to be an aluminum deposited film, the OD value is preferably 2 or more and 3.5 or less. Thereby, the oxygen barrier property and the water vapor barrier property can be improved while maintaining the productivity of the laminate of the present invention. In the present invention, the OD value can be measured according to JIS-K-7361.

蒸着膜は、上記方法により形成することができる。 A vapor deposition film can be formed by the above method.

蒸着膜の表面は、上記表面処理が施されていることが好ましい。これにより、隣接する層との密着性を向上することができる。 The surface of the deposited film is preferably subjected to the surface treatment described above. This can improve adhesion with adjacent layers.

(延伸ポリエチレンフィルム)
中間層を構成する延伸ポリエチレンフィルムは、上記した基材およびヒートシール層同様ポリエチレンにより構成されていることを特徴とする。このような構成とすることにより、包装材料としての強度や耐熱性を維持しながらリサイクル可能な包装材料とすることができる。
(stretched polyethylene film)
The stretched polyethylene film forming the intermediate layer is characterized by being made of polyethylene, like the substrate and the heat-sealing layer described above. With such a configuration, a recyclable packaging material can be obtained while maintaining strength and heat resistance as a packaging material.

延伸ポリエチレンフィルムは、包装材料としての強度や耐熱性をより向上させるため、ポリエチレンにより構成される延伸フィルムを使用する。延伸フィルムとしては、一軸延伸フィルムであっても、二軸延伸フィルムであってもよい。 A stretched polyethylene film made of polyethylene is used in order to improve strength and heat resistance as a packaging material. The stretched film may be a uniaxially stretched film or a biaxially stretched film.

延伸フィルムの長手方向(MD)の延伸倍率は、2倍以上10倍以下であることが好ましく、3倍以上7倍以下であることが好ましい。
延伸フィルムの長手方向(MD)の延伸倍率を2倍以上とすることにより、本発明の積層体の強度および耐熱性を向上することができる。一方、延伸フィルムの長手方向(MD)の延伸倍率の上限値は、特に制限されるものではないが、延伸フィルムの破断限界の観点からは10倍以下とすることが好ましい。
The stretching ratio in the longitudinal direction (MD) of the stretched film is preferably 2 times or more and 10 times or less, and preferably 3 times or more and 7 times or less.
By setting the stretch ratio of the stretched film in the longitudinal direction (MD) to 2 times or more, the strength and heat resistance of the laminate of the present invention can be improved. On the other hand, the upper limit of the stretching ratio in the longitudinal direction (MD) of the stretched film is not particularly limited, but from the viewpoint of the breaking limit of the stretched film, it is preferably 10 times or less.

また、延伸フィルムの横手方向(TD)の延伸倍率は、2倍以上10倍以下であることが好ましく、3倍以上7倍以下であることが好ましい。
延伸フィルムの横手方向(TD)の延伸倍率を2倍以上とすることにより、本発明の積層体の強度および耐熱性を向上することができる。一方、延伸フィルムの横手方向(TD)の延伸倍率の上限値は、特に制限されるものではないが、延伸フィルムの破断限界の観点からは10倍以下とすることが好ましい。
The stretch ratio in the transverse direction (TD) of the stretched film is preferably 2 times or more and 10 times or less, and preferably 3 times or more and 7 times or less.
By setting the stretch ratio of the stretched film in the transverse direction (TD) to 2 times or more, the strength and heat resistance of the laminate of the present invention can be improved. On the other hand, the upper limit of the stretching ratio in the transverse direction (TD) of the stretched film is not particularly limited, but from the viewpoint of the breaking limit of the stretched film, it is preferably 10 times or less.

延伸ポリエチレンフィルムに含まれるポリエチレンとしては、上記した中でも、強度および耐熱性およびフィルムの延伸適正という観点から、高密度ポリエチレンおよび中密度ポリエチレンが好ましく、延伸適正という観点から、中密度ポリエチレンがより好ましい。
また、中間層は、基材同様、上記した多層構造からなるものであってもよい。
As the polyethylene contained in the stretched polyethylene film, among those mentioned above, high-density polyethylene and medium-density polyethylene are preferable from the viewpoint of strength, heat resistance, and film stretching suitability, and medium-density polyethylene is more preferable from the viewpoint of stretching suitability.
Further, the intermediate layer may be composed of the multi-layer structure described above, like the base material.

延伸ポリエチレンフィルムは、本発明の特性を損なわない範囲において、上記添加剤を含むことができる。 The stretched polyethylene film can contain the above additives as long as the properties of the present invention are not impaired.

延伸ポリエチレンフィルムの厚さは、9μm以上、50μm以下であることが好ましく、12μm以上、30μm以下であることがより好ましい。
延伸ポリエチレンフィルムの厚さを9μm以上とすることにより、本発明の積層体の強度および耐熱性をより向上することができる。また、延伸ポリエチレンフィルムの厚さを50μm以下とすることにより、本発明の積層体の加工適性を向上することができる。
The thickness of the stretched polyethylene film is preferably 9 μm or more and 50 μm or less, more preferably 12 μm or more and 30 μm or less.
By setting the thickness of the stretched polyethylene film to 9 μm or more, the strength and heat resistance of the laminate of the present invention can be further improved. Also, by setting the thickness of the stretched polyethylene film to 50 μm or less, the processability of the laminate of the present invention can be improved.

延伸ポリエチレンフィルムは、上記Tダイ法やインフレーション法により作製したものを使用してもよく、市販されるものを使用してもよい。 The stretched polyethylene film may be produced by the T-die method or the inflation method, or may be commercially available.

<用途>
本発明の積層体は、包装材料用途に特に好適に使用することができる。
包装材料は、特に限定されず、図6に示すように、包装袋30であってもよく、図7に示すように、胴部41および底部42を備えるスタンドパウチ40であってもよい。なお、スタンドパウチにおいては、胴部のみが上記積層体により形成されていても、底部のみが上記積層体により形成されていても、胴部および底部の両方が上記積層体により形成されていてもよい。
<Application>
The laminate of the present invention can be used particularly preferably for packaging materials.
The packaging material is not particularly limited, and may be a packaging bag 30 as shown in FIG. 6 or a stand pouch 40 having a body portion 41 and a bottom portion 42 as shown in FIG. In the case of the stand-up pouch, even if only the body part is formed of the above laminate, only the bottom part is formed of the above laminate, or both the body part and the bottom part are formed of the above laminate. good.

