WO2024071092A1 - Oriented polyethylene film, packaging material, and food packaging - Google Patents

Oriented polyethylene film, packaging material, and food packaging Download PDF

Info

Publication number
WO2024071092A1
WO2024071092A1 PCT/JP2023/034864 JP2023034864W WO2024071092A1 WO 2024071092 A1 WO2024071092 A1 WO 2024071092A1 JP 2023034864 W JP2023034864 W JP 2023034864W WO 2024071092 A1 WO2024071092 A1 WO 2024071092A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyethylene film
stretched polyethylene
less
stretched
corona
Prior art date
Application number
PCT/JP2023/034864
Other languages
French (fr)
Japanese (ja)
Inventor
正之 櫻井
和樹 橋詰
拓也 田村
いずみ 桂川
裕之 若木
Original Assignee
三井化学東セロ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学東セロ株式会社 filed Critical 三井化学東セロ株式会社
Publication of WO2024071092A1 publication Critical patent/WO2024071092A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes

Definitions

  • the present invention relates to a stretched polyethylene film, a packaging material, and a food package.
  • Patent Document 1 discloses a laminated film that includes a base layer and a heat seal layer, has a stiffness of 70 mN or more in the TD direction measured under conditions of a loop length of 50 mm and a push-in length of 10 mm, and has a polyethylene content of 90% by mass or more, and describes that this laminated film can be recycled and can fully ensure the self-supporting properties of a standing pouch.
  • Patent Document 2 discloses a polyethylene laminate for packaging materials, which comprises at least an oriented polyethylene film, an adhesive layer, and a heat-sealable polyethylene layer, the adhesive layer containing a solvent-free adhesive, and the oriented polyethylene film containing at least one of high density polyethylene (HDPE) and medium density polyethylene (MDPE), and describes that this polyethylene laminate for packaging materials can significantly reduce the burden on the environment and has high printability and strength.
  • HDPE high density polyethylene
  • MDPE medium density polyethylene
  • Patent Document 3 discloses a polyethylene co-extruded film that includes a polyethylene film substrate and a polyethylene film layer, the polyethylene film substrate being an electron beam irradiated layer that includes polyethylene, a light stabilizer, and a crosslinking agent, the polyethylene film layer including polyethylene, and the surface opposite to the surface on which the polyethylene film substrate is provided has heat sealability, and it is described that this polyethylene co-extruded film can suppress deterioration over time, and further has improved heat resistance and strength.
  • Patent Document 4 describes a multilayer film in which a gas barrier layer formed by applying a dispersion liquid containing an inorganic layered compound and a water-soluble polymer to at least one surface of a base layer made of a thermoplastic resin, an overcoat layer containing a cationic resin and a resin having a hydroxyl group, an adhesive layer, and a sealant layer are laminated in this order, and it is described that this multilayer film has excellent heat sealability and gas barrier properties.
  • the multilayer film described in Patent Document 4 has at least four layers, a gas barrier layer, an overcoat layer, an adhesive layer, and a sealant layer.
  • laminating various materials makes it difficult to recycle. From the viewpoint of facilitating recycling of packaging films, for example, it is conceivable to make the packaging film have as simple a layer structure as possible.
  • the packaging film In terms of simplifying the layer structure, it is theoretically possible to make the packaging film a "single layer.”
  • Patent Documents 1 to 3 there are examples such as Patent Documents 1 to 3 in which, even if it is not a single layer, a multi-layer structure in which a single material is blended at a high content as a whole is used in consideration of ease of recycling.
  • the present inventors conducted a preliminary study on various properties that may be required for packaging films using polyethylene film, which is a relatively low-cost and versatile packaging material. As a result of the study, it was found that a "single-layer" polyethylene film has poor lamination strength, which represents the force required to bond and peel the film.
  • the present invention provides a stretched polyethylene film with improved lamination strength and a packaging material made of such a stretched polyethylene film.
  • SAXS small angle X-ray scattering
  • [7] The stretched polyethylene film according to any one of [1] to [6], wherein the haze per four sheets of the stretched polyethylene film, as measured in accordance with JIS K 7136:2000, is 33.0% or less.
  • [8] The stretched polyethylene film according to any one of [1] to [7], wherein the sum of the tensile modulus of elasticity T1 in the MD direction and the tensile modulus of elasticity T2 in the TD direction of the stretched polyethylene film, measured in accordance with JIS K7127:1999 using a tensile tester under conditions of a measurement temperature of 23 ⁇ 2°C, 50 ⁇ 5 % RH, and a tensile speed of 5 mm/min, is 1000 MPa or more and 3300 MPa or less.
  • a friction body with a bottom surface (size 41 mm x 26 mm) made of brass is fixed to the center of the surface opposite to the corona-treated surface side of the other stretched polyethylene film 2, and a weight is attached on top of the friction body so that the mass applied from the friction body to the stretched polyethylene film 2 is 150 g.
  • the corona-treated surfaces of the two stretched polyethylene films 1 and 2 are overlapped.
  • the inclined plate is inclined at a speed of 1°/sec, and the value of tan ⁇ is calculated from the angle ⁇ when the upper stretched polyethylene film 2 starts to slide.
  • At least one surface of the stretched polyethylene film is a corona untreated surface, The stretched polyethylene film according to any one of [1] to [15], wherein the heat fusion strength when the non-corona treated surface of the stretched polyethylene film is bonded to the other surface and heat sealed at 140°C is 10.0 N/15 mm or less. [17] The stretched polyethylene film according to any one of [1] to [16], wherein the stretched polyethylene film has a lamination strength of 0.92 N/15 mm or more as measured by the following method 2.
  • Method 2 A test piece measuring 297 cm x 210 cm was cut out from the stretched polyethylene film, and the corona-treated surface of the test piece was bonded to the corona-treated surface of a 50 ⁇ m-thick cast LLDPE film, one side of which had been corona-treated, with an ester-based adhesive. The resulting mixture was aged at 40°C for 3 days to obtain a sample.
  • the sample was then cut to a width of 15 mm and peeled in the MD direction using a tensile tester in accordance with JIS Z 0238:1998 at a peel angle of 90°, a chuck distance of 100 mm, and a crosshead speed of 300 mm/min, to determine the peel strength, which is taken as the laminate strength.
  • [21] [20] The packaging material according to [20], and a food product within the packaging material.
  • the present invention provides a stretched polyethylene film with improved lamination strength.
  • FIG. 1 is a cross-sectional view showing a schematic example of a structure of a stretched polyethylene film according to an embodiment of the present invention.
  • the stretched polyethylene film (100) comprises a high density polyethylene layer 1 (101), a medium density polyethylene layer (102), and a high density polyethylene layer 2 (103) in this order, and the stretched polyethylene film has a crystal thickness in the MD direction of 16 nm or less as determined by small angle X-ray scattering (SAXS) measurement.
  • SAXS small angle X-ray scattering
  • high density polyethylene is sometimes blended to improve heat resistance and rigidity.
  • a film containing a high content of high density polyethylene is stretched in one direction, oriented crystallization is promoted and the molecular chains are strongly oriented in the stretching direction, which makes the film prone to tearing when stress is applied in the stretching direction, and there are cases where the laminate strength in the stretching direction is extremely reduced.
  • the stretched polyethylene film according to the present embodiment can improve the lamination strength.
  • the reason for this effect is presumably that the three-layer structure in which the medium-density polyethylene layer is sandwiched between the high-density polyethylene layer 1 and the high-density polyethylene layer 2 can suppress oriented crystallization of the surface layer of the stretched polyethylene film, that is, can suppress the molecular chains of the polyethylene from being aligned excessively in one direction.
  • the crystal thickness in the MD direction is, from the viewpoint of improving the laminate strength, 16 nm or less, and preferably 15 nm or less, and, from the viewpoint of further improving the heat resistance and rigidity, is preferably 3 nm or more, more preferably 5 nm or more, even more preferably 7 nm or more, even more preferably 10 nm or more, and even more preferably 13 nm or more.
  • the crystal thickness of the stretched polyethylene film can be adjusted, for example, by adjusting the types and content ratios of the high density polyethylene layer 1, the high density polyethylene layer 2, and the medium density polyethylene layer contained in the stretched polyethylene film, the thickness, stretching temperature, stretching ratio, etc. of the stretched polyethylene film.
  • the total amount of the high density polyethylene layer 1 and the high density polyethylene layer 2, relative to the entire stretched polyethylene film is preferably 10% by mass or more, more preferably 15% by mass or more, even more preferably 20% by mass or more, even more preferably 25% by mass or more, even more preferably 28% by mass or more, even more preferably 30% by mass or more, and even more preferably 35% by mass or more, from the viewpoint of further improving the transparency, rigidity, heat resistance, and slip property, and is preferably 85% by mass or less, more preferably 83% by mass or less, even more preferably 80% by mass or less, even more preferably 75% by mass or less, even more preferably 65% by mass or less, even more preferably 55% by mass or less, and even more preferably 45% by mass or less, from the viewpoint of blending an appropriate amount of the medium density polyethylene layer to further improve the laminate strength.
  • the total amount of the high-density polyethylene layer 1 and the high-density polyethylene layer 2 is more preferably 38 mass% or more, and even more preferably 65 mass% or less, and even more preferably 55 mass% or less, of the entire stretched polyethylene film.
  • the high-density polyethylene layer 1 and the high-density polyethylene layer 2 may be formed using the same material or different materials, but if different materials are used, it is preferable that the high-density polyethylene layer 1 and the high-density polyethylene layer 2 satisfy the following configuration.
  • the content of high density polyethylene in high density polyethylene layer 1 and high density polyethylene layer 2 is preferably 80% by mass or more, more preferably 85% by mass or more, even more preferably 90% by mass or more, even more preferably 95% by mass or more, and even more preferably 98% by mass or more, based on the entire high density polyethylene layer 1 and high density polyethylene layer 2, respectively.
  • the density of the high-density polyethylene layer 1 and the high-density polyethylene layer 2, measured in accordance with JIS K 7112:1999, is preferably 940 kg/m or more , more preferably 943 kg/m or more, and even more preferably 945 kg/m or more, from the viewpoint of achieving a better balance between various performances such as heat resistance, transparency, mechanical properties, and rigidity, and is preferably 970 kg/m or less, more preferably 968 kg/ m or less, even more preferably 965 kg/m or less, even more preferably 960 kg/m or less, even more preferably 955 kg/m or less, and even more preferably 950 kg/m or less , from the viewpoint of achieving a better balance between laminate strength and film formability.
  • the density of the high density polyethylene constituting the high density polyethylene layer 1 and the high density polyethylene layer 2, as measured in accordance with JIS K 7112:1999, is preferably 940 kg/m or more , more preferably 943 kg/m or more, and even more preferably 945 kg/m or more , from the viewpoint of achieving a better balance between various performances such as heat resistance, transparency, mechanical properties, and rigidity, and is preferably 970 kg/m or less, more preferably 968 kg/m or less, even more preferably 965 kg/m or less, even more preferably 960 kg/m or less, even more preferably 955 kg/m or less, and even more preferably 950 kg/m or less , from the viewpoint of achieving a better balance between laminate strength and film formability.
  • the melt flow rate (MFR) of the high density polyethylene layer 1 and the high density polyethylene layer 2, measured in accordance with ASTM D1238 under conditions of 190°C and a load of 2.16 kg, is preferably 0.01 g/10 min or more, more preferably 0.1 g/10 min or more, even more preferably 0.5 g/10 min or more, and even more preferably 1.0 g/10 min or more, from the viewpoint of further improving the fluidity and moldability, and is preferably 20 g/10 min or less, more preferably 10 g/10 min or less, even more preferably 5 g/10 min or less, even more preferably 3 g/10 min or less, even more preferably 2 g/10 min or less, and even more preferably 1.5 g/10 min or less, from the viewpoint of improving the stiffness of the stretched polyethylene film while maintaining the tearability of the stretched polyethylene film.
  • the melting points of the high-density polyethylene layer 1 and the high-density polyethylene layer 2, as measured by a differential scanning calorimeter (DSC), are preferably 120° C. or higher, more preferably 125° C. or higher, and preferably 135° C. or lower, from the viewpoint of further improving the balance of thermal dimensional stability, heat resistance, mechanical properties, rigidity, bag-formability, fluidity, moldability, and the like.
  • the melt flow rate (MFR) of the high density polyethylene constituting the high density polyethylene layer 1 and the high density polyethylene layer 2, measured in accordance with ASTM D1238 under conditions of 190°C and a load of 2.16 kg is preferably 0.01 g/10 min or more, more preferably 0.1 g/10 min or more, even more preferably 0.5 g/10 min or more, and even more preferably 1.0 g/10 min or more, from the viewpoint of further improving fluidity and moldability, and is preferably 20 g/10 min or less, more preferably 10 g/10 min or less, even more preferably 5 g/10 min or less, even more preferably 3 g/10 min or less, even more preferably 2 g/10 min or less, and even more preferably 1.5 g/10 min or less, from the viewpoint of improving the stiffness of the stretched polyethylene film while maintaining the tearability of the stretched polyethylene film.
  • the melting points of the high density polyethylene constituting the high density polyethylene layer 1 and the high density polyethylene layer 2, as measured by a differential scanning calorimeter (DSC), are preferably 120°C or higher, more preferably 125°C or higher, and preferably 135°C or lower, from the viewpoint of further improving the balance of thermal dimensional stability, heat resistance, mechanical properties, rigidity, bag-formability, fluidity, moldability, and the like.
  • the density, MFR and melting point of the high-density polyethylene layer can be measured values for a mixture obtained by melt-blending two or more types of polyethylene using a known method.
  • the melting point of the high-density polyethylene layer can be the peak temperature of the maximum melting peak.
  • the medium-density polyethylene content in the medium-density polyethylene layer is preferably 80% by mass or more, more preferably 85% by mass or more, even more preferably 90% by mass or more, even more preferably 95% by mass or more, and even more preferably 98% by mass or more, based on the entire medium-density polyethylene layer, from the viewpoint of suppressing oriented crystallization of the surface layer of the stretched polyethylene film and further improving the laminate strength.
  • There is no upper limit to the medium-density polyethylene content in the medium-density polyethylene layer but it is, for example, 100% by mass or less.
  • the density of the medium-density polyethylene layer is preferably 910 kg/ m3 or more, more preferably 915 kg/ m3 or more, even more preferably 920 kg/ m3 or more, and still more preferably 925 kg/ m3 or more, from the viewpoint of improving the mechanical properties, rigidity, and flexibility, and is preferably less than 940 kg/ m3 , more preferably 933 kg/ m3 or less, and still more preferably 930 kg/ m3 or less, from the viewpoint of improving the balance between laminate strength and flexibility.
  • the density of the medium-density polyethylene constituting the medium-density polyethylene layer is preferably 910 kg/ m3 or more, more preferably 915 kg/ m3 or more, even more preferably 920 kg/ m3 or more, and still more preferably 925 kg/ m3 or more, from the viewpoint of improving the mechanical properties, rigidity, and flexibility, and is preferably less than 940 kg/ m3 , more preferably 933 kg/ m3 or less, and still more preferably 930 kg/ m3 or less, from the viewpoint of improving the balance between laminate strength and flexibility.
  • the melt flow rate (MFR) of the medium-density polyethylene layer is preferably 0.01 g/10 min or more, more preferably 0.1 g/10 min or more, even more preferably 0.5 g/10 min or more, and even more preferably 1.0 g/10 min or more, from the viewpoint of further improving processability, and is preferably 20 g/10 min or less, more preferably 10 g/10 min or less, even more preferably 5 g/10 min or less, even more preferably 3 g/10 min or less, and even more preferably 2 g/10 min or less, from the viewpoint of improving the stiffness of the stretched polyethylene film while maintaining the tearability of the stretched polyethylene film.
  • the melting point of the medium-density polyethylene layer is preferably 120° C. or higher, and more preferably 125° C. or higher, from the viewpoint of improving heat resistance and stiffness while maintaining processability and adhesiveness, and is preferably 135° C. or lower, and more preferably 130° C. or lower, from the viewpoint of improving adhesiveness while maintaining heat resistance.
  • DSC differential scanning calorimeter
  • the melt flow rate (MFR) of the medium-density polyethylene constituting the medium-density polyethylene layer is preferably 0.01 g/10 min or more, more preferably 0.1 g/10 min or more, even more preferably 0.5 g/10 min or more, and even more preferably 1.0 g/10 min or more, from the viewpoint of further improving processability, and is preferably 20 g/10 min or less, more preferably 10 g/10 min or less, even more preferably 5 g/10 min or less, even more preferably 3 g/10 min or less, and even more preferably 2 g/10 min or less, from the viewpoint of improving the stiffness of the stretched polyethylene film while maintaining the tearability of the stretched polyethylene film.
  • the melting point of the medium-density polyethylene constituting the medium-density polyethylene layer is preferably 120° C. or higher, more preferably 125° C. or higher, from the viewpoint of improving heat resistance and stiffness while maintaining processability and adhesiveness, and is preferably 135° C. or lower, more preferably 130° C. or lower, from the viewpoint of improving adhesiveness while maintaining heat resistance.
  • DSC differential scanning calorimeter
  • the density, MFR and melting point of the medium-density polyethylene layer can be measured values for a mixture obtained by melt-blending two or more types of polyethylene using a known method.
  • the melting point of the medium-density polyethylene layer can be the peak temperature of the maximum melting peak.
  • At least one surface of the stretched polyethylene film of this embodiment is a corona-treated surface (a surface that has been surface-modified by exposure to corona discharge).
  • a corona-treated surface a surface that has been surface-modified by exposure to corona discharge.
  • the high density polyethylene layer 1, the high density polyethylene layer 2 and the medium density polyethylene layer may contain various additives within the scope of the present invention.
  • additives include heat stabilizers, weather stabilizers, antioxidants, UV absorbers, lubricants, slip agents, nucleating agents, antiblocking agents, antistatic agents, antifogging agents, pigments, dyes, inorganic or organic fillers, etc.
  • the thicknesses of the high-density polyethylene layer 1 and the high-density polyethylene layer 2 are each preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more, and preferably 17 ⁇ m or less, more preferably 15 ⁇ m or less, even more preferably 13 ⁇ m or less, even more preferably 10 ⁇ m or less, even more preferably 9 ⁇ m or less, and even more preferably 7 ⁇ m or less.
  • the thicknesses of high-density polyethylene layer 1 and high-density polyethylene layer 2 may be the same or different, but it is preferable that they are the same from the viewpoint of making the amount of distortion on the front and back of the stretched polyethylene film uniform on the high-density polyethylene layer 1 side and the high-density polyethylene layer 2 side.
  • the thickness of the medium-density polyethylene layer is preferably 2 ⁇ m or more, more preferably 3 ⁇ m or more, even more preferably 5 ⁇ m or more, and even more preferably 10 ⁇ m or more, and is preferably 30 ⁇ m or less, more preferably 25 ⁇ m or less, even more preferably 20 ⁇ m or less, and even more preferably 15 ⁇ m or less.
  • the overall thickness of the stretched polyethylene film is, from the viewpoints of maintaining the tearability and further improving the mechanical strength of the stretched polyethylene film, preferably 10 ⁇ m or more, more preferably 13 ⁇ m or more, and even more preferably 15 ⁇ m or more, and from the viewpoints of further improving the tearability, handleability, formability, bag-making suitability, lightness, etc. of the stretched polyethylene film, it is preferably 100 ⁇ m or less, more preferably 70 ⁇ m or less, even more preferably 50 ⁇ m or less, even more preferably 40 ⁇ m or less, and even more preferably 30 ⁇ m or less.
  • the full width at half maximum (FWHM) of the peak in the MD direction at a diffraction angle 2 ⁇ in the range of 0.2 to 0.4°, as determined by small angle X-ray scattering (SAXS), is preferably 0.20° or less, more preferably 0.19° or less, from the viewpoint of suppressing oriented crystallization of the surface layer of the stretched polyethylene film and further improving the balance of performance of tear strength, lamination strength, transparency, thermal dimensional stability, and slip property.
  • the full width at half maximum (FWHM) of the peak in the MD direction at a diffraction angle 2 ⁇ in the range of 0.2 to 0.4° of the stretched polyethylene film is preferably 0.05° or more, more preferably 0.10° or more, even more preferably 0.13° or more, even more preferably 0.14° or more, and even more preferably 0.15° or more, from the viewpoint of further improving film formability, bag formability, lamination strength, and thermal dimensional stability.
  • the full width at half maximum (FWHM) of the peak in the MD diffraction angle 2 ⁇ range of 0.2 to 0.4° which is determined from such small angle X-ray scattering (SAXS) measurement, can be adjusted, for example, by adjusting the types and contents of the high density polyethylene layer 1, the high density polyethylene layer 2, and the medium density polyethylene layer contained in the stretched polyethylene film, the thickness of the stretched polyethylene film, the stretch ratio, etc.
  • the haze per sheet of stretched polyethylene film measured in accordance with JIS K 7136:2000 is preferably 8.0% or less, more preferably 7.5% or less, even more preferably 7.0% or less, even more preferably 6.5% or less, even more preferably 6.0% or less, even more preferably 5.5% or less, even more preferably 5.0% or less, and even more preferably 4.5% or less, from the viewpoint of further improving the transparency of the stretched polyethylene film.
  • the haze per four sheets of stretched polyethylene film measured in accordance with JIS K 7136: 2000 is, from the viewpoint of further improving the transparency of the stretched polyethylene film, preferably 33.0% or less, more preferably 30.0% or less, even more preferably 28.0% or less, even more preferably 25.0% or less, even more preferably 23.0% or less, even more preferably 20.0% or less, and even more preferably 18.0% or less.
  • There is no lower limit for the haze per four sheets of stretched polyethylene film but it may be, for example, 1.0% or more, or may be 5.0% or more, 10.0% or more, or may be 15.0% or more.
  • Such haze can be adjusted, for example, by adjusting the types and contents of the high density polyethylene layer 1, the high density polyethylene layer 2 and the medium density polyethylene layer contained in the stretched polyethylene film, the thickness and the stretch ratio of the stretched polyethylene film, etc.
  • the total value of the tensile modulus T1 in the MD direction and the tensile modulus T2 in the TD direction of the stretched polyethylene film, measured in accordance with JIS K7127:1999 using a tensile tester under conditions of a measurement temperature of 23 ⁇ 2°C, 50 ⁇ 5% RH, and a tensile speed of 5 mm/min is preferably 1000 MPa or more, more preferably 1300 MPa or more, even more preferably 1500 MPa or more, even more preferably 1550 MPa or more, even more preferably 1600 MPa or more, and even more preferably 1800 MPa or more, from the viewpoints of improving the performance balance of the transparency and thermal dimensional stability of the stretched polyethylene film and improving the stiffness of the stretched polyethylene film; and from the viewpoints of making troubles such as breakage less likely to occur during molding of the stretched polyethylene film, facilitating continuous stretch molding of the film, and further improving industrial continuous productivity, is preferably 3300 MPa or less, more
  • the sum of the tensile modulus T1 in the MD direction and the tensile modulus T2 in the TD direction of the stretched polyethylene film is more preferably 1830 MPa or more, more preferably 1840 MPa or more, and more preferably 2800 MPa or less, more preferably 2600 MPa or less, more preferably 2400 MPa or less, and more preferably 2200 MPa or less.
  • Such a tensile modulus is a substitute value for quantitatively measuring the stiffness of a film, and can be adjusted, for example, by adjusting the types and contents of the high density polyethylene layer 1, high density polyethylene layer 2, and medium density polyethylene layer contained in the stretched polyethylene film, the thickness of the stretched polyethylene film, the stretching ratio, etc.
  • the tensile modulus T1 in the MD direction of the stretched polyethylene film is, from the viewpoint of further improving the balance of the thermal dimensional stability, formability, mechanical properties, transparency, bag-formability, handleability and packaging suitability of the stretched polyethylene film, preferably 500 MPa or more, more preferably 600 MPa or more, even more preferably 630 MPa or more, even more preferably 650 MPa or more, even more preferably 670 MPa or more, and even more preferably 700 MPa or more; and, from the viewpoint of further improving the balance of the thermal dimensional stability, bag-formability and packaging suitability of the stretched polyethylene film, it is preferably 1500 MPa or less, more preferably 1480 MPa or less, even more preferably 1450 MPa or less, even more preferably 1430 MPa or less, and even more preferably 1400 MPa or less.
  • the tensile modulus T2 in the TD direction of the stretched polyethylene film is preferably 600 MPa or more, more preferably 700 MPa or more, even more preferably 730 MPa or more, even more preferably 750 MPa or more, even more preferably 770 MPa or more, even more preferably 800 MPa or more, and even more preferably 830 MPa or more, from the viewpoint of further improving the balance of the formability, mechanical properties, transparency, bag-formability, handleability, and packaging suitability of the stretched polyethylene film.
  • the stretched polyethylene film is preferably 1800 MPa or less, more preferably 1750 MPa or less, even more preferably 1700 MPa or less, even more preferably 1650 MPa or less, even more preferably 1600 MPa or less, and even more preferably 1550 MPa or less.
  • the heat shrinkage rate in the MD direction of the stretched polyethylene film when heated at 100°C for 15 minutes is, from the viewpoint of further improving the thermal dimensional stability and bag-formability, preferably 3.0% or less, more preferably 2.8% or less, and even more preferably 2.5% or less, and may be 0.1% or more, 0.5% or more, 1.0% or more, 1.5% or more, 1.6% or more, or 1.7% or more.
  • the heat shrinkage rate in the MD direction of the stretched polyethylene film when heat-treated at 100°C for 15 minutes is more preferably 2.4% or less, and may be 2.0% or more.
  • the heat shrinkage rate of the stretched polyethylene film can be measured in accordance with JIS C2151:2019.
  • the heat shrinkage rate in the MD direction of the stretched polyethylene film when heated at 120°C for 15 minutes is, from the viewpoint of further improving the thermal dimensional stability and bag-formability, preferably 15.0% or less, more preferably 13.0% or less, and even more preferably 11.0% or less, and may be 1.0% or more, 3.0% or more, 5.0% or more, or 8.0% or more.
  • the heat shrinkage rate in the MD direction of the stretched polyethylene film when heat-treated at 120°C for 15 minutes is more preferably 10.5% or less, and more preferably 9.0% or more, and even more preferably 9.5% or more.
  • the static friction coefficient (tan ⁇ ) of the surfaces of the stretched polyethylene film may be measured between treated surfaces, between untreated surfaces, or between treated and untreated surfaces.
  • the static friction coefficient (tan ⁇ ) of the corona-treated surface of the stretched polyethylene film is within the above range.
  • the static friction coefficient (tan ⁇ ) of the corona-treated surface of the stretched polyethylene film is preferably 0.40 or more, more preferably 0.42 or more, and even more preferably 0.45 or more, and is preferably 0.75 or less, more preferably 0.70 or less, even more preferably 0.65 or less, even more preferably 0.60 or less, even more preferably 0.56 or less, and even more preferably 0.54 or less.
  • the static friction coefficient (tan ⁇ ) of the surface on the non-corona treated side of the stretched polyethylene film is within the above range.
  • the static friction coefficient (tan ⁇ ) of the non-corona treated side of the stretched polyethylene film is preferably 0.40 or more, more preferably 0.42 or more, and even more preferably 0.45 or more, and is preferably 0.75 or less, more preferably 0.70 or less, even more preferably 0.65 or less, even more preferably 0.60 or less, even more preferably 0.56 or less, and even more preferably 0.54 or less.
  • the static friction coefficient (tan ⁇ ) of the corona-treated surface of the stretched polyethylene film is measured by the following method. Two pieces of stretched polyethylene film cut to a size of 50 mm x 75 mm (hereinafter referred to as stretched polyethylene film 1 and 2) are prepared, and one of the stretched polyethylene films, the stretched polyethylene film 1, is fixed to an inclined plate so that the corona-treated surface side is on top. Next, a friction body with a bottom surface (size 41 mm x 26 mm) made of brass is fixed to the center of the surface opposite to the corona-treated surface side of the other stretched polyethylene film 2, and a weight is attached on top of the friction body so that the mass applied from the friction body to the stretched polyethylene film 2 is 150 g.
  • the corona-treated surfaces of the two stretched polyethylene films 1 and 2 are overlapped.
  • the inclined plate is inclined at a speed of 1°/sec, and the value of tan ⁇ is calculated from the angle ⁇ when the upper stretched polyethylene film 2 starts to slide.
  • the static friction coefficient (tan ⁇ ) of the corona-untreated surface is measured, the static friction coefficient (tan ⁇ ) of the corona-treated surface is measured in the above-mentioned method for measuring the static friction coefficient (tan ⁇ ) of the corona-treated surface, except that the corona-treated surface is replaced with the corona-untreated surface.
  • the number of pinholes generated in the stretched polyethylene film is preferably 6000 pcs/m or less , more preferably 5000 pcs/m or less , even more preferably 4000 pcs/m or less, even more preferably 3000 pcs/m or less, even more preferably 2800 pcs/m or less, and even more preferably 2500 pcs/m or less.
  • the number of pinholes generated in the stretched polyethylene film is, for example, 100 pinholes/ m2 or more, or 300 pinholes/ m2 or more, or 500 pinholes/ m2 or more, or 1000 pinholes/ m2 or more.
  • the number of pinholes generated represents an index of the flex resistance of the stretched polyethylene film of this embodiment, and the fewer the number of pinholes generated, the better the flex resistance.
  • the Gelbo flex tester may be, for example, a product manufactured by Tester Sangyo Co., Ltd.
  • the tear strength in the MD direction of the stretched polyethylene film measured using a light-load tear tester under the conditions of test piece size: MD direction: 63.5 mm, TD direction: 50.0 mm, pendulum weight mass: 96.09 g, tear length: 12.7 mm, pendulum lift angle: 90° is preferably 50 mN or more, more preferably 55 mN or more, even more preferably 60 mN or more, even more preferably 65 mN or more, and even more preferably 70 mN or more, from the viewpoint of improving film-forming and bag-making processability, and is preferably 1500 mN or less, more preferably 1200 mN or less, even more preferably 1000 mN or less, even more preferably 800 mN or less, even more preferably 600 mN or less, even more preferably 400 mN or less, and even more preferably 200 mN or less, from the viewpoint of improving tearability while maintaining the heat sealability and stiffness of the stretched polyethylene film.
  • the tear strength in the TD direction of the stretched polyethylene film is preferably 200 mN or more, more preferably 250 mN or more, even more preferably 300 mN or more, even more preferably 310 mN or more, even more preferably 320 mN or more, and even more preferably 330 mN or more, from the viewpoint of improving the film-forming property and bag-making processability, and is preferably 800 mN or less, more preferably 750 mN or less, even more preferably 700 mN or less, preferably 650 mN or less, even more preferably 630 mN or less, even more preferably 600 mN or less, and even more preferably 500 mN or less, from the viewpoint of improving the tearability while maintaining the heat seal
  • the light load tear tester may be, for example, Model D manufactured by Toyo Seiki Seisakusho Co., Ltd.
  • the density, thickness, etc. of each of the high density polyethylene layer 1, the high density polyethylene layer 2 and the medium density polyethylene layer contained in the stretched polyethylene film may be appropriately adjusted.
  • the heat fusion strength when the corona untreated surfaces of the stretched polyethylene films are bonded together and heat fused at 140° C. is preferably 10.0 N/15 mm or less, more preferably 9.0 N/15 mm or less, even more preferably 7.0 N/15 mm or less, even more preferably 6.8 N/15 mm or less, even more preferably 6.5 N/15 mm or less, even more preferably 6.3 N/15 mm or less, and even more preferably 6.0 N/15 mm or less, from the viewpoint of improving heat resistance.
  • There is no lower limit for the heat fusion strength but it is, for example, 0.5 N/15 mm or more.
  • the heat fusion strength is measured as follows.
  • the non-corona treated surfaces of two sheets of stretched polyethylene film cut to a width of 15 mm are heat-sealed to each other under conditions of 140°C, pressure of 2.0 kgf, and sealing time of 1.0 second to obtain a laminated film.
  • the two sheets of stretched polyethylene film are peeled off using the laminated film cut to a width of 15 mm under conditions of 90° peeling, peeling speed of 300 mm/min, and pulling in the MD direction, and the peel strength at this time is taken as the heat fusion strength (N/15 mm).
  • the laminate strength of the stretched polyethylene film is preferably 0.92 N/15 mm or more, more preferably 0.93 N/15 mm or more, even more preferably 0.94 N/15 mm or more, even more preferably 0.95 N/15 mm or more, even more preferably 1.00 N/15 mm or more, and even more preferably 1.05 N/15 mm or more, and from the viewpoint of achieving a better balance between adhesion and easy-opening properties, it is preferably 1.20 N/15 mm or less, more preferably 1.18 N/15 mm or less, preferably 1.15 N/15 mm or less, preferably 1.13 N/15 mm or less, and preferably 1.10 N/15 mm or less.
  • the laminate strength is measured as follows: A test piece measuring 297 cm x 210 cm is cut out from a stretched polyethylene film, and the corona-treated side of the test piece is bonded to the corona-treated side of a 50 ⁇ m-thick cast LLDPE film, one side of which has been corona-treated, with an ester adhesive, and aged for 3 days at 40° C. to obtain a sample.
  • the sample is cut to a width of 15 mm, and peeled in the MD direction using a tensile tester in accordance with JIS Z 0238:1998 at a peel angle of 90°, a chuck distance of 100 mm, and a crosshead speed of 300 mm/min, to determine the peel strength, which is the laminate strength.
  • the stretched polyethylene film of this embodiment is composed of a high-density polyethylene layer 1, a medium-density polyethylene layer, and a high-density polyethylene layer 2 can be determined, for example, by cutting a cross-section of the stretched polyethylene film and measuring the melting point of each layer.
  • the melting points of the high density polyethylene layers 1 and 2 are, for example, in the range of 130°C or higher and 140°C or lower, and the melting point of the medium density polyethylene layer is, for example, in the range of 110°C or higher and 129°C or lower.
  • the stretched polyethylene film of the present embodiment is stretched uniaxially or biaxially from the viewpoint of improving the orientation crystallinity and increasing the mechanical strength, and is preferably stretched uniaxially from the viewpoint of improving productivity. Moreover, by stretching uniaxially in the MD direction, the tensile modulus T1 in the MD direction can be further improved.
  • the stretched polyethylene film can be obtained, for example, by co-extrusion molding a high-density polyethylene resin for forming the high-density polyethylene layer 1, a medium-density polyethylene resin for forming the medium-density polyethylene layer, and a high-density polyethylene resin for forming the high-density polyethylene layer 2, in that order, into a film, and stretching the film obtained by using a known stretched film production method such as a uniaxial stretching method, simultaneous biaxial stretching method, or sequential biaxial stretching method.
  • the molding apparatus and molding conditions are not particularly limited, and conventionally known molding apparatus and molding conditions can be used.
  • the conditions for the uniaxial stretching method and the biaxial stretching method may be, for example, the manufacturing conditions for known stretched polyethylene films. More specifically, in the case of the uniaxial stretching method, for example, the longitudinal stretching temperature may be set to 100° C. to 145° C., and the longitudinal stretching ratio may be set to a range of 4.5 to 6 times. In the case of the sequential biaxial stretching method, for example, the longitudinal stretching temperature may be set to 100° C. to 145° C., the longitudinal stretching ratio may be set to a range of 4.5 to 6 times, the transverse stretching temperature may be set to 110° C. to 160° C., and the transverse stretching ratio may be set to a range of 9 to 11 times.
  • the stretched polyethylene film of the present embodiment can be suitably used as a food packaging film.
  • the stretched polyethylene film of the present embodiment can also be suitably used as a packaging material.
  • the stretched polyethylene film of the present embodiment may be used alone, or other layers may be laminated to form the packaging material. Examples of the other layers include a base layer, a coating layer, an adhesive layer, and a heat seal layer. From the viewpoint of ease of recycling, when these layers are laminated, they are preferably formed of a polyethylene-based resin.
  • the packaging material of the present embodiment can also be suitably used for food packaging.
  • the food packaging is used for the purpose of packaging food, for example, and specifically includes the packaging material of the present embodiment and the food inside the packaging material. Depending on the application, only a portion of the food package may be made of the packaging material of this embodiment, or substantially the entire food package may be made of the packaging material of this embodiment.
  • the stretched polyethylene film according to this embodiment is preferably used for food packaging that requires good laminate strength.
  • the food packaging can be in the form of, for example, a two-sided bag or a standing pouch (pouch packaging). These forms are preferred because they can provide good laminate strength.
  • the corona-treated surface is the inner surface and the non-corona-treated surface is the outer surface.
  • the stretched polyethylene film side of this embodiment is the outermost layer of the food package.
  • High density polyethylene High density polyethylene
  • HDPE1 High density polyethylene
  • MFR Medium density polyethylene
  • MDPE1 density: 928 kg/m 3
  • MFR 1.7 g/10 min
  • HDPE1 high density polyethylene
  • MDPE1 medium density polyethylene
  • HDPE1 high density polyethylene
  • HDPE1 high density polyethylene
  • MDPE1 medium density polyethylene
  • HDPE1 high density polyethylene
  • Extrusion temperature 230°C
  • processing speed 70m/min
  • Longitudinal stretching temperature 110 to 130°C
  • SAXS Small angle X-ray scattering
  • Detector RIGAKU scintillation detector (HV: 762 V) (one-dimensional) X-ray irradiation conditions: A. Scan axis: 2theta B. Measurement method: Continuous C. Scan start angle: 0.1° D. Scan end angle: 1.0° E. Sampling width: 0.02° F. Scan speed: 0.5°/min G. Voltage and current: 40kV-40mA H. Number of sample stacks: In order to obtain sufficient scattering intensity, the samples were stacked to a thickness of about 0.5 mm with the sample orientation aligned. The X-ray scattering pattern obtained under the above measurement conditions was corrected for air scattering by the detector to obtain a SAXS profile I(q).
  • the diffraction angle ⁇ was calculated from the magnitude of the scattering vector of the peak derived from the crystal long period of the SAXS profile I(q) using formula (1), and this was substituted into Bragg's formula (2) to calculate the crystal long period (d).
  • q 4 ⁇ sin ⁇ / ⁇ (1)
  • diffraction angle
  • d Crystal long period
  • Diffraction angle ⁇ : X-ray wavelength
  • the electron density correlation function ⁇ (r) was calculated by Fourier transforming the SAXS profile I(q) using the following formula (3).
  • ⁇ (r) has a special property that can be directly used for structural characterization, and the amorphous thickness (da) of each example of the stretched polyethylene film obtained as structural information was calculated. Also, r indicates distance (nm).
  • the crystal thickness (dc) was calculated by subtracting the amorphous thickness (da) from the crystal long period (d).
  • the full width at half maximum (FWHM) of the peak in the range of 0.2 to 0.4° diffraction angle 2 ⁇ in the MD direction was calculated using X-ray analysis software PDXL-2 (manufactured by RIGAKU Corporation). Specifically, air scattering was removed from the SAXS profile I(q) obtained above.
  • ⁇ HAZE> In accordance with JIS K7136:2000, the haze was measured using a haze meter (NDH5000, manufactured by Nippon Denshoku Industries Co., Ltd.) for one sheet of stretched polyethylene film and for four sheets stacked together in each example.
  • NDH5000 manufactured by Nippon Denshoku Industries Co., Ltd.
  • the four sheets of stretched polyethylene film were stacked together with the orientations of the MD and TD directions of the stretched polyethylene films aligned, and the measurements were performed.
  • ⁇ Tensile modulus> A test piece of 15 mm x 15 cm was cut out from each stretched polyethylene film. Then, using a tensile tester manufactured by Orientec Co., Ltd., the tensile modulus of elasticity in the MD direction T1 and the tensile modulus of elasticity in the TD direction T2 of the test piece were measured in accordance with JIS K7127:1999 under the conditions of a measurement temperature of 23 ⁇ 2°C, 50 ⁇ 5% RH, and a tensile speed of 5 mm/min. The total value of T1 and T2 was calculated from the obtained values.
  • ⁇ Heat shrinkage rate in MD direction of stretched polyethylene film at 120°C> The heat shrinkage rate in the MD direction of the stretched polyethylene film at 120°C was measured in accordance with JIS C2151:2019.
  • a test piece of 10 cm x 10 cm was cut out from the stretched polyethylene film of each example.
  • the test piece was heated in a hot air circulation type thermostatic chamber (manufactured by ADVANTEC, product name: DRM620DE) while hanging without applying force.
  • the test piece was then heat-treated at 120°C for 15 minutes.
  • the length of the test piece in the MD direction after the heat treatment was taken as MD 120 [cm], and the heat shrinkage rate in the MD direction [%] was calculated by 100 x (10 - MD 120 ) / 10.
  • the above measurement was carried out three times, and the average value of the obtained measured values was adopted as the heat shrinkage rate of the stretched polyethylene film at 120°C.
  • the static friction coefficient of the corona-treated surface was measured as follows. Two pieces of stretched polyethylene film of each example cut to a size of 50 mm x 75 mm (hereinafter referred to as stretched polyethylene film 1 and 2) were prepared, and one of the stretched polyethylene films, the stretched polyethylene film 1, was fixed to an inclined plate so that the corona-treated surface side was on top.
  • a friction body with a bottom surface (size 41 mm x 26 mm) made of brass was fixed to the center of the surface opposite to the corona-treated surface side of the other stretched polyethylene film 2, and a weight was attached on top of the friction body so that the mass applied from the friction body to the stretched polyethylene film 2 was 150 g.
  • the corona-treated surfaces of the two stretched polyethylene films 1 and 2 were overlapped.
  • the inclined plate was tilted at a speed of 1°/sec, and the value of tan ⁇ was obtained from the angle ⁇ when the upper stretched polyethylene film 2 started to slide.
  • ⁇ Tear strength> A test piece of 63.5 mm in the MD direction and 50.0 mm in the TD direction was cut out from each stretched polyethylene film.
  • the tear strength (mN) in the MD direction of each test piece was measured using a light-load tear tester (manufactured by Toyo Seiki Seisakusho Co., Ltd., Model-D) under the following conditions: pendulum weight: 96.09 g, tear length: 12.7 mm, pendulum lift angle: 90°.
  • pendulum weight 96.09 g
  • tear length 12.7 mm
  • pendulum lift angle 90°.
  • a test piece having a length of 50.0 mm in the MD direction and 63.5 mm in the TD direction was cut out from each stretched polyethylene film.
  • the test piece was subjected to measurement of tear strength (mN) in the TD direction in the same manner as in the measurement of tear strength (mN) in the MD direction.
  • a test piece measuring 297 cm x 210 cm was cut out from the stretched polyethylene film of each example, and a bending test was performed 3,000 times using a Gelbo Flex Tester (manufactured by Tester Sangyo Co., Ltd.) at a bending angle of 440 degrees and a bending speed of 40 times/minute in an atmosphere of -30°C. After the bending test, bags were made from the test pieces, and the number of pinholes generated was measured using Ageless Seal Check Liquid (manufactured by Mitsubishi Gas Chemical Co., Ltd.).
  • the sample was cut to a width of 15 mm, and in accordance with JIS Z 0238: 1998, a tensile tester (Tensilon universal tester RTC-1225 manufactured by Orientec Co., Ltd.) was used to measure the peel strength when peeled in the MD direction under the conditions of a peel angle of 90 °, a chuck distance of 100 mm, and a crosshead speed of 300 mm / min, and this was taken as the laminate strength.
  • a tensile tester Teensilon universal tester RTC-1225 manufactured by Orientec Co., Ltd.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

An oriented polyethylene film (100) comprising a high-density polyethylene layer 1 (101), a medium-density polyethylene layer (102), and a high-density polyethylene layer 2 (103) in this order, wherein the oriented polyethylene film has a crystal thickness of 16 nm or less in the MD direction as determined by small-angle X-ray scattering (SAXS) measurement.

