WO2020067426A1 - Laminate, packaging material, packaging bag, and stand pouch - Google Patents

Laminate, packaging material, packaging bag, and stand pouch Download PDF

Info

Publication number
WO2020067426A1
WO2020067426A1 PCT/JP2019/038156 JP2019038156W WO2020067426A1 WO 2020067426 A1 WO2020067426 A1 WO 2020067426A1 JP 2019038156 W JP2019038156 W JP 2019038156W WO 2020067426 A1 WO2020067426 A1 WO 2020067426A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
density polyethylene
thickness
film
laminate
Prior art date
Application number
PCT/JP2019/038156
Other languages
French (fr)
Japanese (ja)
Inventor
山田 憲一
智裕 米本
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018186075A external-priority patent/JP7324987B2/en
Priority claimed from JP2018186034A external-priority patent/JP7236046B2/en
Priority claimed from JP2018186073A external-priority patent/JP7324986B2/en
Priority claimed from JP2018185963A external-priority patent/JP2020055156A/en
Priority claimed from JP2018186062A external-priority patent/JP7324413B2/en
Priority claimed from JP2018186152A external-priority patent/JP7324414B2/en
Priority claimed from JP2018186155A external-priority patent/JP7324415B2/en
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Publication of WO2020067426A1 publication Critical patent/WO2020067426A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/80Packaging reuse or recycling, e.g. of multilayer packaging