包装袋は、上記積層体のヒートシール層が内側となるように、二つ折にして重ね合わせて、その端部をヒートシールすることにより製造することができる。
また、包装袋は、2枚の積層体を、ヒートシール層が向かい合うように重ね合わせ、その端部をヒートシールすることによっても製造することができる。
The packaging bag can be produced by folding the laminated body in two and overlapping them so that the heat-sealed layer of the laminate is on the inside, and heat-sealing the ends thereof.
The packaging bag can also be produced by stacking two laminates so that the heat-seal layers face each other and heat-sealing the edges.

スタンドパウチは、上記積層体のヒートシール層が内側となるように、筒状にヒートシールすることにより、胴部を形成し、次いで、ヒートシール層が内側となるように、上記積層体をV字状に折り、胴部の一端から挟み込み、ヒートシールすることにより底部を形成し、製造することができる。 The stand pouch is heat-sealed in a cylindrical shape so that the heat-seal layer of the laminate is on the inside to form a body, and then the laminate is V-shaped so that the heat-seal layer is on the inside. It can be manufactured by folding into a letter shape, pinching from one end of the trunk, and heat-sealing to form the bottom.

ヒートシールの方法は、特に限定されるものではなく、例えば、バーシール、回転ロールシール、ベルトシール、インパルスシール、高周波シール、超音波シールなどの公知の方法で行うことができる。 The heat sealing method is not particularly limited, and known methods such as bar sealing, rotary roll sealing, belt sealing, impulse sealing, high frequency sealing, and ultrasonic sealing can be used.

包装材料に充填される内容物は、特に限定されるものではなく、内容物は、液体、粉体およびゲル体であってもよい。また、食品であっても、非食品であってもよい。
内容物充填後、開口をヒートシールすることにより、包装体とすることができる。
The content filled in the packaging material is not particularly limited, and the content may be liquid, powder, or gel. Moreover, it may be food or non-food.
After the contents are filled, the opening can be heat-sealed to form a package.

本発明について実施例を挙げてさらに具体的に説明するが、本発明がこれら実施例によって限定されるものではない。 EXAMPLES The present invention will be described more specifically with reference to Examples, but the present invention is not limited to these Examples.

<実施例1-1>
高密度ポリエチレン(密度:0.960g/cm、融点130℃、MFR:0.85g/10分、Dowchemical社製、商品名:Elite5960)、中密度ポリエチレン(密度:0.940g/cm、融点126℃、MFR:0.85g/10分、Dowchemical社製、商品名:Elite5940)および超低密度ポリエチレン(密度:0.870g/cm、融点55℃、MFR:1.0g/10分、Dowchemical社製、商品名:Affinity EG8100G)をインフレーション成形法により、外側から、高密度ポリエチレン層(12.5μm)、中密度ポリエチレン層(43.75μm)および超低密度ポリエチレン層(6.25μm)を備えるチューブ状のフィルムとして押し出した後、内側の超低密度ポリエチレン層同士を、ゴムロールにより、圧着し、高密度ポリエチレン層(12.5μm)、中密度ポリエチレン層(43.75μm)、超低密度ポリエチレン層(12.5μm)、中密度ポリエチレン層(43.75μm)および高密度ポリエチレン層(12.5μm)を備える、厚さ125μmのポリエチレンフィルムを得た。
このポリエチレンフィルムを長手方向(MD)に、5倍の延伸倍率で延伸し、厚さ25μmの基材Aを得た。
基材Aのヘイズ値を、JIS K 7105に準拠して測定したところ、ヘイズ値は6.2%であった。
<Example 1-1>
High-density polyethylene (density: 0.960 g/cm 3 , melting point 130° C., MFR: 0.85 g/10 min, manufactured by Dowchemical, trade name: Elite 5960), medium-density polyethylene (density: 0.940 g/cm 3 , melting point 126° C., MFR: 0.85 g/10 min, manufactured by Dowchemical, trade name: Elite 5940) and ultra-low density polyethylene (density: 0.870 g/cm 3 , melting point: 55° C., MFR: 1.0 g/10 min, Dowchemical Company, trade name: Affinity EG8100G) is provided with a high-density polyethylene layer (12.5 μm), a medium-density polyethylene layer (43.75 μm), and an ultra-low-density polyethylene layer (6.25 μm) from the outside by an inflation molding method. After extruding as a tube-shaped film, the inner ultra-low density polyethylene layers were pressed against each other with a rubber roll to form a high-density polyethylene layer (12.5 μm), a medium-density polyethylene layer (43.75 μm), and an ultra-low density polyethylene layer. A 125 μm thick polyethylene film was obtained comprising a (12.5 μm), a medium density polyethylene layer (43.75 μm) and a high density polyethylene layer (12.5 μm).
This polyethylene film was stretched in the longitudinal direction (MD) at a draw ratio of 5 times to obtain a substrate A having a thickness of 25 μm.
When the haze value of the base material A was measured according to JIS K 7105, the haze value was 6.2%.

基材Aの一方の面に、油性グラビアインキ(DICグラフィックス(株)製、商品名:フィナート)を用いて、グラビア印刷法により、画像を形成した。 An image was formed on one surface of the base material A by gravure printing using an oil-based gravure ink (manufactured by DIC Graphics, trade name: Finart).