Description

延伸ポリエチレンフィルム、包装材および食品包装体Stretched polyethylene film, packaging material and food packaging body
 本発明は、延伸ポリエチレンフィルム、包装材および食品包装体
に関する。
The present invention relates to a stretched polyethylene film, a packaging material, and a food package.
 包装用フィルムの分野において、使用素材や層構成などを工夫して種々の性能を向上させる試みが知られている。 In the field of packaging films, attempts to improve various performance features by tinkering with the materials used and layer structures are known.
 特許文献1には、基材層と、ヒートシール層とを備え、ループ長50mm及び押込み長10mmの条件で測定されるコシ強度がTD方向で70mN以上であり、ポリエチレンの含有量が90質量%以上である積層フィルムが開示され、この積層フィルムは、リサイクルできるとともに、スタンディングパウチの自立性を十分に確保できる、と記載されている。 Patent Document 1 discloses a laminated film that includes a base layer and a heat seal layer, has a stiffness of 70 mN or more in the TD direction measured under conditions of a loop length of 50 mm and a push-in length of 10 mm, and has a polyethylene content of 90% by mass or more, and describes that this laminated film can be recycled and can fully ensure the self-supporting properties of a standing pouch.
 特許文献2には、延伸ポリエチレンフィルムと、接着層と、ヒートシール性ポリエチレン層とを少なくとも備え、接着層が、無溶剤型接着剤を含み、延伸ポリエチレンフィルムが、高密度ポリエチレン(HDPE)及び中密度ポリエチレン(MDPE)のうち少なくとも1つを含む、包装材料用ポリエチレン積層体が開示され、この包装材料用ポリエチレン積層体は、環境への負荷を顕著に低減することができると共に、高い印刷適性及び強度を有する、と記載されている。 Patent Document 2 discloses a polyethylene laminate for packaging materials, which comprises at least an oriented polyethylene film, an adhesive layer, and a heat-sealable polyethylene layer, the adhesive layer containing a solvent-free adhesive, and the oriented polyethylene film containing at least one of high density polyethylene (HDPE) and medium density polyethylene (MDPE), and describes that this polyethylene laminate for packaging materials can significantly reduce the burden on the environment and has high printability and strength.
 特許文献3には、ポリエチレンフィルム基材と、ポリエチレンフィルム層と、を備え、前記ポリエチレンフィルム基材は、ポリエチレン、光安定剤および架橋剤を含む電子線照射層であり、前記ポリエチレンフィルム層は、ポリエチレンを含み、前記ポリエチレンフィルム基材を設けた面とは反対の面が、ヒートシール性を有する、ポリエチレン共押フィルムが開示され、このポリエチレン共押フィルムは、経時的な劣化を抑制することができ、さらに耐熱性および強度がさらに改善されている、と記載されている。 Patent Document 3 discloses a polyethylene co-extruded film that includes a polyethylene film substrate and a polyethylene film layer, the polyethylene film substrate being an electron beam irradiated layer that includes polyethylene, a light stabilizer, and a crosslinking agent, the polyethylene film layer including polyethylene, and the surface opposite to the surface on which the polyethylene film substrate is provided has heat sealability, and it is described that this polyethylene co-extruded film can suppress deterioration over time, and further has improved heat resistance and strength.
 特許文献4には、熱可塑性樹脂にて構成された基材層の少なくとも一方の面上に、無機層状化合物および水溶性高分子を含む分散液を塗布して形成されたガスバリア層と、カチオン性樹脂と水酸基を有する樹脂とを含むオーバーコート層と、接着剤層と、シーラント層とが順次積層された多層フィルムが記載され、この多層フィルムは、ヒートシール性およびガスバリア性に優れると記載されている。 Patent Document 4 describes a multilayer film in which a gas barrier layer formed by applying a dispersion liquid containing an inorganic layered compound and a water-soluble polymer to at least one surface of a base layer made of a thermoplastic resin, an overcoat layer containing a cationic resin and a resin having a hydroxyl group, an adhesive layer, and a sealant layer are laminated in this order, and it is described that this multilayer film has excellent heat sealability and gas barrier properties.
特開2022-053864号公報JP 2022-053864 A 特開2022-079510号公報JP 2022-079510 A 特開2018-008455号公報JP 2018-008455 A 特開2009-241359号公報JP 2009-241359 A
 近年の環境意識の高まり、とりわけ海洋プラスチック汚染の問題のクローズアップ等により、包装用フィルムには社会の厳しい目が向けられている。そして、従来にも増して、包装用フィルムのリサイクル推進が求められるようになってきている。換言すると、「リサイクルしやすさ」を考慮して包装用フィルムを設計・製造することが求められつつある。 In recent years, with growing environmental awareness, and in particular the issue of marine plastic pollution coming into focus, society has been paying closer attention to packaging films. As a result, there is now a greater demand than ever before for the promotion of recycling of packaging films. In other words, there is an increasing demand to design and manufacture packaging films with "ease of recycling" in mind.
 これまでの包装用フィルムの多くは、多種の素材を積層させることで所望の効果(強度、気体バリア性など)を得ていた。例えば、特許文献4に記載の多層フィルムは、ガスバリア層、オーバーコート層、接着剤層およびシーラント層の4層を少なくとも備える。しかし、多種の素材が積層されることで、リサイクルのしにくさに繋がっていた。
 包装用フィルムをリサイクルしやすいようにする観点からは、例えば、包装用フィルムをできるだけ単純な層構成とすることが考えられる。
Many of the conventional packaging films have achieved the desired effects (strength, gas barrier properties, etc.) by laminating various materials. For example, the multilayer film described in Patent Document 4 has at least four layers, a gas barrier layer, an overcoat layer, an adhesive layer, and a sealant layer. However, laminating various materials makes it difficult to recycle.
From the viewpoint of facilitating recycling of packaging films, for example, it is conceivable to make the packaging film have as simple a layer structure as possible.
 層構成の単純化の点では、極論的には、包装用フィルムを「単層」とすることが考えられる。また、単層としないまでも、全体として、一種の材料を高含量で配合するような多層構造として、リサイクルのし易さを考慮した、特許文献1~3のような例がある。
 本発明者らは、比較的低コストで汎用的な包装材料であるポリエチレンフィルムを用いて、包装用フィルムに求められることがある諸特性について予備検討した。検討の結果、ポリエチレン「単層」のフィルムは、フィルムを貼り合わせ、剥がす時の力を表す、ラミネート強度に劣ることがわかった。
In terms of simplifying the layer structure, it is theoretically possible to make the packaging film a "single layer." In addition, there are examples such as Patent Documents 1 to 3 in which, even if it is not a single layer, a multi-layer structure in which a single material is blended at a high content as a whole is used in consideration of ease of recycling.
The present inventors conducted a preliminary study on various properties that may be required for packaging films using polyethylene film, which is a relatively low-cost and versatile packaging material. As a result of the study, it was found that a "single-layer" polyethylene film has poor lamination strength, which represents the force required to bond and peel the film.
 本発明は、延伸ポリエチレンフィルムにおいて、ラミネート強度が改善された延伸ポリエチレンフィルムおよびそのような延伸ポリエチレンフィルムにより構成された包装材を提供する。 The present invention provides a stretched polyethylene film with improved lamination strength and a packaging material made of such a stretched polyethylene film.
[1]
 高密度ポリエチレン層1と、
 中密度ポリエチレン層と、
 高密度ポリエチレン層2と、
 をこの順で含む延伸ポリエチレンフィルムであって、
 前記延伸ポリエチレンフィルムにおいて、小角X線散乱(SAXS)測定から求められる、MD方向の結晶厚が16nm以下である、延伸ポリエチレンフィルム。
[2]
 前記延伸ポリエチレンフィルムの全体を100質量%としたとき、前記延伸ポリエチレンフィルム中の、前記高密度ポリエチレン層1と前記高密度ポリエチレン層2の合計量が、10質量%以上85質量%以下である、[1]に記載の延伸ポリエチレンフィルム。
[3]
 前記高密度ポリエチレン層1および前記高密度ポリエチレン層2の、JIS K 7112:1999に準拠して測定される密度が、それぞれ940kg/m以上970kg/m以下である、[1]または[2]に記載の延伸ポリエチレンフィルム。
[4]
 前記中密度ポリエチレン層の、JIS K 7112:1999に準拠して測定される密度が、910kg/m以上940kg/m未満である、[1]~[3]のいずれかに記載の延伸ポリエチレンフィルム。
[5]
前記延伸ポリエチレンフィルムにおいて、小角X線散乱(SAXS)測定から求められる、MD方向の回折角2θが0.2~0.4°の範囲におけるピークの半値全幅(FWHM)が0.20°以下である、[1]~[4]のいずれかに記載の延伸ポリエチレンフィルム。
[6]
 前記延伸ポリエチレンフィルムにおいて、JIS K 7136:2000に準拠して測定される前記延伸ポリエチレンフィルム1枚あたりのHazeが8.0%以下である、[1]~[5]のいずれかに記載の延伸ポリエチレンフィルム。
[7]
 前記延伸ポリエチレンフィルムにおいて、JIS K 7136:2000に準拠して測定される前記延伸ポリエチレンフィルム4枚あたりのHazeが、33.0%以下である、[1]~[6]のいずれかに記載の延伸ポリエチレンフィルム。
[8]
 JIS K7127:1999に準拠し、引張試験機を用いて測定温度23±2℃、50±5%RH、引張速度5mm/minの条件で測定される、前記延伸ポリエチレンフィルムのMD方向の引張弾性率TとTD方向の引張弾性率Tとの合計値が、1000MPa以上3300MPa以下である、[1]~[7]のいずれかに記載の延伸ポリエチレンフィルム。
[9]
 JIS C2151:2019に準拠して、100℃で15分間加熱処理した際の、前記延伸ポリエチレンフィルムのMD方向の熱収縮率が3.0%以下である、[1]~[8]のいずれかに記載の延伸ポリエチレンフィルム。
[10]
 JIS C2151:2019に準拠して、120℃で15分間加熱処理した際の、前記延伸ポリエチレンフィルムのMD方向の熱収縮率が15.0%以下である、[1]~[9]のいずれかに記載の延伸ポリエチレンフィルム。
[11]
 前記延伸ポリエチレンフィルムの少なくとも一方の表面がコロナ処理面である、[1]~[10]のいずれかに記載の延伸ポリエチレンフィルム。
[12]
 前記延伸ポリエチレンフィルムにおいて、スリップテスターを使用し、下記方法1(傾斜法)により測定される、前記延伸ポリエチレンフィルムの前記コロナ処理面側の表面の静摩擦係数(tanθ)が0.40以上0.75以下である、[11]に記載の延伸ポリエチレンフィルム。
 (方法1)
 50mm×75mmのサイズに切断した前記延伸ポリエチレンフィルムを2枚(以下、延伸ポリエチレンフィルム1および2とする。)準備し、そのうちの1枚の前記延伸ポリエチレンフィルム1を前記コロナ処理面側が上になるように傾斜板に固定する。次いで、もう1枚の前記延伸ポリエチレンフィルム2の前記コロナ処理面側とは反対側の表面の中心に底面(サイズが41mm×26mm)が真鍮から構成されている摩擦体を固定し、前記摩擦体の上に、前記摩擦体から前記延伸ポリエチレンフィルム2にかかる質量が150gとなるように重りを取り付ける。次いで、2枚の前記延伸ポリエチレンフィルム1、2の前記コロナ処理面側の面同士を重ねる。次いで、前記傾斜板を1°/secの速度で傾斜させ、上部の前記延伸ポリエチレンフィルム2が滑り出したときの角度θからtanθの値を求める。
[13]
 ゲルボフレックステスターを用いて、屈曲角度440度、屈曲速度40回/分で、-30℃の雰囲気下で、3000回の屈曲試験で測定される、前記延伸ポリエチレンフィルムのピンホール発生数が6000個/m以下である、[1]~[12]のいずれかに記載の延伸ポリエチレンフィルム。
[14]
 軽荷重引裂試験機を用いて、試験片サイズ:MD方向:63.5mm、TD方向:50.0mm、振り子おもり重量:96.09g、引裂長さ:12.7mm、振り子持ち上げ角:90°の条件で測定される、前記延伸ポリエチレンフィルムのMD方向の引き裂き強度が50mN以上1500mN以下である、[1]~[13]のいずれかに記載の延伸ポリエチレンフィルム。
[15]
 軽荷重引裂試験機を用いて、試験片サイズ:MD方向:50.0mm、TD方向:63.5mm、振り子おもり質量:96.09g、引裂長さ:12.7mm、振り子持ち上げ角:90°の条件で測定される、前記延伸ポリエチレンフィルムのTD方向の引き裂き強度が200mN以上800mN以下である、[1]~[14]のいずれかに記載の延伸ポリエチレンフィルム。
[16]
 前記延伸ポリエチレンフィルムの少なくとも一方の表面がコロナ未処理面であり、
 前記延伸ポリエチレンフィルムの前記コロナ未処理面側を貼り合わせるようにして140℃でヒートシールした時の熱融着強度が10.0N/15mm以下である、[1]~[15]のいずれかに記載の延伸ポリエチレンフィルム。
[17]
 前記延伸ポリエチレンフィルムの下記方法2により測定されるラミネート強度が、0.92N/15mm以上である、[1]~[16]のいずれかに記載の延伸ポリエチレンフィルム。
(方法2)
 前記延伸ポリエチレンフィルムから297cm×210cmの試験片を切り出し、前記試験片のコロナ処理面側と、一方の面がコロナ処理された厚み50μmのキャストLLDPEフィルムのコロナ処理面側とを、エステル系接着剤で貼りあわせて、40℃、3日間のエージングを行いサンプルとし、前記サンプルを、15mm幅に切り出し、引張り試験機を用い、JIS Z 0238:1998に準拠して、剥離角度:90°、チャック間距離:100mm、クロスヘッドスピード:300mm/分でMD方向に剥離した際の剥離強度を求め、ラミネート強度とする。
[18]
 前記延伸ポリエチレンフィルム全体の厚さが10μm以上100μm以下である、[1]~[17]のいずれかに記載の延伸ポリエチレンフィルム。
[19]
 食品包装用フィルムである、[1]~[18]のいずれかに記載の延伸ポリエチレンフィルム。
[20]
 [1]~[19]のいずれかに記載の延伸ポリエチレンフィルムを用いた包装材。
[21]
 [20]に記載の包装材と、
 前記包装材内の食品と、を含む食品包装体。
[1]
A high density polyethylene layer 1;
a medium density polyethylene layer;
A high density polyethylene layer 2;
A stretched polyethylene film comprising, in this order:
The stretched polyethylene film has a crystal thickness in the MD direction of 16 nm or less, as determined by small angle X-ray scattering (SAXS) measurement.
[2]
The stretched polyethylene film according to [1], wherein a total amount of the high density polyethylene layer 1 and the high density polyethylene layer 2 in the stretched polyethylene film is 10 mass% or more and 85 mass% or less, when the entire stretched polyethylene film is taken as 100 mass%.
[3]
The stretched polyethylene film according to [1] or [2], wherein the high-density polyethylene layer 1 and the high-density polyethylene layer 2 each have a density, as measured in accordance with JIS K 7112:1999, of 940 kg/ m3 or more and 970 kg/ m3 or less.
[4]
The stretched polyethylene film according to any one of [1] to [3], wherein the medium-density polyethylene layer has a density, as measured in accordance with JIS K 7112:1999, of 910 kg/ m3 or more and less than 940 kg/ m3 .
[5]
The stretched polyethylene film according to any one of [1] to [4], wherein the stretched polyethylene film has a full width at half maximum (FWHM) of a peak in the MD direction at a diffraction angle 2θ in the range of 0.2 to 0.4°, as determined by small angle X-ray scattering (SAXS) measurement, of 0.20° or less.
[6]
The stretched polyethylene film according to any one of [1] to [5], wherein the haze of the stretched polyethylene film per sheet, as measured in accordance with JIS K 7136:2000, is 8.0% or less.
[7]
The stretched polyethylene film according to any one of [1] to [6], wherein the haze per four sheets of the stretched polyethylene film, as measured in accordance with JIS K 7136:2000, is 33.0% or less.
[8]
The stretched polyethylene film according to any one of [1] to [7], wherein the sum of the tensile modulus of elasticity T1 in the MD direction and the tensile modulus of elasticity T2 in the TD direction of the stretched polyethylene film, measured in accordance with JIS K7127:1999 using a tensile tester under conditions of a measurement temperature of 23±2°C, 50± 5 % RH, and a tensile speed of 5 mm/min, is 1000 MPa or more and 3300 MPa or less.
[9]
The stretched polyethylene film according to any one of [1] to [8], wherein the stretched polyethylene film has a heat shrinkage rate in the MD direction of 3.0% or less when heat-treated at 100° C. for 15 minutes in accordance with JIS C2151:2019.
[10]
The stretched polyethylene film according to any one of [1] to [9], wherein the stretched polyethylene film has a heat shrinkage rate in the MD direction of 15.0% or less when heat-treated at 120°C for 15 minutes in accordance with JIS C2151:2019.
[11]
The stretched polyethylene film according to any one of [1] to [10], wherein at least one surface of the stretched polyethylene film is a corona-treated surface.
[12]
The stretched polyethylene film according to [11], wherein the static friction coefficient (tan θ) of the surface of the corona-treated surface of the stretched polyethylene film, as measured using a slip tester by the following method 1 (incline method), is 0.40 or more and 0.75 or less.
(Method 1)
Two pieces of the stretched polyethylene film cut to a size of 50 mm x 75 mm (hereinafter referred to as stretched polyethylene films 1 and 2) are prepared, and one of the stretched polyethylene films, the stretched polyethylene film 1, is fixed to an inclined plate so that the corona-treated surface side is on top. Next, a friction body with a bottom surface (size 41 mm x 26 mm) made of brass is fixed to the center of the surface opposite to the corona-treated surface side of the other stretched polyethylene film 2, and a weight is attached on top of the friction body so that the mass applied from the friction body to the stretched polyethylene film 2 is 150 g. Next, the corona-treated surfaces of the two stretched polyethylene films 1 and 2 are overlapped. Next, the inclined plate is inclined at a speed of 1°/sec, and the value of tan θ is calculated from the angle θ when the upper stretched polyethylene film 2 starts to slide.
[13]
The stretched polyethylene film according to any one of [1] to [12], wherein the number of pinholes generated in the stretched polyethylene film is 6000 pcs/m or less, as measured in a bending test of 3000 times using a Gelbo flex tester at a bending angle of 440 ° and a bending speed of 40 times/min in an atmosphere of -30°C.
[14]
The stretched polyethylene film according to any one of [1] to [13], wherein the stretched polyethylene film has a tear strength in the MD direction of 50 mN or more and 1,500 mN or less, as measured using a light-load tear tester under the conditions of test piece size: MD direction: 63.5 mm, TD direction: 50.0 mm, pendulum weight: 96.09 g, tear length: 12.7 mm, and pendulum lift angle: 90°.
[15]
The stretched polyethylene film according to any one of [1] to [14], wherein the stretched polyethylene film has a tear strength in the TD direction of 200 mN or more and 800 mN or less, as measured using a light-load tear tester under the conditions of test piece size: MD direction: 50.0 mm, TD direction: 63.5 mm, pendulum weight mass: 96.09 g, tear length: 12.7 mm, and pendulum lift angle: 90°.
[16]
At least one surface of the stretched polyethylene film is a corona untreated surface,
The stretched polyethylene film according to any one of [1] to [15], wherein the heat fusion strength when the non-corona treated surface of the stretched polyethylene film is bonded to the other surface and heat sealed at 140°C is 10.0 N/15 mm or less.
[17]
The stretched polyethylene film according to any one of [1] to [16], wherein the stretched polyethylene film has a lamination strength of 0.92 N/15 mm or more as measured by the following method 2.
(Method 2)
A test piece measuring 297 cm x 210 cm was cut out from the stretched polyethylene film, and the corona-treated surface of the test piece was bonded to the corona-treated surface of a 50 μm-thick cast LLDPE film, one side of which had been corona-treated, with an ester-based adhesive. The resulting mixture was aged at 40°C for 3 days to obtain a sample. The sample was then cut to a width of 15 mm and peeled in the MD direction using a tensile tester in accordance with JIS Z 0238:1998 at a peel angle of 90°, a chuck distance of 100 mm, and a crosshead speed of 300 mm/min, to determine the peel strength, which is taken as the laminate strength.
[18]
The stretched polyethylene film according to any one of [1] to [17], wherein the total thickness of the stretched polyethylene film is 10 μm or more and 100 μm or less.
[19]
The stretched polyethylene film according to any one of [1] to [18], which is a food packaging film.
[20]
A packaging material using the stretched polyethylene film according to any one of [1] to [19].
[21]
[20] The packaging material according to [20],
and a food product within the packaging material.
 本発明によれば、ラミネート強度が向上した、延伸ポリエチレンフィルムを提供することができる。 The present invention provides a stretched polyethylene film with improved lamination strength.
本発明に係る実施形態の延伸ポリエチレンフィルムの構造の一例を模式的に示した断面図であるFIG. 1 is a cross-sectional view showing a schematic example of a structure of a stretched polyethylene film according to an embodiment of the present invention.
 以下、本発明の実施の形態について、図面を用いて説明する。なお、本明細書では、数値範囲を示す「A~B」は特に断りがなければ、A以上B以下を表す。 Below, an embodiment of the present invention will be described with reference to the drawings. In this specification, "A to B" indicating a numerical range means A or more and B or less unless otherwise specified.
<延伸ポリエチレンフィルム>
 本実施形態に係る延伸ポリエチレンフィルム(100)は、高密度ポリエチレン層1(101)と、中密度ポリエチレン層(102)と、高密度ポリエチレン層2(103)と、をこの順で含み、延伸ポリエチレンフィルムにおいて、小角X線散乱(SAXS)測定から求められる、MD方向の結晶厚が16nm以下である。
<Stretched polyethylene film>
The stretched polyethylene film (100) according to this embodiment comprises a high density polyethylene layer 1 (101), a medium density polyethylene layer (102), and a high density polyethylene layer 2 (103) in this order, and the stretched polyethylene film has a crystal thickness in the MD direction of 16 nm or less as determined by small angle X-ray scattering (SAXS) measurement.
 包装フィルムにおいて、耐熱性や剛性を向上させるために、高密度ポリエチレンを配合する場合がある。しかし高密度ポリエチレンを高含量で配合させたフィルムを一方向へ延伸すると、配向結晶化が促進され、分子鎖が延伸方向へ強く配向することにより、延伸方向へ応力が加わった際に、裂け易くなり、延伸方向のラミネート強度が極端に低下する場合があった。
 これに対し、本実施形態に係る延伸ポリエチレンフィルムによれば、ラミネート強度を向上させることができる。このような効果が得られる理由は、中密度ポリエチレン層が高密度ポリエチレン層1および高密度ポリエチレン層2に挟まれている三層構造とすることで、延伸ポリエチレンフィルム表層の配向結晶化を抑えることができる、すなわちポリエチレンの分子鎖が一方向に配列しすぎることを抑制することができるからだと推察される。
In packaging films, high density polyethylene is sometimes blended to improve heat resistance and rigidity. However, when a film containing a high content of high density polyethylene is stretched in one direction, oriented crystallization is promoted and the molecular chains are strongly oriented in the stretching direction, which makes the film prone to tearing when stress is applied in the stretching direction, and there are cases where the laminate strength in the stretching direction is extremely reduced.