Definitions

  • the present invention relates to a laminate, a packaging material, a packaging bag, and a stand pouch composed of the laminate.
  • packaging materials and the like have been manufactured using a resin film composed of a resin material.
  • a resin film composed of polyethylene has moderate flexibility and transparency, and is excellent in heat sealability, and thus is widely used as a packaging material.
  • resin films composed of polyethylene cannot be used as a base material or an intermediate layer provided for improving strength because resin films having poor strength and heat resistance are used, and resin films composed of polyester, polyamide, etc.
  • a usual packaging material is composed of a laminated film made of a resin material different from a base material or an intermediate layer and a heat seal layer (for example, see Patent Document 1). ).
  • the present inventors have made it possible to use polyethylene, which has been conventionally used as a heat seal layer, as a stretched resin film so that it can be used as a base material or an intermediate layer. It has been found that by using a laminate with a seal layer, a recyclable packaging material having sufficient strength and heat resistance can be produced.
  • the present invention has been made in view of the above findings, and a problem to be solved is to provide a packaging material having sufficient strength and heat resistance applicable as a packaging material and the like, and also having excellent recyclability. It is to provide a laminate that can be used. Another object of the present invention is to provide a packaging material composed of the laminate. Another object of the present invention is to provide a packaging bag made from the laminate. A further object of the present invention is to provide a stand pouch made from the laminate.
  • the laminate of the present invention includes a substrate and a heat seal layer,
  • the base material and the heat seal layer are made of the same material,
  • the same material is polyethylene,
  • the base material is a stretched resin film.
  • the laminate of the present invention includes an adhesive layer between the base material and the heat seal layer.
  • the heat seal layer includes a vapor-deposited film on a surface on the base material side.
  • the deposited film is an aluminum deposited film
  • the adhesive layer is constituted by a cured product of a resin composition containing a polyester polyol and an isocyanate compound.
  • the laminate of the present invention includes an intermediate layer between the base material and the heat seal layer,
  • the intermediate layer includes a deposited film and an intermediate layer substrate.
  • At least one of the base material and the heat seal layer contains biomass-derived polyethylene as polyethylene.
  • the base material is a high-density polyethylene layer, a medium-density polyethylene layer, a low-density polyethylene layer, a linear low-density polyethylene layer or an ultra-low-density polyethylene layer, a medium-density polyethylene layer, It comprises a five-layer co-stretched film of a polyethylene layer.
  • the laminate of the present invention includes a base material, an intermediate layer, and a heat seal layer
  • the substrate is composed of polyester
  • the intermediate layer and the heat seal layer are made of the same material,
  • the same material is polyethylene
  • the intermediate layer is a stretched resin film
  • the thickness of the substrate is smaller than the sum of the thickness of the intermediate layer and the thickness of the heat seal layer.
  • At least one of the intermediate layer and the heat seal layer contains biomass-derived polyethylene as polyethylene.
  • the laminate is used for packaging materials.
  • the packaging material of the present invention is characterized by being produced using the above-mentioned laminate.
  • the packaging bag of the present invention is produced using the above laminate,
  • the thickness of the heat seal layer is from 20 ⁇ m to 60 ⁇ m.
  • the stand pouch of the present invention is produced using the above-mentioned laminate,
  • the thickness of the heat seal layer is 50 ⁇ m or more and 200 ⁇ m or less.
  • the present invention it is possible to provide a laminate capable of realizing a packaging material having strength and heat resistance as a packaging material and excellent recyclability.
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of a laminate of the present invention in a first aspect.
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of a laminate of the present invention in a first aspect.
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of a laminate of the present invention in a first aspect.
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of a laminate of the present invention in a first aspect.
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of a laminate of the present invention in a first aspect. It is a cross section schematic diagram showing one embodiment of a layered product of the present invention in a 2nd mode.
  • the laminate 10 includes a base material 11 and a heat seal layer 12.
  • the laminate 10 can include a deposition film 13 between the base material 11 and the heat seal layer 12.
  • the laminate 10 may include an adhesive layer 14 between the base material 11 and the heat seal layer 12 or the vapor-deposited film 13.
  • the laminate 10 includes an intermediate layer 17 including a deposition film 15 and an intermediate layer substrate 16 between the substrate 11 and the heat seal layer 12. Can be prepared.
  • the laminate 10 includes an adhesive layer 18 between the base material 11 and the intermediate layer 17 and between the intermediate layer 17 and the heat seal layer 12. Can be prepared.
  • the content of polyethylene is preferably 90% by mass or more.
  • the content of polyethylene in the laminate means the ratio of the content of polyethylene to the sum of the content of the resin material in each layer constituting the laminate.
  • the substrate of the laminate of the present invention is made of polyethylene, and the heat seal layer described below is also made of polyethylene. With such a configuration, the recyclability of the laminate can be improved.
  • a stretched resin film composed of polyethylene is used, whereby the heat resistance and strength of the laminate can be improved. In addition, the suitability for printing on the base material can be improved.
  • the stretched resin film may be a uniaxially stretched resin film or a biaxially stretched resin film.
  • the stretch ratio in the machine direction (MD) of the stretched resin film is preferably 2 times or more and 10 times or less, and more preferably 3 times or more and 7 times or less.
  • the stretching ratio in the longitudinal direction (MD) of the stretched resin film is preferably 2 times or more and 10 times or less, and more preferably 3 times or more and 7 times or less.
  • the stretching ratio in the transverse direction (TD) of the stretched resin film is preferably 2 times or more and 10 times or less, and more preferably 3 times or more and 7 times or less.
  • the stretching ratio in the transverse direction (TD) of the stretched resin film is preferably 2 times or more and 10 times or less, and more preferably 3 times or more and 7 times or less.
  • the haze value of the stretched resin film is preferably 30% or less, more preferably 20% or less. Thereby, the transparency of the stretched resin film can be improved.
  • the haze value of the stretched resin film is measured according to JIS K7105.
  • the substrate may have an image formed on its surface. Since the contact with the outside air can be prevented and the deterioration with time can be prevented, it is preferable that an image is formed on the side on which the heat seal layer described below is provided.
  • the image to be formed is not particularly limited, and includes characters, patterns, symbols, combinations thereof, and the like.
  • the image formation on the base material is preferably performed using a biomass-derived ink, whereby a packaging material with less environmental load can be produced using the laminate of the present invention.
  • the method for forming an image is not particularly limited, and includes a conventionally known printing method such as a gravure printing method, an offset printing method, and a flexographic printing method. Among these, the flexographic printing method is preferable from the viewpoint of environmental load.
  • high density polyethylene high density polyethylene
  • MDPE medium density polyethylene
  • LDPE low density polyethylene
  • LLDPE linear low density polyethylene
  • VLDPE very low density polyethylene
  • high-density polyethylene polyethylene having a density of 0.945 g / cm 3 or more
  • medium-density polyethylene the density of 0.925 g / cm 3 or more and less than 0.945 g / cm 3
  • Polyethylene can be used.
  • low-density polyethylene polyethylene having a density of 0.900 g / cm 3 or more and less than 0.925 g / cm 3 can be used.
  • a polyethylene having a density of 0.900 g / cm 3 or more and less than 0.925 g / cm 3 can be used.
  • As the ultra-low density polyethylene a polyethylene having a density of less than 0.900 g / cm 3 can be used.
  • high-density polyethylene and medium-density polyethylene are preferred from the viewpoint of printability, strength and heat resistance of the laminate of the present invention, and stretchability of the film, and medium-density polyethylene is more preferred from the viewpoint of stretchability.
  • a base material having a layer composed of high-density polyethylene (hereinafter, referred to as a high-density polyethylene layer) and a layer composed of a medium-density polyethylene (hereinafter, referred to as a medium-density polyethylene layer) is used.
  • a high-density polyethylene layer a layer composed of high-density polyethylene
  • a medium-density polyethylene layer referred to as a medium-density polyethylene layer
  • the thickness of the high-density polyethylene layer is preferably smaller than the thickness of the medium-density polyethylene layer.
  • the ratio of the thickness of the high-density polyethylene layer to the thickness of the medium-density polyethylene layer is preferably from 1/10 to 1/1, more preferably from 1/5 to 1/2.
  • the strength and heat resistance of the laminate of the present invention can be further improved. Further, by setting the ratio of the thickness of the high-density polyethylene layer to the thickness of the medium-density polyethylene layer to 1/1 or less, the stretchability of the resin film can be further improved.
  • a three-layer co-pressed film including a high-density polyethylene layer, a medium-density polyethylene layer, and a high-density polyethylene layer may be formed from the outside.
  • the stretchability of the resin film can be further improved.
  • the strength and heat resistance of the laminate of the present invention can be further improved.
  • the thickness of the high-density polyethylene layer is preferably smaller than the thickness of the medium-density polyethylene layer.
  • the ratio of the thickness of the high-density polyethylene layer to the thickness of the medium-density polyethylene layer is preferably from 1/10 to 1/1, more preferably from 1/5 to 1/2.
  • the strength and heat resistance of the laminate of the present invention can be further improved. Further, by setting the ratio of the thickness of the high-density polyethylene layer to the thickness of the medium-density polyethylene layer to 1/1 or less, the stretchability of the resin film can be further improved.
  • a high-density polyethylene layer, a medium-density polyethylene layer, and a low-density polyethylene layer, a linear low-density polyethylene layer, or an ultra-low-density polyethylene layer (in this paragraph, for simplicity of description, It is also possible to form a five-layer co-pressed film of a high-density polyethylene layer and a medium-density polyethylene layer. With such a configuration, the stretchability of the film can be improved. Further, the strength and heat resistance of the laminate of the present invention can be improved. Further, it is possible to prevent the occurrence of curl in the base material. Further, the film production efficiency can be improved as described below.
  • the thickness of the high-density polyethylene layer is preferably smaller than the thickness of the medium-density polyethylene layer.
  • the ratio of the thickness of the high-density polyethylene layer to the thickness of the medium-density polyethylene layer is preferably from 1/10 to 1/1, more preferably from 1/5 to 1/2.
  • the thickness of the high-density polyethylene layer is preferably the same as the thickness of the low-density polyethylene layer or greater than the thickness of the low-density polyethylene.
  • the ratio of the thickness of the high-density polyethylene layer to the thickness of the low-density polyethylene layer is preferably 1 / 0.25 or more and 1/2 or less, more preferably 1 / 0.5 or more and 1/1 or less. preferable. Heat resistance can be improved by setting the ratio of the thickness of the high-density polyethylene layer to the thickness of the low-density polyethylene layer to 1 / 0.25 or more.
  • the substrate having such a configuration can be produced by, for example, an inflation method. Specifically, from the outside, a high-density polyethylene, a medium-density polyethylene layer, and a low-density polyethylene layer, a linear low-density polyethylene layer or an ultra-low-density polyethylene layer are coextruded in a tube shape, and then opposed.
  • the low-density polyethylene layer, the linear low-density polyethylene layer, or the ultra-low-density polyethylene layer can be produced by press-bonding these with a rubber roll or the like.
  • the number of defective products in manufacturing can be significantly reduced, and ultimately, the production efficiency can be improved.
  • stretching can be performed at the same time, whereby the production efficiency can be further improved.
  • Polyethylene having different densities and branches as described above can be obtained by appropriately selecting a polymerization method.
  • a polymerization catalyst using a multi-site catalyst such as a Ziegler-Natta catalyst, or a single-site catalyst such as a metallocene catalyst, gas phase polymerization, slurry polymerization, solution polymerization, and high pressure ionic polymerization by any method, It is preferable to carry out in one stage or in two or more stages.
  • the single-site catalyst is a catalyst capable of forming a uniform active species, and is usually adjusted by contacting a metallocene-based transition metal compound or a non-metallocene-based transition metal compound with an activating cocatalyst.
  • Single-site catalysts are preferable because they have a more uniform active site structure than multi-site catalysts and can polymerize a polymer having a high molecular weight and a highly uniform structure. It is particularly preferable to use a metallocene catalyst as the single-site catalyst.
  • the metallocene catalyst is a catalyst containing a transition metal compound of Group IV of the periodic table containing a ligand having a cyclopentadienyl skeleton, a co-catalyst, an organic metal compound as required, and each catalyst component of a carrier. is there.
  • the cyclopentadienyl skeleton is a cyclopentadienyl group, a substituted cyclopentadienyl group, or the like.
  • Examples of the substituted cyclopentadienyl group include a hydrocarbon group having 1 to 30 carbon atoms, a silyl group, a silyl-substituted alkyl group, a silyl-substituted aryl group, a cyano group, a cyanoalkyl group, a cyanoaryl group, a halogen group, a haloalkyl group, and a halosilyl group. It has at least one substituent selected from groups and the like.
  • the substituted cyclopentadienyl group may have two or more substituents, and the substituents are bonded to each other to form a ring, and include an indenyl ring, a fluorenyl ring, an azulenyl ring, a hydrogenated product thereof, and the like. It may be formed.
  • the ring formed by bonding the substituents to each other may further have a substituent to each other.
  • transition metal compound of Group IV of the periodic table containing a ligand having a cyclopentadienyl skeleton examples include zirconium, titanium, and hafnium, with zirconium and hafnium being particularly preferred.
  • the transition metal compound usually has two ligands each having a cyclopentadienyl skeleton, and it is preferable that each ligand having a cyclopentadienyl skeleton be bonded to each other by a crosslinking group.
  • cross-linking group examples include a substituted silylene group such as an alkylene group having 1 to 4 carbon atoms, a silylene group, a dialkylsilylene group and a diarylsilylene group, and a substituted germylene group such as a dialkylgermylene group and a diarylgermylene group.
  • a substituted silylene group such as an alkylene group having 1 to 4 carbon atoms, a silylene group, a dialkylsilylene group and a diarylsilylene group, and a substituted germylene group such as a dialkylgermylene group and a diarylgermylene group.
  • it is a substituted silylene group.
  • the transition metal compound of Group IV of the periodic table containing a ligand having a cyclopentadienyl skeleton one kind or a mixture of two or more kinds can be used as a catalyst component.
  • the cocatalyst refers to a cocatalyst capable of effectively using the above-mentioned transition metal compound of Group IV of the periodic table as a polymerization catalyst, or capable of balancing ionic charges in a catalytically activated state.
  • benzene-soluble aluminoxane or benzene-insoluble organic aluminum oxy compound of an organic aluminum oxy compound an ion-exchanged layered silicate, a boron compound, a cation containing or not containing an active hydrogen group and a non-coordinating anion are used.
  • Lanthanide salts such as lanthanum oxide, tin oxide, and a phenoxy compound containing a fluoro group.
  • the transition metal compound of Group IV of the periodic table containing a ligand having a cyclopentadienyl skeleton may be used by being supported on a carrier of an inorganic or organic compound.
  • a porous oxide of an inorganic or organic compound is preferable, and specifically, an ion-exchange layered silicate such as montmorillonite, SiO 2 , Al 2 O 3 , MgO, ZrO 2 , TiO 2 , B 2 O 3 , CaO, ZnO, BaO, ThO 2 and the like, or a mixture thereof.
  • the organometallic compound used as necessary include an organoaluminum compound, an organomagnesium compound, and an organozinc compound. Of these, organoaluminum is preferably used.
  • a copolymer of ethylene and another monomer can be used as long as the properties of the present invention are not impaired.
  • the ethylene copolymer include a copolymer composed of ethylene and an ⁇ -olefin having 3 to 20 carbon atoms.
  • the ⁇ -olefin having 3 to 20 carbon atoms include propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene, 3-methyl-1-butene, 4-methyl-1-pentene and 6-methyl- 1-heptene and the like.
  • a copolymer with vinyl acetate or an acrylate ester may be used as long as the object of the present invention is not impaired.
  • biomass-derived ethylene instead of ethylene obtained from fossil fuel as a raw material for obtaining the high-density polyethylene or the like. Since such biomass-derived polyethylene is a carb-neutral material, it can be used as a packaging material with even less environmental load.
  • biomass-derived polyethylene can be produced, for example, by a method as described in JP-A-2013-177531.
  • commercially available biomass-derived polyethylene for example, Green PE commercially available from Braskem may be used.
  • polyethylene recycled by mechanical recycling can be used.
  • mechanical recycling generally means that the collected polyethylene film or the like is pulverized, washed with alkali to remove dirt and foreign matter on the film surface, and then dried for a certain period of time under high temperature and reduced pressure to remain inside the film. This is a method in which contaminants are diffused to perform decontamination, remove stains from a polyethylene film, and return to polyethylene again.
  • the base material may contain additives within a range that does not impair the properties of the present invention.
  • additives within a range that does not impair the properties of the present invention.
  • a crosslinking agent an antioxidant, an anti-blocking agent, a slip (slip) agent, an ultraviolet absorber, a light stabilizer, a filler Agents, reinforcing agents, antistatic agents, pigments and modifying resins.
  • the base material may be provided with the following deposited film on its surface.
  • the substrate is preferably subjected to a surface treatment.
  • the surface treatment method is not particularly limited. For example, corona discharge treatment, ozone treatment, low-temperature plasma treatment using oxygen gas and / or nitrogen gas, physical treatment such as glow discharge treatment, and oxidation using chemicals Chemical treatment such as treatment.
  • an anchor coat layer may be formed on the surface of the base material using a conventionally known anchor coat agent.
  • the thickness of the substrate is preferably 10 ⁇ m or more and 50 ⁇ m or less, and more preferably 12 ⁇ m or more and 30 ⁇ m or less.
  • the thickness of the substrate is preferably 10 ⁇ m or more and 50 ⁇ m or less, and more preferably 12 ⁇ m or more and 30 ⁇ m or less.
  • the substrate can be produced by forming a film of polyethylene by a T-die method or an inflation method, producing a film, and then stretching the film.
  • the MFR of the polyethylene is preferably 3 g / 10 min or more and 20 g / 10 min or less.
  • the processability of the laminate of the present invention can be improved.
  • the MFR of polyethylene is set to 20 g / 10 minutes or less, it is possible to prevent the resin film from breaking.
  • the MFR of the polyethylene is preferably 0.5 g / 10 min or more and 5 g / 10 min or less.
  • the processability of the laminate of the present invention can be improved.
  • the film-forming property can be improved.
  • the substrate is not limited to one produced by the above method, and a commercially available substrate may be used.
  • the heat seal layer provided in the laminate of the present invention is characterized in that it is made of polyethylene, similarly to the above-mentioned base material. With such a configuration, a recyclable packaging material or the like having sufficient strength and heat resistance can be manufactured.
  • the polyethylene resin layer is formed by an unstretched polyethylene resin film or by melt extrusion of polyethylene.
  • the polyethylene constituting the heat seal layer is preferably a low density polyethylene (LDPE), a linear low density polyethylene (LLDPE) and a super density polyethylene (VLDPE) from the viewpoint of heat sealability.
  • LDPE low density polyethylene
  • LLDPE linear low density polyethylene
  • VLDPE super density polyethylene
  • a copolymer of ethylene and another monomer can be used as long as the properties of the present invention are not impaired.
  • biomass-derived polyethylene or recycled polyethylene is preferable.
  • the heat seal layer may contain the above-mentioned additives as long as the properties of the present invention are not impaired.
  • the heat seal layer has a multilayer structure, and includes, as an intermediate layer, a layer containing at least one of medium density polyethylene and high density polyethylene.
  • a layer containing at least one of low-density polyethylene, linear low-density polyethylene, and ultra-low-density polyethylene / a layer containing at least one of medium-density polyethylene and high-density polyethylene / low-density polyethylene, linear It can be constituted by a layer containing at least one of a low-density polyethylene and an ultra-low-density polyethylene.
  • the thickness of the heat seal layer is appropriately changed according to the weight of the contents to be filled in the packaging material produced by the laminate of the present invention.
  • the thickness of the heat seal layer is preferably 20 ⁇ m or more and 60 ⁇ m or less.
  • the thickness of the heat seal layer is preferably 50 ⁇ m or more and 200 ⁇ m or less.
  • the thickness of the heat seal layer is set to 50 ⁇ m or more, it is possible to prevent the filled contents from leaking due to breakage of the heat seal layer.
  • the thickness of the heat seal layer is set to 200 ⁇ m or less, the processability of the laminate of the present invention can be improved.
  • the hatched portions in FIGS. 9 and 10 are the heat seal portions.
  • the laminate of the present invention can include a deposited film between the base material and the heat seal layer.
  • the gas barrier property of the laminate specifically, the oxygen barrier property and the water vapor barrier property can be improved.
  • Examples of the deposited film include a metal such as aluminum, and an inorganic oxide such as aluminum oxide, silicon oxide, magnesium oxide, calcium oxide, zirconium oxide, titanium oxide, boron oxide, hafnium oxide, and barium oxide. Can be mentioned.
  • a metal such as aluminum
  • an inorganic oxide such as aluminum oxide, silicon oxide, magnesium oxide, calcium oxide, zirconium oxide, titanium oxide, boron oxide, hafnium oxide, and barium oxide. Can be mentioned.
  • the thickness of the deposited film is preferably from 1 nm to 150 nm, more preferably from 5 nm to 60 nm, even more preferably from 10 nm to 40 nm.
  • the thickness of the deposited film is 1 nm or more, the oxygen barrier property and the water vapor barrier property of the laminate of the present invention can be further improved. Further, by setting the thickness of the deposited film to 150 nm or less, generation of cracks in the deposited film can be prevented, and the recyclability of the laminate of the present invention can be improved.
  • the OD value is preferably 2 or more and 3.5 or less.
  • the oxygen barrier property and the water vapor barrier property can be improved while maintaining the productivity of the laminate of the present invention.
  • the OD value can be measured according to JIS-K-7361.
  • the deposited film can be formed by a conventionally known method, for example, a physical vapor deposition method (Physical Vapor Deposition method, PVD method) such as a vacuum deposition method, a sputtering method and an ion plating method, and plasma chemistry.
  • a physical vapor deposition method Physical Vapor Deposition method, PVD method
  • Chemical vapor deposition methods Chemical Vapor Deposition method, CVD method
  • a vapor phase growth method such as a vapor phase growth method, a thermochemical vapor phase growth method, and a photochemical vapor phase growth method can be given.
  • a composite film composed of two or more layers of vapor deposited films of different kinds of inorganic oxides can be formed and used by using both physical vapor deposition and chemical vapor deposition.
  • the degree of vacuum in the vapor deposition chamber is preferably about 10 ⁇ 2 to 10 ⁇ 8 mbar before oxygen introduction, and about 10 ⁇ 1 to 10 ⁇ 6 mbar after oxygen introduction.
  • the amount of oxygen introduced differs depending on the size of the vapor deposition machine.
  • an inert gas such as an argon gas, a helium gas, or a nitrogen gas may be used as a carrier gas within a range that does not cause any trouble.
  • the transport speed of the film can be about 10 to 800 m / min.
  • the surface of the deposited film is preferably subjected to the above-mentioned surface treatment. Thereby, the adhesiveness with an adjacent layer can be improved.
  • the laminate of the present invention may include an adhesive layer between the substrate and the heat seal layer or the vapor-deposited film. Thereby, the adhesion between these layers can be improved.
  • the laminate may include an adhesive layer between the base material and the intermediate layer described below, and between the intermediate layer and the heat seal layer.
  • the adhesive layer contains at least one type of adhesive, and may be any of a one-component curable type, a two-component curable type, and a non-curable type.
  • the adhesive may be a solventless adhesive or a solvent adhesive, but from the viewpoint of environmental load, a solventless adhesive can be preferably used.
  • the non-solvent type adhesive include a polyether-based adhesive, a polyester-based adhesive, a silicone-based adhesive, an epoxy-based adhesive, and a urethane-based adhesive.
  • a system adhesive can be preferably used.
  • the solvent-based adhesive include a rubber-based adhesive, a vinyl-based adhesive, a silicone-based adhesive, an epoxy-based adhesive, a phenol-based adhesive, and an olefin-based adhesive.
  • the adhesive layer be formed of a cured product of a resin composition containing a polyester polyol and an isocyanate compound.
  • the adhesive layer having such a configuration, the oxygen barrier property and the water vapor barrier property of the laminate of the present invention can be further improved.
  • a bending load is applied to the laminate by a molding machine or the like, so that a crack or the like may occur in the aluminum vapor-deposited film.
  • the polyester polyol has two or more hydroxyl groups in one molecule as a functional group. Further, the isocyanate compound has two or more isocyanate groups in one molecule as a functional group.
  • the polyester polyol has, for example, a polyester structure or a polyester polyurethane structure as a main skeleton.
  • the resin composition containing a polyester polyol and an isocyanate compound a series of PASLIMs sold by DIC Corporation can be used.
  • the resin composition may further include a plate-like inorganic compound, a coupling agent, cyclodextrin and / or a derivative thereof, and the like.
  • polyester polyol having two or more hydroxyl groups in one molecule as a functional group for example, the following [First Example] to [Third Example] can be used.
  • Example 1 Polyester polyol obtained by polycondensation of ortho-oriented polycarboxylic acid or anhydride thereof and polyhydric alcohol
  • Example 2 Polyester polyol having glycerol skeleton
  • Example 3 Having isocyanuric ring Polyester polyol
  • each polyester polyol will be described.
  • the polyester polyol according to the first example is selected from the group consisting of a polycarboxylic acid component containing at least one or more of orthophthalic acid and its anhydride, and ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, and cyclohexane dimethanol.
  • a polyester polyol in which the content of orthophthalic acid and its anhydride relative to all components of the polycarboxylic acid is 70 to 100% by mass is preferable.
  • the polyester polyol according to the first example essentially requires orthophthalic acid and its anhydride as the polyvalent carboxylic acid component, but copolymerizes other polyvalent carboxylic acid components within a range that does not impair the effects of the present embodiment. You may.
  • aliphatic polycarboxylic acids such as succinic acid, adipic acid, azelaic acid, sebacic acid and dodecanedicarboxylic acid, maleic anhydride, polycarboxylic acids containing unsaturated bonds such as maleic acid and fumaric acid, 1, Alicyclic polycarboxylic acids such as 3-cyclopentanedicarboxylic acid and 1,4-cyclohexanedicarboxylic acid, terephthalic acid, isophthalic acid, pyromellitic acid, trimellitic acid, 1,4-naphthalenedicarboxylic acid, 2,5- Naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, naphthalic acid, biphenyldicarboxylic acid, 1,2-bis (phenoxy) ethane-p, p'-dicarboxylic acid, anhydrides of these dicarboxylic acids and ester formation of these dicarboxylic acids Polycarbox
  • polyester polyol according to the second example a polyester polyol having a glycerol skeleton represented by the general formula (1) can be given.
  • R1, R2 and R3 are each independently H (hydrogen atom) or a group represented by the following general formula (2).
  • n represents an integer of 1 to 5
  • X represents an optionally substituted 1,2-phenylene group, 1,2-naphthylene group, 2,3-naphthylene group
  • Y represents an alkylene group having 2 to 6 carbon atoms.
  • at least one of R1, R2 and R3 represents a group represented by the general formula (2).
  • R1, R2 and R3 needs to be a group represented by the general formula (2). Among them, it is preferable that all of R1, R2, and R3 are groups represented by the general formula (2).
  • a compound in which any one of R1, R2, and R3 is a group represented by the general formula (2), and a compound in which any two of R1, R2, and R3 are a group represented by the general formula (2) And a compound in which all of R1, R2, and R3 are groups represented by the general formula (2) may be a mixture of two or more compounds.
  • X is selected from the group consisting of a 1,2-phenylene group, a 1,2-naphthylene group, a 2,3-naphthylene group, a 2,3-anthraquinonediyl group and a 2,3-anthracenediyl group, and has a substituent.
  • X When X is substituted by a substituent, it may be substituted with one or more substituents, which is attached to any carbon atom on X different from the free radical.
  • substituents examples include chloro, bromo, methyl, ethyl, i-propyl, hydroxyl, methoxy, ethoxy, phenoxy, methylthio, phenylthio, cyano, nitro, amino
  • substituents include chloro, bromo, methyl, ethyl, i-propyl, hydroxyl, methoxy, ethoxy, phenoxy, methylthio, phenylthio, cyano, nitro, amino
  • substituents examples include a phthalimide group, a carboxyl group, a carbamoyl group, an N-ethylcarbamoyl group, a phenyl group and a naphthyl group.
  • Y represents an ethylene group, a propylene group, a butylene group, a neopentylene group, a 1,5-pentylene group, a 3-methyl-1,5-pentylene group, a 1,6-hexylene group, a methylpentylene Represents an alkylene group having 2 to 6 carbon atoms such as a group and a dimethylbutylene group.
  • Y is preferably a propylene group or an ethylene group, and most preferably an ethylene group.
  • the polyester resin compound having a glycerol skeleton represented by the general formula (1) is an essential component comprising glycerol, an aromatic polycarboxylic acid or an anhydride thereof in which a carboxylic acid is substituted at an ortho position, and a polyhydric alcohol component. And can be synthesized by reacting
  • aromatic polycarboxylic acid or anhydride in which the carboxylic acid is substituted at the ortho position examples include orthophthalic acid or anhydride, naphthalene 2,3-dicarboxylic acid or anhydride, naphthalene 1,2-dicarboxylic acid or Anhydrides, anthraquinone 2,3-dicarboxylic acids or anhydrides thereof, and 2,3-anthracene carboxylic acids or anhydrides thereof are exemplified. These compounds may have a substituent at any carbon atom of the aromatic ring.
  • substituents examples include chloro, bromo, methyl, ethyl, i-propyl, hydroxyl, methoxy, ethoxy, phenoxy, methylthio, phenylthio, cyano, nitro, amino
  • substituents include chloro, bromo, methyl, ethyl, i-propyl, hydroxyl, methoxy, ethoxy, phenoxy, methylthio, phenylthio, cyano, nitro, amino
  • substituents examples include a phthalimide group, a carboxyl group, a carbamoyl group, an N-ethylcarbamoyl group, a phenyl group and a naphthyl group.
  • examples of the polyhydric alcohol component include alkylene diols having 2 to 6 carbon atoms.
  • diols such as ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, methylpentanediol and dimethylbutanediol Can be exemplified.
  • the polyester polyol according to the third example is a polyester polyol having an isocyanuric ring represented by the following general formula (3).
  • R1, R2 and R3 each independently represent “— (CH2) n1-OH (where n1 represents an integer of 2 to 4)” or the structure of the general formula (4). Represent.
  • n2 represents an integer of 2 to 4
  • n3 represents an integer of 1 to 5
  • X represents 1,2-phenylene group, 1,2-naphthylene group, 2,3-naphthylene group, Selected from the group consisting of a 2,3-anthraquinonediyl group and a 2,3-anthracenediyl group, which represents an arylene group which may have a substituent
  • Y represents an alkylene group having 2 to 6 carbon atoms.
  • R1, R2 and R3 is a group represented by the general formula (4).
  • the alkylene group represented by-(CH2) n1- may be linear or branched.
  • n1 is preferably 2 or 3, and most preferably 2.
  • n2 represents an integer of 2 to 4
  • n3 represents an integer of 1 to 5.
  • X is selected from the group consisting of a 1,2-phenylene group, a 1,2-naphthylene group, a 2,3-naphthylene group, a 2,3-anthraquinonediyl group, and a 2,3-anthracenediyl group, and has a substituent. Represents an optionally substituted arylene group.
  • X When X is substituted by a substituent, it may be substituted with one or more substituents, which is attached to any carbon atom on X different from the free radical.
  • substituents include chloro, bromo, methyl, ethyl, i-propyl, hydroxyl, methoxy, ethoxy, phenoxy, methylthio, phenylthio, cyano, nitro, amino, Examples include a phthalimide group, a carboxyl group, a carbamoyl group, an N-ethylcarbamoyl group, a phenyl group and a naphthyl group.
  • X is preferably a hydroxyl group, a cyano group, a nitro group, an amino group, a phthalimido group, a carbamoyl group, an N-ethylcarbamoyl group and a phenyl group, among which a hydroxyl group, a phenoxy group, a cyano group, a nitro group, a phthalimido group and A phenyl group is most preferred.
  • Y represents an ethylene group, propylene group, butylene group, neopentylene group, 1,5-pentylene group, 3-methyl-1,5-pentylene group, 1,6-hexylene group, methylpentylene Represents an alkylene group having 2 to 6 carbon atoms such as a group and a dimethylbutylene group.
  • Y is preferably a propylene group or an ethylene group, and most preferably an ethylene group.
  • R1, R2 and R3 are a group represented by the general formula (4). Among them, it is preferable that all of R1, R2, and R3 are groups represented by the general formula (4).
  • a compound in which any one of R1, R2, and R3 is a group represented by general formula (4) and a compound in which any two of R1, R2, and R3 are a group represented by general formula (4) And a compound in which all of R1, R2, and R3 are groups represented by the general formula (4) may be a mixture of two or more of them.
  • the polyester polyol having an isocyanuric ring represented by the general formula (3) includes a triol having an isocyanuric ring, an aromatic polycarboxylic acid or an anhydride thereof in which a carboxylic acid is substituted at an ortho position, and a polyhydric alcohol component.
  • a triol having an isocyanuric ring, an aromatic polycarboxylic acid or an anhydride thereof in which a carboxylic acid is substituted at an ortho position and a polyhydric alcohol component.
  • triol having an isocyanuric ring examples include alkylene oxide adducts of isocyanuric acid such as 1,3,5-tris (2-hydroxyethyl) isocyanuric acid and 1,3,5-tris (2-hydroxypropyl) isocyanuric acid And the like.
  • aromatic polycarboxylic acid or an anhydride thereof in which a carboxylic acid is substituted at an ortho position examples include orthophthalic acid or an anhydride thereof, naphthalene 2,3-dicarboxylic acid or an anhydride thereof, and naphthalene 1,2-dicarboxylic acid. Or an anhydride thereof, anthraquinone 2,3-dicarboxylic acid or anhydride thereof, and 2,3-anthracene carboxylic acid or anhydride thereof. These compounds may have a substituent at any carbon atom of the aromatic ring.
  • substituents examples include chloro, bromo, methyl, ethyl, i-propyl, hydroxyl, methoxy, ethoxy, phenoxy, methylthio, phenylthio, cyano, nitro, amino
  • substituents include chloro, bromo, methyl, ethyl, i-propyl, hydroxyl, methoxy, ethoxy, phenoxy, methylthio, phenylthio, cyano, nitro, amino
  • substituents examples include a phthalimide group, a carboxyl group, a carbamoyl group, an N-ethylcarbamoyl group, a phenyl group and a naphthyl group.
  • polyhydric alcohol component examples include alkylene diols having 2 to 6 carbon atoms.
  • diols such as ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, methylpentanediol and dimethylbutanediol Is mentioned.
  • 1,3,5-tris (2-hydroxyethyl) isocyanuric acid or 1,3,5-tris (2-hydroxypropyl) isocyanuric acid is used as the triol compound having an isocyanuric ring, and the carboxylic acid is in the ortho position.
  • Orthophthalic anhydride is used as the aromatic polycarboxylic acid or its anhydride substituted with, and a polyester polyol compound having an isocyanuric ring using ethylene glycol as the polyhydric alcohol is particularly excellent in oxygen barrier properties and adhesiveness. preferable.
  • the isocyanuric ring is highly polar and trifunctional, and can increase the polarity of the entire system and the crosslink density. From such a viewpoint, it is preferable to contain the isocyanuric ring in an amount of 5% by mass or more based on the total solid content of the adhesive resin.
  • the isocyanate compound has two or more isocyanate groups in the molecule.
  • the isocyanate compound may be aromatic or aliphatic, and may be a low molecular compound or a high molecular compound. Further, the isocyanate compound may be a blocked isocyanate compound obtained by an addition reaction using a known isocyanate blocking agent by a known and appropriate method. Above all, a polyisocyanate compound having three or more isocyanate groups is preferable from the viewpoint of adhesion and retort resistance, and aromatic is preferable from the viewpoint of oxygen barrier properties and water vapor barrier properties.
  • the isocyanate compound include, for example, tetramethylene diisocyanate, hexamethylene diisocyanate, toluene diisocyanate, diphenylmethane diisocyanate, hydrogenated diphenylmethane diisocyanate, metaxylylene diisocyanate, hydrogenated xylylene diisocyanate, isophorone diisocyanate, and these isocyanate compounds. And adducts, burettes and allophanates obtained by reacting these isocyanate compounds with low molecular weight active hydrogen compounds or their alkylene oxide adducts or high molecular weight active hydrogen compounds.
  • Examples of the low-molecular-weight active hydrogen compound include ethylene glycol, propylene glycol, metaxylylene alcohol, 1,3-bishydroxyethylbenzene, 1,4-bishydroxyethylbenzene, trimethylolpropane, glycerol, pentaerythritol, erythritol, sorbitol, Examples include ethylenediamine, monoethanolamine, diethanolamine, triethanolamine, and meta-xylylenediamine.
  • Examples of the molecularly active hydrogen compound include various polyester resins, polyether polyols, and high molecular weight active hydrogen compounds of polyamide.
  • the resin composition constituting the cured product can contain a phosphoric acid-modified compound, and is, for example, a compound represented by the following general formula (5) or (6).
  • R1, R2 and R3 represent a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, a (meth) acryloyl group, a phenyl group which may have a substituent and a (meth) acryloyloxy group. It is a group selected from alkyl groups having 1 to 4 carbon atoms, at least one of which is a hydrogen atom, and n represents an integer of 1 to 4.
  • R4 and R5 represent a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, a (meth) acryloyl group, a phenyl group which may have a substituent, and a carbon atom having 1 to 4 carbon atoms having a (meth) acryloyloxy group.
  • n is an integer of 1 to 4
  • x is an integer of 0 to 30, and y is an integer of 0 to 30, except when both x and y are 0.
  • phosphoric acid More specifically, phosphoric acid, pyrophosphoric acid, triphosphoric acid, methyl acid phosphate, ethyl acid phosphate, butyl acid phosphate, dibutyl phosphate, 2-ethylhexyl acid phosphate, bis (2-ethylhexyl) phosphate, isododecyl acid phosphate, butoxy Examples thereof include ethyl acid phosphate, oleyl acid phosphate, tetracosyl acid phosphate, 2-hydroxyethyl methacrylate acid phosphate, and polyoxyethylene alkyl ether phosphoric acid. One or more of these can be used.
  • the content of the phosphoric acid-modified compound in the resin composition is preferably from 0.005% by mass to 10% by mass, and more preferably from 0.01% by mass to 1% by mass.
  • the content of the phosphoric acid-modified compound is 0.005% by mass or more, the oxygen barrier property and the water vapor barrier property of the laminate of the present invention can be improved.
  • the adhesiveness of the adhesive layer can be improved.
  • the resin composition containing the polyester polyol, the isocyanate compound and the phosphoric acid-modified compound may contain a plate-like inorganic compound, whereby the adhesiveness of the adhesive layer can be improved. Further, the bending load resistance of the laminate of the present invention can be improved.
  • the plate-like inorganic compound include kaolinite-serpentine group clay minerals (halloysite, kaolinite, enderite, dickite, nacrite, antigolite, chrysotile, etc.) and pyrophyllite-talc (pyrophyllite, talc, Kerolai, etc.).
  • the coupling agent examples include a silane coupling agent, a titanium coupling agent, and an aluminum coupling agent represented by the following general formula (7).
  • these coupling agents may be used alone or in combination of two or more.
  • silane coupling agent examples include vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -Glycidoxypropylmethyldiethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ -methacryloxytrimethoxysilane, ⁇ -methacryloxypropylmethyldimethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -methacryloxy Propylmethyldiethoxysilane, ⁇ -methacryloxypropyltriethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropylmethyldimethoxysilane, N- ⁇ (aminoethyl) ⁇ -amin
  • titanium-based coupling agent examples include isopropyl triisostearoyl titanate, isopropyl tri (N-aminoethyl-aminoethyl) titanate, isopropyl tridodecylbenzenesulfonyl titanate, isopropyl tris (dioctyl pyrophosphate) titanate, and tetraoctyl bis.
  • (Didodecyl phosphite) titanate tetraoctyl bis (ditridecyl phosphite) titanate, bis (dioctyl pyrophosphate) oxyacetate titanate, bis (dioctyl pyrophosphate) ethylene titanate, isopropyl trioctaino nortitanate, isopropyl dimethacryl isostearyl titanate , Isopropylisostearoyl diacryl titanate, diisostearoyl ester Renchitaneto, isopropyl tri (dioctyl phosphate) titanate, isopropyl tricumylphenyl titanate and dicumyl phenyloxy acetate titanate.
  • the aluminum-based coupling agent include, for example, acetoalkoxyaluminum diisopropylate, diisopropoxyaluminum ethyl acetoacetate, diisopropoxyaluminum monomethacrylate, isopropoxyaluminum alkyl acetoacetate mono (dioctyl phosphate), aluminum -2-ethylhexanoate oxide trimer, aluminum stearate oxide trimer and alkyl acetoacetate aluminum oxide trimer.
  • the resin composition can include cyclodextrin and / or a derivative thereof, whereby the adhesiveness of the adhesive layer can be improved. Further, the bending load resistance of the laminate of the present invention can be further improved.
  • a cyclodextrin such as cyclodextrin, alkylated cyclodextrin, acetylated cyclodextrin, and hydroxyalkylated cyclodextrin in which a hydrogen atom of a hydroxyl group of a glucose unit of a glucose unit is substituted with another functional group is used.
  • a branched cyclic dextrin can be used.
  • the cyclodextrin skeleton in cyclodextrin and the cyclodextrin derivative is composed of ⁇ -cyclodextrin composed of six glucose units, ⁇ -cyclodextrin composed of seven glucose units, and ⁇ -cyclodextrin composed of eight glucose units. Any of them may be used. These compounds may be used alone or in combination of two or more. In addition, these cyclodextrins and / or derivatives thereof may be hereinafter collectively referred to as dextrin compounds.
  • a cyclodextrin derivative as the cyclodextrin compound.
  • alkylated cyclodextrin examples include, for example, methyl- ⁇ -cyclodextrin, methyl- ⁇ -cyclodextrin, and methyl- ⁇ -cyclodextrin. These compounds may be used alone or in combination of two or more.
  • acetylated cyclodextrin examples include, for example, monoacetyl- ⁇ -cyclodextrin, monoacetyl- ⁇ -cyclodextrin and monoacetyl- ⁇ -cyclodextrin. These compounds may be used alone or in combination of two or more.
  • hydroxyalkylated cyclodextrin examples include, for example, hydroxypropyl- ⁇ -cyclodextrin, hydroxypropyl- ⁇ -cyclodextrin, hydroxypropyl- ⁇ -cyclodextrin, and the like. These compounds may be used alone or in combination of two or more.
  • the thickness of the adhesive layer is preferably 0.5 ⁇ m or more and 6 ⁇ m or less, more preferably 0.8 ⁇ m or more and 5 ⁇ m or less, and even more preferably 1 ⁇ m or more and 4.5 ⁇ m or less.
  • the thickness of the adhesive layer is preferably 0.5 ⁇ m or more and 6 ⁇ m or less, more preferably 0.8 ⁇ m or more and 5 ⁇ m or less, and even more preferably 1 ⁇ m or more and 4.5 ⁇ m or less.
  • the adhesive layer may be applied and dried on a substrate or the like by a conventionally known method such as a direct gravure roll coating method, a gravure roll coating method, a kiss coating method, a reverse roll coating method, a Fonten method, and a transfer roll coating method. Can be formed.
  • the laminate of the present invention can include an intermediate layer including a vapor-deposited film and an intermediate layer substrate between the substrate and the heat seal layer. Thereby, the strength, the oxygen barrier property and the water vapor barrier property of the laminate can be further improved.
  • the intermediate layer includes a vapor-deposited film, whereby the gas barrier properties, particularly, the oxygen barrier properties and the water vapor barrier properties can be improved.
  • Examples of the deposited film include a metal such as aluminum, and an inorganic oxide such as aluminum oxide, silicon oxide, magnesium oxide, calcium oxide, zirconium oxide, titanium oxide, boron oxide, hafnium oxide, and barium oxide. Can be mentioned.
  • a metal such as aluminum
  • an inorganic oxide such as aluminum oxide, silicon oxide, magnesium oxide, calcium oxide, zirconium oxide, titanium oxide, boron oxide, hafnium oxide, and barium oxide. Can be mentioned.
  • the thickness of the deposited film is preferably from 1 nm to 150 nm, more preferably from 5 nm to 60 nm, even more preferably from 10 nm to 40 nm.
  • the thickness of the deposited film is 1 nm or more, the oxygen barrier property and the water vapor barrier property of the laminate of the present invention can be further improved. Further, by setting the thickness of the deposited film to 150 nm or less, generation of cracks in the deposited film can be prevented, and the recyclability of the laminate of the present invention can be improved.
  • the OD value is preferably 2 or more and 3.5 or less.
  • the oxygen barrier property and the water vapor barrier property can be improved while maintaining the productivity of the laminate of the present invention.
  • the OD value can be measured according to JIS-K-7361.
  • the deposited film can be formed by the above method.
  • the surface of the deposited film is preferably subjected to the above-mentioned surface treatment. Thereby, the adhesiveness with an adjacent layer can be improved.
  • the intermediate layer substrate is made of polyethylene. With such a configuration, a recyclable packaging material having higher strength and heat resistance can be obtained.
  • the stretched resin film may be a uniaxially stretched resin film or a biaxially stretched resin film.
  • the stretch ratio in the machine direction (MD) of the stretched resin film is preferably 2 times or more and 10 times or less, and more preferably 3 times or more and 7 times or less.
  • the stretching ratio in the longitudinal direction (MD) of the stretched resin film is not particularly limited, but is preferably 10 times or less from the viewpoint of the breaking limit of the stretched resin film.
  • the stretching ratio in the transverse direction (TD) of the stretched resin film is preferably 2 times or more and 10 times or less, and more preferably 3 times or more and 7 times or less.
  • the stretching ratio in the transverse direction (TD) of the stretched resin film is preferably 2 times or more and 10 times or less, and more preferably 3 times or more and 7 times or less.
  • the stretching ratio in the transverse direction (TD) of the stretched resin film is not particularly limited, but is preferably 10 times or less from the viewpoint of the breaking limit of the stretched resin film.
  • the intermediate layer base material As the polyethylene contained in the intermediate layer base material, among the above, high density polyethylene and medium density polyethylene are preferable from the viewpoint of strength and heat resistance and proper stretching of the film, and medium density polyethylene is more preferable from the viewpoint of proper stretching. . Further, the intermediate layer base material may have the above-mentioned multilayer structure similarly to the base material.
  • the intermediate layer base material can contain the above-mentioned additives as long as the properties of the present invention are not impaired.
  • the thickness of the intermediate layer base material is preferably 9 ⁇ m or more and 50 ⁇ m or less, more preferably 12 ⁇ m or more and 30 ⁇ m or less.
  • the thickness of the intermediate layer base material is preferably 9 ⁇ m or more and 50 ⁇ m or less, more preferably 12 ⁇ m or more and 30 ⁇ m or less.
  • the intermediate layer substrate a substrate produced by the T-die method or the inflation method described above or a commercially available substrate may be used.
  • the laminate 20 includes a base material 21, an intermediate layer 22, and a heat seal layer 23.
  • the stacked body 20 may further include a deposition film 24 between the base material 21 and the intermediate layer 22.
  • the laminate 20 is formed between the base 21 or the deposited film 24 and the intermediate layer 22 and between the intermediate layer 22 and the heat seal layer 23. May further include an adhesive layer 25 on at least one of them.
  • the laminate of the present invention is characterized in that the thickness of the substrate is smaller than the sum of the thickness of the intermediate layer and the thickness of the heat seal layer. This makes it possible to improve the recyclability of packaging materials and the like produced using the laminate of the present invention.
  • the difference between the thickness of the base material and the sum of the thickness of the intermediate layer and the thickness of the heat seal layer is preferably 40 ⁇ m or more, and more preferably 100 ⁇ m or more.
  • the content of polyethylene is preferably 80% by mass or more.
  • the content of polyethylene in the laminate means the ratio of the content of polyethylene to the sum of the content of the resin material in each layer constituting the laminate.
  • the substrate provided in the laminate of the present invention is characterized in that it is made of polyester. Thereby, the strength and heat resistance of the laminate of the present invention can be improved.
  • polyester examples include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethylene isophthalate, polybutylene naphthalate (PBN), polypropylene terephthalate (PPT), and polybutylene naphthalate (PBN). .
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PBN polybutylene naphthalate
  • PPT polypropylene terephthalate
  • PBN polybutylene naphthalate
  • PET polyethylene terephthalate
  • PET is preferred from the viewpoint of the strength and heat resistance of the laminate.
  • the base material may contain additives within a range that does not impair the properties of the present invention.
  • additives within a range that does not impair the properties of the present invention.
  • a crosslinking agent an antioxidant, an anti-blocking agent, a slip (slip) agent, an ultraviolet absorber, a light stabilizer, a filler Agents, reinforcing agents, antistatic agents, pigments and modifying resins.
  • a stretched resin film composed of polyester can be used for the substrate, and thereby the heat resistance and strength of the laminate can be improved. In addition, the suitability for printing on the polyethylene resin layer can be improved.
  • the stretched resin film may be a uniaxially stretched resin film or a biaxially stretched resin film.
  • the substrate may have an image formed on its surface. Since the contact with the outside air can be prevented and the deterioration with time can be prevented, it is preferable that an image is formed on the side on which the heat seal layer described below is provided.
  • the image to be formed is not particularly limited, and includes characters, patterns, symbols, combinations thereof, and the like.
  • the image formation on the base material is preferably performed using a biomass-derived ink, whereby a packaging material with less environmental load can be produced using the laminate of the present invention.
  • the method for forming an image is not particularly limited, and includes a conventionally known printing method such as a gravure printing method, an offset printing method, and a flexographic printing method. Among these, the flexographic printing method is preferable from the viewpoint of environmental load.
  • the surface treatment method is not particularly limited. For example, corona discharge treatment, ozone treatment, low-temperature plasma treatment using oxygen gas and / or nitrogen gas, physical treatment such as glow discharge treatment, and oxidation using chemicals Chemical treatment such as treatment. Further, an anchor coat layer may be formed on the surface of the base material using a conventionally known anchor coat agent.
  • the thickness of the substrate is preferably 10 ⁇ m or more and 50 ⁇ m or less, and more preferably 12 ⁇ m or more and 30 ⁇ m or less.
  • the thickness of the base material is preferably 10 ⁇ m or more and 50 ⁇ m or less, and more preferably 12 ⁇ m or more and 30 ⁇ m or less.
  • the substrate can be produced by forming a film of polyester by a T-die method or an inflation method, producing a film, and then stretching the film.
  • the substrate is not limited to one produced by the above method, and a commercially available substrate may be used.
  • the intermediate layer included in the laminate of the present invention is made of polyethylene, and the heat seal layer described below is also made of polyethylene. With such a configuration, the recyclability of the laminate can be improved.
  • a stretched resin film made of polyethylene is used, whereby the heat resistance and strength of the laminate can be improved. In addition, the suitability for printing on the intermediate layer can be improved.
  • the stretched resin film may be a uniaxially stretched resin film or a biaxially stretched resin film.
  • the stretch ratio in the machine direction (MD) of the stretched resin film is preferably 2 times or more and 10 times or less, and more preferably 3 times or more and 7 times or less.
  • the stretching ratio in the longitudinal direction (MD) of the stretched resin film is preferably 2 times or more and 10 times or less, and more preferably 3 times or more and 7 times or less.
  • the stretching ratio in the transverse direction (TD) of the stretched resin film is preferably 2 times or more and 10 times or less, and more preferably 3 times or more and 7 times or less.
  • the stretching ratio in the transverse direction (TD) of the stretched resin film is preferably 2 times or more and 10 times or less, and more preferably 3 times or more and 7 times or less.
  • the stretching ratio in the transverse direction (TD) of the stretched resin film is not particularly limited, but is preferably 10 times or less from the viewpoint of the breaking limit of the stretched resin film.
  • the intermediate layer may have an image formed on its surface.
  • the method of forming an image is as described above.
  • high-density polyethylene HDPE
  • medium-density polyethylene MDPE
  • low-density polyethylene LDPE
  • linear low-density polyethylene LLDPE
  • very low-density polyethylene VLDPE
  • high-density polyethylene and medium-density polyethylene are preferable from the viewpoint of the strength and heat resistance of the laminate of the present invention and proper stretching of the film, and medium-density polyethylene is more preferable from the viewpoint of proper stretching.
  • the intermediate layer includes a layer composed of high-density polyethylene (hereinafter, referred to as a high-density polyethylene layer) and a layer composed of medium-density polyethylene (hereinafter, referred to as a medium-density polyethylene layer).
  • a high-density polyethylene layer a layer composed of high-density polyethylene
  • a medium-density polyethylene layer a layer composed of medium-density polyethylene
  • the high-density polyethylene layer By providing the high-density polyethylene layer outside the intermediate layer, the strength and heat resistance of the laminate of the present invention can be further improved. Further, by providing the medium density polyethylene layer, the stretchability of the resin film constituting the intermediate layer can be further improved.
  • the thickness of the high-density polyethylene layer is preferably smaller than the thickness of the medium-density polyethylene layer.
  • the ratio of the thickness of the high-density polyethylene layer to the thickness of the medium-density polyethylene layer is preferably from 1/10 to 1/1, more preferably from 1/5 to 1/2.
  • the strength and heat resistance of the laminate of the present invention can be further improved. Further, by setting the ratio of the thickness of the high-density polyethylene layer to the thickness of the medium-density polyethylene layer to 1/1 or less, the stretchability of the resin film can be further improved.
  • a configuration including a high-density polyethylene layer / a medium-density polyethylene layer / a high-density polyethylene layer from the outside may be employed.
  • the stretchability of the resin film can be further improved.
  • the strength and heat resistance of the laminate of the present invention can be further improved.
  • curling of the intermediate layer can be prevented.
  • the thickness of the high-density polyethylene layer is preferably smaller than the thickness of the medium-density polyethylene layer.
  • the ratio of the thickness of the high-density polyethylene layer to the thickness of the medium-density polyethylene layer is preferably from 1/10 to 1/1, more preferably from 1/5 to 1/2.
  • the strength and heat resistance of the laminate of the present invention can be further improved. Further, by setting the ratio of the thickness of the high-density polyethylene layer to the thickness of the medium-density polyethylene layer to 1/1 or less, the stretchability of the resin film can be further improved.
  • a high-density polyethylene layer / a medium-density polyethylene layer / a low-density polyethylene layer, a linear low-density polyethylene layer, or an ultra-low-density polyethylene layer (in this paragraph, for simplicity of description, low) It is also possible to adopt a configuration consisting of a density polyethylene layer) / medium density polyethylene layer / high density polyethylene layer. With such a configuration, the stretchability of the resin film can be improved. Further, the strength and heat resistance of the laminate of the present invention can be improved. Further, curling of the intermediate layer can be prevented. Further, the production efficiency of the resin film can be improved as described below.
  • the thickness of the high-density polyethylene layer is preferably smaller than the thickness of the medium-density polyethylene layer.
  • the ratio of the thickness of the high-density polyethylene layer to the thickness of the medium-density polyethylene layer is preferably from 1/10 to 1/1, more preferably from 1/5 to 1/2.
  • the thickness of the high-density polyethylene layer is preferably the same as the thickness of the low-density polyethylene layer or greater than the thickness of the low-density polyethylene.
  • the ratio of the thickness of the high-density polyethylene layer to the thickness of the low-density polyethylene layer is preferably 1 / 0.25 or more and 1/2 or less, more preferably 1 / 0.5 or more and 1/1 or less. preferable. Heat resistance can be improved by setting the ratio of the thickness of the high-density polyethylene layer to the thickness of the low-density polyethylene layer to 1 / 0.25 or more.
  • the intermediate layer having such a configuration can be manufactured by, for example, an inflation method. Specifically, from the outside, a high-density polyethylene, a medium-density polyethylene layer, and a low-density polyethylene layer, a linear low-density polyethylene layer or an ultra-low-density polyethylene layer are coextruded in a tube shape, and then opposed.
  • the low-density polyethylene layer, the linear low-density polyethylene layer, or the ultra-low-density polyethylene layer can be produced by press-bonding these with a rubber roll or the like.
  • the number of defective products in manufacturing can be significantly reduced, and ultimately, the production efficiency can be improved.
  • stretching can be performed at the same time, whereby the production efficiency can be further improved.
  • Polyethylene having different densities and branches as described above can be obtained by appropriately selecting a polymerization method.
  • a polymerization catalyst using a multi-site catalyst such as a Ziegler-Natta catalyst, or a single-site catalyst such as a metallocene catalyst, gas phase polymerization, slurry polymerization, solution polymerization, and high pressure ionic polymerization by any method, It is preferable to carry out in one stage or in two or more stages.
  • a copolymer of ethylene and the other monomer described above may be used as long as the properties of the present invention are not impaired.
  • biomass-derived ethylene may be used in place of ethylene obtained from fossil fuel as a raw material for obtaining the high-density polyethylene or the like. Since such biomass-derived polyethylene is a carb-neutral material, it can be used as a packaging material with even less environmental load.
  • polyethylene recycled by mechanical recycling can be used.
  • the intermediate layer may contain the above-mentioned additives as long as the properties of the present invention are not impaired.
  • the intermediate layer is preferably subjected to the above surface treatment. Thereby, the adhesiveness with an adjacent layer can be improved.
  • the thickness of the intermediate layer is preferably from 9 ⁇ m to 50 ⁇ m, more preferably from 12 ⁇ m to 30 ⁇ m.
  • the thickness of the intermediate layer is preferably from 9 ⁇ m to 50 ⁇ m, more preferably from 12 ⁇ m to 30 ⁇ m.
  • the intermediate layer can be formed by forming a film of polyethylene by a T-die method or an inflation method, forming a film, and then stretching the film.
  • the intermediate layer is not limited to the one produced by the above method, and a commercially available one may be used.
  • the heat seal layer included in the laminate of the present invention is characterized by being made of polyethylene, similarly to the above-mentioned polyethylene resin layer. With such a configuration, a recyclable packaging material having sufficient strength and heat resistance and recyclable can be manufactured using the laminate of the present invention.
  • the polyethylene resin layer is formed by an unstretched polyethylene resin film or by melt extrusion of polyethylene.
  • the polyethylene constituting the heat seal layer is preferably a low density polyethylene (LDPE), a linear low density polyethylene (LLDPE) and a super density polyethylene (VLDPE) from the viewpoint of heat sealability.
  • LDPE low density polyethylene
  • LLDPE linear low density polyethylene
  • VLDPE super density polyethylene
  • a copolymer of ethylene and another monomer can be used as long as the properties of the present invention are not impaired.
  • biomass-derived polyethylene or recycled polyethylene is preferable.
  • the heat seal layer may contain the above-mentioned additives as long as the properties of the present invention are not impaired.
  • the heat seal layer has a multilayer structure, and includes, as an intermediate layer, a layer containing at least one of medium density polyethylene and high density polyethylene.
  • a layer containing at least one of low-density polyethylene, linear low-density polyethylene, and ultra-low-density polyethylene / a layer containing at least one of medium-density polyethylene and high-density polyethylene / low-density polyethylene, linear It can be constituted by a layer containing at least one of a low-density polyethylene and an ultra-low-density polyethylene.
  • the thickness of the heat seal layer is appropriately changed according to the weight of the contents to be filled in the packaging material produced by the laminate of the present invention.
  • the thickness of the heat seal layer is preferably 20 ⁇ m or more and 60 ⁇ m or less.
  • the thickness of the heat seal layer is preferably 50 ⁇ m or more and 200 ⁇ m or less.
  • the thickness of the heat seal layer is set to 50 ⁇ m or more, it is possible to prevent the filled contents from leaking due to breakage of the heat seal layer.
  • the thickness of the heat seal layer is set to 200 ⁇ m or less, the processability of the laminate of the present invention can be improved.
  • the hatched portions in FIGS. 9 and 10 are the heat seal portions.
  • the layered product of the present invention is provided with a vapor deposition film between a substrate and an intermediate layer.
  • the gas barrier properties, particularly the oxygen barrier properties and the water vapor barrier properties of the laminate of the present invention can be improved.
  • the details of the deposited film are as described in the first embodiment.
  • the laminate of the present invention may include an adhesive layer at least between the substrate or the deposited film and the intermediate layer, and at least one between the intermediate layer and the heat seal layer. Thereby, the adhesion between these layers can be improved.
  • the details of the adhesive film are as described in the first embodiment.
  • the laminate of the present invention can be particularly suitably used for packaging materials.
  • the shape of the packaging material is not particularly limited, and may be a packaging bag 30 as shown in FIG. 9 or a stand pouch 40 having a body 41 and a bottom 42 as shown in FIG. Good. In the stand pouch, even if only the trunk is formed of the laminate, only the bottom is formed of the laminate, or both the trunk and the bottom are formed of the laminate. Good.
  • the packaging bag can be manufactured by folding in two so that the heat-seal layer of the above-mentioned laminated body is inside, and lapping, and heat-sealing the end. Further, the packaging bag can also be manufactured by stacking two laminates such that the heat seal layers face each other and heat sealing the ends thereof.
  • the stand pouch forms a body by heat-sealing the laminate so that the heat-seal layer of the laminate is on the inside, and then forms the body with the heat-seal layer on the inside so that the heat-seal layer is on the inside. It can be manufactured by folding it into a letter shape, sandwiching it from one end of the body, and heat-sealing to form the bottom.
  • the method of heat sealing is not particularly limited, and can be performed by a known method such as a bar seal, a rotating roll seal, a belt seal, an impulse seal, a high frequency seal, and an ultrasonic seal.
  • the content filled in the packaging material is not particularly limited, and the content may be a liquid, a powder, or a gel. Further, the food may be a food or a non-food. After filling the contents, the opening can be heat sealed to form a package.
  • Example 1-1 Medium-density polyethylene (density: 0.941 g / cm 3 , melting point: 129 ° C., MFR: 1.3 g / 10 min, manufactured by Dow Chemical Company, trade name: Elite5538G) is formed into a film by an inflation molding method, and a polyethylene film having a thickness of 100 ⁇ m. I got This polyethylene film was stretched in the longitudinal direction (MD) at a stretch ratio of 5 times to obtain a base material A having a thickness of 20 ⁇ m. When the haze value of the substrate A was measured in accordance with JIS K 7105, the haze value was 6.5%.
  • MD longitudinal direction
  • an unstretched linear low-density polyethylene film having a thickness of 120 ⁇ m (Mitsui Kagaku Tosello Co., Ltd., trade name: TUX-TCS) was prepared. Lamination was performed via a liquid-curable urethane-based adhesive (trade name: RU-77T / H-7, manufactured by Rock Paint Co., Ltd.) to obtain a laminate of the present invention.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the proportion of polyethylene in the laminate thus obtained was 97% by mass.
  • Example 1-2> A high-density polyethylene (density: 0.961 g / cm 3 , melting point 135 ° C., MFR: 0.7 g / 10 min, manufactured by ExxonMobil, trade name: HTA108) and the above-described medium-density polyethylene were formed into a film by an inflation molding method. A polyethylene film consisting of a high-density polyethylene layer / medium-density polyethylene layer / high-density polyethylene layer was produced. The thickness of each of the high-density polyethylene layers was 20 ⁇ m, and the thickness of the medium-density polyethylene layer was 60 ⁇ m.
  • This polyethylene film is stretched in the longitudinal direction (MD) at a draw ratio of 5 times, and a high-density polyethylene layer having a thickness of 4 ⁇ m and a medium-density polyethylene layer having a thickness of 12 ⁇ m has a total thickness of 20 ⁇ m. B was obtained. When the haze value of the base material B was measured, the haze value was 8.9%.
  • the unstretched linear low-density polyethylene film having a thickness of 120 ⁇ m was prepared and laminated on the image forming surface of the base material B via the two-part curable urethane-based adhesive.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the proportion of polyethylene in the laminate thus obtained was 97% by mass.
  • Example 1-3 The medium-density polyethylene was formed into a film by an inflation molding method to obtain a polyethylene film having a thickness of 100 ⁇ m.
  • the polyethylene film was stretched in the longitudinal direction (MD) and the width direction (TD) at a stretch ratio of 2.24 times to obtain a base material C having a thickness of 20 ⁇ m.
  • MD longitudinal direction
  • TD width direction
  • the haze value was 5.1%.
  • the unstretched linear low-density polyethylene film having a thickness of 120 ⁇ m was prepared and laminated on the image forming surface of the base material C via the two-component curable urethane-based adhesive.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the proportion of polyethylene in the laminate thus obtained was 97% by mass.
  • the unstretched linear low-density polyethylene film having a thickness of 120 ⁇ m was prepared, and was laminated on the image forming surface of the substrate a via the two-component curable urethane-based adhesive. I got The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m. The proportion of polyethylene in the laminate thus obtained was 97% by mass.
  • ⁇ Comparative Example 1-2> The high-density polyethylene and the medium-density polyethylene were formed into a film by an inflation molding method to prepare a base material b composed of a high-density polyethylene layer / medium-density polyethylene layer / high-density polyethylene layer.
  • the thickness of the high-density polyethylene layer was 4 ⁇ m, and the thickness of the medium-density polyethylene layer was 12 ⁇ m.
  • the haze value of the substrate b was measured, the haze value was 28.8%.
  • the unstretched linear low-density polyethylene film having a thickness of 120 ⁇ m is prepared, and is laminated on the image forming surface of the base material b via the two-part curable urethane-based adhesive. I got The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m. The proportion of polyethylene in the laminate thus obtained was 97% by mass.
  • Example 1-3 A laminate was obtained in the same manner as in Example 1-1, except that the base material A was a biaxially stretched polyester film having a thickness of 12 ⁇ m (trade name: Toyobo Co., Ltd .: E5100). The proportion of polyethylene in the laminate thus obtained was 88% by mass.
  • Example 2-1> The medium-density polyethylene was formed into a film by an inflation molding method to obtain a polyethylene film having a thickness of 100 ⁇ m. This polyethylene film was stretched in the longitudinal direction (MD) at a stretch ratio of 5 times to obtain a base material D having a thickness of 20 ⁇ m. When the haze value of the substrate D was measured, the haze value was 6.5%.
  • an unstretched linear low-density polyethylene film having a thickness of 40 ⁇ m (trade name: TUX-TCS, manufactured by Mitsui Chemicals Tosello Co., Ltd.) was prepared. Lamination was performed via a urethane-based adhesive to obtain a laminate of the present invention.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the ratio of polyethylene in the laminate thus obtained was 94% by mass.
  • Example 2-2> The high-density polyethylene and the medium-density polyethylene were formed into a film by an inflation molding method to prepare a polyethylene film composed of a high-density polyethylene layer / a medium-density polyethylene layer / a high-density polyethylene layer.
  • the thickness of each of the high-density polyethylene layers was 20 ⁇ m, and the thickness of the medium-density polyethylene layer was 60 ⁇ m.
  • This polyethylene film is stretched in the longitudinal direction (MD) at a draw ratio of 5 times, and a high-density polyethylene layer having a thickness of 4 ⁇ m and a medium-density polyethylene layer having a thickness of 12 ⁇ m has a total thickness of 20 ⁇ m. E was obtained. When the haze value of the substrate E was measured, the haze value was 8.9%.
  • the unstretched linear low-density polyethylene film having a thickness of 40 ⁇ m was prepared and laminated on the image forming surface of the base material E via the two-component curable urethane-based adhesive.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the ratio of polyethylene in the laminate thus obtained was 94% by mass.
  • the unstretched linear low-density polyethylene film having a thickness of 40 ⁇ m was prepared and laminated on the image forming surface of the base material F via the two-part curable urethane-based adhesive.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the ratio of polyethylene in the laminate thus obtained was 94% by mass.
  • ⁇ Comparative Example 2-1> The medium-density polyethylene was formed into a film by an inflation molding method to obtain a base material c having a thickness of 20 ⁇ m. When the haze value of the substrate c was measured, the haze value was 23.5%.
  • the unstretched linear low-density polyethylene film having a thickness of 40 ⁇ m is prepared, and is laminated on the image forming surface of the substrate c via the two-component curable urethane-based adhesive.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the ratio of polyethylene in the laminate thus obtained was 94% by mass.
  • ⁇ Comparative Example 2-2> The high-density polyethylene and the medium-density polyethylene were formed into a film by an inflation molding method to prepare a substrate d composed of a high-density polyethylene layer / medium-density polyethylene layer / high-density polyethylene layer.
  • the thickness of the high-density polyethylene layer was 4 ⁇ m, and the thickness of the medium-density polyethylene layer was 12 ⁇ m.
  • the haze value of the substrate d was measured, the haze value was 28.8%.
  • the unstretched linear low-density polyethylene film having a thickness of 40 ⁇ m is prepared, and is laminated on the image forming surface of the substrate d via the two-component curable urethane-based adhesive. I got The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m. The ratio of polyethylene in the laminate thus obtained was 94% by mass.
  • Example 2-3 A laminate was obtained in the same manner as in Example 2-1 except that the base material D was a biaxially stretched polyester film having a thickness of 12 ⁇ m (trade name: E5100, manufactured by Toyobo Co., Ltd.). The proportion of polyethylene in the laminate thus obtained was 71% by mass.
  • Example 3-1 The medium-density polyethylene was formed into a film by an inflation molding method to obtain a polyethylene film having a thickness of 100 ⁇ m. This polyethylene film was stretched in the longitudinal direction (MD) at a stretch ratio of 5 times to obtain a base material G having a thickness of 20 ⁇ m. When the haze value of the substrate G was measured, the haze value was 6.5%.
  • the unstretched linear low-density polyethylene film having a thickness of 40 ⁇ m was prepared as a heat seal layer, and a 20 nm-thick aluminum vapor-deposited film was formed on one surface of the film by a PVD method.
  • the image forming surface of the base material G and the vapor-deposited surface of the heat seal layer were laminated via the two-component curable urethane-based adhesive to obtain a laminate of the present invention.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the ratio of polyethylene in the laminate thus obtained was 94% by mass.
  • Example 3-2> The high-density polyethylene and the medium-density polyethylene were formed into a film by an inflation molding method to prepare a polyethylene film composed of a high-density polyethylene layer / a medium-density polyethylene layer / a high-density polyethylene layer.
  • the thickness of each of the high-density polyethylene layers was 20 ⁇ m, and the thickness of the medium-density polyethylene layer was 60 ⁇ m.
  • This polyethylene film is stretched in the longitudinal direction (MD) at a stretch ratio of 5 times, and a substrate having a total thickness of 20 ⁇ m, wherein the thickness of the high density polyethylene layer is 4 ⁇ m and the thickness of the medium density polyethylene layer is 12 ⁇ m, respectively. H was obtained. When the haze value of the substrate H was measured, the haze value was 8.9%.
  • the unstretched linear low-density polyethylene film having a thickness of 40 ⁇ m was prepared as a heat seal layer, and a 20 nm-thick aluminum vapor-deposited film was formed on one surface of the film by a PVD method.
  • the image forming surface of the base material H and the vapor-deposited surface of the heat seal layer were laminated via the two-component curable urethane-based adhesive to obtain a laminate of the present invention.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the ratio of polyethylene in the laminate thus obtained was 94% by mass.
  • Example 3-3 The medium-density polyethylene was formed into a film by an inflation molding method to obtain a polyethylene film having a thickness of 100 ⁇ m. This polyethylene film was stretched in the longitudinal direction (MD) and the width direction (TD) at a stretch ratio of 2.24 times to obtain a base material I having a thickness of 20 ⁇ m. When the haze value of the substrate I was measured, the haze value was 5.1%.
  • the unstretched linear low-density polyethylene film having a thickness of 40 ⁇ m was prepared as a heat seal layer, and a 20 nm-thick aluminum vapor-deposited film was formed on one surface of the film by a PVD method.
  • the image forming surface of the base material I and the vapor-deposited film of the heat seal layer were laminated via the two-component curable urethane-based adhesive to obtain a laminate of the present invention.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the ratio of polyethylene in the laminate thus obtained was 94% by mass.
  • Example 3-4 the adhesion between the image forming surface of the base material G and the vapor-deposited surface of the heat seal layer was determined by using a two-part curable adhesive containing a polyester polyol and an isocyanate compound (PASLIM VM001 / manufactured by DIC Corporation). VM102CP), and a laminate of the present invention was produced in the same manner as in Example 3-1.
  • the unstretched linear low-density polyethylene film having a thickness of 40 ⁇ m was prepared as a heat seal layer, and a 20 nm-thick aluminum vapor-deposited film was formed on one surface of the film by a PVD method.
  • the image forming surface of the base material e and the vapor-deposited surface of the heat seal layer were laminated via the two-component curable urethane-based adhesive to obtain a laminate.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the ratio of polyethylene in the laminate thus obtained was 94% by mass.
  • ⁇ Comparative Example 3-2> The high-density polyethylene and the medium-density polyethylene were formed into a film by an inflation molding method to prepare a substrate f composed of a high-density polyethylene layer / a medium-density polyethylene layer / a high-density polyethylene layer.
  • the thickness of the high-density polyethylene layer was 4 ⁇ m, and the thickness of the medium-density polyethylene layer was 12 ⁇ m.
  • the haze value of the substrate f was measured, the haze value was 28.8%.
  • the unstretched linear low-density polyethylene film having a thickness of 40 ⁇ m was prepared as a heat seal layer, and a 20 nm-thick aluminum vapor-deposited film was formed on one surface of the film by a PVD method.
  • the image forming surface of the base material f and the vapor-deposited surface of the heat seal layer were laminated via the two-component curable urethane-based adhesive to obtain a laminate.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the proportion of polyethylene in the laminate thus obtained was 97% by mass.
  • Example 3-3 A laminate was obtained in the same manner as in Example 3-1 except that the base material G was a biaxially stretched polyester film having a thickness of 12 ⁇ m (trade name: Toyobo Co., Ltd .: E5100). The proportion of polyethylene in the thus obtained laminate was 71% by mass.
  • Example 4-1 The medium-density polyethylene was formed into a film by an inflation molding method to obtain a polyethylene film having a thickness of 100 ⁇ m. This polyethylene film was stretched in the longitudinal direction (MD) at a stretch ratio of 5 times to obtain a base material J having a thickness of 20 ⁇ m. When the haze value of the substrate J was measured, the haze value was 6.5%.
  • the medium-density polyethylene is formed into a film by inflation molding to obtain a polyethylene film having a thickness of 100 ⁇ m, and then stretched in the longitudinal direction (MD) at a stretch ratio of 5 times to obtain a polyethylene resin layer A having a thickness of 20 ⁇ m.
  • MD longitudinal direction
  • a 20-nm-thick aluminum vapor-deposited film was formed on one surface of the polyethylene resin layer A by a PVD method to obtain an intermediate layer A.
  • the image forming surface of the base material J was laminated on the deposition surface of the intermediate layer A via the above two-component curable urethane-based adhesive.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the unstretched linear low-density polyethylene film having a thickness of 40 ⁇ m was prepared and laminated on the non-deposited surface of the intermediate layer A via the two-component curable urethane-based adhesive.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the proportion of polyethylene in the laminate thus obtained was 92% by mass.
  • Example 4-2> The high-density polyethylene and the medium-density polyethylene were formed into a film by an inflation molding method to prepare a polyethylene film composed of a high-density polyethylene layer / a medium-density polyethylene layer / a high-density polyethylene layer.
  • the thickness of each of the high-density polyethylene layers was 20 ⁇ m, and the thickness of the medium-density polyethylene layer was 60 ⁇ m.
  • This polyethylene film is stretched in the longitudinal direction (MD) at a stretch ratio of 5 times, and the thickness of the high-density polyethylene layer is 4 ⁇ m, the thickness of the medium-density polyethylene layer is 12 ⁇ m, and the total thickness is 20 ⁇ m.
  • a substrate K was obtained. When the haze value of the substrate K was measured, the haze value was 8.9%.
  • the high-density polyethylene and the medium-density polyethylene were formed into a film by an inflation molding method to prepare a polyethylene film composed of a high-density polyethylene layer / a medium-density polyethylene layer / a high-density polyethylene layer.
  • the thickness of each of the high-density polyethylene layers was 20 ⁇ m, and the thickness of the medium-density polyethylene layer was 60 ⁇ m.
  • This polyethylene film is stretched in the longitudinal direction (MD) at a stretch ratio of 5 times, and the thickness of the high-density polyethylene layer is 4 ⁇ m, the thickness of the medium-density polyethylene layer is 12 ⁇ m, and the total thickness is 20 ⁇ m.
  • a polyethylene resin layer B was obtained.
  • a 20-nm-thick aluminum vapor-deposited film was formed on one surface of the polyethylene resin layer B by a PVD method to obtain an intermediate layer B.
  • the image forming surface of the base material K was laminated on the vapor deposition surface of the intermediate layer B via the above two-component curable urethane-based adhesive.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the unstretched linear low-density polyethylene film having a thickness of 40 ⁇ m was prepared and laminated on the non-deposited surface of the intermediate layer B via the two-component curable urethane-based adhesive.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the proportion of polyethylene in the laminate thus obtained was 92% by mass.
  • Example 4-3> The medium-density polyethylene was formed into a film by an inflation molding method to obtain a polyethylene film having a thickness of 100 ⁇ m. This polyethylene film was stretched in the longitudinal direction (MD) and the width direction (TD) at a stretch ratio of 2.24 times to obtain a base material L having a thickness of 20 ⁇ m. When the haze value of the substrate L was measured, the haze value was 5.1%.
  • the medium-density polyethylene was formed into a film by an inflation molding method to obtain a polyethylene film having a thickness of 100 ⁇ m.
  • This polyethylene film was stretched in the longitudinal direction (MD) and the width direction (TD) at a stretch ratio of 2.24 times to obtain a polyethylene resin layer C having a thickness of 20 ⁇ m.
  • a 20 nm-thick aluminum vapor-deposited film was formed on one surface of the polyethylene resin layer C by a PVD method to obtain an intermediate layer C.
  • the image forming surface of the base material L was laminated on the vapor deposition surface of the intermediate layer C via the above two-component curable urethane-based adhesive.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the unstretched linear low-density polyethylene film having a thickness of 40 ⁇ m was prepared and laminated on the non-deposited surface of the intermediate layer C via the two-component curable urethane-based adhesive.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the proportion of polyethylene in the laminate thus obtained was 92% by mass.
  • Example 4-4> the adhesion between the image forming surface of the base material J and the deposition surface of the intermediate layer A was determined by using a two-part curable adhesive containing a polyester polyol and an isocyanate compound (PASLIM VM001 / manufactured by DIC Corporation). VM102CP), and a laminate of the present invention was produced in the same manner as in Example 4-1 except that the process was performed using VM102CP).
  • the above-mentioned medium-density polyethylene was formed into a film by an inflation molding method to obtain a polyethylene resin layer a having a thickness of 20 ⁇ m.
  • a 20 nm-thick aluminum vapor-deposited film was formed on one surface of the polyethylene resin layer a by a PVD method to obtain an intermediate layer a.
  • the image forming surface of the base material g was laminated on the deposition surface of the intermediate layer a via the above two-component curable urethane-based adhesive.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the unstretched linear low-density polyethylene film having a thickness of 40 ⁇ m was prepared, and was laminated on the non-deposited surface of the intermediate layer a via the two-component curable urethane-based adhesive. I got The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m. The proportion of polyethylene in the laminate thus obtained was 92% by mass.
  • ⁇ Comparative Example 4-2> The high-density polyethylene and the medium-density polyethylene were formed into a film by an inflation molding method to prepare a substrate h consisting of a high-density polyethylene layer / medium-density polyethylene layer / high-density polyethylene layer.
  • the thickness of the high-density polyethylene layer was 4 ⁇ m, and the thickness of the medium-density polyethylene layer was 12 ⁇ m.
  • the haze value of the substrate h was measured, the haze value was 23.5%.
  • the high-density polyethylene and the medium-density polyethylene were formed into a film by an inflation molding method to prepare a polyethylene resin layer b composed of a high-density polyethylene layer / a medium-density polyethylene layer / a high-density polyethylene layer.
  • the thickness of the high-density polyethylene layer was 4 ⁇ m, and the thickness of the medium-density polyethylene layer was 12 ⁇ m.
  • a 20 nm-thick aluminum vapor-deposited film was formed on one surface of the polyethylene resin layer b by a PVD method to obtain an intermediate layer b.
  • the image forming surface of the base material h was laminated on the vapor deposition surface of the intermediate layer b via the above two-component curable urethane-based adhesive.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the unstretched linear low-density polyethylene film having a thickness of 40 ⁇ m was prepared, and was laminated on the non-deposited surface of the intermediate layer b via the two-component curable urethane-based adhesive. I got The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m. The proportion of polyethylene in the laminate thus obtained was 92% by mass.
  • Example 4-3 A laminate was obtained in the same manner as in Example 4-1 except that the base material and the polyethylene resin layer of the intermediate layer were changed to a biaxially stretched polyester film having a thickness of 12 ⁇ m (trade name: E5100, Toyobo Co., Ltd.). .
  • the proportion of polyethylene in the laminate thus obtained was 56% by mass.
  • Examples 2-1 to 2-3 and Comparative Examples 2-1 to 2-2, Examples 3-1 to 3-4, Comparative Examples 3-1 to 3-2, and Examples 4-1 to 4-4 From the laminates obtained in Comparative Examples 4-1 to 4-3, two test pieces each having a length of 80 mm and a width of 80 mm were produced. The two test pieces were overlapped so that the heat seal layers faced each other, and three sides were heat-sealed at 140 ° C. to produce a packaging bag. The prepared packaging material was visually observed and evaluated based on the following evaluation criteria. The evaluation results are summarized in Tables 1 to 4. (Evaluation criteria) :: No wrinkles or the like were generated on the surface of the packaging material, and no adhesion to the heat seal bar was observed. X: Wrinkles and the like were generated on the surface of the packaging material, and adhesion to the heat seal bar was observed, and the bag could not be made.
  • Examples 3-1 to 3-4 and Comparative examples 3-1 to 3-2, and Examples 4-1 to 4-4 and Comparative examples 4-1 to 4-3 were:
  • a bending load stroke: 155 mm, bending operation: 440 °
  • ASTM F392 gelbo flex tester
  • the oxygen permeability and the water vapor permeability of the laminate were measured.
  • Tables 3 and 4 show the oxygen permeability and the water vapor permeability of the laminate before and after the bending load test.
  • Example 5-1 The medium-density polyethylene was formed into a film by an inflation molding method to obtain a polyethylene film having a thickness of 100 ⁇ m. This polyethylene film was stretched in the machine direction (MD) at a stretch ratio of 5 times to obtain a substrate having a thickness of 20 ⁇ m. When the haze value of the substrate was measured in accordance with JIS K 7105, the haze value was 6.5%.
  • an unstretched linear low-density polyethylene film having a thickness of 120 ⁇ m (Mitsui Kagaku Tosello Co., Ltd., trade name: TUX-TCS) was prepared.
  • An aluminum deposition film was formed.
  • the image forming surface of the base material and the surface on which the vapor-deposited film of the heat seal layer was formed were laminated via the two-component curable urethane-based adhesive to obtain a laminate of the present invention.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • Example 5-2> The high-density polyethylene and the medium-density polyethylene were formed into a film by an inflation molding method to prepare a polyethylene film composed of a high-density polyethylene layer / a medium-density polyethylene layer / a high-density polyethylene layer.
  • the thickness of each of the high-density polyethylene layers was 20 ⁇ m, and the thickness of the medium-density polyethylene layer was 60 ⁇ m.
  • This polyethylene film is stretched in the longitudinal direction (MD) at a draw ratio of 5 times, and a high-density polyethylene layer having a thickness of 4 ⁇ m and a medium-density polyethylene layer having a thickness of 12 ⁇ m has a total thickness of 20 ⁇ m. I got When the haze value of the substrate was measured, the haze value was 8.9%.
  • the unstretched linear low-density polyethylene film having a thickness of 120 ⁇ m was prepared as a heat seal layer, and a 20 nm-thick aluminum vapor-deposited film was formed on one surface of the film by a PVD method.
  • the image forming surface of the base material and the surface on which the vapor-deposited film of the heat seal layer was formed were laminated via the two-component curable urethane-based adhesive to obtain a laminate of the present invention.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • Example 5-3> The medium-density polyethylene was formed into a film by an inflation molding method to obtain a polyethylene film having a thickness of 100 ⁇ m. This polyethylene film was stretched in the longitudinal direction (MD) and the width direction (TD) at a stretch ratio of 2.24 times to obtain a substrate having a thickness of 20 ⁇ m. When the haze value of the substrate was measured, the haze value was 5.1%.
  • the unstretched linear low-density polyethylene film having a thickness of 120 ⁇ m was prepared as a heat seal layer, and a 20 nm-thick aluminum vapor-deposited film was formed on one surface of the film by a PVD method.
  • the image forming surface of the base material and the surface on which the vapor-deposited film of the heat seal layer was formed were laminated via the two-component curable urethane-based adhesive to obtain a laminate of the present invention.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • Example 5-4 the adhesion between the image forming surface of the base material and the surface on which the heat-sealing layer was formed was determined by using a two-part curable adhesive containing a polyester polyol and an isocyanate compound (PASLIM VM001, manufactured by DIC Corporation). / VM102CP), to produce a laminate in the same manner as in Example 5-1.
  • PASLIM VM001 manufactured by DIC Corporation
  • VM102CP isocyanate compound
  • the unstretched linear low-density polyethylene film having a thickness of 120 ⁇ m was prepared as a heat seal layer, and a 20 nm-thick aluminum vapor-deposited film was formed on one surface of the film by a PVD method.
  • ⁇ Comparative Example 5-2> The high-density polyethylene and the medium-density polyethylene were formed into a film by an inflation molding method to prepare a base material composed of a high-density polyethylene layer / a medium-density polyethylene layer / a high-density polyethylene layer.
  • the thickness of the high-density polyethylene layer was 4 ⁇ m, and the thickness of the medium-density polyethylene layer was 12 ⁇ m.
  • the haze value of the substrate was measured, the haze value was 28.8%.
  • the unstretched linear low-density polyethylene film having a thickness of 120 ⁇ m was prepared as a heat seal layer, and a 20 nm-thick aluminum vapor-deposited film was formed on one surface of the film by a PVD method.
  • Example 5-3 A laminate was obtained in the same manner as in Example 5-1 except that the base material was a biaxially stretched polyester film having a thickness of 12 ⁇ m (trade name: E5100, Toyobo Co., Ltd.).
  • the prepared packaging material was visually observed and evaluated based on the following evaluation criteria. Table 5 summarizes the evaluation results. (Evaluation criteria) :: No wrinkles or the like were generated on the surface of the packaging material, and no adhesion to the heat seal bar was observed. X: Wrinkles and the like were generated on the surface of the packaging material, and adhesion to the heat seal bar was observed, and the bag could not be made.
  • Example 6-1 The medium-density polyethylene was formed into a film by an inflation molding method to obtain a polyethylene film having a thickness of 100 ⁇ m. This polyethylene film was stretched in the machine direction (MD) at a stretch ratio of 5 times to obtain a substrate having a thickness of 20 ⁇ m. When the haze value of the substrate was measured, the haze value was 6.5%.
  • the medium-density polyethylene is formed into a film by an inflation molding method to obtain a polyethylene film having a thickness of 100 ⁇ m, and then stretched in the longitudinal direction (MD) at a stretch ratio of 5 times to obtain an intermediate layer base material having a thickness of 20 ⁇ m.
  • MD longitudinal direction
  • a 20 nm-thick aluminum vapor-deposited film was formed on one surface of the intermediate layer base material by a PVD method to obtain an intermediate layer.
  • the image forming surface of the base material was laminated on the deposition surface of the intermediate layer via the two-component curable urethane-based adhesive.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the proportion of polyethylene in the laminate thus obtained was 96% by mass.
  • Example 6-2> The high-density polyethylene and the medium-density polyethylene were formed into a film by an inflation molding method to prepare a polyethylene film composed of a high-density polyethylene layer / a medium-density polyethylene layer / a high-density polyethylene layer.
  • the thickness of each of the high-density polyethylene layers was 20 ⁇ m, and the thickness of the medium-density polyethylene layer was 60 ⁇ m.
  • This polyethylene film was stretched in the machine direction (MD) at a stretch ratio of 5 times to obtain a substrate having a thickness of 20 ⁇ m. When the haze value of the substrate was measured, the haze value was 8.9%.
  • the high-density polyethylene and the medium-density polyethylene were formed into a film by an inflation molding method to prepare a polyethylene film composed of a high-density polyethylene layer / a medium-density polyethylene layer / a high-density polyethylene layer.
  • the thickness of each of the high-density polyethylene layers was 20 ⁇ m, and the thickness of the medium-density polyethylene layer was 60 ⁇ m.
  • This polyethylene film was stretched in the longitudinal direction (MD) at a stretch ratio of 5 times to obtain a 20 ⁇ m thick intermediate layer base material.
  • a 20 nm-thick aluminum vapor-deposited film was formed on one surface of the intermediate layer base material by a PVD method to obtain an intermediate layer.
  • the image forming surface of the base material was laminated on the deposition surface of the intermediate layer via the two-component curable urethane-based adhesive.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the unstretched linear low-density polyethylene (LLDPE) film having a thickness of 120 ⁇ m was laminated as a heat seal layer on the non-evaporated surface of the intermediate layer via the two-component curable urethane-based adhesive, according to the present invention.
  • a laminate was obtained.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the proportion of polyethylene in the laminate thus obtained was 96% by mass.
  • Example 6-3> The medium-density polyethylene was formed into a film by an inflation molding method to obtain a polyethylene film having a thickness of 100 ⁇ m. This polyethylene film was stretched in the longitudinal direction (MD) and the width direction (TD) at a stretch ratio of 2.24 times to obtain a substrate having a thickness of 20 ⁇ m. When the haze value of the substrate was measured, the haze value was 5.1%.
  • the medium-density polyethylene was formed into a film by an inflation molding method to obtain a polyethylene film having a thickness of 100 ⁇ m.
  • This polyethylene film was stretched in the longitudinal direction (MD) and the width direction (TD) at a stretch ratio of 2.24 times to obtain an intermediate layer base material having a thickness of 20 ⁇ m.
  • a 20 nm-thick aluminum vapor-deposited film was formed on one surface of the intermediate layer base material by a PVD method to obtain an intermediate layer.
  • the image forming surface of the base material was laminated on the deposition surface of the intermediate layer via the two-component curable urethane-based adhesive.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the unstretched linear low-density polyethylene (LLDPE) film having a thickness of 120 ⁇ m was laminated as a heat seal layer on the non-evaporated surface of the intermediate layer via the two-component curable urethane-based adhesive, according to the present invention.
  • a laminate was obtained.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the proportion of polyethylene in the laminate thus obtained was 96% by mass.
  • Example 6-4> the adhesion between the image forming surface of the base material and the deposition surface of the intermediate layer was determined by a two-part curable adhesive containing polyester polyol and an isocyanate compound (PASLIM VM001 / VM102CP, manufactured by DIC Corporation). A laminate was produced in the same manner as in Example 6-1 except that the above procedure was performed.
  • PASLIM VM001 / VM102CP an isocyanate compound
  • the medium-density polyethylene was formed into a film by an inflation molding method to obtain a 20 ⁇ m-thick intermediate layer base material.
  • a 20-nm-thick aluminum vapor-deposited film was formed on one surface of the intermediate layer base material by a PVD method to obtain an intermediate layer.
  • the image forming surface of the base material was laminated on the deposition surface of the intermediate layer via the two-component curable urethane-based adhesive.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the unstretched linear low-density polyethylene (LLDPE) film having a thickness of 120 ⁇ m is laminated as a heat seal layer on the non-deposited surface of the intermediate layer via the two-liquid curable urethane-based adhesive, and the laminate is formed. Obtained.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the proportion of polyethylene in the laminate thus obtained was 96% by mass.
  • ⁇ Comparative Example 6-2> The high-density polyethylene and the medium-density polyethylene were formed into a film by an inflation molding method to prepare a base material composed of a high-density polyethylene layer / a medium-density polyethylene layer / a high-density polyethylene layer.
  • the thickness of the high-density polyethylene layer was 4 ⁇ m, and the thickness of the medium-density polyethylene layer was 12 ⁇ m.
  • the haze value of the substrate was measured, the haze value was 23.5%.
  • the high-density polyethylene and the medium-density polyethylene were formed into a film by an inflation molding method to prepare an intermediate layer base material composed of a high-density polyethylene layer / a medium-density polyethylene layer / a high-density polyethylene layer.
  • the thickness of the high-density polyethylene layer was 4 ⁇ m, and the thickness of the medium-density polyethylene layer was 12 ⁇ m.
  • a 20-nm-thick aluminum vapor-deposited film was formed on one surface of the intermediate layer base material by a PVD method to obtain an intermediate layer.
  • the image forming surface of the base material was laminated on the deposition surface of the intermediate layer via the two-component curable urethane-based adhesive.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the unstretched linear low-density polyethylene (LLDPE) film having a thickness of 120 ⁇ m is laminated as a heat seal layer on the non-deposited surface of the intermediate layer via the two-liquid curable urethane-based adhesive, and the laminate is formed. Obtained.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the proportion of polyethylene in the laminate thus obtained was 96% by mass.
  • Example 6-3 A laminate was obtained in the same manner as in Example 6-1 except that the intermediate layer substrate of the intermediate layer and the intermediate layer was changed to a biaxially stretched polyester film having a thickness of 12 ⁇ m (trade name: E5100, Toyobo Co., Ltd.). Was. The proportion of polyethylene in the laminate thus obtained was 79% by mass.
  • the prepared packaging material was visually observed and evaluated based on the following evaluation criteria. Table 6 summarizes the evaluation results. (Evaluation criteria) :: No wrinkles or the like were generated on the surface of the packaging material, and no adhesion to the heat seal bar was observed. X: Wrinkles and the like were generated on the surface of the packaging material, and adhesion to the heat seal bar was observed, and the bag could not be made.
  • ⁇ Bending load resistance test> First, the oxygen permeability and the water vapor permeability of the laminate obtained above were measured. OXTRAN 2/20 manufactured by MOCON is used for the measurement of oxygen permeability, and PERMATRAN 3/31 manufactured by MOCON is used for the measurement of water vapor permeability under the conditions of 23 ° C. and 90% RHn. Under the conditions described above, the measurement was performed. Furthermore, a bending load (stroke: 155 mm, bending operation: 440 °) was applied to the laminate obtained above using a gelbo flex tester (manufactured by Tester Sangyo Co., Ltd., trade name: BE1006BE) in accordance with ASTM F392. ) was given 5 times. After the bending load, the oxygen permeability and the water vapor permeability of the laminate were measured. Table 6 shows the oxygen permeability and the water vapor permeability of the laminate before and after the bending load test.
  • Example 7-1 Medium-density polyethylene (density: 0.941 g / cm 3 , melting point: 129 ° C., MFR: 1.3 g / 10 min, manufactured by Dow Chemical Company, trade name: Elite5538G) is formed into a film by an inflation molding method, and a polyethylene film having a thickness of 100 ⁇ m. I got This polyethylene film was stretched in the machine direction (MD) at a stretch ratio of 5 times to obtain a substrate having a thickness of 20 ⁇ m. When the haze value of the substrate was measured in accordance with JIS K 7105, the haze value was 6.5%.
  • MD machine direction
  • linear low-density polyethylene (density: 0.925, MFR: 1.9 g / 10 min, made of Prime Polymer, trade name: SP2520) and linear low-density polyethylene derived from biomass (density: 0) .916 g / cm 3 , MFR: 1.3 g / 10 min, biomass degree: 87%, manufactured by Braskem, trade name: SLL18), and formed into a film by an inflation molding method.
  • a polyethylene film composed of a chain low-density polyethylene layer / a linear low-density polyethylene layer was produced.
  • each of the linear low-density polyethylene layers was 30 ⁇ m
  • the thickness of the biomass-derived linear low-density polyethylene layer was 60 ⁇ m
  • the total thickness was 120 ⁇ m.
  • This is laminated on the image forming surface of the base material via a two-component curable urethane-based adhesive (trade name: RU-77T / H-7, manufactured by Rock Paint Co., Ltd.), and a laminate of the present invention is provided. I got The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m. The proportion of polyethylene in the laminate thus obtained was 97% by mass.
  • Example 7-2> A high-density polyethylene (density: 0.961 g / cm 3 , melting point 135 ° C., MFR: 0.7 g / 10 min, manufactured by ExxonMobil, trade name: HTA108) and the above-described medium-density polyethylene were formed into a film by an inflation molding method. A polyethylene film consisting of a high-density polyethylene layer / medium-density polyethylene layer / high-density polyethylene layer was produced. The thickness of each of the high-density polyethylene layers was 20 ⁇ m, and the thickness of the medium-density polyethylene layer was 60 ⁇ m.
  • This polyethylene film is stretched in the longitudinal direction (MD) at a draw ratio of 5 times, and a high-density polyethylene layer having a thickness of 4 ⁇ m and a medium-density polyethylene layer having a thickness of 12 ⁇ m has a total thickness of 20 ⁇ m.
  • the polyethylene film having a thickness of 120 ⁇ m was prepared as a heat seal layer, and laminated on the image forming surface of the substrate via the two-component curable urethane adhesive to obtain a laminate of the present invention.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the proportion of polyethylene in the laminate thus obtained was 97% by mass.
  • Example 7-3> The medium-density polyethylene was formed into a film by an inflation molding method to obtain a polyethylene film having a thickness of 100 ⁇ m. This polyethylene film was stretched in the longitudinal direction (MD) and the width direction (TD) at a stretch ratio of 2.24 times to obtain a substrate having a thickness of 20 ⁇ m. When the haze value of the substrate was measured, the haze value was 5.1%.
  • the polyethylene film having a thickness of 120 ⁇ m was prepared as a heat seal layer, and laminated on the image forming surface of the substrate via the two-component curable urethane adhesive to obtain a laminate of the present invention.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the proportion of polyethylene in the laminate thus obtained was 97% by mass.
  • the polyethylene film having a thickness of 120 ⁇ m was prepared as a heat seal layer, and laminated on the image forming surface of the substrate via the two-component curable urethane-based adhesive to obtain a laminate.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the proportion of polyethylene in the laminate thus obtained was 97% by mass.
  • ⁇ Comparative Example 7-2> The high-density polyethylene and the medium-density polyethylene were formed into a film by an inflation molding method to prepare a base material composed of a high-density polyethylene layer / a medium-density polyethylene layer / a high-density polyethylene layer.
  • the thickness of the high-density polyethylene layer was 4 ⁇ m, and the thickness of the medium-density polyethylene layer was 12 ⁇ m.
  • the haze value of the substrate was measured, the haze value was 28.8%.
  • the polyethylene film having a thickness of 120 ⁇ m was prepared as a heat seal layer, and laminated on the image forming surface of the substrate via the two-component curable urethane-based adhesive to obtain a laminate.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the proportion of polyethylene in the laminate thus obtained was 97% by mass.
  • Example 7-3 A laminate was obtained in the same manner as in Example 7-1 except that the base material was a biaxially stretched polyester film having a thickness of 12 ⁇ m (trade name: Toyobo Co., Ltd .: E5100). The proportion of polyethylene in the laminate thus obtained was 88% by mass.
  • Example 8-1> The medium-density polyethylene was formed into a film by an inflation molding method to obtain a polyethylene film having a thickness of 100 ⁇ m. This polyethylene film was stretched in the machine direction (MD) at a stretch ratio of 5 times to obtain a substrate having a thickness of 20 ⁇ m. When the haze value of the substrate was measured, the haze value was 6.5%.
  • linear low-density polyethylene (density: 0.925, MFR: 1.9 g / 10 min, made of Prime Polymer, trade name: SP2520) and linear low-density polyethylene derived from biomass (density: 0) .916 g / cm 3 , MFR: 1.3 g / 10 min, biomass degree: 87%, manufactured by Braskem, trade name: SLL18), and formed into a film by an inflation molding method.
  • a polyethylene film composed of a chain low-density polyethylene layer / a linear low-density polyethylene layer was produced.
  • each of the linear low-density polyethylene layers was 10 ⁇ m
  • the thickness of the biomass-derived linear low-density polyethylene layer was 20 ⁇ m
  • the total thickness was 40 ⁇ m.
  • the laminate was laminated on the image forming surface of the substrate via the above two-component curable urethane-based adhesive to obtain a laminate of the present invention.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the ratio of polyethylene in the laminate thus obtained was 94% by mass.
  • Example 8-2> The high-density polyethylene and the medium-density polyethylene were formed into a film by an inflation molding method to prepare a polyethylene film composed of a high-density polyethylene layer / a medium-density polyethylene layer / a high-density polyethylene layer.
  • the thickness of each of the high-density polyethylene layers was 20 ⁇ m, and the thickness of the medium-density polyethylene layer was 60 ⁇ m.
  • This polyethylene film is stretched in the longitudinal direction (MD) at a draw ratio of 5 times, and a high-density polyethylene layer having a thickness of 4 ⁇ m and a medium-density polyethylene layer having a thickness of 12 ⁇ m has a total thickness of 20 ⁇ m. I got When the haze value of the substrate was measured, the haze value was 8.9%.
  • the polyethylene film having a thickness of 40 ⁇ m was prepared as a heat seal layer, and laminated on the image forming surface of the substrate via the two-component curable urethane adhesive to obtain a laminate of the present invention.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the ratio of polyethylene in the laminate thus obtained was 94% by mass.
  • Example 8-3> The medium-density polyethylene was formed into a film by an inflation molding method to obtain a polyethylene film having a thickness of 100 ⁇ m. This polyethylene film was stretched in the longitudinal direction (MD) and the width direction (TD) at a stretch ratio of 2.24 times to obtain a substrate having a thickness of 20 ⁇ m. When the haze value of the substrate was measured, the haze value was 5.1%.
  • the polyethylene film having a thickness of 40 ⁇ m was prepared as a heat seal layer, and laminated on the image forming surface of the substrate via the two-component curable urethane adhesive to obtain a laminate of the present invention.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the ratio of polyethylene in the laminate thus obtained was 94% by mass.
  • the polyethylene film having a thickness of 40 ⁇ m was prepared as a heat seal layer, and was laminated on the image forming surface of the substrate via the two-component curable urethane-based adhesive to obtain a laminate.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the ratio of polyethylene in the laminate thus obtained was 94% by mass.
  • ⁇ Comparative Example 8-2> The high-density polyethylene and the medium-density polyethylene were formed into a film by an inflation molding method to prepare a base material composed of a high-density polyethylene layer / a medium-density polyethylene layer / a high-density polyethylene layer.
  • the thickness of the high-density polyethylene layer was 4 ⁇ m, and the thickness of the medium-density polyethylene layer was 12 ⁇ m.
  • the haze value of the substrate was measured, the haze value was 28.8%.
  • the unstretched linear low-density polyethylene film having a thickness of 40 ⁇ m is prepared, and is laminated on the image forming surface of the substrate via the two-component curable urethane-based adhesive. Obtained.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the ratio of polyethylene in the laminate thus obtained was 94% by mass.
  • Example 8-3 A laminate was obtained in the same manner as in Example 8-1, except that the substrate was a biaxially stretched polyester film having a thickness of 12 ⁇ m (trade name: Toyobo Co., Ltd .: E5100). The proportion of polyethylene in the laminate thus obtained was 71% by mass.
  • Example 9-1> The medium-density polyethylene was formed into a film by an inflation molding method to obtain a polyethylene film having a thickness of 100 ⁇ m. This polyethylene film was stretched in the machine direction (MD) at a stretch ratio of 5 times to obtain a substrate having a thickness of 20 ⁇ m. When the haze value of the substrate was measured, the haze value was 6.5%.
  • the above polyethylene film having a thickness of 40 ⁇ m was prepared as a heat seal layer, and a 20 nm-thick aluminum vapor-deposited film was formed on one surface of the polyethylene film by a PVD method.
  • the image forming surface of the base material and the vapor-deposited surface of the heat seal layer were laminated via the two-component curable urethane-based adhesive to obtain a laminate of the present invention.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the ratio of polyethylene in the laminate thus obtained was 94% by mass.
  • Example 9-2> The high-density polyethylene and the medium-density polyethylene were formed into a film by an inflation molding method to prepare a polyethylene film composed of a high-density polyethylene layer / a medium-density polyethylene layer / a high-density polyethylene layer.
  • the thickness of each of the high-density polyethylene layers was 20 ⁇ m, and the thickness of the medium-density polyethylene layer was 60 ⁇ m.
  • This polyethylene film is stretched in the longitudinal direction (MD) at a draw ratio of 5 times, and a high-density polyethylene layer having a thickness of 4 ⁇ m and a medium-density polyethylene layer having a thickness of 12 ⁇ m has a total thickness of 20 ⁇ m. I got When the haze value of the substrate was measured, the haze value was 8.9%.
  • the above polyethylene film having a thickness of 40 ⁇ m was prepared as a heat seal layer, and a 20 nm-thick aluminum vapor-deposited film was formed on one surface of the polyethylene film by a PVD method.
  • the image forming surface of the base material and the vapor-deposited surface of the heat seal layer were laminated via the two-component curable urethane-based adhesive to obtain a laminate of the present invention.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the ratio of polyethylene in the laminate thus obtained was 94% by mass.
  • Example 9-3> The medium-density polyethylene was formed into a film by an inflation molding method to obtain a polyethylene film having a thickness of 100 ⁇ m. This polyethylene film was stretched in the longitudinal direction (MD) and the width direction (TD) at a stretch ratio of 2.24 times to obtain a substrate having a thickness of 20 ⁇ m. When the haze value of the substrate was measured, the haze value was 5.1%.
  • the above polyethylene film having a thickness of 40 ⁇ m was prepared as a heat seal layer, and a 20 nm-thick aluminum vapor-deposited film was formed on one surface of the polyethylene film by a PVD method.
  • the image forming surface of the substrate and the vapor-deposited film of the heat seal layer were laminated via the above-mentioned two-component curable urethane-based adhesive to obtain a laminate of the present invention.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the ratio of polyethylene in the laminate thus obtained was 94% by mass.
  • Example 9-4> the adhesion between the image forming surface of the substrate and the vapor-deposited surface of the heat seal layer was determined by using a two-part curable adhesive containing a polyester polyol and an isocyanate compound (PASLIM VM001 / VM102CP manufactured by DIC Corporation). ), To produce a laminate of the present invention in the same manner as in Example 9-1.
  • the above polyethylene film having a thickness of 40 ⁇ m was prepared as a heat seal layer, and a 20 nm-thick aluminum vapor-deposited film was formed on one surface of the polyethylene film by a PVD method.
  • the image forming surface of the base material and the vapor-deposited surface of the heat seal layer were laminated via the two-component curable urethane-based adhesive to obtain a laminate.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the ratio of polyethylene in the laminate thus obtained was 94% by mass.
  • ⁇ Comparative Example 9-2> The high-density polyethylene and the medium-density polyethylene were formed into a film by an inflation molding method to prepare a base material composed of a high-density polyethylene layer / a medium-density polyethylene layer / a high-density polyethylene layer.
  • the thickness of the high-density polyethylene layer was 4 ⁇ m, and the thickness of the medium-density polyethylene layer was 12 ⁇ m.
  • the haze value of the substrate was measured, the haze value was 28.8%.
  • the above polyethylene film having a thickness of 40 ⁇ m was prepared as a heat seal layer, and a 20 nm-thick aluminum vapor-deposited film was formed on one surface of the polyethylene film by a PVD method.
  • the image forming surface of the base material and the vapor-deposited surface of the heat seal layer were laminated via the two-component curable urethane-based adhesive to obtain a laminate.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the proportion of polyethylene in the laminate thus obtained was 97% by mass.
  • Example 9-3 A laminate was obtained in the same manner as in Example 9-1 except that the base material was a biaxially stretched polyester film having a thickness of 12 ⁇ m (trade name: E5100, manufactured by Toyobo Co., Ltd.). The proportion of polyethylene in the thus obtained laminate was 71% by mass.
  • Example 10-1> The medium-density polyethylene was formed into a film by an inflation molding method to obtain a polyethylene film having a thickness of 100 ⁇ m. This polyethylene film was stretched in the machine direction (MD) at a stretch ratio of 5 times to obtain a substrate having a thickness of 20 ⁇ m. When the haze value of the substrate was measured, the haze value was 6.5%.
  • the above-mentioned medium-density polyethylene was formed into a film by an inflation molding method to obtain a polyethylene film having a thickness of 100 ⁇ m, and then stretched in the longitudinal direction (MD) at a stretch ratio of 5 times to obtain a polyethylene resin layer having a thickness of 20 ⁇ m. .
  • MD longitudinal direction
  • a 20 nm-thick aluminum vapor-deposited film was formed on one surface of the polyethylene resin layer by a PVD method to obtain an intermediate layer.
  • the image forming surface of the base material was laminated on the vapor deposition surface of the intermediate layer via the above two-component curable urethane-based adhesive.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the polyethylene film having a thickness of 40 ⁇ m was prepared as a heat seal layer, and was laminated on the non-deposited surface of the intermediate layer via the two-component curable urethane-based adhesive to obtain a laminate of the present invention.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the proportion of polyethylene in the laminate thus obtained was 92% by mass.
  • Example 10-2> The high-density polyethylene and the medium-density polyethylene were formed into a film by an inflation molding method to prepare a polyethylene film composed of a high-density polyethylene layer / a medium-density polyethylene layer / a high-density polyethylene layer.
  • the thickness of each of the high-density polyethylene layers was 20 ⁇ m, and the thickness of the medium-density polyethylene layer was 60 ⁇ m.
  • This polyethylene film is stretched in the longitudinal direction (MD) at a stretch ratio of 5 times, and the thickness of the high-density polyethylene layer is 4 ⁇ m, the thickness of the medium-density polyethylene layer is 12 ⁇ m, and the total thickness is 20 ⁇ m.
  • a substrate was obtained. When the haze value of the substrate was measured, the haze value was 8.9%.
  • the high-density polyethylene and the medium-density polyethylene were formed into a film by an inflation molding method to prepare a polyethylene film composed of a high-density polyethylene layer / a medium-density polyethylene layer / a high-density polyethylene layer.
  • the thickness of each of the high-density polyethylene layers was 20 ⁇ m, and the thickness of the medium-density polyethylene layer was 60 ⁇ m.
  • This polyethylene film is stretched in the longitudinal direction (MD) at a stretch ratio of 5 times, and the thickness of the high-density polyethylene layer is 4 ⁇ m, the thickness of the medium-density polyethylene layer is 12 ⁇ m, and the total thickness is 20 ⁇ m.
  • a polyethylene resin layer was obtained.
  • a 20 nm-thick aluminum vapor-deposited film was formed on one surface of the polyethylene resin layer by a PVD method to obtain an intermediate layer.
  • the image forming surface of the base material was laminated on the vapor deposition surface of the intermediate layer via the above two-component curable urethane-based adhesive.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the polyethylene film having a thickness of 40 ⁇ m was prepared as a heat seal layer, and was laminated on the non-deposited surface of the intermediate layer via the two-component curable urethane-based adhesive to obtain a laminate of the present invention.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the proportion of polyethylene in the laminate thus obtained was 92% by mass.
  • Example 10-3> The medium-density polyethylene was formed into a film by an inflation molding method to obtain a polyethylene film having a thickness of 100 ⁇ m. This polyethylene film was stretched in the longitudinal direction (MD) and the width direction (TD) at a stretch ratio of 2.24 times to obtain a substrate having a thickness of 20 ⁇ m. When the haze value of the substrate was measured, the haze value was 5.1%.
  • the medium-density polyethylene was formed into a film by an inflation molding method to obtain a polyethylene film having a thickness of 100 ⁇ m.
  • This polyethylene film was stretched in the longitudinal direction (MD) and the width direction (TD) at a stretch ratio of 2.24 times to obtain a polyethylene resin layer having a thickness of 20 ⁇ m.
  • a 20 nm-thick aluminum vapor-deposited film was formed on one surface of the polyethylene resin layer by a PVD method to obtain an intermediate layer.
  • the image forming surface of the base material was laminated on the vapor deposition surface of the intermediate layer via the above two-component curable urethane-based adhesive.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the unstretched linear low-density polyethylene film having a thickness of 40 ⁇ m was prepared, and was laminated on the non-deposited surface of the intermediate layer via the two-part curable urethane-based adhesive.
  • a laminate was obtained.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the proportion of polyethylene in the laminate thus obtained was 92% by mass.
  • Example 10-4> the adhesion between the image forming surface of the substrate and the deposition surface of the intermediate layer was determined by using a two-part curable adhesive containing a polyester polyol and an isocyanate compound (PASLIM VM001 / VM102CP, manufactured by DIC Corporation).
  • a laminate of the present invention was produced in the same manner as in Example 10-1, except that the above procedure was performed.
  • the medium-density polyethylene was formed into a film by an inflation molding method to obtain a polyethylene resin layer having a thickness of 20 ⁇ m.
  • a 20 nm-thick aluminum vapor-deposited film was formed on one surface of the polyethylene resin layer by a PVD method to obtain an intermediate layer.
  • the image forming surface of the base material was laminated on the vapor deposition surface of the intermediate layer via the above two-component curable urethane-based adhesive.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the polyethylene film having a thickness of 40 ⁇ m was prepared as a heat seal layer, and was laminated on the non-deposited surface of the intermediate layer via the two-component curable urethane-based adhesive to obtain a laminate.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the proportion of polyethylene in the laminate thus obtained was 92% by mass.
  • the high-density polyethylene and the medium-density polyethylene were formed into a film by an inflation molding method to prepare a base material composed of a high-density polyethylene layer / a medium-density polyethylene layer / a high-density polyethylene layer.
  • the thickness of the high-density polyethylene layer was 4 ⁇ m, and the thickness of the medium-density polyethylene layer was 12 ⁇ m.
  • the haze value of the substrate was measured, the haze value was 23.5%.
  • the high-density polyethylene and the medium-density polyethylene were formed into a film by an inflation molding method to prepare a polyethylene resin layer composed of a high-density polyethylene layer / a medium-density polyethylene layer / a high-density polyethylene layer.
  • the thickness of the high-density polyethylene layer was 4 ⁇ m, and the thickness of the medium-density polyethylene layer was 12 ⁇ m.
  • a 20 nm-thick aluminum vapor-deposited film was formed on one surface of the polyethylene resin layer by a PVD method to obtain an intermediate layer.
  • the image forming surface of the base material was laminated on the vapor deposition surface of the intermediate layer via the above two-component curable urethane-based adhesive.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the unstretched linear low-density polyethylene film having a thickness of 40 ⁇ m is prepared, and is laminated on the non-deposited surface of the intermediate layer via the two-component curable urethane-based adhesive. Obtained.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the proportion of polyethylene in the laminate thus obtained was 92% by mass.
  • Example 10-3 A laminate was obtained in the same manner as in Example 10-1, except that the polyethylene resin layer as the base material and the intermediate layer was changed to a biaxially stretched polyester film having a thickness of 12 ⁇ m (trade name: E5100, Toyobo Co., Ltd.). .
  • the proportion of polyethylene in the laminate thus obtained was 56% by mass.
  • Examples 8-1 to 8-3 and Comparative Examples 8-1 to 8-2, Examples 9-1 to 9-4, Comparative Examples 9-1 to 9-2, and Examples 10-1 to 10-4 From the laminates obtained in Comparative Examples 10-1 to 10-3, two test pieces each having a length of 80 mm and a width of 80 mm were produced. The two test pieces were overlapped so that the heat seal layers faced each other, and three sides were heat-sealed at 140 ° C. to produce a packaging bag. The prepared packaging material was visually observed and evaluated based on the following evaluation criteria. The evaluation results are summarized in Tables 7 to 10. (Evaluation criteria) :: No wrinkles or the like were generated on the surface of the packaging material, and no adhesion to the heat seal bar was observed. X: Wrinkles and the like were generated on the surface of the packaging material, and adhesion to the heat seal bar was observed, and the bag could not be made.
  • Example 11-1 Medium-density polyethylene (density: 0.941 g / cm 3 , melting point: 129 ° C., MFR: 1.3 g / 10 min, manufactured by Dow Chemical Company, trade name: Elite5538G) is formed into a film by an inflation molding method, and a polyethylene film having a thickness of 100 ⁇ m. I got This polyethylene film was stretched in the longitudinal direction (MD) at a stretch ratio of 5 times to obtain an intermediate layer having a thickness of 20 ⁇ m. When the haze value of the intermediate layer was measured, the haze value was 6.5%.
  • MD longitudinal direction
  • a polyethylene terephthalate film having a thickness of 12 ⁇ m (manufactured by Toyobo Co., Ltd., trade name: E-5100) is prepared as a base material, and the base material and the image forming surface of the intermediate layer are two-part curable urethane-based film. Lamination was carried out using an adhesive (trade name: RU-77T / H-7, manufactured by Rock Paint Co., Ltd.). The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • an unstretched linear low-density polyethylene film having a thickness of 120 ⁇ m (Mitsui Chemicals Tosello Co., Ltd., trade name: TUX-TCS) was prepared.
  • Lamination was performed using a liquid-curable urethane-based adhesive to obtain a laminate of the present invention.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the proportion of polyethylene in the laminate thus obtained was 88% by mass.
  • Example 11-2> A high-density polyethylene (density: 0.961 g / cm 3 , melting point 135 ° C., MFR: 0.7 g / 10 min, manufactured by ExxonMobil, trade name: HTA108) and the above-described medium-density polyethylene were formed into a film by an inflation molding method. A polyethylene film consisting of a high-density polyethylene layer / medium-density polyethylene layer / high-density polyethylene layer was produced. The thickness of each of the high-density polyethylene layers was 20 ⁇ m, and the thickness of the medium-density polyethylene layer was 60 ⁇ m.
  • This polyethylene film is stretched in the longitudinal direction (MD) at a stretch ratio of 5 times, and a high-density polyethylene layer has a thickness of 4 ⁇ m and a medium-density polyethylene layer has a thickness of 12 ⁇ m, and has a total thickness of 20 ⁇ m. I got When the haze value of the intermediate layer was measured, the haze value was 8.9%.
  • the polyethylene terephthalate film having a thickness of 12 ⁇ m was prepared as a substrate, and the substrate and the image forming surface of the intermediate layer were laminated using the two-component curable urethane-based adhesive.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the unstretched linear low-density polyethylene film having a thickness of 120 ⁇ m was prepared, and the heat seal layer and the intermediate layer were laminated using the two-part curable urethane-based adhesive.
  • the laminate of the invention was obtained.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the proportion of polyethylene in the laminate thus obtained was 88% by mass.
  • Example 11-3> The medium-density polyethylene was formed into a film by an inflation molding method to obtain a polyethylene film having a thickness of 100 ⁇ m. This polyethylene film was stretched in the longitudinal direction (MD) and the width direction (TD) at a stretch ratio of 2.24 times to obtain an intermediate layer having a thickness of 20 ⁇ m. When the haze value of the intermediate layer was measured, the haze value was 5.1%.
  • the polyethylene terephthalate film having a thickness of 12 ⁇ m was prepared as a substrate, and the substrate and the image forming surface of the intermediate layer were laminated using the two-component curable urethane-based adhesive.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the unstretched linear low-density polyethylene film having a thickness of 120 ⁇ m was prepared, and the heat seal layer and the intermediate layer were laminated using the two-part curable urethane-based adhesive.
  • the laminate of the invention was obtained.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the proportion of polyethylene in the laminate thus obtained was 88% by mass.
  • Example 11-4> The medium-density polyethylene was formed into a film by an inflation molding method to obtain a polyethylene film having a thickness of 100 ⁇ m. This polyethylene film was stretched in the longitudinal direction (MD) at a stretch ratio of 5 times to obtain an intermediate layer having a thickness of 20 ⁇ m. When the haze value of the intermediate layer was measured, the haze value was 6.5%.
  • a 20 nm-thick aluminum vapor-deposited film was formed on one surface of the substrate by a PVD method.
  • the above-mentioned polyethylene terephthalate film having a thickness of 12 ⁇ m was prepared as a substrate, and the surface on which the vapor-deposited film was formed of the substrate and the above-mentioned intermediate layer were laminated using the above-mentioned two-component curable urethane-based adhesive.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the unstretched linear low-density polyethylene film having a thickness of 120 ⁇ m was prepared, and the heat seal layer and the intermediate layer were laminated using the two-part curable urethane-based adhesive.
  • the laminate of the invention was obtained.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the proportion of polyethylene in the laminate thus obtained was 88% by mass.
  • Example 11-5 The procedure was carried out except that the adhesion between the surface of the base material on which the vapor-deposited film was formed and the above-mentioned intermediate layer was carried out using a two-part curable adhesive containing a polyester polyol and an isocyanate compound (PASLIM VM001 / VM102CP, manufactured by DIC Corporation).
  • a laminate of the present invention was produced in the same manner as in Example 11-4. The proportion of polyethylene in the laminate thus obtained was 88% by mass.
  • the polyethylene terephthalate film having a thickness of 12 ⁇ m was prepared as a substrate, and the substrate and the image forming surface of the intermediate layer were laminated using the two-component curable urethane-based adhesive.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the unstretched linear low-density polyethylene film having a thickness of 120 ⁇ m is prepared, and the heat seal layer and the intermediate layer are laminated using the two-part curable urethane-based adhesive. I got a body.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the proportion of polyethylene in the laminate thus obtained was 88% by mass.
  • ⁇ Comparative Example 11-2> The high-density polyethylene and the medium-density polyethylene were formed into a film by an inflation molding method to prepare an intermediate layer composed of a high-density polyethylene layer / a medium-density polyethylene layer / a high-density polyethylene layer.
  • the thickness of the high-density polyethylene layer was 4 ⁇ m, and the thickness of the medium-density polyethylene layer was 12 ⁇ m.
  • the haze value of the intermediate layer was measured, the haze value was 28.8%.
  • the polyethylene terephthalate film having a thickness of 12 ⁇ m was prepared as a substrate, and the substrate and the image forming surface of the intermediate layer were laminated using the two-component curable urethane-based adhesive.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the unstretched linear low-density polyethylene film having a thickness of 120 ⁇ m is prepared, and the heat seal layer and the intermediate layer are laminated using the two-part curable urethane-based adhesive. I got a body.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the proportion of polyethylene in the laminate thus obtained was 88% by mass.
  • Example 11-3 A laminate was obtained in the same manner as in Example 11-1, except that the intermediate layer was changed to a nylon film having a thickness of 15 ⁇ m (trade name: Emblem ONBC, manufactured by Unitika Ltd.). The proportion of polyethylene in the laminate thus obtained was 78% by mass.
  • Example 12-1 Medium-density polyethylene (density: 0.941 g / cm 3 , melting point: 129 ° C., MFR: 1.3 g / 10 min, manufactured by Dow Chemical Company, trade name: Elite5538G) is formed into a film by an inflation molding method, and a polyethylene film having a thickness of 100 ⁇ m. I got This polyethylene film was stretched in the longitudinal direction (MD) at a stretch ratio of 5 times to obtain an intermediate layer having a thickness of 20 ⁇ m. When the haze value of the intermediate layer was measured, the haze value was 6.5%.
  • MD longitudinal direction
  • a polyethylene terephthalate film having a thickness of 12 ⁇ m (manufactured by Toyobo Co., Ltd., trade name: E-5100) was prepared as a base material, and the base and the image forming surface of the intermediate layer A were two-part curable urethane.
  • the layers were laminated using a system adhesive (trade name: RU-77T / H-7, manufactured by Rock Paint Co., Ltd.).
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • linear low-density polyethylene (density: 0.925, MFR: 1.9 g / 10 min, made of Prime Polymer, trade name: SP2520) and linear low-density polyethylene derived from biomass (density: 0) .916 g / cm 3 , MFR: 1.3 g / 10 min, biomass degree: 87%, manufactured by Braskem, trade name: SLL18), and formed into a film by an inflation molding method.
  • a polyethylene film composed of a chain low-density polyethylene layer / a linear low-density polyethylene layer was produced.
  • each of the linear low-density polyethylene layers was 30 ⁇ m, the thickness of the biomass-derived linear low-density polyethylene layer was 60 ⁇ m, and the total thickness was 120 ⁇ m.
  • This is laminated with an intermediate layer on the image forming surface of the substrate A via a two-component curable urethane adhesive (trade name: RU-77T / H-7, manufactured by Rock Paint Co., Ltd.).
  • the laminate of the invention was obtained.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the proportion of polyethylene in the laminate thus obtained was 88% by mass.
  • Example 12-2> A high-density polyethylene (density: 0.961 g / cm 3 , melting point 135 ° C., MFR: 0.7 g / 10 min, manufactured by ExxonMobil, trade name: HTA108) and the above-described medium-density polyethylene were formed into a film by an inflation molding method. A polyethylene film consisting of a high-density polyethylene layer / medium-density polyethylene layer / high-density polyethylene layer was produced. The thickness of each of the high-density polyethylene layers was 20 ⁇ m, and the thickness of the medium-density polyethylene layer was 60 ⁇ m.
  • This polyethylene film is stretched in the longitudinal direction (MD) at a stretch ratio of 5 times, and a high-density polyethylene layer has a thickness of 4 ⁇ m and a medium-density polyethylene layer has a thickness of 12 ⁇ m, and has a total thickness of 20 ⁇ m. I got When the haze value of the intermediate layer was measured, the haze value was 8.9%.
  • the polyethylene terephthalate film having a thickness of 12 ⁇ m was prepared as a substrate, and the substrate and the image forming surface of the intermediate layer were laminated using the two-component curable urethane-based adhesive.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the above-mentioned polyethylene film having a thickness of 120 ⁇ m was prepared, and the heat seal layer and the intermediate layer were laminated using the two-part curable urethane-based adhesive to obtain a laminate of the present invention.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the proportion of polyethylene in the laminate thus obtained was 88% by mass.
  • Example 12-3> The medium-density polyethylene was formed into a film by an inflation molding method to obtain a polyethylene film having a thickness of 100 ⁇ m. This polyethylene film was stretched in the longitudinal direction (MD) and the width direction (TD) at a stretch ratio of 2.24 times to obtain an intermediate layer having a thickness of 20 ⁇ m. When the haze value of the intermediate layer was measured, the haze value was 5.1%.
  • the polyethylene terephthalate film having a thickness of 12 ⁇ m was prepared as a substrate, and the substrate and the image forming surface of the intermediate layer were laminated using the two-component curable urethane-based adhesive.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the above-mentioned polyethylene film having a thickness of 120 ⁇ m was prepared, and the heat seal layer and the intermediate layer were laminated using the two-part curable urethane-based adhesive to obtain a laminate of the present invention.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the proportion of polyethylene in the laminate thus obtained was 88% by mass.
  • Example 12-4> The medium-density polyethylene was formed into a film by an inflation molding method to obtain a polyethylene film having a thickness of 100 ⁇ m. This polyethylene film was stretched in the longitudinal direction (MD) at a stretch ratio of 5 times to obtain an intermediate layer having a thickness of 20 ⁇ m. When the haze value of the intermediate layer was measured, the haze value was 6.5%.
  • the above polyethylene terephthalate film having a thickness of 12 ⁇ m was prepared as a base material, and an aluminum vapor-deposited film having a thickness of 0.02 ⁇ m was formed on one surface of the base material by a PVD method.
  • the surface of the substrate on which the deposited film was formed and the intermediate layer were laminated using the two-component curable urethane-based adhesive.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the above-mentioned polyethylene film having a thickness of 120 ⁇ m was prepared as a heat seal layer, and the heat seal layer and the intermediate layer were laminated using the two-liquid type urethane-based adhesive to obtain a laminate of the present invention.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the proportion of polyethylene in the laminate thus obtained was 88% by mass.
  • Example 12-5 Except that the adhesion between the vapor-deposited film forming surface of the base material and the intermediate layer D was performed using a two-part curable adhesive containing a polyester polyol and an isocyanate compound (DIC Corporation, PASLIM VM001 / VM102CP). A laminate of the present invention was produced in the same manner as in Example 12-4. The proportion of polyethylene in the laminate thus obtained was 88% by mass.
  • the polyethylene terephthalate film having a thickness of 12 ⁇ m was prepared as a substrate, and the substrate and the image forming surface of the intermediate layer were laminated using the two-component curable urethane-based adhesive.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the polyethylene film having a thickness of 120 ⁇ m was prepared as a heat seal layer, and the heat seal layer and the intermediate layer were laminated using the two-part curable urethane-based adhesive to obtain a laminate.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the proportion of polyethylene in the laminate thus obtained was 88% by mass.
  • ⁇ Comparative Example 12-2> The high-density polyethylene and the medium-density polyethylene were formed into a film by an inflation molding method to prepare an intermediate layer composed of a high-density polyethylene layer / a medium-density polyethylene layer / a high-density polyethylene layer.
  • the thickness of the high-density polyethylene layer was 4 ⁇ m, and the thickness of the medium-density polyethylene layer was 12 ⁇ m.
  • the haze value of the intermediate layer was measured, the haze value was 28.8%.
  • the polyethylene terephthalate film having a thickness of 12 ⁇ m was prepared as a substrate, and the substrate and the image forming surface of the intermediate layer were laminated using the two-component curable urethane-based adhesive.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the polyethylene film having a thickness of 120 ⁇ m was prepared as a heat seal layer, and the heat seal layer and the intermediate layer were laminated using the two-part curable urethane-based adhesive to obtain a laminate.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the proportion of polyethylene in the laminate thus obtained was 88% by mass.
  • Example 12-3> A laminate was obtained in the same manner as in Example 12-1, except that the intermediate layer was changed to a nylon film having a thickness of 15 ⁇ m (trade name: Emblem ONBC, manufactured by Unitika Ltd.). The proportion of polyethylene in the laminate thus obtained was 78% by mass.
  • Example 13-1 High-density polyethylene (density: 0.960 g / cm 3 , melting point 130 ° C., MFR: 0.85 g / 10 min, manufactured by Dow Chemical Co., trade name: Elite5960), medium-density polyethylene (density: 0.940 g / cm 3 , melting point) 126 ° C., MFR: 0.85 g / 10 min, manufactured by Dow chemical, trade name: Elite5940) and ultra-low density polyethylene (density: 0.870 g / cm 3 , melting point 55 ° C., MFR: 1.0 g / 10 min, Dow chemical) Company, trade name: Affinity EG8100G) provided with a high-density polyethylene layer (12.5 ⁇ m), a medium-density polyethylene layer (43.75 ⁇ m) and an ultra-low-density polyethylene layer (6.25 ⁇ m) from the outside by inflation molding.
  • Affinity EG8100G high-density poly
  • the inner low-density polyethylene layers are pressed together with a rubber roll, and a high-density polyethylene layer (12.5 ⁇ m), a medium-density polyethylene layer (43.75 ⁇ m), an ultra-low-density polyethylene layer (12.5 ⁇ m), and a medium density A 125 ⁇ m thick polyethylene film with a polyethylene layer (43.75 ⁇ m) and a high density polyethylene layer (12.5 ⁇ m) was obtained.
  • This polyethylene film was stretched in the longitudinal direction (MD) at a stretch ratio of 5 times to obtain a multilayer substrate A having a thickness of 25 ⁇ m.
  • MD longitudinal direction
  • Linear low-density polyethylene A (density: 0.923 g / cm 3 , melting point 121 ° C., MFR: 1.5 g / 10 min, manufactured by Prime Polymer Co., Ltd., trade name: SP2510), and linear low-density polyethylene A A mixture (2: 8 (by mass)) of biomass-derived polyethylene (density: 0.916 g / cm 3 , MFR: 1.3 g / 10 min, biomass degree: 87%, trade name: SLL118, manufactured by Braskem) And low-density linear polyethylene B (density: 0.913 g / cm 3 , melting point: 116 ° C., MFR: 2.0 g / 10 minutes, product name: SP1520, manufactured by Prime Polymer Co., Ltd.) by inflation molding.
  • a two-part curable urethane-based adhesive (manufactured by Rock Paint Co., Ltd., trade name: RU) is used to form the image forming surface of the multilayer base material A and the layer of the linear low-density polyethylene A of the heat seal layer A. -77T / H-7) to obtain a laminate of the present invention.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the proportion of polyethylene in the laminate thus obtained was 95% by mass.
  • the high-density polyethylene, the medium-density polyethylene and the ultra-low-density polyethylene are extruded from the outside as a tubular film having a high-density polyethylene layer, a medium-density polyethylene layer and an ultra-low-density polyethylene layer by an inflation molding method.
  • the inner ultra-low-density polyethylene layers are pressed together with a rubber roll, and a high-density polyethylene layer (2.5 ⁇ m), a medium-density polyethylene layer (8.75 ⁇ m), an ultra-low-density polyethylene layer (2.5 ⁇ m), and a medium-density polyethylene
  • a multilayer substrate a having a thickness of 25 ⁇ m comprising a layer (8.75 ⁇ m) and a high-density polyethylene layer (2.5 ⁇ m) was obtained.
  • the haze value of the multilayer substrate a was measured in accordance with JIS K 7105, the haze value was 21.3%.
  • the image forming surface of the multilayer base material a and the layer made of the linear low-density polyethylene A of the heat seal layer A are laminated via the two-component curable urethane-based adhesive to obtain a laminate.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the proportion of polyethylene in the laminate thus obtained was 95% by mass.
  • Example 13-2> A laminate was produced in the same manner as in Example 13-1, except that the multilayer base material A was changed to a biaxially stretched PET film having a thickness of 12 ⁇ m (trade name: E5100, manufactured by Toyobo Co., Ltd.). The ratio of polyethylene in the laminate thus obtained was 75% by mass.
  • Example 14-1 The multilayer base material A was prepared.
  • Inflation molding of the linear low-density polyethylene A, a mixture of the linear low-density polyethylene A and the biomass-derived polyethylene (2: 8 (by mass)), and the linear low-density polyethylene B A layer made of linear low-density polyethylene A having a thickness of 34 ⁇ m, a layer composed of linear low-density polyethylene A having a thickness of 32 ⁇ m and polyethylene derived from biomass, and a linear layer having a thickness of 34 ⁇ m.
  • a heat seal layer B having a thickness of 100 ⁇ m and including a layer made of low density polyethylene B was prepared.
  • the image forming surface of the multilayer base material A and the layer made of the linear low-density polyethylene A of the heat seal layer B are laminated via the two-component curable urethane-based adhesive, and the laminate of the present invention is laminated. I got a body.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the proportion of polyethylene in the laminate thus obtained was 97% by mass.
  • the image forming surface of the multilayer substrate a and the layer made of the linear low-density polyethylene A of the heat seal layer B are laminated via the two-component curable urethane-based adhesive to obtain a laminate.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the proportion of polyethylene in the laminate thus obtained was 97% by mass.
  • Example 14-2 A laminate was produced in the same manner as in Example 14-1, except that the multilayer base material A was changed to the above biaxially stretched PET film having a thickness of 12 ⁇ m. The proportion of polyethylene in the thus obtained laminate was 86% by mass.
  • Example 15-1 The multilayer base material A was prepared.
  • a heat seal layer A was prepared, and a 20 nm-thick aluminum vapor-deposited film was formed on the linear low-density polyethylene A by a PVD method.
  • the image forming surface of the multilayer base material A and the deposition surface of the heat seal layer A were laminated via the two-component curable urethane-based adhesive to obtain a laminate of the present invention.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the proportion of polyethylene in the laminate thus obtained was 95% by mass.
  • Example 15-2 the adhesion between the image forming surface of the multilayer base material A and the deposition surface of the heat seal layer A was determined by using a two-part curable adhesive containing a polyester polyol and an isocyanate compound (PASLIM, manufactured by DIC Corporation). VM15 / VM102CP), and a laminate of the invention was produced in the same manner as in Example 15-1.
  • PASLIM a two-part curable adhesive containing a polyester polyol and an isocyanate compound
  • a heat seal layer A was prepared, and a 20 nm-thick aluminum vapor-deposited film was formed on the linear low-density polyethylene A by a PVD method.
  • the image forming surface of the multilayer base material a and the deposition surface of the heat seal layer A were laminated via the two-component curable urethane-based adhesive to obtain a laminate.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the proportion of polyethylene in the laminate thus obtained was 95% by mass.
  • Example 15-2 A laminate was produced in the same manner as in Example 15-1, except that the multilayer base material A was changed to the biaxially stretched PET film having a thickness of 12 ⁇ m. The ratio of polyethylene in the laminate thus obtained was 76% by mass.
  • Example 16-1 The multilayer base material A was prepared.
  • the medium-density polyethylene was formed into a film by an inflation molding method to obtain a polyethylene film having a thickness of 100 ⁇ m, and then stretched in the longitudinal direction (MD) at a stretch ratio of 5 times to obtain a stretched polyethylene film A having a thickness of 20 ⁇ m.
  • MD longitudinal direction
  • a 20 nm-thick aluminum vapor-deposited film was formed on one surface of the stretched polyethylene film A by a PVD method to obtain an intermediate layer A.
  • the image forming surface of the multilayer base material A was laminated on the vapor deposition surface of the intermediate layer A via the above two-component curable urethane-based adhesive.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • Heat seal layer A was prepared. Next, a layer made of the linear low-density polyethylene A of the heat seal layer A is laminated on the non-deposited surface of the intermediate layer A via the two-component curable urethane-based adhesive, and the laminate of the present invention is formed. Obtained. The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m. The ratio of polyethylene in the laminate thus obtained was 93% by mass.
  • Example 16-2 the adhesion between the image forming surface of the multilayer base material A and the deposition surface of the intermediate layer A was determined by a two-part curable adhesive containing a polyester polyol and an isocyanate compound (PASLIM VM001, manufactured by DIC Corporation). / VM102CP), and a laminate of the present invention was produced in the same manner as in Example 16-1.
  • the above-mentioned medium density polyethylene was formed into a film by an inflation molding method to obtain a stretched polyethylene film a having a thickness of 20 ⁇ m.
  • a 20 nm-thick aluminum vapor-deposited film was formed on one surface of the stretched polyethylene film a by a PVD method to obtain an intermediate layer a.
  • the image forming surface of the multilayer substrate a was laminated on the vapor deposition surface of the intermediate layer a via the above two-component curable urethane-based adhesive.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • a heat-sealing layer A is prepared, and a layer made of the linear low-density polyethylene A is laminated on the non-deposited surface of the intermediate layer a via the two-part curable urethane-based adhesive to obtain a laminate.
  • the thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 ⁇ m.
  • the ratio of polyethylene in the laminate thus obtained was 93% by mass.
  • Example 16-2 The laminated body was produced in the same manner as in Example 4-1 except that the stretched polyethylene film of the multilayer base material A and the intermediate layer A was changed to a biaxially stretched polyester film having a thickness of 12 ⁇ m (trade name: E5100, Toyobo Co., Ltd.). I got The proportion of polyethylene in the thus obtained laminate was 62% by mass.
  • Example 13-1 and Comparative Examples 13-1 and 13-2, Examples 15-1 and 15-2 and Comparative Examples 15-1 and 15-2, and Examples 16-1 and 16-2 and Comparative Example 16 From the laminates obtained in -1 to 16-2, two test pieces each having a length of 80 mm and a width of 80 mm were prepared. The two test pieces were overlapped so that the heat seal layers faced each other, and three sides were heat-sealed at 140 ° C. to produce a packaging bag. From the laminates obtained in Example 14-1 and Comparative Examples 14-1 and 14-2, two test pieces each having a length of 110 mm and a width of 150 mm were produced. The two test pieces were overlapped so that the heat seal layers faced each other, and heat sealed at 140 ° C.
  • Example 14-1 one test piece having a length of 110 mm and a width of 150 mm was prepared from the laminates obtained in Example 14-1 and Comparative Examples 14-1 and 14-2 so that the heat seal layer was on the outside. Then, it was folded into a V-shape and heat-sealed with the cylindrical body at 140 ° C. to form a bottom and a stand pouch.
  • the prepared packaging material was visually observed and evaluated based on the following evaluation criteria.
  • the evaluation results are summarized in Tables 13 to 16.
  • evaluation criteria No wrinkles or the like were generated on the surface of the packaging material, and no adhesion to the heat seal bar was observed.
  • X Wrinkles and the like were generated on the surface of the packaging material, and adhesion to the heat seal bar was observed, and the bag could not be made.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Wrappers (AREA)