直鎖状低密度ポリエチレンA(密度:0.923g/cm、融点121℃、MFR:1.5g/10分、プライムポリマー社製、商品名:SP2510)と、直鎖状低密度ポリエチレンAおよびバイオマス由来のポリエチレン(密度:0.916g/cm、MFR:1.3g/10分、バイオマス度:87%、ブラスケム社製、商品名:SLL118)の混合物(2:8(質量基準))と、直鎖状低密度ポリエチレンB(密度:0.913g/cm、融点116℃、MFR:2.0g/10分、プライムポリマー社製、商品名:SP1520)と、をインフレーション成形法により製膜し、厚さ17μmの直鎖状低密度ポリエチレンAからなる層と、厚さ16μmの直鎖状低密度ポリエチレンAおよびバイオマス由来のポリエチレンからなる層と、厚さ17μmの直鎖状低密度ポリエチレンBからなる層を備える、厚さ50μmのヒートシール層Aを作製した。 Linear low-density polyethylene A (density: 0.923 g/cm 3 , melting point 121° C., MFR: 1.5 g/10 min, manufactured by Prime Polymer Co., Ltd., trade name: SP2510), linear low-density polyethylene A and A mixture (2:8 (by mass)) of biomass-derived polyethylene (density: 0.916 g/cm 3 , MFR: 1.3 g/10 min, biomass degree: 87%, manufactured by Braskem, trade name: SLL118) and , Linear low-density polyethylene B (density: 0.913 g/cm 3 , melting point: 116° C., MFR: 2.0 g/10 min, manufactured by Prime Polymer Co., Ltd., trade name: SP1520), and film formation by inflation molding. A layer made of linear low-density polyethylene A with a thickness of 17 μm, a layer made of linear low-density polyethylene A with a thickness of 16 μm and biomass-derived polyethylene, and a linear low-density polyethylene B with a thickness of 17 μm A heat seal layer A having a thickness of 50 μm was produced, comprising a layer consisting of

上記基材Aの画像形成面と、上記ヒートシール層Aの直鎖状低密度ポリエチレンAからなる層とを、2液硬化型ウレタン系接着剤(ロックペイント(株)製、商品名:RU-77T/H-7)を介して、積層し、本発明の積層体を得た。
なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
また、このようにして得られた積層体におけるポリエチレンの割合は、95質量%であった。
The image forming surface of the substrate A and the linear low-density polyethylene A layer of the heat seal layer A were bonded together with a two-component curable urethane adhesive (manufactured by Rock Paint Co., Ltd., trade name: RU- 77T/H-7) to obtain the laminate of the present invention.
The thickness of the adhesive layer formed by the two-component curable urethane adhesive was 3.0 μm.
Moreover, the ratio of polyethylene in the laminate thus obtained was 95% by mass.

<比較例1-1>
上記高密度ポリエチレン、上記中密度ポリエチレンおよび上記超低密度ポリエチレンをインフレーション成形法により、外側から、高密度ポリエチレン層、中密度ポリエチレン層および超低密度ポリエチレン層を備えるチューブ状のフィルムとして押し出した後、内側の超低密度ポリエチレン層同士を、ゴムロールにより、圧着し、高密度ポリエチレン層(2.5μm)、中密度ポリエチレン層(8.75μm)、超低密度ポリエチレン層(2.5μm)、中密度ポリエチレン層(8.75μm)および高密度ポリエチレン層(2.5μm)を備える、厚さ25μmの基材aを得た。
基材aのヘイズ値を、JIS K 7105に準拠して測定したところ、ヘイズ値は21.3%であった。
<Comparative Example 1-1>
The high-density polyethylene, the medium-density polyethylene, and the ultra-low-density polyethylene are extruded from the outside by an inflation molding method as a tubular film having a high-density polyethylene layer, a medium-density polyethylene layer, and an ultra-low-density polyethylene layer, The inner ultra-low density polyethylene layers were crimped together with a rubber roll to form a high-density polyethylene layer (2.5 μm), a medium-density polyethylene layer (8.75 μm), an ultra-low-density polyethylene layer (2.5 μm), and a medium-density polyethylene. A 25 μm thick substrate a was obtained, comprising a layer (8.75 μm) and a high density polyethylene layer (2.5 μm).
When the haze value of the base material a was measured according to JIS K 7105, the haze value was 21.3%.

基材aの一方の面に、上記油性グラビアインキを用いて、グラビア印刷法により、画像を形成した。 An image was formed on one surface of the base material a by gravure printing using the oil-based gravure ink.

上記基材aの画像形成面と、上記ヒートシール層Aの直鎖状低密度ポリエチレンAからなる層とを、上記2液硬化型ウレタン系接着剤を介して、積層し、積層体を得た。
なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
また、このようにして得られた積層体におけるポリエチレンの割合は、95質量%であった。
The image forming surface of the substrate a and the layer made of linear low-density polyethylene A of the heat seal layer A were laminated via the two-component curable urethane adhesive to obtain a laminate. .
The thickness of the adhesive layer formed by the two-component curable urethane adhesive was 3.0 μm.
Moreover, the ratio of polyethylene in the laminate thus obtained was 95% by mass.

<比較例1-2>
基材Aを、厚さ12μmの二軸延伸PETフィルム(東洋紡(株)製、商品名:E5100)に変更した以外は、実施例1-1と同様にして、積層体を作製した。
また、このようにして得られた積層体におけるポリエチレンの割合は、75質量%であった。
<Comparative Example 1-2>
A laminate was produced in the same manner as in Example 1-1, except that the substrate A was changed to a 12 μm thick biaxially stretched PET film (manufactured by Toyobo Co., Ltd., trade name: E5100).
Moreover, the ratio of polyethylene in the laminate thus obtained was 75% by mass.

<実施例2-1>
上記基材Aを準備した。
<Example 2-1>
The base material A was prepared.

基材Aの一方の面に、油性グラビアインキ(DICグラフィックス(株)製、商品名:フィナート)を用いて、グラビア印刷法により、画像を形成した。 An image was formed on one surface of the base material A by gravure printing using an oil-based gravure ink (manufactured by DIC Graphics, trade name: Finart).

上記直鎖状低密度ポリエチレンAと、上記直鎖状低密度ポリエチレンAおよび上記バイオマス由来のポリエチレンの混合物(2:8(質量基準))と、上記直鎖状低密度ポリエチレンBと、をインフレーション成形法により製膜し、厚さ34μmの直鎖状低密度ポリエチレンAからなる層と、厚さ32μmの直鎖状低密度ポリエチレンAおよびバイオマス由来のポリエチレンからなる層と、厚さ34μmの直鎖状低密度ポリエチレンBからなる層を備える、厚さ100μmのヒートシール層Bを作製した。 Inflation molding of the linear low-density polyethylene A, the mixture of the linear low-density polyethylene A and the biomass-derived polyethylene (2:8 (by mass)), and the linear low-density polyethylene B A layer made of linear low-density polyethylene A with a thickness of 34 μm, a layer made of linear low-density polyethylene A and biomass-derived polyethylene with a thickness of 32 μm, and a linear film with a thickness of 34 μm. A 100 μm thick heat seal layer B comprising a layer of low density polyethylene B was produced.