In contrast, the stretched polyethylene film according to the present embodiment can improve the lamination strength. The reason for this effect is presumably that the three-layer structure in which the medium-density polyethylene layer is sandwiched between the high-density polyethylene layer 1 and the high-density polyethylene layer 2 can suppress oriented crystallization of the surface layer of the stretched polyethylene film, that is, can suppress the molecular chains of the polyethylene from being aligned excessively in one direction.
 本実施形態に係る延伸ポリエチレンフィルムにおいて、小角X線散乱(SAXS)測定から求められる、MD方向の結晶厚は、ラミネート強度を向上させる観点から、16nm以下であり、好ましくは15nm以下であり、そして、耐熱性および剛性をより向上させる観点から、好ましくは3nm以上、より好ましくは5nm以上、さらに好ましくは7nm以上、さらに好ましくは10nm以上、さらに好ましくは13nm以上である。
 延伸ポリエチレンフィルムの結晶厚は、例えば、延伸ポリエチレンフィルムに含まれる高密度ポリエチレン層1、高密度ポリエチレン層2および中密度ポリエチレン層の種類や含有割合、延伸ポリエチレンフィルムの厚みや延伸温度、倍率等を調整することにより調整することができる。
In the stretched polyethylene film according to this embodiment, the crystal thickness in the MD direction, as determined by small angle X-ray scattering (SAXS) measurement, is, from the viewpoint of improving the laminate strength, 16 nm or less, and preferably 15 nm or less, and, from the viewpoint of further improving the heat resistance and rigidity, is preferably 3 nm or more, more preferably 5 nm or more, even more preferably 7 nm or more, even more preferably 10 nm or more, and even more preferably 13 nm or more.
The crystal thickness of the stretched polyethylene film can be adjusted, for example, by adjusting the types and content ratios of the high density polyethylene layer 1, the high density polyethylene layer 2, and the medium density polyethylene layer contained in the stretched polyethylene film, the thickness, stretching temperature, stretching ratio, etc. of the stretched polyethylene film.
 以下、延伸ポリエチレンフィルムを構成する材料について説明する。 The materials that make up the stretched polyethylene film are explained below.
 本実施形態に係る延伸ポリエチレンフィルムにおいて、高密度ポリエチレン層1と高密度ポリエチレン層2の合計量は、延伸ポリエチレンフィルム全体に対して、透明性、剛性、耐熱性、スリップ性をより向上させる観点から、好ましくは10質量%以上、より好ましくは15質量%以上、さらに好ましくは20質量%以上、さらに好ましくは25質量%以上、さらに好ましくは28質量%以上、さらに好ましくは30質量%以上、さらに好ましくは35質量%以上であり、また中密度ポリエチレン層を適度に配合し、ラミネート強度をより向上させる観点から、好ましくは85質量%以下、より好ましくは83質量%以下、さらに好ましくは80質量%以下、さらに好ましくは75質量%以下、さらに好ましくは65質量%以下、さらに好ましくは55質量%以下、さらに好ましくは45質量%以下である。
 また、透明性、剛性、耐熱性、熱融着強度およびラミネート強度のバランスをより向上させる観点からは、高密度ポリエチレン層1と高密度ポリエチレン層2の合計量は、延伸ポリエチレンフィルム全体に対して、38質量%以上であることがさらに好ましく、そして、65質量%以下であることがさらに好ましく、55質量%以下であることがさらに好ましい。
In the stretched polyethylene film according to this embodiment, the total amount of the high density polyethylene layer 1 and the high density polyethylene layer 2, relative to the entire stretched polyethylene film, is preferably 10% by mass or more, more preferably 15% by mass or more, even more preferably 20% by mass or more, even more preferably 25% by mass or more, even more preferably 28% by mass or more, even more preferably 30% by mass or more, and even more preferably 35% by mass or more, from the viewpoint of further improving the transparency, rigidity, heat resistance, and slip property, and is preferably 85% by mass or less, more preferably 83% by mass or less, even more preferably 80% by mass or less, even more preferably 75% by mass or less, even more preferably 65% by mass or less, even more preferably 55% by mass or less, and even more preferably 45% by mass or less, from the viewpoint of blending an appropriate amount of the medium density polyethylene layer to further improve the laminate strength.
Furthermore, from the viewpoint of further improving the balance between transparency, rigidity, heat resistance, heat fusion strength and laminate strength, the total amount of the high-density polyethylene layer 1 and the high-density polyethylene layer 2 is more preferably 38 mass% or more, and even more preferably 65 mass% or less, and even more preferably 55 mass% or less, of the entire stretched polyethylene film.
 本実施形態の延伸ポリエチレンフィルムにおいて、高密度ポリエチレン層1と、高密度ポリエチレン層2とは、同じ材料を用いて形成されていてもよいし、異なる材料を用いて形成されていてもよいが、異なった材料を用いる場合、以下の、高密度ポリエチレン層1および高密度ポリエチレン層2における構成を満たすことが好ましい。 In the stretched polyethylene film of this embodiment, the high-density polyethylene layer 1 and the high-density polyethylene layer 2 may be formed using the same material or different materials, but if different materials are used, it is preferable that the high-density polyethylene layer 1 and the high-density polyethylene layer 2 satisfy the following configuration.
 高密度ポリエチレン層1および高密度ポリエチレン層2における、高密ポリエチレンの含有量は、透明性、剛性、耐熱性、スリップ性をより向上させる観点から、高密度ポリエチレン層1および高密度ポリエチレン層2全体に対して、それぞれ、好ましくは80質量%以上、より好ましくは85質量%以上、さらに好ましくは90質量%以上、さらに好ましくは95質量%以上、さらに好ましくは98質量%以上である。高密度ポリエチレン層1および高密度ポリエチレン層2における、高密ポリエチレンの含有量の上限に制限はないが、例えばそれぞれ、100質量%以下である。 From the viewpoint of further improving transparency, rigidity, heat resistance, and slip properties, the content of high density polyethylene in high density polyethylene layer 1 and high density polyethylene layer 2 is preferably 80% by mass or more, more preferably 85% by mass or more, even more preferably 90% by mass or more, even more preferably 95% by mass or more, and even more preferably 98% by mass or more, based on the entire high density polyethylene layer 1 and high density polyethylene layer 2, respectively. There is no upper limit to the content of high density polyethylene in high density polyethylene layer 1 and high density polyethylene layer 2, but it is, for example, 100% by mass or less, respectively.
 高密度ポリエチレン層1および高密度ポリエチレン層2の、JIS K 7112:1999に準拠して測定される密度は、耐熱性、透明性、機械的特性、剛性等の各種性能のバランスをより一層良好にする観点から、それぞれ好ましくは940kg/m以上、より好ましくは943kg/m以上、さらに好ましくは945kg/m以上であり、またラミネート強度と製膜性のバランスをより良好とする観点から、好ましくは970kg/m以下、より好ましくは968kg/m以下、さらに好ましくは965kg/m以下、さらに好ましくは960kg/m以下、さらに好ましくは955kg/m以下、さらに好ましくは950kg/m以下である。 The density of the high-density polyethylene layer 1 and the high-density polyethylene layer 2, measured in accordance with JIS K 7112:1999, is preferably 940 kg/m or more , more preferably 943 kg/m or more, and even more preferably 945 kg/m or more, from the viewpoint of achieving a better balance between various performances such as heat resistance, transparency, mechanical properties, and rigidity, and is preferably 970 kg/m or less, more preferably 968 kg/ m or less, even more preferably 965 kg/m or less, even more preferably 960 kg/m or less, even more preferably 955 kg/m or less, and even more preferably 950 kg/m or less , from the viewpoint of achieving a better balance between laminate strength and film formability.
 高密度ポリエチレン層1および高密度ポリエチレン層2を構成する高密度ポリエチレンの、JIS K 7112:1999に準拠して測定される密度は、耐熱性、透明性、機械的特性、剛性等の各種性能のバランスをより一層良好にする観点から、それぞれ好ましくは940kg/m以上、より好ましくは943kg/m以上、さらに好ましくは945kg/m以上であり、またラミネート強度と製膜性のバランスをより良好とする観点から、好ましくは970kg/m以下、より好ましくは968kg/m以下、さらに好ましくは965kg/m以下、さらに好ましくは960kg/m以下、さらに好ましくは955kg/m以下、さらに好ましくは950kg/m以下である。 The density of the high density polyethylene constituting the high density polyethylene layer 1 and the high density polyethylene layer 2, as measured in accordance with JIS K 7112:1999, is preferably 940 kg/m or more , more preferably 943 kg/m or more, and even more preferably 945 kg/m or more , from the viewpoint of achieving a better balance between various performances such as heat resistance, transparency, mechanical properties, and rigidity, and is preferably 970 kg/m or less, more preferably 968 kg/m or less, even more preferably 965 kg/m or less, even more preferably 960 kg/m or less, even more preferably 955 kg/m or less, and even more preferably 950 kg/m or less , from the viewpoint of achieving a better balance between laminate strength and film formability.
 高密度ポリエチレン層1および高密度ポリエチレン層2の、ASTM D1238に準拠し、190℃、2.16kg荷重の条件で測定されるメルトフローレート(MFR)は、流動性および成形性をより向上させる観点から、好ましくは0.01g/10分以上、より好ましくは0.1g/10分以上、さらに好ましくは0.5g/10分以上、さらに好ましくは1.0g/10分以上であり、また、延伸ポリエチレンフィルムの引き裂き性を維持しつつ、延伸ポリエチレンフィルムのコシをより良好とする観点から、好ましくは20g/10分以下、より好ましくは10g/10分以下、さらに好ましくは5g/10分以下、さらに好ましくは3g/10分以下、さらに好ましくは2g/10分以下、さらに好ましくは1.5g/10分以下である。
 高密度ポリエチレン層1および高密度ポリエチレン層2の示差走査熱量計(DSC)で測定される融点は、熱寸法安定性、耐熱性、機械的特性、剛性、製袋性、流動性および成形性等のバランスをより向上させる観点から、それぞれ好ましくは120℃以上、より好ましくは125℃以上であり、そして好ましくは135℃以下である。
The melt flow rate (MFR) of the high density polyethylene layer 1 and the high density polyethylene layer 2, measured in accordance with ASTM D1238 under conditions of 190°C and a load of 2.16 kg, is preferably 0.01 g/10 min or more, more preferably 0.1 g/10 min or more, even more preferably 0.5 g/10 min or more, and even more preferably 1.0 g/10 min or more, from the viewpoint of further improving the fluidity and moldability, and is preferably 20 g/10 min or less, more preferably 10 g/10 min or less, even more preferably 5 g/10 min or less, even more preferably 3 g/10 min or less, even more preferably 2 g/10 min or less, and even more preferably 1.5 g/10 min or less, from the viewpoint of improving the stiffness of the stretched polyethylene film while maintaining the tearability of the stretched polyethylene film.
The melting points of the high-density polyethylene layer 1 and the high-density polyethylene layer 2, as measured by a differential scanning calorimeter (DSC), are preferably 120° C. or higher, more preferably 125° C. or higher, and preferably 135° C. or lower, from the viewpoint of further improving the balance of thermal dimensional stability, heat resistance, mechanical properties, rigidity, bag-formability, fluidity, moldability, and the like.
 高密度ポリエチレン層1および高密度ポリエチレン層2を構成する高密度ポリエチレンの、ASTM D1238に準拠し、190℃、2.16kg荷重の条件で測定されるメルトフローレート(MFR)は、流動性および成形性をより向上させる観点から、好ましくは0.01g/10分以上、より好ましくは0.1g/10分以上、さらに好ましくは0.5g/10分以上、さらに好ましくは1.0g/10分以上であり、また、延伸ポリエチレンフィルムの引き裂き性を維持しつつ、延伸ポリエチレンフィルムのコシをより良好とする観点から、好ましくは20g/10分以下、より好ましくは10g/10分以下、さらに好ましくは5g/10分以下、さらに好ましくは3g/10分以下、さらに好ましくは2g/10分以下、さらに好ましくは1.5g/10分以下である。
 高密度ポリエチレン層1および高密度ポリエチレン層2を構成する高密度ポリエチレンの示差走査熱量計(DSC)で測定される融点は、熱寸法安定性、耐熱性、機械的特性、剛性、製袋性、流動性および成形性等のバランスをより向上させる観点から、それぞれ好ましくは120℃以上、より好ましくは125℃以上であり、そして好ましくは135℃以下である。
The melt flow rate (MFR) of the high density polyethylene constituting the high density polyethylene layer 1 and the high density polyethylene layer 2, measured in accordance with ASTM D1238 under conditions of 190°C and a load of 2.16 kg, is preferably 0.01 g/10 min or more, more preferably 0.1 g/10 min or more, even more preferably 0.5 g/10 min or more, and even more preferably 1.0 g/10 min or more, from the viewpoint of further improving fluidity and moldability, and is preferably 20 g/10 min or less, more preferably 10 g/10 min or less, even more preferably 5 g/10 min or less, even more preferably 3 g/10 min or less, even more preferably 2 g/10 min or less, and even more preferably 1.5 g/10 min or less, from the viewpoint of improving the stiffness of the stretched polyethylene film while maintaining the tearability of the stretched polyethylene film.
The melting points of the high density polyethylene constituting the high density polyethylene layer 1 and the high density polyethylene layer 2, as measured by a differential scanning calorimeter (DSC), are preferably 120°C or higher, more preferably 125°C or higher, and preferably 135°C or lower, from the viewpoint of further improving the balance of thermal dimensional stability, heat resistance, mechanical properties, rigidity, bag-formability, fluidity, moldability, and the like.
 高密度ポリエチレン層を構成するポリエチレンとして2種類以上のポリエチレンを用いる場合、高密度ポリエチレン層の密度、MFRおよび融点は、公知の方法で2種類以上のポリエチレンをメルトブレンドして得られた混合物についての測定値を採用することができる。高密度ポリエチレン層の融点は、最大融解ピークのピーク温度を採用することができる。 When two or more types of polyethylene are used as the polyethylene constituting the high-density polyethylene layer, the density, MFR and melting point of the high-density polyethylene layer can be measured values for a mixture obtained by melt-blending two or more types of polyethylene using a known method. The melting point of the high-density polyethylene layer can be the peak temperature of the maximum melting peak.
 中密度ポリエチレン層における、中密度ポリエチレンの含有量は、延伸ポリエチレンフィルム表層の配向結晶化を抑え、ラミネート強度をより向上させる観点から、中密度ポリエチレン層全体に対して、好ましくは80質量%以上、より好ましくは85質量%以上、さらに好ましくは90質量%以上、さらに好ましくは95質量%以上、さらに好ましくは98質量%以上である。中密度ポリエチレン層における、中密度ポリエチレンの含有量の上限に制限はないが、例えば100質量%以下である。 The medium-density polyethylene content in the medium-density polyethylene layer is preferably 80% by mass or more, more preferably 85% by mass or more, even more preferably 90% by mass or more, even more preferably 95% by mass or more, and even more preferably 98% by mass or more, based on the entire medium-density polyethylene layer, from the viewpoint of suppressing oriented crystallization of the surface layer of the stretched polyethylene film and further improving the laminate strength. There is no upper limit to the medium-density polyethylene content in the medium-density polyethylene layer, but it is, for example, 100% by mass or less.
 中密度ポリエチレン層の、JIS K 7112:1999に準拠して測定される密度は、機械的特性や剛性と柔軟性をより良好とする観点から、好ましくは910kg/m以上、より好ましくは915kg/m以上、さらに好ましくは920kg/m以上、さらに好ましくは925kg/m以上であり、またラミネート強度と柔軟性のバランスをより良好とする観点から、好ましくは940kg/m未満、より好ましくは933kg/m以下、さらに好ましくは930kg/m以下である。 The density of the medium-density polyethylene layer, measured in accordance with JIS K 7112:1999, is preferably 910 kg/ m3 or more, more preferably 915 kg/ m3 or more, even more preferably 920 kg/ m3 or more, and still more preferably 925 kg/ m3 or more, from the viewpoint of improving the mechanical properties, rigidity, and flexibility, and is preferably less than 940 kg/ m3 , more preferably 933 kg/ m3 or less, and still more preferably 930 kg/ m3 or less, from the viewpoint of improving the balance between laminate strength and flexibility.
 中密度ポリエチレン層を構成する中密度ポリエチレンの、JIS K 7112:1999に準拠して測定される密度は、機械的特性や剛性と柔軟性をより良好とする観点から、好ましくは910kg/m以上、より好ましくは915kg/m以上、さらに好ましくは920kg/m以上、さらに好ましくは925kg/m以上であり、またラミネート強度と柔軟性のバランスをより良好とする観点から、好ましくは940kg/m未満、より好ましくは933kg/m以下、さらに好ましくは930kg/m以下である。 The density of the medium-density polyethylene constituting the medium-density polyethylene layer, measured in accordance with JIS K 7112:1999, is preferably 910 kg/ m3 or more, more preferably 915 kg/ m3 or more, even more preferably 920 kg/ m3 or more, and still more preferably 925 kg/ m3 or more, from the viewpoint of improving the mechanical properties, rigidity, and flexibility, and is preferably less than 940 kg/ m3 , more preferably 933 kg/ m3 or less, and still more preferably 930 kg/ m3 or less, from the viewpoint of improving the balance between laminate strength and flexibility.
 中密度ポリエチレン層の、ASTM D1238に準拠し、190℃、2.16kg荷重の条件で測定されるメルトフローレート(MFR)は、加工性をより向上させる観点から、好ましくは0.01g/10分以上、より好ましくは0.1g/10分以上、さらに好ましくは0.5g/10分以上、さらに好ましくは1.0g/10分以上であり、また、延伸ポリエチレンフィルムの引き裂き性を維持しつつ、延伸ポリエチレンフィルムのコシをより良好とする観点から、好ましくは20g/10分以下、より好ましくは10g/10分以下、さらに好ましくは5g/10分以下、さらに好ましくは3g/10分以下、さらに好ましくは2g/10分以下である。
 中密度ポリエチレン層の示差走査熱量計(DSC)で測定される融点は、加工性や接着性を維持しつつ、耐熱性やコシをより良好とする観点から、好ましくは120℃以上、より好ましくは125℃以上であり、また、耐熱性を維持しつつ、接着性をより良好とする観点から、好ましくは135℃以下、より好ましくは130℃以下である。
The melt flow rate (MFR) of the medium-density polyethylene layer, measured in accordance with ASTM D1238 under conditions of 190°C and a load of 2.16 kg, is preferably 0.01 g/10 min or more, more preferably 0.1 g/10 min or more, even more preferably 0.5 g/10 min or more, and even more preferably 1.0 g/10 min or more, from the viewpoint of further improving processability, and is preferably 20 g/10 min or less, more preferably 10 g/10 min or less, even more preferably 5 g/10 min or less, even more preferably 3 g/10 min or less, and even more preferably 2 g/10 min or less, from the viewpoint of improving the stiffness of the stretched polyethylene film while maintaining the tearability of the stretched polyethylene film.
The melting point of the medium-density polyethylene layer, as measured by a differential scanning calorimeter (DSC), is preferably 120° C. or higher, and more preferably 125° C. or higher, from the viewpoint of improving heat resistance and stiffness while maintaining processability and adhesiveness, and is preferably 135° C. or lower, and more preferably 130° C. or lower, from the viewpoint of improving adhesiveness while maintaining heat resistance.
 中密度ポリエチレン層を構成する中密度ポリエチレンの、ASTM D1238に準拠し、190℃、2.16kg荷重の条件で測定されるメルトフローレート(MFR)は、加工性をより向上させる観点から、好ましくは0.01g/10分以上、より好ましくは0.1g/10分以上、さらに好ましくは0.5g/10分以上、さらに好ましくは1.0g/10分以上であり、また、延伸ポリエチレンフィルムの引き裂き性を維持しつつ、延伸ポリエチレンフィルムのコシをより良好とする観点から、好ましくは20g/10分以下、より好ましくは10g/10分以下、さらに好ましくは5g/10分以下、さらに好ましくは3g/10分以下、さらに好ましくは2g/10分以下である。
 中密度ポリエチレン層を構成する中密度ポリエチレンの示差走査熱量計(DSC)で測定される融点は、加工性や接着性を維持しつつ、耐熱性やコシをより良好とする観点から、好ましくは120℃以上、より好ましくは125℃以上であり、また、耐熱性を維持しつつ、接着性をより良好とする観点から、好ましくは135℃以下、より好ましくは130℃以下である。
The melt flow rate (MFR) of the medium-density polyethylene constituting the medium-density polyethylene layer, measured in accordance with ASTM D1238 under conditions of 190°C and a load of 2.16 kg, is preferably 0.01 g/10 min or more, more preferably 0.1 g/10 min or more, even more preferably 0.5 g/10 min or more, and even more preferably 1.0 g/10 min or more, from the viewpoint of further improving processability, and is preferably 20 g/10 min or less, more preferably 10 g/10 min or less, even more preferably 5 g/10 min or less, even more preferably 3 g/10 min or less, and even more preferably 2 g/10 min or less, from the viewpoint of improving the stiffness of the stretched polyethylene film while maintaining the tearability of the stretched polyethylene film.
The melting point of the medium-density polyethylene constituting the medium-density polyethylene layer, as measured by a differential scanning calorimeter (DSC), is preferably 120° C. or higher, more preferably 125° C. or higher, from the viewpoint of improving heat resistance and stiffness while maintaining processability and adhesiveness, and is preferably 135° C. or lower, more preferably 130° C. or lower, from the viewpoint of improving adhesiveness while maintaining heat resistance.
 中密度ポリエチレン層を構成するポリエチレンとして2種類以上のポリエチレンを用いる場合、中密度ポリエチレン層の密度、MFRおよび融点は、公知の方法で2種類以上のポリエチレンをメルトブレンドして得られた混合物についての測定値を採用することができる。中密度ポリエチレン層の融点は、最大融解ピークのピーク温度を採用することができる。 When two or more types of polyethylene are used as the polyethylene constituting the medium-density polyethylene layer, the density, MFR and melting point of the medium-density polyethylene layer can be measured values for a mixture obtained by melt-blending two or more types of polyethylene using a known method. The melting point of the medium-density polyethylene layer can be the peak temperature of the maximum melting peak.