Abstract

[Problem] To provide a laminate that comprises sufficient strength and heat resistance to serve as a packaging material and makes it possible to realize a packaging material having exceptional recyclability. [Solution] This laminate is characterized in comprising a base material and a heat seal layer, the base material and the heat seal layer being configured from the same material, said material being polyethylene, and the base material being a stretched resin film.

Description

積層体、包装材料、包装袋およびスタンドパウチLaminates, packaging materials, packaging bags and stand pouches
 本発明は、積層体、該積層体から構成される包装材料、包装袋およびスタンドパウチに関する。 The present invention relates to a laminate, a packaging material, a packaging bag, and a stand pouch composed of the laminate.
 従来、包装材料などは、樹脂材料から構成される樹脂フィルムを用いて作製されている。例えば、ポリエチレンから構成される樹脂フィルムは、適度な柔軟性、透明性を有すると共に、ヒートシール性に優れるため、包装材料に広く使用されている。 Conventionally, packaging materials and the like have been manufactured using a resin film composed of a resin material. For example, a resin film composed of polyethylene has moderate flexibility and transparency, and is excellent in heat sealability, and thus is widely used as a packaging material.
 通常、ポリエチレンから構成される樹脂フィルムは、強度や耐熱性の面で劣るため、基材や、強度向上のために設けられる中間層としては使用できず、ポリエステルやポリアミドなどから構成される樹脂フィルムなどと貼り合わせて使用されており、そのため、通常の包装材料などは、基材または中間層と、ヒートシール層とは異種の樹脂材料からなる積層フィルムから構成されている(例えば、特許文献1)。 Usually, resin films composed of polyethylene cannot be used as a base material or an intermediate layer provided for improving strength because resin films having poor strength and heat resistance are used, and resin films composed of polyester, polyamide, etc. For this reason, a usual packaging material is composed of a laminated film made of a resin material different from a base material or an intermediate layer and a heat seal layer (for example, see Patent Document 1). ).
 近年、循環型社会の構築を求める声の高まりとともに、高いリサイクル性を有する包装材料が求められている。しかしながら、従来の包装体は上記したように異種の樹脂材料から構成されており、樹脂材料ごとに分離するのが困難であるため、リサイクルされていないのが現状である。 In recent years, with the increasing demand for building a recycling-based society, packaging materials with high recyclability have been demanded. However, the conventional package is made of a different kind of resin material as described above, and it is difficult to separate each resin material.
特開2009-202519号公報JP 2009-202519 A
 本発明者らは、従来ヒートシール層として使用していたポリエチレンを、延伸樹脂フィルムにすることで基材や中間層として使用することができ、当該基材や中間層をポリエチレンから構成されるヒートシール層と積層して使用することで、十分な強度や耐熱性を有し、かつリサイクル可能な包装材料などを作製とすることができるとの知見を得た。 The present inventors have made it possible to use polyethylene, which has been conventionally used as a heat seal layer, as a stretched resin film so that it can be used as a base material or an intermediate layer. It has been found that by using a laminate with a seal layer, a recyclable packaging material having sufficient strength and heat resistance can be produced.
 本発明は、上記知見に鑑みてなされたものであり、その解決しようとする課題は、包装材料などとして適用可能な十分な強度や耐熱性を備え、かつリサイクル性にも優れる包装材料を実現することができる積層体を提供することである。
 また、本発明の解決しようとする課題は、該積層体から構成される包装材料を提供することである。
 また、本発明の解決しようとする課題は、該積層体から作製される包装袋を提供することである。
 さらに、本発明の解決しようとする課題は、該積層体から作製されるスタンドパウチを提供することである。
The present invention has been made in view of the above findings, and a problem to be solved is to provide a packaging material having sufficient strength and heat resistance applicable as a packaging material and the like, and also having excellent recyclability. It is to provide a laminate that can be used.
Another object of the present invention is to provide a packaging material composed of the laminate.
Another object of the present invention is to provide a packaging bag made from the laminate.
A further object of the present invention is to provide a stand pouch made from the laminate.
 第1の態様において、本発明の積層体は、基材と、ヒートシール層とを備え、
 前記基材および前記ヒートシール層が同一の材料から構成され、
 前記同一材料が、ポリエチレンであり、
 前記基材が、延伸樹脂フィルムであることを特徴とする。
In the first aspect, the laminate of the present invention includes a substrate and a heat seal layer,
The base material and the heat seal layer are made of the same material,
The same material is polyethylene,
The base material is a stretched resin film.
 一実施形態において、本発明の積層体は、前記基材と、前記ヒートシール層との間に接着層を備える。 に お い て In one embodiment, the laminate of the present invention includes an adhesive layer between the base material and the heat seal layer.
 一実施形態において、本発明の積層体は、前記ヒートシール層が、前記基材側の面に蒸着膜を備える。 In one embodiment, in the laminate of the present invention, the heat seal layer includes a vapor-deposited film on a surface on the base material side.
 一実施形態において、前記蒸着膜が、アルミニウム蒸着膜であり、
 前記接着層が、ポリエステルポリオールとイソシアネート化合物とを含む樹脂組成物の硬化物により構成される。
In one embodiment, the deposited film is an aluminum deposited film,
The adhesive layer is constituted by a cured product of a resin composition containing a polyester polyol and an isocyanate compound.
 一実施形態において、本発明の積層体は、前記基材と、ヒートシール層との間に、中間層を備え、
 前記中間層が、蒸着膜および中間層基材を備える。
In one embodiment, the laminate of the present invention includes an intermediate layer between the base material and the heat seal layer,
The intermediate layer includes a deposited film and an intermediate layer substrate.
 一実施形態において、前記基材および前記ヒートシール層の少なくとも一方が、ポリエチレンとして、バイオマス由来のポリエチレンを含む。 In one embodiment, at least one of the base material and the heat seal layer contains biomass-derived polyethylene as polyethylene.
 一実施形態において、前記基材が、高密度ポリエチレン層と、中密度ポリエチレン層と、低密度ポリエチレン層、直鎖状低密度ポリエチレン層または超低密度ポリエチレン層と、中密度ポリエチレン層と、高密度ポリエチレン層と、の五層共押延伸フィルムからなる。 In one embodiment, the base material is a high-density polyethylene layer, a medium-density polyethylene layer, a low-density polyethylene layer, a linear low-density polyethylene layer or an ultra-low-density polyethylene layer, a medium-density polyethylene layer, It comprises a five-layer co-stretched film of a polyethylene layer.
 第2の態様において、本発明の積層体は、基材と、中間層と、ヒートシール層とを備え、
 前記基材が、ポリエステルから構成され、
 前記中間層および前記ヒートシール層が、同一の材料から構成され、
 前記同一材料が、ポリエチレンであり、
 前記中間層が、延伸樹脂フィルムであり、
 前記基材の厚さが、前記中間層の厚さおよび前記ヒートシール層の厚さの和よりも小さいことを特徴とする。
In the second aspect, the laminate of the present invention includes a base material, an intermediate layer, and a heat seal layer,
The substrate is composed of polyester,
The intermediate layer and the heat seal layer are made of the same material,
The same material is polyethylene,
The intermediate layer is a stretched resin film,
The thickness of the substrate is smaller than the sum of the thickness of the intermediate layer and the thickness of the heat seal layer.
 一実施形態において、前記中間層およびヒートシール層の少なくとも一方が、ポリエチレンとして、バイオマス由来のポリエチレンを含む。 In one embodiment, at least one of the intermediate layer and the heat seal layer contains biomass-derived polyethylene as polyethylene.
 本発明の一実施形態においては、積層体は、包装材料用途に用いられる。 に お い て In one embodiment of the present invention, the laminate is used for packaging materials.
 本発明の包装材料は、上記積層体を用いて作製されたものであることを特徴とする。 包装 The packaging material of the present invention is characterized by being produced using the above-mentioned laminate.
 本発明の包装袋は、上記積層体を用いて作製され、
 ヒートシール層の厚さが、20μm以上60μm以下である。
The packaging bag of the present invention is produced using the above laminate,
The thickness of the heat seal layer is from 20 μm to 60 μm.
 本発明のスタンドパウチは、上記積層体を用いて作製され、
 ヒートシール層の厚さが、50μm以上200μm以下である。
The stand pouch of the present invention is produced using the above-mentioned laminate,
The thickness of the heat seal layer is 50 μm or more and 200 μm or less.
 本発明によれば、包装材料としての強度や耐熱性を有し、かつリサイクル性にも優れる包装材料を実現することができる積層体を提供することができる。 According to the present invention, it is possible to provide a laminate capable of realizing a packaging material having strength and heat resistance as a packaging material and excellent recyclability.
第1の態様における本発明の積層体の一実施形態を示す断面概略図である。FIG. 1 is a schematic cross-sectional view showing one embodiment of a laminate of the present invention in a first aspect. 第1の態様における本発明の積層体の一実施形態を示す断面概略図である。FIG. 1 is a schematic cross-sectional view showing one embodiment of a laminate of the present invention in a first aspect. 第1の態様における本発明の積層体の一実施形態を示す断面概略図である。FIG. 1 is a schematic cross-sectional view showing one embodiment of a laminate of the present invention in a first aspect. 第1の態様における本発明の積層体の一実施形態を示す断面概略図である。FIG. 1 is a schematic cross-sectional view showing one embodiment of a laminate of the present invention in a first aspect. 第1の態様における本発明の積層体の一実施形態を示す断面概略図である。FIG. 1 is a schematic cross-sectional view showing one embodiment of a laminate of the present invention in a first aspect. 第2の態様における本発明の積層体の一実施形態を示す断面概略図である。It is a cross section schematic diagram showing one embodiment of a layered product of the present invention in a 2nd mode. 第2の態様における本発明の積層体の一実施形態を示す断面概略図である。It is a cross section schematic diagram showing one embodiment of a layered product of the present invention in a 2nd mode. 第2の態様における本発明の積層体の一実施形態を示す断面概略図である。It is a cross section schematic diagram showing one embodiment of a layered product of the present invention in a 2nd mode. 本発明の積層体を用いて作製した包装材料の一実施形態を表す斜視図である。It is a perspective view showing one Embodiment of the packaging material produced using the laminated body of this invention. 本発明の積層体を用いて作製した包装材料の一実施形態を表す斜視図である。It is a perspective view showing one Embodiment of the packaging material produced using the laminated body of this invention.
<第1の態様における積層体>
 本発明による積層体について、図面を参照しながら説明する。
 図1に示すように、積層体10は、基材11と、ヒートシール層12とを備える。
<Laminate in First Embodiment>
The laminate according to the present invention will be described with reference to the drawings.
As shown in FIG. 1, the laminate 10 includes a base material 11 and a heat seal layer 12.
 また、本発明の一実施形態において、図2に示すように、積層体10は、基材11とヒートシール層12との間に、蒸着膜13を備えることができる。 In addition, in one embodiment of the present invention, as shown in FIG. 2, the laminate 10 can include a deposition film 13 between the base material 11 and the heat seal layer 12.
 また、本発明の一実施形態において、図3に示すように、積層体10は、基材11と、ヒートシール層12または蒸着膜13との間に、接着層14を備えることができる。 In one embodiment of the present invention, as shown in FIG. 3, the laminate 10 may include an adhesive layer 14 between the base material 11 and the heat seal layer 12 or the vapor-deposited film 13.
 また、本発明の一実施形態において、図4に示すように、積層体10は、基材11とヒートシール層12との間に、蒸着膜15および中間層基材16を備える中間層17を備えることができる。 Further, in one embodiment of the present invention, as shown in FIG. 4, the laminate 10 includes an intermediate layer 17 including a deposition film 15 and an intermediate layer substrate 16 between the substrate 11 and the heat seal layer 12. Can be prepared.
 さらに、本発明の一実施形態において、図5に示すように、積層体10は、基材11と中間層17との間および中間層17とヒートシール層12との間に、接着層18を備えることができる。 Further, in one embodiment of the present invention, as shown in FIG. 5, the laminate 10 includes an adhesive layer 18 between the base material 11 and the intermediate layer 17 and between the intermediate layer 17 and the heat seal layer 12. Can be prepared.
 本発明の積層体において、ポリエチレンの含有量は、90質量%以上であることが好ましい。
 本発明の積層体全体におけるポリエチレンの含有量を90質量%以上とすることにより、本発明の積層体のリサイクル性を向上することができる。
 なお、積層体におけるポリエチレンの含有量とは、積層体を構成する各層における樹脂材料の含有量の和に対する、ポリエチレンの含有量の割合を意味する。
In the laminate of the present invention, the content of polyethylene is preferably 90% by mass or more.
By setting the content of polyethylene in the entire laminate of the present invention to 90% by mass or more, the recyclability of the laminate of the present invention can be improved.
In addition, the content of polyethylene in the laminate means the ratio of the content of polyethylene to the sum of the content of the resin material in each layer constituting the laminate.
 以下、本発明の積層体を構成する各層について説明する。 Hereinafter, each layer constituting the laminate of the present invention will be described.
<基材>
 本発明の積層体が備える基材は、ポリエチレンにより構成されており、また下記するヒートシール層も同様にポリエチレンにより構成される。このような構成とすることにより、積層体のリサイクル性を向上することができる。
<Substrate>
The substrate of the laminate of the present invention is made of polyethylene, and the heat seal layer described below is also made of polyethylene. With such a configuration, the recyclability of the laminate can be improved.
 基材は、ポリエチレンにより構成される延伸樹脂フィルムを使用し、これにより積層体の耐熱性および強度を向上することができる。また、基材への印刷適性を向上することができる。
 延伸樹脂フィルムとしては、一軸延伸樹脂フィルムであっても、二軸延伸樹脂フィルムであってもよい。
As the base material, a stretched resin film composed of polyethylene is used, whereby the heat resistance and strength of the laminate can be improved. In addition, the suitability for printing on the base material can be improved.
The stretched resin film may be a uniaxially stretched resin film or a biaxially stretched resin film.
 延伸樹脂フィルムの長手方向(MD)の延伸倍率は、2倍以上10倍以下であることが好ましく、3倍以上7倍以下であることが好ましい。
 延伸樹脂フィルムの長手方向(MD)の延伸倍率を2倍以上とすることにより、本発明の積層体の強度および耐熱性を向上することができる。さらに、基材への印刷適性を向上することができる。また、基材の透明性を向上することができるため、基材のヒートシール層側表面に画像を形成した場合に、その視認性を向上させることができる。一方、延伸樹脂フィルムの長手方向(MD)の延伸倍率の上限値は、特に制限されるものではないが、延伸樹脂フィルムの破断限界の観点からは10倍以下とすることが好ましい。
The stretch ratio in the machine direction (MD) of the stretched resin film is preferably 2 times or more and 10 times or less, and more preferably 3 times or more and 7 times or less.
By setting the stretching ratio in the longitudinal direction (MD) of the stretched resin film to 2 times or more, the strength and heat resistance of the laminate of the present invention can be improved. Further, the suitability for printing on the base material can be improved. Further, since the transparency of the base material can be improved, when an image is formed on the surface of the base material on the heat seal layer side, the visibility can be improved. On the other hand, the upper limit of the stretching ratio in the longitudinal direction (MD) of the stretched resin film is not particularly limited, but is preferably 10 times or less from the viewpoint of the breaking limit of the stretched resin film.
 また、延伸樹脂フィルムの横手方向(TD)の延伸倍率は、2倍以上10倍以下であることが好ましく、3倍以上7倍以下であることが好ましい。
 延伸樹脂フィルムの横手方向(TD)の延伸倍率を2倍以上とすることにより、本発明の積層体の強度および耐熱性を向上することができる。さらに、基材への印刷適性を向上することができる。また、基材の透明性を向上することができるため、基材のヒートシール層側表面に画像を形成した場合に、その視認性を向上させることができる。一方、延伸樹脂フィルムの横手方向(TD)の延伸倍率の上限値は、特に制限されるものではないが、延伸樹脂フィルムの破断限界の観点からは10倍以下とすることが好ましい。
The stretching ratio in the transverse direction (TD) of the stretched resin film is preferably 2 times or more and 10 times or less, and more preferably 3 times or more and 7 times or less.
By setting the stretching ratio in the transverse direction (TD) of the stretched resin film to 2 times or more, the strength and heat resistance of the laminate of the present invention can be improved. Further, the suitability for printing on the base material can be improved. Further, since the transparency of the base material can be improved, when an image is formed on the surface of the base material on the heat seal layer side, the visibility can be improved. On the other hand, the upper limit of the stretching ratio in the transverse direction (TD) of the stretched resin film is not particularly limited, but is preferably 10 times or less from the viewpoint of the breaking limit of the stretched resin film.
 延伸樹脂フィルムのヘイズ値は、30%以下であることが好ましく、20%以下であることがより好ましい。これにより、延伸樹脂フィルムの透明性を向上することができる。
 なお、本発明において、延伸樹脂フィルムのヘイズ値は、JIS K 7105に準拠して測定する。
The haze value of the stretched resin film is preferably 30% or less, more preferably 20% or less. Thereby, the transparency of the stretched resin film can be improved.
In the present invention, the haze value of the stretched resin film is measured according to JIS K7105.
 基材は、その表面に画像が形成されていてもよい。
 外気との接触を防止することができ、経時的な劣化を防止することができるため、下記するヒートシール層が設けられる面側に、画像が形成されていることが好ましい。
 形成される画像は、特に限定されず、文字、柄、記号およびこれらの組み合わせなどが表される。
 基材への画像形成は、バイオマス由来のインキを用いて行われることが好ましく、これにより本発明の積層体を用いて、環境負荷のより少ない包装材料を作製することができる。
 画像の形成方法は、特に限定されるものではなく、グラビア印刷法、オフセット印刷法、フレキソ印刷法などの従来公知の印刷法を挙げることができる。これらの中でも、環境負荷の観点から、フレキソ印刷法が好ましい。
The substrate may have an image formed on its surface.
Since the contact with the outside air can be prevented and the deterioration with time can be prevented, it is preferable that an image is formed on the side on which the heat seal layer described below is provided.
The image to be formed is not particularly limited, and includes characters, patterns, symbols, combinations thereof, and the like.
The image formation on the base material is preferably performed using a biomass-derived ink, whereby a packaging material with less environmental load can be produced using the laminate of the present invention.
The method for forming an image is not particularly limited, and includes a conventionally known printing method such as a gravure printing method, an offset printing method, and a flexographic printing method. Among these, the flexographic printing method is preferable from the viewpoint of environmental load.
 基材に含まれるポリエチレンとしては、高密度ポリエチレン(HDPE)、中密度ポリエチレン(MDPE)、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)および超低密度ポリエチレン(VLDPE)を使用することができる。
 ここで、高密度ポリエチレンとしては、密度が0.945g/cm以上のポリエチレンを使用することができ、中密度ポリエチレンとしては、密度が0.925g/cm以上0.945g/cm未満のポリエチレンを使用することができ、低密度ポリエチレンとしては、密度が0.900g/cm以上0.925g/cm未満のポリエチレンを使用することができ、直鎖状低密度ポリエチレンとしては、密度が0.900g/cm以上0.925g/cm未満のポリエチレンを使用することができ、超低密度ポリエチレンとしては、密度が0.900g/cm未満のポリエチレンを使用することができる。
 これらの中でも、本発明の積層体の印刷適性、強度および耐熱性、並びにフィルムの延伸適正という観点から、高密度ポリエチレンおよび中密度ポリエチレンが好ましく、延伸適正という観点から、中密度ポリエチレンがより好ましい。
As the polyethylene contained in the base material, high density polyethylene (HDPE), medium density polyethylene (MDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE) and very low density polyethylene (VLDPE) are used. be able to.
Here, as the high-density polyethylene, polyethylene having a density of 0.945 g / cm 3 or more can be used, and as the medium-density polyethylene, the density of 0.925 g / cm 3 or more and less than 0.945 g / cm 3 can be used. Polyethylene can be used. As the low-density polyethylene, polyethylene having a density of 0.900 g / cm 3 or more and less than 0.925 g / cm 3 can be used. A polyethylene having a density of 0.900 g / cm 3 or more and less than 0.925 g / cm 3 can be used. As the ultra-low density polyethylene, a polyethylene having a density of less than 0.900 g / cm 3 can be used.
Among these, high-density polyethylene and medium-density polyethylene are preferred from the viewpoint of printability, strength and heat resistance of the laminate of the present invention, and stretchability of the film, and medium-density polyethylene is more preferred from the viewpoint of stretchability.
 一実施形態において、基材として、高密度ポリエチレンから構成される層(以下、高密度ポリエチレン層という)および中密度ポリエチレンから構成される層(以下、中密度ポリエチレン層という)を備える構成のものを使用することができる。
 基材の外側に高密度ポリエチレン層を備えることにより、本発明の積層体の強度および耐熱性をより向上することができる。また、中密度ポリエチレン層を備えることにより、基材を構成する樹脂フィルムの延伸適性をより向上することができる。
In one embodiment, a base material having a layer composed of high-density polyethylene (hereinafter, referred to as a high-density polyethylene layer) and a layer composed of a medium-density polyethylene (hereinafter, referred to as a medium-density polyethylene layer) is used. Can be used.
By providing the high-density polyethylene layer on the outside of the substrate, the strength and heat resistance of the laminate of the present invention can be further improved. Further, by providing the medium-density polyethylene layer, the stretchability of the resin film constituting the base material can be further improved.
 例えば、外側から、高密度ポリエチレン層と中密度ポリエチレン層との共押フィルムの構成を有する。
 このような構成とすることにより、フィルムの延伸適性を向上することができる。また、本発明の積層体の強度および耐熱性を向上することができる。
 このとき、高密度ポリエチレン層の厚さは、中密度ポリエチレン層の厚さよりも薄いことが好ましい。
 高密度ポリエチレン層の厚さと、中密度ポリエチレン層の厚さとの比は、1/10以上1/1以下であることが好ましく、1/5以上1/2以下であることがより好ましい。
 高密度ポリエチレン層の厚さと、中密度ポリエチレン層の厚さとの比を1/10以上とすることにより、本発明の積層体の強度および耐熱性をより向上することができる。また、高密度ポリエチレン層の厚さと、中密度ポリエチレン層の厚さとの比を1/1以下とすることにより、樹脂フィルムの延伸適性をより向上することができる。
For example, it has a configuration of a co-pressed film of a high-density polyethylene layer and a medium-density polyethylene layer from the outside.
With such a configuration, the stretchability of the film can be improved. Further, the strength and heat resistance of the laminate of the present invention can be improved.
At this time, the thickness of the high-density polyethylene layer is preferably smaller than the thickness of the medium-density polyethylene layer.
The ratio of the thickness of the high-density polyethylene layer to the thickness of the medium-density polyethylene layer is preferably from 1/10 to 1/1, more preferably from 1/5 to 1/2.
By setting the ratio of the thickness of the high-density polyethylene layer to the thickness of the medium-density polyethylene layer to 1/10 or more, the strength and heat resistance of the laminate of the present invention can be further improved. Further, by setting the ratio of the thickness of the high-density polyethylene layer to the thickness of the medium-density polyethylene layer to 1/1 or less, the stretchability of the resin film can be further improved.
 また、例えば、外側から、高密度ポリエチレン層と中密度ポリエチレン層と高密度ポリエチレン層との三層共押フィルムの構成とすることもできる。
 このような構成とすることにより、樹脂フィルムの延伸適性をより向上することができる。また、本発明の積層体の強度および耐熱性をより向上することができる。さらに、基材におけるカールの発生を防止することができる。
 このとき、高密度ポリエチレン層の厚さは、中密度ポリエチレン層の厚さよりも薄いことが好ましい。
 高密度ポリエチレン層の厚さと、中密度ポリエチレン層の厚さとの比は、1/10以上1/1以下であることが好ましく、1/5以上1/2以下であることがより好ましい。
 高密度ポリエチレン層の厚さと、中密度ポリエチレン層の厚さとの比を1/10以上とすることにより、本発明の積層体の強度および耐熱性をより向上することができる。また、高密度ポリエチレン層の厚さと、中密度ポリエチレン層の厚さとの比を1/1以下とすることにより、樹脂フィルムの延伸適性をより向上することができる。
Further, for example, a three-layer co-pressed film including a high-density polyethylene layer, a medium-density polyethylene layer, and a high-density polyethylene layer may be formed from the outside.
With such a configuration, the stretchability of the resin film can be further improved. Further, the strength and heat resistance of the laminate of the present invention can be further improved. Further, it is possible to prevent the occurrence of curl in the substrate.
At this time, the thickness of the high-density polyethylene layer is preferably smaller than the thickness of the medium-density polyethylene layer.
The ratio of the thickness of the high-density polyethylene layer to the thickness of the medium-density polyethylene layer is preferably from 1/10 to 1/1, more preferably from 1/5 to 1/2.
By setting the ratio of the thickness of the high-density polyethylene layer to the thickness of the medium-density polyethylene layer to 1/10 or more, the strength and heat resistance of the laminate of the present invention can be further improved. Further, by setting the ratio of the thickness of the high-density polyethylene layer to the thickness of the medium-density polyethylene layer to 1/1 or less, the stretchability of the resin film can be further improved.
 また、例えば、外側から、高密度ポリエチレン層と中密度ポリエチレン層と低密度ポリエチレン層、直鎖状低密度ポリエチレン層または超低密度ポリエチレン層(該段落においては、記載簡略化のため、まとめて低密度ポリエチレン層と記載する。)と中密度ポリエチレン層と高密度ポリエチレン層の五層共押フィルムの構成とすることもできる。
 このような構成とすることにより、フィルムの延伸適性を向上することができる。また、本発明の積層体の強度および耐熱性を向上することができる。また、基材におけるカールの発生を防止することができる。
 さらに、下記するようにフィルムの生産効率を向上することができる。
 このとき、高密度ポリエチレン層の厚さは、中密度ポリエチレン層の厚さよりも薄いことが好ましい。
 高密度ポリエチレン層の厚さと、中密度ポリエチレン層の厚さとの比は、1/10以上1/1以下であることが好ましく、1/5以上1/2以下であることがより好ましい。
 高密度ポリエチレン層の厚さと、中密度ポリエチレン層の厚さとの比を1/10以上とすることにより、本発明の積層体の強度および耐熱性を向上することができる。また、高密度ポリエチレン層の厚さと、中密度ポリエチレン層の厚さとの比を1/1以下とすることにより、フィルムの延伸適性を向上することができる。
 また、高密度ポリエチレン層の厚さは、低密度ポリエチレン層の厚さと同じまたは低密度ポリエチレンの厚さよりも厚いことが好ましい。
 高密度ポリエチレン層の厚さと、低密度ポリエチレン層の厚さとの比は、1/0.25以上1/2以下であることが好ましく、1/0.5以上1/1以下であることがより好ましい。
 高密度ポリエチレン層の厚さと、低密度ポリエチレン層の厚さとの比を1/0.25以上とすることにより、耐熱性を向上することができる。また、高密度ポリエチレン層の厚さと、低密度ポリエチレン層の厚さとの比を1/1以下とすることにより、中密度ポリエチレン層間の密着性を向上することができる。
 一実施形態において、このような構成の基材は、例えば、インフレーション法により作製することができる。
 具体的には、外側から、高密度ポリエチレンと、中密度ポリエチレン層と、および低密度ポリエチレン層、直鎖状低密度ポリエチレン層または超低密度ポリエチレン層とをチューブ状に共押出し、次いで、対向する低密度ポリエチレン層、直鎖状低密度ポリエチレン層または超低密度ポリエチレン層同士を、これをゴムロールなどにより、圧着することによって作製することができる。
 このような方法により作製することにより、製造における欠陥品数を顕著に低減することができ、最終的には、生産効率を向上することができる。
 また、インフレーション製膜機において、延伸も合わせて行うことができ、これにより、生産効率をより向上することができる。
Also, for example, from the outside, a high-density polyethylene layer, a medium-density polyethylene layer, and a low-density polyethylene layer, a linear low-density polyethylene layer, or an ultra-low-density polyethylene layer (in this paragraph, for simplicity of description, It is also possible to form a five-layer co-pressed film of a high-density polyethylene layer and a medium-density polyethylene layer.
With such a configuration, the stretchability of the film can be improved. Further, the strength and heat resistance of the laminate of the present invention can be improved. Further, it is possible to prevent the occurrence of curl in the base material.
Further, the film production efficiency can be improved as described below.
At this time, the thickness of the high-density polyethylene layer is preferably smaller than the thickness of the medium-density polyethylene layer.
The ratio of the thickness of the high-density polyethylene layer to the thickness of the medium-density polyethylene layer is preferably from 1/10 to 1/1, more preferably from 1/5 to 1/2.
By setting the ratio of the thickness of the high-density polyethylene layer to the thickness of the medium-density polyethylene layer to 1/10 or more, the strength and heat resistance of the laminate of the present invention can be improved. Further, by setting the ratio of the thickness of the high-density polyethylene layer to the thickness of the medium-density polyethylene layer to 1/1 or less, the stretchability of the film can be improved.
Further, the thickness of the high-density polyethylene layer is preferably the same as the thickness of the low-density polyethylene layer or greater than the thickness of the low-density polyethylene.
The ratio of the thickness of the high-density polyethylene layer to the thickness of the low-density polyethylene layer is preferably 1 / 0.25 or more and 1/2 or less, more preferably 1 / 0.5 or more and 1/1 or less. preferable.
Heat resistance can be improved by setting the ratio of the thickness of the high-density polyethylene layer to the thickness of the low-density polyethylene layer to 1 / 0.25 or more. By setting the ratio of the thickness of the high-density polyethylene layer to the thickness of the low-density polyethylene layer to 1/1 or less, the adhesion between the medium-density polyethylene layers can be improved.
In one embodiment, the substrate having such a configuration can be produced by, for example, an inflation method.
Specifically, from the outside, a high-density polyethylene, a medium-density polyethylene layer, and a low-density polyethylene layer, a linear low-density polyethylene layer or an ultra-low-density polyethylene layer are coextruded in a tube shape, and then opposed. The low-density polyethylene layer, the linear low-density polyethylene layer, or the ultra-low-density polyethylene layer can be produced by press-bonding these with a rubber roll or the like.
By manufacturing by such a method, the number of defective products in manufacturing can be significantly reduced, and ultimately, the production efficiency can be improved.
Further, in an inflation film forming machine, stretching can be performed at the same time, whereby the production efficiency can be further improved.
 上記したような密度や分岐の違うポリエチレンは、重合方法を適宜選択することによって得ることができる。例えば、重合触媒として、チーグラー・ナッタ触媒などのマルチサイト触媒や、メタロセン系触媒などのシングルサイト触媒を用いて、気相重合、スラリー重合、溶液重合、および高圧イオン重合のいずれかの方法により、1段または2段以上の多段で行うことが好ましい。 ポ リ エ チ レ ン Polyethylene having different densities and branches as described above can be obtained by appropriately selecting a polymerization method. For example, as a polymerization catalyst, using a multi-site catalyst such as a Ziegler-Natta catalyst, or a single-site catalyst such as a metallocene catalyst, gas phase polymerization, slurry polymerization, solution polymerization, and high pressure ionic polymerization by any method, It is preferable to carry out in one stage or in two or more stages.
 上記のシングルサイト触媒とは、均一な活性種を形成しうる触媒であり、通常、メタロセン系遷移金属化合物や非メタロセン系遷移金属化合物と活性化用助触媒とを接触させることにより、調整される。シングルサイト触媒は、マルチサイト触媒に比べて、活性点構造が均一であるため、高分子量かつ均一度の高い構造の重合体を重合することができるため好ましい。シングルサイト触媒としては、特に、メタロセン系触媒を用いることが好ましい。メタロセン系触媒は、シクロペンタジエニル骨格を有する配位子を含む周期律表第IV族の遷移金属化合物と、助触媒と、必要により有機金属化合物と、担体の各触媒成分とを含む触媒である。 The single-site catalyst is a catalyst capable of forming a uniform active species, and is usually adjusted by contacting a metallocene-based transition metal compound or a non-metallocene-based transition metal compound with an activating cocatalyst. . Single-site catalysts are preferable because they have a more uniform active site structure than multi-site catalysts and can polymerize a polymer having a high molecular weight and a highly uniform structure. It is particularly preferable to use a metallocene catalyst as the single-site catalyst. The metallocene catalyst is a catalyst containing a transition metal compound of Group IV of the periodic table containing a ligand having a cyclopentadienyl skeleton, a co-catalyst, an organic metal compound as required, and each catalyst component of a carrier. is there.
 上記のシクロペンタジエニル骨格を有する配位子を含む周期律表第IV族の遷移金属化合物において、そのシクロペンタジエニル骨格とは、シクロペンタジエニル基、置換シクロペンタジエニル基などである。置換シクロペンタジエニル基としては、炭素数1~30の炭化水素基、シリル基、シリル置換アルキル基、シリル置換アリール基、シアノ基、シアノアルキル基、シアノアリール基、ハロゲン基、ハロアルキル基、ハロシリル基などから選ばれた少なくとも一種の置換基を有するものである。その置換シクロペンタジエニル基の置換基は2個以上有していてもよく、また置換基同士が互いに結合して環を形成し、インデニル環、フルオレニル環、アズレニル環、その水添体などを形成してもよい。置換基同士が互いに結合し形成された環がさらに互いに置換基を有していてもよい。 In the transition metal compound of Group IV of the periodic table containing a ligand having a cyclopentadienyl skeleton, the cyclopentadienyl skeleton is a cyclopentadienyl group, a substituted cyclopentadienyl group, or the like. . Examples of the substituted cyclopentadienyl group include a hydrocarbon group having 1 to 30 carbon atoms, a silyl group, a silyl-substituted alkyl group, a silyl-substituted aryl group, a cyano group, a cyanoalkyl group, a cyanoaryl group, a halogen group, a haloalkyl group, and a halosilyl group. It has at least one substituent selected from groups and the like. The substituted cyclopentadienyl group may have two or more substituents, and the substituents are bonded to each other to form a ring, and include an indenyl ring, a fluorenyl ring, an azulenyl ring, a hydrogenated product thereof, and the like. It may be formed. The ring formed by bonding the substituents to each other may further have a substituent to each other.
 シクロペンタジエニル骨格を有する配位子を含む周期律表第IV族の遷移金属化合物において、その遷移金属としては、ジルコニウム、チタン、ハフニウムなどが挙げられ、特にジルコニウム、ハフニウムが好ましい。該遷移金属化合物は、シクロペンタジエニル骨格を有する配位子としては通常2個を有し、各々のシクロペンタジエニル骨格を有する配位子は架橋基により互いに結合しているものが好ましい。なお、架橋基としては炭素数1~4のアルキレン基、シリレン基、ジアルキルシリレン基、ジアリールシリレン基などの置換シリレン基、ジアルキルゲルミレン基、ジアリールゲルミレン基などの置換ゲルミレン基などが挙げられる。好ましくは、置換シリレン基である。上記のシクロペンタジエニル骨格を有する配位子を含む周期律表第IV族の遷移金属化合物は、一種または二種以上の混合物を触媒成分とすることができる。 遷移 In the transition metal compound of Group IV of the periodic table containing a ligand having a cyclopentadienyl skeleton, examples of the transition metal include zirconium, titanium, and hafnium, with zirconium and hafnium being particularly preferred. The transition metal compound usually has two ligands each having a cyclopentadienyl skeleton, and it is preferable that each ligand having a cyclopentadienyl skeleton be bonded to each other by a crosslinking group. Examples of the cross-linking group include a substituted silylene group such as an alkylene group having 1 to 4 carbon atoms, a silylene group, a dialkylsilylene group and a diarylsilylene group, and a substituted germylene group such as a dialkylgermylene group and a diarylgermylene group. Preferably, it is a substituted silylene group. As the transition metal compound of Group IV of the periodic table containing a ligand having a cyclopentadienyl skeleton, one kind or a mixture of two or more kinds can be used as a catalyst component.
 助触媒としては、上記の周期律表第IV族の遷移金属化合物を重合触媒として有効になしうる、または触媒的に活性化された状態のイオン性電荷を均衝させうるものをいう。助触媒としては、有機アルミニウムオキシ化合物のベンゼン可溶のアルミノキサンやベンゼン不溶の有機アルミニウムオキシ化合物、イオン交換性層状珪酸塩、ホウ素化合物、活性水素基含有あるいは非含有のカチオンと非配位性アニオンからなるイオン性化合物、酸化ランタンなどのランタノイド塩、酸化スズ、フルオロ基を含有するフェノキシ化合物などが挙げられる。 The cocatalyst refers to a cocatalyst capable of effectively using the above-mentioned transition metal compound of Group IV of the periodic table as a polymerization catalyst, or capable of balancing ionic charges in a catalytically activated state. As the co-catalyst, benzene-soluble aluminoxane or benzene-insoluble organic aluminum oxy compound of an organic aluminum oxy compound, an ion-exchanged layered silicate, a boron compound, a cation containing or not containing an active hydrogen group and a non-coordinating anion are used. Lanthanide salts such as lanthanum oxide, tin oxide, and a phenoxy compound containing a fluoro group.
 シクロペンタジエニル骨格を有する配位子を含む周期律表第IV族の遷移金属化合物は、無機または有機化合物の担体に担持して使用されてもよい。該担体としては無機または有機化合物の多孔質酸化物が好ましく、具体的には、モンモリロナイトなどのイオン交換性層状珪酸塩、SiO、Al、MgO、ZrO、TiO、B、CaO、ZnO、BaO、ThOなどまたはこれらの混合物が挙げられる。また更に必要により使用される有機金属化合物としては、有機アルミニウム化合物、有機マグネシウム化合物、有機亜鉛化合物などが例示される。このうち有機アルミニウムが好適に使用される。 The transition metal compound of Group IV of the periodic table containing a ligand having a cyclopentadienyl skeleton may be used by being supported on a carrier of an inorganic or organic compound. As the carrier, a porous oxide of an inorganic or organic compound is preferable, and specifically, an ion-exchange layered silicate such as montmorillonite, SiO 2 , Al 2 O 3 , MgO, ZrO 2 , TiO 2 , B 2 O 3 , CaO, ZnO, BaO, ThO 2 and the like, or a mixture thereof. Further, examples of the organometallic compound used as necessary include an organoaluminum compound, an organomagnesium compound, and an organozinc compound. Of these, organoaluminum is preferably used.
 また、本発明の特性を損なわない範囲において、エチレンと他のモノマーとの共重合体を使用することもできる。エチレン共重合体としては、エチレンと炭素数3~20のα-オレフィンとからなる共重合体が挙げられ、炭素数3~20のα-オレフィンとしては、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン、3ーメチルー1-ブテン、4-メチル-1-ペンテンおよび6-メチル-1-ヘプテンなどが挙げられる。また、本発明の目的を損なわない範囲であれば、酢酸ビニルまたはアクリル酸エステルなどとの共重合体であってもよい。 共 Also, a copolymer of ethylene and another monomer can be used as long as the properties of the present invention are not impaired. Examples of the ethylene copolymer include a copolymer composed of ethylene and an α-olefin having 3 to 20 carbon atoms. Examples of the α-olefin having 3 to 20 carbon atoms include propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene, 3-methyl-1-butene, 4-methyl-1-pentene and 6-methyl- 1-heptene and the like. In addition, a copolymer with vinyl acetate or an acrylate ester may be used as long as the object of the present invention is not impaired.
 また、本発明においては、上記高密度ポリエチレンなどを得るための原料として、化石燃料から得られるエチレンに代えて、バイオマス由来のエチレンを用いることが好ましい。このようなバイオマス由来のポリエチレンはカーボニュートラルな材料であるため、より一層、環境負荷の少ない包装材料とすることができる。
 このようなバイオマス由来のポリエチレンは、例えば、特開2013-177531号公報に記載されているような方法にて製造することができる。また、市販されているバイオマス由来のポリエチレン(例えば。ブラスケム社から市販されているグリーンPEなど)を使用してもよい。
Further, in the present invention, it is preferable to use biomass-derived ethylene instead of ethylene obtained from fossil fuel as a raw material for obtaining the high-density polyethylene or the like. Since such biomass-derived polyethylene is a carb-neutral material, it can be used as a packaging material with even less environmental load.
Such biomass-derived polyethylene can be produced, for example, by a method as described in JP-A-2013-177531. Alternatively, commercially available biomass-derived polyethylene (for example, Green PE commercially available from Braskem) may be used.
 また、メカニカルリサイクルによりリサイクルされたポリエチレンを使用することもできる。ここで、メカニカルリサイクルとは、一般に、回収されたポリエチレンフィルムなどを粉砕、アルカリ洗浄してフィルム表面の汚れ、異物を除去した後、高温・減圧下で一定時間乾燥してフィルム内部に留まっている汚染物質を拡散させ除染を行い、ポリエチレンからなるフィルムの汚れを取り除き、再びポリエチレンに戻す方法である。 ポ リ エ チ レ ン Also, polyethylene recycled by mechanical recycling can be used. Here, mechanical recycling generally means that the collected polyethylene film or the like is pulverized, washed with alkali to remove dirt and foreign matter on the film surface, and then dried for a certain period of time under high temperature and reduced pressure to remain inside the film. This is a method in which contaminants are diffused to perform decontamination, remove stains from a polyethylene film, and return to polyethylene again.
 基材は、本発明の特性を損なわない範囲において、添加剤を含むことができ、例えば、架橋剤、酸化防止剤、アンチブロッキング剤、滑(スリップ)剤、紫外線吸収剤、光安定剤、充填剤、補強剤、帯電防止剤、顔料および改質用樹脂などが挙げられる。 The base material may contain additives within a range that does not impair the properties of the present invention. For example, a crosslinking agent, an antioxidant, an anti-blocking agent, a slip (slip) agent, an ultraviolet absorber, a light stabilizer, a filler Agents, reinforcing agents, antistatic agents, pigments and modifying resins.
 基材は、その表面に、下記する蒸着膜を備えていてもよい。 The base material may be provided with the following deposited film on its surface.
 また、基材は、表面処理が施されていることが好ましい。これにより、隣接する層との密着性を向上することができる。
 表面処理の方法は特に限定されず、例えば、コロナ放電処理、オゾン処理、酸素ガスおよび/または窒素ガスなどを用いた低温プラズマ処理、グロー放電処理などの物理的処理、並びに化学薬品を用いた酸化処理などの化学的処理が挙げられる。
 また、基材表面に従来公知のアンカーコート剤を用いて、アンカーコート層を形成してもよい。
Further, the substrate is preferably subjected to a surface treatment. Thereby, the adhesiveness with an adjacent layer can be improved.
The surface treatment method is not particularly limited. For example, corona discharge treatment, ozone treatment, low-temperature plasma treatment using oxygen gas and / or nitrogen gas, physical treatment such as glow discharge treatment, and oxidation using chemicals Chemical treatment such as treatment.
Further, an anchor coat layer may be formed on the surface of the base material using a conventionally known anchor coat agent.
 基材の厚さは、10μm以上50μm以下であることが好ましく、12μm以上30μm以下であることがより好ましい。
 基材の厚さを10μm以上とすることにより、本発明の積層体の強度を向上することができる。また、基材の厚さを50μm以下とすることにより、本発明の積層体の加工適性を向上することができる。
The thickness of the substrate is preferably 10 μm or more and 50 μm or less, and more preferably 12 μm or more and 30 μm or less.
By setting the thickness of the substrate to 10 μm or more, the strength of the laminate of the present invention can be improved. Further, by setting the thickness of the base material to 50 μm or less, the processability of the laminate of the present invention can be improved.
 基材は、ポリエチレンをTダイ法またはインフレーション法などにより製膜し、フィルムを作製した後、延伸することにより作製することができる。 The substrate can be produced by forming a film of polyethylene by a T-die method or an inflation method, producing a film, and then stretching the film.
 Tダイ法により、基材を作製する場合、ポリエチレンのMFRは、3g/10分以上20g/10分以下であることが好ましい。
 ポリエチレンのMFRを3g/10分以上とすることにより、本発明の積層体の加工適性を向上することができる。また、ポリエチレンのMFRを20g/10分以下とすることにより、樹脂フィルムが破断してしまうことを防止することができる。
When the substrate is produced by the T-die method, the MFR of the polyethylene is preferably 3 g / 10 min or more and 20 g / 10 min or less.
By setting the MFR of the polyethylene to 3 g / 10 minutes or more, the processability of the laminate of the present invention can be improved. Further, by setting the MFR of polyethylene to 20 g / 10 minutes or less, it is possible to prevent the resin film from breaking.
 インフレーション法により、基材を作製する場合、ポリエチレンのMFRは、0.5g/10分以上5g/10分以下であることが好ましい。
 ポリエチレンのMFRを0.5g/10分以上とすることにより、本発明の積層体の加工適性を向上することができる。また、ポリエチレンのMFRを5g/10分以下とすることにより、製膜性を向上することができる。
When the substrate is produced by the inflation method, the MFR of the polyethylene is preferably 0.5 g / 10 min or more and 5 g / 10 min or less.
By setting the MFR of the polyethylene to 0.5 g / 10 minutes or more, the processability of the laminate of the present invention can be improved. Further, by setting the MFR of polyethylene to 5 g / 10 minutes or less, the film-forming property can be improved.
 なお、基材は上記方法により作製されたものに限られず、市販されるものを使用してもよい。 Note that the substrate is not limited to one produced by the above method, and a commercially available substrate may be used.
<ヒートシール層>
 本発明の積層体が備えるヒートシール層は、上記した基材同様、ポリエチレンにより構成されていることを特徴とする。このような構成とすることにより、十分な強度や耐熱性を有し、かつリサイクル可能な包装材料などを作製することができる。
 但し、ポリエチレン樹脂層は、未延伸のポリエチレン樹脂フィルムにより形成するか、或いはポリエチレンの溶融押出により形成する。
<Heat seal layer>
The heat seal layer provided in the laminate of the present invention is characterized in that it is made of polyethylene, similarly to the above-mentioned base material. With such a configuration, a recyclable packaging material or the like having sufficient strength and heat resistance can be manufactured.
However, the polyethylene resin layer is formed by an unstretched polyethylene resin film or by melt extrusion of polyethylene.
 ヒートシール層を構成するポリエチレンは、ヒートシール性という観点からは、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)および超密度ポリエチレン(VLDPE)が好ましい。
 本発明の特性を損なわない範囲において、エチレンとその他のモノマーとの共重合体を使用することができる。
 また、環境負荷の観点から、バイオマス由来のポリエチレンまたはリサイクルされたポリエチレンであることが好ましい。
The polyethylene constituting the heat seal layer is preferably a low density polyethylene (LDPE), a linear low density polyethylene (LLDPE) and a super density polyethylene (VLDPE) from the viewpoint of heat sealability.
A copolymer of ethylene and another monomer can be used as long as the properties of the present invention are not impaired.
In addition, from the viewpoint of environmental load, biomass-derived polyethylene or recycled polyethylene is preferable.
 ヒートシール層は、本発明の特性を損なわない範囲において、上記添加剤を含むことができる。 (4) The heat seal layer may contain the above-mentioned additives as long as the properties of the present invention are not impaired.
 一実施形態において、ヒートシール層は多層構造を有し、中間層として、中密度ポリエチレンおよび高密度ポリエチレンの少なくとも一方を含む層を備える。
 具体的には、低密度ポリエチレン、直鎖状低密度ポリエチレン、および超低密度ポリエチレンの少なくともいずれかを含む層/中密度ポリエチレンおよび高密度ポリエチレンの少なくともいずれかを含む層/低密度ポリエチレン、直鎖状低密度ポリエチレン、および超低密度ポリエチレンの少なくともいずれかを含む層からなる構成とすることができる。
 このような構成とすることにより、ヒートシール性を維持しつつ、本発明の積層体の製袋適性および強度をより向上することができる。
In one embodiment, the heat seal layer has a multilayer structure, and includes, as an intermediate layer, a layer containing at least one of medium density polyethylene and high density polyethylene.
Specifically, a layer containing at least one of low-density polyethylene, linear low-density polyethylene, and ultra-low-density polyethylene / a layer containing at least one of medium-density polyethylene and high-density polyethylene / low-density polyethylene, linear It can be constituted by a layer containing at least one of a low-density polyethylene and an ultra-low-density polyethylene.
By adopting such a configuration, it is possible to further improve the suitability and strength of the laminate of the present invention while maintaining the heat sealing property.
 ヒートシール層の厚さは、本発明の積層体により作製される包装材料に充填する内容物の重量に応じ適宜変更することが好ましい。
 例えば、1g以上、200g以下の内容物を充填する図9に示すような包装袋30を作製する場合、ヒートシール層の厚さは、20μm以上、60μm以下であることが好ましい。
 ヒートシール層の厚さを20μm以上とすることにより、充填された内容物が、ヒートシール層の破損により漏れてしまうことを防止することができる。また、ヒートシール層を60μm以下とすることにより、本発明の積層体の加工適性を向上することができる。
It is preferable that the thickness of the heat seal layer is appropriately changed according to the weight of the contents to be filled in the packaging material produced by the laminate of the present invention.
For example, in the case where a packaging bag 30 as shown in FIG. 9 is filled with contents of 1 g or more and 200 g or less, the thickness of the heat seal layer is preferably 20 μm or more and 60 μm or less.
By setting the thickness of the heat seal layer to 20 μm or more, it is possible to prevent the filled contents from leaking due to breakage of the heat seal layer. Further, by setting the heat seal layer to 60 μm or less, the processability of the laminate of the present invention can be improved.
 また、例えば、50g以上、2000g以下の内容物を充填する図10に示すようなスタンドパウチ40を作製する場合、ヒートシール層の厚さは、50μm以上、200μm以下であることが好ましい。
 ヒートシール層の厚さを50μm以上とすることにより、充填された内容物が、ヒートシール層の破損により漏れてしまうことを防止することができる。また、ヒートシール層の厚さを200μm以下とすることにより、本発明の積層体の加工適性を向上することができる。
 なお、図9および10における斜線部分は、ヒートシール部である
Further, for example, in the case of manufacturing a stand pouch 40 as shown in FIG. 10 that fills a content of 50 g or more and 2000 g or less, the thickness of the heat seal layer is preferably 50 μm or more and 200 μm or less.
By setting the thickness of the heat seal layer to 50 μm or more, it is possible to prevent the filled contents from leaking due to breakage of the heat seal layer. Further, by setting the thickness of the heat seal layer to 200 μm or less, the processability of the laminate of the present invention can be improved.
The hatched portions in FIGS. 9 and 10 are the heat seal portions.
<蒸着膜>
 本発明の積層体は、基材と、ヒートシール層との間に蒸着膜を備えることができる。これにより、積層体のガスバリア性、具体的には、酸素バリア性および水蒸気バリア性を向上することができる。
<Evaporated film>
The laminate of the present invention can include a deposited film between the base material and the heat seal layer. Thereby, the gas barrier property of the laminate, specifically, the oxygen barrier property and the water vapor barrier property can be improved.
 蒸着膜としては、アルミニウムなどの金属、並びに酸化アルミニウム、酸化珪素、酸化マグシウム、酸化カルシウム、酸化ジルコニウム、酸化チタン、酸化ホウ素、酸化ハフニウム、酸化バリウムなどの無機酸化物から構成される、蒸着膜を挙げることができる。 Examples of the deposited film include a metal such as aluminum, and an inorganic oxide such as aluminum oxide, silicon oxide, magnesium oxide, calcium oxide, zirconium oxide, titanium oxide, boron oxide, hafnium oxide, and barium oxide. Can be mentioned.
 また、蒸着膜の厚さは、1nm以上150nm以下であることが好ましく、5nm以上60nm以下であることがより好ましく、10nm以上40nm以下であることがさらに好ましい。
 蒸着膜の厚さを1nm以上とすることにより、本発明の積層体の酸素バリア性および水蒸気バリア性をより向上することができる。また、蒸着膜の厚さを150nm以下とすることにより、蒸着膜におけるクラックの発生を防止することができると共に、本発明の積層体のリサイクル性を向上することができる。
The thickness of the deposited film is preferably from 1 nm to 150 nm, more preferably from 5 nm to 60 nm, even more preferably from 10 nm to 40 nm.
When the thickness of the deposited film is 1 nm or more, the oxygen barrier property and the water vapor barrier property of the laminate of the present invention can be further improved. Further, by setting the thickness of the deposited film to 150 nm or less, generation of cracks in the deposited film can be prevented, and the recyclability of the laminate of the present invention can be improved.
 蒸着膜が、アルミニウム蒸着膜であるには、そのOD値は、2以上3.5以下であることが好ましい。これにより、本発明の積層体の生産性を維持しつつ、酸素バリア性および水蒸気バリア性を向上することができる。なお、本発明において、OD値は、JIS-K-7361に準拠して測定することができる。 に は In order for the deposited film to be an aluminum deposited film, the OD value is preferably 2 or more and 3.5 or less. Thereby, the oxygen barrier property and the water vapor barrier property can be improved while maintaining the productivity of the laminate of the present invention. In the present invention, the OD value can be measured according to JIS-K-7361.
 蒸着膜は、従来公知の方法を用いて形成することができ、例えば、真空蒸着法、スパッタリング法およびイオンプレーティング法などの物理気相成長法(Physical Vapor Deposition法、PVD法)、並びにプラズマ化学気相成長法、熱化学気相成長法および光化学気相成長法などの化学気相成長法(Chemical Vapor Deposition法、CVD法)などを挙げることができる。 The deposited film can be formed by a conventionally known method, for example, a physical vapor deposition method (Physical Vapor Deposition method, PVD method) such as a vacuum deposition method, a sputtering method and an ion plating method, and plasma chemistry. Chemical vapor deposition methods (Chemical Vapor Deposition method, CVD method) such as a vapor phase growth method, a thermochemical vapor phase growth method, and a photochemical vapor phase growth method can be given.
 また、例えば、物理気相成長法と化学気相成長法の両者を併用して異種の無機酸化物の蒸着膜の2層以上からなる複合膜を形成して使用することもできる。蒸着チャンバーの真空度としては、酸素導入前においては、10-2~10-8mbar程度が好ましく、酸素導入後においては、10-1~10-6mbar程度が好ましい。なお、酸素導入量などは、蒸着機の大きさなどによって異なる。導入する酸素には、キャリヤーガスとしてアルゴンガス、ヘリウムガス、窒素ガスなどの不活性ガスを支障のない範囲で使用してもよい。フィルムの搬送速度は、10~800m/min程度とすることができる。 Further, for example, a composite film composed of two or more layers of vapor deposited films of different kinds of inorganic oxides can be formed and used by using both physical vapor deposition and chemical vapor deposition. The degree of vacuum in the vapor deposition chamber is preferably about 10 −2 to 10 −8 mbar before oxygen introduction, and about 10 −1 to 10 −6 mbar after oxygen introduction. Note that the amount of oxygen introduced differs depending on the size of the vapor deposition machine. As the oxygen to be introduced, an inert gas such as an argon gas, a helium gas, or a nitrogen gas may be used as a carrier gas within a range that does not cause any trouble. The transport speed of the film can be about 10 to 800 m / min.
 蒸着膜の表面は、上記表面処理が施されていることが好ましい。これにより、隣接する層との密着性を向上することができる。 表面 The surface of the deposited film is preferably subjected to the above-mentioned surface treatment. Thereby, the adhesiveness with an adjacent layer can be improved.
<接着層>
 一実施形態において、本発明の積層体は、基材と、ヒートシール層または蒸着膜との間に、接着層を備えることができる。これにより、これら層間の密着性を向上することができる。
 また、一実施形態において、積層体は、基材と、下記する中間層との間、および中間層と、ヒートシール層との間に接着層を備えることができる。
<Adhesive layer>
In one embodiment, the laminate of the present invention may include an adhesive layer between the substrate and the heat seal layer or the vapor-deposited film. Thereby, the adhesion between these layers can be improved.
In one embodiment, the laminate may include an adhesive layer between the base material and the intermediate layer described below, and between the intermediate layer and the heat seal layer.
 接着層は、少なくとも1種の接着剤を含み、1液硬化型若しくは2液硬化型、または非硬化型のいずれも接着剤であってもよい。また、接着剤は、無溶剤型の接着剤であっても、溶剤型の接着剤であってもよいが、環境負荷の観点からは、無溶剤型の接着剤が好ましく使用できる。
 無溶剤型接着剤としては、例えば、ポリエーテル系接着剤、ポリエステル系接着剤、シリコーン系接着剤、エポキシ系接着剤およびウレタン系接着剤などが挙げられ、これらのなかでも2液硬化型のウレタン系接着剤を好ましく使用することができる。
 溶剤型接着剤としては、例えば、ゴム系接着剤、ビニル系接着剤、シリコーン系接着剤、エポキシ系接着剤、フェノール系接着剤およびオレフィン系接着剤などが挙げられる。
The adhesive layer contains at least one type of adhesive, and may be any of a one-component curable type, a two-component curable type, and a non-curable type. The adhesive may be a solventless adhesive or a solvent adhesive, but from the viewpoint of environmental load, a solventless adhesive can be preferably used.
Examples of the non-solvent type adhesive include a polyether-based adhesive, a polyester-based adhesive, a silicone-based adhesive, an epoxy-based adhesive, and a urethane-based adhesive. A system adhesive can be preferably used.
Examples of the solvent-based adhesive include a rubber-based adhesive, a vinyl-based adhesive, a silicone-based adhesive, an epoxy-based adhesive, a phenol-based adhesive, and an olefin-based adhesive.
 また、アルミニウム蒸着膜である蒸着膜と隣接するように接着層を設ける場合には、接着層を、ポリエステルポリオールとイソシアネート化合物とを含む樹脂組成物の硬化物により構成することが好ましい。
 接着層をこのような構成とすることにより、本発明の積層体の酸素バリア性および水蒸気バリア性をより一層向上させることができる。
 また、蒸着膜を備えた積層体を包装材料に適用する際には、成形機などにより積層体に屈曲負荷がかかるため、アルミニウム蒸着膜に亀裂などが生じる恐れがある。上記したような特定の接着剤を使用することで、アルミニウム蒸着膜に亀裂が生じた場合であっても、酸素バリア性および水蒸気バリア性の低下を抑制することができる。
In the case where the adhesive layer is provided so as to be adjacent to the vapor-deposited film that is an aluminum vapor-deposited film, it is preferable that the adhesive layer be formed of a cured product of a resin composition containing a polyester polyol and an isocyanate compound.
With the adhesive layer having such a configuration, the oxygen barrier property and the water vapor barrier property of the laminate of the present invention can be further improved.
In addition, when a laminate provided with a vapor-deposited film is applied to a packaging material, a bending load is applied to the laminate by a molding machine or the like, so that a crack or the like may occur in the aluminum vapor-deposited film. By using the specific adhesive as described above, it is possible to suppress a decrease in the oxygen barrier property and the water vapor barrier property even when a crack occurs in the aluminum deposited film.
 ポリエステルポリオールは、官能基として1分子中に水酸基を2個以上有する。また、イソシアネート化合物は、官能基として1分子中にイソシアネート基を2個以上有する。
 ポリエステルポリオールは、主骨格として、例えばポリエステル構造、またはポリエステルポリウレタン構造を有する。
The polyester polyol has two or more hydroxyl groups in one molecule as a functional group. Further, the isocyanate compound has two or more isocyanate groups in one molecule as a functional group.
The polyester polyol has, for example, a polyester structure or a polyester polyurethane structure as a main skeleton.
 ポリエステルポリオール、イソシアネート化合物を含有する樹脂組成物の具体例としては、DIC株式会社から販売されている、パスリム(PASLIM)のシリーズが使用できる。 As a specific example of the resin composition containing a polyester polyol and an isocyanate compound, a series of PASLIMs sold by DIC Corporation can be used.
 該樹脂組成物は、板状無機化合物、カップリング剤、シクロデキストリンおよび/またはその誘導体などをさらに含んでいてもよい。 The resin composition may further include a plate-like inorganic compound, a coupling agent, cyclodextrin and / or a derivative thereof, and the like.
 官能基として1分子中に水酸基を2個以上有するポリエステルポリオールとしては、例えば下記の〔第1例〕~〔第3例〕を用いることができる。
〔第1例〕オルト配向多価カルボン酸またはその無水物と、多価アルコールとを重縮合して得られるポリエステルポリオール
〔第2例〕グリセロール骨格を有するポリエステルポリオール
〔第3例〕イソシアヌル環を有するポリエステルポリオール
以下、各ポリエステルポリオールについて説明する。
As the polyester polyol having two or more hydroxyl groups in one molecule as a functional group, for example, the following [First Example] to [Third Example] can be used.
[Example 1] Polyester polyol obtained by polycondensation of ortho-oriented polycarboxylic acid or anhydride thereof and polyhydric alcohol [Example 2] Polyester polyol having glycerol skeleton [Example 3] Having isocyanuric ring Polyester polyol Hereinafter, each polyester polyol will be described.
 第1例に係るポリエステルポリオールは、オルトフタル酸およびその無水物を少なくとも1種以上含む多価カルボン酸成分と、エチレングリコール、プロピレングリコール、ブチレングリコール、ネオペンチルグリコール、およびシクロヘキサンジメタノールからなる群から選ばれる少なくとも1種を含む多価アルコール成分とを重縮合して得られる重縮合体である。
 特に、オルトフタル酸およびその無水物の、多価カルボン酸全成分に対する含有率が70~100質量%であるポリエステルポリオールが好ましい。
The polyester polyol according to the first example is selected from the group consisting of a polycarboxylic acid component containing at least one or more of orthophthalic acid and its anhydride, and ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, and cyclohexane dimethanol. A polycondensate obtained by polycondensation with a polyhydric alcohol component containing at least one of the above.
In particular, a polyester polyol in which the content of orthophthalic acid and its anhydride relative to all components of the polycarboxylic acid is 70 to 100% by mass is preferable.
 第1例に係るポリエステルポリオールは、多価カルボン酸成分としてオルトフタル酸およびその無水物を必須とするが、本実施の形態の効果を損なわない範囲において、他の多価カルボン酸成分を共重合させてもよい。
 具体的には、コハク酸、アジピン酸、アゼライン酸、セバシン酸およびドデカンジカルボン酸など脂肪族多価カルボン酸、無水マレイン酸、マレイン酸およびフマル酸などの不飽和結合含有多価カルボン酸、1,3-シクロペンタンジカルボン酸および1,4-シクロヘキサンジカルボン酸などの脂環族多価カルボン酸、テレフタル酸、イソフタル酸、ピロメリット酸、トリメリット酸、1,4-ナフタレンジカルボン酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、ナフタル酸、ビフェニルジカルボン酸、1,2-ビス(フェノキシ)エタン-p,p’-ジカルボン酸、これらジカルボン酸の無水物およびこれらジカルボン酸のエステル形成性誘導体などの芳香族多価カルボン酸、p-ヒドロキシ安息香酸、p-(2-ヒドロキシエトキシ)安息香酸およびこれらのジヒドロキシカルボン酸のエステル形成性誘導体などの多塩基酸などが挙げられる。これらの中でも、コハク酸、1,3-シクロペンタンジカルボン酸、イソフタル酸が好ましい。
 なお、上記その他の多価カルボン酸を2種以上使用してもよい。
The polyester polyol according to the first example essentially requires orthophthalic acid and its anhydride as the polyvalent carboxylic acid component, but copolymerizes other polyvalent carboxylic acid components within a range that does not impair the effects of the present embodiment. You may.
Specifically, aliphatic polycarboxylic acids such as succinic acid, adipic acid, azelaic acid, sebacic acid and dodecanedicarboxylic acid, maleic anhydride, polycarboxylic acids containing unsaturated bonds such as maleic acid and fumaric acid, 1, Alicyclic polycarboxylic acids such as 3-cyclopentanedicarboxylic acid and 1,4-cyclohexanedicarboxylic acid, terephthalic acid, isophthalic acid, pyromellitic acid, trimellitic acid, 1,4-naphthalenedicarboxylic acid, 2,5- Naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, naphthalic acid, biphenyldicarboxylic acid, 1,2-bis (phenoxy) ethane-p, p'-dicarboxylic acid, anhydrides of these dicarboxylic acids and ester formation of these dicarboxylic acids Polycarboxylic acids, such as the acidic derivatives, p-hydroxybenzoic acid, p- ( And polybasic acids such as 2-hydroxyethoxy) benzoic acid and ester-forming derivatives of these dihydroxycarboxylic acids. Among these, succinic acid, 1,3-cyclopentanedicarboxylic acid, and isophthalic acid are preferred.
In addition, you may use 2 or more types of said other polyvalent carboxylic acids.
 第2例に係るポリエステルポリオールとして、一般式(1)で表されるグリセロール骨格を有するポリエステルポリオールを挙げることができる。
Figure JPOXMLDOC01-appb-C000001
 一般式(1)において、R1、R2、R3は、各々独立に、H(水素原子)または下記の一般式(2)で表される基である。
Figure JPOXMLDOC01-appb-C000002
As the polyester polyol according to the second example, a polyester polyol having a glycerol skeleton represented by the general formula (1) can be given.
Figure JPOXMLDOC01-appb-C000001
In the general formula (1), R1, R2 and R3 are each independently H (hydrogen atom) or a group represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000002
 式(2)において、nは1~5の整数を表し、Xは、置換基を有してもよい1,2-フェニレン基、1,2-ナフチレン基、2,3-ナフチレン基、2,3-アントラキノンジイル基、および2,3-アントラセンジイル基から成る群から選ばれるアリーレン基を表し、Yは炭素原子数2~6のアルキレン基を表す)で表される基を表す。
 但し、R1、R2、R3のうち少なくとも一つは、一般式(2)で表される基を表す。
In the formula (2), n represents an integer of 1 to 5, and X represents an optionally substituted 1,2-phenylene group, 1,2-naphthylene group, 2,3-naphthylene group, Represents an arylene group selected from the group consisting of a 3-anthraquinonediyl group and a 2,3-anthracenediyl group, and Y represents an alkylene group having 2 to 6 carbon atoms.
However, at least one of R1, R2 and R3 represents a group represented by the general formula (2).
 一般式(1)において、R1、R2、R3の少なくとも1つは一般式(2)で表される基である必要がある。中でも、R1、R2、R3全てが一般式(2)で表される基であることが好ましい。 に お い て In the general formula (1), at least one of R1, R2 and R3 needs to be a group represented by the general formula (2). Among them, it is preferable that all of R1, R2, and R3 are groups represented by the general formula (2).
 また、R1、R2、R3のいずれか1つが一般式(2)で表される基である化合物と、R1、R2、R3のいずれか2つが一般式(2)で表される基である化合物と、R1、R2、R3の全てが一般式(2)で表される基である化合物の、いずれか2つ以上の化合物が混合物となっていてもよい。 Further, a compound in which any one of R1, R2, and R3 is a group represented by the general formula (2), and a compound in which any two of R1, R2, and R3 are a group represented by the general formula (2) And a compound in which all of R1, R2, and R3 are groups represented by the general formula (2) may be a mixture of two or more compounds.
 Xは、1,2-フェニレン基、1,2-ナフチレン基、2,3-ナフチレン基、2,3-アントラキノンジイル基および2,3-アントラセンジイル基から成る群から選ばれ、置換基を有していてもよいアリーレン基を表す。
 Xが置換基によって置換されている場合、1または複数の置換基で置換されていてもよく、該置換基は、X上の、遊離基とは異なる任意の炭素原子に結合している。該置換基としては、クロロ基、ブロモ基、メチル基、エチル基、i-プロピル基、ヒドロキシル基、メトキシ基、エトキシ基、フェノキシ基、メチルチオ基、フェニルチオ基、シアノ基、ニトロ基、アミノ基、フタルイミド基、カルボキシル基、カルバモイル基、N-エチルカルバモイル基、フェニル基およびナフチル基などが挙げられる。
X is selected from the group consisting of a 1,2-phenylene group, a 1,2-naphthylene group, a 2,3-naphthylene group, a 2,3-anthraquinonediyl group and a 2,3-anthracenediyl group, and has a substituent. Represents an optionally substituted arylene group.
When X is substituted by a substituent, it may be substituted with one or more substituents, which is attached to any carbon atom on X different from the free radical. Examples of the substituent include chloro, bromo, methyl, ethyl, i-propyl, hydroxyl, methoxy, ethoxy, phenoxy, methylthio, phenylthio, cyano, nitro, amino, Examples include a phthalimide group, a carboxyl group, a carbamoyl group, an N-ethylcarbamoyl group, a phenyl group and a naphthyl group.
 一般式(2)において、Yは、エチレン基、プロピレン基、ブチレン基、ネオペンチレン基、1,5-ペンチレン基、3-メチル-1,5-ペンチレン基、1,6-ヘキシレン基、メチルペンチレン基およびジメチルブチレン基などの炭素原子数2~6のアルキレン基を表す。Yは、中でも、プロピレン基およびエチレン基が好ましくエチレン基が最も好ましい。 In the general formula (2), Y represents an ethylene group, a propylene group, a butylene group, a neopentylene group, a 1,5-pentylene group, a 3-methyl-1,5-pentylene group, a 1,6-hexylene group, a methylpentylene Represents an alkylene group having 2 to 6 carbon atoms such as a group and a dimethylbutylene group. Y is preferably a propylene group or an ethylene group, and most preferably an ethylene group.
 一般式(1)で表されるグリセロール骨格を有するポリエステル樹脂化合物は、グリセロールと、カルボン酸がオルト位に置換された芳香族多価カルボン酸またはその無水物と、多価アルコール成分とを必須成分として反応させることにより合成することができる。 The polyester resin compound having a glycerol skeleton represented by the general formula (1) is an essential component comprising glycerol, an aromatic polycarboxylic acid or an anhydride thereof in which a carboxylic acid is substituted at an ortho position, and a polyhydric alcohol component. And can be synthesized by reacting
 カルボン酸がオルト位に置換された芳香族多価カルボン酸またはその無水物としては、オルトフタル酸またはその無水物、ナフタレン2,3-ジカルボン酸またはその無水物、ナフタレン1,2-ジカルボン酸またはその無水物、アントラキノン2,3-ジカルボン酸またはその無水物、および2,3-アントラセンカルボン酸またはその無水物などが挙げられる。
 これらの化合物は、芳香環の任意の炭素原子に置換基を有していても良い。該置換基としては、クロロ基、ブロモ基、メチル基、エチル基、i-プロピル基、ヒドロキシル基、メトキシ基、エトキシ基、フェノキシ基、メチルチオ基、フェニルチオ基、シアノ基、ニトロ基、アミノ基、フタルイミド基、カルボキシル基、カルバモイル基、N-エチルカルバモイル基、フェニル基およびナフチル基などが挙げられる。
Examples of the aromatic polycarboxylic acid or anhydride in which the carboxylic acid is substituted at the ortho position include orthophthalic acid or anhydride, naphthalene 2,3-dicarboxylic acid or anhydride, naphthalene 1,2-dicarboxylic acid or Anhydrides, anthraquinone 2,3-dicarboxylic acids or anhydrides thereof, and 2,3-anthracene carboxylic acids or anhydrides thereof are exemplified.
These compounds may have a substituent at any carbon atom of the aromatic ring. Examples of the substituent include chloro, bromo, methyl, ethyl, i-propyl, hydroxyl, methoxy, ethoxy, phenoxy, methylthio, phenylthio, cyano, nitro, amino, Examples include a phthalimide group, a carboxyl group, a carbamoyl group, an N-ethylcarbamoyl group, a phenyl group and a naphthyl group.