上記基材Aの画像形成面と、上記ヒートシール層Bの直鎖状低密度ポリエチレンAからなる層とを、上記2液硬化型ウレタン系接着剤を介して、積層し、本発明の積層体を得た。
なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
また、このようにして得られた積層体におけるポリエチレンの割合は、97質量%であった。
The image forming surface of the base material A and the layer made of the linear low-density polyethylene A of the heat seal layer B are laminated via the two-component curable urethane adhesive to obtain the laminate of the present invention. got
The thickness of the adhesive layer formed by the two-component curable urethane adhesive was 3.0 μm.
The ratio of polyethylene in the laminate thus obtained was 97% by mass.

<比較例2-1>
上記基材aを準備した。
<Comparative Example 2-1>
The base material a was prepared.

基材aの一方の面に、上記油性グラビアインキを用いて、グラビア印刷法により、画像を形成した。 An image was formed on one surface of the base material a by gravure printing using the oil-based gravure ink.

上記基材aの画像形成面と、上記ヒートシール層Bの直鎖状低密度ポリエチレンAからなる層とを、上記2液硬化型ウレタン系接着剤を介して、積層し、積層体を得た。
なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
また、このようにして得られた積層体におけるポリエチレンの割合は、97質量%であった。
The image forming surface of the substrate a and the layer made of linear low-density polyethylene A of the heat seal layer B were laminated via the two-liquid curing urethane adhesive to obtain a laminate. .
The thickness of the adhesive layer formed by the two-component curable urethane adhesive was 3.0 μm.
The ratio of polyethylene in the laminate thus obtained was 97% by mass.

<比較例2-2>
基材Aを、厚さ12μmの上記二軸延伸PETフィルムに変更した以外は、実施例2-1と同様にして、積層体を作製した。
また、このようにして得られた積層体におけるポリエチレンの割合は、86質量%であった。
<Comparative Example 2-2>
A laminate was produced in the same manner as in Example 2-1, except that the base material A was changed to the biaxially stretched PET film having a thickness of 12 μm.
Moreover, the ratio of polyethylene in the laminate thus obtained was 86% by mass.

<実施例3-1>
上記基材Aを準備した。
<Example 3-1>
The base material A was prepared.

基材Aの一方の面に、油性グラビアインキ(DICグラフィックス(株)製、商品名:フィナート)を用いて、グラビア印刷法により、画像を形成した。 An image was formed on one surface of the base material A by gravure printing using an oil-based gravure ink (manufactured by DIC Graphics, trade name: Finart).

ヒートシール層Aを準備し、この直鎖状低密度ポリエチレンAに、PVD法により厚さ20nmのアルミニウム蒸着膜を形成した。 A heat seal layer A was prepared, and a 20 nm-thick aluminum deposition film was formed on this linear low-density polyethylene A by PVD.

基材Aの画像形成面と、ヒートシール層Aの蒸着面とを、上記2液硬化型ウレタン系接着剤を介して、積層し、本発明の積層体を得た。
なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
また、このようにして得られた積層体におけるポリエチレンの割合は、95質量%であった。
The image forming surface of the base material A and the deposition surface of the heat seal layer A were laminated via the two-component curable urethane adhesive to obtain the laminate of the present invention.
The thickness of the adhesive layer formed by the two-component curable urethane adhesive was 3.0 μm.
Moreover, the ratio of polyethylene in the laminate thus obtained was 95% by mass.

<実施例3-2>
実施例3-1において、基材Aの画像形成面と、ヒートシール層Aの蒸着面との接着を、イソシアネート化合物およびリン酸変性化合物を含む2液硬化型接着剤(DIC(株)製、PASLIM VM001/VM102CP)により行った以外は、実施例3-1と同様にして、本発明の積層体を作製した。
<Example 3-2>
In Example 3-1, the image forming surface of the substrate A and the deposition surface of the heat seal layer A were adhered using a two-component curing adhesive containing an isocyanate compound and a phosphoric acid-modified compound (manufactured by DIC Corporation, A laminate of the present invention was produced in the same manner as in Example 3-1 except that it was performed using PASLIM VM001/VM102CP).

<比較例3-1>
上記基材aを準備した。
<Comparative Example 3-1>
The base material a was prepared.

基材aの一方の面に、上記油性グラビアインキを用いて、グラビア印刷法により、画像を形成した。 An image was formed on one surface of the base material a by gravure printing using the oil-based gravure ink.

ヒートシール層Aを準備し、この直鎖状低密度ポリエチレンAに、PVD法により厚さ20nmのアルミニウム蒸着膜を形成した。 A heat seal layer A was prepared, and a 20 nm-thick aluminum deposition film was formed on this linear low-density polyethylene A by PVD.

基材aの画像形成面と、ヒートシール層Aの蒸着面とを、上記2液硬化型ウレタン系接着剤を介して、積層し、積層体を得た。
なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
また、このようにして得られた積層体におけるポリエチレンの割合は、95質量%であった。
The image forming surface of the base material a and the deposition surface of the heat seal layer A were laminated via the two-component curable urethane adhesive to obtain a laminate.
The thickness of the adhesive layer formed by the two-component curable urethane adhesive was 3.0 μm.
Moreover, the ratio of polyethylene in the laminate thus obtained was 95% by mass.

<比較例3-2>
基材Aを、厚さ12μmの上記二軸延伸PETフィルムに変更した以外は、実施例3-1と同様にして、積層体を作製した。
また、このようにして得られた積層体におけるポリエチレンの割合は、76質量%であった。
<Comparative Example 3-2>
A laminate was produced in the same manner as in Example 3-1, except that the base material A was changed to the biaxially stretched PET film having a thickness of 12 μm.
Moreover, the ratio of polyethylene in the laminate thus obtained was 76% by mass.