 本実施形態の延伸ポリエチレンフィルムの少なくとも一方の表面がコロナ処理面(コロナ放電照射による表面改質された表面)であることが好ましい。本実施形態の延伸ポリエチレンフィルムの少なくとも一方の表面をコロナ処理面とすることにより、本実施形態の延伸ポリエチレンフィルムの印刷特性、コーティング特性および他のフィルムとの貼り合わせ特性等をより向上させることができる。 It is preferable that at least one surface of the stretched polyethylene film of this embodiment is a corona-treated surface (a surface that has been surface-modified by exposure to corona discharge). By making at least one surface of the stretched polyethylene film of this embodiment a corona-treated surface, the printing characteristics, coating characteristics, lamination characteristics with other films, etc. of the stretched polyethylene film of this embodiment can be further improved.
 高密度ポリエチレン層1、高密度ポリエチレン層2および中密度ポリエチレン層は、本発明の目的を損なわない範囲内において、各種の添加剤を含んでもよい。添加剤としては、耐熱安定剤、耐候安定剤、酸化防止剤、紫外線吸収剤、滑剤、スリップ剤、核剤、アンチブロッキング剤、帯電防止剤、防曇剤、顔料、染料、無機または有機の充填剤、などを挙げることができる。 The high density polyethylene layer 1, the high density polyethylene layer 2 and the medium density polyethylene layer may contain various additives within the scope of the present invention. Examples of additives include heat stabilizers, weather stabilizers, antioxidants, UV absorbers, lubricants, slip agents, nucleating agents, antiblocking agents, antistatic agents, antifogging agents, pigments, dyes, inorganic or organic fillers, etc.
 高密度ポリエチレン層1および高密度ポリエチレン層2の厚さは、配向結晶性をより適切な範囲とする観点から、それぞれ、好ましくは1μm以上、より好ましくは2μm以上であり、そして好ましくは17μm以下、より好ましくは15μm以下、さらに好ましくは13μm以下、さらに好ましくは10μm以下、さらに好ましくは9μm以下、さらに好ましくは7μm以下である。
 なお、高密度ポリエチレン層1および高密度ポリエチレン層2の厚さは、同じであっても異なっていてもよいが、延伸ポリエチレンフィルムの表裏の歪み量を、高密度ポリエチレン層1側と高密度ポリエチレン層2側で均一にする観点から、同じであることが好ましい。
 中密度ポリエチレン層の厚さは、配向結晶性をより適切な範囲とする観点から、好ましくは2μm以上、より好ましくは3μm以上、さらに好ましくは5μm以上、さらに好ましくは10μm以上であり、そして好ましくは30μm以下、より好ましくは25μm以下、さらに好ましくは20μm以下、さらに好ましくは15μm以下である。
 延伸ポリエチレンフィルム全体の厚さは、延伸ポリエチレンフィルムの引き裂き性を維持し、機械的強度をより向上させる観点から、好ましくは10μm以上、より好ましくは13μm以上、さらに好ましくは15μm以上であり、そして延伸ポリエチレンフィルムの引き裂き性、取り扱い性、成形性、製袋適性、軽量性等をより向上させる観点から、好ましくは100μm以下、より好ましくは70μm以下、さらに好ましくは50μm以下、さらに好ましくは40μm以下、さらに好ましくは30μm以下である。
From the viewpoint of achieving a more appropriate range of oriented crystallinity, the thicknesses of the high-density polyethylene layer 1 and the high-density polyethylene layer 2 are each preferably 1 μm or more, more preferably 2 μm or more, and preferably 17 μm or less, more preferably 15 μm or less, even more preferably 13 μm or less, even more preferably 10 μm or less, even more preferably 9 μm or less, and even more preferably 7 μm or less.
The thicknesses of high-density polyethylene layer 1 and high-density polyethylene layer 2 may be the same or different, but it is preferable that they are the same from the viewpoint of making the amount of distortion on the front and back of the stretched polyethylene film uniform on the high-density polyethylene layer 1 side and the high-density polyethylene layer 2 side.
From the viewpoint of achieving a more appropriate range of oriented crystallinity, the thickness of the medium-density polyethylene layer is preferably 2 μm or more, more preferably 3 μm or more, even more preferably 5 μm or more, and even more preferably 10 μm or more, and is preferably 30 μm or less, more preferably 25 μm or less, even more preferably 20 μm or less, and even more preferably 15 μm or less.
The overall thickness of the stretched polyethylene film is, from the viewpoints of maintaining the tearability and further improving the mechanical strength of the stretched polyethylene film, preferably 10 μm or more, more preferably 13 μm or more, and even more preferably 15 μm or more, and from the viewpoints of further improving the tearability, handleability, formability, bag-making suitability, lightness, etc. of the stretched polyethylene film, it is preferably 100 μm or less, more preferably 70 μm or less, even more preferably 50 μm or less, even more preferably 40 μm or less, and even more preferably 30 μm or less.
 次に、延伸ポリエチレンフィルムの物性について説明する。 Next, we will explain the physical properties of stretched polyethylene film.
 本実施形態の延伸ポリエチレンフィルムにおいて、小角X線散乱(SAXS)測定から求められる、MD方向の回折角2θが0.2~0.4°の範囲におけるピークの半値全幅(FWHM)は、延伸ポリエチレンフィルム表層の配向結晶化を抑制し、引き裂き強度、ラミネート強度、透明性、熱寸法安定性およびスリップ性の性能バランスをより向上させる観点から、好ましくは0.20°以下、より好ましくは0.19°以下である。延伸ポリエチレンフィルムのMD方向の回折角2θが0.2~0.4°の範囲におけるピークの半値全幅(FWHM)は、製膜性、製袋加工性、ラミネート強度および熱寸法安定性をより向上させる観点から、好ましくは0.05°以上、より好ましくは0.10°以上、さらに好ましくは0.13°以上、さらに好ましくは0.14°以上、さらに好ましくは0.15°以上である。
 このような小角X線散乱(SAXS)測定から求められる、MD方向の回折角2θが0.2~0.4°の範囲におけるピークの半値全幅(FWHM)は、例えば、延伸ポリエチレンフィルムに含まれる高密度ポリエチレン層1、高密度ポリエチレン層2および中密度ポリエチレン層の種類や含有割合、延伸ポリエチレンフィルムの厚みや延伸倍率等を調整することにより調整することができる。
In the stretched polyethylene film of this embodiment, the full width at half maximum (FWHM) of the peak in the MD direction at a diffraction angle 2θ in the range of 0.2 to 0.4°, as determined by small angle X-ray scattering (SAXS), is preferably 0.20° or less, more preferably 0.19° or less, from the viewpoint of suppressing oriented crystallization of the surface layer of the stretched polyethylene film and further improving the balance of performance of tear strength, lamination strength, transparency, thermal dimensional stability, and slip property. The full width at half maximum (FWHM) of the peak in the MD direction at a diffraction angle 2θ in the range of 0.2 to 0.4° of the stretched polyethylene film is preferably 0.05° or more, more preferably 0.10° or more, even more preferably 0.13° or more, even more preferably 0.14° or more, and even more preferably 0.15° or more, from the viewpoint of further improving film formability, bag formability, lamination strength, and thermal dimensional stability.
The full width at half maximum (FWHM) of the peak in the MD diffraction angle 2θ range of 0.2 to 0.4°, which is determined from such small angle X-ray scattering (SAXS) measurement, can be adjusted, for example, by adjusting the types and contents of the high density polyethylene layer 1, the high density polyethylene layer 2, and the medium density polyethylene layer contained in the stretched polyethylene film, the thickness of the stretched polyethylene film, the stretch ratio, etc.
 本実施形態の延伸ポリエチレンフィルムにおいて、JIS K 7136:2000に準拠して測定される延伸ポリエチレンフィルム1枚あたりのHazeは、延伸ポリエチレンフィルムの透明性をより向上させる観点から、好ましくは8.0%以下、より好ましくは7.5%以下、さらに好ましくは7.0%以下、さらに好ましくは6.5%以下、さらに好ましくは6.0%以下、さらに好ましくは5.5%以下、さらに好ましくは5.0%以下、さらに好ましくは4.5%以下である。延伸ポリエチレンフィルム1枚あたりのHazeの下限に制限はないが、たとえば0.1%以上であり、1.0%以上であってもよく、3.0%以上であってもよい。 In the stretched polyethylene film of this embodiment, the haze per sheet of stretched polyethylene film measured in accordance with JIS K 7136:2000 is preferably 8.0% or less, more preferably 7.5% or less, even more preferably 7.0% or less, even more preferably 6.5% or less, even more preferably 6.0% or less, even more preferably 5.5% or less, even more preferably 5.0% or less, and even more preferably 4.5% or less, from the viewpoint of further improving the transparency of the stretched polyethylene film. There is no lower limit for the haze per sheet of stretched polyethylene film, but it is, for example, 0.1% or more, and may be 1.0% or more, or 3.0% or more.
 本実施形態の延伸ポリエチレンフィルムにおいて、JIS K 7136:2000に準拠して測定される延伸ポリエチレンフィルム4枚あたりのHazeは、延伸ポリエチレンフィルムの透明性をより向上させる観点から、好ましくは33.0%以下、より好ましくは30.0%以下、さらに好ましくは28.0%以下、さらに好ましくは25.0%以下、さらに好ましくは23.0%以下、さらに好ましくは20.0%以下、さらに好ましくは18.0%以下である。延伸ポリエチレンフィルム4枚あたりのHazeの下限に制限はないが、たとえば1.0%以上であり、5.0%以上であってもよく、10.0%以上であってもよく、15.0%以上であってもよい。
 このようなヘイズは、例えば、延伸ポリエチレンフィルムに含まれる高密度ポリエチレン層1、高密度ポリエチレン層2および中密度ポリエチレン層の種類や含有割合、延伸ポリエチレンフィルムの厚みや延伸倍率等を調整することにより調整することができる。
In the stretched polyethylene film of this embodiment, the haze per four sheets of stretched polyethylene film measured in accordance with JIS K 7136: 2000 is, from the viewpoint of further improving the transparency of the stretched polyethylene film, preferably 33.0% or less, more preferably 30.0% or less, even more preferably 28.0% or less, even more preferably 25.0% or less, even more preferably 23.0% or less, even more preferably 20.0% or less, and even more preferably 18.0% or less. There is no lower limit for the haze per four sheets of stretched polyethylene film, but it may be, for example, 1.0% or more, or may be 5.0% or more, 10.0% or more, or may be 15.0% or more.
Such haze can be adjusted, for example, by adjusting the types and contents of the high density polyethylene layer 1, the high density polyethylene layer 2 and the medium density polyethylene layer contained in the stretched polyethylene film, the thickness and the stretch ratio of the stretched polyethylene film, etc.
 本実施形態の延伸ポリエチレンフィルムにおいて、JIS K7127:1999に準拠し、引張試験機を用いて、測定温度23±2℃、50±5%RH、引張速度5mm/minの条件で測定される、延伸ポリエチレンフィルムのMD方向の引張弾性率TとTD方向の引張弾性率Tとの合計値は、延伸ポリエチレンフィルムの透明性および熱寸法安定性の性能バランスをより良好とし、さらに延伸ポリエチレンフィルムのコシをより良好とする観点から、好ましくは1000MPa以上、より好ましくは1300MPa以上、さらに好ましくは1500MPa以上、さらに好ましくは1550MPa以上、さらに好ましくは1600MPa以上、さらに好ましくは1800MPa以上であり、また、延伸ポリエチレンフィルムの成形時に切断などのトラブルが発生しにくくなり、フィルムの連続延伸成形が容易になり、工業的な連続生産性をより向上させる観点から、好ましくは3300MPa以下、より好ましくは3100MPa以下、さらに好ましくは3000MPa以下、さらに好ましくは2950MPa以下である。
 また、透明性、剛性、耐熱性と、熱融着強度およびラミネート強度のバランスをより向上させる観点から、延伸ポリエチレンフィルムのMD方向の引張弾性率TとTD方向の引張弾性率Tとの合計値は、さらに好ましくは1830MPa以上、さらに好ましくは1840MPa以上であり、そして、さらに好ましくは2800MPa以下、さらに好ましくは2600MPa以下、さらに好ましくは2400MPa以下、さらに好ましくは2200MPa以下である。
 このような引張弾性率はフィルムのコシを定量的に測定する代用値であり、例えば、延伸ポリエチレンフィルムに含まれる高密度ポリエチレン層1、高密度ポリエチレン層2および中密度ポリエチレン層の種類や含有割合、延伸ポリエチレンフィルムの厚みや延伸倍率等を調整することにより調整することができる。
In the stretched polyethylene film of the present embodiment, the total value of the tensile modulus T1 in the MD direction and the tensile modulus T2 in the TD direction of the stretched polyethylene film, measured in accordance with JIS K7127:1999 using a tensile tester under conditions of a measurement temperature of 23 ±2°C, 50±5% RH, and a tensile speed of 5 mm/min, is preferably 1000 MPa or more, more preferably 1300 MPa or more, even more preferably 1500 MPa or more, even more preferably 1550 MPa or more, even more preferably 1600 MPa or more, and even more preferably 1800 MPa or more, from the viewpoints of improving the performance balance of the transparency and thermal dimensional stability of the stretched polyethylene film and improving the stiffness of the stretched polyethylene film; and from the viewpoints of making troubles such as breakage less likely to occur during molding of the stretched polyethylene film, facilitating continuous stretch molding of the film, and further improving industrial continuous productivity, is preferably 3300 MPa or less, more preferably 3100 MPa or less, even more preferably 3000 MPa or less, and even more preferably 2950 MPa or less.
In addition, from the viewpoint of further improving the balance between transparency, rigidity, heat resistance, and heat fusion strength and laminate strength, the sum of the tensile modulus T1 in the MD direction and the tensile modulus T2 in the TD direction of the stretched polyethylene film is more preferably 1830 MPa or more, more preferably 1840 MPa or more, and more preferably 2800 MPa or less, more preferably 2600 MPa or less, more preferably 2400 MPa or less, and more preferably 2200 MPa or less.
Such a tensile modulus is a substitute value for quantitatively measuring the stiffness of a film, and can be adjusted, for example, by adjusting the types and contents of the high density polyethylene layer 1, high density polyethylene layer 2, and medium density polyethylene layer contained in the stretched polyethylene film, the thickness of the stretched polyethylene film, the stretching ratio, etc.
 延伸ポリエチレンフィルムのMD方向の引張弾性率Tは、延伸ポリエチレンフィルムの熱寸法安定性、成形性、機械的特性、透明性、製袋性、取扱い性および包装適性のバランスをより向上させる観点から、好ましくは500MPa以上、より好ましくは600MPa以上、さらに好ましくは630MPa以上、さらに好ましくは650MPa以上、さらに好ましくは670MPa以上、さらに好ましくは700MPa以上であり、また、延伸ポリエチレンフィルムの熱寸法安定性、製袋性および包装適性のバランスをより向上させる観点から、好ましくは1500MPa以下、より好ましくは1480MPa以下、さらに好ましくは1450MPa以下、さらに好ましくは1430MPa以下、さらに好ましくは1400MPa以下である。
 延伸ポリエチレンフィルムのTD方向の引張弾性率Tは、延伸ポリエチレンフィルムの成形性、機械的特性、透明性、製袋性、取扱い性および包装適性のバランスをより向上させる観点から、好ましくは600MPa以上、より好ましくは700MPa以上、さらに好ましくは730MPa以上、さらに好ましくは750MPa以上、さらに好ましくは770MPa以上、さらに好ましくは800MPa以上、さらに好ましくは830MPa以上であり、また、延伸ポリエチレンフィルムの製袋性および包装適性のバランスをより向上させる観点から、好ましくは1800MPa以下、より好ましくは1750MPa以下、さらに好ましくは1700MPa以下、さらに好ましくは1650MPa以下、さらに好ましくは1600MPa以下、さらに好ましくは1550MPa以下である。
The tensile modulus T1 in the MD direction of the stretched polyethylene film is, from the viewpoint of further improving the balance of the thermal dimensional stability, formability, mechanical properties, transparency, bag-formability, handleability and packaging suitability of the stretched polyethylene film, preferably 500 MPa or more, more preferably 600 MPa or more, even more preferably 630 MPa or more, even more preferably 650 MPa or more, even more preferably 670 MPa or more, and even more preferably 700 MPa or more; and, from the viewpoint of further improving the balance of the thermal dimensional stability, bag-formability and packaging suitability of the stretched polyethylene film, it is preferably 1500 MPa or less, more preferably 1480 MPa or less, even more preferably 1450 MPa or less, even more preferably 1430 MPa or less, and even more preferably 1400 MPa or less.
The tensile modulus T2 in the TD direction of the stretched polyethylene film is preferably 600 MPa or more, more preferably 700 MPa or more, even more preferably 730 MPa or more, even more preferably 750 MPa or more, even more preferably 770 MPa or more, even more preferably 800 MPa or more, and even more preferably 830 MPa or more, from the viewpoint of further improving the balance of the formability, mechanical properties, transparency, bag-formability, handleability, and packaging suitability of the stretched polyethylene film. Also, from the viewpoint of further improving the balance of the bag-formability and packaging suitability of the stretched polyethylene film, it is preferably 1800 MPa or less, more preferably 1750 MPa or less, even more preferably 1700 MPa or less, even more preferably 1650 MPa or less, even more preferably 1600 MPa or less, and even more preferably 1550 MPa or less.
 本実施形態の延伸ポリエチレンフィルムにおいて、100℃で15分間加熱処理した際の、延伸ポリエチレンフィルムのMD方向の熱収縮率は、熱寸法安定性および製袋性をより向上させる観点から、好ましくは3.0%以下、より好ましくは2.8%以下、さらに好ましくは2.5%以下であり、そして0.1%以上であってもよく、0.5%以上であってもよく、1.0%以上であってもよく、1.5%以上であってもよく、1.6%以上であってもよく、1.7%以上であってもよい。
 また、透明性、剛性、耐熱性と、熱融着強度およびラミネート強度のバランスをより向上させる観点から、100℃で15分間加熱処理した際の、延伸ポリエチレンフィルムのMD方向の熱収縮率は、さらに好ましくは2.4%以下であり、そして2.0%以上であってもよい。
 また、延伸ポリエチレンフィルムの熱収縮率は、JIS C2151:2019に準拠して測定することができる。
In the stretched polyethylene film of this embodiment, the heat shrinkage rate in the MD direction of the stretched polyethylene film when heated at 100°C for 15 minutes is, from the viewpoint of further improving the thermal dimensional stability and bag-formability, preferably 3.0% or less, more preferably 2.8% or less, and even more preferably 2.5% or less, and may be 0.1% or more, 0.5% or more, 1.0% or more, 1.5% or more, 1.6% or more, or 1.7% or more.
From the viewpoint of further improving the balance between transparency, rigidity, heat resistance, and heat fusion strength and laminate strength, the heat shrinkage rate in the MD direction of the stretched polyethylene film when heat-treated at 100°C for 15 minutes is more preferably 2.4% or less, and may be 2.0% or more.
The heat shrinkage rate of the stretched polyethylene film can be measured in accordance with JIS C2151:2019.
 本実施形態の延伸ポリエチレンフィルムにおいて、120℃で15分間加熱処理した際の、延伸ポリエチレンフィルムのMD方向の熱収縮率は、熱寸法安定性および製袋性をより向上させる観点から、好ましくは15.0%以下、より好ましくは13.0%以下、さらに好ましくは11.0%以下であり、そして1.0%以上であってもよく、3.0%以上あってもよく、5.0%以上であってもよく、8.0%以上であってもよい。
 また、透明性、剛性、耐熱性と、熱融着強度およびラミネート強度のバランスをより向上させる観点から、120℃で15分間加熱処理した際の、延伸ポリエチレンフィルムのMD方向の熱収縮率は、さらに好ましくは10.5%以下であり、そして、さらに好ましくは9.0%以上、さらに好ましくは9.5%以上である。
In the stretched polyethylene film of this embodiment, the heat shrinkage rate in the MD direction of the stretched polyethylene film when heated at 120°C for 15 minutes is, from the viewpoint of further improving the thermal dimensional stability and bag-formability, preferably 15.0% or less, more preferably 13.0% or less, and even more preferably 11.0% or less, and may be 1.0% or more, 3.0% or more, 5.0% or more, or 8.0% or more.
Furthermore, from the viewpoint of further improving the balance between transparency, rigidity, heat resistance, and heat fusion strength and laminate strength, the heat shrinkage rate in the MD direction of the stretched polyethylene film when heat-treated at 120°C for 15 minutes is more preferably 10.5% or less, and more preferably 9.0% or more, and even more preferably 9.5% or more.
 延伸ポリエチレンフィルムの高密度ポリエチレン層1または高密度ポリエチレン層2のいずれか一方がコロナ処理されている場合、延伸ポリエチレンフィルム表面の静摩擦係数(tanθ)は、処理面同士、未処理面同士、処理面と未処理面のいずれにおいて測定されてもよい。
 特に、薄くて均一な層を形成しやすくなるという点では、コロナ処理面側の表面の静摩擦係数(tanθ)が上記範囲内であることが好ましい。延伸ポリエチレンフィルムのコロナ処理側表面の静摩擦係数(tanθ)は、好ましくは0.40以上、より好ましくは0.42以上、さらに好ましくは0.45以上であり、また好ましくは0.75以下、より好ましくは0.70以下、さらに好ましくは0.65以下、さらに好ましくは0.60以下、さらに好ましくは0.56以下、さらに好ましくは0.54以下である。
 また、延伸ポリエチレンフィルムの取り扱い性をより高めるという点では、コロナ未処理面側の表面の静摩擦係数(tanθ)が上記範囲内であることが好ましい。延伸ポリエチレンフィルムのコロナ未処理側表面の静摩擦係数(tanθ)は、好ましくは0.40以上、より好ましくは0.42以上、さらに好ましくは0.45以上であり、また好ましくは0.75以下、より好ましくは0.70以下、さらに好ましくは0.65以下、さらに好ましくは0.60以下、さらに好ましくは0.56以下、さらに好ましくは0.54以下である。
When either the high density polyethylene layer 1 or the high density polyethylene layer 2 of the stretched polyethylene film has been corona treated, the static friction coefficient (tan θ) of the surfaces of the stretched polyethylene film may be measured between treated surfaces, between untreated surfaces, or between treated and untreated surfaces.
In particular, from the viewpoint of facilitating the formation of a thin and uniform layer, it is preferable that the static friction coefficient (tan θ) of the corona-treated surface of the stretched polyethylene film is within the above range. The static friction coefficient (tan θ) of the corona-treated surface of the stretched polyethylene film is preferably 0.40 or more, more preferably 0.42 or more, and even more preferably 0.45 or more, and is preferably 0.75 or less, more preferably 0.70 or less, even more preferably 0.65 or less, even more preferably 0.60 or less, even more preferably 0.56 or less, and even more preferably 0.54 or less.
In order to improve the handleability of the stretched polyethylene film, it is preferable that the static friction coefficient (tan θ) of the surface on the non-corona treated side of the stretched polyethylene film is within the above range. The static friction coefficient (tan θ) of the non-corona treated side of the stretched polyethylene film is preferably 0.40 or more, more preferably 0.42 or more, and even more preferably 0.45 or more, and is preferably 0.75 or less, more preferably 0.70 or less, even more preferably 0.65 or less, even more preferably 0.60 or less, even more preferably 0.56 or less, and even more preferably 0.54 or less.
