WO2022092296A1 - Polyethylene multillayer base material, printing base material, multilayer body and packaging material - Google Patents

Polyethylene multillayer base material, printing base material, multilayer body and packaging material Download PDF

Info

Publication number
WO2022092296A1
WO2022092296A1 PCT/JP2021/040142 JP2021040142W WO2022092296A1 WO 2022092296 A1 WO2022092296 A1 WO 2022092296A1 JP 2021040142 W JP2021040142 W JP 2021040142W WO 2022092296 A1 WO2022092296 A1 WO 2022092296A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
polyethylene
base material
density polyethylene
less
Prior art date
Application number
PCT/JP2021/040142
Other languages
French (fr)
Japanese (ja)
Inventor
憲一 山田
有貴 添田
真代 今泉
圭介 遠藤
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020182776A external-priority patent/JP2022073027A/en
Priority claimed from JP2021070440A external-priority patent/JP2022165191A/en
Priority claimed from JP2021070459A external-priority patent/JP2022073902A/en
Priority claimed from JP2021130255A external-priority patent/JP2023024142A/en
Priority claimed from JP2021166442A external-priority patent/JP2023056930A/en
Priority claimed from JP2021166438A external-priority patent/JP2023056928A/en
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Publication of WO2022092296A1 publication Critical patent/WO2022092296A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/80Packaging reuse or recycling, e.g. of multilayer packaging