<実施例4-1>
上記基材Aを準備した。
<Example 4-1>
The base material A was prepared.

基材Aの一方の面に、油性グラビアインキ(DICグラフィックス(株)製、商品名:フィナート)を用いて、グラビア印刷法により、画像を形成した。 An image was formed on one surface of the base material A by gravure printing using an oil-based gravure ink (manufactured by DIC Graphics, trade name: Finart).

上記中密度ポリエチレンをインフレーション成形法により製膜し、厚さ100μmのポリエチレンフィルムを得た後、長手方向(MD)に、5倍の延伸倍率で延伸し、厚さ20μmの延伸ポリエチレンフィルムAを得た。次いで、該延伸ポリエチレンフィルムAの一方の面に、PVD法により、厚さ20nmのアルミニウム蒸着膜を形成し、中間層Aを得た。 The medium-density polyethylene was formed into a film by an inflation molding method to obtain a polyethylene film having a thickness of 100 μm, and then stretched in the longitudinal direction (MD) at a draw ratio of 5 times to obtain a stretched polyethylene film A having a thickness of 20 μm. rice field. Then, on one surface of the stretched polyethylene film A, an aluminum deposition film having a thickness of 20 nm was formed by PVD method to obtain an intermediate layer A.

基材Aの画像形成面を、中間層Aの蒸着面に、上記2液硬化型ウレタン系接着剤を介して積層した。2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。 The image forming surface of the base material A was laminated on the deposition surface of the intermediate layer A via the two-liquid curing urethane adhesive. The thickness of the adhesive layer formed by the two-component curable urethane adhesive was 3.0 μm.

ヒートシール層Aを準備した。次いで、ヒートシール層Aの直鎖状低密度ポリエチレンAからなる層を、中間層Aの非蒸着面に、上記2液硬化型ウレタン系接着剤を介して、積層し、本発明の積層体を得た。
なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
また、このようにして得られた積層体におけるポリエチレンの割合は、93質量%であった。
A heat seal layer A was prepared. Next, a layer made of linear low-density polyethylene A of the heat seal layer A is laminated on the non-vapor-deposited surface of the intermediate layer A via the two-liquid curing urethane adhesive to obtain the laminate of the present invention. Obtained.
The thickness of the adhesive layer formed by the two-component curable urethane adhesive was 3.0 μm.
Also, the ratio of polyethylene in the laminate thus obtained was 93% by mass.

<実施例4-2>
実施例4-1において、基材Aの画像形成面と、中間層Aの蒸着面との接着を、イソシアネート化合物およびリン酸変性化合物を含む2液硬化型接着剤(DIC(株)製、PASLIM VM001/VM102CP)により行った以外は、実施例4-1と同様にして、本発明の積層体を作製した。
<Example 4-2>
In Example 4-1, the image forming surface of the substrate A and the deposition surface of the intermediate layer A were adhered with a two-component curing adhesive containing an isocyanate compound and a phosphoric acid-modified compound (manufactured by DIC Corporation, PASLIM A laminate of the present invention was produced in the same manner as in Example 4-1, except that VM001/VM102CP) was used.

<比較例4-1>
上記基材aを準備した。
<Comparative Example 4-1>
The base material a was prepared.

基材aの一方の面に、油性グラビアインキ(DICグラフィックス(株)製、商品名:フィナート)を用いて、グラビア印刷法により、画像を形成した。 An image was formed on one surface of the base material a by gravure printing using an oil-based gravure ink (manufactured by DIC Graphics, trade name: Finart).

上記中密度ポリエチレンをインフレーション成形法により製膜し、厚さ20μmの延伸ポリエチレンフィルムaを得た。次いで、該延伸ポリエチレンフィルムaの一方の面に、PVD法により、厚さ20nmのアルミニウム蒸着膜を形成し、中間層aを得た。 A stretched polyethylene film a having a thickness of 20 μm was obtained by forming a film from the medium-density polyethylene by an inflation molding method. Next, on one surface of the stretched polyethylene film a, a 20 nm-thick aluminum deposition film was formed by PVD to obtain an intermediate layer a.

基材aの画像形成面を、中間層aの蒸着面に、上記2液硬化型ウレタン系接着剤を介して積層した。2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。 The image forming surface of the base material a was laminated on the deposition surface of the intermediate layer a via the two-liquid curing urethane adhesive. The thickness of the adhesive layer formed by the two-component curable urethane adhesive was 3.0 μm.

ヒートシール層Aを準備し、この直鎖状低密度ポリエチレンAからなる層を、中間層aの非蒸着面に、上記2液硬化型ウレタン系接着剤を介して、積層し、積層体を得た。
なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
また、このようにして得られた積層体におけるポリエチレンの割合は、93質量%であった。
A heat seal layer A is prepared, and a layer made of this linear low-density polyethylene A is laminated on the non-vapor-deposited surface of the intermediate layer a via the two-liquid curing urethane adhesive to obtain a laminate. rice field.
The thickness of the adhesive layer formed by the two-component curable urethane adhesive was 3.0 μm.
Also, the ratio of polyethylene in the laminate thus obtained was 93% by mass.

<比較例4-2>
基材Aおよび中間層Aの延伸ポリエチレンフィルムを、厚さ12μmの二軸延伸ポリエステルフィルム(東洋紡(株)商品名:E5100)に変更した以外は、実施例4-1と同様にして積層体を得た。このようにして得られた積層体におけるポリエチレンの割合は、62質量%であった。
<Comparative Example 4-2>
A laminate was prepared in the same manner as in Example 4-1, except that the stretched polyethylene films of the substrate A and the intermediate layer A were changed to a 12 μm-thick biaxially stretched polyester film (Toyobo Co., Ltd. trade name: E5100). Obtained. The proportion of polyethylene in the laminate thus obtained was 62% by mass.