 延伸ポリエチレンフィルム表面のコロナ処理面側表面の静摩擦係数(tanθ)は、以下の方法で測定される。
 50mm×75mmのサイズに切断した延伸ポリエチレンフィルムを2枚(以下、延伸ポリエチレンフィルム1および2とする。)準備し、そのうちの1枚の延伸ポリエチレンフィルム1をコロナ処理面側が上になるように傾斜板に固定する。次いで、もう1枚の延伸ポリエチレンフィルム2のコロナ処理面側とは反対側の表面の中心に底面(サイズが41mm×26mm)が真鍮から構成されている摩擦体を固定し、摩擦体の上に、摩擦体から延伸ポリエチレンフィルム2にかかる質量が150gとなるように重りを取り付ける。次いで、2枚の延伸ポリエチレンフィルム1、2のコロナ処理面側の面同士を重ねる。次いで、傾斜板を1°/secの速度で傾斜させ、上部の延伸ポリエチレンフィルム2が滑り出したときの角度θからtanθの値を求める。
 コロナ未処理面側表面の静摩擦係数(tanθ)を測定する場合は、上記コロナ処理面側表面の静摩擦係数(tanθ)の測定方法において、コロナ処理面側をコロナ未処理面側に置き換えて測定する。
The static friction coefficient (tan θ) of the corona-treated surface of the stretched polyethylene film is measured by the following method.
Two pieces of stretched polyethylene film cut to a size of 50 mm x 75 mm (hereinafter referred to as stretched polyethylene film 1 and 2) are prepared, and one of the stretched polyethylene films, the stretched polyethylene film 1, is fixed to an inclined plate so that the corona-treated surface side is on top. Next, a friction body with a bottom surface (size 41 mm x 26 mm) made of brass is fixed to the center of the surface opposite to the corona-treated surface side of the other stretched polyethylene film 2, and a weight is attached on top of the friction body so that the mass applied from the friction body to the stretched polyethylene film 2 is 150 g. Next, the corona-treated surfaces of the two stretched polyethylene films 1 and 2 are overlapped. Next, the inclined plate is inclined at a speed of 1°/sec, and the value of tan θ is calculated from the angle θ when the upper stretched polyethylene film 2 starts to slide.
When the static friction coefficient (tan θ) of the corona-untreated surface is measured, the static friction coefficient (tan θ) of the corona-treated surface is measured in the above-mentioned method for measuring the static friction coefficient (tan θ) of the corona-treated surface, except that the corona-treated surface is replaced with the corona-untreated surface.
 本実施形態の延伸ポリエチレンフィルムにおいて、ゲルボフレックステスターを用いて、屈曲角度:440度、屈曲速度:40回/分、-30℃の雰囲気下で、3000回の屈曲試験で測定される、延伸ポリエチレンフィルムのピンホール発生数は、好ましくは6000個/m以下、より好ましくは5000個/m以下、さらに好ましくは4000個/m以下、さらに好ましくは3000個/m以下、さらに好ましくは2800個/m以下、さらに好ましくは2500個/m以下である。
 延伸ポリエチレンフィルムのピンホール発生数の下限値に制限は無いが、例えば100個/m以上であり、300個/m以上であってもよく、500個/m以上であってもよく、1000個/m以上であってもよい。
 上記ピンホール発生数は、本実施形態の延伸ポリエチレンフィルムの耐屈曲性能の指標を表しており、ピンホール発生数が少ないほど、耐屈曲性能が良好であることを意味している。
 延伸ポリエチレンフィルムのピンホール発生数が上記範囲内にあることにより、低温充填時や低温輸送時における屈曲によるピンホールの発生をより抑制させることができる。
 なお、ゲルボフレックステスターは、例えばテスター産業株式会社製のものを用いることができる。
In the stretched polyethylene film of this embodiment, the number of pinholes generated in the stretched polyethylene film, measured using a Gelbo flex tester at a bending angle of 440 degrees, a bending speed of 40 times/min, and an atmosphere of -30°C, 3000 times, is preferably 6000 pcs/m or less , more preferably 5000 pcs/m or less , even more preferably 4000 pcs/m or less, even more preferably 3000 pcs/m or less, even more preferably 2800 pcs/m or less, and even more preferably 2500 pcs/m or less.
There is no lower limit to the number of pinholes generated in the stretched polyethylene film, but it is, for example, 100 pinholes/ m2 or more, or 300 pinholes/ m2 or more, or 500 pinholes/ m2 or more, or 1000 pinholes/ m2 or more.
The number of pinholes generated represents an index of the flex resistance of the stretched polyethylene film of this embodiment, and the fewer the number of pinholes generated, the better the flex resistance.
By ensuring that the number of pinholes generated in the stretched polyethylene film is within the above range, the generation of pinholes due to bending during filling at low temperature or transportation at low temperature can be further suppressed.
The Gelbo flex tester may be, for example, a product manufactured by Tester Sangyo Co., Ltd.
 軽荷重引裂試験機を用いて、試験片サイズ:MD方向:63.5mm、TD方向:50.0mm、振り子おもり質量:96.09g、引裂長さ:12.7mm、振り子持ち上げ角:90°の条件で測定される、延伸ポリエチレンフィルムのMD方向の引き裂き強度は、製膜性、製袋加工性をより良好とする観点から、好ましくは50mN以上、より好ましくは55mN以上、さらに好ましくは60mN以上、さらに好ましくは65mN以上、さらに好ましくは70mN以上であり、また延伸ポリエチレンフィルムのヒートシール性およびコシを維持しつつ、引き裂き性をより一層良好なものとする観点から、好ましくは1500mN以下、より好ましくは1200mN以下、さらに好ましくは1000mN以下、さらに好ましくは800mN以下、さらに好ましくは600mN以下、さらに好ましくは400mN以下、さらに好ましくは200mN以下である。 The tear strength in the MD direction of the stretched polyethylene film measured using a light-load tear tester under the conditions of test piece size: MD direction: 63.5 mm, TD direction: 50.0 mm, pendulum weight mass: 96.09 g, tear length: 12.7 mm, pendulum lift angle: 90° is preferably 50 mN or more, more preferably 55 mN or more, even more preferably 60 mN or more, even more preferably 65 mN or more, and even more preferably 70 mN or more, from the viewpoint of improving film-forming and bag-making processability, and is preferably 1500 mN or less, more preferably 1200 mN or less, even more preferably 1000 mN or less, even more preferably 800 mN or less, even more preferably 600 mN or less, even more preferably 400 mN or less, and even more preferably 200 mN or less, from the viewpoint of improving tearability while maintaining the heat sealability and stiffness of the stretched polyethylene film.
 軽荷重引裂試験機を用いて、試験片サイズ:MD方向:50.0mm、TD方向:63.5mm、振り子おもり質量:96.09g、引裂長さ:12.7mm、振り子持ち上げ角:90°の条件で測定される、延伸ポリエチレンフィルムのTD方向の引き裂き強度は、製膜性、製袋加工性をより良好とする観点から、好ましくは200mN以上、より好ましくは250mN以上、さらに好ましくは300mN以上、さらに好ましくは310mN以上、さらに好ましくは320mN以上、さらに好ましくは330mN以上であり、また延伸ポリエチレンフィルムのヒートシール性およびコシを維持しつつ、引き裂き性をより一層良好なものとする観点から、好ましくは800mN以下、より好ましくは750mN以下、さらに好ましくは700mN以下、好ましくは650mN以下、さらに好ましくは630mN以下、さらに好ましくは600mN以下、さらに好ましくは500mN以下である。
 軽荷重引裂試験機は、例えば株式会社東洋精機製作所製、型式-Dのものを用いることができる。
 このような引き裂き強度を達成するためには、延伸ポリエチレンフィルムに含まれる高密度ポリエチレン層1、高密度ポリエチレン層2および中密度ポリエチレン層のそれぞれの密度や厚み等を適宜調整すればよい。
The tear strength in the TD direction of the stretched polyethylene film, measured using a light-load tear tester under conditions of test piece size: MD direction: 50.0 mm, TD direction: 63.5 mm, pendulum weight mass: 96.09 g, tear length: 12.7 mm, and pendulum lift angle: 90°, is preferably 200 mN or more, more preferably 250 mN or more, even more preferably 300 mN or more, even more preferably 310 mN or more, even more preferably 320 mN or more, and even more preferably 330 mN or more, from the viewpoint of improving the film-forming property and bag-making processability, and is preferably 800 mN or less, more preferably 750 mN or less, even more preferably 700 mN or less, preferably 650 mN or less, even more preferably 630 mN or less, even more preferably 600 mN or less, and even more preferably 500 mN or less, from the viewpoint of improving the tearability while maintaining the heat sealability and stiffness of the stretched polyethylene film.
The light load tear tester may be, for example, Model D manufactured by Toyo Seiki Seisakusho Co., Ltd.
In order to achieve such a tear strength, the density, thickness, etc. of each of the high density polyethylene layer 1, the high density polyethylene layer 2 and the medium density polyethylene layer contained in the stretched polyethylene film may be appropriately adjusted.
 延伸ポリエチレンフィルムの少なくとも一方がコロナ未処理面である場合において、延伸ポリエチレンフィルムのコロナ未処理面側を貼り合わせるようにして140℃で熱融着した時の熱融着強度は、耐熱性をより良好とする観点から、好ましくは10.0N/15mm以下、より好ましくは9.0N/15mm以下、さらに好ましくは7.0N/15mm以下、さらに好ましくは6.8N/15mm以下、さらに好ましくは6.5N/15mm以下、さらに好ましくは6.3N/15mm以下、さらに好ましくは6.0N/15mm以下である。熱融着強度の下限に制限はないが、例えば0.5N/15mm以上である。
 熱融着強度は以下のように測定される。
 15mm幅に切断した延伸ポリエチレンフィルム2枚のコロナ未処理面同士を、140℃、圧力2.0kgf、シール時間1.0秒の条件で熱融着することにより積層フィルムを得る。次いで、15mm幅に切り出した積層フィルムを用いて、90°剥離、剥離速度300mm/分、MD方向への引張の条件で、2枚の延伸ポリエチレンフィルムを剥離し、そのときの剥離強度を熱融着強度(N/15mm)とする。
When at least one of the stretched polyethylene films is a corona untreated surface, the heat fusion strength when the corona untreated surfaces of the stretched polyethylene films are bonded together and heat fused at 140° C. is preferably 10.0 N/15 mm or less, more preferably 9.0 N/15 mm or less, even more preferably 7.0 N/15 mm or less, even more preferably 6.8 N/15 mm or less, even more preferably 6.5 N/15 mm or less, even more preferably 6.3 N/15 mm or less, and even more preferably 6.0 N/15 mm or less, from the viewpoint of improving heat resistance. There is no lower limit for the heat fusion strength, but it is, for example, 0.5 N/15 mm or more.
The heat fusion strength is measured as follows.
The non-corona treated surfaces of two sheets of stretched polyethylene film cut to a width of 15 mm are heat-sealed to each other under conditions of 140°C, pressure of 2.0 kgf, and sealing time of 1.0 second to obtain a laminated film. Next, the two sheets of stretched polyethylene film are peeled off using the laminated film cut to a width of 15 mm under conditions of 90° peeling, peeling speed of 300 mm/min, and pulling in the MD direction, and the peel strength at this time is taken as the heat fusion strength (N/15 mm).
 延伸ポリエチレンフィルムのJIS Z 0238:1998に準拠して測定されるラミネート強度は、好ましくは0.92N/15mm以上、より好ましくは0.93N/15mm以上、さらに好ましくは0.94N/15mm以上、さらに好ましくは0.95N/15mm以上、さらに好ましくは1.00N/15mm以上、さらに好ましくは1.05N/15mm以上であり、接着性および易開封性のバランスをより良好とする観点から、好ましくは1.20N/15mm以下、より好ましくは1.18N/15mm以下、好ましくは1.15N/15mm以下、好ましくは1.13N/15mm以下、好ましくは1.10N/15mm以下である。
 なお、ラミネート強度は以下のように測定される
 延伸ポリエチレンフィルムから297cm×210cmの試験片を切り出し、当該試験片のコロナ処理面側と、一方の面がコロナ処理された厚み50μmのキャストLLDPEフィルムのコロナ処理面側とを、エステル系接着剤で貼りあわせて、40℃、3日間のエージングを行いサンプルとする。当該サンプルを、15mm幅に切り出し、引張り試験機を用い、JIS Z 0238:1998に準拠して、剥離角度:90°、チャック間距離:100mm、クロスヘッドスピード:300mm/分でMD方向に剥離した際の剥離強度を求め、ラミネート強度とする。
The laminate strength of the stretched polyethylene film, measured in accordance with JIS Z 0238:1998, is preferably 0.92 N/15 mm or more, more preferably 0.93 N/15 mm or more, even more preferably 0.94 N/15 mm or more, even more preferably 0.95 N/15 mm or more, even more preferably 1.00 N/15 mm or more, and even more preferably 1.05 N/15 mm or more, and from the viewpoint of achieving a better balance between adhesion and easy-opening properties, it is preferably 1.20 N/15 mm or less, more preferably 1.18 N/15 mm or less, preferably 1.15 N/15 mm or less, preferably 1.13 N/15 mm or less, and preferably 1.10 N/15 mm or less.
The laminate strength is measured as follows: A test piece measuring 297 cm x 210 cm is cut out from a stretched polyethylene film, and the corona-treated side of the test piece is bonded to the corona-treated side of a 50 μm-thick cast LLDPE film, one side of which has been corona-treated, with an ester adhesive, and aged for 3 days at 40° C. to obtain a sample. The sample is cut to a width of 15 mm, and peeled in the MD direction using a tensile tester in accordance with JIS Z 0238:1998 at a peel angle of 90°, a chuck distance of 100 mm, and a crosshead speed of 300 mm/min, to determine the peel strength, which is the laminate strength.
<高密度ポリエチレン層および中密度ポリエチレン層の同定について>
 本実施形態の延伸ポリエチレンフィルムが、高密度ポリエチレン層1と、中密度ポリエチレン層と、高密度ポリエチレン層2とからなることは、一例として、延伸ポリエチレンフィルムを断面切削した上で、各層の融点の測定を行うことで、判断することができる。
 高密度ポリエチレン層1および高密度ポリエチレン層2の融点は、例えば130℃以上140℃以下の範囲を示し、中密度ポリエチレン層の融点は、例えば110℃以上129℃以下の範囲を示す。
<Identification of high density polyethylene layer and medium density polyethylene layer>
The fact that the stretched polyethylene film of this embodiment is composed of a high-density polyethylene layer 1, a medium-density polyethylene layer, and a high-density polyethylene layer 2 can be determined, for example, by cutting a cross-section of the stretched polyethylene film and measuring the melting point of each layer.
The melting points of the high density polyethylene layers 1 and 2 are, for example, in the range of 130°C or higher and 140°C or lower, and the melting point of the medium density polyethylene layer is, for example, in the range of 110°C or higher and 129°C or lower.
<延伸ポリエチレンフィルムの製造方法>
 本実施形態の延伸ポリエチレンフィルムは、配向結晶性をより良好とし、機械的強度をより高める観点から、一軸または二軸に延伸されており、生産性をより良好とする観点から、一軸延伸されていることが好ましい。またMD方向に一軸延伸することにより、MD方向の引張弾性率Tをより向上させることができる。
 延伸ポリエチレンフィルムは、例えば、高密度ポリエチレン層1を形成するための高密度ポリエチレン樹脂と、中密度ポリエチレン層を形成するための中密度ポリエチレン樹脂と、高密度ポリエチレン層2を形成するための高密度ポリエチレン樹脂とを、この順となるように、フィルム状に共押出成形して得たフィルムを、公知の一軸延伸法、同時二軸延伸法あるいは逐次二軸延伸法等の延伸フィルム製造方法を用いて延伸することにより得ることができる。
 成形装置および成形条件としては特に限定されず、従来公知の成形装置および成形条件を採用することができる。成形装置としては、T-ダイ押出機、多層T-ダイ押出機、インフレーション成形機あるいは多層インフレーション成形機等を用いることができる。
 一軸延伸法、二軸延伸法の条件は、例えば公知の延伸ポリエチレンフィルムの製造条件を採用することができる。より具体的には、一軸延伸法であれば、例えば、縦延伸温度を100℃~145℃、縦延伸倍率を4.5~6倍の範囲にすればよい。逐次二軸延伸法では、例えば、縦延伸温度を100℃~145℃、縦延伸倍率を4.5~6倍の範囲、横延伸温度を110℃~160℃、横延伸倍率を9~11倍の範囲にすればよい。
<Method of producing stretched polyethylene film>
The stretched polyethylene film of the present embodiment is stretched uniaxially or biaxially from the viewpoint of improving the orientation crystallinity and increasing the mechanical strength, and is preferably stretched uniaxially from the viewpoint of improving productivity. Moreover, by stretching uniaxially in the MD direction, the tensile modulus T1 in the MD direction can be further improved.
The stretched polyethylene film can be obtained, for example, by co-extrusion molding a high-density polyethylene resin for forming the high-density polyethylene layer 1, a medium-density polyethylene resin for forming the medium-density polyethylene layer, and a high-density polyethylene resin for forming the high-density polyethylene layer 2, in that order, into a film, and stretching the film obtained by using a known stretched film production method such as a uniaxial stretching method, simultaneous biaxial stretching method, or sequential biaxial stretching method.
The molding apparatus and molding conditions are not particularly limited, and conventionally known molding apparatus and molding conditions can be used. As the molding apparatus, a T-die extruder, a multi-layer T-die extruder, an inflation molding machine, a multi-layer inflation molding machine, etc. can be used.
The conditions for the uniaxial stretching method and the biaxial stretching method may be, for example, the manufacturing conditions for known stretched polyethylene films. More specifically, in the case of the uniaxial stretching method, for example, the longitudinal stretching temperature may be set to 100° C. to 145° C., and the longitudinal stretching ratio may be set to a range of 4.5 to 6 times. In the case of the sequential biaxial stretching method, for example, the longitudinal stretching temperature may be set to 100° C. to 145° C., the longitudinal stretching ratio may be set to a range of 4.5 to 6 times, the transverse stretching temperature may be set to 110° C. to 160° C., and the transverse stretching ratio may be set to a range of 9 to 11 times.
<延伸ポリエチレンフィルムの用途/包装材/食品包装体>
 本実施形態の延伸ポリエチレンフィルムは、具体的には、食品包装用フィルムとして好適に使用することができる。
 また、本実施形態の延伸ポリエチレンフィルムは、包装材として好適に用いることができる。
 包装材とする際は、本実施形態の延伸ポリエチレンフィルムのみを用いて包装材としてもよいし、他の層を積層して包装材としてもよい。他の層としては、基材層、コーティング層、接着層、ヒートシール層等が挙げられる。なお、リサイクルのし易さの観点からは、これらの層を積層する場合、ポリエチレン系の樹脂で形成されていることが好ましい。
 また、本実施形態の包装材は、食品包装体に好適に使用することができる。食品包装体は、例えば、食品を包装することを目的として使用され、具体的には、本実施形態の包装材と、包装材内の食品と、を含む。
 食品包装体は、用途に応じて、食品包装体の一部のみが本実施形態の包装材で構成されていてもよいし、食品包装体の実質上全部が本実施形態の包装材で構成されていてもよい。
<Applications of oriented polyethylene film/packaging materials/food packaging>
Specifically, the stretched polyethylene film of the present embodiment can be suitably used as a food packaging film.
The stretched polyethylene film of the present embodiment can also be suitably used as a packaging material.
When used as a packaging material, the stretched polyethylene film of the present embodiment may be used alone, or other layers may be laminated to form the packaging material. Examples of the other layers include a base layer, a coating layer, an adhesive layer, and a heat seal layer. From the viewpoint of ease of recycling, when these layers are laminated, they are preferably formed of a polyethylene-based resin.
The packaging material of the present embodiment can also be suitably used for food packaging. The food packaging is used for the purpose of packaging food, for example, and specifically includes the packaging material of the present embodiment and the food inside the packaging material.
Depending on the application, only a portion of the food package may be made of the packaging material of this embodiment, or substantially the entire food package may be made of the packaging material of this embodiment.
 延伸ポリエチレンフィルムや包装材から食品包装体を製造する方法は特に限定されない。ヒートシールや溶断など、包装材/包装体の分野で公知の方法を適宜用いることができる。 There are no particular limitations on the method for producing food packages from oriented polyethylene films and packaging materials. Methods well known in the field of packaging materials/packages, such as heat sealing and melt cutting, can be used as appropriate.
 本実施形態に係る延伸ポリエチレンフィルムは良好なラミネート強度が求められる食品包装体に用いることが好ましい。食品包装体の形態は、例えば合掌袋やスタンディングパウチ(パウチ包装)であることができる。これらの形態は、ラミネート強度を良好とすることができる点で好ましい。 The stretched polyethylene film according to this embodiment is preferably used for food packaging that requires good laminate strength. The food packaging can be in the form of, for example, a two-sided bag or a standing pouch (pouch packaging). These forms are preferred because they can provide good laminate strength.
 また、本実施形態の延伸ポリエチレンフィルムや包装材により食品包装体(包装袋など)を構成する場合、コロナ処理面が内表面側であり、コロナ未処理面が外表面側であることが好ましい。
 また、前述したように延伸ポリエチレンフィルムに、さらに他の層を積層する場合、コロナ処理面側に積層することが好ましい。すなわち本実施形態の延伸ポリエチレンフィルム用いた積層体を食品包装体(包装袋など)に用いる場合、本実施形態の延伸ポリエチレンフィルム側が食品包装体の最外層となることが好ましい。
Furthermore, when a food package (such as a packaging bag) is formed using the stretched polyethylene film or packaging material of this embodiment, it is preferable that the corona-treated surface is the inner surface and the non-corona-treated surface is the outer surface.
As described above, when another layer is laminated on the stretched polyethylene film, it is preferable to laminate it on the corona-treated surface side. That is, when a laminate using the stretched polyethylene film of this embodiment is used for a food package (such as a packaging bag), it is preferable that the stretched polyethylene film side of this embodiment is the outermost layer of the food package.
 食品包装体に包装される食品は限定されないが、例えば、焼き菓子、米菓、スナック菓子、ふりかけ、穀物粉末等が挙げられる。 There are no limitations on the foods that can be packaged in the food packaging, but examples include baked goods, rice crackers, snacks, sprinkles, grain powders, etc.