 また、多価アルコール成分としては炭素原子数2~6のアルキレンジオールが挙げられる。例えば、エチレングリコール、プロピレングリコール、ブチレングリコール、ネオペンチルグリコール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、メチルペンタンジオールおよびジメチルブタンジオールなどのジオールを例示することができる。 Also, examples of the polyhydric alcohol component include alkylene diols having 2 to 6 carbon atoms. For example, diols such as ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, methylpentanediol and dimethylbutanediol Can be exemplified.
 第3例に係るポリエステルポリオールは、下記一般式(3)で表されるイソシアヌル環を有するポリエステルポリオールである。
Figure JPOXMLDOC01-appb-C000003
 一般式(3)において、R1、R2、R3は、各々独立に、「-(CH2)n1-OH(但しn1は2~4の整数を表す)」、または、一般式(4)の構造を表す。
Figure JPOXMLDOC01-appb-C000004
The polyester polyol according to the third example is a polyester polyol having an isocyanuric ring represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000003
In the general formula (3), R1, R2 and R3 each independently represent “— (CH2) n1-OH (where n1 represents an integer of 2 to 4)” or the structure of the general formula (4). Represent.
Figure JPOXMLDOC01-appb-C000004
 一般式(4)中、n2は2~4の整数を表し、n3は1~5の整数を表し、Xは1,2-フェニレン基、1,2-ナフチレン基、2,3-ナフチレン基、2,3-アントラキノンジイル基および2,3-アントラセンジイル基から成る群から選ばれ、置換基を有していてもよいアリーレン基を表し、Yは炭素原子数2~6のアルキレン基を表す)で表される基を表す。但しR1、R2、R3の少なくとも1つは一般式(4)で表される基である。 In the general formula (4), n2 represents an integer of 2 to 4, n3 represents an integer of 1 to 5, X represents 1,2-phenylene group, 1,2-naphthylene group, 2,3-naphthylene group, Selected from the group consisting of a 2,3-anthraquinonediyl group and a 2,3-anthracenediyl group, which represents an arylene group which may have a substituent, and Y represents an alkylene group having 2 to 6 carbon atoms. Represents a group represented by However, at least one of R1, R2 and R3 is a group represented by the general formula (4).
 一般式(3)において、-(CH2)n1-で表されるアルキレン基は、直鎖状であっても分岐状でもよい。n1は、中でも2または3が好ましく、2が最も好ましい。 に お い て In the general formula (3), the alkylene group represented by-(CH2) n1- may be linear or branched. n1 is preferably 2 or 3, and most preferably 2.
 一般式(4)において、n2は2~4の整数を表し、n3は1~5の整数を表す。Xは1,2-フェニレン基、1,2-ナフチレン基、2,3-ナフチレン基、2,3-アントラキノンジイル基、および2,3-アントラセンジイル基から成る群から選ばれ、置換基を有していてもよいアリーレン基を表す。 に お い て In the general formula (4), n2 represents an integer of 2 to 4, and n3 represents an integer of 1 to 5. X is selected from the group consisting of a 1,2-phenylene group, a 1,2-naphthylene group, a 2,3-naphthylene group, a 2,3-anthraquinonediyl group, and a 2,3-anthracenediyl group, and has a substituent. Represents an optionally substituted arylene group.
 Xが置換基によって置換されている場合、1または複数の置換基で置換されていてもよく、該置換基は、X上の、遊離基とは異なる任意の炭素原子に結合している。該置換基としては、クロロ基、ブロモ基、メチル基、エチル基、i-プロピル基、ヒドロキシル基、メトキシ基、エトキシ基、フェノキシ基、メチルチオ基、フェニルチオ基、シアノ基、ニトロ基、アミノ基、フタルイミド基、カルボキシル基、カルバモイル基、N-エチルカルバモイル基、フェニル基およびナフチル基などが挙げられる。
 Xの置換基は、中でもヒドロキシル基、シアノ基、ニトロ基、アミノ基、フタルイミド基、カルバモイル基、N-エチルカルバモイル基およびフェニル基が好ましくヒドロキシル基、フェノキシ基、シアノ基、ニトロ基、フタルイミド基およびフェニル基が最も好ましい。
When X is substituted by a substituent, it may be substituted with one or more substituents, which is attached to any carbon atom on X different from the free radical. Examples of the substituent include chloro, bromo, methyl, ethyl, i-propyl, hydroxyl, methoxy, ethoxy, phenoxy, methylthio, phenylthio, cyano, nitro, amino, Examples include a phthalimide group, a carboxyl group, a carbamoyl group, an N-ethylcarbamoyl group, a phenyl group and a naphthyl group.
X is preferably a hydroxyl group, a cyano group, a nitro group, an amino group, a phthalimido group, a carbamoyl group, an N-ethylcarbamoyl group and a phenyl group, among which a hydroxyl group, a phenoxy group, a cyano group, a nitro group, a phthalimido group and A phenyl group is most preferred.
 一般式(4)において、Yは、エチレン基、プロピレン基、ブチレン基、ネオペンチレン基、1,5-ペンチレン基、3-メチル-1,5-ペンチレン基、1,6-ヘキシレン基、メチルペンチレン基およびジメチルブチレン基などの炭素原子数2~6のアルキレン基を表す。Yは、中でも、プロピレン基およびエチレン基が好ましくエチレン基が最も好ましい。 In the general formula (4), Y represents an ethylene group, propylene group, butylene group, neopentylene group, 1,5-pentylene group, 3-methyl-1,5-pentylene group, 1,6-hexylene group, methylpentylene Represents an alkylene group having 2 to 6 carbon atoms such as a group and a dimethylbutylene group. Y is preferably a propylene group or an ethylene group, and most preferably an ethylene group.
 一般式(3)において、R1、R2、R3の少なくとも1つは一般式(4)で表される基である。中でも、R1、R2、R3全てが一般式(4)で表される基であることが好ましい。 に お い て In the general formula (3), at least one of R1, R2 and R3 is a group represented by the general formula (4). Among them, it is preferable that all of R1, R2, and R3 are groups represented by the general formula (4).
 また、R1、R2、R3のいずれか1つが一般式(4)で表される基である化合物と、R1、R2、R3のいずれか2つが一般式(4)で表される基である化合物と、R1、R2、R3の全てが一般式(4)で表される基である化合物の、いずれか2つ以上の化合物が混合物となっていてもよい。 Further, a compound in which any one of R1, R2, and R3 is a group represented by general formula (4) and a compound in which any two of R1, R2, and R3 are a group represented by general formula (4) And a compound in which all of R1, R2, and R3 are groups represented by the general formula (4) may be a mixture of two or more of them.
 一般式(3)で表されるイソシアヌル環を有するポリエステルポリオールは、イソシアヌル環を有するトリオールと、カルボン酸がオルト位に置換された芳香族多価カルボン酸またはその無水物と、多価アルコール成分とを必須成分として反応させることにより合成することができる The polyester polyol having an isocyanuric ring represented by the general formula (3) includes a triol having an isocyanuric ring, an aromatic polycarboxylic acid or an anhydride thereof in which a carboxylic acid is substituted at an ortho position, and a polyhydric alcohol component. Can be synthesized by reacting
 イソシアヌル環を有するトリオールとしては、例えば、1,3,5-トリス(2-ヒドロキシエチル)イソシアヌル酸および1,3,5-トリス(2-ヒドロキシプロピル)イソシアヌル酸などのイソシアヌル酸のアルキレンオキサイド付加物などが挙げられる。 Examples of the triol having an isocyanuric ring include alkylene oxide adducts of isocyanuric acid such as 1,3,5-tris (2-hydroxyethyl) isocyanuric acid and 1,3,5-tris (2-hydroxypropyl) isocyanuric acid And the like.
 また、カルボン酸がオルト位に置換された芳香族多価カルボン酸またはその無水物としては、オルトフタル酸またはその無水物、ナフタレン2,3-ジカルボン酸またはその無水物、ナフタレン1,2-ジカルボン酸またはその無水物、アントラキノン2,3-ジカルボン酸またはその無水物、および2,3-アントラセンカルボン酸またはその無水物などが挙げられる。これらの化合物は、芳香環の任意の炭素原子に置換基を有していても良い。 Examples of the aromatic polycarboxylic acid or an anhydride thereof in which a carboxylic acid is substituted at an ortho position include orthophthalic acid or an anhydride thereof, naphthalene 2,3-dicarboxylic acid or an anhydride thereof, and naphthalene 1,2-dicarboxylic acid. Or an anhydride thereof, anthraquinone 2,3-dicarboxylic acid or anhydride thereof, and 2,3-anthracene carboxylic acid or anhydride thereof. These compounds may have a substituent at any carbon atom of the aromatic ring.
 該置換基としては、クロロ基、ブロモ基、メチル基、エチル基、i-プロピル基、ヒドロキシル基、メトキシ基、エトキシ基、フェノキシ基、メチルチオ基、フェニルチオ基、シアノ基、ニトロ基、アミノ基、フタルイミド基、カルボキシル基、カルバモイル基、N-エチルカルバモイル基、フェニル基およびナフチル基などが挙げられる。 Examples of the substituent include chloro, bromo, methyl, ethyl, i-propyl, hydroxyl, methoxy, ethoxy, phenoxy, methylthio, phenylthio, cyano, nitro, amino, Examples include a phthalimide group, a carboxyl group, a carbamoyl group, an N-ethylcarbamoyl group, a phenyl group and a naphthyl group.
 また、多価アルコール成分としては炭素原子数2~6のアルキレンジオールが挙げられる。例えば、エチレングリコール、プロピレングリコール、ブチレングリコール、ネオペンチルグリコール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、メチルペンタンジオールおよびジメチルブタンジオールなどのジオールが挙げられる。
 中でも、イソシアヌル環を有するトリオール化合物として1,3,5-トリス(2-ヒドロキシエチル)イソシアヌル酸、または1,3,5-トリス(2-ヒドロキシプロピル)イソシアヌル酸を使用し、カルボン酸がオルト位に置換された芳香族多価カルボン酸またはその無水物としてオルトフタル酸無水物を使用し、多価アルコールとしてエチレングリコールを使用したイソシアヌル環を有するポリエステルポリオール化合物が、酸素バリア性や接着性に特に優れ好ましい。
Examples of the polyhydric alcohol component include alkylene diols having 2 to 6 carbon atoms. For example, diols such as ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, methylpentanediol and dimethylbutanediol Is mentioned.
Among them, 1,3,5-tris (2-hydroxyethyl) isocyanuric acid or 1,3,5-tris (2-hydroxypropyl) isocyanuric acid is used as the triol compound having an isocyanuric ring, and the carboxylic acid is in the ortho position. Orthophthalic anhydride is used as the aromatic polycarboxylic acid or its anhydride substituted with, and a polyester polyol compound having an isocyanuric ring using ethylene glycol as the polyhydric alcohol is particularly excellent in oxygen barrier properties and adhesiveness. preferable.
 イソシアヌル環は高極性であり且つ3官能であり、系全体の極性を高めることができ、且つ、架橋密度を高めることができる。このような観点からイソシアヌル環を接着剤樹脂全固形分に対し5質量%以上含有することが好ましい。 The isocyanuric ring is highly polar and trifunctional, and can increase the polarity of the entire system and the crosslink density. From such a viewpoint, it is preferable to contain the isocyanuric ring in an amount of 5% by mass or more based on the total solid content of the adhesive resin.
 イソシアネート化合物は、分子内にイソシアネート基を2個以上有する。
 また、イソシアネート化合物は、芳香族であっても、脂肪族であってもよく、低分子化合物であっても、高分子化合物であってもよい。
 さらに、イソシアネート化合物は、公知のイソシアネートブロック化剤を用いて公知慣用の適宜の方法より付加反応させて得られたブロック化イソシアネート化合物であってもよい。
 中でも、接着性や耐レトルト性の観点から、イソシアネート基を3個以上有するポリイソシアネート化合物が好ましく、酸素バリア性および水蒸気バリア性の観点からは、芳香族であることが好ましい。
The isocyanate compound has two or more isocyanate groups in the molecule.
The isocyanate compound may be aromatic or aliphatic, and may be a low molecular compound or a high molecular compound.
Further, the isocyanate compound may be a blocked isocyanate compound obtained by an addition reaction using a known isocyanate blocking agent by a known and appropriate method.
Above all, a polyisocyanate compound having three or more isocyanate groups is preferable from the viewpoint of adhesion and retort resistance, and aromatic is preferable from the viewpoint of oxygen barrier properties and water vapor barrier properties.
 イソシアネート化合物の具体的な化合物としては、例えば、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、トルエンジイソシアネート、ジフェニルメタンジイソシアネート、水素化ジフェニルメタンジイソシアネート、メタキシリレンジイソシアネート、水素化キシリレンジイソシアネート、イソホロンジイソシアネート、およびこれらのイソシアネート化合物の3量体、並びにこれらのイソシアネート化合物と、低分子活性水素化合物若しくはそのアルキレンオキシド付加物、または高分子活性水素化合物とを反応させて得られるアダクト体、ビュレット体およびアロファネート体などが挙げられる。
 低分子活性水素化合物としては、例えば、エチレングリコール、プロピレングリコール、メタキシリレンアルコール、1,3-ビスヒドロキシエチルベンゼン、1,4-ビスヒドロキシエチルベンゼン、トリメチロールプロパン、グリセロール、ペンタエリスリトール、エリスリトール、ソルビトール、エチレンジアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミンおよびメタキシリレンジアミンなどが挙げられ、分子活性水素化合物としては、各種ポリエステル樹脂、ポリエーテルポリオールおよびポリアミドの高分子活性水素化合物などが挙げられる。
Specific examples of the isocyanate compound include, for example, tetramethylene diisocyanate, hexamethylene diisocyanate, toluene diisocyanate, diphenylmethane diisocyanate, hydrogenated diphenylmethane diisocyanate, metaxylylene diisocyanate, hydrogenated xylylene diisocyanate, isophorone diisocyanate, and these isocyanate compounds. And adducts, burettes and allophanates obtained by reacting these isocyanate compounds with low molecular weight active hydrogen compounds or their alkylene oxide adducts or high molecular weight active hydrogen compounds.
Examples of the low-molecular-weight active hydrogen compound include ethylene glycol, propylene glycol, metaxylylene alcohol, 1,3-bishydroxyethylbenzene, 1,4-bishydroxyethylbenzene, trimethylolpropane, glycerol, pentaerythritol, erythritol, sorbitol, Examples include ethylenediamine, monoethanolamine, diethanolamine, triethanolamine, and meta-xylylenediamine. Examples of the molecularly active hydrogen compound include various polyester resins, polyether polyols, and high molecular weight active hydrogen compounds of polyamide.
 硬化物を構成する樹脂組成物は、リン酸変性化合物を含むことができ、例えば下記の一般式(5)または(6)で表される化合物である。
Figure JPOXMLDOC01-appb-C000005
 一般式(5)において、R1、R2、R3は、水素原子、炭素数1~30のアルキル基、(メタ)アクリロイル基、置換基を有してもよいフェニル基および(メタ)アクリロイルオキシ基を有する炭素数1~4のアルキル基から選ばれる基であるが、少なくとも一つは水素原子であり、nは、1~4の整数を表す。
Figure JPOXMLDOC01-appb-C000006
式中、R4、R5は、水素原子、炭素数1~30のアルキル基、(メタ)アクリロイル基、置換基を有してもよいフェニル基および(メタ)アクリロイルオキシ基を有する炭素数1~4のアルキル基から選ばれる基であり、nは1~4の整数、xは0~30の整数、yは0~30の整数を表すが、xとyが共に0である場合を除く。
The resin composition constituting the cured product can contain a phosphoric acid-modified compound, and is, for example, a compound represented by the following general formula (5) or (6).
Figure JPOXMLDOC01-appb-C000005
In the general formula (5), R1, R2 and R3 represent a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, a (meth) acryloyl group, a phenyl group which may have a substituent and a (meth) acryloyloxy group. It is a group selected from alkyl groups having 1 to 4 carbon atoms, at least one of which is a hydrogen atom, and n represents an integer of 1 to 4.
Figure JPOXMLDOC01-appb-C000006
In the formula, R4 and R5 represent a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, a (meth) acryloyl group, a phenyl group which may have a substituent, and a carbon atom having 1 to 4 carbon atoms having a (meth) acryloyloxy group. Wherein n is an integer of 1 to 4, x is an integer of 0 to 30, and y is an integer of 0 to 30, except when both x and y are 0.
 より具体的には、リン酸、ピロリン酸、トリリン酸、メチルアシッドホスフェート、エチルアシッドホスフェート、ブチルアシッドホスフェート、ジブチルホスフェート、2-エチルヘキシルアシッドホスフェート、ビス(2-エチルヘキシル)ホスフェート、イソドデシルアシッドホスフェート、ブトキシエチルアシッドホスフェート、オレイルアシッドホスフェート、テトラコシルアシッドホスフェート、2-ヒドロキシエチルメタクリレートアシッドホスフェートおよびポリオキシエチレンアルキルエーテルリン酸などが挙げられ、これらの1種または2種以上を用いることができる。 More specifically, phosphoric acid, pyrophosphoric acid, triphosphoric acid, methyl acid phosphate, ethyl acid phosphate, butyl acid phosphate, dibutyl phosphate, 2-ethylhexyl acid phosphate, bis (2-ethylhexyl) phosphate, isododecyl acid phosphate, butoxy Examples thereof include ethyl acid phosphate, oleyl acid phosphate, tetracosyl acid phosphate, 2-hydroxyethyl methacrylate acid phosphate, and polyoxyethylene alkyl ether phosphoric acid. One or more of these can be used.
 樹脂組成物におけるリン酸変性化合物の含有量は、0.005質量%以上10質量%以下が好ましく、0.01質量%以上1質量%以下であることがより好ましい。
 リン酸変性化合物の含有量を0.005質量%以上とすることにより、本発明の積層体の酸素バリア性および水蒸気バリア性を向上することができる。また、リン酸変性化合物の含有量を10質量%以下とすることにより、接着層の接着性を向上することができる。
The content of the phosphoric acid-modified compound in the resin composition is preferably from 0.005% by mass to 10% by mass, and more preferably from 0.01% by mass to 1% by mass.
When the content of the phosphoric acid-modified compound is 0.005% by mass or more, the oxygen barrier property and the water vapor barrier property of the laminate of the present invention can be improved. Further, by setting the content of the phosphoric acid-modified compound to 10% by mass or less, the adhesiveness of the adhesive layer can be improved.
 ポリエステルポリオール、イソシアネート化合物およびリン酸変性化合物を含有する樹脂組成物は、板状無機化合物を含んでいてもよく、これにより、接着層の接着性を向上することができる。また、本発明の積層体の耐屈曲負荷性を向上させることができる。
 板状無機化合物としては、例えば、カオリナイト-蛇紋族粘土鉱物(ハロイサイト、カオリナイト、エンデライト、ディッカイト、ナクライト、アンチゴライト、クリソタイルなど)およびパイロフィライト-タルク族(パイロフィライト、タルク、ケロライなど)などが挙げられる。
The resin composition containing the polyester polyol, the isocyanate compound and the phosphoric acid-modified compound may contain a plate-like inorganic compound, whereby the adhesiveness of the adhesive layer can be improved. Further, the bending load resistance of the laminate of the present invention can be improved.
Examples of the plate-like inorganic compound include kaolinite-serpentine group clay minerals (halloysite, kaolinite, enderite, dickite, nacrite, antigolite, chrysotile, etc.) and pyrophyllite-talc (pyrophyllite, talc, Kerolai, etc.).
 カップリング剤としては、例えば、下記一般式(7)であらわされるシラン系カップリング剤、チタン系カップリング剤およびアルミニウム系カップリング剤などが挙げられる。なお、これらのカップリング剤は、単独でも、2種類以上組み合わせてもよい。
Figure JPOXMLDOC01-appb-C000007
Examples of the coupling agent include a silane coupling agent, a titanium coupling agent, and an aluminum coupling agent represented by the following general formula (7). In addition, these coupling agents may be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000007
 シラン系カップリング剤としては、例えば、ビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-メタクリロキシトリメトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルメチルジエトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-クロロプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシランおよび3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)などが挙げられる。 Examples of the silane coupling agent include vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ -Glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-methacryloxytrimethoxysilane, γ-methacryloxypropylmethyldimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxy Propylmethyldiethoxysilane, γ-methacryloxypropyltriethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N β (aminoethyl) γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, γ-chloropropyltrimethoxysilane, γ -Mercaptopropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane and 3-triethoxysilyl-N- (1,3-dimethyl-butylidene).
 また、チタン系カップリング剤としては、例えば、イソプロピルトリイソステアロイルチタネート、イソプロピルトリ(N-アミノエチル-アミノエチル)チタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、テトラオクチルビス(ジドデシルホスファイト)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、イソプロピルトリオクタイノルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルイソステアロイルジアクリルチタネート、ジイソステアロイルエチレンチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリクミルフェニルチタネートおよびジクミルフェニルオキシアセテートチタネートなどが挙げられる。 Examples of the titanium-based coupling agent include isopropyl triisostearoyl titanate, isopropyl tri (N-aminoethyl-aminoethyl) titanate, isopropyl tridodecylbenzenesulfonyl titanate, isopropyl tris (dioctyl pyrophosphate) titanate, and tetraoctyl bis. (Didodecyl phosphite) titanate, tetraoctyl bis (ditridecyl phosphite) titanate, bis (dioctyl pyrophosphate) oxyacetate titanate, bis (dioctyl pyrophosphate) ethylene titanate, isopropyl trioctaino nortitanate, isopropyl dimethacryl isostearyl titanate , Isopropylisostearoyl diacryl titanate, diisostearoyl ester Renchitaneto, isopropyl tri (dioctyl phosphate) titanate, isopropyl tricumylphenyl titanate and dicumyl phenyloxy acetate titanate.
 また、アルミニウム系カップリング剤の具体例としては、例えば、アセトアルコキシアルミニウムジイソプロピレート、ジイソプロポキシアルミニウムエチルアセトアセテート、ジイソプロポキシアルミニウムモノメタクリレート、イソプロポキシアルミニウムアルキルアセトアセテートモノ(ジオクチルホスフェート)、アルミニウム-2-エチルヘキサノエートオキサイドトリマー、アルミニウムステアレートオキサイドトリマーおよびアルキルアセトアセテートアルミニウムオキサイドトリマーなどが挙げられる。 Specific examples of the aluminum-based coupling agent include, for example, acetoalkoxyaluminum diisopropylate, diisopropoxyaluminum ethyl acetoacetate, diisopropoxyaluminum monomethacrylate, isopropoxyaluminum alkyl acetoacetate mono (dioctyl phosphate), aluminum -2-ethylhexanoate oxide trimer, aluminum stearate oxide trimer and alkyl acetoacetate aluminum oxide trimer.
 樹脂組成物は、シクロデキストリンおよび/またはその誘導体を含むことができ、これにより、接着層の接着性を向上することができる。また、本発明の積層体の耐屈曲負荷性をより向上できる。
 具体的には、例えば、シクロデキストリン、アルキル化シクロデキストリン、アセチル化シクロデキストリンおよびヒドロキシアルキル化シクロデキストリンなどのシクロデキストリンのグルコース単位の水酸基の水素原子を他の官能基で置換したものなどを用いることができる。また、分岐環状デキストリンも用いることができる。
 また、シクロデキストリンおよびシクロデキストリン誘導体におけるシクロデキストリン骨格は、6個のグルコース単位からなるα-シクロデキストリン、7個のグルコース単位からなるβ-シクロデキストリン、8個のグルコース単位からなるγ-シクロデキストリンのいずれであってもよい。
 これらの化合物は単独で用いても2種以上を併用してもよい。また、これらシクロデキストリンおよび/またはその誘導体を以降、デキストリン化合物と総称する場合がある。
The resin composition can include cyclodextrin and / or a derivative thereof, whereby the adhesiveness of the adhesive layer can be improved. Further, the bending load resistance of the laminate of the present invention can be further improved.
Specifically, for example, a cyclodextrin such as cyclodextrin, alkylated cyclodextrin, acetylated cyclodextrin, and hydroxyalkylated cyclodextrin in which a hydrogen atom of a hydroxyl group of a glucose unit of a glucose unit is substituted with another functional group is used. Can be. Also, a branched cyclic dextrin can be used.
The cyclodextrin skeleton in cyclodextrin and the cyclodextrin derivative is composed of α-cyclodextrin composed of six glucose units, β-cyclodextrin composed of seven glucose units, and γ-cyclodextrin composed of eight glucose units. Any of them may be used.
These compounds may be used alone or in combination of two or more. In addition, these cyclodextrins and / or derivatives thereof may be hereinafter collectively referred to as dextrin compounds.
 樹脂組成物への相溶性および分散性の観点から、シクロデキストリン化合物としては、シクロデキストリン誘導体を用いることが好ましい。 か ら From the viewpoint of compatibility and dispersibility in the resin composition, it is preferable to use a cyclodextrin derivative as the cyclodextrin compound.
 アルキル化シクロデキストリンとしては、例えば、メチル-α-シクロデキストリン、メチル-β-シクロデキストリンおよびメチル-γ-シクロデキストリンなどが挙げられる。これらの化合物は単独で用いても2種以上を併用してもよい。 Examples of the alkylated cyclodextrin include, for example, methyl-α-cyclodextrin, methyl-β-cyclodextrin, and methyl-γ-cyclodextrin. These compounds may be used alone or in combination of two or more.
 アセチル化シクロデキストリンとしては、例えば、モノアセチル-α-シクロデキストリン、モノアセチル-β-シクロデキストリンおよびモノアセチル-γ-シクロデキストリンなどが挙げられる。これらの化合物は単独で用いても2種以上を併用してもよい。 Examples of the acetylated cyclodextrin include, for example, monoacetyl-α-cyclodextrin, monoacetyl-β-cyclodextrin and monoacetyl-γ-cyclodextrin. These compounds may be used alone or in combination of two or more.
 ヒドロキシアルキル化シクロデキストリンとしては、例えば、ヒドロキシプロピル-α-シクロデキストリン、ヒドロキシプロピル-β-シクロデキストリンおよびヒドロキシプロピル-γ-シクロデキストリンなどが挙げられる。これらの化合物は単独で用いても2種以上を併用してもよい。 Examples of the hydroxyalkylated cyclodextrin include, for example, hydroxypropyl-α-cyclodextrin, hydroxypropyl-β-cyclodextrin, hydroxypropyl-γ-cyclodextrin, and the like. These compounds may be used alone or in combination of two or more.
 接着層の厚さは、0.5μm以上6μm以下であることが好ましく、0.8μm以上5μm以下であることがより好ましく、1μm以上4.5μm以下であることがさらに好ましい。
 接着層の厚さを0.5μm以上とすることにより、接着層の接着性を向上することができる。また、ポリエステルポリオールとイソシアネート化合物とリン酸変性化合物を含む樹脂組成物の硬化物からなる接着層を、アルミニウム蒸着膜と隣接するように設けた場合には、積層体の耐屈曲負荷性を向上することができる。
 接着層の厚さを6μm以下とすることにより、積層体の加工適性を向上することができる。
The thickness of the adhesive layer is preferably 0.5 μm or more and 6 μm or less, more preferably 0.8 μm or more and 5 μm or less, and even more preferably 1 μm or more and 4.5 μm or less.
By setting the thickness of the adhesive layer to 0.5 μm or more, the adhesiveness of the adhesive layer can be improved. Further, when an adhesive layer made of a cured product of a resin composition containing a polyester polyol, an isocyanate compound, and a phosphoric acid-modified compound is provided so as to be adjacent to an aluminum vapor-deposited film, the load resistance of the laminate is improved. be able to.
By setting the thickness of the adhesive layer to 6 μm or less, the workability of the laminate can be improved.
 接着層は、例えば、ダイレクトグラビアロールコート法、グラビアロールコート法、キスコート法、リバースロールコート法、フォンテン法およびトランスファーロールコート法など従来公知の方法により、基材などの上に塗布、乾燥することにより形成することができる。 The adhesive layer may be applied and dried on a substrate or the like by a conventionally known method such as a direct gravure roll coating method, a gravure roll coating method, a kiss coating method, a reverse roll coating method, a Fonten method, and a transfer roll coating method. Can be formed.
<中間層>
 一実施形態において、本発明の積層体は、基材と、ヒートシール層との間に、蒸着膜および中間層基材を備える中間層を備えることができる。これにより、積層体の強度、酸素バリア性および水蒸気バリア性をより向上することができる。
<Intermediate layer>
In one embodiment, the laminate of the present invention can include an intermediate layer including a vapor-deposited film and an intermediate layer substrate between the substrate and the heat seal layer. Thereby, the strength, the oxygen barrier property and the water vapor barrier property of the laminate can be further improved.
(蒸着膜)
 中間層は、蒸着膜を備え、これにより、ガスバリア性、とりわけ酸素バリア性および水蒸気バリア性を向上することができる。
(Evaporated film)
The intermediate layer includes a vapor-deposited film, whereby the gas barrier properties, particularly, the oxygen barrier properties and the water vapor barrier properties can be improved.
 蒸着膜としては、アルミニウムなどの金属、並びに酸化アルミニウム、酸化珪素、酸化マグシウム、酸化カルシウム、酸化ジルコニウム、酸化チタン、酸化ホウ素、酸化ハフニウム、酸化バリウムなどの無機酸化物から構成される、蒸着膜を挙げることができる。 Examples of the deposited film include a metal such as aluminum, and an inorganic oxide such as aluminum oxide, silicon oxide, magnesium oxide, calcium oxide, zirconium oxide, titanium oxide, boron oxide, hafnium oxide, and barium oxide. Can be mentioned.
 また、蒸着膜の厚さは、1nm以上150nm以下であることが好ましく、5nm以上60nm以下であることがより好ましく、10nm以上40nm以下であることがさらに好ましい。
 蒸着膜の厚さを1nm以上とすることにより、本発明の積層体の酸素バリア性および水蒸気バリア性をより向上することができる。また、蒸着膜の厚さを150nm以下とすることにより、蒸着膜におけるクラックの発生を防止することができると共に、本発明の積層体のリサイクル性を向上することができる。
The thickness of the deposited film is preferably from 1 nm to 150 nm, more preferably from 5 nm to 60 nm, even more preferably from 10 nm to 40 nm.
When the thickness of the deposited film is 1 nm or more, the oxygen barrier property and the water vapor barrier property of the laminate of the present invention can be further improved. Further, by setting the thickness of the deposited film to 150 nm or less, generation of cracks in the deposited film can be prevented, and the recyclability of the laminate of the present invention can be improved.
 蒸着膜が、アルミニウム蒸着膜であるには、そのOD値は、2以上3.5以下であることが好ましい。これにより、本発明の積層体の生産性を維持しつつ、酸素バリア性および水蒸気バリア性を向上することができる。なお、本発明において、OD値は、JIS-K-7361に準拠して測定することができる。 に は In order for the deposited film to be an aluminum deposited film, the OD value is preferably 2 or more and 3.5 or less. Thereby, the oxygen barrier property and the water vapor barrier property can be improved while maintaining the productivity of the laminate of the present invention. In the present invention, the OD value can be measured according to JIS-K-7361.
 蒸着膜は、上記方法により形成することができる。 The deposited film can be formed by the above method.
 蒸着膜の表面は、上記表面処理が施されていることが好ましい。これにより、隣接する層との密着性を向上することができる。 表面 The surface of the deposited film is preferably subjected to the above-mentioned surface treatment. Thereby, the adhesiveness with an adjacent layer can be improved.
(中間層基材)
 中間層基材は、ポリエチレンにより構成される。このような構成とすることにより、より高い強度や耐熱性を有し、かつリサイクル可能な包装材料とすることができる。
(Intermediate layer substrate)
The intermediate layer substrate is made of polyethylene. With such a configuration, a recyclable packaging material having higher strength and heat resistance can be obtained.
 中間層基材は、包装材料としての強度や耐熱性をより向上させるため、ポリエチレンにより構成される延伸樹脂フィルムを使用する。延伸樹脂フィルムとしては、一軸延伸樹脂フィルムであっても、二軸延伸樹脂フィルムであってもよい。 延伸 For the intermediate layer base material, use a stretched resin film made of polyethylene to further improve the strength and heat resistance as a packaging material. The stretched resin film may be a uniaxially stretched resin film or a biaxially stretched resin film.
 延伸樹脂フィルムの長手方向(MD)の延伸倍率は、2倍以上10倍以下であることが好ましく、3倍以上7倍以下であることが好ましい。
 延伸樹脂フィルムの長手方向(MD)の延伸倍率を2倍以上とすることにより、本発明の積層体の強度および耐熱性を向上することができる。一方、延伸樹脂フィルムの長手方向(MD)の延伸倍率の上限値は、特に制限されるものではないが、延伸樹脂フィルムの破断限界の観点からは10倍以下とすることが好ましい。
The stretch ratio in the machine direction (MD) of the stretched resin film is preferably 2 times or more and 10 times or less, and more preferably 3 times or more and 7 times or less.
By setting the stretching ratio in the longitudinal direction (MD) of the stretched resin film to 2 times or more, the strength and heat resistance of the laminate of the present invention can be improved. On the other hand, the upper limit of the stretching ratio in the longitudinal direction (MD) of the stretched resin film is not particularly limited, but is preferably 10 times or less from the viewpoint of the breaking limit of the stretched resin film.
 また、延伸樹脂フィルムの横手方向(TD)の延伸倍率は、2倍以上10倍以下であることが好ましく、3倍以上7倍以下であることが好ましい。
 延伸樹脂フィルムの横手方向(TD)の延伸倍率を2倍以上とすることにより、本発明の積層体の強度および耐熱性を向上することができる。一方、延伸樹脂フィルムの横手方向(TD)の延伸倍率の上限値は、特に制限されるものではないが、延伸樹脂フィルムの破断限界の観点からは10倍以下とすることが好ましい。
The stretching ratio in the transverse direction (TD) of the stretched resin film is preferably 2 times or more and 10 times or less, and more preferably 3 times or more and 7 times or less.
By setting the stretching ratio in the transverse direction (TD) of the stretched resin film to 2 times or more, the strength and heat resistance of the laminate of the present invention can be improved. On the other hand, the upper limit of the stretching ratio in the transverse direction (TD) of the stretched resin film is not particularly limited, but is preferably 10 times or less from the viewpoint of the breaking limit of the stretched resin film.
 中間層基材に含まれるポリエチレンとしては、上記した中でも、強度および耐熱性およびフィルムの延伸適正という観点から、高密度ポリエチレンおよび中密度ポリエチレンが好ましく、延伸適正という観点から、中密度ポリエチレンがより好ましい。
 また、中間層基材は、基材同様、上記した多層構造からなるものであってもよい。
As the polyethylene contained in the intermediate layer base material, among the above, high density polyethylene and medium density polyethylene are preferable from the viewpoint of strength and heat resistance and proper stretching of the film, and medium density polyethylene is more preferable from the viewpoint of proper stretching. .
Further, the intermediate layer base material may have the above-mentioned multilayer structure similarly to the base material.
 中間層基材は、本発明の特性を損なわない範囲において、上記添加剤を含むことができる。 The intermediate layer base material can contain the above-mentioned additives as long as the properties of the present invention are not impaired.
 中間層基材の厚さは、9μm以上、50μm以下であることが好ましく、12μm以上、30μm以下であることがより好ましい。
 中間層基材の厚さを9μm以上とすることにより、本発明の積層体の強度および耐熱性をより向上することができる。また、中間層基材の厚さを50μm以下とすることにより、本発明の積層体の加工適性を向上することができる。
The thickness of the intermediate layer base material is preferably 9 μm or more and 50 μm or less, more preferably 12 μm or more and 30 μm or less.
By setting the thickness of the intermediate layer base material to 9 μm or more, the strength and heat resistance of the laminate of the present invention can be further improved. Further, by setting the thickness of the intermediate layer substrate to 50 μm or less, the processability of the laminate of the present invention can be improved.
 中間層基材は、上記Tダイ法やインフレーション法により作製したものを使用してもよく、市販されるものを使用してもよい。 As the intermediate layer substrate, a substrate produced by the T-die method or the inflation method described above or a commercially available substrate may be used.
<第2の態様における積層体>
 本発明による積層体を図面を参照しながら説明する。
 図6に示すように、積層体20は、基材21と、中間層22と、ヒートシール層23とを備える。
<Laminate in Second Embodiment>
A laminate according to the present invention will be described with reference to the drawings.
As shown in FIG. 6, the laminate 20 includes a base material 21, an intermediate layer 22, and a heat seal layer 23.
 また、本発明の一実施形態においては、積層体20は、図7に示すように、基材21と中間層22との間に、蒸着膜24をさらに備えることができる。 In addition, in one embodiment of the present invention, as shown in FIG. 7, the stacked body 20 may further include a deposition film 24 between the base material 21 and the intermediate layer 22.
 さらに、本発明の一実施形態においては、積層体20は、図8に示すように、基材21または蒸着膜24と、中間層22との間、および中間層22と、ヒートシール層23との間の少なくとも一方に接着層25をさらに備えることができる。 Further, in one embodiment of the present invention, as shown in FIG. 8, the laminate 20 is formed between the base 21 or the deposited film 24 and the intermediate layer 22 and between the intermediate layer 22 and the heat seal layer 23. May further include an adhesive layer 25 on at least one of them.
 また、本発明の積層体において、基材の厚さが、中間層の厚さおよびヒートシール層の厚さの和よりも小さいことを特徴とする。これにより、本発明の積層体を用いて作製した包装材料などのリサイクル性を向上することができる。
 基材の厚さと、中間層の厚さおよびヒートシール層の厚さの和との差は、40μm以上であることが好ましく、100μm以上であることがより好ましい。
Further, the laminate of the present invention is characterized in that the thickness of the substrate is smaller than the sum of the thickness of the intermediate layer and the thickness of the heat seal layer. This makes it possible to improve the recyclability of packaging materials and the like produced using the laminate of the present invention.
The difference between the thickness of the base material and the sum of the thickness of the intermediate layer and the thickness of the heat seal layer is preferably 40 μm or more, and more preferably 100 μm or more.
 本発明の積層体において、ポリエチレンの含有量は、80質量%以上であることが好ましい。
 本発明の積層体全体におけるポリエチレンの含有量を80質量%以上とすることにより、本発明の積層体のリサイクル性を向上することができる。
 なお、積層体におけるポリエチレンの含有量とは、積層体を構成する各層における樹脂材料の含有量の和に対する、ポリエチレンの含有量の割合を意味する。
In the laminate of the present invention, the content of polyethylene is preferably 80% by mass or more.
By setting the polyethylene content in the entire laminate of the present invention to 80% by mass or more, the recyclability of the laminate of the present invention can be improved.
In addition, the content of polyethylene in the laminate means the ratio of the content of polyethylene to the sum of the content of the resin material in each layer constituting the laminate.
 以下、本発明の積層体を構成する各層について説明する。 Hereinafter, each layer constituting the laminate of the present invention will be described.
<基材>
 本発明の積層体が備える基材は、ポリエステルにより構成されていることを特徴とする。これにより、本発明の積層体の強度および耐熱性を向上することができる。
<Substrate>
The substrate provided in the laminate of the present invention is characterized in that it is made of polyester. Thereby, the strength and heat resistance of the laminate of the present invention can be improved.
 ポリエステルとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエチレンイソフタレート、ポリブチレンナフタレート(PBN)、ポリプロピレンテレフタレート(PPT)、ポリブチレンナフタレート(PBN)などを挙げることができる。これらの中でも、積層体の強度および耐熱性という観点からは、ポリエチレンテレフタレート(PET)が好ましい。 Examples of the polyester include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethylene isophthalate, polybutylene naphthalate (PBN), polypropylene terephthalate (PPT), and polybutylene naphthalate (PBN). . Among these, polyethylene terephthalate (PET) is preferred from the viewpoint of the strength and heat resistance of the laminate.
 基材は、本発明の特性を損なわない範囲において、添加剤を含むことができ、例えば、架橋剤、酸化防止剤、アンチブロッキング剤、滑(スリップ)剤、紫外線吸収剤、光安定剤、充填剤、補強剤、帯電防止剤、顔料および改質用樹脂などが挙げられる。 The base material may contain additives within a range that does not impair the properties of the present invention. For example, a crosslinking agent, an antioxidant, an anti-blocking agent, a slip (slip) agent, an ultraviolet absorber, a light stabilizer, a filler Agents, reinforcing agents, antistatic agents, pigments and modifying resins.
 基材には、ポリエステルにより構成される延伸樹脂フィルムを使用することができ、これにより積層体の耐熱性および強度を向上することができる。また、ポリエチレン樹脂層への印刷適性を向上することができる。
 延伸樹脂フィルムとしては、一軸延伸樹脂フィルムであっても、二軸延伸樹脂フィルムであってもよい。
A stretched resin film composed of polyester can be used for the substrate, and thereby the heat resistance and strength of the laminate can be improved. In addition, the suitability for printing on the polyethylene resin layer can be improved.
The stretched resin film may be a uniaxially stretched resin film or a biaxially stretched resin film.
 基材は、その表面に画像が形成されていてもよい。
 外気との接触を防止することができ、経時的な劣化を防止することができるため、下記するヒートシール層が設けられる面側に、画像が形成されていることが好ましい。
 形成される画像は、特に限定されず、文字、柄、記号およびこれらの組み合わせなどが表される。
 基材への画像形成は、バイオマス由来のインキを用いて行われることが好ましく、これにより本発明の積層体を用いて、環境負荷のより少ない包装材料を作製することができる。
 画像の形成方法は、特に限定されるものではなく、グラビア印刷法、オフセット印刷法、フレキソ印刷法などの従来公知の印刷法を挙げることができる。これらの中でも、環境負荷の観点から、フレキソ印刷法が好ましい。
 表面処理の方法は特に限定されず、例えば、コロナ放電処理、オゾン処理、酸素ガスおよび/または窒素ガスなどを用いた低温プラズマ処理、グロー放電処理などの物理的処理、並びに化学薬品を用いた酸化処理などの化学的処理が挙げられる。
 また、基材表面に従来公知のアンカーコート剤を用いて、アンカーコート層を形成してもよい。
The substrate may have an image formed on its surface.
Since the contact with the outside air can be prevented and the deterioration with time can be prevented, it is preferable that an image is formed on the side on which the heat seal layer described below is provided.
The image to be formed is not particularly limited, and includes characters, patterns, symbols, combinations thereof, and the like.
The image formation on the base material is preferably performed using a biomass-derived ink, whereby a packaging material with less environmental load can be produced using the laminate of the present invention.
The method for forming an image is not particularly limited, and includes a conventionally known printing method such as a gravure printing method, an offset printing method, and a flexographic printing method. Among these, the flexographic printing method is preferable from the viewpoint of environmental load.
The surface treatment method is not particularly limited. For example, corona discharge treatment, ozone treatment, low-temperature plasma treatment using oxygen gas and / or nitrogen gas, physical treatment such as glow discharge treatment, and oxidation using chemicals Chemical treatment such as treatment.
Further, an anchor coat layer may be formed on the surface of the base material using a conventionally known anchor coat agent.
 基材の厚さは、10μm以上50μm以下であることが好ましく、12μm以上30μm以下であることがより好ましい。
 基材の厚さを10μm以上とすることにより、本発明の積層体の強度および耐熱性を向上することができる。また、基材の厚さを50μm以下とすることにより、本発明の積層体のリサイクル性を向上することができる。
The thickness of the substrate is preferably 10 μm or more and 50 μm or less, and more preferably 12 μm or more and 30 μm or less.
By setting the thickness of the base material to 10 μm or more, the strength and heat resistance of the laminate of the present invention can be improved. Further, by setting the thickness of the base material to 50 μm or less, the recyclability of the laminate of the present invention can be improved.
 基材は、ポリエステルをTダイ法またはインフレーション法などにより製膜し、フィルムを作製した後、延伸することにより作製することができる。 The substrate can be produced by forming a film of polyester by a T-die method or an inflation method, producing a film, and then stretching the film.
 なお、基材は上記方法により作製されたものに限られず、市販されるものを使用してもよい。 Note that the substrate is not limited to one produced by the above method, and a commercially available substrate may be used.
<中間層>
 本発明の積層体が備える中間層は、ポリエチレンにより構成されており、また下記するヒートシール層も同様にポリエチレンにより構成される。
 このような構成とすることにより、積層体のリサイクル性を向上することができる。
<Intermediate layer>
The intermediate layer included in the laminate of the present invention is made of polyethylene, and the heat seal layer described below is also made of polyethylene.
With such a configuration, the recyclability of the laminate can be improved.
 中間層には、ポリエチレンにより構成される延伸樹脂フィルムを使用し、これにより積層体の耐熱性および強度を向上することができる。また、中間層への印刷適性を向上することができる。
 延伸樹脂フィルムとしては、一軸延伸樹脂フィルムであっても、二軸延伸樹脂フィルムであってもよい。
For the intermediate layer, a stretched resin film made of polyethylene is used, whereby the heat resistance and strength of the laminate can be improved. In addition, the suitability for printing on the intermediate layer can be improved.
The stretched resin film may be a uniaxially stretched resin film or a biaxially stretched resin film.
 延伸樹脂フィルムの長手方向(MD)の延伸倍率は、2倍以上10倍以下であることが好ましく、3倍以上7倍以下であることが好ましい。
 延伸樹脂フィルムの長手方向(MD)の延伸倍率を2倍以上とすることにより、本発明の積層体の強度および耐熱性を向上することができる。さらに、中間層への印刷適性を向上することができる。一方、延伸樹脂フィルムの長手方向(MD)の延伸倍率の上限値は、特に制限されるものではないが、延伸樹脂フィルムの破断限界の観点からは10倍以下とすることが好ましい。
The stretch ratio in the machine direction (MD) of the stretched resin film is preferably 2 times or more and 10 times or less, and more preferably 3 times or more and 7 times or less.
By setting the stretching ratio in the longitudinal direction (MD) of the stretched resin film to 2 times or more, the strength and heat resistance of the laminate of the present invention can be improved. Further, the suitability for printing on the intermediate layer can be improved. On the other hand, the upper limit of the stretching ratio in the longitudinal direction (MD) of the stretched resin film is not particularly limited, but is preferably 10 times or less from the viewpoint of the breaking limit of the stretched resin film.
 また、延伸樹脂フィルムの横手方向(TD)の延伸倍率は、2倍以上10倍以下であることが好ましく、3倍以上7倍以下であることが好ましい。
 延伸樹脂フィルムの横手方向(TD)の延伸倍率を2倍以上とすることにより、本発明の積層体の強度および耐熱性を向上することができる。一方、延伸樹脂フィルムの横手方向(TD)の延伸倍率の上限値は、特に制限されるものではないが、延伸樹脂フィルムの破断限界の観点からは10倍以下とすることが好ましい。
The stretching ratio in the transverse direction (TD) of the stretched resin film is preferably 2 times or more and 10 times or less, and more preferably 3 times or more and 7 times or less.
By setting the stretching ratio in the transverse direction (TD) of the stretched resin film to 2 times or more, the strength and heat resistance of the laminate of the present invention can be improved. On the other hand, the upper limit of the stretching ratio in the transverse direction (TD) of the stretched resin film is not particularly limited, but is preferably 10 times or less from the viewpoint of the breaking limit of the stretched resin film.
 中間層は、その表面に画像が形成されていてもよい。画像の形成方法については上記した通りである。 The intermediate layer may have an image formed on its surface. The method of forming an image is as described above.
 中間に含まれるポリエチレンとしてはポリエチレンとしては、高密度ポリエチレン(HDPE)、中密度ポリエチレン(MDPE)、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)および超低密度ポリエチレン(VLDPE)を使用することができる。
 これらの中でも、本発明の積層体の強度および耐熱性、並びにフィルムの延伸適正という観点から、高密度ポリエチレンおよび中密度ポリエチレンが好ましく、延伸適正という観点から、中密度ポリエチレンがより好ましい。
As the polyethylene contained in the middle, high-density polyethylene (HDPE), medium-density polyethylene (MDPE), low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE) and very low-density polyethylene (VLDPE) Can be used.
Among these, high-density polyethylene and medium-density polyethylene are preferable from the viewpoint of the strength and heat resistance of the laminate of the present invention and proper stretching of the film, and medium-density polyethylene is more preferable from the viewpoint of proper stretching.
 一実施形態において、中間層として、高密度ポリエチレンから構成される層(以下、高密度ポリエチレン層という)および中密度ポリエチレンから構成される層(以下、中密度ポリエチレン層という)を備える構成のものを使用することができる。
 中間層の外側に高密度ポリエチレン層を備えることにより、本発明の積層体の強度および耐熱性をより向上することができる。また、中密度ポリエチレン層を備えることにより、中間層を構成する樹脂フィルムの延伸適性をより向上することができる。
In one embodiment, the intermediate layer includes a layer composed of high-density polyethylene (hereinafter, referred to as a high-density polyethylene layer) and a layer composed of medium-density polyethylene (hereinafter, referred to as a medium-density polyethylene layer). Can be used.
By providing the high-density polyethylene layer outside the intermediate layer, the strength and heat resistance of the laminate of the present invention can be further improved. Further, by providing the medium density polyethylene layer, the stretchability of the resin film constituting the intermediate layer can be further improved.
 例えば、外側から、高密度ポリエチレン層/中密度ポリエチレン層からなる構成を有する。
 このような構成とすることにより、樹脂フィルムの延伸適性を向上することができる。
 また、本発明の積層体の強度および耐熱性を向上することができる。
 このとき、高密度ポリエチレン層の厚さは、中密度ポリエチレン層の厚さよりも薄いことが好ましい。
 高密度ポリエチレン層の厚さと、中密度ポリエチレン層の厚さとの比は、1/10以上1/1以下であることが好ましく、1/5以上1/2以下であることがより好ましい。
 高密度ポリエチレン層の厚さと、中密度ポリエチレン層の厚さとの比を1/10以上とすることにより、本発明の積層体の強度および耐熱性をより向上することができる。また、高密度ポリエチレン層の厚さと、中密度ポリエチレン層の厚さとの比を1/1以下とすることにより、樹脂フィルムの延伸適性をより向上することができる。
For example, it has a configuration of a high-density polyethylene layer / medium-density polyethylene layer from the outside.
With such a configuration, the stretchability of the resin film can be improved.
Further, the strength and heat resistance of the laminate of the present invention can be improved.
At this time, the thickness of the high-density polyethylene layer is preferably smaller than the thickness of the medium-density polyethylene layer.
The ratio of the thickness of the high-density polyethylene layer to the thickness of the medium-density polyethylene layer is preferably from 1/10 to 1/1, more preferably from 1/5 to 1/2.
By setting the ratio of the thickness of the high-density polyethylene layer to the thickness of the medium-density polyethylene layer to 1/10 or more, the strength and heat resistance of the laminate of the present invention can be further improved. Further, by setting the ratio of the thickness of the high-density polyethylene layer to the thickness of the medium-density polyethylene layer to 1/1 or less, the stretchability of the resin film can be further improved.
 また、例えば、外側から、高密度ポリエチレン層/中密度ポリエチレン層/高密度ポリエチレン層からなる構成とすることもできる。
 このような構成とすることにより、樹脂フィルムの延伸適性をより向上することができる。また、本発明の積層体の強度および耐熱性をより向上することができる。さらに、中間層におけるカールの発生を防止することができる。
 このとき、高密度ポリエチレン層の厚さは、中密度ポリエチレン層の厚さよりも薄いことが好ましい。
 高密度ポリエチレン層の厚さと、中密度ポリエチレン層の厚さとの比は、1/10以上1/1以下であることが好ましく、1/5以上1/2以下であることがより好ましい。
 高密度ポリエチレン層の厚さと、中密度ポリエチレン層の厚さとの比を1/10以上とすることにより、本発明の積層体の強度および耐熱性をより向上することができる。また、高密度ポリエチレン層の厚さと、中密度ポリエチレン層の厚さとの比を1/1以下とすることにより、樹脂フィルムの延伸適性をより向上することができる。
In addition, for example, a configuration including a high-density polyethylene layer / a medium-density polyethylene layer / a high-density polyethylene layer from the outside may be employed.
With such a configuration, the stretchability of the resin film can be further improved. Further, the strength and heat resistance of the laminate of the present invention can be further improved. Further, curling of the intermediate layer can be prevented.
At this time, the thickness of the high-density polyethylene layer is preferably smaller than the thickness of the medium-density polyethylene layer.
The ratio of the thickness of the high-density polyethylene layer to the thickness of the medium-density polyethylene layer is preferably from 1/10 to 1/1, more preferably from 1/5 to 1/2.
By setting the ratio of the thickness of the high-density polyethylene layer to the thickness of the medium-density polyethylene layer to 1/10 or more, the strength and heat resistance of the laminate of the present invention can be further improved. Further, by setting the ratio of the thickness of the high-density polyethylene layer to the thickness of the medium-density polyethylene layer to 1/1 or less, the stretchability of the resin film can be further improved.
 また、例えば、外側から、高密度ポリエチレン層/中密度ポリエチレン層/低密度ポリエチレン層、直鎖状低密度ポリエチレン層または超低密度ポリエチレン層(該段落においては、記載簡略化のため、まとめて低密度ポリエチレン層と記載する。)/中密度ポリエチレン層/高密度ポリエチレン層からなる構成とすることもできる。
 このような構成とすることにより、樹脂フィルムの延伸適性を向上することができる。
 また、本発明の積層体の強度および耐熱性を向上することができる。また、中間層におけるカールの発生を防止することができる。
 さらに、下記するように樹脂フィルムの生産効率を向上することができる。
 このとき、高密度ポリエチレン層の厚さは、中密度ポリエチレン層の厚さよりも薄いことが好ましい。
 高密度ポリエチレン層の厚さと、中密度ポリエチレン層の厚さとの比は、1/10以上1/1以下であることが好ましく、1/5以上1/2以下であることがより好ましい。
 高密度ポリエチレン層の厚さと、中密度ポリエチレン層の厚さとの比を1/10以上とすることにより、本発明の積層体の強度および耐熱性を向上することができる。また、高密度ポリエチレン層の厚さと、中密度ポリエチレン層の厚さとの比を1/1以下とすることにより、樹脂フィルムの延伸適性を向上することができる。
 また、高密度ポリエチレン層の厚さは、低密度ポリエチレン層の厚さと同じまたは低密度ポリエチレンの厚さよりも厚いことが好ましい。
 高密度ポリエチレン層の厚さと、低密度ポリエチレン層の厚さとの比は、1/0.25以上1/2以下であることが好ましく、1/0.5以上1/1以下であることがより好ましい。
 高密度ポリエチレン層の厚さと、低密度ポリエチレン層の厚さとの比を1/0.25以上とすることにより、耐熱性を向上することができる。また、高密度ポリエチレン層の厚さと、低密度ポリエチレン層の厚さとの比を1/1以下とすることにより、中密度ポリエチレン層間の密着性を向上することができる。
 一実施形態において、このような構成の中間層は、例えば、インフレーション法により作製することができる。
 具体的には、外側から、高密度ポリエチレンと、中密度ポリエチレン層と、および低密度ポリエチレン層、直鎖状低密度ポリエチレン層または超低密度ポリエチレン層とをチューブ状に共押出し、次いで、対向する低密度ポリエチレン層、直鎖状低密度ポリエチレン層または超低密度ポリエチレン層同士を、これをゴムロールなどにより、圧着することによって作製することができる。
 このような方法により作製することにより、製造における欠陥品数を顕著に低減することができ、最終的には、生産効率を向上することができる。
 また、インフレーション製膜機において、延伸も合わせて行うことができ、これにより、生産効率をより向上することができる。
Also, for example, from the outside, a high-density polyethylene layer / a medium-density polyethylene layer / a low-density polyethylene layer, a linear low-density polyethylene layer, or an ultra-low-density polyethylene layer (in this paragraph, for simplicity of description, low It is also possible to adopt a configuration consisting of a density polyethylene layer) / medium density polyethylene layer / high density polyethylene layer.
With such a configuration, the stretchability of the resin film can be improved.
Further, the strength and heat resistance of the laminate of the present invention can be improved. Further, curling of the intermediate layer can be prevented.
Further, the production efficiency of the resin film can be improved as described below.
At this time, the thickness of the high-density polyethylene layer is preferably smaller than the thickness of the medium-density polyethylene layer.
The ratio of the thickness of the high-density polyethylene layer to the thickness of the medium-density polyethylene layer is preferably from 1/10 to 1/1, more preferably from 1/5 to 1/2.
By setting the ratio of the thickness of the high-density polyethylene layer to the thickness of the medium-density polyethylene layer to 1/10 or more, the strength and heat resistance of the laminate of the present invention can be improved. Further, by setting the ratio of the thickness of the high-density polyethylene layer to the thickness of the medium-density polyethylene layer to 1/1 or less, the stretchability of the resin film can be improved.
Further, the thickness of the high-density polyethylene layer is preferably the same as the thickness of the low-density polyethylene layer or greater than the thickness of the low-density polyethylene.
The ratio of the thickness of the high-density polyethylene layer to the thickness of the low-density polyethylene layer is preferably 1 / 0.25 or more and 1/2 or less, more preferably 1 / 0.5 or more and 1/1 or less. preferable.
Heat resistance can be improved by setting the ratio of the thickness of the high-density polyethylene layer to the thickness of the low-density polyethylene layer to 1 / 0.25 or more. By setting the ratio of the thickness of the high-density polyethylene layer to the thickness of the low-density polyethylene layer to 1/1 or less, the adhesion between the medium-density polyethylene layers can be improved.
In one embodiment, the intermediate layer having such a configuration can be manufactured by, for example, an inflation method.
Specifically, from the outside, a high-density polyethylene, a medium-density polyethylene layer, and a low-density polyethylene layer, a linear low-density polyethylene layer or an ultra-low-density polyethylene layer are coextruded in a tube shape, and then opposed. The low-density polyethylene layer, the linear low-density polyethylene layer, or the ultra-low-density polyethylene layer can be produced by press-bonding these with a rubber roll or the like.
By manufacturing by such a method, the number of defective products in manufacturing can be significantly reduced, and ultimately, the production efficiency can be improved.
Further, in an inflation film forming machine, stretching can be performed at the same time, whereby the production efficiency can be further improved.
 上記したような密度や分岐の違うポリエチレンは、重合方法を適宜選択することによって得ることができる。例えば、重合触媒として、チーグラー・ナッタ触媒などのマルチサイト触媒や、メタロセン系触媒などのシングルサイト触媒を用いて、気相重合、スラリー重合、溶液重合、および高圧イオン重合のいずれかの方法により、1段または2段以上の多段で行うことが好ましい。 ポ リ エ チ レ ン Polyethylene having different densities and branches as described above can be obtained by appropriately selecting a polymerization method. For example, as a polymerization catalyst, using a multi-site catalyst such as a Ziegler-Natta catalyst, or a single-site catalyst such as a metallocene catalyst, gas phase polymerization, slurry polymerization, solution polymerization, and high pressure ionic polymerization by any method, It is preferable to carry out in one stage or in two or more stages.
 また、本発明の特性を損なわない範囲において、エチレンと上記したその他のモノマーとの共重合体を使用することもできる。 共 Also, a copolymer of ethylene and the other monomer described above may be used as long as the properties of the present invention are not impaired.
 また、本発明においては、上記高密度ポリエチレンなどを得るための原料として、化石燃料から得られるエチレンに代えて、バイオマス由来のエチレンを用いてもよい。このようなバイオマス由来のポリエチレンはカーボニュートラルな材料であるため、より一層、環境負荷の少ない包装材料とすることができる。 In the present invention, biomass-derived ethylene may be used in place of ethylene obtained from fossil fuel as a raw material for obtaining the high-density polyethylene or the like. Since such biomass-derived polyethylene is a carb-neutral material, it can be used as a packaging material with even less environmental load.
 また、メカニカルリサイクルによりリサイクルされたポリエチレンを使用することもできる。 ポ リ エ チ レ ン Also, polyethylene recycled by mechanical recycling can be used.
 中間層は、本発明の特性を損なわない範囲において、上記添加剤を含むことができる。 The intermediate layer may contain the above-mentioned additives as long as the properties of the present invention are not impaired.
 また、中間層は、上記表面処理が施されていることが好ましい。これにより、隣接する層との密着性を向上することができる。 中間 The intermediate layer is preferably subjected to the above surface treatment. Thereby, the adhesiveness with an adjacent layer can be improved.
 中間層の厚さは、9μm以上50μm以下であることが好ましく、12μm以上30μm以下であることがより好ましい。
 中間層の厚さを9μm以上とすることにより、本発明の積層体の強度を向上することができる。また、中間層の厚さを50μm以下とすることにより、本発明の積層体の加工適性を向上することができる。
The thickness of the intermediate layer is preferably from 9 μm to 50 μm, more preferably from 12 μm to 30 μm.
By setting the thickness of the intermediate layer to 9 μm or more, the strength of the laminate of the present invention can be improved. Further, by setting the thickness of the intermediate layer to 50 μm or less, the workability of the laminate of the present invention can be improved.
 中間層は、ポリエチレンをTダイ法またはインフレーション法などにより製膜し、フィルムを作製した後、延伸することにより作製することができる。 The intermediate layer can be formed by forming a film of polyethylene by a T-die method or an inflation method, forming a film, and then stretching the film.
 なお、中間層は上記方法により作製されたものに限られず、市販されるものを使用してもよい。 The intermediate layer is not limited to the one produced by the above method, and a commercially available one may be used.
<ヒートシール層>
 本発明の積層体が備えるヒートシール層は、上記したポリエチレン樹脂層同様、ポリエチレンにより構成されていることを特徴とする。このような構成とすることにより、本発明の積層体を用いて、十分な強度や耐熱性を有し、かつリサイクル可能な包装材料などを作製することができる。
 但し、ポリエチレン樹脂層は、未延伸のポリエチレン樹脂フィルムにより形成するか、或いはポリエチレンの溶融押出により形成する。
<Heat seal layer>
The heat seal layer included in the laminate of the present invention is characterized by being made of polyethylene, similarly to the above-mentioned polyethylene resin layer. With such a configuration, a recyclable packaging material having sufficient strength and heat resistance and recyclable can be manufactured using the laminate of the present invention.
However, the polyethylene resin layer is formed by an unstretched polyethylene resin film or by melt extrusion of polyethylene.
 ヒートシール層を構成するポリエチレンは、ヒートシール性という観点からは、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)および超密度ポリエチレン(VLDPE)が好ましい。
 本発明の特性を損なわない範囲において、エチレンとその他のモノマーとの共重合体を使用することができる。
 また、環境負荷の観点から、バイオマス由来のポリエチレンまたはリサイクルされたポリエチレンであることが好ましい。
The polyethylene constituting the heat seal layer is preferably a low density polyethylene (LDPE), a linear low density polyethylene (LLDPE) and a super density polyethylene (VLDPE) from the viewpoint of heat sealability.
A copolymer of ethylene and another monomer can be used as long as the properties of the present invention are not impaired.
In addition, from the viewpoint of environmental load, biomass-derived polyethylene or recycled polyethylene is preferable.
 ヒートシール層は、本発明の特性を損なわない範囲において、上記添加剤を含むことができる。 (4) The heat seal layer may contain the above-mentioned additives as long as the properties of the present invention are not impaired.
 一実施形態において、ヒートシール層は多層構造を有し、中間層として、中密度ポリエチレンおよび高密度ポリエチレンの少なくとも一方を含む層を備える。
 具体的には、低密度ポリエチレン、直鎖状低密度ポリエチレン、および超低密度ポリエチレンの少なくともいずれかを含む層/中密度ポリエチレンおよび高密度ポリエチレンの少なくともいずれかを含む層/低密度ポリエチレン、直鎖状低密度ポリエチレン、および超低密度ポリエチレンの少なくともいずれかを含む層からなる構成とすることができる。
 このような構成とすることにより、ヒートシール性を維持しつつ、本発明の積層体の製袋適性および強度をより向上することができる。
In one embodiment, the heat seal layer has a multilayer structure, and includes, as an intermediate layer, a layer containing at least one of medium density polyethylene and high density polyethylene.
Specifically, a layer containing at least one of low-density polyethylene, linear low-density polyethylene, and ultra-low-density polyethylene / a layer containing at least one of medium-density polyethylene and high-density polyethylene / low-density polyethylene, linear It can be constituted by a layer containing at least one of a low-density polyethylene and an ultra-low-density polyethylene.
By adopting such a configuration, it is possible to further improve the suitability and strength of the laminate of the present invention while maintaining the heat sealing property.
 ヒートシール層の厚さは、本発明の積層体により作製される包装材料に充填する内容物の重量に応じ適宜変更することが好ましい。
 例えば、1g以上、200g以下の内容物を充填する図9に示すような包装袋30を作製する場合、ヒートシール層の厚さは、20μm以上、60μm以下であることが好ましい。
 ヒートシール層の厚さを20μm以上とすることにより、充填された内容物が、ヒートシール層の破損により漏れてしまうことを防止することができる。また、ヒートシール層を60μm以下とすることにより、本発明の積層体の加工適性を向上することができる。
It is preferable that the thickness of the heat seal layer is appropriately changed according to the weight of the contents to be filled in the packaging material produced by the laminate of the present invention.
For example, in the case where a packaging bag 30 as shown in FIG. 9 is filled with contents of 1 g or more and 200 g or less, the thickness of the heat seal layer is preferably 20 μm or more and 60 μm or less.
By setting the thickness of the heat seal layer to 20 μm or more, it is possible to prevent the filled contents from leaking due to breakage of the heat seal layer. Further, by setting the heat seal layer to 60 μm or less, the processability of the laminate of the present invention can be improved.
 また、例えば、50g以上、2000g以下の内容物を充填する図10に示すようなスタンドパウチ40を作製する場合、ヒートシール層の厚さは、50μm以上、200μm以下であることが好ましい。
 ヒートシール層の厚さを50μm以上とすることにより、充填された内容物が、ヒートシール層の破損により漏れてしまうことを防止することができる。また、ヒートシール層の厚さを200μm以下とすることにより、本発明の積層体の加工適性を向上することができる。
 なお、図9および10における斜線部分は、ヒートシール部である
Further, for example, in the case of manufacturing a stand pouch 40 as shown in FIG. 10 that fills a content of 50 g or more and 2000 g or less, the thickness of the heat seal layer is preferably 50 μm or more and 200 μm or less.
By setting the thickness of the heat seal layer to 50 μm or more, it is possible to prevent the filled contents from leaking due to breakage of the heat seal layer. Further, by setting the thickness of the heat seal layer to 200 μm or less, the processability of the laminate of the present invention can be improved.
The hatched portions in FIGS. 9 and 10 are the heat seal portions.
<蒸着膜>
 一実施形態において、本発明の積層体は、基材と、中間層との間に、蒸着膜を備える。これにより、本発明の積層体のガスバリア性、特には、酸素バリア性および水蒸気バリア性を向上することができる。
 蒸着膜の詳細は、第1の態様において記載した通りである。
<Evaporated film>
In one embodiment, the layered product of the present invention is provided with a vapor deposition film between a substrate and an intermediate layer. Thereby, the gas barrier properties, particularly the oxygen barrier properties and the water vapor barrier properties of the laminate of the present invention can be improved.
The details of the deposited film are as described in the first embodiment.
<接着層>
 一実施形態において、本発明の積層体は、基材または蒸着膜と、中間層との間、および中間層と、ヒートシール層との間の少なくとも一方に、接着層を備えることができる。これにより、これら層間の密着性を向上することができる。
 接着膜の詳細は、第1の態様において記載した通りである。
<Adhesive layer>
In one embodiment, the laminate of the present invention may include an adhesive layer at least between the substrate or the deposited film and the intermediate layer, and at least one between the intermediate layer and the heat seal layer. Thereby, the adhesion between these layers can be improved.
The details of the adhesive film are as described in the first embodiment.
<用途>
 本発明の積層体は、包装材料用途に特に好適に使用することができる。
 包装材料の形状としては、特に限定されず、図9に示すように、包装袋30であってもよく、図10に示すように、胴部41および底部42を備えるスタンドパウチ40であってもよい。なお、スタンドパウチにおいては、胴部のみが上記積層体により形成されていても、底部のみが上記積層体により形成されていても、胴部および底部の両方が上記積層体により形成されていてもよい。
<Application>
The laminate of the present invention can be particularly suitably used for packaging materials.
The shape of the packaging material is not particularly limited, and may be a packaging bag 30 as shown in FIG. 9 or a stand pouch 40 having a body 41 and a bottom 42 as shown in FIG. Good. In the stand pouch, even if only the trunk is formed of the laminate, only the bottom is formed of the laminate, or both the trunk and the bottom are formed of the laminate. Good.
 包装袋は、上記積層体のヒートシール層が内側となるように、二つ折にして重ね合わせて、その端部をヒートシールすることにより製造することができる。
 また、包装袋は、2枚の積層体を、ヒートシール層が向かい合うように重ね合わせ、その端部をヒートシールすることによっても製造することができる。
The packaging bag can be manufactured by folding in two so that the heat-seal layer of the above-mentioned laminated body is inside, and lapping, and heat-sealing the end.
Further, the packaging bag can also be manufactured by stacking two laminates such that the heat seal layers face each other and heat sealing the ends thereof.
 スタンドパウチは、上記積層体のヒートシール層が内側となるように、筒状にヒートシールすることにより、胴部を形成し、次いで、ヒートシール層が内側となるように、上記積層体をV字状に折り、胴部の一端から挟み込み、ヒートシールすることにより底部を形成し、製造することができる。 The stand pouch forms a body by heat-sealing the laminate so that the heat-seal layer of the laminate is on the inside, and then forms the body with the heat-seal layer on the inside so that the heat-seal layer is on the inside. It can be manufactured by folding it into a letter shape, sandwiching it from one end of the body, and heat-sealing to form the bottom.
 ヒートシールの方法は、特に限定されるものではなく、例えば、バーシール、回転ロールシール、ベルトシール、インパルスシール、高周波シール、超音波シールなどの公知の方法で行うことができる。 The method of heat sealing is not particularly limited, and can be performed by a known method such as a bar seal, a rotating roll seal, a belt seal, an impulse seal, a high frequency seal, and an ultrasonic seal.
 包装材料に充填される内容物は、特に限定されるものではなく、内容物は、液体、粉体およびゲル体であってもよい。また、食品であっても、非食品であってもよい。
 内容物充填後、開口をヒートシールすることにより、包装体とすることができる。
The content filled in the packaging material is not particularly limited, and the content may be a liquid, a powder, or a gel. Further, the food may be a food or a non-food.
After filling the contents, the opening can be heat sealed to form a package.
 本発明について実施例を挙げてさらに具体的に説明するが、本発明がこれら実施例によって限定されるものではない。 The present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
<実施例1-1>
 中密度ポリエチレン(密度:0.941g/cm、融点129℃、MFR:1.3g/10分、Dowchemical社製、商品名:Elite5538G)をインフレーション成形法により製膜し、厚さ100μmのポリエチレンフィルムを得た。
 このポリエチレンフィルムを長手方向(MD)に、5倍の延伸倍率で延伸し、厚さ20μmの基材Aを得た。基材Aのヘイズ値を、JIS K 7105に準拠して測定したところ、ヘイズ値は6.5%であった。
<Example 1-1>
Medium-density polyethylene (density: 0.941 g / cm 3 , melting point: 129 ° C., MFR: 1.3 g / 10 min, manufactured by Dow Chemical Company, trade name: Elite5538G) is formed into a film by an inflation molding method, and a polyethylene film having a thickness of 100 μm. I got
This polyethylene film was stretched in the longitudinal direction (MD) at a stretch ratio of 5 times to obtain a base material A having a thickness of 20 μm. When the haze value of the substrate A was measured in accordance with JIS K 7105, the haze value was 6.5%.
 基材Aの一方の面に、水性フレキソインキ(東洋インキ(株)製、商品名:アクワリオナ)を用いて、フレキソ印刷法により、画像を形成した。 (4) An image was formed on one surface of the substrate A by a flexographic printing method using an aqueous flexographic ink (trade name: Aquariona, manufactured by Toyo Ink Co., Ltd.).