<リサイクル性評価>
上記実施例および比較例において得られた積層体のリサイクル性を下記評価基準に基づいて、評価した。評価結果を表1にまとめた。
(評価基準)
○:積層体におけるポリエチレンの含有量が90質量%以上であった。
×:積層体におけるポリエチレンの含有量が90質量%未満であった。
<Recyclability evaluation>
The recyclability of the laminates obtained in the above examples and comparative examples was evaluated based on the following evaluation criteria. The evaluation results are summarized in Table 1.
(Evaluation criteria)
○: The content of polyethylene in the laminate was 90% by mass or more.
x: The content of polyethylene in the laminate was less than 90% by mass.

<耐熱性評価>
上記実施例1-1および比較例1-1~1-2、実施例3-1~3-2および比較例3-1~3-2並びに実施例4-1~4-2および比較例4-1~4-2において得られた積層体から、縦80mm×横80mmの試験片をそれぞれ2枚ずつ作製した。
2枚の試験片を、ヒートシール層が向かい合うように重ね合わせ、3辺を140℃でヒートシールし、包装袋を作製した。
上記実施例2-1および比較例2-1~2-2において得られた積層体から、縦110mm×横150mmの試験片をそれぞれ2枚ずつ作製した。
2枚の試験片を、ヒートシール層が向かい合うように重ね合わせ、2辺を140℃でヒートシールし、筒状の胴部を形成した。
次いで、上記実施例2-1および比較例2-1~2-2において得られた積層体から、縦110mm×横150mmの試験片を1枚作製し、これをヒートシール層が外側となるように、V字に折り、上記筒状の胴部と140℃でヒートシールし、底部を形成すると共に、スタンドパウチを作製した。
作製した包装材料を目視により観察し、以下の評価基準に基づいて、評価した。評価結果を表1~4にまとめた。
(評価基準)
○:包装材料表面にシワなどが発生しておらず、また、ヒートシールバーへの付着が見られなかった。
×:包装材料表面にシワなどが発生しており、また、ヒートシールバーへの付着が見られ、製袋できなかった。
<Heat resistance evaluation>
Examples 1-1 and Comparative Examples 1-1 to 1-2, Examples 3-1 to 3-2 and Comparative Examples 3-1 to 3-2 and Examples 4-1 to 4-2 and Comparative Example 4 Two test pieces each having a length of 80 mm and a width of 80 mm were produced from each of the laminates obtained in 1 to 4-2.
Two test pieces were superimposed so that the heat-seal layers faced each other, and three sides were heat-sealed at 140° C. to prepare a packaging bag.
Two test pieces each having a length of 110 mm and a width of 150 mm were prepared from the laminates obtained in Example 2-1 and Comparative Examples 2-1 and 2-2.
Two test pieces were superimposed so that the heat-seal layers faced each other, and two sides were heat-sealed at 140° C. to form a tubular body.
Next, from the laminates obtained in Example 2-1 and Comparative Examples 2-1 and 2-2, one test piece having a length of 110 mm and a width of 150 mm was prepared, and the heat seal layer was placed on the outside. Then, the pouch was folded into a V shape and heat-sealed with the tubular body at 140° C. to form a bottom and a stand pouch.
The produced packaging materials were visually observed and evaluated based on the following evaluation criteria. The evaluation results are summarized in Tables 1-4.
(Evaluation criteria)
◯: No wrinkles occurred on the surface of the packaging material, and no adhesion to the heat seal bar was observed.
x: Wrinkles occurred on the surface of the packaging material, and adhesion to the heat seal bar was observed, and the bag could not be made.

<印刷適性評価>
上記実施例および比較例において作製した積層体が備える基材に形成した画像を目視により観察し、以下の評価基準に基づいて、評価した。評価結果を表1~4にまとめた。
(評価基準)
○:印刷時の寸法安定性が良好であり、擦れ、滲みなどが生じていない良好な画像を形成することができていた。
×:印刷時にフィルムの伸び縮みが発生し、形成した画像に擦れや滲みが生じていた。
<Printability evaluation>
The images formed on the substrates included in the laminates produced in the above examples and comparative examples were visually observed and evaluated based on the following evaluation criteria. The evaluation results are summarized in Tables 1-4.
(Evaluation criteria)
◯: Dimensional stability during printing was good, and a good image free from rubbing and bleeding could be formed.
x: Expansion and contraction of the film occurred during printing, and rubbing and blurring occurred in the formed image.

<剛性評価>
上記実施例および比較例において作製した積層体を、10mm幅の試験片とし、ループスティフネス測定試験器(東洋精機製作所製、商品名:ループステフネステスタ)によりその剛性を測定した。なお、ループの長さは、60mmとした。測定結果を表1~4にまとめた。
<Rigidity evaluation>
The laminates produced in the above Examples and Comparative Examples were used as test pieces having a width of 10 mm, and the stiffness thereof was measured using a loop stiffness measurement tester (manufactured by Toyo Seiki Seisakusho, trade name: Loop Stiffness Tester). In addition, the length of the loop was set to 60 mm. The measurement results are summarized in Tables 1-4.

<強度試験>
上記実施例および比較例において作製した積層体を、引っ張り試験機(オリエンテック社製、商品名:RTC-1310A)により、直径0.5mmの針を突き刺した際の強度を測定した。なお、突き刺し速度は、50mm/分とした。測定結果を表1~4にまとめた。
<Strength test>
The laminates produced in the above examples and comparative examples were measured for strength when a needle with a diameter of 0.5 mm was pierced by a tensile tester (trade name: RTC-1310A manufactured by Orientec). The puncture speed was set to 50 mm/min. The measurement results are summarized in Tables 1-4.