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することができる。また、本発明は上述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。 The above describes the embodiments of the present invention, but these are merely examples of the present invention, and various configurations other than those described above can be adopted. Furthermore, the present invention is not limited to the above-described embodiments, and modifications and improvements within the scope of the present invention are included in the present invention.
<原料>
 実施例および比較例で用いた原料について以下に示す。
 なお、密度については、JIS K 7112:1999に準拠して測定した。MFRについては、ASTM D1238に準拠し、190℃、2.16kg荷重の条件で測定した。融点については、示差走査熱量計(DSC)を用いて測定した。
<Ingredients>
The raw materials used in the examples and comparative examples are shown below.
The density was measured in accordance with JIS K 7112: 1999. The MFR was measured in accordance with ASTM D1238 under conditions of 190°C and a load of 2.16 kg. The melting point was measured using a differential scanning calorimeter (DSC).
(高密度ポリエチレン)
・高密度ポリエチレン(HDPE1):密度:949kg/m、MFR:1.1g/10分、融点:130℃
(中密度ポリエチレン)
・中密度ポリエチレン(MDPE1):密度:928kg/m、MFR:1.7g/10分、融点:127℃
(High density polyethylene)
High density polyethylene (HDPE1): density: 949 kg/m 3 , MFR: 1.1 g/10 min, melting point: 130° C.
(medium density polyethylene)
Medium density polyethylene (MDPE1): density: 928 kg/m 3 , MFR: 1.7 g/10 min, melting point: 127°C
<延伸ポリエチレンフィルムの製造>
 表1に示す配合にて、実施例および比較例の、高密度ポリエチレン(HDPE1)、中密度ポリエチレン(MDPE1)、高密度ポリエチレン(HDPE1)を、この順でフィルム状となるようT-ダイ押出成形しキャストシートを得た後、キャストシートに一軸延伸処理を行った。そして一軸延伸後のキャストシートの高密度ポリエチレン2層側にコロナ処理を行い、各例の延伸ポリエチレンフィルムを作製した。押出条件および一軸延伸条件を以下に示す。
 多層押出成形機:75mmφ多層T-ダイ押出成形機(L/D=29、三菱重工業株式会社製)
 押出設定温度:230℃、加工速度:70m/min
 縦延伸温度:110~130℃
 縦延伸倍率:5倍
 得られた各例の延伸ポリエチレンフィルムについて、高密度ポリエチレン層1、高密度ポリエチレン層2および中密度ポリエチレン層の密度を測定した。また以下の評価をそれぞれおこなった。得られた結果を表1にそれぞれ示す。
<Production of oriented polyethylene film>
In the examples and comparative examples, high density polyethylene (HDPE1), medium density polyethylene (MDPE1), and high density polyethylene (HDPE1) were extruded in this order by T-die to form a film in the composition shown in Table 1, and then the cast sheet was subjected to uniaxial stretching. The high density polyethylene layer 2 side of the cast sheet after uniaxial stretching was then subjected to corona treatment to produce the stretched polyethylene film of each example. The extrusion conditions and uniaxial stretching conditions are shown below.
Multi-layer extrusion molding machine: 75 mmφ multi-layer T-die extrusion molding machine (L/D=29, manufactured by Mitsubishi Heavy Industries, Ltd.)
Extrusion temperature: 230°C, processing speed: 70m/min
Longitudinal stretching temperature: 110 to 130°C
For each of the stretched polyethylene films obtained in the respective examples, the densities of the high density polyethylene layer 1, the high density polyethylene layer 2 and the medium density polyethylene layer were measured. The following evaluations were also carried out. The results are shown in Table 1.
<延伸ポリエチレンフィルムの小角X線散乱(SAXS)測定>
 各例の延伸ポリエチレンフィルムにおいて、フィルムのMD方向を上下、TD方向を左右とし、X線源方向とフィルム面とのなす角が垂直となすように測定フィルムを以下の装置にセットした。以下の装置、条件で小角X線散乱(SAXS)測定を行った。
装置:RIGAKU社製、製品名:UltimaIV(小角散乱アタッチメント系)
X線入射方向:フィルム法線方向
X線波長:0.15418nm
光学ユニット仕様:
1.光学系選択スリット;小角散乱用0.03mm(=1st.スリット)
2.DS;散乱防止スリット1.00mm(=2nd.スリット)
3.入射側ソーラスリット;フレキシブル光学系の5°を使用
4.1st.~2nd.スリット間距離;70mm
5.2nd.~試料間距離;98mm
6.真空パス長;100mm(受光スリットボックス前面、専用台に設置)
7.RS, SS;散乱スリット 0.20mm、受光スリット0.10mm
8.カメラ長;285mm
9.受光側ソーラスリット;フレキシブル光学系の5°を使用
10.単色化;無(多層膜ミラーによって入射側で単色化)
11.検出器:RIGAKU社シンチレーション検出器(HV:762 V)(一次元)
X線照射条件:
A.走査軸:2theta
B.測定方法:連続
C.スキャン開始角度:0.1°
D.スキャン終了角度:1.0°
E.サンプリング幅:0.02°
F.スキャンスピード:0.5°/min
G.電圧・電流:40kV-40mA
H.試料積層枚数:十分な散乱強度を得るため、試料方位を揃えた状態で、約0.5mmになるように積層させた。
 上記測定条件から得られたX線散乱パターンに対して検出器の空気散乱補正を行い、SAXSプロフィールI(q)を得た。SAXSプロフィールI(q)の結晶長周期由来のピークの散乱ベクトルの大きさを式(1)から回折角θを算出し、これをブラッグの式(2)に代入し、結晶長周期(d)を算出した。
q=4πsinθ/λ   ・・・(1)
θ:回折角
q:散乱ベクトルの大きさ
λ:X線波長
2dsinθ=λ     ・・・(2)
d:結晶長周期
θ:回折角
λ:X線波長
 また、ニチアス技術時報(2014)2号 No.365 散乱法による結晶性高分子材料の構造解析を参考とし、SAXSプロフィールI(q)を下記(3)式にてフーリエ変換することで、電子密度相関関数γ(r)を算出した。γ(r)には構造のキャラクタリゼーションに直接用いることができる特別な性質があり、構造情報として得られた各例の延伸ポリエチレンフィルムの非晶厚(da)を算出した。また、rは距離(nm)を示す。
<Small angle X-ray scattering (SAXS) measurement of stretched polyethylene film>
For the stretched polyethylene film of each example, the MD direction of the film was set to the top and bottom, the TD direction was set to the left and right, and the angle between the X-ray source direction and the film surface was perpendicular. Small angle X-ray scattering (SAXS) measurements were performed with the following equipment and conditions.
Device: RIGAKU Corporation, product name: Ultima IV (small angle scattering attachment system)
X-ray incidence direction: normal to the film X-ray wavelength: 0.15418 nm
Optical unit specifications:
1. Optical system selection slit; 0.03 mm (= 1st slit) for small angle scattering
2. DS: Anti-scattering slit 1.00 mm (= 2nd slit)
3. Soller slit on the entrance side: 5° flexible optical system used 4. Distance between 1st and 2nd slits: 70 mm
5.2nd . ~ Sample distance: 98 mm
6. Vacuum path length: 100 mm (installed on a dedicated stand in front of the receiving slit box)
7. RS, SS: scattering slit 0.20 mm, receiving slit 0.10 mm
8. Camera length: 285mm
9. Solar slit on the receiving side: 5° flexible optical system used 10. Monochromatization: None (monochromatization on the incident side by multilayer mirror)
11. Detector: RIGAKU scintillation detector (HV: 762 V) (one-dimensional)
X-ray irradiation conditions:
A. Scan axis: 2theta
B. Measurement method: Continuous C. Scan start angle: 0.1°
D. Scan end angle: 1.0°
E. Sampling width: 0.02°
F. Scan speed: 0.5°/min
G. Voltage and current: 40kV-40mA
H. Number of sample stacks: In order to obtain sufficient scattering intensity, the samples were stacked to a thickness of about 0.5 mm with the sample orientation aligned.
The X-ray scattering pattern obtained under the above measurement conditions was corrected for air scattering by the detector to obtain a SAXS profile I(q). The diffraction angle θ was calculated from the magnitude of the scattering vector of the peak derived from the crystal long period of the SAXS profile I(q) using formula (1), and this was substituted into Bragg's formula (2) to calculate the crystal long period (d).
q = 4π sin θ / λ (1)
θ: diffraction angle q: scattering vector magnitude λ: X-ray wavelength 2d sin θ=λ (2)
d: Crystal long period θ: Diffraction angle λ: X-ray wavelength Also, referring to the structural analysis of crystalline polymer materials by scattering method in Nichias Technical Review (2014) No. 2 No. 365, the electron density correlation function γ(r) was calculated by Fourier transforming the SAXS profile I(q) using the following formula (3). γ(r) has a special property that can be directly used for structural characterization, and the amorphous thickness (da) of each example of the stretched polyethylene film obtained as structural information was calculated. Also, r indicates distance (nm).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 また、結晶長周期(d)から非晶厚(da)を差し引いた値を結晶厚(dc)として算出した。
 また、MD方向の回折角2θが0.2~0.4°の範囲におけるピークの半値全幅(FWHM)を、X線解析ソフトウェアPDXL-2(RIGAKU社製)を用いて算出した。具体的には、上記で得られたSAXSプロフィールI(q)から空気散乱除去した。得られた値を用いて、上記ソフトウェアにより、結晶散乱と非晶散乱に分離し、以下(解析条件)による結晶散乱のピークフィッティング結果より、MD方向の回折角2θが0.2~0.4°の範囲におけるピークの半値全幅(FWHM)を算出した。
 (解析条件)
フィッティングピーク形状:分割型擬Voigt関数
結晶子サイズ分布タイプ:ローレンツモデル
The crystal thickness (dc) was calculated by subtracting the amorphous thickness (da) from the crystal long period (d).
In addition, the full width at half maximum (FWHM) of the peak in the range of 0.2 to 0.4° diffraction angle 2θ in the MD direction was calculated using X-ray analysis software PDXL-2 (manufactured by RIGAKU Corporation). Specifically, air scattering was removed from the SAXS profile I(q) obtained above. Using the obtained values, the above software separated the data into crystalline scattering and amorphous scattering, and the full width at half maximum (FWHM) of the peak in the range of 0.2 to 0.4° diffraction angle 2θ in the MD direction was calculated from the peak fitting results of crystalline scattering under the following (analysis conditions).
(Analysis conditions)
Fitting peak shape: split pseudo-Voigt function Crystallite size distribution type: Lorentz model
<ヘイズ>
 JIS K7136:2000に準拠し、ヘーズメーター(日本電色工業株式会社製、NDH5000)を用いて、各例の延伸ポリエチレンフィルム1枚の場合および4枚重ね合わせた場合のヘイズをそれぞれ測定した。
 ここで、4枚重ね合わせた延伸ポリエチレンフィルムは、延伸ポリエチレンフィルムのMD方向およびTD方向の方位性を合わせた状態で4枚重ね合わせ、測定した。
<HAZE>
In accordance with JIS K7136:2000, the haze was measured using a haze meter (NDH5000, manufactured by Nippon Denshoku Industries Co., Ltd.) for one sheet of stretched polyethylene film and for four sheets stacked together in each example.
Here, the four sheets of stretched polyethylene film were stacked together with the orientations of the MD and TD directions of the stretched polyethylene films aligned, and the measurements were performed.
<引張弾性率>
 各例の延伸ポリエチレンフィルムから15mm×15cmの試験片を切り出した。次いで、オリエンテック社製引張試験機を用いて、JIS K7127:1999に準拠し、測定温度23±2℃、50±5%RH、引張速度5mm/minの条件で上記試験片のMD方向の引張弾性率TおよびTD方向の引張弾性率Tをそれぞれ測定した。得られた値から、TおよびTの合計値を算出した。
<Tensile modulus>
A test piece of 15 mm x 15 cm was cut out from each stretched polyethylene film. Then, using a tensile tester manufactured by Orientec Co., Ltd., the tensile modulus of elasticity in the MD direction T1 and the tensile modulus of elasticity in the TD direction T2 of the test piece were measured in accordance with JIS K7127:1999 under the conditions of a measurement temperature of 23±2°C, 50±5% RH, and a tensile speed of 5 mm/min. The total value of T1 and T2 was calculated from the obtained values.
<100℃での延伸ポリエチレンフィルムのMD方向の熱収縮率>
 100℃での延伸ポリエチレンフィルムのMD方向の熱収縮率は、JIS C2151:2019に準拠して測定した。
 各例の延伸ポリエチレンフィルムから10cm×10cmの試験片を切り出した。このとき、試験片は熱風循環式の恒温槽(ADVANTEC社製、製品名:DRM620DE)内で、力を加えない状態でつり下げて加熱した。次いで、上記試験片を100℃で15分間加熱処理した。加熱処理後の試験片のMD方向の長さをMD100[cm]とし、MD方向の熱収縮率[%]を100×(10-MD100)/10により算出した。上記測定を3回実施し、得られた測定値の平均値を、100℃での延伸ポリエチレンフィルムの熱収縮率として採用した。
<Heat shrinkage rate in MD direction of stretched polyethylene film at 100° C.>
The heat shrinkage rate in the MD direction of the stretched polyethylene film at 100°C was measured in accordance with JIS C2151:2019.
A test piece of 10 cm x 10 cm was cut out from the stretched polyethylene film of each example. At this time, the test piece was heated in a hot air circulation type thermostatic chamber (manufactured by ADVANTEC, product name: DRM620DE) while hanging without applying force. The test piece was then heat-treated at 100°C for 15 minutes. The length in the MD direction of the test piece after the heat treatment was taken as MD 100 [cm], and the heat shrinkage rate in the MD direction [%] was calculated by 100 x (10 - MD 100 ) / 10. The above measurement was carried out three times, and the average value of the obtained measured values was adopted as the heat shrinkage rate of the stretched polyethylene film at 100°C.
<120℃での延伸ポリエチレンフィルムのMD方向の熱収縮率>
 120℃での延伸ポリエチレンフィルムのMD方向の熱収縮率は、JIS C2151:2019に準拠して測定した。
各例の延伸ポリエチレンフィルムから10cm×10cmの試験片を切り出した。このとき、試験片は熱風循環式の恒温槽(ADVANTEC社製、製品名:DRM620DE)内で、力を加えない状態でつり下げて加熱した。次いで、上記試験片を120℃で15分間加熱処理した。加熱処理後の試験片のMD方向の長さをMD120[cm]とし、MD方向の熱収縮率[%]を100×(10-MD120)/10により算出した。上記測定を3回実施し、得られた測定値の平均値を、120℃での延伸ポリエチレンフィルムの熱収縮率として採用した。
<Heat shrinkage rate in MD direction of stretched polyethylene film at 120°C>
The heat shrinkage rate in the MD direction of the stretched polyethylene film at 120°C was measured in accordance with JIS C2151:2019.
A test piece of 10 cm x 10 cm was cut out from the stretched polyethylene film of each example. At this time, the test piece was heated in a hot air circulation type thermostatic chamber (manufactured by ADVANTEC, product name: DRM620DE) while hanging without applying force. The test piece was then heat-treated at 120°C for 15 minutes. The length of the test piece in the MD direction after the heat treatment was taken as MD 120 [cm], and the heat shrinkage rate in the MD direction [%] was calculated by 100 x (10 - MD 120 ) / 10. The above measurement was carried out three times, and the average value of the obtained measured values was adopted as the heat shrinkage rate of the stretched polyethylene film at 120°C.
<静摩擦係数(コロナ処理面/コロナ処理面)>
 コロナ処理面側表面の静摩擦係数を以下のとおり測定した。
 50mm×75mmのサイズに切断した各例の延伸ポリエチレンフィルムを2枚(以下、延伸ポリエチレンフィルム1および2とする。)準備し、そのうちの1枚の延伸ポリエチレンフィルム1をコロナ処理面側が上になるように傾斜板に固定した。次いで、もう1枚の延伸ポリエチレンフィルム2のコロナ処理面側とは反対側の表面の中心に底面(サイズが41mm×26mm)が真鍮から構成されている摩擦体を固定し、摩擦体の上に、摩擦体から延伸ポリエチレンフィルム2にかかる質量が150gとなるように重りを取り付けた。次いで、2枚の延伸ポリエチレンフィルム1、2のコロナ処理面側の面同士を重ねた。次いで、傾斜板を1°/secの速度で傾斜させ、上部の延伸ポリエチレンフィルム2が滑り出したときの角度θからtanθの値を求めた。
<Static friction coefficient (corona treated surface/corona treated surface)>
The static friction coefficient of the corona-treated surface was measured as follows.
Two pieces of stretched polyethylene film of each example cut to a size of 50 mm x 75 mm (hereinafter referred to as stretched polyethylene film 1 and 2) were prepared, and one of the stretched polyethylene films, the stretched polyethylene film 1, was fixed to an inclined plate so that the corona-treated surface side was on top. Next, a friction body with a bottom surface (size 41 mm x 26 mm) made of brass was fixed to the center of the surface opposite to the corona-treated surface side of the other stretched polyethylene film 2, and a weight was attached on top of the friction body so that the mass applied from the friction body to the stretched polyethylene film 2 was 150 g. Next, the corona-treated surfaces of the two stretched polyethylene films 1 and 2 were overlapped. Next, the inclined plate was tilted at a speed of 1°/sec, and the value of tan θ was obtained from the angle θ when the upper stretched polyethylene film 2 started to slide.
<引き裂き強度>
 各例の延伸ポリエチレンフィルムからMD方向に63.5mm、TD方向に50.0mmの試験片を切り出した。上記試験片1枚について、軽荷重引裂試験機(株式会社東洋精機製作所製、型式-D)を用いて、振り子おもり重量:96.09g、引裂長さ:12.7mm、振り子持ち上げ角:90°の条件にて、MD方向の引き裂き強度(mN)を測定した。
 また、各例の延伸ポリエチレンフィルムからMD方向に50.0mm、TD方向に63.5mmの試験片を切り出した。上記試験片について、上記MD方向の引き裂き強度(mN)の測定と同様に、TD方向の引き裂き強度(mN)の測定を行った。
<Tear strength>
A test piece of 63.5 mm in the MD direction and 50.0 mm in the TD direction was cut out from each stretched polyethylene film. The tear strength (mN) in the MD direction of each test piece was measured using a light-load tear tester (manufactured by Toyo Seiki Seisakusho Co., Ltd., Model-D) under the following conditions: pendulum weight: 96.09 g, tear length: 12.7 mm, pendulum lift angle: 90°.
Further, a test piece having a length of 50.0 mm in the MD direction and 63.5 mm in the TD direction was cut out from each stretched polyethylene film. The test piece was subjected to measurement of tear strength (mN) in the TD direction in the same manner as in the measurement of tear strength (mN) in the MD direction.
<耐屈曲性能>
 各例の延伸ポリエチレンフィルムから297cm×210cmの試験片を切り出し、ゲルボフレックステスター(テスター産業株式会社製)を用いて、屈曲角度440度、屈曲速度40回/分で、-30℃の雰囲気下で、3000回の屈曲試験を行った後、屈曲試験後の試験片で袋をつくり、三菱ガス化学製のエージレスシールチェック液でピンホール発生数を測定した。
<Flexibility>
A test piece measuring 297 cm x 210 cm was cut out from the stretched polyethylene film of each example, and a bending test was performed 3,000 times using a Gelbo Flex Tester (manufactured by Tester Sangyo Co., Ltd.) at a bending angle of 440 degrees and a bending speed of 40 times/minute in an atmosphere of -30°C. After the bending test, bags were made from the test pieces, and the number of pinholes generated was measured using Ageless Seal Check Liquid (manufactured by Mitsubishi Gas Chemical Co., Ltd.).
<熱融着強度>
 15mm幅に切断した各例の延伸ポリエチレンフィルム2枚のコロナ未処理面同士を、140℃、圧力2.0kgf、シール時間1.0秒の条件で熱融着することにより積層フィルムを得た。次いで、15mm幅、90°剥離、剥離速度300mm/分、MD方向への引張の条件で、2枚の延伸ポリエチレンフィルムを剥離し、そのときの剥離強度を熱融着強度(N/15mm)とした。
<Heat fusion strength>
Two sheets of the stretched polyethylene film of each example cut to a width of 15 mm were heat-sealed together with their corona-untreated surfaces at 140° C., a pressure of 2.0 kgf, and a sealing time of 1.0 second to obtain a laminated film. The two sheets of stretched polyethylene film were then peeled off under conditions of 15 mm width, 90° peeling, a peeling speed of 300 mm/min, and pulling in the MD direction, and the peel strength at this time was recorded as the heat-sealing strength (N/15 mm).
 <ラミネート強度>
 各例の延伸ポリエチレンフィルムから297cm×210cmの試験片を切り出し、当該試験片のコロナ処理面側と、一方の面がコロナ処理された厚み50μmのキャストLLDPEフィルム(三井化学東セロ製TUX FCS#50)のコロナ処理面側とを、エステル系接着剤(三井化学製タケラックA310/タケネートA3/酢酸エチル)=12/1/7)で貼りあわせて、40℃、3日間のエージングを行いサンプルとした。当該サンプルを、15mm幅に切り出し、JIS Z 0238:1998に準拠して、引張り試験機(オリエンテック社製テンシロン万能試験機RTC-1225)を用い、剥離角度:90°、チャック間距離:100mm、クロスヘッドスピード:300mm/分の条件でMD方向に剥離した際の剥離強度を測定し、ラミネート強度とした。
<Lamination strength>
A 297 cm x 210 cm test piece was cut out from the stretched polyethylene film of each example, and the corona-treated side of the test piece was bonded to the corona-treated side of a 50 μm thick cast LLDPE film (TUX FCS #50 manufactured by Mitsui Chemicals Tohcello) with one side corona-treated, with an ester-based adhesive (Takelac A310/Takenate A3/ethyl acetate manufactured by Mitsui Chemicals) = 12/1/7), and aged at 40 ° C for 3 days to obtain a sample. The sample was cut to a width of 15 mm, and in accordance with JIS Z 0238: 1998, a tensile tester (Tensilon universal tester RTC-1225 manufactured by Orientec Co., Ltd.) was used to measure the peel strength when peeled in the MD direction under the conditions of a peel angle of 90 °, a chuck distance of 100 mm, and a crosshead speed of 300 mm / min, and this was taken as the laminate strength.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例の延伸ポリエチレンフィルムを用いた場合、ラミネート強度が向上した食品包装用フィルムを得ることができた。また実施例の延伸ポリエチレンフィルムを用いた場合、耐屈曲性も向上できることがわかった。 When the stretched polyethylene film of the embodiment was used, a food packaging film with improved laminate strength was obtained. It was also found that when the stretched polyethylene film of the embodiment was used, bending resistance could also be improved.
 この出願は、2022年9月30日に出願された日本出願特願2022-157673号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2022-157673, filed on September 30, 2022, the entire disclosure of which is incorporated herein by reference.
100 延伸ポリエチレンフィルム
101 高密度ポリエチレン層1
102 中密度ポリエチレン層
103 高密度ポリエチレン層2
100 Stretched polyethylene film 101 High density polyethylene layer 1
102 Medium density polyethylene layer 103 High density polyethylene layer 2