 ヒートシール層として、厚さ120μmの未延伸直鎖状低密度ポリエチレンフィルム(三井化学東セロ(株)、商品名:TUX-TCS)を準備し、これを、基材Aの画像形成面に、2液硬化型ウレタン系接着剤(ロックペイント(株)製、商品名:RU-77T/H-7)を介して、積層し、本発明の積層体を得た。
 なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、97質量%であった。
As a heat seal layer, an unstretched linear low-density polyethylene film having a thickness of 120 μm (Mitsui Kagaku Tosello Co., Ltd., trade name: TUX-TCS) was prepared. Lamination was performed via a liquid-curable urethane-based adhesive (trade name: RU-77T / H-7, manufactured by Rock Paint Co., Ltd.) to obtain a laminate of the present invention.
The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The proportion of polyethylene in the laminate thus obtained was 97% by mass.
<実施例1-2>
 高密度ポリエチレン(密度:0.961g/cm、融点135℃、MFR:0.7g/10分、ExxonMobil社製、商品名:HTA108)および上記中密度ポリエチレンを、インフレーション成形法により製膜し、高密度ポリエチレン層/中密度ポリエチレン層/高密度ポリエチレン層からなるポリエチレンフィルムを作製した。高密度ポリエチレン層の厚さは、それぞれ20μm、中密度ポリエチレン層の厚さは、60μmであった。
 このポリエチレンフィルムを長手方向(MD)に、5倍の延伸倍率で延伸し、高密度ポリエチレン層の厚さがそれぞれ4μm、中密度ポリエチレン層の厚さが12μmである、総厚さ20μmの基材Bを得た。基材Bのヘイズ値を、測定したところ、ヘイズ値は8.9%であった。
<Example 1-2>
A high-density polyethylene (density: 0.961 g / cm 3 , melting point 135 ° C., MFR: 0.7 g / 10 min, manufactured by ExxonMobil, trade name: HTA108) and the above-described medium-density polyethylene were formed into a film by an inflation molding method. A polyethylene film consisting of a high-density polyethylene layer / medium-density polyethylene layer / high-density polyethylene layer was produced. The thickness of each of the high-density polyethylene layers was 20 μm, and the thickness of the medium-density polyethylene layer was 60 μm.
This polyethylene film is stretched in the longitudinal direction (MD) at a draw ratio of 5 times, and a high-density polyethylene layer having a thickness of 4 μm and a medium-density polyethylene layer having a thickness of 12 μm has a total thickness of 20 μm. B was obtained. When the haze value of the base material B was measured, the haze value was 8.9%.
 基材Bの一方の面に、上記水性フレキソインキを用いて、フレキソ印刷法により、画像を形成した。 (4) An image was formed on one surface of the base material B by the flexographic printing method using the aqueous flexographic ink.
 ヒートシール層として、厚さ120μmの上記未延伸直鎖状低密度ポリエチレンフィルムを準備し、基材Bの画像形成面に、上記2液硬化型ウレタン系接着剤を介して、積層し、本発明の積層体を得た。
 なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、97質量%であった。
As the heat seal layer, the unstretched linear low-density polyethylene film having a thickness of 120 μm was prepared and laminated on the image forming surface of the base material B via the two-part curable urethane-based adhesive. Was obtained.
The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The proportion of polyethylene in the laminate thus obtained was 97% by mass.
<実施例1-3>
 上記中密度ポリエチレンをインフレーション成形法により製膜し、厚さ100μmのポリエチレンフィルムを得た。
 このポリエチレンフィルムを長手方向(MD)および幅方向(TD)に、2.24倍の延伸倍率で延伸し、厚さ20μmの基材Cを得た。基材Cのヘイズ値を、測定したところ、ヘイズ値は5.1%であった。
<Example 1-3>
The medium-density polyethylene was formed into a film by an inflation molding method to obtain a polyethylene film having a thickness of 100 μm.
The polyethylene film was stretched in the longitudinal direction (MD) and the width direction (TD) at a stretch ratio of 2.24 times to obtain a base material C having a thickness of 20 μm. When the haze value of the substrate C was measured, the haze value was 5.1%.
 基材Cの一方の面に、上記水性フレキソインキを用いて、フレキソ印刷法により、画像を形成した。 画像 An image was formed on one surface of the base material C by the flexographic printing method using the above-mentioned aqueous flexographic ink.
 ヒートシール層として、厚さ120μmの上記未延伸直鎖状低密度ポリエチレンフィルムを準備し、基材Cの画像形成面に、上記2液硬化型ウレタン系接着剤を介して、積層し、本発明の積層体を得た。
 なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、97質量%であった。
As the heat seal layer, the unstretched linear low-density polyethylene film having a thickness of 120 μm was prepared and laminated on the image forming surface of the base material C via the two-component curable urethane-based adhesive. Was obtained.
The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The proportion of polyethylene in the laminate thus obtained was 97% by mass.
<比較例1-1>
 上記中密度ポリエチレンをインフレーション成形法により製膜し、厚さ20μmの基材aを得た。基材aのヘイズ値を、測定したところ、ヘイズ値は23.5%であった。
<Comparative Example 1-1>
The medium-density polyethylene was formed into a film by an inflation molding method to obtain a base material a having a thickness of 20 μm. When the haze value of the substrate a was measured, the haze value was 23.5%.
 基材aの一方の面に、上記水性フレキソインキを用いて、フレキソ印刷法により、画像を形成した。 画像 An image was formed on one surface of the substrate a by the flexographic printing method using the above-mentioned aqueous flexographic ink.
 ヒートシール層として、厚さ120μmの上記未延伸直鎖状低密度ポリエチレンフィルムを準備し、基材aの画像形成面に、上記2液硬化型ウレタン系接着剤を介して、積層し、積層体を得た。
 なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、97質量%であった。
As the heat seal layer, the unstretched linear low-density polyethylene film having a thickness of 120 μm was prepared, and was laminated on the image forming surface of the substrate a via the two-component curable urethane-based adhesive. I got
The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The proportion of polyethylene in the laminate thus obtained was 97% by mass.
<比較例1-2>
 上記高密度ポリエチレンおよび上記中密度ポリエチレンを、インフレーション成形法により製膜し、高密度ポリエチレン層/中密度ポリエチレン層/高密度ポリエチレン層からなる基材bを作製した。高密度ポリエチレン層の厚さは、それぞれ4μm、中密度ポリエチレン層の厚さは、12μmであった。基材bのヘイズ値を、測定したところ、ヘイズ値は28.8%であった。
<Comparative Example 1-2>
The high-density polyethylene and the medium-density polyethylene were formed into a film by an inflation molding method to prepare a base material b composed of a high-density polyethylene layer / medium-density polyethylene layer / high-density polyethylene layer. The thickness of the high-density polyethylene layer was 4 μm, and the thickness of the medium-density polyethylene layer was 12 μm. When the haze value of the substrate b was measured, the haze value was 28.8%.
 基材bの一方の面に、上記水性フレキソインキを用いて、フレキソ印刷法により、画像を形成した。 (4) An image was formed on one surface of the base material b by the flexographic printing method using the aqueous flexographic ink.
 ヒートシール層として、厚さ120μmの上記未延伸直鎖状低密度ポリエチレンフィルムを準備し、基材bの画像形成面に、上記2液硬化型ウレタン系接着剤を介して、積層し、積層体を得た。
 なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、97質量%であった。
As the heat seal layer, the unstretched linear low-density polyethylene film having a thickness of 120 μm is prepared, and is laminated on the image forming surface of the base material b via the two-part curable urethane-based adhesive. I got
The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The proportion of polyethylene in the laminate thus obtained was 97% by mass.
<比較例1-3>
 基材Aを、厚さ12μmの2軸延伸ポリエステルフィルム(東洋紡(株)商品名:E5100)とした以外は、実施例1-1と同様にして積層体を得た。また、このようにして得られた積層体におけるポリエチレンの割合は、88質量%であった。
<Comparative Example 1-3>
A laminate was obtained in the same manner as in Example 1-1, except that the base material A was a biaxially stretched polyester film having a thickness of 12 μm (trade name: Toyobo Co., Ltd .: E5100). The proportion of polyethylene in the laminate thus obtained was 88% by mass.
<実施例2-1>
 上記中密度ポリエチレンをインフレーション成形法により製膜し、厚さ100μmのポリエチレンフィルムを得た。
 このポリエチレンフィルムを長手方向(MD)に、5倍の延伸倍率で延伸し、厚さ20μmの基材Dを得た。基材Dのヘイズ値を、測定したところ、ヘイズ値は6.5%であった。
<Example 2-1>
The medium-density polyethylene was formed into a film by an inflation molding method to obtain a polyethylene film having a thickness of 100 μm.
This polyethylene film was stretched in the longitudinal direction (MD) at a stretch ratio of 5 times to obtain a base material D having a thickness of 20 μm. When the haze value of the substrate D was measured, the haze value was 6.5%.
 基材Dの一方の面に、上記水性フレキソインキを用いて、フレキソ印刷法により、画像を形成した。 画像 An image was formed on one surface of the substrate D by the flexographic printing method using the above-mentioned aqueous flexographic ink.
 ヒートシール層として、厚さ40μmの未延伸直鎖状低密度ポリエチレンフィルム(三井化学東セロ(株)商品名:TUX-TCS)を準備し、基材Dの画像形成面に、上記2液硬化型ウレタン系接着剤を介して、積層し、本発明の積層体を得た。
 なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、94質量%であった。
As a heat seal layer, an unstretched linear low-density polyethylene film having a thickness of 40 μm (trade name: TUX-TCS, manufactured by Mitsui Chemicals Tosello Co., Ltd.) was prepared. Lamination was performed via a urethane-based adhesive to obtain a laminate of the present invention.
The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The ratio of polyethylene in the laminate thus obtained was 94% by mass.
<実施例2-2>
 上記高密度ポリエチレンおよび上記中密度ポリエチレンを、インフレーション成形法により製膜し、高密度ポリエチレン層/中密度ポリエチレン層/高密度ポリエチレン層からなるポリエチレンフィルムを作製した。高密度ポリエチレン層の厚さは、それぞれ20μm、中密度ポリエチレン層の厚さは、60μmであった。
 このポリエチレンフィルムを長手方向(MD)に、5倍の延伸倍率で延伸し、高密度ポリエチレン層の厚さがそれぞれ4μm、中密度ポリエチレン層の厚さが12μmである、総厚さ20μmの基材Eを得た。基材Eのヘイズ値を、測定したところ、ヘイズ値は8.9%であった。
<Example 2-2>
The high-density polyethylene and the medium-density polyethylene were formed into a film by an inflation molding method to prepare a polyethylene film composed of a high-density polyethylene layer / a medium-density polyethylene layer / a high-density polyethylene layer. The thickness of each of the high-density polyethylene layers was 20 μm, and the thickness of the medium-density polyethylene layer was 60 μm.
This polyethylene film is stretched in the longitudinal direction (MD) at a draw ratio of 5 times, and a high-density polyethylene layer having a thickness of 4 μm and a medium-density polyethylene layer having a thickness of 12 μm has a total thickness of 20 μm. E was obtained. When the haze value of the substrate E was measured, the haze value was 8.9%.
 基材Eの一方の面に、上記水性フレキソインキを用いて、フレキソ印刷法により、画像を形成した。 画像 An image was formed on one surface of the substrate E by the flexographic printing method using the aqueous flexographic ink.
 ヒートシール層として、厚さ40μmの上記未延伸直鎖状低密度ポリエチレンフィルムを準備し、基材Eの画像形成面に、上記2液硬化型ウレタン系接着剤を介して、積層し、本発明の積層体を得た。
 なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、94質量%であった。
As the heat seal layer, the unstretched linear low-density polyethylene film having a thickness of 40 μm was prepared and laminated on the image forming surface of the base material E via the two-component curable urethane-based adhesive. Was obtained.
The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The ratio of polyethylene in the laminate thus obtained was 94% by mass.
<実施例2-3>
 上記中密度ポリエチレンをインフレーション成形法により製膜し、厚さ100μmのポリエチレンフィルムを得た。
 このポリエチレンフィルムを長手方向(MD)および幅方向(TD)に、2.24倍の延伸倍率で延伸し、厚さ20μmの基材Fを得た。基材Fのヘイズ値を、測定したところ、ヘイズ値は5.1%であった。
<Example 2-3>
The medium-density polyethylene was formed into a film by an inflation molding method to obtain a polyethylene film having a thickness of 100 μm.
This polyethylene film was stretched in the longitudinal direction (MD) and the width direction (TD) at a stretch ratio of 2.24 times to obtain a base material F having a thickness of 20 μm. When the haze value of the substrate F was measured, the haze value was 5.1%.
 基材Fの一方の面に、上記水性フレキソインキを用いて、フレキソ印刷法により、画像を形成した。 (4) An image was formed on one surface of the substrate F by the flexographic printing method using the aqueous flexographic ink.
 ヒートシール層として、厚さ40μmの上記未延伸直鎖状低密度ポリエチレンフィルムを準備し、基材Fの画像形成面に、上記2液硬化型ウレタン系接着剤を介して、積層し、本発明の積層体を得た。
 なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、94質量%であった。
As the heat seal layer, the unstretched linear low-density polyethylene film having a thickness of 40 μm was prepared and laminated on the image forming surface of the base material F via the two-part curable urethane-based adhesive. Was obtained.
The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The ratio of polyethylene in the laminate thus obtained was 94% by mass.
<比較例2-1>
 上記中密度ポリエチレンをインフレーション成形法により製膜し、厚さ20μmの基材cを得た。基材cのヘイズ値を、測定したところ、ヘイズ値は23.5%であった。
<Comparative Example 2-1>
The medium-density polyethylene was formed into a film by an inflation molding method to obtain a base material c having a thickness of 20 μm. When the haze value of the substrate c was measured, the haze value was 23.5%.
 基材cの一方の面に、上記水性フレキソインキを用いて、フレキソ印刷法により、画像を形成した。 (4) An image was formed on one surface of the base material c by the flexographic printing method using the aqueous flexographic ink.
 ヒートシール層として、厚さ40μmの上記未延伸直鎖状低密度ポリエチレンフィルムを準備し、基材cの画像形成面に、上記2液硬化型ウレタン系接着剤を介して、積層し、積層体を得た。
 なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、94質量%であった。
As the heat seal layer, the unstretched linear low-density polyethylene film having a thickness of 40 μm is prepared, and is laminated on the image forming surface of the substrate c via the two-component curable urethane-based adhesive. I got
The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The ratio of polyethylene in the laminate thus obtained was 94% by mass.
<比較例2-2>
 上記高密度ポリエチレンおよび上記中密度ポリエチレンを、インフレーション成形法により製膜し、高密度ポリエチレン層/中密度ポリエチレン層/高密度ポリエチレン層からなる基材dを作製した。高密度ポリエチレン層の厚さは、それぞれ4μm、中密度ポリエチレン層の厚さは、12μmであった。基材dのヘイズ値を、測定したところ、ヘイズ値は28.8%であった。
<Comparative Example 2-2>
The high-density polyethylene and the medium-density polyethylene were formed into a film by an inflation molding method to prepare a substrate d composed of a high-density polyethylene layer / medium-density polyethylene layer / high-density polyethylene layer. The thickness of the high-density polyethylene layer was 4 μm, and the thickness of the medium-density polyethylene layer was 12 μm. When the haze value of the substrate d was measured, the haze value was 28.8%.
 基材dの一方の面に、上記水性フレキソインキを用いて、フレキソ印刷法により、画像を形成した。 (4) An image was formed on one surface of the substrate d by the flexographic printing method using the aqueous flexographic ink.
 ヒートシール層として、厚さ40μmの上記未延伸直鎖状低密度ポリエチレンフィルムを準備し、基材dの画像形成面に、上記2液硬化型ウレタン系接着剤を介して、積層し、積層体を得た。
 なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、94質量%であった。
As the heat seal layer, the unstretched linear low-density polyethylene film having a thickness of 40 μm is prepared, and is laminated on the image forming surface of the substrate d via the two-component curable urethane-based adhesive. I got
The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The ratio of polyethylene in the laminate thus obtained was 94% by mass.
<比較例2-3>
 基材Dを、厚さ12μmの2軸延伸ポリエステルフィルム(東洋紡(株)商品名:E5100)とした以外は、実施例2-1と同様にして積層体を得た。また、このようにして得られた積層体におけるポリエチレンの割合は、71質量%であった。
<Comparative Example 2-3>
A laminate was obtained in the same manner as in Example 2-1 except that the base material D was a biaxially stretched polyester film having a thickness of 12 μm (trade name: E5100, manufactured by Toyobo Co., Ltd.). The proportion of polyethylene in the laminate thus obtained was 71% by mass.
<実施例3-1>
 上記中密度ポリエチレンをインフレーション成形法により製膜し、厚さ100μmのポリエチレンフィルムを得た。
 このポリエチレンフィルムを長手方向(MD)に、5倍の延伸倍率で延伸し、厚さ20μmの基材Gを得た。基材Gのヘイズ値を、測定したところ、ヘイズ値は6.5%であった。
<Example 3-1>
The medium-density polyethylene was formed into a film by an inflation molding method to obtain a polyethylene film having a thickness of 100 μm.
This polyethylene film was stretched in the longitudinal direction (MD) at a stretch ratio of 5 times to obtain a base material G having a thickness of 20 µm. When the haze value of the substrate G was measured, the haze value was 6.5%.
 基材Gの一方の面に、上記水性フレキソインキを用いて、フレキソ印刷法により、画像を形成した。 画像 An image was formed on one surface of the substrate G by the flexographic printing method using the above-mentioned aqueous flexographic ink.
 ヒートシール層として、厚さ40μmの上記未延伸直鎖状低密度ポリエチレンフィルムを準備し、この一方の面に、PVD法により厚さ20nmのアルミニウム蒸着膜を形成した。 (4) The unstretched linear low-density polyethylene film having a thickness of 40 μm was prepared as a heat seal layer, and a 20 nm-thick aluminum vapor-deposited film was formed on one surface of the film by a PVD method.
 基材Gの画像形成面と、ヒートシール層の蒸着面とを、上記2液硬化型ウレタン系接着剤を介して、積層し、本発明の積層体を得た。
 なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、94質量%であった。
The image forming surface of the base material G and the vapor-deposited surface of the heat seal layer were laminated via the two-component curable urethane-based adhesive to obtain a laminate of the present invention.
The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The ratio of polyethylene in the laminate thus obtained was 94% by mass.
<実施例3-2>
 上記高密度ポリエチレンおよび上記中密度ポリエチレンを、インフレーション成形法により製膜し、高密度ポリエチレン層/中密度ポリエチレン層/高密度ポリエチレン層からなるポリエチレンフィルムを作製した。高密度ポリエチレン層の厚さは、それぞれ20μm、中密度ポリエチレン層の厚さは、60μmであった。
 このポリエチレンフィルムを長手方向(MD)に、5倍の延伸倍率で延伸し、高密度ポリエチレン層の厚さがそれぞれ4μm、中密度ポリエチレン層の厚さが12μmである、総厚さ20μmの基材Hを得た。基材Hのヘイズ値を、測定したところ、ヘイズ値は8.9%であった。
<Example 3-2>
The high-density polyethylene and the medium-density polyethylene were formed into a film by an inflation molding method to prepare a polyethylene film composed of a high-density polyethylene layer / a medium-density polyethylene layer / a high-density polyethylene layer. The thickness of each of the high-density polyethylene layers was 20 μm, and the thickness of the medium-density polyethylene layer was 60 μm.
This polyethylene film is stretched in the longitudinal direction (MD) at a stretch ratio of 5 times, and a substrate having a total thickness of 20 μm, wherein the thickness of the high density polyethylene layer is 4 μm and the thickness of the medium density polyethylene layer is 12 μm, respectively. H was obtained. When the haze value of the substrate H was measured, the haze value was 8.9%.
 基材Hの一方の面に、上記水性フレキソインキを用いて、フレキソ印刷法により、画像を形成した。 (4) An image was formed on one surface of the base material H by the flexographic printing method using the aqueous flexographic ink.
 ヒートシール層として、厚さ40μmの上記未延伸直鎖状低密度ポリエチレンフィルムを準備し、この一方の面に、PVD法により厚さ20nmのアルミニウム蒸着膜を形成した。 (4) The unstretched linear low-density polyethylene film having a thickness of 40 μm was prepared as a heat seal layer, and a 20 nm-thick aluminum vapor-deposited film was formed on one surface of the film by a PVD method.
 基材Hの画像形成面と、ヒートシール層の蒸着面とを、上記2液硬化型ウレタン系接着剤を介して、積層し、本発明の積層体を得た。
 なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、94質量%であった。
The image forming surface of the base material H and the vapor-deposited surface of the heat seal layer were laminated via the two-component curable urethane-based adhesive to obtain a laminate of the present invention.
The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The ratio of polyethylene in the laminate thus obtained was 94% by mass.
<実施例3-3>
 上記中密度ポリエチレンをインフレーション成形法により製膜し、厚さ100μmのポリエチレンフィルムを得た。
 このポリエチレンフィルムを長手方向(MD)および幅方向(TD)に、2.24倍の延伸倍率で延伸し、厚さ20μmの基材Iを得た。基材Iのヘイズ値を、測定したところ、ヘイズ値は5.1%であった。
<Example 3-3>
The medium-density polyethylene was formed into a film by an inflation molding method to obtain a polyethylene film having a thickness of 100 μm.
This polyethylene film was stretched in the longitudinal direction (MD) and the width direction (TD) at a stretch ratio of 2.24 times to obtain a base material I having a thickness of 20 μm. When the haze value of the substrate I was measured, the haze value was 5.1%.
 基材Iの一方の面に、上記水性フレキソインキを用いて、フレキソ印刷法により、画像を形成した。 (4) An image was formed on one surface of the base material I by the flexographic printing method using the aqueous flexographic ink.
 ヒートシール層として、厚さ40μmの上記未延伸直鎖状低密度ポリエチレンフィルムを準備し、この一方の面に、PVD法により厚さ20nmのアルミニウム蒸着膜を形成した。 (4) The unstretched linear low-density polyethylene film having a thickness of 40 μm was prepared as a heat seal layer, and a 20 nm-thick aluminum vapor-deposited film was formed on one surface of the film by a PVD method.
 基材Iの画像形成面と、ヒートシール層の蒸着膜とを、上記2液硬化型ウレタン系接着剤を介して、積層し、本発明の積層体を得た。
 なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、94質量%であった。
The image forming surface of the base material I and the vapor-deposited film of the heat seal layer were laminated via the two-component curable urethane-based adhesive to obtain a laminate of the present invention.
The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The ratio of polyethylene in the laminate thus obtained was 94% by mass.
<実施例3-4>
 実施例3-1において、基材Gの画像形成面と、ヒートシール層の蒸着面との接着を、ポリエステルポリオールおよびイソシアネート化合物を含む2液硬化型接着剤(DIC(株)製、PASLIM VM001/VM102CP)により行った以外は、実施例3-1と同様にして、本発明の積層体を作製した。
<Example 3-4>
In Example 3-1, the adhesion between the image forming surface of the base material G and the vapor-deposited surface of the heat seal layer was determined by using a two-part curable adhesive containing a polyester polyol and an isocyanate compound (PASLIM VM001 / manufactured by DIC Corporation). VM102CP), and a laminate of the present invention was produced in the same manner as in Example 3-1.
<比較例3-1>
 上記中密度ポリエチレンをインフレーション成形法により製膜し、厚さ20μmの基材eを得た。基材eのヘイズ値を、測定したところ、ヘイズ値は23.5%であった。
<Comparative Example 3-1>
The medium-density polyethylene was formed into a film by an inflation molding method to obtain a base material e having a thickness of 20 μm. When the haze value of the substrate e was measured, the haze value was 23.5%.
 基材eの一方の面に、上記水性フレキソインキを用いて、フレキソ印刷法により、画像を形成した。 (4) An image was formed on one surface of the substrate e by a flexographic printing method using the aqueous flexographic ink.
 ヒートシール層として、厚さ40μmの上記未延伸直鎖状低密度ポリエチレンフィルムを準備し、この一方の面に、PVD法により厚さ20nmのアルミニウム蒸着膜を形成した。 (4) The unstretched linear low-density polyethylene film having a thickness of 40 μm was prepared as a heat seal layer, and a 20 nm-thick aluminum vapor-deposited film was formed on one surface of the film by a PVD method.
 基材eの画像形成面と、ヒートシール層の蒸着面とを、上記2液硬化型ウレタン系接着剤を介して、積層し、積層体を得た。
 なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、94質量%であった。
The image forming surface of the base material e and the vapor-deposited surface of the heat seal layer were laminated via the two-component curable urethane-based adhesive to obtain a laminate.
The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The ratio of polyethylene in the laminate thus obtained was 94% by mass.
<比較例3-2>
 上記高密度ポリエチレンおよび上記中密度ポリエチレンを、インフレーション成形法により製膜し、高密度ポリエチレン層/中密度ポリエチレン層/高密度ポリエチレン層からなる基材fを作製した。高密度ポリエチレン層の厚さは、それぞれ4μm、中密度ポリエチレン層の厚さは、12μmであった。基材fのヘイズ値を、測定したところ、ヘイズ値は28.8%であった。
<Comparative Example 3-2>
The high-density polyethylene and the medium-density polyethylene were formed into a film by an inflation molding method to prepare a substrate f composed of a high-density polyethylene layer / a medium-density polyethylene layer / a high-density polyethylene layer. The thickness of the high-density polyethylene layer was 4 μm, and the thickness of the medium-density polyethylene layer was 12 μm. When the haze value of the substrate f was measured, the haze value was 28.8%.
 基材fの一方の面に、上記水性フレキソインキを用いて、フレキソ印刷法により、画像を形成した。 画像 An image was formed on one surface of the substrate f by the flexographic printing method using the above-mentioned aqueous flexographic ink.
 ヒートシール層として、厚さ40μmの上記未延伸直鎖状低密度ポリエチレンフィルムを準備し、この一方の面に、PVD法により厚さ20nmのアルミニウム蒸着膜を形成した。 (4) The unstretched linear low-density polyethylene film having a thickness of 40 μm was prepared as a heat seal layer, and a 20 nm-thick aluminum vapor-deposited film was formed on one surface of the film by a PVD method.
 基材fの画像形成面と、ヒートシール層の蒸着面とを、上記2液硬化型ウレタン系接着剤を介して、積層し、積層体を得た。
 なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、97質量%であった。
The image forming surface of the base material f and the vapor-deposited surface of the heat seal layer were laminated via the two-component curable urethane-based adhesive to obtain a laminate.
The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The proportion of polyethylene in the laminate thus obtained was 97% by mass.
<比較例3-3>
 基材Gを厚さ12μmの2軸延伸ポリエステルフィルム(東洋紡(株)商品名:E5100)とした以外は、実施例3-1と同様にして積層体を得た。このようにして得られた積層体におけるポリエチレンの割合は、71質量%であった。
<Comparative Example 3-3>
A laminate was obtained in the same manner as in Example 3-1 except that the base material G was a biaxially stretched polyester film having a thickness of 12 μm (trade name: Toyobo Co., Ltd .: E5100). The proportion of polyethylene in the thus obtained laminate was 71% by mass.
<実施例4-1>
 上記中密度ポリエチレンをインフレーション成形法により製膜し、厚さ100μmのポリエチレンフィルムを得た。
 このポリエチレンフィルムを長手方向(MD)に、5倍の延伸倍率で延伸し、厚さ20μmの基材Jを得た。基材Jのヘイズ値を、測定したところ、ヘイズ値は6.5%であった。
<Example 4-1>
The medium-density polyethylene was formed into a film by an inflation molding method to obtain a polyethylene film having a thickness of 100 μm.
This polyethylene film was stretched in the longitudinal direction (MD) at a stretch ratio of 5 times to obtain a base material J having a thickness of 20 μm. When the haze value of the substrate J was measured, the haze value was 6.5%.
 基材Jの一方の面に、上記水性フレキソインキを用いて、フレキソ印刷法により、画像を形成した。 (4) An image was formed on one surface of the base material J by the flexographic printing method using the aqueous flexographic ink.
 上記中密度ポリエチレンをインフレーション成形法により製膜し、厚さ100μmのポリエチレンフィルムを得た後、長手方向(MD)に、5倍の延伸倍率で延伸し、厚さ20μmのポリエチレン樹脂層Aを得た。次いで、該ポリエチレン樹脂層Aの一方の面に、PVD法により、厚さ20nmのアルミニウム蒸着膜を形成し、中間層Aを得た。 The medium-density polyethylene is formed into a film by inflation molding to obtain a polyethylene film having a thickness of 100 μm, and then stretched in the longitudinal direction (MD) at a stretch ratio of 5 times to obtain a polyethylene resin layer A having a thickness of 20 μm. Was. Next, a 20-nm-thick aluminum vapor-deposited film was formed on one surface of the polyethylene resin layer A by a PVD method to obtain an intermediate layer A.
 基材Jの画像形成面を、中間層Aの蒸着面に、上記2液硬化型ウレタン系接着剤を介して積層した。2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。 (4) The image forming surface of the base material J was laminated on the deposition surface of the intermediate layer A via the above two-component curable urethane-based adhesive. The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
 ヒートシール層として、厚さ40μmの上記未延伸直鎖状低密度ポリエチレンフィルムを準備し、中間層Aの非蒸着面に、上記2液硬化型ウレタン系接着剤を介して、積層し、本発明の積層体を得た。
 なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、92質量%であった。
As the heat seal layer, the unstretched linear low-density polyethylene film having a thickness of 40 μm was prepared and laminated on the non-deposited surface of the intermediate layer A via the two-component curable urethane-based adhesive. Was obtained.
The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The proportion of polyethylene in the laminate thus obtained was 92% by mass.
<実施例4-2>
 上記高密度ポリエチレンおよび上記中密度ポリエチレンを、インフレーション成形法により製膜し、高密度ポリエチレン層/中密度ポリエチレン層/高密度ポリエチレン層からなるポリエチレンフィルムを作製した。高密度ポリエチレン層の厚さは、それぞれ20μm、中密度ポリエチレン層の厚さは、60μmであった。
 このポリエチレンフィルムを長手方向(MD)に、5倍の延伸倍率で延伸し、高密度ポリエチレン層の厚さが、それぞれ4μm、中密度ポリエチレン層の厚さが、12μmである、総厚さ20μmの基材Kを得た。基材Kのヘイズ値を、測定したところ、ヘイズ値は8.9%であった。
<Example 4-2>
The high-density polyethylene and the medium-density polyethylene were formed into a film by an inflation molding method to prepare a polyethylene film composed of a high-density polyethylene layer / a medium-density polyethylene layer / a high-density polyethylene layer. The thickness of each of the high-density polyethylene layers was 20 μm, and the thickness of the medium-density polyethylene layer was 60 μm.
This polyethylene film is stretched in the longitudinal direction (MD) at a stretch ratio of 5 times, and the thickness of the high-density polyethylene layer is 4 μm, the thickness of the medium-density polyethylene layer is 12 μm, and the total thickness is 20 μm. A substrate K was obtained. When the haze value of the substrate K was measured, the haze value was 8.9%.
 基材Kの一方の面に、上記水性フレキソインキを用いて、フレキソ印刷法により、画像を形成した。 (4) An image was formed on one surface of the base material K by the flexographic printing method using the above aqueous flexographic ink.
 上記高密度ポリエチレンおよび上記中密度ポリエチレンを、インフレーション成形法により製膜し、高密度ポリエチレン層/中密度ポリエチレン層/高密度ポリエチレン層からなるポリエチレンフィルムを作製した。高密度ポリエチレン層の厚さは、それぞれ20μm、中密度ポリエチレン層の厚さは、60μmであった。
 このポリエチレンフィルムを長手方向(MD)に、5倍の延伸倍率で延伸し、高密度ポリエチレン層の厚さが、それぞれ4μm、中密度ポリエチレン層の厚さが、12μmである、総厚さ20μmのポリエチレン樹脂層Bを得た。次いで、ポリエチレン樹脂層Bの一方の面に、PVD法により、厚さ20nmのアルミニウム蒸着膜を形成し、中間層Bを得た。
The high-density polyethylene and the medium-density polyethylene were formed into a film by an inflation molding method to prepare a polyethylene film composed of a high-density polyethylene layer / a medium-density polyethylene layer / a high-density polyethylene layer. The thickness of each of the high-density polyethylene layers was 20 μm, and the thickness of the medium-density polyethylene layer was 60 μm.
This polyethylene film is stretched in the longitudinal direction (MD) at a stretch ratio of 5 times, and the thickness of the high-density polyethylene layer is 4 μm, the thickness of the medium-density polyethylene layer is 12 μm, and the total thickness is 20 μm. A polyethylene resin layer B was obtained. Next, a 20-nm-thick aluminum vapor-deposited film was formed on one surface of the polyethylene resin layer B by a PVD method to obtain an intermediate layer B.
 基材Kの画像形成面を、中間層Bの蒸着面に、上記2液硬化型ウレタン系接着剤を介して積層した。2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。 (4) The image forming surface of the base material K was laminated on the vapor deposition surface of the intermediate layer B via the above two-component curable urethane-based adhesive. The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
 ヒートシール層として、厚さ40μmの上記未延伸直鎖状低密度ポリエチレンフィルムを準備し、中間層Bの非蒸着面に、上記2液硬化型ウレタン系接着剤を介して、積層し、本発明の積層体を得た。
 なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、92質量%であった。
As the heat seal layer, the unstretched linear low-density polyethylene film having a thickness of 40 μm was prepared and laminated on the non-deposited surface of the intermediate layer B via the two-component curable urethane-based adhesive. Was obtained.
The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The proportion of polyethylene in the laminate thus obtained was 92% by mass.
<実施例4-3>
 上記中密度ポリエチレンをインフレーション成形法により製膜し、厚さ100μmのポリエチレンフィルムを得た。
 このポリエチレンフィルムを長手方向(MD)および幅方向(TD)に、2.24倍の延伸倍率で延伸し、厚さ20μmの基材Lを得た。基材Lのヘイズ値を、測定したところ、ヘイズ値は5.1%であった。
<Example 4-3>
The medium-density polyethylene was formed into a film by an inflation molding method to obtain a polyethylene film having a thickness of 100 μm.
This polyethylene film was stretched in the longitudinal direction (MD) and the width direction (TD) at a stretch ratio of 2.24 times to obtain a base material L having a thickness of 20 μm. When the haze value of the substrate L was measured, the haze value was 5.1%.
 基材Lの一方の面に、上記水性フレキソインキを用いて、フレキソ印刷法により、画像を形成した。 (4) An image was formed on one surface of the base material L by the flexographic printing method using the aqueous flexographic ink.
 上記中密度ポリエチレンをインフレーション成形法により製膜し、厚さ100μmのポリエチレンフィルムを得た。
 このポリエチレンフィルムを長手方向(MD)および幅方向(TD)に、2.24倍の延伸倍率で延伸し、厚さ20μmのポリエチレン樹脂層Cを得た。次いで、該ポリエチレン樹脂層Cの一方の面に、PVD法により、厚さ20nmのアルミニウム蒸着膜を形成し、中間層Cを得た。
The medium-density polyethylene was formed into a film by an inflation molding method to obtain a polyethylene film having a thickness of 100 μm.
This polyethylene film was stretched in the longitudinal direction (MD) and the width direction (TD) at a stretch ratio of 2.24 times to obtain a polyethylene resin layer C having a thickness of 20 μm. Next, a 20 nm-thick aluminum vapor-deposited film was formed on one surface of the polyethylene resin layer C by a PVD method to obtain an intermediate layer C.
 基材Lの画像形成面を、中間層Cの蒸着面に、上記2液硬化型ウレタン系接着剤を介して積層した。2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。 (4) The image forming surface of the base material L was laminated on the vapor deposition surface of the intermediate layer C via the above two-component curable urethane-based adhesive. The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
 ヒートシール層として、厚さ40μmの上記未延伸直鎖状低密度ポリエチレンフィルムを準備し、中間層Cの非蒸着面に、上記2液硬化型ウレタン系接着剤を介して、積層し、本発明の積層体を得た。
 なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、92質量%であった。
As the heat seal layer, the unstretched linear low-density polyethylene film having a thickness of 40 μm was prepared and laminated on the non-deposited surface of the intermediate layer C via the two-component curable urethane-based adhesive. Was obtained.
The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The proportion of polyethylene in the laminate thus obtained was 92% by mass.
<実施例4-4>
 実施例4-1において、基材Jの画像形成面と、中間層Aの蒸着面との接着を、ポリエステルポリオールおよびイソシアネート化合物を含む2液硬化型接着剤(DIC(株)製、PASLIM VM001/VM102CP)により行った以外は、実施例4-1と同様にして、本発明の積層体を作製した。
<Example 4-4>
In Example 4-1, the adhesion between the image forming surface of the base material J and the deposition surface of the intermediate layer A was determined by using a two-part curable adhesive containing a polyester polyol and an isocyanate compound (PASLIM VM001 / manufactured by DIC Corporation). VM102CP), and a laminate of the present invention was produced in the same manner as in Example 4-1 except that the process was performed using VM102CP).
<比較例4-1>
 上記中密度ポリエチレンをインフレーション成形法により製膜し、厚さ20μmの基材gを得た。基材gのヘイズ値を、測定したところ、ヘイズ値は23.5%であった。
<Comparative Example 4-1>
The medium-density polyethylene was formed into a film by an inflation molding method to obtain a base material g having a thickness of 20 μm. When the haze value of the substrate g was measured, the haze value was 23.5%.
 基材gの一方の面に、上記水性フレキソインキを用いて、フレキソ印刷法により、画像を形成した。 (4) An image was formed on one surface of the substrate g by the flexographic printing method using the aqueous flexographic ink.
 上記中密度ポリエチレンをインフレーション成形法により製膜し、厚さ20μmのポリエチレン樹脂層aを得た。次いで、該ポリエチレン樹脂層aの一方の面に、PVD法により、厚さ20nmのアルミニウム蒸着膜を形成し、中間層aを得た。 膜 The above-mentioned medium-density polyethylene was formed into a film by an inflation molding method to obtain a polyethylene resin layer a having a thickness of 20 μm. Next, a 20 nm-thick aluminum vapor-deposited film was formed on one surface of the polyethylene resin layer a by a PVD method to obtain an intermediate layer a.
 基材gの画像形成面を、中間層aの蒸着面に、上記2液硬化型ウレタン系接着剤を介して積層した。2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。 {Circle around (2)} The image forming surface of the base material g was laminated on the deposition surface of the intermediate layer a via the above two-component curable urethane-based adhesive. The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
 ヒートシール層として、厚さ40μmの上記未延伸直鎖状低密度ポリエチレンフィルムを準備し、中間層aの非蒸着面に、上記2液硬化型ウレタン系接着剤を介して、積層し、積層体を得た。
 なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、92質量%であった。
As the heat seal layer, the unstretched linear low-density polyethylene film having a thickness of 40 μm was prepared, and was laminated on the non-deposited surface of the intermediate layer a via the two-component curable urethane-based adhesive. I got
The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The proportion of polyethylene in the laminate thus obtained was 92% by mass.
<比較例4-2>
 上記高密度ポリエチレンおよび上記中密度ポリエチレンを、インフレーション成形法により製膜し、高密度ポリエチレン層/中密度ポリエチレン層/高密度ポリエチレン層からなる基材hを作製した。高密度ポリエチレン層の厚さは、それぞれ4μm、中密度ポリエチレン層の厚さは、12μmであった。基材hのヘイズ値を、測定したところ、ヘイズ値は23.5%であった。
<Comparative Example 4-2>
The high-density polyethylene and the medium-density polyethylene were formed into a film by an inflation molding method to prepare a substrate h consisting of a high-density polyethylene layer / medium-density polyethylene layer / high-density polyethylene layer. The thickness of the high-density polyethylene layer was 4 μm, and the thickness of the medium-density polyethylene layer was 12 μm. When the haze value of the substrate h was measured, the haze value was 23.5%.
 基材hの一方の面に、上記水性フレキソインキを用いて、フレキソ印刷法により、画像を形成した。 (4) An image was formed on one surface of the substrate h by a flexographic printing method using the aqueous flexographic ink.
 上記高密度ポリエチレンおよび上記中密度ポリエチレンを、インフレーション成形法により製膜し、高密度ポリエチレン層/中密度ポリエチレン層/高密度ポリエチレン層からなるポリエチレン樹脂層bを作製した。高密度ポリエチレン層の厚さは、それぞれ4μm、中密度ポリエチレン層の厚さは、12μmであった。
 次いで、該ポリエチレン樹脂層bの一方の面に、PVD法により、厚さ20nmのアルミニウム蒸着膜を形成し、中間層bを得た。
The high-density polyethylene and the medium-density polyethylene were formed into a film by an inflation molding method to prepare a polyethylene resin layer b composed of a high-density polyethylene layer / a medium-density polyethylene layer / a high-density polyethylene layer. The thickness of the high-density polyethylene layer was 4 μm, and the thickness of the medium-density polyethylene layer was 12 μm.
Next, a 20 nm-thick aluminum vapor-deposited film was formed on one surface of the polyethylene resin layer b by a PVD method to obtain an intermediate layer b.
 基材hの画像形成面を、中間層bの蒸着面に、上記2液硬化型ウレタン系接着剤を介して積層した。2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。 {Circle around (2)} The image forming surface of the base material h was laminated on the vapor deposition surface of the intermediate layer b via the above two-component curable urethane-based adhesive. The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
 ヒートシール層として、厚さ40μmの上記未延伸直鎖状低密度ポリエチレンフィルムを準備し、中間層bの非蒸着面に、上記2液硬化型ウレタン系接着剤を介して、積層し、積層体を得た。
 なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、92質量%であった。
As the heat seal layer, the unstretched linear low-density polyethylene film having a thickness of 40 μm was prepared, and was laminated on the non-deposited surface of the intermediate layer b via the two-component curable urethane-based adhesive. I got
The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The proportion of polyethylene in the laminate thus obtained was 92% by mass.
<比較例4-3>
 基材および中間層のポリエチレン樹脂層を、厚さ12μmの2軸延伸ポリエステルフィルム(東洋紡(株)商品名:E5100)に変更した以外は、実施例4-1と同様にして積層体を得た。このようにして得られた積層体におけるポリエチレンの割合は、56質量%であった。
<Comparative Example 4-3>
A laminate was obtained in the same manner as in Example 4-1 except that the base material and the polyethylene resin layer of the intermediate layer were changed to a biaxially stretched polyester film having a thickness of 12 μm (trade name: E5100, Toyobo Co., Ltd.). . The proportion of polyethylene in the laminate thus obtained was 56% by mass.
<リサイクル性評価>
 上記実施例および比較例において得られた積層体のリサイクル性を下記評価基準に基づいて、評価した。評価結果を表1~4にまとめた。
(評価基準)
○:積層体におけるポリエチレンの含有量が90質量%以上であった。
×:積層体におけるポリエチレンの含有量が90質量%未満であった。
<Evaluation of recyclability>
The recyclability of the laminates obtained in the above Examples and Comparative Examples was evaluated based on the following evaluation criteria. The evaluation results are summarized in Tables 1 to 4.
(Evaluation criteria)
:: The content of polyethylene in the laminate was 90% by mass or more.
X: The content of polyethylene in the laminate was less than 90% by mass.
<耐熱性評価>
 上記実施例1-1~1-3および比較例1-1~1-2において得られた積層体から、縦110mm×横150mmの試験片をそれぞれ2枚ずつ作製した。
 2枚の試験片を、ヒートシール層が向かい合うように重ね合わせ、2辺を140℃でヒートシールし、筒状の胴部を形成した。
 次いで、上記実施例1-1~1-3および比較例1-1~1-2において得られた積層体から、縦110mm×横150mmの試験片を1枚作製し、これをヒートシール層が外側となるように、V字に折り、上記筒状の胴部と140℃でヒートシールし、底部を形成すると共に、スタンドパウチを作製した。
 上記実施例2-1~2-3および比較例2-1~2-2、実施例3-1~3-4および比較例3-1~3-2並びに実施例4-1~4-4および比較例4-1~4-3において得られた積層体から、縦80mm×横80mmの試験片をそれぞれ2枚ずつ作製した。
 2枚の試験片を、ヒートシール層が向かい合うように重ね合わせ、3辺を140℃でヒートシールし、包装袋を作製した。
 作製した包装材料を目視により観察し、以下の評価基準に基づいて、評価した。評価結果を表1~4にまとめた。
(評価基準)
○:包装材料表面にシワなどが発生しておらず、また、ヒートシールバーへの付着が見られなかった。
×:包装材料表面にシワなどが発生しており、また、ヒートシールバーへの付着が見られ、製袋できなかった。
<Heat resistance evaluation>
From the laminates obtained in Examples 1-1 to 1-3 and Comparative Examples 1-1 and 1-2, two test pieces each having a length of 110 mm and a width of 150 mm were produced.
The two test pieces were overlapped so that the heat seal layers faced each other, and heat sealed at 140 ° C. on two sides to form a cylindrical body.
Next, one test piece having a length of 110 mm and a width of 150 mm was prepared from the laminates obtained in Examples 1-1 to 1-3 and Comparative examples 1-1 and 1-2, and this was used as a heat seal layer. It was folded into a V-shape so as to be on the outside, and was heat-sealed at 140 ° C. with the cylindrical body to form a bottom and a stand pouch.
Examples 2-1 to 2-3 and Comparative Examples 2-1 to 2-2, Examples 3-1 to 3-4, Comparative Examples 3-1 to 3-2, and Examples 4-1 to 4-4 From the laminates obtained in Comparative Examples 4-1 to 4-3, two test pieces each having a length of 80 mm and a width of 80 mm were produced.
The two test pieces were overlapped so that the heat seal layers faced each other, and three sides were heat-sealed at 140 ° C. to produce a packaging bag.
The prepared packaging material was visually observed and evaluated based on the following evaluation criteria. The evaluation results are summarized in Tables 1 to 4.
(Evaluation criteria)
:: No wrinkles or the like were generated on the surface of the packaging material, and no adhesion to the heat seal bar was observed.
X: Wrinkles and the like were generated on the surface of the packaging material, and adhesion to the heat seal bar was observed, and the bag could not be made.
<印刷適性評価>
 上記実施例および比較例において作製した積層体が備える基材に形成した画像を目視により観察し、以下の評価基準に基づいて、評価した。評価結果を表1~4にまとめた。
(評価基準)
○:印刷時の寸法安定性が良好であり、擦れ、滲みなどが生じていない良好な画像を形成することができていた。
×:印刷時にフィルムの伸び縮みが発生し、形成した画像に擦れや滲みが生じていた。
<Printability evaluation>
The images formed on the base material of the laminates prepared in the above Examples and Comparative Examples were visually observed and evaluated based on the following evaluation criteria. The evaluation results are summarized in Tables 1 to 4.
(Evaluation criteria)
:: Good dimensional stability at the time of printing, and a good image free from rubbing, bleeding, etc. could be formed.
X: The film was stretched and shrunk during printing, and the formed image was rubbed and blurred.
<剛性評価>
 上記実施例および比較例において作製した積層体を、10mm幅の試験片とし、ループスティフネス測定試験器(東洋精機製作所製、商品名:ループステフネステスタ)によりその剛性を測定した。なお、ループの長さは、60mmとした。測定結果を表1~4にまとめた。
<Rigidity evaluation>
The laminates prepared in the above Examples and Comparative Examples were used as test pieces having a width of 10 mm, and the rigidity thereof was measured using a loop stiffness measurement tester (trade name: Loop Stiffness Tester, manufactured by Toyo Seiki Seisaku-sho, Ltd.). The length of the loop was 60 mm. The measurement results are summarized in Tables 1 to 4.
<強度試験>
 上記実施例および比較例において作製した積層体を、引っ張り試験機(オリエンテック社製、商品名:RTC-1310A)により、直径0.5mmの針を突き刺した際の強度を測定した。なお、突き刺し速度は、50mm/分とした。測定結果を表1~4にまとめた。
<Strength test>
Using the tensile tester (trade name: RTC-1310A, manufactured by Orientec Co., Ltd.), the laminates prepared in the above Examples and Comparative Examples were measured for the strength when a needle having a diameter of 0.5 mm was pierced. The piercing speed was 50 mm / min. The measurement results are summarized in Tables 1 to 4.
<耐屈曲負荷性試験>
 まず、上記実施例3-1~3-4および比較例3-1~3-2並びに実施例4-1~4-4および比較例4-1~4-3で得られた積層体の酸素透過度および水蒸気透過度を測定した。
 酸素透過度の測定には、MOCON製 OXTRAN2/20を使用し、23℃、90%RHn条件下において、水蒸気透過度の測定には、MOCON製 PERMATRAN3/31を使用し、40℃、90%RHの条件下において、それぞれ測定した。
 さらに、上記実施例3-1~3-4および比較例3-1~3-2並びに実施例4-1~4-4および比較例4-1~4-3で得られた積層体について、ゲルボフレックステター(テスター産業(株)性、商品名:BE1006BE)を用い、ASTM F 392に準拠して屈曲負荷(ストローク:155mm、屈曲動作:440°)を5回与えた。
 屈曲負荷後、積層体の酸素透過度および水蒸気透過度を測定した。
 屈曲負荷性試験前後の積層体の酸素透過度および水蒸気透過度を表3および4に示す。
<Bending load resistance test>
First, the oxygen of the laminates obtained in Examples 3-1 to 3-4 and Comparative examples 3-1 to 3-2, and Examples 4-1 to 4-4 and Comparative examples 4-1 to 4-3 were obtained. The permeability and water vapor permeability were measured.
OXTRAN 2/20 manufactured by MOCON is used for the measurement of oxygen permeability, and PERMATRAN 3/31 manufactured by MOCON is used for the measurement of water vapor permeability under the conditions of 23 ° C. and 90% RHn. Under the conditions described above, the measurement was performed.
Further, the laminates obtained in Examples 3-1 to 3-4 and Comparative examples 3-1 to 3-2, and Examples 4-1 to 4-4 and Comparative examples 4-1 to 4-3 were: A bending load (stroke: 155 mm, bending operation: 440 °) was applied five times according to ASTM F392 using a gelbo flex tester (Tester Sangyo Co., Ltd., trade name: BE1006BE).
After the bending load, the oxygen permeability and the water vapor permeability of the laminate were measured.
Tables 3 and 4 show the oxygen permeability and the water vapor permeability of the laminate before and after the bending load test.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
<実施例5-1>
 上記中密度ポリエチレンをインフレーション成形法により製膜し、厚さ100μmのポリエチレンフィルムを得た。
 このポリエチレンフィルムを長手方向(MD)に、5倍の延伸倍率で延伸し、厚さ20μmの基材を得た。基材のヘイズ値を、JIS K 7105に準拠して測定したところ、ヘイズ値は6.5%であった。
<Example 5-1>
The medium-density polyethylene was formed into a film by an inflation molding method to obtain a polyethylene film having a thickness of 100 μm.
This polyethylene film was stretched in the machine direction (MD) at a stretch ratio of 5 times to obtain a substrate having a thickness of 20 μm. When the haze value of the substrate was measured in accordance with JIS K 7105, the haze value was 6.5%.
 基材の一方の面に、水性フレキソインキ(東洋インキ(株)製、商品名:アクワリオナ)を用いて、フレキソ印刷法により、画像を形成した。 (4) An image was formed on one surface of the substrate by a flexographic printing method using an aqueous flexographic ink (trade name: Aquariona, manufactured by Toyo Ink Co., Ltd.).
 ヒートシール層として、厚さ120μmの未延伸直鎖状低密度ポリエチレンフィルム(三井化学東セロ(株)、商品名:TUX-TCS)を準備し、この一方の面に、PVD法により厚さ20nmのアルミニウム蒸着膜を形成した。 As a heat seal layer, an unstretched linear low-density polyethylene film having a thickness of 120 μm (Mitsui Kagaku Tosello Co., Ltd., trade name: TUX-TCS) was prepared. An aluminum deposition film was formed.
 基材の画像形成面と、ヒートシール層の蒸着膜形成面とを、上記2液硬化型ウレタン系接着剤を介して、積層し、本発明の積層体を得た。なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。 {Circle around (2)} The image forming surface of the base material and the surface on which the vapor-deposited film of the heat seal layer was formed were laminated via the two-component curable urethane-based adhesive to obtain a laminate of the present invention. The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
<実施例5-2>
 上記高密度ポリエチレンおよび上記中密度ポリエチレンを、インフレーション成形法により製膜し、高密度ポリエチレン層/中密度ポリエチレン層/高密度ポリエチレン層からなるポリエチレンフィルムを作製した。高密度ポリエチレン層の厚さは、それぞれ20μm、中密度ポリエチレン層の厚さは、60μmであった。
 このポリエチレンフィルムを長手方向(MD)に、5倍の延伸倍率で延伸し、高密度ポリエチレン層の厚さがそれぞれ4μm、中密度ポリエチレン層の厚さが12μmである、総厚さ20μmの基材を得た。基材のヘイズ値を、測定したところ、ヘイズ値は8.9%であった。
<Example 5-2>
The high-density polyethylene and the medium-density polyethylene were formed into a film by an inflation molding method to prepare a polyethylene film composed of a high-density polyethylene layer / a medium-density polyethylene layer / a high-density polyethylene layer. The thickness of each of the high-density polyethylene layers was 20 μm, and the thickness of the medium-density polyethylene layer was 60 μm.
This polyethylene film is stretched in the longitudinal direction (MD) at a draw ratio of 5 times, and a high-density polyethylene layer having a thickness of 4 μm and a medium-density polyethylene layer having a thickness of 12 μm has a total thickness of 20 μm. I got When the haze value of the substrate was measured, the haze value was 8.9%.
 基材の一方の面に、上記水性フレキソインキを用いて、フレキソ印刷法により、画像を形成した。 (4) An image was formed on one surface of the substrate by the flexographic printing method using the aqueous flexographic ink.
 ヒートシール層として、厚さ120μmの上記未延伸直鎖状低密度ポリエチレンフィルムを準備し、この一方の面に、PVD法により厚さ20nmのアルミニウム蒸着膜を形成した。 (4) The unstretched linear low-density polyethylene film having a thickness of 120 μm was prepared as a heat seal layer, and a 20 nm-thick aluminum vapor-deposited film was formed on one surface of the film by a PVD method.
 基材の画像形成面と、ヒートシール層の蒸着膜形成面とを、上記2液硬化型ウレタン系接着剤を介して、積層し、本発明の積層体を得た。なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。 {Circle around (2)} The image forming surface of the base material and the surface on which the vapor-deposited film of the heat seal layer was formed were laminated via the two-component curable urethane-based adhesive to obtain a laminate of the present invention. The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
<実施例5-3>
 上記中密度ポリエチレンをインフレーション成形法により製膜し、厚さ100μmのポリエチレンフィルムを得た。
 このポリエチレンフィルムを長手方向(MD)および幅方向(TD)に、2.24倍の延伸倍率で延伸し、厚さ20μmの基材を得た。基材のヘイズ値を、測定したところ、ヘイズ値は5.1%であった。
<Example 5-3>
The medium-density polyethylene was formed into a film by an inflation molding method to obtain a polyethylene film having a thickness of 100 μm.
This polyethylene film was stretched in the longitudinal direction (MD) and the width direction (TD) at a stretch ratio of 2.24 times to obtain a substrate having a thickness of 20 μm. When the haze value of the substrate was measured, the haze value was 5.1%.
 基材の一方の面に、上記水性フレキソインキを用いて、フレキソ印刷法により、画像を形成した。 (4) An image was formed on one surface of the substrate by the flexographic printing method using the aqueous flexographic ink.
 ヒートシール層として、厚さ120μmの上記未延伸直鎖状低密度ポリエチレンフィルムを準備し、この一方の面に、PVD法により厚さ20nmのアルミニウム蒸着膜を形成した。 (4) The unstretched linear low-density polyethylene film having a thickness of 120 μm was prepared as a heat seal layer, and a 20 nm-thick aluminum vapor-deposited film was formed on one surface of the film by a PVD method.
 基材の画像形成面と、ヒートシール層の蒸着膜形成面とを、上記2液硬化型ウレタン系接着剤を介して、積層し、本発明の積層体を得た。なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。 {Circle around (2)} The image forming surface of the base material and the surface on which the vapor-deposited film of the heat seal layer was formed were laminated via the two-component curable urethane-based adhesive to obtain a laminate of the present invention. The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
<実施例5-4>
 実施例5-1において、基材の画像形成面と、ヒートシール層の蒸着膜形成面との接着を、ポリエステルポリオール、イソシアネート化合物を含む2液硬化型接着剤(DIC(株)製、PASLIM VM001/VM102CP)により行った以外は、実施例5-1と同様にして、積層体を作製した。
<Example 5-4>
In Example 5-1, the adhesion between the image forming surface of the base material and the surface on which the heat-sealing layer was formed was determined by using a two-part curable adhesive containing a polyester polyol and an isocyanate compound (PASLIM VM001, manufactured by DIC Corporation). / VM102CP), to produce a laminate in the same manner as in Example 5-1.
<比較例5-1>
 上記中密度ポリエチレンをインフレーション成形法により製膜し、厚さ20μmの基材を得た。基材のヘイズ値を、測定したところ、ヘイズ値は23.5%であった。
<Comparative Example 5-1>
The medium-density polyethylene was formed into a film by an inflation molding method to obtain a base material having a thickness of 20 μm. When the haze value of the substrate was measured, the haze value was 23.5%.
 基材の一方の面に、上記水性フレキソインキを用いて、フレキソ印刷法により、画像を形成した。 (4) An image was formed on one surface of the substrate by the flexographic printing method using the aqueous flexographic ink.
 ヒートシール層として、厚さ120μmの上記未延伸直鎖状低密度ポリエチレンフィルムを準備し、この一方の面に、PVD法により厚さ20nmのアルミニウム蒸着膜を形成した。 (4) The unstretched linear low-density polyethylene film having a thickness of 120 μm was prepared as a heat seal layer, and a 20 nm-thick aluminum vapor-deposited film was formed on one surface of the film by a PVD method.
 基材の画像形成面と、ヒートシール層の蒸着膜形成面とを、上記2液硬化型ウレタン系接着剤を介して、積層し、積層体を得た。なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。 {Circle around (2)} The image forming surface of the base material and the vapor-deposited film forming surface of the heat seal layer were laminated via the two-component curable urethane-based adhesive to obtain a laminate. The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
<比較例5-2>
 上記高密度ポリエチレンおよび上記中密度ポリエチレンを、インフレーション成形法により製膜し、高密度ポリエチレン層/中密度ポリエチレン層/高密度ポリエチレン層からなる基材を作製した。高密度ポリエチレン層の厚さは、それぞれ4μm、中密度ポリエチレン層の厚さは、12μmであった。基材のヘイズ値を、測定したところ、ヘイズ値は28.8%であった。
<Comparative Example 5-2>
The high-density polyethylene and the medium-density polyethylene were formed into a film by an inflation molding method to prepare a base material composed of a high-density polyethylene layer / a medium-density polyethylene layer / a high-density polyethylene layer. The thickness of the high-density polyethylene layer was 4 μm, and the thickness of the medium-density polyethylene layer was 12 μm. When the haze value of the substrate was measured, the haze value was 28.8%.
 基材の一方の面に、上記水性フレキソインキを用いて、フレキソ印刷法により、画像を形成した。 (4) An image was formed on one surface of the substrate by the flexographic printing method using the aqueous flexographic ink.
 ヒートシール層として、厚さ120μmの上記未延伸直鎖状低密度ポリエチレンフィルムを準備し、この一方の面に、PVD法により厚さ20nmのアルミニウム蒸着膜を形成した。 (4) The unstretched linear low-density polyethylene film having a thickness of 120 μm was prepared as a heat seal layer, and a 20 nm-thick aluminum vapor-deposited film was formed on one surface of the film by a PVD method.
 基材の画像形成面と、ヒートシール層の蒸着膜形成面とを、上記2液硬化型ウレタン系接着剤を介して、積層し、積層体を得た。なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。 {Circle around (2)} The image forming surface of the base material and the vapor-deposited film forming surface of the heat seal layer were laminated via the two-component curable urethane-based adhesive to obtain a laminate. The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
<比較例5-3>
 基材を、厚さ12μmの2軸延伸ポリエステルフィルム(東洋紡(株)商品名:E5100)とした以外は、実施例5-1と同様にして積層体を得た。
<Comparative Example 5-3>
A laminate was obtained in the same manner as in Example 5-1 except that the base material was a biaxially stretched polyester film having a thickness of 12 μm (trade name: E5100, Toyobo Co., Ltd.).
<耐熱性評価>
 上記実施例5-1~5-4および比較例5-1~5-2において得られた積層体から、縦110mm×横150mmの試験片をそれぞれ2枚ずつ作製した。
 2枚の試験片を、ヒートシール層が向かい合うように重ね合わせ、2辺を140℃でヒートシールし、筒状の胴部を形成した。
 次いで、上記実施例5-1~5-4および比較例5-1~5-2において得られた積層体から、縦110mm×横150mmの試験片を1枚作製し、これをヒートシール層が外側となるように、V字に折り、上記筒状の胴部と140℃でヒートシールし、底部を形成すると共に、スタンドパウチを作製した。
 作製した包装材料を目視により観察し、以下の評価基準に基づいて、評価した。評価結果を表5にまとめた。
(評価基準)
○:包装材料表面にシワなどが発生しておらず、また、ヒートシールバーへの付着が見られなかった。
×:包装材料表面にシワなどが発生しており、また、ヒートシールバーへの付着が見られ、製袋できなかった。
<Heat resistance evaluation>
From the laminates obtained in Examples 5-1 to 5-4 and Comparative Examples 5-1 and 5-2, two test pieces each having a length of 110 mm and a width of 150 mm were produced.
The two test pieces were overlapped so that the heat seal layers faced each other, and heat sealed at 140 ° C. on two sides to form a cylindrical body.
Next, one test piece having a length of 110 mm and a width of 150 mm was prepared from the laminate obtained in Examples 5-1 to 5-4 and Comparative examples 5-1 to 5-2, and this was used as a heat seal layer. It was folded into a V-shape so as to be on the outside, and was heat-sealed at 140 ° C. with the cylindrical body to form a bottom and a stand pouch.
The prepared packaging material was visually observed and evaluated based on the following evaluation criteria. Table 5 summarizes the evaluation results.
(Evaluation criteria)
:: No wrinkles or the like were generated on the surface of the packaging material, and no adhesion to the heat seal bar was observed.
X: Wrinkles and the like were generated on the surface of the packaging material, and adhesion to the heat seal bar was observed, and the bag could not be made.
<印刷適性評価>
 上記実施例および比較例において作製した積層体が備える基材に形成した画像を目視により観察し、その印刷適性を以下の評価基準に基づいて、評価した。評価結果を表1および5にまとめた。
(評価基準)
○:印刷時の寸法安定性が良好であり、擦れ、滲みなどが生じていない良好な画像を形成することができていた。
×:印刷時にフィルムの伸び縮みが発生し、形成した画像に擦れや滲みが生じていた。
<Printability evaluation>
An image formed on the base material included in the laminate prepared in the above Examples and Comparative Examples was visually observed, and its printability was evaluated based on the following evaluation criteria. The evaluation results are summarized in Tables 1 and 5.
(Evaluation criteria)
:: Good dimensional stability at the time of printing, and a good image free from rubbing, bleeding, etc. could be formed.
X: The film was stretched and shrunk during printing, and the formed image was rubbed and blurred.
<剛性評価>
 上記実施例および比較例において作製した積層体を、10mm幅の試験片とし、ループスティフネス測定試験器(東洋精機製作所製、商品名:ループステフネステスタ)によりその剛性を測定した。なお、ループの長さは、60mmとした。測定結果を表5にまとめた。
<Rigidity evaluation>
The laminates prepared in the above Examples and Comparative Examples were used as test pieces having a width of 10 mm, and the rigidity thereof was measured using a loop stiffness measurement tester (trade name: Loop Stiffness Tester, manufactured by Toyo Seiki Seisaku-sho, Ltd.). The length of the loop was 60 mm. Table 5 summarizes the measurement results.
<強度試験>
 上記実施例および比較例において作製した積層体を、引っ張り試験機(オリエンテック社製、商品名:RTC-1310A)により、直径0.5mmの針を突き刺した際の強度を測定した。なお、突き刺し速度は、50mm/分とした。測定結果を表5にまとめた。
<Strength test>
Using the tensile tester (trade name: RTC-1310A, manufactured by Orientec Co., Ltd.), the laminates prepared in the above Examples and Comparative Examples were measured for the strength when a needle having a diameter of 0.5 mm was pierced. The piercing speed was 50 mm / min. Table 5 summarizes the measurement results.
<耐屈曲負荷性試験>
 まず、上記で得られた積層体の酸素透過度および水蒸気透過度を測定した。酸素透過度の測定には、MOCON製 OXTRAN2/20を使用し、23℃、90%RHn条件下において、水蒸気透過度の測定には、MOCON製 PERMATRAN3/31を使用し、40℃、90%RHの条件下において、それぞれ測定した。
 さらに、上記で得られた積層体について、ゲルボフレックステター(テスター産業(株)性、商品名:BE1006BE)を用い、ASTM F 392に準拠して屈曲負荷(ストローク:155mm、屈曲動作:440°)を5回与えた。
 屈曲負荷後、積層体の酸素透過度および水蒸気透過度を測定した。
 屈曲負荷性試験前後の積層体の酸素透過度および水蒸気透過度を表5にまとめた。
<Bending load resistance test>
First, the oxygen permeability and the water vapor permeability of the laminate obtained above were measured. OXTRAN 2/20 manufactured by MOCON is used for the measurement of oxygen permeability, and PERMATRAN 3/31 manufactured by MOCON is used for the measurement of water vapor permeability under the conditions of 23 ° C. and 90% RHn. Under the conditions described above, the measurement was performed.
Furthermore, a bending load (stroke: 155 mm, bending operation: 440 °) was applied to the laminate obtained above using a gelbo flex tester (manufactured by Tester Sangyo Co., Ltd., trade name: BE1006BE) in accordance with ASTM F392. ) Was given 5 times.
After the bending load, the oxygen permeability and the water vapor permeability of the laminate were measured.
Table 5 summarizes the oxygen permeability and the water vapor permeability of the laminate before and after the bending load test.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
<実施例6-1>
 上記中密度ポリエチレンをインフレーション成形法により製膜し、厚さ100μmのポリエチレンフィルムを得た。
 このポリエチレンフィルムを長手方向(MD)に、5倍の延伸倍率で延伸し、厚さ20μmの基材を得た。基材のヘイズ値を測定したところ、ヘイズ値は6.5%であった。
<Example 6-1>
The medium-density polyethylene was formed into a film by an inflation molding method to obtain a polyethylene film having a thickness of 100 μm.
This polyethylene film was stretched in the machine direction (MD) at a stretch ratio of 5 times to obtain a substrate having a thickness of 20 μm. When the haze value of the substrate was measured, the haze value was 6.5%.
 基材の一方の面に、上記水性フレキソインキを用いて、フレキソ印刷法により、画像を形成した。 (4) An image was formed on one surface of the substrate by the flexographic printing method using the aqueous flexographic ink.
 上記中密度ポリエチレンをインフレーション成形法により製膜し、厚さ100μmのポリエチレンフィルムを得た後、長手方向(MD)に、5倍の延伸倍率で延伸し、厚さ20μmの中間層基材を得た。次いで、該中間層基材の一方の面に、PVD法により、厚さ20nmのアルミニウム蒸着膜を形成し、中間層を得た。 The medium-density polyethylene is formed into a film by an inflation molding method to obtain a polyethylene film having a thickness of 100 μm, and then stretched in the longitudinal direction (MD) at a stretch ratio of 5 times to obtain an intermediate layer base material having a thickness of 20 μm. Was. Next, a 20 nm-thick aluminum vapor-deposited film was formed on one surface of the intermediate layer base material by a PVD method to obtain an intermediate layer.
 上記基材の画像形成面を、中間層の蒸着面に、上記2液硬化型ウレタン系接着剤を介して積層した。2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。 (4) The image forming surface of the base material was laminated on the deposition surface of the intermediate layer via the two-component curable urethane-based adhesive. The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
 中間層の非蒸着面に、上記2液硬化型ウレタン系接着剤を介して、ヒートシール層として、厚さ120μmの未延伸直鎖状低密度ポリエチレン(LLDPE)フィルム(三井化学東セロ(株)、商品名:TUX-TCS)を積層し、本発明の積層体を得た。
 なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、96質量%であった。
A non-stretched linear low-density polyethylene (LLDPE) film having a thickness of 120 μm (LLDPE) as a heat seal layer on the non-evaporated surface of the intermediate layer via the two-liquid curable urethane-based adhesive (Mitsui Chemicals East Sero Corporation, (Trade name: TUX-TCS) to obtain a laminate of the present invention.
The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The proportion of polyethylene in the laminate thus obtained was 96% by mass.
<実施例6-2>
 上記高密度ポリエチレンおよび上記中密度ポリエチレンを、インフレーション成形法により製膜し、高密度ポリエチレン層/中密度ポリエチレン層/高密度ポリエチレン層からなるポリエチレンフィルムを作製した。高密度ポリエチレン層の厚さは、それぞれ20μm、中密度ポリエチレン層の厚さは、60μmであった。
 このポリエチレンフィルムを長手方向(MD)に、5倍の延伸倍率で延伸し、厚さ20μmの基材を得た。基材のヘイズ値を、測定したところ、ヘイズ値は8.9%であった。
<Example 6-2>
The high-density polyethylene and the medium-density polyethylene were formed into a film by an inflation molding method to prepare a polyethylene film composed of a high-density polyethylene layer / a medium-density polyethylene layer / a high-density polyethylene layer. The thickness of each of the high-density polyethylene layers was 20 μm, and the thickness of the medium-density polyethylene layer was 60 μm.
This polyethylene film was stretched in the machine direction (MD) at a stretch ratio of 5 times to obtain a substrate having a thickness of 20 μm. When the haze value of the substrate was measured, the haze value was 8.9%.
 基材の一方の面に、上記水性フレキソインキを用いて、フレキソ印刷法により、画像を形成した。 (4) An image was formed on one surface of the substrate by the flexographic printing method using the aqueous flexographic ink.
 上記高密度ポリエチレンおよび上記中密度ポリエチレンを、インフレーション成形法により製膜し、高密度ポリエチレン層/中密度ポリエチレン層/高密度ポリエチレン層からなるポリエチレンフィルムを作製した。高密度ポリエチレン層の厚さは、それぞれ20μm、中密度ポリエチレン層の厚さは、60μmであった。
 このポリエチレンフィルムを長手方向(MD)に、5倍の延伸倍率で延伸し、厚さ20μmの中間層基材を得た。次いで、該中間層基材の一方の面に、PVD法により、厚さ20nmのアルミニウム蒸着膜を形成し、中間層を得た。