<耐屈曲負荷性試験>
まず、上記実施例3-1~3-2および比較例3-1~3-2並びに実施例4-1~4-2および比較例4-1~4-2で得られた積層体の酸素透過度および水蒸気透過度を測定した。
酸素透過度の測定には、MOCON製 OXTRAN2/20を使用し、23℃、90%RHn条件下において、水蒸気透過度の測定には、MOCON製 PERMATRAN3/31を使用し、40℃、90%RHの条件下において、それぞれ測定した。
さらに、上記実施例3-1~3-2および比較例3-1~3-2並びに実施例4-1~4-2および比較例4-1~4-2で得られた積層体について、ゲルボフレックステター(テスター産業(株)性、商品名:BE1006BE)を用い、ASTM F 392に準拠して屈曲負荷(ストローク:155mm、屈曲動作:440°)を5回与えた。
屈曲負荷後、積層体の酸素透過度および水蒸気透過度を測定した。
屈曲負荷性試験前後の積層体の酸素透過度および水蒸気透過度を表3および4に示す。
<Bending load resistance test>
First, the oxygen Permeability and water vapor transmission rates were measured.
For the measurement of oxygen permeability, OXTRAN2/20 manufactured by MOCON is used under the conditions of 23°C and 90% RHn. were measured under the conditions of
Furthermore, regarding the laminates obtained in Examples 3-1 to 3-2 and Comparative Examples 3-1 to 3-2 and Examples 4-1 to 4-2 and Comparative Examples 4-1 to 4-2, Using a gelbo flextator (manufactured by Tester Sangyo Co., Ltd., trade name: BE1006BE), a bending load (stroke: 155 mm, bending motion: 440°) was applied five times according to ASTM F392.
After bending load, the oxygen permeability and water vapor permeability of the laminate were measured.
Tables 3 and 4 show the oxygen permeability and water vapor permeability of the laminate before and after the bending load resistance test.

Figure 2023073246000009
Figure 2023073246000009

Figure 2023073246000010
Figure 2023073246000010

Figure 2023073246000011
Figure 2023073246000011

Figure 2023073246000012
Figure 2023073246000012

10:積層体、11:基材、12:ヒートシール層、13:高密度ポリエチレン層、14:中密度ポリエチレン層、15:低密度ポリエチレン層、直鎖状低密度ポリエチレン層または超低密度ポリエチレン層、16:中密度ポリエチレン層、17:高密度ポリエチレン層、18:蒸着膜、19:接着層、20:延伸ポリエチレンフィルム、21:中間層、30:包装袋、40:スタンドパウチ、41:胴部、42:底部 10: Laminate, 11: Substrate, 12: Heat seal layer, 13: High density polyethylene layer, 14: Medium density polyethylene layer, 15: Low density polyethylene layer, linear low density polyethylene layer or ultra low density polyethylene layer , 16: Medium density polyethylene layer, 17: High density polyethylene layer, 18: Deposited film, 19: Adhesive layer, 20: Stretched polyethylene film, 21: Intermediate layer, 30: Packaging bag, 40: Stand pouch, 41: Body , 42: bottom

Claims (11)

基材と、ヒートシール層とを備えた積層体であって、
前記基材および前記ヒートシール層のいずれもが、ポリエチレンから構成され、前記積層体全体におけるポリエチレンの含有量が、90質量%以上であり、
前記基材の表面に、印刷処理が施されており、
前記基材が、共押延伸フィルムからなり、
前記共押延伸フィルムが、
高密度ポリエチレンを含む層と、
中密度ポリエチレンを含む層と、
低密度ポリエチレンを含む層、直鎖状低密度ポリエチレンを含む層または超低密度ポリエチレンを含む層と、
中密度ポリエチレンを含む層と、
高密度ポリエチレンを含む層と、
を備えることを特徴とする、積層体。
A laminate comprising a substrate and a heat seal layer,
Both the base material and the heat seal layer are made of polyethylene, and the content of polyethylene in the entire laminate is 90% by mass or more,
A printing process is applied to the surface of the base material,
The substrate is made of a coextruded stretched film,
The coextruded stretched film is
a layer comprising high density polyethylene;
a layer comprising medium density polyethylene;
a layer comprising low density polyethylene, a layer comprising linear low density polyethylene or a layer comprising ultra-low density polyethylene;
a layer comprising medium density polyethylene;
a layer comprising high density polyethylene;
A laminate, comprising:
前記基材と、ヒートシール層との間に蒸着膜を備える、請求項1に記載の積層体。 The laminate according to claim 1, comprising a vapor-deposited film between the substrate and the heat seal layer. 前記基材と、蒸着膜との間に接着層を備え、
前記蒸着膜が、アルミニウム蒸着膜であり、
前記接着層が、ポリエステルポリオールとイソシアネート化合物とリン酸変性化合物を含む樹脂組成物の硬化物により構成される、請求項2に記載の積層体。
An adhesive layer is provided between the base material and the deposited film,
The vapor deposited film is an aluminum vapor deposited film,
3. The laminate according to claim 2, wherein the adhesive layer is composed of a cured resin composition containing a polyester polyol, an isocyanate compound, and a phosphoric acid-modified compound.
前記基材と前記ヒートシール層との間に、さらに中間層を備え、
前記中間層は、一方の面に蒸着膜を備える延伸ポリエチレンフィルムからなる、請求項1~3のいずれか一項に記載の積層体。
An intermediate layer is further provided between the base material and the heat seal layer,
The laminate according to any one of claims 1 to 3, wherein the intermediate layer is made of a stretched polyethylene film having a deposited film on one side.
前記基材と前記中間層との間、および前記中間層と前記ヒートシール層との間に、接着層を備える、請求項4に記載の積層体。 5. The laminate of claim 4, comprising adhesive layers between the substrate and the intermediate layer and between the intermediate layer and the heat seal layer. 前記蒸着膜が、アルミニウム蒸着膜であり、
前記蒸着膜と隣接する前記接着層が、ポリエステルポリオールとイソシアネート化合物とリン酸変性化合物を含む樹脂組成物の硬化物により構成される、請求項5に記載の積層体。
The vapor deposited film is an aluminum vapor deposited film,
6. The laminate according to claim 5, wherein the adhesive layer adjacent to the vapor-deposited film is composed of a cured resin composition containing a polyester polyol, an isocyanate compound, and a phosphoric acid-modified compound.
前記基材がインフレーション法により作製されたものである、請求項1~5のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 5, wherein the substrate is produced by an inflation method. 包装材料用途に用いられる、請求項1~7のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 7, which is used as a packaging material. 請求項1~8のいずれか一項に記載の積層体を用いて作製されたものである包装材料。 A packaging material produced using the laminate according to any one of claims 1 to 8. 包装袋であって、
請求項1~8のいずれか一項に記載の積層体を用いて作製され、
前記ヒートシール層の厚さが、20μm以上60μm以下であることを特徴とする、包装袋。
A packaging bag,
Produced using the laminate according to any one of claims 1 to 8,
A packaging bag, wherein the heat seal layer has a thickness of 20 μm or more and 60 μm or less.
スタンドパウチであって、
請求項1~8のいずれか一項に記載の積層体を用いて作製され、
前記ヒートシール層の厚さが、50μm以上200μm以下であることを特徴とするスタンドパウチ。
It is a standing pouch,
Produced using the laminate according to any one of claims 1 to 8,
A stand-up pouch, wherein the heat seal layer has a thickness of 50 μm or more and 200 μm or less.
JP2023021926A 2018-09-28 2023-02-15 Laminate, packaging material, packaging bag and stand pouch Pending JP2023073246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023021926A JP2023073246A (en) 2018-09-28 2023-02-15 Laminate, packaging material, packaging bag and stand pouch