Claims (21)

  1.  高密度ポリエチレン層1と、
     中密度ポリエチレン層と、
     高密度ポリエチレン層2と、
     をこの順で含む延伸ポリエチレンフィルムであって、
     前記延伸ポリエチレンフィルムにおいて、小角X線散乱(SAXS)測定から求められる、MD方向の結晶厚が16nm以下である、延伸ポリエチレンフィルム。
    A high density polyethylene layer 1;
    a medium density polyethylene layer;
    A high density polyethylene layer 2;
    A stretched polyethylene film comprising, in this order:
    The stretched polyethylene film has a crystal thickness in the MD direction of 16 nm or less, as determined by small angle X-ray scattering (SAXS) measurement.
  2.  前記延伸ポリエチレンフィルムの全体を100質量%としたとき、前記延伸ポリエチレンフィルム中の、前記高密度ポリエチレン層1と前記高密度ポリエチレン層2の合計量が、10質量%以上85質量%以下である、請求項1に記載の延伸ポリエチレンフィルム。 The stretched polyethylene film according to claim 1, wherein the total amount of the high-density polyethylene layer 1 and the high-density polyethylene layer 2 in the stretched polyethylene film is 10% by mass or more and 85% by mass or less, when the entire stretched polyethylene film is taken as 100% by mass.
  3.  前記高密度ポリエチレン層1および前記高密度ポリエチレン層2の、JIS K 7112:1999に準拠して測定される密度が、それぞれ940kg/m以上970kg/m以下である、請求項1または2に記載の延伸ポリエチレンフィルム。 3. The stretched polyethylene film according to claim 1, wherein the first and second high-density polyethylene layers each have a density, measured in accordance with JIS K 7112:1999, of 940 kg/ m3 or more and 970 kg/ m3 or less.
  4.  前記中密度ポリエチレン層の、JIS K 7112:1999に準拠して測定される密度が、910kg/m以上940kg/m未満である、請求項1~3のいずれかに記載の延伸ポリエチレンフィルム。 The stretched polyethylene film according to any one of claims 1 to 3, wherein the medium-density polyethylene layer has a density, measured in accordance with JIS K 7112:1999, of 910 kg/ m3 or more and less than 940 kg/ m3 .
  5.  前記延伸ポリエチレンフィルムにおいて、小角X線散乱(SAXS)測定から求められる、MD方向の回折角2θが0.2~0.4°の範囲におけるピークの半値全幅(FWHM)が0.20°以下である、請求項1~4のいずれかに記載の延伸ポリエチレンフィルム。 The stretched polyethylene film according to any one of claims 1 to 4, wherein the full width at half maximum (FWHM) of the peak in the MD direction diffraction angle 2θ range of 0.2 to 0.4°, as determined by small angle X-ray scattering (SAXS) measurement, is 0.20° or less.
  6.  前記延伸ポリエチレンフィルムにおいて、JIS K 7136:2000に準拠して測定される前記延伸ポリエチレンフィルム1枚あたりのHazeが8.0%以下である、請求項1~5のいずれかに記載の延伸ポリエチレンフィルム。 The stretched polyethylene film according to any one of claims 1 to 5, wherein the haze per sheet of the stretched polyethylene film measured in accordance with JIS K 7136:2000 is 8.0% or less.
  7.  前記延伸ポリエチレンフィルムにおいて、JIS K 7136:2000に準拠して測定される前記延伸ポリエチレンフィルム4枚あたりのHazeが、33.0%以下である、請求項1~6のいずれかに記載の延伸ポリエチレンフィルム。 The stretched polyethylene film according to any one of claims 1 to 6, wherein the haze per four sheets of the stretched polyethylene film measured in accordance with JIS K 7136:2000 is 33.0% or less.
  8.  JIS K7127:1999に準拠し、引張試験機を用いて測定温度23±2℃、50±5%RH、引張速度5mm/minの条件で測定される、前記延伸ポリエチレンフィルムのMD方向の引張弾性率TとTD方向の引張弾性率Tとの合計値が、1000MPa以上3300MPa以下である、請求項1~7のいずれかに記載の延伸ポリエチレンフィルム。 The stretched polyethylene film according to any one of claims 1 to 7, wherein the sum of the tensile modulus T1 in the MD direction and the tensile modulus T2 in the TD direction of the stretched polyethylene film, measured in accordance with JIS K7127:1999 using a tensile tester under conditions of a measurement temperature of 23 ± 2 °C, 50±5% RH, and a tensile speed of 5 mm/min, is 1000 MPa or more and 3300 MPa or less.
  9.  JIS C2151:2019に準拠して、100℃で15分間加熱処理した際の、前記延伸ポリエチレンフィルムのMD方向の熱収縮率が3.0%以下である、請求項1~8のいずれかに記載の延伸ポリエチレンフィルム。 The stretched polyethylene film according to any one of claims 1 to 8, wherein the thermal shrinkage rate in the MD direction of the stretched polyethylene film is 3.0% or less when heat-treated at 100°C for 15 minutes in accordance with JIS C2151:2019.
  10.  JIS C2151:2019に準拠して、120℃で15分間加熱処理した際の、前記延伸ポリエチレンフィルムのMD方向の熱収縮率が15.0%以下である、請求項1~9のいずれかに記載の延伸ポリエチレンフィルム。 The stretched polyethylene film according to any one of claims 1 to 9, wherein the thermal shrinkage rate in the MD direction of the stretched polyethylene film is 15.0% or less when heat-treated at 120°C for 15 minutes in accordance with JIS C2151:2019.
  11.  前記延伸ポリエチレンフィルムの少なくとも一方の表面がコロナ処理面である、請求項1~10のいずれかに記載の延伸ポリエチレンフィルム。 The stretched polyethylene film according to any one of claims 1 to 10, wherein at least one surface of the stretched polyethylene film is a corona-treated surface.
  12.  前記延伸ポリエチレンフィルムにおいて、スリップテスターを使用し、下記方法1(傾斜法)により測定される、前記延伸ポリエチレンフィルムの前記コロナ処理面側の表面の静摩擦係数(tanθ)が0.40以上0.75以下である、請求項11に記載の延伸ポリエチレンフィルム。
     (方法1)
     50mm×75mmのサイズに切断した前記延伸ポリエチレンフィルムを2枚(以下、延伸ポリエチレンフィルム1および2とする。)準備し、そのうちの1枚の前記延伸ポリエチレンフィルム1を前記コロナ処理面側が上になるように傾斜板に固定する。次いで、もう1枚の前記延伸ポリエチレンフィルム2の前記コロナ処理面側とは反対側の表面の中心に底面(サイズが41mm×26mm)が真鍮から構成されている摩擦体を固定し、前記摩擦体の上に、前記摩擦体から前記延伸ポリエチレンフィルム2にかかる質量が150gとなるように重りを取り付ける。次いで、2枚の前記延伸ポリエチレンフィルム1、2の前記コロナ処理面側の面同士を重ねる。次いで、前記傾斜板を1°/secの速度で傾斜させ、上部の前記延伸ポリエチレンフィルム2が滑り出したときの角度θからtanθの値を求める。
    The stretched polyethylene film according to claim 11, wherein the static friction coefficient (tan θ) of the surface of the corona-treated surface of the stretched polyethylene film, as measured using a slip tester by the following method 1 (incline method), is 0.40 or more and 0.75 or less.
    (Method 1)
    Two pieces of the stretched polyethylene film cut to a size of 50 mm x 75 mm (hereinafter referred to as stretched polyethylene films 1 and 2) are prepared, and one of the stretched polyethylene films, the stretched polyethylene film 1, is fixed to an inclined plate so that the corona-treated surface side is on top. Next, a friction body with a bottom surface (size 41 mm x 26 mm) made of brass is fixed to the center of the surface opposite to the corona-treated surface side of the other stretched polyethylene film 2, and a weight is attached on top of the friction body so that the mass applied from the friction body to the stretched polyethylene film 2 is 150 g. Next, the corona-treated surfaces of the two stretched polyethylene films 1 and 2 are overlapped. Next, the inclined plate is inclined at a speed of 1°/sec, and the value of tan θ is calculated from the angle θ when the upper stretched polyethylene film 2 starts to slide.
  13.  ゲルボフレックステスターを用いて、屈曲角度440度、屈曲速度40回/分で、-30℃の雰囲気下で、3000回の屈曲試験で測定される、前記延伸ポリエチレンフィルムのピンホール発生数が6000個/m以下である、請求項1~12のいずれかに記載の延伸ポリエチレンフィルム。 13. The stretched polyethylene film according to any one of claims 1 to 12, wherein the number of pinholes generated in the stretched polyethylene film is 6000 pcs/ m2 or less, as measured in a bending test of 3000 times using a Gelbo flex tester at a bending angle of 440° and a bending speed of 40 times/min in an atmosphere of -30°C.
  14.  軽荷重引裂試験機を用いて、試験片サイズ:MD方向:63.5mm、TD方向:50.0mm、振り子おもり重量:96.09g、引裂長さ:12.7mm、振り子持ち上げ角:90°の条件で測定される、前記延伸ポリエチレンフィルムのMD方向の引き裂き強度が50mN以上1500mN以下である、請求項1~13のいずれかに記載の延伸ポリエチレンフィルム。 The stretched polyethylene film according to any one of claims 1 to 13, wherein the tear strength in the MD direction of the stretched polyethylene film is 50 mN or more and 1500 mN or less, measured using a light-load tear tester under the following conditions: test piece size: MD direction: 63.5 mm, TD direction: 50.0 mm, pendulum weight: 96.09 g, tear length: 12.7 mm, pendulum lift angle: 90°.
  15.  軽荷重引裂試験機を用いて、試験片サイズ:MD方向:50.0mm、TD方向:63.5mm、振り子おもり質量:96.09g、引裂長さ:12.7mm、振り子持ち上げ角:90°の条件で測定される、前記延伸ポリエチレンフィルムのTD方向の引き裂き強度が200mN以上800mN以下である、請求項1~14のいずれかに記載の延伸ポリエチレンフィルム。 The stretched polyethylene film according to any one of claims 1 to 14, wherein the tear strength in the TD direction of the stretched polyethylene film is 200 mN or more and 800 mN or less, as measured using a light-load tear tester under the following conditions: test piece size: MD direction: 50.0 mm, TD direction: 63.5 mm, pendulum weight mass: 96.09 g, tear length: 12.7 mm, pendulum lift angle: 90°.
  16.  前記延伸ポリエチレンフィルムの少なくとも一方の表面がコロナ未処理面であり、
     前記延伸ポリエチレンフィルムの前記コロナ未処理面側を貼り合わせるようにして140℃でヒートシールした時の熱融着強度が10.0N/15mm以下である、請求項1~15のいずれかに記載の延伸ポリエチレンフィルム。
    At least one surface of the stretched polyethylene film is a non-corona treated surface,
    The stretched polyethylene film according to any one of claims 1 to 15, wherein the heat fusion strength when the non-corona treated surface of the stretched polyethylene film is bonded to the non-corona treated surface and heat sealed at 140°C is 10.0 N/15 mm or less.
  17.  前記延伸ポリエチレンフィルムの下記方法2により測定されるラミネート強度が、0.92N/15mm以上である、請求項1~16のいずれかに記載の延伸ポリエチレンフィルム。
    (方法2)
     前記延伸ポリエチレンフィルムから297cm×210cmの試験片を切り出し、前記試験片のコロナ処理面側と、一方の面がコロナ処理された厚み50μmのキャストLLDPEフィルムのコロナ処理面側とを、エステル系接着剤で貼りあわせて、40℃、3日間のエージングを行いサンプルとし、前記サンプルを、15mm幅に切り出し、引張り試験機を用い、JIS Z 0238:1998に準拠して、剥離角度:90°、チャック間距離:100mm、クロスヘッドスピード:300mm/分でMD方向に剥離した際の剥離強度を求め、ラミネート強度とする。
    The stretched polyethylene film according to any one of claims 1 to 16, wherein the stretched polyethylene film has a lamination strength of 0.92 N/15 mm or more as measured by the following method 2.
    (Method 2)
    A test piece measuring 297 cm x 210 cm was cut out from the stretched polyethylene film, and the corona-treated surface of the test piece was bonded to the corona-treated surface of a 50 μm-thick cast LLDPE film, one side of which had been corona-treated, with an ester-based adhesive. The resulting mixture was aged at 40°C for 3 days to obtain a sample. The sample was then cut to a width of 15 mm and peeled in the MD direction using a tensile tester in accordance with JIS Z 0238:1998 at a peel angle of 90°, a chuck distance of 100 mm, and a crosshead speed of 300 mm/min, to determine the peel strength, which is taken as the laminate strength.
  18.  前記延伸ポリエチレンフィルム全体の厚さが10μm以上100μm以下である、請求項1~17のいずれかに記載の延伸ポリエチレンフィルム。 The stretched polyethylene film according to any one of claims 1 to 17, wherein the total thickness of the stretched polyethylene film is 10 μm or more and 100 μm or less.
  19.  食品包装用フィルムである、請求項1~18のいずれかに記載の延伸ポリエチレンフィルム。 The stretched polyethylene film according to any one of claims 1 to 18, which is a food packaging film.
  20.  請求項1~19のいずれかに記載の延伸ポリエチレンフィルムを用いた包装材。  A packaging material using the stretched polyethylene film according to any one of claims 1 to 19.
  21.  請求項20に記載の包装材と、
     前記包装材内の食品と、を含む食品包装体。
    A packaging material according to claim 20;
    and a food product within the packaging material.
PCT/JP2023/034864 2022-09-30 2023-09-26 Oriented polyethylene film, packaging material, and food packaging WO2024071092A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-157673 2022-09-30
JP2022157673 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024071092A1 true WO2024071092A1 (en) 2024-04-04