The high-density polyethylene and the medium-density polyethylene were formed into a film by an inflation molding method to prepare a polyethylene film composed of a high-density polyethylene layer / a medium-density polyethylene layer / a high-density polyethylene layer. The thickness of each of the high-density polyethylene layers was 20 μm, and the thickness of the medium-density polyethylene layer was 60 μm.
This polyethylene film was stretched in the longitudinal direction (MD) at a stretch ratio of 5 times to obtain a 20 μm thick intermediate layer base material. Next, a 20 nm-thick aluminum vapor-deposited film was formed on one surface of the intermediate layer base material by a PVD method to obtain an intermediate layer.
 上記基材の画像形成面を、中間層の蒸着面に、上記2液硬化型ウレタン系接着剤を介して積層した。2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。 (4) The image forming surface of the base material was laminated on the deposition surface of the intermediate layer via the two-component curable urethane-based adhesive. The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
 中間層の非蒸着面に、上記2液硬化型ウレタン系接着剤を介して、ヒートシール層として、厚さ120μmの上記未延伸直鎖状低密度ポリエチレン(LLDPE)フィルムを積層し、本発明の積層体を得た。
 なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、96質量%であった。
The unstretched linear low-density polyethylene (LLDPE) film having a thickness of 120 μm was laminated as a heat seal layer on the non-evaporated surface of the intermediate layer via the two-component curable urethane-based adhesive, according to the present invention. A laminate was obtained.
The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The proportion of polyethylene in the laminate thus obtained was 96% by mass.
<実施例6-3>
 上記中密度ポリエチレンをインフレーション成形法により製膜し、厚さ100μmのポリエチレンフィルムを得た。
 このポリエチレンフィルムを長手方向(MD)および幅方向(TD)に、2.24倍の延伸倍率で延伸し、厚さ20μmの基材を得た。基材のヘイズ値を、測定したところ、ヘイズ値は5.1%であった。
<Example 6-3>
The medium-density polyethylene was formed into a film by an inflation molding method to obtain a polyethylene film having a thickness of 100 μm.
This polyethylene film was stretched in the longitudinal direction (MD) and the width direction (TD) at a stretch ratio of 2.24 times to obtain a substrate having a thickness of 20 μm. When the haze value of the substrate was measured, the haze value was 5.1%.
 基材の一方の面に、上記水性フレキソインキを用いて、フレキソ印刷法により、画像を形成した。 (4) An image was formed on one surface of the substrate by the flexographic printing method using the aqueous flexographic ink.
 上記中密度ポリエチレンをインフレーション成形法により製膜し、厚さ100μmのポリエチレンフィルムを得た。
 このポリエチレンフィルムを長手方向(MD)および幅方向(TD)に、2.24倍の延伸倍率で延伸し、厚さ20μmの中間層基材を得た。次いで、該中間層基材の一方の面に、PVD法により、厚さ20nmのアルミニウム蒸着膜を形成し、中間層を得た。
The medium-density polyethylene was formed into a film by an inflation molding method to obtain a polyethylene film having a thickness of 100 μm.
This polyethylene film was stretched in the longitudinal direction (MD) and the width direction (TD) at a stretch ratio of 2.24 times to obtain an intermediate layer base material having a thickness of 20 μm. Next, a 20 nm-thick aluminum vapor-deposited film was formed on one surface of the intermediate layer base material by a PVD method to obtain an intermediate layer.
 上記基材の画像形成面を、中間層の蒸着面に、上記2液硬化型ウレタン系接着剤を介して積層した。2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。 (4) The image forming surface of the base material was laminated on the deposition surface of the intermediate layer via the two-component curable urethane-based adhesive. The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
 中間層の非蒸着面に、上記2液硬化型ウレタン系接着剤を介して、ヒートシール層として、厚さ120μmの上記未延伸直鎖状低密度ポリエチレン(LLDPE)フィルムを積層し、本発明の積層体を得た。
 なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、96質量%であった。
The unstretched linear low-density polyethylene (LLDPE) film having a thickness of 120 μm was laminated as a heat seal layer on the non-evaporated surface of the intermediate layer via the two-component curable urethane-based adhesive, according to the present invention. A laminate was obtained.
The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The proportion of polyethylene in the laminate thus obtained was 96% by mass.
<実施例6-4>
 実施例6-1において、基材の画像形成面と、中間層の蒸着面との接着を、ポリエステルポリオール、イソシアネート化合物を含む2液硬化型接着剤(DIC(株)製、PASLIM VM001/VM102CP)により行った以外は、実施例6-1と同様にして、積層体を作製した。
<Example 6-4>
In Example 6-1, the adhesion between the image forming surface of the base material and the deposition surface of the intermediate layer was determined by a two-part curable adhesive containing polyester polyol and an isocyanate compound (PASLIM VM001 / VM102CP, manufactured by DIC Corporation). A laminate was produced in the same manner as in Example 6-1 except that the above procedure was performed.
<比較例6-1>
 上記中密度ポリエチレンをインフレーション成形法により製膜し、厚さ20μmのポリエチレンフィルムを得、これを基材とした。基材のヘイズ値を、測定したところ、ヘイズ値は23.5%であった。
<Comparative Example 6-1>
The medium-density polyethylene was formed into a film by an inflation molding method to obtain a polyethylene film having a thickness of 20 μm, which was used as a base material. When the haze value of the substrate was measured, the haze value was 23.5%.
 基材の一方の面に、上記水性フレキソインキを用いて、フレキソ印刷法により、画像を形成した。 (4) An image was formed on one surface of the substrate by the flexographic printing method using the aqueous flexographic ink.
 上記中密度ポリエチレンをインフレーション成形法により製膜し、厚さ20μmの中間層基材を得た。次いで、該中間層基材の一方の面に、PVD法により、厚さ20nmのアルミニウム蒸着膜を形成し、中間層とした。 (4) The medium-density polyethylene was formed into a film by an inflation molding method to obtain a 20 μm-thick intermediate layer base material. Next, a 20-nm-thick aluminum vapor-deposited film was formed on one surface of the intermediate layer base material by a PVD method to obtain an intermediate layer.
 上記基材の画像形成面を、中間層の蒸着面に、上記2液硬化型ウレタン系接着剤を介して積層した。2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。 (4) The image forming surface of the base material was laminated on the deposition surface of the intermediate layer via the two-component curable urethane-based adhesive. The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
 中間層の非蒸着面に、上記2液硬化型ウレタン系接着剤を介して、ヒートシール層として、厚さ120μmの上記未延伸直鎖状低密度ポリエチレン(LLDPE)フィルムを積層し、積層体を得た。
 なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、96質量%であった。
The unstretched linear low-density polyethylene (LLDPE) film having a thickness of 120 μm is laminated as a heat seal layer on the non-deposited surface of the intermediate layer via the two-liquid curable urethane-based adhesive, and the laminate is formed. Obtained.
The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The proportion of polyethylene in the laminate thus obtained was 96% by mass.
<比較例6-2>
 上記高密度ポリエチレンおよび上記中密度ポリエチレンを、インフレーション成形法により製膜し、高密度ポリエチレン層/中密度ポリエチレン層/高密度ポリエチレン層からなる基材を作製した。高密度ポリエチレン層の厚さは、それぞれ4μm、中密度ポリエチレン層の厚さは、12μmであった。基材のヘイズ値を、測定したところ、ヘイズ値は23.5%であった。
<Comparative Example 6-2>
The high-density polyethylene and the medium-density polyethylene were formed into a film by an inflation molding method to prepare a base material composed of a high-density polyethylene layer / a medium-density polyethylene layer / a high-density polyethylene layer. The thickness of the high-density polyethylene layer was 4 μm, and the thickness of the medium-density polyethylene layer was 12 μm. When the haze value of the substrate was measured, the haze value was 23.5%.
 基材の一方の面に、上記水性フレキソインキを用いて、フレキソ印刷法により、画像を形成した。 (4) An image was formed on one surface of the substrate by the flexographic printing method using the aqueous flexographic ink.
 上記高密度ポリエチレンおよび上記中密度ポリエチレンを、インフレーション成形法により製膜し、高密度ポリエチレン層/中密度ポリエチレン層/高密度ポリエチレン層からなる中間層基材を作製した。高密度ポリエチレン層の厚さは、それぞれ4μm、中密度ポリエチレン層の厚さは、12μmであった。次いで、該中間層基材の一方の面に、PVD法により、厚さ20nmのアルミニウム蒸着膜を形成し、中間層とした。 (4) The high-density polyethylene and the medium-density polyethylene were formed into a film by an inflation molding method to prepare an intermediate layer base material composed of a high-density polyethylene layer / a medium-density polyethylene layer / a high-density polyethylene layer. The thickness of the high-density polyethylene layer was 4 μm, and the thickness of the medium-density polyethylene layer was 12 μm. Next, a 20-nm-thick aluminum vapor-deposited film was formed on one surface of the intermediate layer base material by a PVD method to obtain an intermediate layer.
 上記基材の画像形成面を、中間層の蒸着面に、上記2液硬化型ウレタン系接着剤を介して積層した。2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。 (4) The image forming surface of the base material was laminated on the deposition surface of the intermediate layer via the two-component curable urethane-based adhesive. The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
 中間層の非蒸着面に、上記2液硬化型ウレタン系接着剤を介して、ヒートシール層として、厚さ120μmの上記未延伸直鎖状低密度ポリエチレン(LLDPE)フィルムを積層し、積層体を得た。
 なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、96質量%であった。
The unstretched linear low-density polyethylene (LLDPE) film having a thickness of 120 μm is laminated as a heat seal layer on the non-deposited surface of the intermediate layer via the two-liquid curable urethane-based adhesive, and the laminate is formed. Obtained.
The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The proportion of polyethylene in the laminate thus obtained was 96% by mass.
<比較例6-3>
 基材および中間層の中間層基材を、厚さ12μmの2軸延伸ポリエステルフィルム(東洋紡(株)商品名:E5100)に変更した以外は、実施例6-1と同様にして積層体を得た。このようにして得られた積層体におけるポリエチレンの割合は、79質量%であった。
<Comparative Example 6-3>
A laminate was obtained in the same manner as in Example 6-1 except that the intermediate layer substrate of the intermediate layer and the intermediate layer was changed to a biaxially stretched polyester film having a thickness of 12 μm (trade name: E5100, Toyobo Co., Ltd.). Was. The proportion of polyethylene in the laminate thus obtained was 79% by mass.
<リサイクル性評価>
 上記実施例および比較例において得られた積層体のリサイクル性を下記評価基準に基づいて、評価した。評価結果を表1にまとめた。
(評価基準)
○:積層体におけるポリエチレンの含有量が80質量%以上であった。
×:積層体におけるポリエチレンの含有量が80質量%未満であった。
<Evaluation of recyclability>
The recyclability of the laminates obtained in the above Examples and Comparative Examples was evaluated based on the following evaluation criteria. The evaluation results are summarized in Table 1.
(Evaluation criteria)
:: The content of polyethylene in the laminate was 80% by mass or more.
X: The content of polyethylene in the laminate was less than 80% by mass.
<耐熱性評価>
 上記実施例6-1~6-4および比較例6-1~6-3において得られた積層体から、縦110mm×横150mmの試験片をそれぞれ2枚ずつ作製した。
 2枚の試験片を、ヒートシール層が向かい合うように重ね合わせ、2辺を140℃でヒートシールし、筒状の胴部を形成した。
 次いで、上記実施例6-1~6-4および比較例6-1~6-3において得られた積層体から、縦110mm×横150mmの試験片を1枚作製し、これをヒートシール層が外側となるように、V字に折り、上記筒状の胴部と140℃でヒートシールし、底部を形成すると共に、スタンドパウチを作製した。
 作製した包装材料を目視により観察し、以下の評価基準に基づいて、評価した。評価結果を表6にまとめた。
(評価基準)
○:包装材料表面にシワなどが発生しておらず、また、ヒートシールバーへの付着が見られなかった。
×:包装材料表面にシワなどが発生しており、また、ヒートシールバーへの付着が見られ、製袋できなかった。
<Heat resistance evaluation>
From the laminates obtained in the above Examples 6-1 to 6-4 and Comparative Examples 6-1 to 6-3, two test pieces each having a length of 110 mm and a width of 150 mm were produced.
The two test pieces were overlapped so that the heat seal layers faced each other, and heat sealed at 140 ° C. on two sides to form a cylindrical body.
Next, one test piece having a length of 110 mm and a width of 150 mm was prepared from the laminate obtained in each of Examples 6-1 to 6-4 and Comparative examples 6-1 to 6-3. It was folded into a V-shape so as to be on the outside, and was heat-sealed at 140 ° C. with the cylindrical body to form a bottom and a stand pouch.
The prepared packaging material was visually observed and evaluated based on the following evaluation criteria. Table 6 summarizes the evaluation results.
(Evaluation criteria)
:: No wrinkles or the like were generated on the surface of the packaging material, and no adhesion to the heat seal bar was observed.
X: Wrinkles and the like were generated on the surface of the packaging material, and adhesion to the heat seal bar was observed, and the bag could not be made.
<印刷適性評価>
 上記実施例および比較例において作製した積層体が備える基材に形成した画像を目視により観察し、以下の評価基準に基づいて、評価した。評価結果を表6にまとめた。
(評価基準)
○:印刷時の寸法安定性が良好であり、擦れ、滲みなどが生じていない良好な画像を形成することができていた。
×:印刷時にフィルムの伸び縮みが発生し、形成した画像に擦れや滲みが生じていた。
<Printability evaluation>
The images formed on the base material of the laminates prepared in the above Examples and Comparative Examples were visually observed and evaluated based on the following evaluation criteria. Table 6 summarizes the evaluation results.
(Evaluation criteria)
:: Good dimensional stability at the time of printing, and a good image free from rubbing, bleeding, etc. could be formed.
X: The film was stretched and shrunk during printing, and the formed image was rubbed and blurred.
<剛性試験>
 上記実施例および比較例において作製した積層体を、10mm幅の試験片とし、ループスティフネス測定試験器(東洋精機製作所製、商品名:ループステフネステスタ)によりその剛性を測定した。なお、ループの長さは、60mmとした。測定結果を表6にまとめた。
<Rigidity test>
The laminates prepared in the above Examples and Comparative Examples were used as test pieces having a width of 10 mm, and the rigidity thereof was measured using a loop stiffness measurement tester (trade name: Loop Stiffness Tester, manufactured by Toyo Seiki Seisaku-sho, Ltd.). The length of the loop was 60 mm. Table 6 summarizes the measurement results.
<強度試験>
 上記実施例および比較例において作製した積層体を、引っ張り試験機(オリエンテック社製、商品名:RTC-1310A)により、直径0.5mmの針を突き刺した際の強度を測定した。なお、突き刺し速度は、50mm/分とした。測定結果を表6にまとめた。
<Strength test>
Using the tensile tester (trade name: RTC-1310A, manufactured by Orientec Co., Ltd.), the laminates prepared in the above Examples and Comparative Examples were measured for the strength when a needle having a diameter of 0.5 mm was pierced. The piercing speed was 50 mm / min. Table 6 summarizes the measurement results.
<耐屈曲負荷性試験>
 まず、上記で得られた積層体の酸素透過度および水蒸気透過度を測定した。酸素透過度の測定には、MOCON製 OXTRAN2/20を使用し、23℃、90%RHn条件下において、水蒸気透過度の測定には、MOCON製 PERMATRAN3/31を使用し、40℃、90%RHの条件下において、それぞれ測定した。
 さらに、上記で得られた積層体について、ゲルボフレックステター(テスター産業(株)性、商品名:BE1006BE)を用い、ASTM F 392に準拠して屈曲負荷(ストローク:155mm、屈曲動作:440°)を5回与えた。
 屈曲負荷後、積層体の酸素透過度および水蒸気透過度を測定した。
 屈曲負荷性試験前後の積層体の酸素透過度および水蒸気透過度を表6に示す。
Figure JPOXMLDOC01-appb-T000013
<Bending load resistance test>
First, the oxygen permeability and the water vapor permeability of the laminate obtained above were measured. OXTRAN 2/20 manufactured by MOCON is used for the measurement of oxygen permeability, and PERMATRAN 3/31 manufactured by MOCON is used for the measurement of water vapor permeability under the conditions of 23 ° C. and 90% RHn. Under the conditions described above, the measurement was performed.
Furthermore, a bending load (stroke: 155 mm, bending operation: 440 °) was applied to the laminate obtained above using a gelbo flex tester (manufactured by Tester Sangyo Co., Ltd., trade name: BE1006BE) in accordance with ASTM F392. ) Was given 5 times.
After the bending load, the oxygen permeability and the water vapor permeability of the laminate were measured.
Table 6 shows the oxygen permeability and the water vapor permeability of the laminate before and after the bending load test.
Figure JPOXMLDOC01-appb-T000013
<実施例7-1>
 中密度ポリエチレン(密度:0.941g/cm、融点129℃、MFR:1.3g/10分、Dowchemical社製、商品名:Elite5538G)をインフレーション成形法により製膜し、厚さ100μmのポリエチレンフィルムを得た。
 このポリエチレンフィルムを長手方向(MD)に、5倍の延伸倍率で延伸し、厚さ20μmの基材を得た。基材のヘイズ値を、JIS K 7105に準拠して測定したところ、ヘイズ値は6.5%であった。
<Example 7-1>
Medium-density polyethylene (density: 0.941 g / cm 3 , melting point: 129 ° C., MFR: 1.3 g / 10 min, manufactured by Dow Chemical Company, trade name: Elite5538G) is formed into a film by an inflation molding method, and a polyethylene film having a thickness of 100 μm. I got
This polyethylene film was stretched in the machine direction (MD) at a stretch ratio of 5 times to obtain a substrate having a thickness of 20 μm. When the haze value of the substrate was measured in accordance with JIS K 7105, the haze value was 6.5%.
 基材の一方の面に、水性フレキソインキ(東洋インキ(株)製、商品名:アクワリオナ)を用いて、フレキソ印刷法により、画像を形成した。 (4) An image was formed on one surface of the substrate by a flexographic printing method using an aqueous flexographic ink (trade name: Aquariona, manufactured by Toyo Ink Co., Ltd.).
 ヒートシール層として、直鎖状低密度ポリエチレン(密度:0.925、MFR:1.9g/10分、プライムポリマー製、商品名:SP2520)とバイオマス由来の直鎖状低密度ポリエチレン(密度:0.916g/cm、MFR:1.3g/10分、バイオマス度:87%、Braskem製、商品名:SLL18)をインフレーション成形法により製膜し、直鎖状低密度ポリエチレン層/バイオマス由来の直鎖状低密度ポリエチレン層/直鎖状低密度ポリエチレン層からなるポリエチレンフィルムを作製した。
 直鎖状低密度ポリエチレン層の厚さは、それぞれ30μm、バイオマス由来の直鎖状低密度ポリエチレン層の厚さは、60μmであり、総厚み120μmであった。これを、基材の画像形成面に、2液硬化型ウレタン系接着剤(ロックペイント(株)製、商品名:RU-77T/H-7)を介して、積層し、本発明の積層体を得た。
 なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、97質量%であった。
As the heat seal layer, linear low-density polyethylene (density: 0.925, MFR: 1.9 g / 10 min, made of Prime Polymer, trade name: SP2520) and linear low-density polyethylene derived from biomass (density: 0) .916 g / cm 3 , MFR: 1.3 g / 10 min, biomass degree: 87%, manufactured by Braskem, trade name: SLL18), and formed into a film by an inflation molding method. A polyethylene film composed of a chain low-density polyethylene layer / a linear low-density polyethylene layer was produced.
The thickness of each of the linear low-density polyethylene layers was 30 μm, the thickness of the biomass-derived linear low-density polyethylene layer was 60 μm, and the total thickness was 120 μm. This is laminated on the image forming surface of the base material via a two-component curable urethane-based adhesive (trade name: RU-77T / H-7, manufactured by Rock Paint Co., Ltd.), and a laminate of the present invention is provided. I got
The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The proportion of polyethylene in the laminate thus obtained was 97% by mass.
<実施例7-2>
 高密度ポリエチレン(密度:0.961g/cm、融点135℃、MFR:0.7g/10分、ExxonMobil社製、商品名:HTA108)および上記中密度ポリエチレンを、インフレーション成形法により製膜し、高密度ポリエチレン層/中密度ポリエチレン層/高密度ポリエチレン層からなるポリエチレンフィルムを作製した。高密度ポリエチレン層の厚さは、それぞれ20μm、中密度ポリエチレン層の厚さは、60μmであった。
 このポリエチレンフィルムを長手方向(MD)に、5倍の延伸倍率で延伸し、高密度ポリエチレン層の厚さがそれぞれ4μm、中密度ポリエチレン層の厚さが12μmである、総厚さ20μmの基材を得た。基材のヘイズ値を、測定したところ、ヘイズ値は8.9%であった。
<Example 7-2>
A high-density polyethylene (density: 0.961 g / cm 3 , melting point 135 ° C., MFR: 0.7 g / 10 min, manufactured by ExxonMobil, trade name: HTA108) and the above-described medium-density polyethylene were formed into a film by an inflation molding method. A polyethylene film consisting of a high-density polyethylene layer / medium-density polyethylene layer / high-density polyethylene layer was produced. The thickness of each of the high-density polyethylene layers was 20 μm, and the thickness of the medium-density polyethylene layer was 60 μm.
This polyethylene film is stretched in the longitudinal direction (MD) at a draw ratio of 5 times, and a high-density polyethylene layer having a thickness of 4 μm and a medium-density polyethylene layer having a thickness of 12 μm has a total thickness of 20 μm. I got When the haze value of the substrate was measured, the haze value was 8.9%.
 基材の一方の面に、上記水性フレキソインキを用いて、フレキソ印刷法により、画像を形成した。 (4) An image was formed on one surface of the substrate by the flexographic printing method using the aqueous flexographic ink.
 ヒートシール層として、厚さ120μmの上記ポリエチレンフィルムを準備し、基材の画像形成面に、上記2液硬化型ウレタン系接着剤を介して、積層し、本発明の積層体を得た。
 なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、97質量%であった。
The polyethylene film having a thickness of 120 μm was prepared as a heat seal layer, and laminated on the image forming surface of the substrate via the two-component curable urethane adhesive to obtain a laminate of the present invention.
The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The proportion of polyethylene in the laminate thus obtained was 97% by mass.
<実施例7-3>
 上記中密度ポリエチレンをインフレーション成形法により製膜し、厚さ100μmのポリエチレンフィルムを得た。
 このポリエチレンフィルムを長手方向(MD)および幅方向(TD)に、2.24倍の延伸倍率で延伸し、厚さ20μmの基材を得た。基材のヘイズ値を、測定したところ、ヘイズ値は5.1%であった。
<Example 7-3>
The medium-density polyethylene was formed into a film by an inflation molding method to obtain a polyethylene film having a thickness of 100 μm.
This polyethylene film was stretched in the longitudinal direction (MD) and the width direction (TD) at a stretch ratio of 2.24 times to obtain a substrate having a thickness of 20 μm. When the haze value of the substrate was measured, the haze value was 5.1%.
 基材の一方の面に、上記水性フレキソインキを用いて、フレキソ印刷法により、画像を形成した。 (4) An image was formed on one surface of the substrate by the flexographic printing method using the aqueous flexographic ink.
 ヒートシール層として、厚さ120μmの上記ポリエチレンフィルムを準備し、基材の画像形成面に、上記2液硬化型ウレタン系接着剤を介して、積層し、本発明の積層体を得た。
 なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、97質量%であった。
The polyethylene film having a thickness of 120 μm was prepared as a heat seal layer, and laminated on the image forming surface of the substrate via the two-component curable urethane adhesive to obtain a laminate of the present invention.
The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The proportion of polyethylene in the laminate thus obtained was 97% by mass.
<比較例7-1>
 上記中密度ポリエチレンをインフレーション成形法により製膜し、厚さ20μmの基材を得た。基材のヘイズ値を、測定したところ、ヘイズ値は23.5%であった。
<Comparative Example 7-1>
The medium-density polyethylene was formed into a film by an inflation molding method to obtain a base material having a thickness of 20 μm. When the haze value of the substrate was measured, the haze value was 23.5%.
 基材の一方の面に、上記水性フレキソインキを用いて、フレキソ印刷法により、画像を形成した。 (4) An image was formed on one surface of the substrate by the flexographic printing method using the aqueous flexographic ink.
 ヒートシール層として、厚さ120μmの上記ポリエチレンフィルムを準備し、基材の画像形成面に、上記2液硬化型ウレタン系接着剤を介して、積層し、積層体を得た。
 なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、97質量%であった。
The polyethylene film having a thickness of 120 μm was prepared as a heat seal layer, and laminated on the image forming surface of the substrate via the two-component curable urethane-based adhesive to obtain a laminate.
The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The proportion of polyethylene in the laminate thus obtained was 97% by mass.
<比較例7-2>
 上記高密度ポリエチレンおよび上記中密度ポリエチレンを、インフレーション成形法により製膜し、高密度ポリエチレン層/中密度ポリエチレン層/高密度ポリエチレン層からなる基材を作製した。高密度ポリエチレン層の厚さは、それぞれ4μm、中密度ポリエチレン層の厚さは、12μmであった。基材のヘイズ値を、測定したところ、ヘイズ値は28.8%であった。
<Comparative Example 7-2>
The high-density polyethylene and the medium-density polyethylene were formed into a film by an inflation molding method to prepare a base material composed of a high-density polyethylene layer / a medium-density polyethylene layer / a high-density polyethylene layer. The thickness of the high-density polyethylene layer was 4 μm, and the thickness of the medium-density polyethylene layer was 12 μm. When the haze value of the substrate was measured, the haze value was 28.8%.
 基材の一方の面に、上記水性フレキソインキを用いて、フレキソ印刷法により、画像を形成した。 (4) An image was formed on one surface of the substrate by the flexographic printing method using the aqueous flexographic ink.
 ヒートシール層として、厚さ120μmの上記ポリエチレンフィルムを準備し、基材の画像形成面に、上記2液硬化型ウレタン系接着剤を介して、積層し、積層体を得た。
 なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、97質量%であった。
The polyethylene film having a thickness of 120 μm was prepared as a heat seal layer, and laminated on the image forming surface of the substrate via the two-component curable urethane-based adhesive to obtain a laminate.
The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The proportion of polyethylene in the laminate thus obtained was 97% by mass.
<比較例7-3>
 基材を、厚さ12μmの2軸延伸ポリエステルフィルム(東洋紡(株)商品名:E5100)とした以外は、実施例7-1と同様にして積層体を得た。
 また、このようにして得られた積層体におけるポリエチレンの割合は、88質量%であった。
<Comparative Example 7-3>
A laminate was obtained in the same manner as in Example 7-1 except that the base material was a biaxially stretched polyester film having a thickness of 12 μm (trade name: Toyobo Co., Ltd .: E5100).
The proportion of polyethylene in the laminate thus obtained was 88% by mass.
<実施例8-1>
 上記中密度ポリエチレンをインフレーション成形法により製膜し、厚さ100μmのポリエチレンフィルムを得た。
 このポリエチレンフィルムを長手方向(MD)に、5倍の延伸倍率で延伸し、厚さ20μmの基材を得た。基材のヘイズ値を、測定したところ、ヘイズ値は6.5%であった。
<Example 8-1>
The medium-density polyethylene was formed into a film by an inflation molding method to obtain a polyethylene film having a thickness of 100 μm.
This polyethylene film was stretched in the machine direction (MD) at a stretch ratio of 5 times to obtain a substrate having a thickness of 20 μm. When the haze value of the substrate was measured, the haze value was 6.5%.
 基材の一方の面に、上記水性フレキソインキを用いて、フレキソ印刷法により、画像を形成した。 (4) An image was formed on one surface of the substrate by the flexographic printing method using the aqueous flexographic ink.
 ヒートシール層として、直鎖状低密度ポリエチレン(密度:0.925、MFR:1.9g/10分、プライムポリマー製、商品名:SP2520)とバイオマス由来の直鎖状低密度ポリエチレン(密度:0.916g/cm、MFR:1.3g/10分、バイオマス度:87%、Braskem製、商品名:SLL18)をインフレーション成形法により製膜し、直鎖状低密度ポリエチレン層/バイオマス由来の直鎖状低密度ポリエチレン層/直鎖状低密度ポリエチレン層からなるポリエチレンフィルムを作製した。直鎖状低密度ポリエチレン層の厚さは、それぞれ10μm、バイオマス由来の直鎖状低密度ポリエチレン層の厚さは、20μmであり、総厚み40μmであった。基材の画像形成面に、上記2液硬化型ウレタン系接着剤を介して、積層し、本発明の積層体を得た。
 なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、94質量%であった。
As the heat seal layer, linear low-density polyethylene (density: 0.925, MFR: 1.9 g / 10 min, made of Prime Polymer, trade name: SP2520) and linear low-density polyethylene derived from biomass (density: 0) .916 g / cm 3 , MFR: 1.3 g / 10 min, biomass degree: 87%, manufactured by Braskem, trade name: SLL18), and formed into a film by an inflation molding method. A polyethylene film composed of a chain low-density polyethylene layer / a linear low-density polyethylene layer was produced. The thickness of each of the linear low-density polyethylene layers was 10 μm, the thickness of the biomass-derived linear low-density polyethylene layer was 20 μm, and the total thickness was 40 μm. The laminate was laminated on the image forming surface of the substrate via the above two-component curable urethane-based adhesive to obtain a laminate of the present invention.
The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The ratio of polyethylene in the laminate thus obtained was 94% by mass.
<実施例8-2>
 上記高密度ポリエチレンおよび上記中密度ポリエチレンを、インフレーション成形法により製膜し、高密度ポリエチレン層/中密度ポリエチレン層/高密度ポリエチレン層からなるポリエチレンフィルムを作製した。高密度ポリエチレン層の厚さは、それぞれ20μm、中密度ポリエチレン層の厚さは、60μmであった。
 このポリエチレンフィルムを長手方向(MD)に、5倍の延伸倍率で延伸し、高密度ポリエチレン層の厚さがそれぞれ4μm、中密度ポリエチレン層の厚さが12μmである、総厚さ20μmの基材を得た。基材のヘイズ値を、測定したところ、ヘイズ値は8.9%であった。
<Example 8-2>
The high-density polyethylene and the medium-density polyethylene were formed into a film by an inflation molding method to prepare a polyethylene film composed of a high-density polyethylene layer / a medium-density polyethylene layer / a high-density polyethylene layer. The thickness of each of the high-density polyethylene layers was 20 μm, and the thickness of the medium-density polyethylene layer was 60 μm.
This polyethylene film is stretched in the longitudinal direction (MD) at a draw ratio of 5 times, and a high-density polyethylene layer having a thickness of 4 μm and a medium-density polyethylene layer having a thickness of 12 μm has a total thickness of 20 μm. I got When the haze value of the substrate was measured, the haze value was 8.9%.
 基材の一方の面に、上記水性フレキソインキを用いて、フレキソ印刷法により、画像を形成した。 (4) An image was formed on one surface of the substrate by the flexographic printing method using the aqueous flexographic ink.
 ヒートシール層として、厚さ40μmの上記ポリエチレンフィルムを準備し、基材の画像形成面に、上記2液硬化型ウレタン系接着剤を介して、積層し、本発明の積層体を得た。
 なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、94質量%であった。
The polyethylene film having a thickness of 40 μm was prepared as a heat seal layer, and laminated on the image forming surface of the substrate via the two-component curable urethane adhesive to obtain a laminate of the present invention.
The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The ratio of polyethylene in the laminate thus obtained was 94% by mass.
<実施例8-3>
 上記中密度ポリエチレンをインフレーション成形法により製膜し、厚さ100μmのポリエチレンフィルムを得た。
 このポリエチレンフィルムを長手方向(MD)および幅方向(TD)に、2.24倍の延伸倍率で延伸し、厚さ20μmの基材を得た。基材のヘイズ値を、測定したところ、ヘイズ値は5.1%であった。
<Example 8-3>
The medium-density polyethylene was formed into a film by an inflation molding method to obtain a polyethylene film having a thickness of 100 μm.
This polyethylene film was stretched in the longitudinal direction (MD) and the width direction (TD) at a stretch ratio of 2.24 times to obtain a substrate having a thickness of 20 μm. When the haze value of the substrate was measured, the haze value was 5.1%.
 基材の一方の面に、上記水性フレキソインキを用いて、フレキソ印刷法により、画像を形成した。 (4) An image was formed on one surface of the substrate by the flexographic printing method using the aqueous flexographic ink.
 ヒートシール層として、厚さ40μmの上記ポリエチレンフィルムを準備し、基材の画像形成面に、上記2液硬化型ウレタン系接着剤を介して、積層し、本発明の積層体を得た。
 なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、94質量%であった。
The polyethylene film having a thickness of 40 μm was prepared as a heat seal layer, and laminated on the image forming surface of the substrate via the two-component curable urethane adhesive to obtain a laminate of the present invention.
The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The ratio of polyethylene in the laminate thus obtained was 94% by mass.
<比較例8-1>
 上記中密度ポリエチレンをインフレーション成形法により製膜し、厚さ20μmの基材を得た。基材のヘイズ値を、測定したところ、ヘイズ値は23.5%であった。
<Comparative Example 8-1>
The medium-density polyethylene was formed into a film by an inflation molding method to obtain a base material having a thickness of 20 μm. When the haze value of the substrate was measured, the haze value was 23.5%.
 基材の一方の面に、上記水性フレキソインキを用いて、フレキソ印刷法により、画像を形成した。 (4) An image was formed on one surface of the substrate by the flexographic printing method using the aqueous flexographic ink.
 ヒートシール層として、厚さ40μmの上記ポリエチレンフィルムを準備し、基材の画像形成面に、上記2液硬化型ウレタン系接着剤を介して、積層し、積層体を得た。
 なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、94質量%であった。
The polyethylene film having a thickness of 40 μm was prepared as a heat seal layer, and was laminated on the image forming surface of the substrate via the two-component curable urethane-based adhesive to obtain a laminate.
The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The ratio of polyethylene in the laminate thus obtained was 94% by mass.
<比較例8-2>
 上記高密度ポリエチレンおよび上記中密度ポリエチレンを、インフレーション成形法により製膜し、高密度ポリエチレン層/中密度ポリエチレン層/高密度ポリエチレン層からなる基材を作製した。高密度ポリエチレン層の厚さは、それぞれ4μm、中密度ポリエチレン層の厚さは、12μmであった。基材のヘイズ値を、測定したところ、ヘイズ値は28.8%であった。
<Comparative Example 8-2>
The high-density polyethylene and the medium-density polyethylene were formed into a film by an inflation molding method to prepare a base material composed of a high-density polyethylene layer / a medium-density polyethylene layer / a high-density polyethylene layer. The thickness of the high-density polyethylene layer was 4 μm, and the thickness of the medium-density polyethylene layer was 12 μm. When the haze value of the substrate was measured, the haze value was 28.8%.
 基材の一方の面に、上記水性フレキソインキを用いて、フレキソ印刷法により、画像を形成した。 (4) An image was formed on one surface of the substrate by the flexographic printing method using the aqueous flexographic ink.
 ヒートシール層として、厚さ40μmの上記未延伸直鎖状低密度ポリエチレンフィルムを準備し、基材の画像形成面に、上記2液硬化型ウレタン系接着剤を介して、積層し、積層体を得た。
 なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、94質量%であった。
As the heat seal layer, the unstretched linear low-density polyethylene film having a thickness of 40 μm is prepared, and is laminated on the image forming surface of the substrate via the two-component curable urethane-based adhesive. Obtained.
The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The ratio of polyethylene in the laminate thus obtained was 94% by mass.
<比較例8-3>
 基材を、厚さ12μmの2軸延伸ポリエステルフィルム(東洋紡(株)商品名:E5100)とした以外は、実施例8-1と同様にして積層体を得た。
 また、このようにして得られた積層体におけるポリエチレンの割合は、71質量%であった。
<Comparative Example 8-3>
A laminate was obtained in the same manner as in Example 8-1, except that the substrate was a biaxially stretched polyester film having a thickness of 12 μm (trade name: Toyobo Co., Ltd .: E5100).
The proportion of polyethylene in the laminate thus obtained was 71% by mass.
<実施例9-1>
 上記中密度ポリエチレンをインフレーション成形法により製膜し、厚さ100μmのポリエチレンフィルムを得た。
 このポリエチレンフィルムを長手方向(MD)に、5倍の延伸倍率で延伸し、厚さ20μmの基材を得た。基材のヘイズ値を、測定したところ、ヘイズ値は6.5%であった。
<Example 9-1>
The medium-density polyethylene was formed into a film by an inflation molding method to obtain a polyethylene film having a thickness of 100 μm.
This polyethylene film was stretched in the machine direction (MD) at a stretch ratio of 5 times to obtain a substrate having a thickness of 20 μm. When the haze value of the substrate was measured, the haze value was 6.5%.
 基材の一方の面に、上記水性フレキソインキを用いて、フレキソ印刷法により、画像を形成した。 (4) An image was formed on one surface of the substrate by the flexographic printing method using the aqueous flexographic ink.
 ヒートシール層として、厚さ40μmの上記ポリエチレンフィルムを準備し、この一方の面に、PVD法により厚さ20nmのアルミニウム蒸着膜を形成した。 (4) The above polyethylene film having a thickness of 40 μm was prepared as a heat seal layer, and a 20 nm-thick aluminum vapor-deposited film was formed on one surface of the polyethylene film by a PVD method.
 基材の画像形成面と、ヒートシール層の蒸着面とを、上記2液硬化型ウレタン系接着剤を介して、積層し、本発明の積層体を得た。
 なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、94質量%であった。
The image forming surface of the base material and the vapor-deposited surface of the heat seal layer were laminated via the two-component curable urethane-based adhesive to obtain a laminate of the present invention.
The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The ratio of polyethylene in the laminate thus obtained was 94% by mass.
<実施例9-2>
 上記高密度ポリエチレンおよび上記中密度ポリエチレンを、インフレーション成形法により製膜し、高密度ポリエチレン層/中密度ポリエチレン層/高密度ポリエチレン層からなるポリエチレンフィルムを作製した。高密度ポリエチレン層の厚さは、それぞれ20μm、中密度ポリエチレン層の厚さは、60μmであった。
 このポリエチレンフィルムを長手方向(MD)に、5倍の延伸倍率で延伸し、高密度ポリエチレン層の厚さがそれぞれ4μm、中密度ポリエチレン層の厚さが12μmである、総厚さ20μmの基材を得た。基材のヘイズ値を、測定したところ、ヘイズ値は8.9%であった。
<Example 9-2>
The high-density polyethylene and the medium-density polyethylene were formed into a film by an inflation molding method to prepare a polyethylene film composed of a high-density polyethylene layer / a medium-density polyethylene layer / a high-density polyethylene layer. The thickness of each of the high-density polyethylene layers was 20 μm, and the thickness of the medium-density polyethylene layer was 60 μm.
This polyethylene film is stretched in the longitudinal direction (MD) at a draw ratio of 5 times, and a high-density polyethylene layer having a thickness of 4 μm and a medium-density polyethylene layer having a thickness of 12 μm has a total thickness of 20 μm. I got When the haze value of the substrate was measured, the haze value was 8.9%.
 基材の一方の面に、上記水性フレキソインキを用いて、フレキソ印刷法により、画像を形成した。 (4) An image was formed on one surface of the substrate by the flexographic printing method using the aqueous flexographic ink.
 ヒートシール層として、厚さ40μmの上記ポリエチレンフィルムを準備し、この一方の面に、PVD法により厚さ20nmのアルミニウム蒸着膜を形成した。 (4) The above polyethylene film having a thickness of 40 μm was prepared as a heat seal layer, and a 20 nm-thick aluminum vapor-deposited film was formed on one surface of the polyethylene film by a PVD method.
 基材の画像形成面と、ヒートシール層の蒸着面とを、上記2液硬化型ウレタン系接着剤を介して、積層し、本発明の積層体を得た。
 なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、94質量%であった。
The image forming surface of the base material and the vapor-deposited surface of the heat seal layer were laminated via the two-component curable urethane-based adhesive to obtain a laminate of the present invention.
The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The ratio of polyethylene in the laminate thus obtained was 94% by mass.
<実施例9-3>
 上記中密度ポリエチレンをインフレーション成形法により製膜し、厚さ100μmのポリエチレンフィルムを得た。
 このポリエチレンフィルムを長手方向(MD)および幅方向(TD)に、2.24倍の延伸倍率で延伸し、厚さ20μmの基材を得た。基材のヘイズ値を、測定したところ、ヘイズ値は5.1%であった。
<Example 9-3>
The medium-density polyethylene was formed into a film by an inflation molding method to obtain a polyethylene film having a thickness of 100 μm.
This polyethylene film was stretched in the longitudinal direction (MD) and the width direction (TD) at a stretch ratio of 2.24 times to obtain a substrate having a thickness of 20 μm. When the haze value of the substrate was measured, the haze value was 5.1%.
 基材の一方の面に、上記水性フレキソインキを用いて、フレキソ印刷法により、画像を形成した。 (4) An image was formed on one surface of the substrate by the flexographic printing method using the aqueous flexographic ink.
 ヒートシール層として、厚さ40μmの上記ポリエチレンフィルムを準備し、この一方の面に、PVD法により厚さ20nmのアルミニウム蒸着膜を形成した。 (4) The above polyethylene film having a thickness of 40 μm was prepared as a heat seal layer, and a 20 nm-thick aluminum vapor-deposited film was formed on one surface of the polyethylene film by a PVD method.
 基材の画像形成面と、ヒートシール層の蒸着膜とを、上記2液硬化型ウレタン系接着剤を介して、積層し、本発明の積層体を得た。
 なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、94質量%であった。
The image forming surface of the substrate and the vapor-deposited film of the heat seal layer were laminated via the above-mentioned two-component curable urethane-based adhesive to obtain a laminate of the present invention.
The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The ratio of polyethylene in the laminate thus obtained was 94% by mass.
<実施例9-4>
 実施例9-1において、基材の画像形成面と、ヒートシール層の蒸着面との接着を、ポリエステルポリオールおよびイソシアネート化合物を含む2液硬化型接着剤(DIC(株)製、PASLIM VM001/VM102CP)により行った以外は、実施例9-1と同様にして、本発明の積層体を作製した。
<Example 9-4>
In Example 9-1, the adhesion between the image forming surface of the substrate and the vapor-deposited surface of the heat seal layer was determined by using a two-part curable adhesive containing a polyester polyol and an isocyanate compound (PASLIM VM001 / VM102CP manufactured by DIC Corporation). ), To produce a laminate of the present invention in the same manner as in Example 9-1.
<比較例9-1>
 上記中密度ポリエチレンをインフレーション成形法により製膜し、厚さ20μmの基材を得た。基材のヘイズ値を、測定したところ、ヘイズ値は23.5%であった。
<Comparative Example 9-1>
The medium-density polyethylene was formed into a film by an inflation molding method to obtain a base material having a thickness of 20 μm. When the haze value of the substrate was measured, the haze value was 23.5%.
 基材の一方の面に、上記水性フレキソインキを用いて、フレキソ印刷法により、画像を形成した。 (4) An image was formed on one surface of the substrate by the flexographic printing method using the aqueous flexographic ink.
 ヒートシール層として、厚さ40μmの上記ポリエチレンフィルムを準備し、この一方の面に、PVD法により厚さ20nmのアルミニウム蒸着膜を形成した。 (4) The above polyethylene film having a thickness of 40 μm was prepared as a heat seal layer, and a 20 nm-thick aluminum vapor-deposited film was formed on one surface of the polyethylene film by a PVD method.
 基材の画像形成面と、ヒートシール層の蒸着面とを、上記2液硬化型ウレタン系接着剤を介して、積層し、積層体を得た。
 なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、94質量%であった。
The image forming surface of the base material and the vapor-deposited surface of the heat seal layer were laminated via the two-component curable urethane-based adhesive to obtain a laminate.
The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The ratio of polyethylene in the laminate thus obtained was 94% by mass.
<比較例9-2>
 上記高密度ポリエチレンおよび上記中密度ポリエチレンを、インフレーション成形法により製膜し、高密度ポリエチレン層/中密度ポリエチレン層/高密度ポリエチレン層からなる基材を作製した。高密度ポリエチレン層の厚さは、それぞれ4μm、中密度ポリエチレン層の厚さは、12μmであった。基材のヘイズ値を、測定したところ、ヘイズ値は28.8%であった。
<Comparative Example 9-2>
The high-density polyethylene and the medium-density polyethylene were formed into a film by an inflation molding method to prepare a base material composed of a high-density polyethylene layer / a medium-density polyethylene layer / a high-density polyethylene layer. The thickness of the high-density polyethylene layer was 4 μm, and the thickness of the medium-density polyethylene layer was 12 μm. When the haze value of the substrate was measured, the haze value was 28.8%.
 基材の一方の面に、上記水性フレキソインキを用いて、フレキソ印刷法により、画像を形成した。 (4) An image was formed on one surface of the substrate by the flexographic printing method using the aqueous flexographic ink.
 ヒートシール層として、厚さ40μmの上記ポリエチレンフィルムを準備し、この一方の面に、PVD法により厚さ20nmのアルミニウム蒸着膜を形成した。 (4) The above polyethylene film having a thickness of 40 μm was prepared as a heat seal layer, and a 20 nm-thick aluminum vapor-deposited film was formed on one surface of the polyethylene film by a PVD method.
 基材の画像形成面と、ヒートシール層の蒸着面とを、上記2液硬化型ウレタン系接着剤を介して、積層し、積層体を得た。
 なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、97質量%であった。
The image forming surface of the base material and the vapor-deposited surface of the heat seal layer were laminated via the two-component curable urethane-based adhesive to obtain a laminate.
The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The proportion of polyethylene in the laminate thus obtained was 97% by mass.
<比較例9-3>
 基材を厚さ12μmの2軸延伸ポリエステルフィルム(東洋紡(株)商品名:E5100)とした以外は、実施例9-1と同様にして積層体を得た。このようにして得られた積層体におけるポリエチレンの割合は、71質量%であった。
<Comparative Example 9-3>
A laminate was obtained in the same manner as in Example 9-1 except that the base material was a biaxially stretched polyester film having a thickness of 12 μm (trade name: E5100, manufactured by Toyobo Co., Ltd.). The proportion of polyethylene in the thus obtained laminate was 71% by mass.
<実施例10-1>
 上記中密度ポリエチレンをインフレーション成形法により製膜し、厚さ100μmのポリエチレンフィルムを得た。
 このポリエチレンフィルムを長手方向(MD)に、5倍の延伸倍率で延伸し、厚さ20μmの基材を得た。基材のヘイズ値を、測定したところ、ヘイズ値は6.5%であった。
<Example 10-1>
The medium-density polyethylene was formed into a film by an inflation molding method to obtain a polyethylene film having a thickness of 100 μm.
This polyethylene film was stretched in the machine direction (MD) at a stretch ratio of 5 times to obtain a substrate having a thickness of 20 μm. When the haze value of the substrate was measured, the haze value was 6.5%.
 基材の一方の面に、上記水性フレキソインキを用いて、フレキソ印刷法により、画像を形成した。 (4) An image was formed on one surface of the substrate by the flexographic printing method using the aqueous flexographic ink.
 上記中密度ポリエチレンをインフレーション成形法により製膜し、厚さ100μmのポリエチレンフィルムを得た後、長手方向(MD)に、5倍の延伸倍率で延伸し、厚さ20μmのポリエチレン樹脂層を得た。次いで、該ポリエチレン樹脂層の一方の面に、PVD法により、厚さ20nmのアルミニウム蒸着膜を形成し、中間層を得た。 The above-mentioned medium-density polyethylene was formed into a film by an inflation molding method to obtain a polyethylene film having a thickness of 100 µm, and then stretched in the longitudinal direction (MD) at a stretch ratio of 5 times to obtain a polyethylene resin layer having a thickness of 20 µm. . Next, a 20 nm-thick aluminum vapor-deposited film was formed on one surface of the polyethylene resin layer by a PVD method to obtain an intermediate layer.
 基材の画像形成面を、中間層の蒸着面に、上記2液硬化型ウレタン系接着剤を介して積層した。2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。 (4) The image forming surface of the base material was laminated on the vapor deposition surface of the intermediate layer via the above two-component curable urethane-based adhesive. The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
 ヒートシール層として、厚さ40μmの上記ポリエチレンフィルムを準備し、中間層の非蒸着面に、上記2液硬化型ウレタン系接着剤を介して、積層し、本発明の積層体を得た。
 なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、92質量%であった。
The polyethylene film having a thickness of 40 μm was prepared as a heat seal layer, and was laminated on the non-deposited surface of the intermediate layer via the two-component curable urethane-based adhesive to obtain a laminate of the present invention.
The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The proportion of polyethylene in the laminate thus obtained was 92% by mass.
<実施例10-2>
 上記高密度ポリエチレンおよび上記中密度ポリエチレンを、インフレーション成形法により製膜し、高密度ポリエチレン層/中密度ポリエチレン層/高密度ポリエチレン層からなるポリエチレンフィルムを作製した。高密度ポリエチレン層の厚さは、それぞれ20μm、中密度ポリエチレン層の厚さは、60μmであった。
 このポリエチレンフィルムを長手方向(MD)に、5倍の延伸倍率で延伸し、高密度ポリエチレン層の厚さが、それぞれ4μm、中密度ポリエチレン層の厚さが、12μmである、総厚さ20μmの基材を得た。基材のヘイズ値を、測定したところ、ヘイズ値は8.9%であった。
<Example 10-2>
The high-density polyethylene and the medium-density polyethylene were formed into a film by an inflation molding method to prepare a polyethylene film composed of a high-density polyethylene layer / a medium-density polyethylene layer / a high-density polyethylene layer. The thickness of each of the high-density polyethylene layers was 20 μm, and the thickness of the medium-density polyethylene layer was 60 μm.
This polyethylene film is stretched in the longitudinal direction (MD) at a stretch ratio of 5 times, and the thickness of the high-density polyethylene layer is 4 μm, the thickness of the medium-density polyethylene layer is 12 μm, and the total thickness is 20 μm. A substrate was obtained. When the haze value of the substrate was measured, the haze value was 8.9%.
 基材の一方の面に、上記水性フレキソインキを用いて、フレキソ印刷法により、画像を形成した。 (4) An image was formed on one surface of the substrate by the flexographic printing method using the aqueous flexographic ink.
 上記高密度ポリエチレンおよび上記中密度ポリエチレンを、インフレーション成形法により製膜し、高密度ポリエチレン層/中密度ポリエチレン層/高密度ポリエチレン層からなるポリエチレンフィルムを作製した。高密度ポリエチレン層の厚さは、それぞれ20μm、中密度ポリエチレン層の厚さは、60μmであった。
 このポリエチレンフィルムを長手方向(MD)に、5倍の延伸倍率で延伸し、高密度ポリエチレン層の厚さが、それぞれ4μm、中密度ポリエチレン層の厚さが、12μmである、総厚さ20μmのポリエチレン樹脂層を得た。次いで、ポリエチレン樹脂層の一方の面に、PVD法により、厚さ20nmのアルミニウム蒸着膜を形成し、中間層を得た。
The high-density polyethylene and the medium-density polyethylene were formed into a film by an inflation molding method to prepare a polyethylene film composed of a high-density polyethylene layer / a medium-density polyethylene layer / a high-density polyethylene layer. The thickness of each of the high-density polyethylene layers was 20 μm, and the thickness of the medium-density polyethylene layer was 60 μm.
This polyethylene film is stretched in the longitudinal direction (MD) at a stretch ratio of 5 times, and the thickness of the high-density polyethylene layer is 4 μm, the thickness of the medium-density polyethylene layer is 12 μm, and the total thickness is 20 μm. A polyethylene resin layer was obtained. Next, a 20 nm-thick aluminum vapor-deposited film was formed on one surface of the polyethylene resin layer by a PVD method to obtain an intermediate layer.
 基材の画像形成面を、中間層の蒸着面に、上記2液硬化型ウレタン系接着剤を介して積層した。2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。 (4) The image forming surface of the base material was laminated on the vapor deposition surface of the intermediate layer via the above two-component curable urethane-based adhesive. The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
 ヒートシール層として、厚さ40μmの上記ポリエチレンフィルムを準備し、中間層の非蒸着面に、上記2液硬化型ウレタン系接着剤を介して、積層し、本発明の積層体を得た。
 なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、92質量%であった。
The polyethylene film having a thickness of 40 μm was prepared as a heat seal layer, and was laminated on the non-deposited surface of the intermediate layer via the two-component curable urethane-based adhesive to obtain a laminate of the present invention.
The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The proportion of polyethylene in the laminate thus obtained was 92% by mass.
<実施例10-3>
 上記中密度ポリエチレンをインフレーション成形法により製膜し、厚さ100μmのポリエチレンフィルムを得た。
 このポリエチレンフィルムを長手方向(MD)および幅方向(TD)に、2.24倍の延伸倍率で延伸し、厚さ20μmの基材を得た。基材のヘイズ値を、測定したところ、ヘイズ値は5.1%であった。
<Example 10-3>
The medium-density polyethylene was formed into a film by an inflation molding method to obtain a polyethylene film having a thickness of 100 μm.
This polyethylene film was stretched in the longitudinal direction (MD) and the width direction (TD) at a stretch ratio of 2.24 times to obtain a substrate having a thickness of 20 μm. When the haze value of the substrate was measured, the haze value was 5.1%.
 基材の一方の面に、上記水性フレキソインキを用いて、フレキソ印刷法により、画像を形成した。 (4) An image was formed on one surface of the substrate by the flexographic printing method using the aqueous flexographic ink.
 上記中密度ポリエチレンをインフレーション成形法により製膜し、厚さ100μmのポリエチレンフィルムを得た。
 このポリエチレンフィルムを長手方向(MD)および幅方向(TD)に、2.24倍の延伸倍率で延伸し、厚さ20μmのポリエチレン樹脂層を得た。次いで、該ポリエチレン樹脂層の一方の面に、PVD法により、厚さ20nmのアルミニウム蒸着膜を形成し、中間層を得た。
The medium-density polyethylene was formed into a film by an inflation molding method to obtain a polyethylene film having a thickness of 100 μm.
This polyethylene film was stretched in the longitudinal direction (MD) and the width direction (TD) at a stretch ratio of 2.24 times to obtain a polyethylene resin layer having a thickness of 20 μm. Next, a 20 nm-thick aluminum vapor-deposited film was formed on one surface of the polyethylene resin layer by a PVD method to obtain an intermediate layer.
 基材の画像形成面を、中間層の蒸着面に、上記2液硬化型ウレタン系接着剤を介して積層した。2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。 (4) The image forming surface of the base material was laminated on the vapor deposition surface of the intermediate layer via the above two-component curable urethane-based adhesive. The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
 ヒートシール層として、厚さ40μmの上記未延伸直鎖状低密度ポリエチレンフィルムを準備し、中間層の非蒸着面に、上記2液硬化型ウレタン系接着剤を介して、積層し、本発明の積層体を得た。
 なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、92質量%であった。
As the heat seal layer, the unstretched linear low-density polyethylene film having a thickness of 40 μm was prepared, and was laminated on the non-deposited surface of the intermediate layer via the two-part curable urethane-based adhesive. A laminate was obtained.
The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The proportion of polyethylene in the laminate thus obtained was 92% by mass.
<実施例10-4>
 実施例10-1において、基材の画像形成面と、中間層の蒸着面との接着を、ポリエステルポリオールおよびイソシアネート化合物を含む2液硬化型接着剤(DIC(株)製、PASLIM VM001/VM102CP)により行った以外は、実施例10-1と同様にして、本発明の積層体を作製した。
<Example 10-4>
In Example 10-1, the adhesion between the image forming surface of the substrate and the deposition surface of the intermediate layer was determined by using a two-part curable adhesive containing a polyester polyol and an isocyanate compound (PASLIM VM001 / VM102CP, manufactured by DIC Corporation). A laminate of the present invention was produced in the same manner as in Example 10-1, except that the above procedure was performed.
<比較例10-1>
 上記中密度ポリエチレンをインフレーション成形法により製膜し、厚さ20μmの基材を得た。基材のヘイズ値を、測定したところ、ヘイズ値は23.5%であった。
<Comparative Example 10-1>
The medium-density polyethylene was formed into a film by an inflation molding method to obtain a base material having a thickness of 20 μm. When the haze value of the substrate was measured, the haze value was 23.5%.
 基材の一方の面に、上記水性フレキソインキを用いて、フレキソ印刷法により、画像を形成した。 (4) An image was formed on one surface of the substrate by the flexographic printing method using the aqueous flexographic ink.
 上記中密度ポリエチレンをインフレーション成形法により製膜し、厚さ20μmのポリエチレン樹脂層を得た。次いで、該ポリエチレン樹脂層の一方の面に、PVD法により、厚さ20nmのアルミニウム蒸着膜を形成し、中間層を得た。 (4) The medium-density polyethylene was formed into a film by an inflation molding method to obtain a polyethylene resin layer having a thickness of 20 μm. Next, a 20 nm-thick aluminum vapor-deposited film was formed on one surface of the polyethylene resin layer by a PVD method to obtain an intermediate layer.
 基材の画像形成面を、中間層の蒸着面に、上記2液硬化型ウレタン系接着剤を介して積層した。2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。 (4) The image forming surface of the base material was laminated on the vapor deposition surface of the intermediate layer via the above two-component curable urethane-based adhesive. The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
 ヒートシール層として、厚さ40μmの上記ポリエチレンフィルムを準備し、中間層の非蒸着面に、上記2液硬化型ウレタン系接着剤を介して、積層し、積層体を得た。
 なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、92質量%であった。
The polyethylene film having a thickness of 40 μm was prepared as a heat seal layer, and was laminated on the non-deposited surface of the intermediate layer via the two-component curable urethane-based adhesive to obtain a laminate.
The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The proportion of polyethylene in the laminate thus obtained was 92% by mass.
<比較例10-2>
 上記高密度ポリエチレンおよび上記中密度ポリエチレンを、インフレーション成形法により製膜し、高密度ポリエチレン層/中密度ポリエチレン層/高密度ポリエチレン層からなる基材を作製した。高密度ポリエチレン層の厚さは、それぞれ4μm、中密度ポリエチレン層の厚さは、12μmであった。基材のヘイズ値を、測定したところ、ヘイズ値は23.5%であった。
<Comparative Example 10-2>
The high-density polyethylene and the medium-density polyethylene were formed into a film by an inflation molding method to prepare a base material composed of a high-density polyethylene layer / a medium-density polyethylene layer / a high-density polyethylene layer. The thickness of the high-density polyethylene layer was 4 μm, and the thickness of the medium-density polyethylene layer was 12 μm. When the haze value of the substrate was measured, the haze value was 23.5%.
 基材の一方の面に、上記水性フレキソインキを用いて、フレキソ印刷法により、画像を形成した。 (4) An image was formed on one surface of the substrate by the flexographic printing method using the aqueous flexographic ink.
 上記高密度ポリエチレンおよび上記中密度ポリエチレンを、インフレーション成形法により製膜し、高密度ポリエチレン層/中密度ポリエチレン層/高密度ポリエチレン層からなるポリエチレン樹脂層を作製した。高密度ポリエチレン層の厚さは、それぞれ4μm、中密度ポリエチレン層の厚さは、12μmであった。
 次いで、該ポリエチレン樹脂層の一方の面に、PVD法により、厚さ20nmのアルミニウム蒸着膜を形成し、中間層を得た。
The high-density polyethylene and the medium-density polyethylene were formed into a film by an inflation molding method to prepare a polyethylene resin layer composed of a high-density polyethylene layer / a medium-density polyethylene layer / a high-density polyethylene layer. The thickness of the high-density polyethylene layer was 4 μm, and the thickness of the medium-density polyethylene layer was 12 μm.
Next, a 20 nm-thick aluminum vapor-deposited film was formed on one surface of the polyethylene resin layer by a PVD method to obtain an intermediate layer.
 基材の画像形成面を、中間層の蒸着面に、上記2液硬化型ウレタン系接着剤を介して積層した。2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。 (4) The image forming surface of the base material was laminated on the vapor deposition surface of the intermediate layer via the above two-component curable urethane-based adhesive. The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
 ヒートシール層として、厚さ40μmの上記未延伸直鎖状低密度ポリエチレンフィルムを準備し、中間層の非蒸着面に、上記2液硬化型ウレタン系接着剤を介して、積層し、積層体を得た。
 なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、92質量%であった。
As the heat seal layer, the unstretched linear low-density polyethylene film having a thickness of 40 μm is prepared, and is laminated on the non-deposited surface of the intermediate layer via the two-component curable urethane-based adhesive. Obtained.
The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The proportion of polyethylene in the laminate thus obtained was 92% by mass.
<比較例10-3>
 基材および中間層のポリエチレン樹脂層を、厚さ12μmの2軸延伸ポリエステルフィルム(東洋紡(株)商品名:E5100)に変更した以外は、実施例10-1と同様にして積層体を得た。このようにして得られた積層体におけるポリエチレンの割合は、56質量%であった。
<Comparative Example 10-3>
A laminate was obtained in the same manner as in Example 10-1, except that the polyethylene resin layer as the base material and the intermediate layer was changed to a biaxially stretched polyester film having a thickness of 12 μm (trade name: E5100, Toyobo Co., Ltd.). . The proportion of polyethylene in the laminate thus obtained was 56% by mass.
<リサイクル性評価>
 上記実施例および比較例において得られた積層体のリサイクル性を下記評価基準に基づいて、評価した。評価結果を表7~10にまとめた。
(評価基準)
○:積層体におけるポリエチレンの含有量が90質量%以上であった。
×:積層体におけるポリエチレンの含有量が90質量%未満であった。
<Evaluation of recyclability>
The recyclability of the laminates obtained in the above Examples and Comparative Examples was evaluated based on the following evaluation criteria. The evaluation results are summarized in Tables 7 to 10.
(Evaluation criteria)
:: The content of polyethylene in the laminate was 90% by mass or more.
X: The content of polyethylene in the laminate was less than 90% by mass.
<耐熱性評価>
 上記実施例7-1~7-3および比較例7-1~7-2において得られた積層体から、縦110mm×横150mmの試験片をそれぞれ2枚ずつ作製した。
 2枚の試験片を、ヒートシール層が向かい合うように重ね合わせ、2辺を140℃でヒートシールし、筒状の胴部を形成した。
 次いで、上記実施例7-1~7-3および比較例7-1~7-2において得られた積層体から、縦110mm×横150mmの試験片を1枚作製し、これをヒートシール層が外側となるように、V字に折り、上記筒状の胴部と140℃でヒートシールし、底部を形成すると共に、スタンドパウチを作製した。
 上記実施例8-1~8-3および比較例8-1~8-2、実施例9-1~9-4および比較例9-1~9-2並びに実施例10-1~10-4および比較例10-1~10-3において得られた積層体から、縦80mm×横80mmの試験片をそれぞれ2枚ずつ作製した。
 2枚の試験片を、ヒートシール層が向かい合うように重ね合わせ、3辺を140℃でヒートシールし、包装袋を作製した。
 作製した包装材料を目視により観察し、以下の評価基準に基づいて、評価した。評価結果を表7~10にまとめた。
(評価基準)
○:包装材料表面にシワなどが発生しておらず、また、ヒートシールバーへの付着が見られなかった。
×:包装材料表面にシワなどが発生しており、また、ヒートシールバーへの付着が見られ、製袋できなかった。
<Heat resistance evaluation>
From the laminates obtained in Examples 7-1 to 7-3 and Comparative Examples 7-1 and 7-2, two test pieces each having a length of 110 mm and a width of 150 mm were produced.
The two test pieces were overlapped so that the heat seal layers faced each other, and heat sealed at 140 ° C. on two sides to form a cylindrical body.
Next, from the laminates obtained in the above Examples 7-1 to 7-3 and Comparative Examples 7-1 to 7-2, one test piece having a length of 110 mm and a width of 150 mm was prepared. It was folded into a V-shape so as to be on the outside, and was heat-sealed at 140 ° C. with the cylindrical body to form a bottom and a stand pouch.
Examples 8-1 to 8-3 and Comparative Examples 8-1 to 8-2, Examples 9-1 to 9-4, Comparative Examples 9-1 to 9-2, and Examples 10-1 to 10-4 From the laminates obtained in Comparative Examples 10-1 to 10-3, two test pieces each having a length of 80 mm and a width of 80 mm were produced.
The two test pieces were overlapped so that the heat seal layers faced each other, and three sides were heat-sealed at 140 ° C. to produce a packaging bag.
The prepared packaging material was visually observed and evaluated based on the following evaluation criteria. The evaluation results are summarized in Tables 7 to 10.
(Evaluation criteria)
:: No wrinkles or the like were generated on the surface of the packaging material, and no adhesion to the heat seal bar was observed.
X: Wrinkles and the like were generated on the surface of the packaging material, and adhesion to the heat seal bar was observed, and the bag could not be made.
<印刷適性評価>
 上記実施例および比較例において作製した積層体が備える基材に形成した画像を目視により観察し、以下の評価基準に基づいて、評価した。評価結果を表7~10にまとめた。
(評価基準)
○:印刷時の寸法安定性が良好であり、擦れ、滲みなどが生じていない良好な画像を形成することができていた。
×:印刷時にフィルムの伸び縮みが発生し、形成した画像に擦れや滲みが生じていた。
<Printability evaluation>
The images formed on the base material of the laminates prepared in the above Examples and Comparative Examples were visually observed and evaluated based on the following evaluation criteria. The evaluation results are summarized in Tables 7 to 10.
(Evaluation criteria)
:: Good dimensional stability at the time of printing, and a good image free from rubbing, bleeding, etc. could be formed.
X: The film was stretched and shrunk during printing, and the formed image was rubbed and blurred.
<剛性評価>
 上記実施例および比較例において作製した積層体を、10mm幅の試験片とし、ループスティフネス測定試験器(東洋精機製作所製、商品名:ループステフネステスタ)によりその剛性を測定した。なお、ループの長さは、60mmとした。測定結果を表7~10にまとめた。
<Rigidity evaluation>
The laminates prepared in the above Examples and Comparative Examples were used as test pieces having a width of 10 mm, and the rigidity thereof was measured using a loop stiffness measurement tester (trade name: Loop Stiffness Tester, manufactured by Toyo Seiki Seisaku-sho, Ltd.). The length of the loop was 60 mm. The measurement results are summarized in Tables 7 to 10.
<強度試験>
 上記実施例および比較例において作製した積層体を、引っ張り試験機(オリエンテック社製、商品名:RTC-1310A)により、直径0.5mmの針を突き刺した際の強度を測定した。なお、突き刺し速度は、50mm/分とした。測定結果を表7~10にまとめた。
<Strength test>
Using the tensile tester (trade name: RTC-1310A, manufactured by Orientec Co., Ltd.), the laminates prepared in the above Examples and Comparative Examples were measured for the strength when a needle having a diameter of 0.5 mm was pierced. The piercing speed was 50 mm / min. The measurement results are summarized in Tables 7 to 10.
<耐屈曲負荷性試験>
 まず、上記実施例9-1~9-4および比較例9-1~9-2並びに実施例10-1~10-4および比較例10-1~10-3で得られた積層体の酸素透過度および水蒸気透過度を測定した。
 酸素透過度の測定には、MOCON製 OXTRAN2/20を使用し、23℃、90%RHn条件下において、水蒸気透過度の測定には、MOCON製 PERMATRAN3/31を使用し、40℃、90%RHの条件下において、それぞれ測定した。
 さらに、上記実施例9-1~9-4および比較例9-1~9-2並びに実施例10-1~10-4および比較例10-1~10-3で得られた積層体について、ゲルボフレックステター(テスター産業(株)性、商品名:BE1006BE)を用い、ASTM F 392に準拠して屈曲負荷(ストローク:155mm、屈曲動作:440°)を5回与えた。
 屈曲負荷後、積層体の酸素透過度および水蒸気透過度を測定した。
 屈曲負荷性試験前後の積層体の酸素透過度および水蒸気透過度を表9および10に示す。
<Bending load resistance test>
First, the oxygen of the laminates obtained in the above Examples 9-1 to 9-4 and Comparative Examples 9-1 to 9-2 and Examples 10-1 to 10-4 and Comparative Examples 10-1 to 10-3 The permeability and water vapor permeability were measured.
OXTRAN 2/20 manufactured by MOCON is used for the measurement of oxygen permeability, and PERMATRAN 3/31 manufactured by MOCON is used for the measurement of water vapor permeability under the conditions of 23 ° C. and 90% RHn. Under the conditions described above, the measurement was performed.
Further, the laminates obtained in the above Examples 9-1 to 9-4 and Comparative Examples 9-1 to 9-2, and Examples 10-1 to 10-4 and Comparative Examples 10-1 to 10-3, A bending load (stroke: 155 mm, bending operation: 440 °) was applied five times according to ASTM F392 using a gelbo flex tester (Tester Sangyo Co., Ltd., trade name: BE1006BE).
After the bending load, the oxygen permeability and the water vapor permeability of the laminate were measured.
Tables 9 and 10 show the oxygen permeability and the water vapor permeability of the laminate before and after the bending load test.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
<実施例11-1>
 中密度ポリエチレン(密度:0.941g/cm、融点129℃、MFR:1.3g/10分、Dowchemical社製、商品名:Elite5538G)をインフレーション成形法により製膜し、厚さ100μmのポリエチレンフィルムを得た。
 このポリエチレンフィルムを長手方向(MD)に、5倍の延伸倍率で延伸し、厚さ20μmの中間層を得た。中間層のヘイズ値を、測定したところ、ヘイズ値は6.5%であった。
<Example 11-1>
Medium-density polyethylene (density: 0.941 g / cm 3 , melting point: 129 ° C., MFR: 1.3 g / 10 min, manufactured by Dow Chemical Company, trade name: Elite5538G) is formed into a film by an inflation molding method, and a polyethylene film having a thickness of 100 μm. I got
This polyethylene film was stretched in the longitudinal direction (MD) at a stretch ratio of 5 times to obtain an intermediate layer having a thickness of 20 μm. When the haze value of the intermediate layer was measured, the haze value was 6.5%.