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018185963A JP2020055156A (en) 2018-09-28 2018-09-28 Laminate, packaging material, packaging bag and stand pouch
JP2023021926A JP2023073246A (en) 2018-09-28 2023-02-15 Laminate, packaging material, packaging bag and stand pouch

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018185963A Division JP2020055156A (en) 2018-09-28 2018-09-28 Laminate, packaging material, packaging bag and stand pouch

Publications (1)

Publication Number Publication Date
JP2023073246A true JP2023073246A (en) 2023-05-25

Family

ID=70106004

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018185963A Pending JP2020055156A (en) 2018-09-28 2018-09-28 Laminate, packaging material, packaging bag and stand pouch
JP2023021926A Pending JP2023073246A (en) 2018-09-28 2023-02-15 Laminate, packaging material, packaging bag and stand pouch

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018185963A Pending JP2020055156A (en) 2018-09-28 2018-09-28 Laminate, packaging material, packaging bag and stand pouch

Country Status (1)

Country Link
JP (2) JP2020055156A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022230812A1 (en) * 2021-04-26 2022-11-03 凸版印刷株式会社 Layered product, packaging material, and packaging bag
WO2023058374A1 (en) * 2021-10-06 2023-04-13 凸版印刷株式会社 Laminate, package, and packaged article
WO2023062963A1 (en) * 2021-10-11 2023-04-20 凸版印刷株式会社 Laminate, packaging material, and packaged article
CN114701224A (en) * 2022-02-16 2022-07-05 江阴宝柏包装有限公司 Recyclable high-barrier forming base film and preparation method thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6085946A (en) * 1983-08-24 1985-05-15 昭和電工株式会社 Inflation film and manufacture thereof
JPH0653407B2 (en) * 1987-07-17 1994-07-20 富士写真フイルム株式会社 Packaging material
JP2915451B2 (en) * 1989-11-15 1999-07-05 株式会社リーダー Manufacturing method of heat sealable laminated film
JPH10745A (en) * 1996-06-14 1998-01-06 Dainippon Printing Co Ltd Laminated and packaging container using laminate
JP2004106514A (en) * 2002-07-25 2004-04-08 Otsuka Pharmaceut Factory Inc Multilayer film and multiple-chamber container using it
AU2003268092A1 (en) * 2002-09-16 2004-04-30 Dow Global Technologies Inc. High clarity, high stiffness films
JP2008265854A (en) * 2007-04-25 2008-11-06 Dainippon Printing Co Ltd Self-supportable bag-like container
JP5845936B2 (en) * 2012-01-31 2016-01-20 大日本印刷株式会社 Polyethylene resin composition
JP6496981B2 (en) * 2014-03-28 2019-04-10 凸版印刷株式会社 Sealant film, and film laminate and standing pouch using the same
CN107428138B (en) * 2015-02-27 2019-07-12 博里利斯股份公司 It is based only upon the laminate film structure of polyethylene
JP6350589B2 (en) * 2016-04-28 2018-07-04 大日本印刷株式会社 Sealant film for packaging material, laminated film for packaging material, and packaging bag using plant-derived polyethylene
JP6903879B2 (en) * 2016-07-29 2021-07-14 大日本印刷株式会社 A laminate having oxygen barrier properties and a packaging material composed of the laminate

Also Published As

Publication number Publication date
JP2020055156A (en) 2020-04-09

Similar Documents

Publication Publication Date Title
WO2019189092A1 (en) Laminate, and packaging material, packaging bag and stand-up pouch each comprising said laminate, and multi-layer substrate
JP2022133337A (en) Laminate, packaging material, packaging bag and stand pouch
JP7151342B2 (en) Multi-layer substrates, laminates, packaging materials, packaging bags and stand-up pouches
JP2023073246A (en) Laminate, packaging material, packaging bag and stand pouch
JP7282300B2 (en) Laminates for packaging materials and packaging materials
JP2023112005A (en) packaging material
JP7496068B2 (en) Laminate, packaging material, packaging bag and stand-up pouch
JP2019171861A (en) Laminate and packaging material composed of the laminate
WO2020067426A1 (en) Laminate, packaging material, packaging bag, and stand pouch
JP2023021240A (en) Laminate, packaging material, packaging bag and stand pouch
JP2023071675A (en) Base material, laminate, packaging material, packaging bag and stand pouch
JP2022132355A (en) Laminate for packaging material and packaging material
JP2023065359A (en) Laminate and packaging material composed of the laminate
JP7236046B2 (en) Laminates, packaging materials, packaging bags and standing pouches
JP2023089053A (en) Laminate for packaging material and packaging material
JP2023016859A (en) Laminate for packaging material and packaging material
JP7324414B2 (en) Laminates, packaging materials, packaging bags and standing pouches
JP7324413B2 (en) Laminates, packaging materials, packaging bags and standing pouches
JP7324415B2 (en) Laminates, packaging materials, packaging bags and standing pouches
JP2020158191A (en) Base material, laminate, packaging material, packaging bag, and stand pouch
JP2023121791A (en) Laminate and packaging material composed of the laminate
JP2020158722A (en) Base material, laminate, packaging material, packaging bag and stand pouch
JP2020157723A (en) Laminate, packaging material, packaging bag and stand pouch
JP2020157730A (en) Laminate, packaging material, packaging bag and stand pouch

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240514

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240524