Family

ID=90477970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/034864 WO2024071092A1 (en) 2022-09-30 2023-09-26 Oriented polyethylene film, packaging material, and food packaging

Country Status (1)

Country Link
WO (1) WO2024071092A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020067426A1 (en) * 2018-09-28 2020-04-02 大日本印刷株式会社 Laminate, packaging material, packaging bag, and stand pouch
US20200324513A1 (en) * 2017-12-29 2020-10-15 Bemis Company, Inc. Recyclable films for product packaging
WO2022092296A1 (en) * 2020-10-30 2022-05-05 大日本印刷株式会社 Polyethylene multillayer base material, printing base material, multilayer body and packaging material
JP2022073059A (en) * 2020-10-30 2022-05-17 大日本印刷株式会社 Polyethylene multilayer base material, print base material, laminate and packaging material
WO2022168867A1 (en) * 2021-02-03 2022-08-11 大日本印刷株式会社 Sealant film, laminate, and packaging container

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200324513A1 (en) * 2017-12-29 2020-10-15 Bemis Company, Inc. Recyclable films for product packaging
WO2020067426A1 (en) * 2018-09-28 2020-04-02 大日本印刷株式会社 Laminate, packaging material, packaging bag, and stand pouch
WO2022092296A1 (en) * 2020-10-30 2022-05-05 大日本印刷株式会社 Polyethylene multillayer base material, printing base material, multilayer body and packaging material
JP2022073059A (en) * 2020-10-30 2022-05-17 大日本印刷株式会社 Polyethylene multilayer base material, print base material, laminate and packaging material
WO2022168867A1 (en) * 2021-02-03 2022-08-11 大日本印刷株式会社 Sealant film, laminate, and packaging container

Similar Documents

Publication Publication Date Title
JP5458991B2 (en) Matte laminated film and packaging material comprising the film
TWI755577B (en) Laminated films and food packaging bags
JP5716286B2 (en) Coextruded multilayer film and packaging material comprising the film
WO2021205812A1 (en) Composite film, and layered film and layered body using same
WO2016152836A1 (en) Polyethylene film
WO2017018281A1 (en) Laminate film and packaging material
WO2024071092A1 (en) Oriented polyethylene film, packaging material, and food packaging
WO2024071084A1 (en) Stretched polyethylene film, packaging material, food packaging
WO2023062963A1 (en) Laminate, packaging material, and packaged article
WO2024071085A1 (en) Stretched polyethylene film, packaging material, and food packaged body
WO2017018283A1 (en) Multilayer film and packaging material
JP2020055637A (en) Polyethylene-based resin composition for sealant film containing plant-derived polyethylene and sealant film
JP2024051698A (en) Stretched polyethylene film, packaging material and food packaging body
JP2024051697A (en) Stretched polyethylene film, packaging material and food packaging body
JP2024051484A (en) Stretched polyethylene film, packaging material and food packaging body
JP5429852B2 (en) Package
JP7259243B2 (en) Polyethylene-based resin composition for sealant film containing plant-derived polyethylene and sealant film
TW202415547A (en) Oriented polyethylene film, packaging material and food packaging body
TW202417258A (en) Oriented polyethylene film, packaging material and food packaging body
WO2020080131A1 (en) Layered film
TW202417257A (en) Oriented polyethylene film, packaging material and food packaging body
JP4877062B2 (en) Coextruded multilayer film and packaging material comprising the film
JP2003246031A (en) Easily openable laminated film
JP7343065B2 (en) Laminates, packages and packaged articles
JP7315113B1 (en) Multilayer film manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23872315

Country of ref document: EP

Kind code of ref document: A1