 中間層の一方の面に、上記水性フレキソインキを用いて、フレキソ印刷法により、画像を形成した。 画像 An image was formed on one surface of the intermediate layer by the flexographic printing method using the aqueous flexographic ink.
 基材として、厚さ12μmのポリエチレンテレフタレートフィルム(東洋紡(株)製、商品名:E-5100)を準備し、該基材と、上記中間層の画像形成面とを、2液硬化型ウレタン系接着剤(ロックペイント(株)製、商品名:RU-77T/H-7)を用いて積層した。なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。 A polyethylene terephthalate film having a thickness of 12 μm (manufactured by Toyobo Co., Ltd., trade name: E-5100) is prepared as a base material, and the base material and the image forming surface of the intermediate layer are two-part curable urethane-based film. Lamination was carried out using an adhesive (trade name: RU-77T / H-7, manufactured by Rock Paint Co., Ltd.). The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
 ヒートシール層として、厚さ120μmの未延伸直鎖状低密度ポリエチレンフィルム(三井化学東セロ(株)、商品名:TUX-TCS)を準備し、該ヒートシール層と、中間層とを、上記2液硬化型ウレタン系接着剤を用いて積層し、本発明の積層体を得た。なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、88質量%であった。
As a heat seal layer, an unstretched linear low-density polyethylene film having a thickness of 120 μm (Mitsui Chemicals Tosello Co., Ltd., trade name: TUX-TCS) was prepared. Lamination was performed using a liquid-curable urethane-based adhesive to obtain a laminate of the present invention. The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The proportion of polyethylene in the laminate thus obtained was 88% by mass.
<実施例11-2>
 高密度ポリエチレン(密度:0.961g/cm、融点135℃、MFR:0.7g/10分、ExxonMobil社製、商品名:HTA108)および上記中密度ポリエチレンを、インフレーション成形法により製膜し、高密度ポリエチレン層/中密度ポリエチレン層/高密度ポリエチレン層からなるポリエチレンフィルムを作製した。高密度ポリエチレン層の厚さは、それぞれ20μm、中密度ポリエチレン層の厚さは、60μmであった。
 このポリエチレンフィルムを長手方向(MD)に、5倍の延伸倍率で延伸し、高密度ポリエチレン層の厚さがそれぞれ4μm、中密度ポリエチレン層の厚さが12μmである、総厚さ20μmの中間層を得た。中間層のヘイズ値を、測定したところ、ヘイズ値は8.9%であった。
<Example 11-2>
A high-density polyethylene (density: 0.961 g / cm 3 , melting point 135 ° C., MFR: 0.7 g / 10 min, manufactured by ExxonMobil, trade name: HTA108) and the above-described medium-density polyethylene were formed into a film by an inflation molding method. A polyethylene film consisting of a high-density polyethylene layer / medium-density polyethylene layer / high-density polyethylene layer was produced. The thickness of each of the high-density polyethylene layers was 20 μm, and the thickness of the medium-density polyethylene layer was 60 μm.
This polyethylene film is stretched in the longitudinal direction (MD) at a stretch ratio of 5 times, and a high-density polyethylene layer has a thickness of 4 μm and a medium-density polyethylene layer has a thickness of 12 μm, and has a total thickness of 20 μm. I got When the haze value of the intermediate layer was measured, the haze value was 8.9%.
 中間層の一方の面に、上記水性フレキソインキを用いて、フレキソ印刷法により、画像を形成した。 画像 An image was formed on one surface of the intermediate layer by the flexographic printing method using the aqueous flexographic ink.
 基材として、厚さ12μmの上記ポリエチレンテレフタレートフィルムを準備し、該基材と、上記中間層の画像形成面とを、上記2液硬化型ウレタン系接着剤を用いて積層した。なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。 12 The polyethylene terephthalate film having a thickness of 12 μm was prepared as a substrate, and the substrate and the image forming surface of the intermediate layer were laminated using the two-component curable urethane-based adhesive. The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
 ヒートシール層として、厚さ120μmの上記未延伸直鎖状低密度ポリエチレンフィルムを準備し、該ヒートシール層と、中間層とを、上記2液硬化型ウレタン系接着剤を用いて積層し、本発明の積層体を得た。なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、88質量%であった。
As the heat seal layer, the unstretched linear low-density polyethylene film having a thickness of 120 μm was prepared, and the heat seal layer and the intermediate layer were laminated using the two-part curable urethane-based adhesive. The laminate of the invention was obtained. The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The proportion of polyethylene in the laminate thus obtained was 88% by mass.
<実施例11-3>
 上記中密度ポリエチレンをインフレーション成形法により製膜し、厚さ100μmのポリエチレンフィルムを得た。
 このポリエチレンフィルムを長手方向(MD)および幅方向(TD)に、2.24倍の延伸倍率で延伸し、厚さ20μmの中間層を得た。中間層のヘイズ値を、測定したところ、ヘイズ値は5.1%であった。
<Example 11-3>
The medium-density polyethylene was formed into a film by an inflation molding method to obtain a polyethylene film having a thickness of 100 μm.
This polyethylene film was stretched in the longitudinal direction (MD) and the width direction (TD) at a stretch ratio of 2.24 times to obtain an intermediate layer having a thickness of 20 μm. When the haze value of the intermediate layer was measured, the haze value was 5.1%.
 中間層の一方の面に、上記水性フレキソインキを用いて、フレキソ印刷法により、画像を形成した。 画像 An image was formed on one surface of the intermediate layer by the flexographic printing method using the aqueous flexographic ink.
 基材として、厚さ12μmの上記ポリエチレンテレフタレートフィルムを準備し、該基材と、上記中間層の画像形成面とを、上記2液硬化型ウレタン系接着剤を用いて積層した。なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。 12 The polyethylene terephthalate film having a thickness of 12 μm was prepared as a substrate, and the substrate and the image forming surface of the intermediate layer were laminated using the two-component curable urethane-based adhesive. The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
 ヒートシール層として、厚さ120μmの上記未延伸直鎖状低密度ポリエチレンフィルムを準備し、該ヒートシール層と、中間層とを、上記2液硬化型ウレタン系接着剤を用いて積層し、本発明の積層体を得た。なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、88質量%であった。
As the heat seal layer, the unstretched linear low-density polyethylene film having a thickness of 120 μm was prepared, and the heat seal layer and the intermediate layer were laminated using the two-part curable urethane-based adhesive. The laminate of the invention was obtained. The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The proportion of polyethylene in the laminate thus obtained was 88% by mass.
<実施例11-4>
 上記中密度ポリエチレンをインフレーション成形法により製膜し、厚さ100μmのポリエチレンフィルムを得た。
 このポリエチレンフィルムを長手方向(MD)に、5倍の延伸倍率で延伸し、厚さ20μmの中間層を得た。中間層のヘイズ値を、測定したところ、ヘイズ値は6.5%であった。
<Example 11-4>
The medium-density polyethylene was formed into a film by an inflation molding method to obtain a polyethylene film having a thickness of 100 μm.
This polyethylene film was stretched in the longitudinal direction (MD) at a stretch ratio of 5 times to obtain an intermediate layer having a thickness of 20 μm. When the haze value of the intermediate layer was measured, the haze value was 6.5%.
 基材の一方の面に、PVD法により厚さ20nmのアルミニウム蒸着膜を形成した。 (4) A 20 nm-thick aluminum vapor-deposited film was formed on one surface of the substrate by a PVD method.
 基材として、厚さ12μmの上記ポリエチレンテレフタレートフィルムを準備し、該基材の蒸着膜形成面と、上記中間層とを、上記2液硬化型ウレタン系接着剤を用いて積層した。なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。 (4) The above-mentioned polyethylene terephthalate film having a thickness of 12 μm was prepared as a substrate, and the surface on which the vapor-deposited film was formed of the substrate and the above-mentioned intermediate layer were laminated using the above-mentioned two-component curable urethane-based adhesive. The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
 ヒートシール層として、厚さ120μmの上記未延伸直鎖状低密度ポリエチレンフィルムを準備し、該ヒートシール層と、中間層とを、上記2液硬化型ウレタン系接着剤を用いて積層し、本発明の積層体を得た。なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、88質量%であった。
As the heat seal layer, the unstretched linear low-density polyethylene film having a thickness of 120 μm was prepared, and the heat seal layer and the intermediate layer were laminated using the two-part curable urethane-based adhesive. The laminate of the invention was obtained. The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The proportion of polyethylene in the laminate thus obtained was 88% by mass.
<実施例11-5>
 該基材の蒸着膜形成面と、上記中間層との接着を、ポリエステルポリオールおよびイソシアネート化合物を含む2液硬化型接着剤(DIC(株)製、PASLIM VM001/VM102CP)により行った以外は、実施例11-4と同様にして、本発明の積層体を作製した。
 また、このようにして得られた積層体におけるポリエチレンの割合は、88質量%であった。
<Example 11-5>
The procedure was carried out except that the adhesion between the surface of the base material on which the vapor-deposited film was formed and the above-mentioned intermediate layer was carried out using a two-part curable adhesive containing a polyester polyol and an isocyanate compound (PASLIM VM001 / VM102CP, manufactured by DIC Corporation). A laminate of the present invention was produced in the same manner as in Example 11-4.
The proportion of polyethylene in the laminate thus obtained was 88% by mass.
<比較例11-1>
 上記中密度ポリエチレンをインフレーション成形法により製膜し、厚さ20μmの中間層を得た。中間層のヘイズ値を、測定したところ、ヘイズ値は23.5%であった。
<Comparative Example 11-1>
The medium-density polyethylene was formed into a film by an inflation molding method to obtain an intermediate layer having a thickness of 20 μm. When the haze value of the intermediate layer was measured, the haze value was 23.5%.
 中間層の一方の面に、上記水性フレキソインキを用いて、フレキソ印刷法により、画像を形成した。 画像 An image was formed on one surface of the intermediate layer by the flexographic printing method using the aqueous flexographic ink.
 基材として、厚さ12μmの上記ポリエチレンテレフタレートフィルムを準備し、該基材と、上記中間層の画像形成面とを、上記2液硬化型ウレタン系接着剤を用いて積層した。なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。 12 The polyethylene terephthalate film having a thickness of 12 μm was prepared as a substrate, and the substrate and the image forming surface of the intermediate layer were laminated using the two-component curable urethane-based adhesive. The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
 ヒートシール層として、厚さ120μmの上記未延伸直鎖状低密度ポリエチレンフィルムを準備し、該ヒートシール層と、中間層とを、上記2液硬化型ウレタン系接着剤を用いて積層し、積層体を得た。なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、88質量%であった。
As the heat seal layer, the unstretched linear low-density polyethylene film having a thickness of 120 μm is prepared, and the heat seal layer and the intermediate layer are laminated using the two-part curable urethane-based adhesive. I got a body. The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The proportion of polyethylene in the laminate thus obtained was 88% by mass.
<比較例11-2>
 上記高密度ポリエチレンおよび上記中密度ポリエチレンを、インフレーション成形法により製膜し、高密度ポリエチレン層/中密度ポリエチレン層/高密度ポリエチレン層からなる中間層を作製した。高密度ポリエチレン層の厚さは、それぞれ4μm、中密度ポリエチレン層の厚さは、12μmであった。中間層のヘイズ値を、測定したところ、ヘイズ値は28.8%であった。
<Comparative Example 11-2>
The high-density polyethylene and the medium-density polyethylene were formed into a film by an inflation molding method to prepare an intermediate layer composed of a high-density polyethylene layer / a medium-density polyethylene layer / a high-density polyethylene layer. The thickness of the high-density polyethylene layer was 4 μm, and the thickness of the medium-density polyethylene layer was 12 μm. When the haze value of the intermediate layer was measured, the haze value was 28.8%.
 中間層の一方の面に、上記水性フレキソインキを用いて、フレキソ印刷法により、画像を形成した。 画像 An image was formed on one surface of the intermediate layer by the flexographic printing method using the aqueous flexographic ink.
 基材として、厚さ12μmの上記ポリエチレンテレフタレートフィルムを準備し、該基材と、上記中間層の画像形成面とを、上記2液硬化型ウレタン系接着剤を用いて積層した。なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。 12 The polyethylene terephthalate film having a thickness of 12 μm was prepared as a substrate, and the substrate and the image forming surface of the intermediate layer were laminated using the two-component curable urethane-based adhesive. The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
 ヒートシール層として、厚さ120μmの上記未延伸直鎖状低密度ポリエチレンフィルムを準備し、該ヒートシール層と、中間層とを、上記2液硬化型ウレタン系接着剤を用いて積層し、積層体を得た。なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、88質量%であった。
As the heat seal layer, the unstretched linear low-density polyethylene film having a thickness of 120 μm is prepared, and the heat seal layer and the intermediate layer are laminated using the two-part curable urethane-based adhesive. I got a body. The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The proportion of polyethylene in the laminate thus obtained was 88% by mass.
<比較例11-3>
 中間層を、厚さ15μmのナイロンフィルム(ユニチカ社製、商品名:エンブレム ONBC)に変更した以外は、実施例11-1と同様にして、積層体を得た。
 また、このようにして得られた積層体におけるポリエチレンの割合は、78質量%であった。
<Comparative Example 11-3>
A laminate was obtained in the same manner as in Example 11-1, except that the intermediate layer was changed to a nylon film having a thickness of 15 μm (trade name: Emblem ONBC, manufactured by Unitika Ltd.).
The proportion of polyethylene in the laminate thus obtained was 78% by mass.
<リサイクル性評価>
 上記実施例および比較例において得られた積層体のリサイクル性を下記評価基準に基づいて、評価した。評価結果を表11にまとめた。
(評価基準)
○:積層体におけるポリエチレンの含有量が80質量%以上であった。
×:積層体におけるポリエチレンの含有量が80質量%未満であった。
<Evaluation of recyclability>
The recyclability of the laminates obtained in the above Examples and Comparative Examples was evaluated based on the following evaluation criteria. Table 11 summarizes the evaluation results.
(Evaluation criteria)
:: The content of polyethylene in the laminate was 80% by mass or more.
X: The content of polyethylene in the laminate was less than 80% by mass.
<耐熱性評価>
 上記実施例11-1~11-5および比較例11-1~11-3において得られた積層体から、縦110mm×横150mmの試験片をそれぞれ2枚ずつ作製した。
 2枚の試験片を、ヒートシール層が向かい合うように重ね合わせ、2辺を140℃でヒートシールし、筒状の胴部を形成した。
 次いで、上記実施例11-1~11-5および比較例11-1~11-3において得られた積層体から、縦110mm×横150mmの試験片を1枚作製し、これをヒートシール層が外側となるように、V字に折り、上記筒状の胴部と140℃でヒートシールし、底部を形成すると共に、スタンドパウチ状の包装材料を作製した。
 作製した包装材料を目視により観察し、以下の評価基準に基づいて、評価した。評価結果を表11にまとめた。
(評価基準)
○:包装材料表面にシワなどが発生しておらず、また、ヒートシールバーへの付着が見られなかった。
×:包装材料表面にシワなどが発生しており、また、ヒートシールバーへの付着が見られ、製袋できなかった。
<Heat resistance evaluation>
From the laminates obtained in the above Examples 11-1 to 11-5 and Comparative Examples 11-1 to 11-3, two test pieces each having a length of 110 mm and a width of 150 mm were produced.
The two test pieces were overlapped so that the heat seal layers faced each other, and heat sealed at 140 ° C. on two sides to form a cylindrical body.
Next, one test piece having a length of 110 mm and a width of 150 mm was prepared from the laminate obtained in Examples 11-1 to 11-5 and Comparative Examples 11-1 to 11-3, and this was used as a heat seal layer. It was folded into a V-shape so as to be on the outside, and was heat-sealed at 140 ° C. with the cylindrical body to form a bottom and a stand-pouch-shaped packaging material.
The prepared packaging material was visually observed and evaluated based on the following evaluation criteria. Table 11 summarizes the evaluation results.
(Evaluation criteria)
:: No wrinkles or the like were generated on the surface of the packaging material, and no adhesion to the heat seal bar was observed.
X: Wrinkles and the like were generated on the surface of the packaging material, and adhesion to the heat seal bar was observed, and the bag could not be made.
<印刷適性評価>
 上記実施例および比較例において作製した積層体が備えるポリエチレン樹脂およびナイロンフィルムに形成した画像を目視により観察し、その印刷適性を以下の評価基準に基づいて、評価した。評価結果を表11にまとめた。
(評価基準)
○:印刷時の寸法安定性が良好であり、擦れ、滲みなどが生じていない良好な画像を形成することができていた。
×:印刷時にフィルムの伸び縮みが発生し、形成した画像に擦れや滲みが生じていた。
<Printability evaluation>
Images formed on the polyethylene resin and the nylon film included in the laminates prepared in the above Examples and Comparative Examples were visually observed, and their printability was evaluated based on the following evaluation criteria. Table 11 summarizes the evaluation results.
(Evaluation criteria)
:: Good dimensional stability at the time of printing, and a good image free from rubbing, bleeding, etc. could be formed.
X: The film was stretched and shrunk during printing, and the formed image was rubbed and blurred.
<剛性評価>
 上記実施例および比較例において作製した積層体を、10mm幅の試験片とし、ループスティフネス測定試験器(東洋精機製作所製、商品名:ループステフネステスタ)によりその剛性を測定した。なお、ループの長さは、60mmとした。測定結果を表11にまとめた。
<Rigidity evaluation>
The laminates prepared in the above Examples and Comparative Examples were used as test pieces having a width of 10 mm, and the rigidity thereof was measured using a loop stiffness measurement tester (trade name: Loop Stiffness Tester, manufactured by Toyo Seiki Seisaku-sho, Ltd.). The length of the loop was 60 mm. Table 11 summarizes the measurement results.
<強度試験>
 上記実施例および比較例において作製した積層体を、引っ張り試験機(オリエンテック社製、商品名:RTC-1310A)により、直径0.5mmの針を突き刺した際の強度を測定した。なお、突き刺し速度は、50mm/分とした。測定結果を表11にまとめた。
<Strength test>
Using the tensile tester (trade name: RTC-1310A, manufactured by Orientec Co., Ltd.), the laminates prepared in the above Examples and Comparative Examples were measured for the strength when a needle having a diameter of 0.5 mm was pierced. The piercing speed was 50 mm / min. Table 11 summarizes the measurement results.
<耐屈曲負荷性試験>
 まず、上記実施例11-4および11-5で得られた積層体の酸素透過度および水蒸気透過度を測定した。酸素透過度の測定には、MOCON製 OXTRAN2/20を使用し、23℃、90%RHn条件下において、水蒸気透過度の測定には、MOCON製 PERMATRAN3/31を使用し、40℃、90%RHの条件下において、それぞれ測定した。
 さらに、上記実施例4および5で得られた積層体について、ゲルボフレックステター(テスター産業(株)性、商品名:BE1006BE)を用い、ASTM F 392に準拠して屈曲負荷(ストローク:155mm、屈曲動作:440°)を5回与えた。
 屈曲負荷後、積層体の酸素透過度および水蒸気透過度を測定した。
 屈曲負荷性試験前後の積層体の酸素透過度および水蒸気透過度を表11に示す。
Figure JPOXMLDOC01-appb-T000018
<Bending load resistance test>
First, the oxygen permeability and the water vapor permeability of the laminates obtained in Examples 11-4 and 11-5 were measured. OXTRAN 2/20 manufactured by MOCON is used for the measurement of oxygen permeability, and PERMATRAN 3/31 manufactured by MOCON is used for the measurement of water vapor permeability under the conditions of 23 ° C. and 90% RHn. Under the conditions described above, the measurement was performed.
Further, for the laminates obtained in Examples 4 and 5, a bending load (stroke: 155 mm, stroke: 155 mm, based on ASTM F392) using a gelbo flex tester (Tester Sangyo Co., Ltd., trade name: BE1006BE). Bending operation: 440 °) five times.
After the bending load, the oxygen permeability and the water vapor permeability of the laminate were measured.
Table 11 shows the oxygen permeability and the water vapor permeability of the laminate before and after the bending load test.
Figure JPOXMLDOC01-appb-T000018
<実施例12-1>
 中密度ポリエチレン(密度:0.941g/cm、融点129℃、MFR:1.3g/10分、Dowchemical社製、商品名:Elite5538G)をインフレーション成形法により製膜し、厚さ100μmのポリエチレンフィルムを得た。
 このポリエチレンフィルムを長手方向(MD)に、5倍の延伸倍率で延伸し、厚さ20μmの中間層を得た。中間層のヘイズ値を、測定したところ、ヘイズ値は6.5%であった。
<Example 12-1>
Medium-density polyethylene (density: 0.941 g / cm 3 , melting point: 129 ° C., MFR: 1.3 g / 10 min, manufactured by Dow Chemical Company, trade name: Elite5538G) is formed into a film by an inflation molding method, and a polyethylene film having a thickness of 100 μm. I got
This polyethylene film was stretched in the longitudinal direction (MD) at a stretch ratio of 5 times to obtain an intermediate layer having a thickness of 20 μm. When the haze value of the intermediate layer was measured, the haze value was 6.5%.
 中間層の一方の面に、上記水性フレキソインキを用いて、フレキソ印刷法により、画像を形成した。 画像 An image was formed on one surface of the intermediate layer by the flexographic printing method using the aqueous flexographic ink.
 基材として、厚さ12μmのポリエチレンテレフタレートフィルム(東洋紡(株)製、商品名:E-5100)を準備し、該基材と、上記中間層Aの画像形成面とを、2液硬化型ウレタン系接着剤(ロックペイント(株)製、商品名:RU-77T/H-7)を用いて積層した。なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。 A polyethylene terephthalate film having a thickness of 12 μm (manufactured by Toyobo Co., Ltd., trade name: E-5100) was prepared as a base material, and the base and the image forming surface of the intermediate layer A were two-part curable urethane. The layers were laminated using a system adhesive (trade name: RU-77T / H-7, manufactured by Rock Paint Co., Ltd.). The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
 ヒートシール層として、直鎖状低密度ポリエチレン(密度:0.925、MFR:1.9g/10分、プライムポリマー製、商品名:SP2520)とバイオマス由来の直鎖状低密度ポリエチレン(密度:0.916g/cm、MFR:1.3g/10分、バイオマス度:87%、Braskem製、商品名:SLL18)をインフレーション成形法により製膜し、直鎖状低密度ポリエチレン層/バイオマス由来の直鎖状低密度ポリエチレン層/直鎖状低密度ポリエチレン層からなるポリエチレンフィルムを作製した。
 直鎖状低密度ポリエチレン層の厚さは、それぞれ30μm、バイオマス由来の直鎖状低密度ポリエチレン層の厚さは、60μmであり、総厚み120μmであった。これを、基材Aの画像形成面に、2液硬化型ウレタン系接着剤(ロックペイント(株)製、商品名:RU-77T/H-7)を介して、中間層と積層し、本発明の積層体を得た。なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、88質量%であった。
As the heat seal layer, linear low-density polyethylene (density: 0.925, MFR: 1.9 g / 10 min, made of Prime Polymer, trade name: SP2520) and linear low-density polyethylene derived from biomass (density: 0) .916 g / cm 3 , MFR: 1.3 g / 10 min, biomass degree: 87%, manufactured by Braskem, trade name: SLL18), and formed into a film by an inflation molding method. A polyethylene film composed of a chain low-density polyethylene layer / a linear low-density polyethylene layer was produced.
The thickness of each of the linear low-density polyethylene layers was 30 μm, the thickness of the biomass-derived linear low-density polyethylene layer was 60 μm, and the total thickness was 120 μm. This is laminated with an intermediate layer on the image forming surface of the substrate A via a two-component curable urethane adhesive (trade name: RU-77T / H-7, manufactured by Rock Paint Co., Ltd.). The laminate of the invention was obtained. The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The proportion of polyethylene in the laminate thus obtained was 88% by mass.
<実施例12-2>
 高密度ポリエチレン(密度:0.961g/cm、融点135℃、MFR:0.7g/10分、ExxonMobil社製、商品名:HTA108)および上記中密度ポリエチレンを、インフレーション成形法により製膜し、高密度ポリエチレン層/中密度ポリエチレン層/高密度ポリエチレン層からなるポリエチレンフィルムを作製した。高密度ポリエチレン層の厚さは、それぞれ20μm、中密度ポリエチレン層の厚さは、60μmであった。
 このポリエチレンフィルムを長手方向(MD)に、5倍の延伸倍率で延伸し、高密度ポリエチレン層の厚さがそれぞれ4μm、中密度ポリエチレン層の厚さが12μmである、総厚さ20μmの中間層を得た。中間層のヘイズ値を、測定したところ、ヘイズ値は8.9%であった。
<Example 12-2>
A high-density polyethylene (density: 0.961 g / cm 3 , melting point 135 ° C., MFR: 0.7 g / 10 min, manufactured by ExxonMobil, trade name: HTA108) and the above-described medium-density polyethylene were formed into a film by an inflation molding method. A polyethylene film consisting of a high-density polyethylene layer / medium-density polyethylene layer / high-density polyethylene layer was produced. The thickness of each of the high-density polyethylene layers was 20 μm, and the thickness of the medium-density polyethylene layer was 60 μm.
This polyethylene film is stretched in the longitudinal direction (MD) at a stretch ratio of 5 times, and a high-density polyethylene layer has a thickness of 4 μm and a medium-density polyethylene layer has a thickness of 12 μm, and has a total thickness of 20 μm. I got When the haze value of the intermediate layer was measured, the haze value was 8.9%.
 中間層の一方の面に、上記水性フレキソインキを用いて、フレキソ印刷法により、画像を形成した。 画像 An image was formed on one surface of the intermediate layer by the flexographic printing method using the aqueous flexographic ink.
 基材として、厚さ12μmの上記ポリエチレンテレフタレートフィルムを準備し、該基材と、上記中間層の画像形成面とを、上記2液硬化型ウレタン系接着剤を用いて積層した。なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。 12 The polyethylene terephthalate film having a thickness of 12 μm was prepared as a substrate, and the substrate and the image forming surface of the intermediate layer were laminated using the two-component curable urethane-based adhesive. The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
 ヒートシール層として、厚さ120μmの上記ポリエチレンフィルムを準備し、該ヒートシール層と、中間層とを、上記2液硬化型ウレタン系接着剤を用いて積層し、本発明の積層体を得た。なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、88質量%であった。
As the heat seal layer, the above-mentioned polyethylene film having a thickness of 120 μm was prepared, and the heat seal layer and the intermediate layer were laminated using the two-part curable urethane-based adhesive to obtain a laminate of the present invention. . The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The proportion of polyethylene in the laminate thus obtained was 88% by mass.
<実施例12-3>
 上記中密度ポリエチレンをインフレーション成形法により製膜し、厚さ100μmのポリエチレンフィルムを得た。
 このポリエチレンフィルムを長手方向(MD)および幅方向(TD)に、2.24倍の延伸倍率で延伸し、厚さ20μmの中間層を得た。中間層のヘイズ値を、測定したところ、ヘイズ値は5.1%であった。
<Example 12-3>
The medium-density polyethylene was formed into a film by an inflation molding method to obtain a polyethylene film having a thickness of 100 μm.
This polyethylene film was stretched in the longitudinal direction (MD) and the width direction (TD) at a stretch ratio of 2.24 times to obtain an intermediate layer having a thickness of 20 μm. When the haze value of the intermediate layer was measured, the haze value was 5.1%.
 中間層の一方の面に、上記水性フレキソインキを用いて、フレキソ印刷法により、画像を形成した。 画像 An image was formed on one surface of the intermediate layer by the flexographic printing method using the aqueous flexographic ink.
 基材として、厚さ12μmの上記ポリエチレンテレフタレートフィルムを準備し、該基材と、上記中間層の画像形成面とを、上記2液硬化型ウレタン系接着剤を用いて積層した。なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。 12 The polyethylene terephthalate film having a thickness of 12 μm was prepared as a substrate, and the substrate and the image forming surface of the intermediate layer were laminated using the two-component curable urethane-based adhesive. The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
 ヒートシール層として、厚さ120μmの上記ポリエチレンフィルムを準備し、該ヒートシール層と、中間層とを、上記2液硬化型ウレタン系接着剤を用いて積層し、本発明の積層体を得た。なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、88質量%であった。
As the heat seal layer, the above-mentioned polyethylene film having a thickness of 120 μm was prepared, and the heat seal layer and the intermediate layer were laminated using the two-part curable urethane-based adhesive to obtain a laminate of the present invention. . The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The proportion of polyethylene in the laminate thus obtained was 88% by mass.
<実施例12-4>
 上記中密度ポリエチレンをインフレーション成形法により製膜し、厚さ100μmのポリエチレンフィルムを得た。
 このポリエチレンフィルムを長手方向(MD)に、5倍の延伸倍率で延伸し、厚さ20μmの中間層を得た。中間層のヘイズ値を、測定したところ、ヘイズ値は6.5%であった。
<Example 12-4>
The medium-density polyethylene was formed into a film by an inflation molding method to obtain a polyethylene film having a thickness of 100 μm.
This polyethylene film was stretched in the longitudinal direction (MD) at a stretch ratio of 5 times to obtain an intermediate layer having a thickness of 20 μm. When the haze value of the intermediate layer was measured, the haze value was 6.5%.
 基材として、厚さ12μmの上記ポリエチレンテレフタレートフィルムを準備し、基材の一方の面に、PVD法により厚さ0.02μmのアルミニウム蒸着膜を形成した。該基材の蒸着膜形成面と、上記中間層とを、上記2液硬化型ウレタン系接着剤を用いて積層した。なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。 (4) The above polyethylene terephthalate film having a thickness of 12 μm was prepared as a base material, and an aluminum vapor-deposited film having a thickness of 0.02 μm was formed on one surface of the base material by a PVD method. The surface of the substrate on which the deposited film was formed and the intermediate layer were laminated using the two-component curable urethane-based adhesive. The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
 ヒートシール層として、厚さ120μmの上記ポリエチレンフィルムを準備し、該ヒートシール層と、中間層とを、上記2液化型ウレタン系接着剤を用いて積層し、本発明の積層体を得た。なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、88質量%であった。
The above-mentioned polyethylene film having a thickness of 120 μm was prepared as a heat seal layer, and the heat seal layer and the intermediate layer were laminated using the two-liquid type urethane-based adhesive to obtain a laminate of the present invention. The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The proportion of polyethylene in the laminate thus obtained was 88% by mass.
<実施例12-5>
 該基材の蒸着膜形成面と、上記中間層Dとの接着を、ポリエステルポリオールおよびイソシアネート化合物を含む2液硬化型接着剤(DIC(株)製、PASLIM VM001/VM102CP)により行った以外は、実施例12-4と同様にして、本発明の積層体を作製した。
 また、このようにして得られた積層体におけるポリエチレンの割合は、88質量%であった。
<Example 12-5>
Except that the adhesion between the vapor-deposited film forming surface of the base material and the intermediate layer D was performed using a two-part curable adhesive containing a polyester polyol and an isocyanate compound (DIC Corporation, PASLIM VM001 / VM102CP). A laminate of the present invention was produced in the same manner as in Example 12-4.
The proportion of polyethylene in the laminate thus obtained was 88% by mass.
<比較例12-1>
 上記中密度ポリエチレンをインフレーション成形法により製膜し、厚さ20μmの中間層を得た。中間層のヘイズ値を、測定したところ、ヘイズ値は23.5%であった。
<Comparative Example 12-1>
The medium-density polyethylene was formed into a film by an inflation molding method to obtain an intermediate layer having a thickness of 20 μm. When the haze value of the intermediate layer was measured, the haze value was 23.5%.
 中間層の一方の面に、上記水性フレキソインキを用いて、フレキソ印刷法により、画像を形成した。 画像 An image was formed on one surface of the intermediate layer by the flexographic printing method using the aqueous flexographic ink.
 基材として、厚さ12μmの上記ポリエチレンテレフタレートフィルムを準備し、該基材と、上記中間層の画像形成面とを、上記2液硬化型ウレタン系接着剤を用いて積層した。なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。 12 The polyethylene terephthalate film having a thickness of 12 μm was prepared as a substrate, and the substrate and the image forming surface of the intermediate layer were laminated using the two-component curable urethane-based adhesive. The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
 ヒートシール層として、厚さ120μmの上記ポリエチレンフィルムを準備し、該ヒートシール層と、中間層とを、上記2液硬化型ウレタン系接着剤を用いて積層し、積層体を得た。なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、88質量%であった。
The polyethylene film having a thickness of 120 μm was prepared as a heat seal layer, and the heat seal layer and the intermediate layer were laminated using the two-part curable urethane-based adhesive to obtain a laminate. The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The proportion of polyethylene in the laminate thus obtained was 88% by mass.
<比較例12-2>
 上記高密度ポリエチレンおよび上記中密度ポリエチレンを、インフレーション成形法により製膜し、高密度ポリエチレン層/中密度ポリエチレン層/高密度ポリエチレン層からなる中間層を作製した。高密度ポリエチレン層の厚さは、それぞれ4μm、中密度ポリエチレン層の厚さは、12μmであった。中間層のヘイズ値を、測定したところ、ヘイズ値は28.8%であった。
<Comparative Example 12-2>
The high-density polyethylene and the medium-density polyethylene were formed into a film by an inflation molding method to prepare an intermediate layer composed of a high-density polyethylene layer / a medium-density polyethylene layer / a high-density polyethylene layer. The thickness of the high-density polyethylene layer was 4 μm, and the thickness of the medium-density polyethylene layer was 12 μm. When the haze value of the intermediate layer was measured, the haze value was 28.8%.
 中間層の一方の面に、上記水性フレキソインキを用いて、フレキソ印刷法により、画像を形成した。 画像 An image was formed on one surface of the intermediate layer by the flexographic printing method using the aqueous flexographic ink.
 基材として、厚さ12μmの上記ポリエチレンテレフタレートフィルムを準備し、該基材と、上記中間層の画像形成面とを、上記2液硬化型ウレタン系接着剤を用いて積層した。なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。 12 The polyethylene terephthalate film having a thickness of 12 μm was prepared as a substrate, and the substrate and the image forming surface of the intermediate layer were laminated using the two-component curable urethane-based adhesive. The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
 ヒートシール層として、厚さ120μmの上記ポリエチレンフィルムを準備し、該ヒートシール層と、中間層とを、上記2液硬化型ウレタン系接着剤を用いて積層し、積層体を得た。なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、88質量%であった。
The polyethylene film having a thickness of 120 μm was prepared as a heat seal layer, and the heat seal layer and the intermediate layer were laminated using the two-part curable urethane-based adhesive to obtain a laminate. The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The proportion of polyethylene in the laminate thus obtained was 88% by mass.
<比較例12-3>
 中間層を、厚さ15μmのナイロンフィルム(ユニチカ社製、商品名:エンブレム ONBC)に変更した以外は、実施例12-1と同様にして、積層体を得た。
 また、このようにして得られた積層体におけるポリエチレンの割合は、78質量%であった。
<Comparative Example 12-3>
A laminate was obtained in the same manner as in Example 12-1, except that the intermediate layer was changed to a nylon film having a thickness of 15 μm (trade name: Emblem ONBC, manufactured by Unitika Ltd.).
The proportion of polyethylene in the laminate thus obtained was 78% by mass.
<リサイクル性評価>
 上記実施例および比較例において得られた積層体のリサイクル性を下記評価基準に基づいて、評価した。評価結果を表12にまとめた。
(評価基準)
○:積層体におけるポリエチレンの含有量が80質量%以上であった。
×:積層体におけるポリエチレンの含有量が80質量%未満であった。
<Evaluation of recyclability>
The recyclability of the laminates obtained in the above Examples and Comparative Examples was evaluated based on the following evaluation criteria. Table 12 summarizes the evaluation results.
(Evaluation criteria)
:: The content of polyethylene in the laminate was 80% by mass or more.
X: The content of polyethylene in the laminate was less than 80% by mass.
<耐熱性評価>
 上記実施例12-1~12-5および比較例12-1~12-3において得られた積層体から、縦110mm×横150mmの試験片をそれぞれ2枚ずつ作製した。
 2枚の試験片を、ヒートシール層が向かい合うように重ね合わせ、2辺を140℃でヒートシールし、筒状の胴部を形成した。
 次いで、上記実施例12-1~12-5および比較例12-1~12-3において得られた積層体から、縦110mm×横150mmの試験片を1枚作製し、これをヒートシール層が外側となるように、V字に折り、上記筒状の胴部と140℃でヒートシールし、底部を形成すると共に、スタンドパウチ状の包装材料を作製した。
 作製した包装材料を目視により観察し、以下の評価基準に基づいて、評価した。評価結果を表12にまとめた。
(評価基準)
○:包装材料表面にシワなどが発生しておらず、また、ヒートシールバーへの付着が見られなかった。
×:包装材料表面にシワなどが発生しており、また、ヒートシールバーへの付着が見られ、製袋できなかった。
<Heat resistance evaluation>
From the laminates obtained in the above Examples 12-1 to 12-5 and Comparative Examples 12-1 to 12-3, two test pieces each having a length of 110 mm and a width of 150 mm were produced.
The two test pieces were overlapped so that the heat seal layers faced each other, and heat sealed at 140 ° C. on two sides to form a cylindrical body.
Next, one test piece having a length of 110 mm and a width of 150 mm was prepared from the laminates obtained in Examples 12-1 to 12-5 and Comparative examples 12-1 to 12-3, and this was used as a heat seal layer. It was folded into a V-shape so as to be on the outside, and was heat-sealed at 140 ° C. with the cylindrical body to form a bottom and a stand-pouch-shaped packaging material.
The prepared packaging material was visually observed and evaluated based on the following evaluation criteria. Table 12 summarizes the evaluation results.
(Evaluation criteria)
:: No wrinkles or the like were generated on the surface of the packaging material, and no adhesion to the heat seal bar was observed.
X: Wrinkles and the like were generated on the surface of the packaging material, and adhesion to the heat seal bar was observed, and the bag could not be made.
<印刷適性評価>
 上記実施例および比較例において作製した積層体が備えるポリエチレン樹脂およびナイロンフィルムに形成した画像を目視により観察し、その印刷適性を以下の評価基準に基づいて、評価した。評価結果を表12にまとめた。
(評価基準)
○:印刷時の寸法安定性が良好であり、擦れ、滲みなどが生じていない良好な画像を形成することができていた。
×:印刷時にフィルムの伸び縮みが発生し、形成した画像に擦れや滲みが生じていた。
<Printability evaluation>
Images formed on the polyethylene resin and the nylon film included in the laminates prepared in the above Examples and Comparative Examples were visually observed, and their printability was evaluated based on the following evaluation criteria. Table 12 summarizes the evaluation results.
(Evaluation criteria)
:: Good dimensional stability at the time of printing, and a good image free from rubbing, bleeding, etc. could be formed.
X: The film was stretched and shrunk during printing, and the formed image was rubbed and blurred.
<剛性評価>
 上記実施例および比較例において作製した積層体を、10mm幅の試験片とし、ループスティフネス測定試験器(東洋精機製作所製、商品名:ループステフネステスタ)によりその剛性を測定した。なお、ループの長さは、60mmとした。測定結果を表12にまとめた。
<Rigidity evaluation>
The laminates prepared in the above Examples and Comparative Examples were used as test pieces having a width of 10 mm, and the rigidity thereof was measured using a loop stiffness measurement tester (trade name: Loop Stiffness Tester, manufactured by Toyo Seiki Seisaku-sho, Ltd.). The length of the loop was 60 mm. Table 12 summarizes the measurement results.
<強度試験>
 上記実施例および比較例において作製した積層体を、引っ張り試験機(オリエンテック社製、商品名:RTC-1310A)により、直径0.5mmの針を突き刺した際の強度を測定した。なお、突き刺し速度は、50mm/分とした。測定結果を表12にまとめた。
<Strength test>
Using the tensile tester (trade name: RTC-1310A, manufactured by Orientec Co., Ltd.), the laminates prepared in the above Examples and Comparative Examples were measured for the strength when a needle having a diameter of 0.5 mm was pierced. The piercing speed was 50 mm / min. Table 12 summarizes the measurement results.
<耐屈曲負荷性試験>
 まず、上記実施例12-4および12-5で得られた積層体の酸素透過度および水蒸気透過度を測定した。酸素透過度の測定には、MOCON製 OXTRAN2/20を使用し、23℃、90%RHn条件下において、水蒸気透過度の測定には、MOCON製 PERMATRAN3/31を使用し、40℃、90%RHの条件下において、それぞれ測定した。
 さらに、上記実施例4および5で得られた積層体について、ゲルボフレックステター(テスター産業(株)性、商品名:BE1006BE)を用い、ASTM F 392に準拠して屈曲負荷(ストローク:155mm、屈曲動作:440°)を5回与えた。
 屈曲負荷後、積層体の酸素透過度および水蒸気透過度を測定した。
 屈曲負荷性試験前後の積層体の酸素透過度および水蒸気透過度を表12に示す。
Figure JPOXMLDOC01-appb-T000019
<Bending load resistance test>
First, the oxygen permeability and the water vapor permeability of the laminates obtained in Examples 12-4 and 12-5 were measured. OXTRAN 2/20 manufactured by MOCON is used for the measurement of oxygen permeability, and PERMATRAN 3/31 manufactured by MOCON is used for the measurement of water vapor permeability under the conditions of 23 ° C. and 90% RHn. Under the conditions described above, the measurement was performed.
Further, for the laminates obtained in Examples 4 and 5, a bending load (stroke: 155 mm, stroke: 155 mm, based on ASTM F392) using a gelbo flex tester (Tester Sangyo Co., Ltd., trade name: BE1006BE). Bending operation: 440 °) five times.
After the bending load, the oxygen permeability and the water vapor permeability of the laminate were measured.
Table 12 shows the oxygen permeability and the water vapor permeability of the laminate before and after the bending load test.
Figure JPOXMLDOC01-appb-T000019
<実施例13-1>
 高密度ポリエチレン(密度:0.960g/cm、融点130℃、MFR:0.85g/10分、Dowchemical社製、商品名:Elite5960)、中密度ポリエチレン(密度:0.940g/cm、融点126℃、MFR:0.85g/10分、Dowchemical社製、商品名:Elite5940)および超低密度ポリエチレン(密度:0.870g/cm、融点55℃、MFR:1.0g/10分、Dowchemical社製、商品名:Affinity EG8100G)をインフレーション成形法により、外側から、高密度ポリエチレン層(12.5μm)、中密度ポリエチレン層(43.75μm)および超低密度ポリエチレン層(6.25μm)を備えるチューブ状のフィルムとして押し出した後、内側の超低密度ポリエチレン層同士を、ゴムロールにより、圧着し、高密度ポリエチレン層(12.5μm)、中密度ポリエチレン層(43.75μm)、超低密度ポリエチレン層(12.5μm)、中密度ポリエチレン層(43.75μm)および高密度ポリエチレン層(12.5μm)を備える、厚さ125μmのポリエチレンフィルムを得た。
 このポリエチレンフィルムを長手方向(MD)に、5倍の延伸倍率で延伸し、厚さ25μmの多層基材Aを得た。
 多層基材Aのヘイズ値を、JIS K 7105に準拠して測定したところ、ヘイズ値は6.2%であった。
<Example 13-1>
High-density polyethylene (density: 0.960 g / cm 3 , melting point 130 ° C., MFR: 0.85 g / 10 min, manufactured by Dow Chemical Co., trade name: Elite5960), medium-density polyethylene (density: 0.940 g / cm 3 , melting point) 126 ° C., MFR: 0.85 g / 10 min, manufactured by Dow chemical, trade name: Elite5940) and ultra-low density polyethylene (density: 0.870 g / cm 3 , melting point 55 ° C., MFR: 1.0 g / 10 min, Dow chemical) Company, trade name: Affinity EG8100G) provided with a high-density polyethylene layer (12.5 μm), a medium-density polyethylene layer (43.75 μm) and an ultra-low-density polyethylene layer (6.25 μm) from the outside by inflation molding. After extruding as a tubular film The inner low-density polyethylene layers are pressed together with a rubber roll, and a high-density polyethylene layer (12.5 μm), a medium-density polyethylene layer (43.75 μm), an ultra-low-density polyethylene layer (12.5 μm), and a medium density A 125 μm thick polyethylene film with a polyethylene layer (43.75 μm) and a high density polyethylene layer (12.5 μm) was obtained.
This polyethylene film was stretched in the longitudinal direction (MD) at a stretch ratio of 5 times to obtain a multilayer substrate A having a thickness of 25 μm.
When the haze value of the multilayer substrate A was measured according to JIS K 7105, the haze value was 6.2%.
 多層基材Aの一方の面に、油性グラビアインキ(DICグラフィックス(株)製、商品名:フィナート)を用いて、グラビア印刷法により、画像を形成した。 (4) An image was formed on one surface of the multilayer substrate A by a gravure printing method using an oil-based gravure ink (manufactured by DIC Graphics Co., Ltd., trade name: Finart).
 直鎖状低密度ポリエチレンA(密度:0.923g/cm、融点121℃、MFR:1.5g/10分、プライムポリマー社製、商品名:SP2510)と、直鎖状低密度ポリエチレンAおよびバイオマス由来のポリエチレン(密度:0.916g/cm、MFR:1.3g/10分、バイオマス度:87%、ブラスケム社製、商品名:SLL118)の混合物(2:8(質量基準))と、直鎖状低密度ポリエチレンB(密度:0.913g/cm、融点116℃、MFR:2.0g/10分、プライムポリマー社製、商品名:SP1520)と、をインフレーション成形法により製膜し、厚さ17μmの直鎖状低密度ポリエチレンAからなる層と、厚さ16μmの直鎖状低密度ポリエチレンAおよびバイオマス由来のポリエチレンからなる層と、厚さ17μmの直鎖状低密度ポリエチレンBからなる層を備える、厚さ50μmのヒートシール層Aを作製した。 Linear low-density polyethylene A (density: 0.923 g / cm 3 , melting point 121 ° C., MFR: 1.5 g / 10 min, manufactured by Prime Polymer Co., Ltd., trade name: SP2510), and linear low-density polyethylene A A mixture (2: 8 (by mass)) of biomass-derived polyethylene (density: 0.916 g / cm 3 , MFR: 1.3 g / 10 min, biomass degree: 87%, trade name: SLL118, manufactured by Braskem) And low-density linear polyethylene B (density: 0.913 g / cm 3 , melting point: 116 ° C., MFR: 2.0 g / 10 minutes, product name: SP1520, manufactured by Prime Polymer Co., Ltd.) by inflation molding. A layer made of linear low-density polyethylene A having a thickness of 17 μm, a linear low-density polyethylene A having a thickness of 16 μm, and polyethylene derived from biomass. And a layer made of linear low-density polyethylene B having a thickness of 17 μm, and a heat-seal layer A having a thickness of 50 μm was prepared.
 上記多層基材Aの画像形成面と、上記ヒートシール層Aの直鎖状低密度ポリエチレンAからなる層とを、2液硬化型ウレタン系接着剤(ロックペイント(株)製、商品名:RU-77T/H-7)を介して、積層し、本発明の積層体を得た。
 なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、95質量%であった。
A two-part curable urethane-based adhesive (manufactured by Rock Paint Co., Ltd., trade name: RU) is used to form the image forming surface of the multilayer base material A and the layer of the linear low-density polyethylene A of the heat seal layer A. -77T / H-7) to obtain a laminate of the present invention.
The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The proportion of polyethylene in the laminate thus obtained was 95% by mass.
<比較例13-1>
 上記高密度ポリエチレン、上記中密度ポリエチレンおよび上記超低密度ポリエチレンをインフレーション成形法により、外側から、高密度ポリエチレン層、中密度ポリエチレン層および超低密度ポリエチレン層を備えるチューブ状のフィルムとして押し出した後、内側の超低密度ポリエチレン層同士を、ゴムロールにより、圧着し、高密度ポリエチレン層(2.5μm)、中密度ポリエチレン層(8.75μm)、超低密度ポリエチレン層(2.5μm)、中密度ポリエチレン層(8.75μm)および高密度ポリエチレン層(2.5μm)を備える、厚さ25μmの多層基材aを得た。
 多層基材aのヘイズ値を、JIS K 7105に準拠して測定したところ、ヘイズ値は21.3%であった。
<Comparative Example 13-1>
The high-density polyethylene, the medium-density polyethylene and the ultra-low-density polyethylene are extruded from the outside as a tubular film having a high-density polyethylene layer, a medium-density polyethylene layer and an ultra-low-density polyethylene layer by an inflation molding method. The inner ultra-low-density polyethylene layers are pressed together with a rubber roll, and a high-density polyethylene layer (2.5 μm), a medium-density polyethylene layer (8.75 μm), an ultra-low-density polyethylene layer (2.5 μm), and a medium-density polyethylene A multilayer substrate a having a thickness of 25 μm comprising a layer (8.75 μm) and a high-density polyethylene layer (2.5 μm) was obtained.
When the haze value of the multilayer substrate a was measured in accordance with JIS K 7105, the haze value was 21.3%.
 多層基材aの一方の面に、上記油性グラビアインキを用いて、グラビア印刷法により、画像を形成した。 画像 An image was formed on one surface of the multilayer substrate a by a gravure printing method using the above oil-based gravure ink.
 上記多層基材aの画像形成面と、上記ヒートシール層Aの直鎖状低密度ポリエチレンAからなる層とを、上記2液硬化型ウレタン系接着剤を介して、積層し、積層体を得た。
 なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、95質量%であった。
The image forming surface of the multilayer base material a and the layer made of the linear low-density polyethylene A of the heat seal layer A are laminated via the two-component curable urethane-based adhesive to obtain a laminate. Was.
The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The proportion of polyethylene in the laminate thus obtained was 95% by mass.
<比較例13-2>
 多層基材Aを、厚さ12μmの二軸延伸PETフィルム(東洋紡(株)製、商品名:E5100)に変更した以外は、実施例13-1と同様にして、積層体を作製した。
 また、このようにして得られた積層体におけるポリエチレンの割合は、75質量%であった。
<Comparative Example 13-2>
A laminate was produced in the same manner as in Example 13-1, except that the multilayer base material A was changed to a biaxially stretched PET film having a thickness of 12 μm (trade name: E5100, manufactured by Toyobo Co., Ltd.).
The ratio of polyethylene in the laminate thus obtained was 75% by mass.
<実施例14-1>
 上記多層基材Aを準備した。
<Example 14-1>
The multilayer base material A was prepared.
 多層基材Aの一方の面に、油性グラビアインキ(DICグラフィックス(株)製、商品名:フィナート)を用いて、グラビア印刷法により、画像を形成した。 (4) An image was formed on one surface of the multilayer substrate A by a gravure printing method using an oil-based gravure ink (manufactured by DIC Graphics Co., Ltd., trade name: Finart).
 上記直鎖状低密度ポリエチレンAと、上記直鎖状低密度ポリエチレンAおよび上記バイオマス由来のポリエチレンの混合物(2:8(質量基準))と、上記直鎖状低密度ポリエチレンBと、をインフレーション成形法により製膜し、厚さ34μmの直鎖状低密度ポリエチレンAからなる層と、厚さ32μmの直鎖状低密度ポリエチレンAおよびバイオマス由来のポリエチレンからなる層と、厚さ34μmの直鎖状低密度ポリエチレンBからなる層を備える、厚さ100μmのヒートシール層Bを作製した。 Inflation molding of the linear low-density polyethylene A, a mixture of the linear low-density polyethylene A and the biomass-derived polyethylene (2: 8 (by mass)), and the linear low-density polyethylene B A layer made of linear low-density polyethylene A having a thickness of 34 μm, a layer composed of linear low-density polyethylene A having a thickness of 32 μm and polyethylene derived from biomass, and a linear layer having a thickness of 34 μm. A heat seal layer B having a thickness of 100 μm and including a layer made of low density polyethylene B was prepared.
 上記多層基材Aの画像形成面と、上記ヒートシール層Bの直鎖状低密度ポリエチレンAからなる層とを、上記2液硬化型ウレタン系接着剤を介して、積層し、本発明の積層体を得た。
 なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、97質量%であった。
The image forming surface of the multilayer base material A and the layer made of the linear low-density polyethylene A of the heat seal layer B are laminated via the two-component curable urethane-based adhesive, and the laminate of the present invention is laminated. I got a body.
The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The proportion of polyethylene in the laminate thus obtained was 97% by mass.
<比較例14-1>
 上記多層基材aを準備した。
<Comparative Example 14-1>
The multilayer substrate a was prepared.
 多層基材aの一方の面に、上記油性グラビアインキを用いて、グラビア印刷法により、画像を形成した。 画像 An image was formed on one surface of the multilayer substrate a by a gravure printing method using the above oil-based gravure ink.
 上記多層基材aの画像形成面と、上記ヒートシール層Bの直鎖状低密度ポリエチレンAからなる層とを、上記2液硬化型ウレタン系接着剤を介して、積層し、積層体を得た。
 なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、97質量%であった。
The image forming surface of the multilayer substrate a and the layer made of the linear low-density polyethylene A of the heat seal layer B are laminated via the two-component curable urethane-based adhesive to obtain a laminate. Was.
The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The proportion of polyethylene in the laminate thus obtained was 97% by mass.
<比較例14-2>
 多層基材Aを、厚さ12μmの上記二軸延伸PETフィルムに変更した以外は、実施例14-1と同様にして、積層体を作製した。
 また、このようにして得られた積層体におけるポリエチレンの割合は、86質量%であった。
<Comparative Example 14-2>
A laminate was produced in the same manner as in Example 14-1, except that the multilayer base material A was changed to the above biaxially stretched PET film having a thickness of 12 μm.
The proportion of polyethylene in the thus obtained laminate was 86% by mass.
<実施例15-1>
 上記多層基材Aを準備した。
<Example 15-1>
The multilayer base material A was prepared.
 多層基材Aの一方の面に、油性グラビアインキ(DICグラフィックス(株)製、商品名:フィナート)を用いて、グラビア印刷法により、画像を形成した。 (4) An image was formed on one surface of the multilayer substrate A by a gravure printing method using an oil-based gravure ink (manufactured by DIC Graphics Co., Ltd., trade name: Finart).
 ヒートシール層Aを準備し、この直鎖状低密度ポリエチレンAに、PVD法により厚さ20nmのアルミニウム蒸着膜を形成した。 (4) A heat seal layer A was prepared, and a 20 nm-thick aluminum vapor-deposited film was formed on the linear low-density polyethylene A by a PVD method.
 多層基材Aの画像形成面と、ヒートシール層Aの蒸着面とを、上記2液硬化型ウレタン系接着剤を介して、積層し、本発明の積層体を得た。
 なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、95質量%であった。
The image forming surface of the multilayer base material A and the deposition surface of the heat seal layer A were laminated via the two-component curable urethane-based adhesive to obtain a laminate of the present invention.
The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The proportion of polyethylene in the laminate thus obtained was 95% by mass.
<実施例15-2>
 実施例15-1において、多層基材Aの画像形成面と、ヒートシール層Aの蒸着面との接着を、ポリエステルポリオールおよびイソシアネート化合物を含む2液硬化型接着剤(DIC(株)製、PASLIM VM001/VM102CP)により行った以外は、実施例15-1と同様にして、本発明の積層体を作製した。
<Example 15-2>
In Example 15-1, the adhesion between the image forming surface of the multilayer base material A and the deposition surface of the heat seal layer A was determined by using a two-part curable adhesive containing a polyester polyol and an isocyanate compound (PASLIM, manufactured by DIC Corporation). VM15 / VM102CP), and a laminate of the invention was produced in the same manner as in Example 15-1.
<比較例15-1>
 上記多層基材aを準備した。
<Comparative Example 15-1>
The multilayer substrate a was prepared.
 多層基材aの一方の面に、上記油性グラビアインキを用いて、グラビア印刷法により、画像を形成した。 画像 An image was formed on one surface of the multilayer substrate a by a gravure printing method using the above oil-based gravure ink.
 ヒートシール層Aを準備し、この直鎖状低密度ポリエチレンAに、PVD法により厚さ20nmのアルミニウム蒸着膜を形成した。 (4) A heat seal layer A was prepared, and a 20 nm-thick aluminum vapor-deposited film was formed on the linear low-density polyethylene A by a PVD method.
 多層基材aの画像形成面と、ヒートシール層Aの蒸着面とを、上記2液硬化型ウレタン系接着剤を介して、積層し、積層体を得た。
 なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、95質量%であった。
The image forming surface of the multilayer base material a and the deposition surface of the heat seal layer A were laminated via the two-component curable urethane-based adhesive to obtain a laminate.
The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The proportion of polyethylene in the laminate thus obtained was 95% by mass.
<比較例15-2>
 多層基材Aを、厚さ12μmの上記二軸延伸PETフィルムに変更した以外は、実施例15-1と同様にして、積層体を作製した。
 また、このようにして得られた積層体におけるポリエチレンの割合は、76質量%であった。
<Comparative Example 15-2>
A laminate was produced in the same manner as in Example 15-1, except that the multilayer base material A was changed to the biaxially stretched PET film having a thickness of 12 μm.
The ratio of polyethylene in the laminate thus obtained was 76% by mass.
<実施例16-1>
 上記多層基材Aを準備した。
<Example 16-1>
The multilayer base material A was prepared.
 多層基材Aの一方の面に、油性グラビアインキ(DICグラフィックス(株)製、商品名:フィナート)を用いて、グラビア印刷法により、画像を形成した。 (4) An image was formed on one surface of the multilayer substrate A by a gravure printing method using an oil-based gravure ink (manufactured by DIC Graphics Co., Ltd., trade name: Finart).
 上記中密度ポリエチレンをインフレーション成形法により製膜し、厚さ100μmのポリエチレンフィルムを得た後、長手方向(MD)に、5倍の延伸倍率で延伸し、厚さ20μmの延伸ポリエチレンフィルムAを得た。次いで、該延伸ポリエチレンフィルムAの一方の面に、PVD法により、厚さ20nmのアルミニウム蒸着膜を形成し、中間層Aを得た。 The medium-density polyethylene was formed into a film by an inflation molding method to obtain a polyethylene film having a thickness of 100 μm, and then stretched in the longitudinal direction (MD) at a stretch ratio of 5 times to obtain a stretched polyethylene film A having a thickness of 20 μm. Was. Next, a 20 nm-thick aluminum vapor-deposited film was formed on one surface of the stretched polyethylene film A by a PVD method to obtain an intermediate layer A.
 多層基材Aの画像形成面を、中間層Aの蒸着面に、上記2液硬化型ウレタン系接着剤を介して積層した。2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。 {Circle around (2)} The image forming surface of the multilayer base material A was laminated on the vapor deposition surface of the intermediate layer A via the above two-component curable urethane-based adhesive. The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
 ヒートシール層Aを準備した。次いで、ヒートシール層Aの直鎖状低密度ポリエチレンAからなる層を、中間層Aの非蒸着面に、上記2液硬化型ウレタン系接着剤を介して、積層し、本発明の積層体を得た。
 なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、93質量%であった。
Heat seal layer A was prepared. Next, a layer made of the linear low-density polyethylene A of the heat seal layer A is laminated on the non-deposited surface of the intermediate layer A via the two-component curable urethane-based adhesive, and the laminate of the present invention is formed. Obtained.
The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The ratio of polyethylene in the laminate thus obtained was 93% by mass.
<実施例16-2>
 実施例16-1において、多層基材Aの画像形成面と、中間層Aの蒸着面との接着を、ポリエステルポリオールおよびイソシアネート化合物を含む2液硬化型接着剤(DIC(株)製、PASLIM VM001/VM102CP)により行った以外は、実施例16-1と同様にして、本発明の積層体を作製した。
<Example 16-2>
In Example 16-1, the adhesion between the image forming surface of the multilayer base material A and the deposition surface of the intermediate layer A was determined by a two-part curable adhesive containing a polyester polyol and an isocyanate compound (PASLIM VM001, manufactured by DIC Corporation). / VM102CP), and a laminate of the present invention was produced in the same manner as in Example 16-1.
<比較例16-1>
 上記多層基材aを準備した。
<Comparative Example 16-1>
The multilayer substrate a was prepared.
 多層基材aの一方の面に、油性グラビアインキ(DICグラフィックス(株)製、商品名:フィナート)を用いて、グラビア印刷法により、画像を形成した。 (4) An image was formed on one surface of the multilayer substrate a by a gravure printing method using an oil-based gravure ink (trade name: Finart, manufactured by DIC Graphics Co., Ltd.).
 上記中密度ポリエチレンをインフレーション成形法により製膜し、厚さ20μmの延伸ポリエチレンフィルムaを得た。次いで、該延伸ポリエチレンフィルムaの一方の面に、PVD法により、厚さ20nmのアルミニウム蒸着膜を形成し、中間層aを得た。 膜 The above-mentioned medium density polyethylene was formed into a film by an inflation molding method to obtain a stretched polyethylene film a having a thickness of 20 μm. Next, a 20 nm-thick aluminum vapor-deposited film was formed on one surface of the stretched polyethylene film a by a PVD method to obtain an intermediate layer a.
 多層基材aの画像形成面を、中間層aの蒸着面に、上記2液硬化型ウレタン系接着剤を介して積層した。2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。 {Circle around (2)} The image forming surface of the multilayer substrate a was laminated on the vapor deposition surface of the intermediate layer a via the above two-component curable urethane-based adhesive. The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
 ヒートシール層Aを準備し、この直鎖状低密度ポリエチレンAからなる層を、中間層aの非蒸着面に、上記2液硬化型ウレタン系接着剤を介して、積層し、積層体を得た。
 なお、2液硬化型ウレタン系接着剤により形成される接着層の厚さは3.0μmであった。
 また、このようにして得られた積層体におけるポリエチレンの割合は、93質量%であった。
A heat-sealing layer A is prepared, and a layer made of the linear low-density polyethylene A is laminated on the non-deposited surface of the intermediate layer a via the two-part curable urethane-based adhesive to obtain a laminate. Was.
The thickness of the adhesive layer formed by the two-component curable urethane-based adhesive was 3.0 μm.
The ratio of polyethylene in the laminate thus obtained was 93% by mass.
<比較例16-2>
 多層基材Aおよび中間層Aの延伸ポリエチレンフィルムを、厚さ12μmの二軸延伸ポリエステルフィルム(東洋紡(株)商品名:E5100)に変更した以外は、実施例4-1と同様にして積層体を得た。このようにして得られた積層体におけるポリエチレンの割合は、62質量%であった。
<Comparative Example 16-2>
The laminated body was produced in the same manner as in Example 4-1 except that the stretched polyethylene film of the multilayer base material A and the intermediate layer A was changed to a biaxially stretched polyester film having a thickness of 12 μm (trade name: E5100, Toyobo Co., Ltd.). I got The proportion of polyethylene in the thus obtained laminate was 62% by mass.
<リサイクル性評価>
 上記実施例および比較例において得られた積層体のリサイクル性を下記評価基準に基づいて、評価した。評価結果を表1にまとめた。
(評価基準)
○:積層体におけるポリエチレンの含有量が90質量%以上であった。
×:積層体におけるポリエチレンの含有量が90質量%未満であった。
<Evaluation of recyclability>
The recyclability of the laminates obtained in the above Examples and Comparative Examples was evaluated based on the following evaluation criteria. The evaluation results are summarized in Table 1.
(Evaluation criteria)
:: The content of polyethylene in the laminate was 90% by mass or more.
X: The content of polyethylene in the laminate was less than 90% by mass.
<耐熱性評価>
 上記実施例13-1および比較例13-1~13-2、実施例15-1~15-2および比較例15-1~15-2並びに実施例16-1~16-2および比較例16-1~16-2において得られた積層体から、縦80mm×横80mmの試験片をそれぞれ2枚ずつ作製した。
 2枚の試験片を、ヒートシール層が向かい合うように重ね合わせ、3辺を140℃でヒートシールし、包装袋を作製した。
 上記実施例14-1および比較例14-1~14-2において得られた積層体から、縦110mm×横150mmの試験片をそれぞれ2枚ずつ作製した。
 2枚の試験片を、ヒートシール層が向かい合うように重ね合わせ、2辺を140℃でヒートシールし、筒状の胴部を形成した。
 次いで、上記実施例14-1および比較例14-1~14-2において得られた積層体から、縦110mm×横150mmの試験片を1枚作製し、これをヒートシール層が外側となるように、V字に折り、上記筒状の胴部と140℃でヒートシールし、底部を形成すると共に、スタンドパウチを作製した。
 作製した包装材料を目視により観察し、以下の評価基準に基づいて、評価した。評価結果を表13~16にまとめた。
(評価基準)
○:包装材料表面にシワなどが発生しておらず、また、ヒートシールバーへの付着が見られなかった。
×:包装材料表面にシワなどが発生しており、また、ヒートシールバーへの付着が見られ、製袋できなかった。
<Heat resistance evaluation>
Example 13-1 and Comparative Examples 13-1 and 13-2, Examples 15-1 and 15-2 and Comparative Examples 15-1 and 15-2, and Examples 16-1 and 16-2 and Comparative Example 16 From the laminates obtained in -1 to 16-2, two test pieces each having a length of 80 mm and a width of 80 mm were prepared.
The two test pieces were overlapped so that the heat seal layers faced each other, and three sides were heat-sealed at 140 ° C. to produce a packaging bag.
From the laminates obtained in Example 14-1 and Comparative Examples 14-1 and 14-2, two test pieces each having a length of 110 mm and a width of 150 mm were produced.
The two test pieces were overlapped so that the heat seal layers faced each other, and heat sealed at 140 ° C. on two sides to form a cylindrical body.
Next, one test piece having a length of 110 mm and a width of 150 mm was prepared from the laminates obtained in Example 14-1 and Comparative Examples 14-1 and 14-2 so that the heat seal layer was on the outside. Then, it was folded into a V-shape and heat-sealed with the cylindrical body at 140 ° C. to form a bottom and a stand pouch.
The prepared packaging material was visually observed and evaluated based on the following evaluation criteria. The evaluation results are summarized in Tables 13 to 16.
(Evaluation criteria)
:: No wrinkles or the like were generated on the surface of the packaging material, and no adhesion to the heat seal bar was observed.
X: Wrinkles and the like were generated on the surface of the packaging material, and adhesion to the heat seal bar was observed, and the bag could not be made.
<印刷適性評価>
 上記実施例および比較例において作製した積層体が備える基材に形成した画像を目視により観察し、以下の評価基準に基づいて、評価した。評価結果を表13~16にまとめた。
(評価基準)
○:印刷時の寸法安定性が良好であり、擦れ、滲みなどが生じていない良好な画像を形成することができていた。
×:印刷時にフィルムの伸び縮みが発生し、形成した画像に擦れや滲みが生じていた。
<Printability evaluation>
The images formed on the base material of the laminates prepared in the above Examples and Comparative Examples were visually observed and evaluated based on the following evaluation criteria. The evaluation results are summarized in Tables 13 to 16.
(Evaluation criteria)
:: Good dimensional stability at the time of printing, and a good image free from rubbing, bleeding, etc. could be formed.
X: The film was stretched and shrunk during printing, and the formed image was rubbed and blurred.
<剛性評価>
 上記実施例および比較例において作製した積層体を、10mm幅の試験片とし、ループスティフネス測定試験器(東洋精機製作所製、商品名:ループステフネステスタ)によりその剛性を測定した。なお、ループの長さは、60mmとした。測定結果を表13~16にまとめた。
<Rigidity evaluation>
The laminates prepared in the above Examples and Comparative Examples were used as test pieces having a width of 10 mm, and the rigidity thereof was measured using a loop stiffness measurement tester (trade name: Loop Stiffness Tester, manufactured by Toyo Seiki Seisaku-sho, Ltd.). The length of the loop was 60 mm. The measurement results are summarized in Tables 13 to 16.
<強度試験>
 上記実施例および比較例において作製した積層体を、引っ張り試験機(オリエンテック社製、商品名:RTC-1310A)により、直径0.5mmの針を突き刺した際の強度を測定した。なお、突き刺し速度は、50mm/分とした。測定結果を表13~16にまとめた。
<Strength test>
Using the tensile tester (trade name: RTC-1310A, manufactured by Orientec Co., Ltd.), the laminates prepared in the above Examples and Comparative Examples were measured for the strength when a needle having a diameter of 0.5 mm was pierced. The piercing speed was 50 mm / min. The measurement results are summarized in Tables 13 to 16.
<耐屈曲負荷性試験>
 まず、上記実施例15-1~15-2および比較例15-1~15-2並びに実施例16-1~16-2および比較例16-1~16-2で得られた積層体の酸素透過度および水蒸気透過度を測定した。
 酸素透過度の測定には、MOCON製 OXTRAN2/20を使用し、23℃、90%RHn条件下において、水蒸気透過度の測定には、MOCON製 PERMATRAN3/31を使用し、40℃、90%RHの条件下において、それぞれ測定した。
 さらに、上記実施例15-1~15-2および比較例15-1~15-2並びに実施例16-1~16-2および比較例16-1~16-2で得られた積層体について、ゲルボフレックステター(テスター産業(株)性、商品名:BE1006BE)を用い、ASTM F 392に準拠して屈曲負荷(ストローク:155mm、屈曲動作:440°)を5回与えた。
 屈曲負荷後、積層体の酸素透過度および水蒸気透過度を測定した。
 屈曲負荷性試験前後の積層体の酸素透過度および水蒸気透過度を表15および16に示す。
<Bending load resistance test>
First, the oxygen of the laminates obtained in the above Examples 15-1 to 15-2, Comparative Examples 15-1 to 15-2, Examples 16-1 to 16-2 and Comparative Examples 16-1 to 16-2 The permeability and water vapor permeability were measured.
OXTRAN 2/20 manufactured by MOCON is used for the measurement of oxygen permeability, and PERMATRAN 3/31 manufactured by MOCON is used for the measurement of water vapor permeability under the conditions of 23 ° C. and 90% RHn. Under the conditions described above, the measurement was performed.
Further, the laminates obtained in Examples 15-1 and 15-2 and Comparative Examples 15-1 and 15-2, and Examples 16-1 and 16-2 and Comparative Examples 16-1 and 16-2, A bending load (stroke: 155 mm, bending operation: 440 °) was applied five times according to ASTM F392 using a gelbo flex tester (Tester Sangyo Co., Ltd., trade name: BE1006BE).
After the bending load, the oxygen permeability and the water vapor permeability of the laminate were measured.
Tables 15 and 16 show the oxygen permeability and water vapor permeability of the laminate before and after the bending load test.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
10:積層体、11:基材、12:ヒートシール層、13:蒸着膜、14:接着層、15:蒸着膜、16:中間層基材、17:中間層、18:接着層、20:積層体、21:基材、22:中間層、23:ヒートシール層、24:蒸着膜、25:接着層、30:包装袋、40:スタンドパウチ、41:胴部、42:底部 10: laminated body, 11: base material, 12: heat seal layer, 13: evaporated film, 14: adhesive layer, 15: evaporated film, 16: intermediate layer substrate, 17: intermediate layer, 18: adhesive layer, 20: Laminate, 21: base material, 22: intermediate layer, 23: heat seal layer, 24: evaporated film, 25: adhesive layer, 30: packaging bag, 40: stand pouch, 41: trunk, 42: bottom

Claims (13)

  1.  基材と、ヒートシール層とを備え、
     前記基材および前記ヒートシール層が同一の材料から構成され、
     前記同一材料が、ポリエチレンであり、
     前記基材が、延伸樹脂フィルムであることを特徴とする、積層体。
    Comprising a base material and a heat seal layer,
    The base material and the heat seal layer are made of the same material,
    The same material is polyethylene,
    The laminate, wherein the base material is a stretched resin film.
  2.  前記基材と、前記ヒートシール層との間に接着層を備える、請求項1に記載の積層体。 積 層 The laminate according to claim 1, further comprising an adhesive layer between the substrate and the heat seal layer.
  3.  前記ヒートシール層が、前記基材側の面に蒸着膜を備える、請求項1または2に記載の積層体。 3. The laminate according to claim 1, wherein the heat seal layer includes a deposition film on a surface on the base material side. 4.
  4.  前記蒸着膜が、アルミニウム蒸着膜であり、
     前記接着層が、ポリエステルポリオールとイソシアネート化合物とを含む樹脂組成物の硬化物により構成される、請求項3に記載の積層体。
    The deposited film is an aluminum deposited film,
    The laminate according to claim 3, wherein the adhesive layer is formed of a cured product of a resin composition containing a polyester polyol and an isocyanate compound.
  5.  前記基材と、ヒートシール層との間に、中間層を備え、
     前記中間層が、蒸着膜および中間層基材を備える、請求項1~4のいずれか一項に記載の積層体。
    Provided with an intermediate layer between the base material and the heat seal layer,
    The laminate according to any one of claims 1 to 4, wherein the intermediate layer includes a deposited film and an intermediate layer base material.
  6.  前記基材および前記ヒートシール層の少なくとも一方が、ポリエチレンとして、バイオマス由来のポリエチレンを含む、請求項1~5のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 5, wherein at least one of the base material and the heat seal layer contains biomass-derived polyethylene as polyethylene.
  7.  前記基材が、
     高密度ポリエチレン層と、
     中密度ポリエチレン層と、
     低密度ポリエチレン層、直鎖状低密度ポリエチレン層または超低密度ポリエチレン層と、
     中密度ポリエチレン層と、
     高密度ポリエチレン層と、
    の五層共押延伸フィルムからなる、請求項1~6のいずれか一項に記載の積層体。
    The substrate,
    A high-density polyethylene layer,
    A medium density polyethylene layer,
    A low-density polyethylene layer, a linear low-density polyethylene layer or an ultra-low-density polyethylene layer,
    A medium density polyethylene layer,
    A high-density polyethylene layer,
    The laminate according to any one of claims 1 to 6, comprising a five-layer co-stretched stretched film.
  8.  基材と、中間層と、ヒートシール層とを備え、
     前記基材が、ポリエステルから構成され、
     前記中間層および前記ヒートシール層が、同一の材料から構成され、
     前記同一材料が、ポリエチレンであり、
     前記中間層が、延伸樹脂フィルムであり、
     前記基材の厚さが、前記中間層の厚さおよび前記ヒートシール層の厚さの和よりも小さいことを特徴とする、積層体。
    With a base material, an intermediate layer, and a heat seal layer,
    The substrate is composed of polyester,
    The intermediate layer and the heat seal layer are made of the same material,
    The same material is polyethylene,
    The intermediate layer is a stretched resin film,
    A laminate, wherein the thickness of the base material is smaller than the sum of the thickness of the intermediate layer and the thickness of the heat seal layer.
  9.  前記中間層およびヒートシール層の少なくとも一方が、ポリエチレンとして、バイオマス由来のポリエチレンを含む、請求項8に記載の積層体。 The laminate according to claim 8, wherein at least one of the intermediate layer and the heat seal layer contains biomass-derived polyethylene as polyethylene.
  10.  包装材料用途に用いられる、請求項1~9のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 9, which is used for packaging materials.
  11.  請求項1~9のいずれか一項に記載の積層体を用いて作製されたものである包装材料。 包装 A packaging material produced using the laminate according to any one of claims 1 to 9.
  12.  包装袋であって、
     請求項1~9のいずれか一項に記載の積層体を用いて作製され、
     前記ヒートシール層の厚さが、20μm以上60μm以下であることを特徴とする、包装袋。
    A packaging bag,
    It is produced using the laminate according to any one of claims 1 to 9,
    A packaging bag, wherein the thickness of the heat seal layer is 20 μm or more and 60 μm or less.
  13.  スタンドパウチであって、
     請求項1~9のいずれか一項に記載の積層体を用いて作製され、
     前記ヒートシール層の厚さが、50μm以上200μm以下であることを特徴とするスタンドパウチ。
    A stand pouch,
    It is produced using the laminate according to any one of claims 1 to 9,
    A stand pouch, wherein the thickness of the heat seal layer is 50 μm or more and 200 μm or less.
PCT/JP2019/038156 2018-09-28 2019-09-27 Laminate, packaging material, packaging bag, and stand pouch WO2020067426A1 (en)

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
JP2018186075A JP7324987B2 (en) 2018-09-28 2018-09-28 Laminates, packaging materials, packaging bags and standing pouches
JP2018186034A JP7236046B2 (en) 2018-09-28 2018-09-28 Laminates, packaging materials, packaging bags and standing pouches
JP2018-186155 2018-09-28
JP2018-186073 2018-09-28
JP2018186073A JP7324986B2 (en) 2018-09-28 2018-09-28 Laminates, packaging materials, packaging bags and standing pouches
JP2018185963A JP2020055156A (en) 2018-09-28 2018-09-28 Laminate, packaging material, packaging bag and stand pouch
JP2018186062A JP7324413B2 (en) 2018-09-28 2018-09-28 Laminates, packaging materials, packaging bags and standing pouches
JP2018186152A JP7324414B2 (en) 2018-09-28 2018-09-28 Laminates, packaging materials, packaging bags and standing pouches
JP2018-186152 2018-09-28
JP2018-185963 2018-09-28
JP2018-186062 2018-09-28
JP2018-186034 2018-09-28
JP2018-186075 2018-09-28
JP2018186155A JP7324415B2 (en) 2018-09-28 2018-09-28 Laminates, packaging materials, packaging bags and standing pouches

Publications (1)

Publication Number Publication Date
WO2020067426A1 true WO2020067426A1 (en) 2020-04-02

Family

ID=69949376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038156 WO2020067426A1 (en) 2018-09-28 2019-09-27 Laminate, packaging material, packaging bag, and stand pouch

Country Status (1)

Country Link
WO (1) WO2020067426A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022131264A1 (en) * 2020-12-17 2022-06-23 凸版印刷株式会社 Laminate, packaging bag, and standing pouch
WO2024071085A1 (en) * 2022-09-30 2024-04-04 三井化学東セロ株式会社 Stretched polyethylene film, packaging material, and food packaged body
WO2024071084A1 (en) * 2022-09-30 2024-04-04 三井化学東セロ株式会社 Stretched polyethylene film, packaging material, food packaging
WO2024071092A1 (en) * 2022-09-30 2024-04-04 三井化学東セロ株式会社 Oriented polyethylene film, packaging material, and food packaging
JP7507627B2 (en) 2020-07-27 2024-06-28 藤森工業株式会社 Laminate for packaging bag and packaging bag

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004106514A (en) * 2002-07-25 2004-04-08 Otsuka Pharmaceut Factory Inc Multilayer film and multiple-chamber container using it
JP2005538867A (en) * 2002-09-16 2005-12-22 ダウ グローバル テクノロジーズ インコーポレイティド High transparency and high rigidity film
JP2013136689A (en) * 2011-12-28 2013-07-11 Dainippon Printing Co Ltd Polyethylene-based resin film for packaging material sealant
JP2013155343A (en) * 2012-01-31 2013-08-15 Dainippon Printing Co Ltd Polyethylene-based resin composition
JP2015189160A (en) * 2014-03-28 2015-11-02 凸版印刷株式会社 Sealant film, film laminate using the same, and standing pouch
JP2016145086A (en) * 2016-04-28 2016-08-12 大日本印刷株式会社 Sealant film for packaging medium using plant-derived polyethylene, laminated film for packaging medium, and packaging bag
JP2018016012A (en) * 2016-07-29 2018-02-01 大日本印刷株式会社 Laminate having oxygen barrier property and packaging material including the laminate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004106514A (en) * 2002-07-25 2004-04-08 Otsuka Pharmaceut Factory Inc Multilayer film and multiple-chamber container using it
JP2005538867A (en) * 2002-09-16 2005-12-22 ダウ グローバル テクノロジーズ インコーポレイティド High transparency and high rigidity film
JP2013136689A (en) * 2011-12-28 2013-07-11 Dainippon Printing Co Ltd Polyethylene-based resin film for packaging material sealant
JP2013155343A (en) * 2012-01-31 2013-08-15 Dainippon Printing Co Ltd Polyethylene-based resin composition
JP2015189160A (en) * 2014-03-28 2015-11-02 凸版印刷株式会社 Sealant film, film laminate using the same, and standing pouch
JP2016145086A (en) * 2016-04-28 2016-08-12 大日本印刷株式会社 Sealant film for packaging medium using plant-derived polyethylene, laminated film for packaging medium, and packaging bag
JP2018016012A (en) * 2016-07-29 2018-02-01 大日本印刷株式会社 Laminate having oxygen barrier property and packaging material including the laminate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7507627B2 (en) 2020-07-27 2024-06-28 藤森工業株式会社 Laminate for packaging bag and packaging bag
WO2022131264A1 (en) * 2020-12-17 2022-06-23 凸版印刷株式会社 Laminate, packaging bag, and standing pouch
WO2024071085A1 (en) * 2022-09-30 2024-04-04 三井化学東セロ株式会社 Stretched polyethylene film, packaging material, and food packaged body
WO2024071084A1 (en) * 2022-09-30 2024-04-04 三井化学東セロ株式会社 Stretched polyethylene film, packaging material, food packaging
WO2024071092A1 (en) * 2022-09-30 2024-04-04 三井化学東セロ株式会社 Oriented polyethylene film, packaging material, and food packaging

Similar Documents

Publication Publication Date Title
WO2019189092A1 (en) Laminate, and packaging material, packaging bag and stand-up pouch each comprising said laminate, and multi-layer substrate
WO2020045629A1 (en) Heat-sealable laminate, layered substrate, laminate for gas barrier intermediate layer, laminate for packaging material, and packaging material
WO2020067426A1 (en) Laminate, packaging material, packaging bag, and stand pouch
JP2020055157A (en) Laminate, packaging material, packaging bag and stand pouch
JP7510622B2 (en) Laminate, packaging material, packaging bag and stand-up pouch
JP7151342B2 (en) Multi-layer substrates, laminates, packaging materials, packaging bags and stand-up pouches
JP2019171861A (en) Laminate and packaging material composed of the laminate
JP7496068B2 (en) Laminate, packaging material, packaging bag and stand-up pouch
JP2020037189A (en) Laminate for packaging material and packaging material
JP2023112005A (en) packaging material
JP2020040258A (en) Gas barrier laminate, packaging material laminate and packaging material
JP2023021240A (en) Laminate, packaging material, packaging bag and stand pouch
JP2023071675A (en) Base material, laminate, packaging material, packaging bag and stand pouch
JP2024061796A (en) Laminate and packaging material comprising said laminate
JP7236046B2 (en) Laminates, packaging materials, packaging bags and standing pouches
JP2020040256A (en) Laminate substrate, laminate for packaging material and packaging material
JP7496069B2 (en) Laminate, packaging material, packaging bag and stand-up pouch
JP7496070B2 (en) Laminate, packaging material, packaging bag and stand-up pouch
JP2020037186A (en) Laminate for packaging material and packaging material
JP7324413B2 (en) Laminates, packaging materials, packaging bags and standing pouches
JP2020040259A (en) Laminate for packaging material and packaging material
JP2020040254A (en) Laminate for packaging material and packaging material
JP2020040257A (en) Laminate substrate, laminate for packaging material and packaging material
JP2020040253A (en) Laminate for packaging material and packaging material
JP2024100817A (en) Laminate, packaging material, packaging bag and stand-up pouch

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19865875

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19865875

Country of ref document: EP

Kind code of ref document: A1