Definitions

  • the present disclosure relates to polyethylene multilayer base materials, printing base materials, laminates and packaging materials.
  • packaging materials and the like are manufactured using a resin film composed of a resin material.
  • the packaging material includes, for example, a base material and a heat seal layer.
  • a resin film made of a polyolefin such as polyethylene has flexibility and transparency, and is excellent in heat-sealing property, so that it is widely used as a heat-sealing layer in a packaging material (see, for example, Patent Document 1). ).
  • polyethylene is a resin that softens at a relatively low temperature compared to other thermoplastic resins, so when used as a base material for packaging materials, it may be deformed or melted during heat sheet processing. Sometimes. In addition, the polyethylene film may have insufficient strength as compared with other thermoplastic resin films. Therefore, as the base material of the packaging material, it is common to use a resin film having excellent strength and heat resistance such as a polyester film and a nylon film.
  • a base material such as a polyester film or a nylon film and a polyethylene film are laminated and heat-sealed so that the polyethylene film side is inside the packaging bag to make a bag (for example, Patent Document). See background technology in 2).
  • the present disclosures have found that the strength and heat resistance of a resin film made of polyethylene can be improved by a stretching treatment, and a polyethylene multilayer base material having a plurality of polyethylene-containing layers as a base material and being stretched is provided. Was considered to be used.
  • Heat is applied to the base material used for packaging materials, for example, when the packaging material is heat-sealed.
  • the laminate provided with the polyethylene multilayer base material may have large heat shrinkage due to heat addition and may not have sufficient heat resistance.
  • the polyethylene multilayer base material may not have sufficient ink adhesion or may not have sufficient interlayer strength. Further, the polyethylene multilayer base material is preferably excellent in heat resistance because heat may be applied at the time of printing or the like.
  • One object of the present disclosure is to provide a polyethylene multilayer base material having excellent heat resistance.
  • One object of the present disclosure is to provide a polyethylene multilayer base material having excellent ink adhesion and interlayer strength.
  • One object of the present disclosure is to provide a polyethylene multilayer base material having excellent ink adhesion and heat resistance.
  • One object of the present disclosure is to provide a laminate having a polyethylene multilayer base material and a heat seal layer containing polyethylene as a main component and having excellent heat resistance.
  • One object of the present disclosure is to provide a laminate which has strength, heat sealability and recyclability and can be suitably used as a packaging material.
  • the polyethylene multilayer base material of the first aspect and the second aspect of the present disclosure is provided with a first polyethylene layer, a second polyethylene layer, and a third polyethylene layer in this order in the order of thickness, and is subjected to stretching treatment. Then, the requirement (A) and / or the requirement (B) described later is satisfied.
  • the polyethylene multilayer base material of the third aspect of the present disclosure contains a layer (A) containing medium-density polyethylene, two or more layers of multi-layer intermediate layers (B) containing polyethylene, respectively, and medium-density polyethylene.
  • the layer (C) is provided in this order in the thickness direction and is stretched, and any polyethylene-containing layers adjacent to each other in the thickness direction in the multilayer substrate are described as the layer (1) and the layer (2).
  • the absolute value of the difference between the density of the polyethylene constituting the layer (1) and the density of the polyethylene constituting the layer (2) is 0.030 g / cm 3 or less.
  • the polyethylene multilayer substrate of the fourth aspect of the present disclosure is directly composed of a first layer containing medium density polyethylene and high density polyethylene, and a second layer containing medium density polyethylene and linear low density polyethylene.
  • the polyethylene multilayer substrate of the fifth aspect of the present disclosure contains a first layer containing medium density polyethylene and high density polyethylene, a second layer containing high density polyethylene, and linear low density polyethylene.
  • a third layer to be used, a fourth layer containing high-density polyethylene, and a fifth layer containing medium-density polyethylene and high-density polyethylene are provided in this order in the thickness direction and are stretched.
  • the laminate of the first aspect and the second aspect of the present disclosure includes a polyethylene multilayer base material and a heat-sealed layer containing polyethylene as a main component, and the polyethylene multilayer base material includes a first polyethylene layer and a polyethylene layer.
  • the second polyethylene layer and the third polyethylene layer are provided in this order in the thickness direction and are stretched, and the laminate satisfies the requirements (C) and / or the requirements (D) described later.
  • the laminate of the third aspect and the fourth aspect of the present disclosure includes a polyethylene multilayer base material and a heat seal layer containing polyethylene as a main component, and the polyethylene multilayer base material includes a first polyethylene layer and a polyethylene layer.
  • the second polyethylene layer and the third polyethylene layer are provided in this order in the thickness direction and are stretched, and the laminate satisfies the requirements (E) and / or the requirements (F) described later.
  • the laminate of the fifth aspect of the present disclosure includes a base material and a heat seal layer, the base material and the heat seal layer are made of the same type of resin material, and the base material has a multilayer structure.
  • the base material is the base material that has been stretched, and the heat seal layer is the layer that has not been stretched.
  • the polyethylene multilayer base material of the first aspect and the second aspect which are excellent in heat resistance.
  • it is possible to provide a laminate of the first to fourth aspects which comprises a polyethylene multilayer base material and a heat seal layer containing polyethylene as a main component, and has excellent heat resistance.
  • it is possible to provide a laminate of a fifth aspect which has strength, heat sealability and recyclability and can be suitably used as a packaging material.
  • Polyethylene refers to a polymer in which the content ratio of ethylene-derived constituent units is 50 mol% or more in all the repeating constituent units.
  • the content ratio of the structural unit derived from ethylene is preferably 70 mol% or more, more preferably 80 mol% or more, still more preferably 90 mol% or more, and particularly preferably 95 mol% or more.
  • the above content ratio is measured by a nuclear magnetic resonance method (NMR method).
  • the "polyethylene layer” is a layer containing polyethylene as a main component, that is, a layer containing polyethylene in a range of more than 50% by mass.
  • the content ratio of polyethylene in the polyethylene layer is preferably 60% by mass or more, more preferably 70% by mass or more, still more preferably 80% by mass or more, 85% by mass or more, 90% by mass or more, or 95% by mass or more.
  • the density of each polyethylene is preferably as follows.
  • the density of high density polyethylene preferably exceeds 0.945 g / cm 3 .
  • the upper limit of the density of high-density polyethylene is, for example, 0.965 g / cm 3 .
  • the density of the medium density polyethylene is preferably more than 0.925 g / cm 3 and 0.945 g / cm 3 or less.
  • the density of the low density polyethylene is preferably more than 0.900 g / cm 3 and 0.925 g / cm 3 or less.
  • the density of the linear low density polyethylene is preferably more than 0.900 g / cm 3 and 0.925 g / cm 3 or less.
  • the density of the ultra-low density polyethylene is preferably 0.900 g / cm 3 or less.
  • the lower limit of the density of ultra-low density polyethylene is, for example, 0.860 g / cm 3 .
  • the density of polyethylene is measured according to JIS K7112 (1999), particularly the D method (density gradient tube method, 23 ° C.).
  • examples of polyethylene include homopolymers of ethylene and copolymers of ethylene and other monomers.
  • examples of other monomers include ⁇ -olefins having 3 or more carbon atoms and 20 or less carbon atoms, vinyl acetate, and (meth) acrylic acid esters.
  • Examples of the ⁇ -olefin having 3 or more carbon atoms and 20 or less carbon atoms include propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, and 1 -Octadecene, 1-eicosene, 3-methyl-1-butene, 4-methyl-1-pentene and 6-methyl-1-heptene can be mentioned.
  • Examples of the (meth) acrylic acid ester include alkyl (meth) acrylates such as methyl (meth) acrylate and ethyl (meth) acrylate.
  • copolymer examples include a copolymer of ethylene and an ⁇ -olefin having 3 or more and 20 or less carbon atoms, ethylene, and at least one selected from vinyl acetate and (meth) acrylic acid ester.
  • examples thereof include polymers and copolymers of ethylene, ⁇ -olefins having 3 or more and 20 or less carbon atoms, and at least one selected from vinyl acetate and (meth) acrylic acid esters.
  • Polyethylenes with different densities or branches can be obtained by appropriately selecting the polymerization method.
  • a multisite catalyst such as a Cheegler-Natta catalyst or a single site catalyst such as a metallocene catalyst as the polymerization catalyst
  • one step is carried out by any of gas phase polymerization, slurry polymerization, solution polymerization and high pressure ion polymerization.
  • the single-site catalyst is a catalyst capable of forming a uniform active species, and is usually prepared by contacting a metallocene-based transition metal compound or a non-metallocene-based transition metal compound with an activation co-catalyst.
  • the single-site catalyst is preferable because the structure of the active site is uniform as compared with the multi-site catalyst, so that a polymer having a high molecular weight and a high uniformity structure can be obtained.
  • the metallocene catalyst is a catalyst containing a transition metal compound of Group IV of the Periodic Table containing a ligand having a cyclopentadienyl skeleton, a cocatalyst, an organometallic compound if necessary, and a carrier if necessary.
  • transition metal in the transition metal compound examples include zirconium, titanium and hafnium, and zirconium and hafnium are preferable.
  • the cyclopentadienyl skeleton in the transition metal compound is a cyclopentadienyl group or a substituted cyclopentadienyl group.
  • the substituted cyclopentadienyl group is, for example, a hydrocarbon group having 1 or more and 30 or less carbon atoms, a silyl group, a silyl substituted alkyl group, a silyl substituted aryl group, a cyano group, a cyanoalkyl group, a cyanoaryl group, a halogen group and a haloalkyl group. , And at least one substituent selected from the halosilyl group.
  • the substituted cyclopentadienyl group has one or more substituents, and the substituents are bonded to each other to form a ring, and an indenyl ring, a fluorenyl ring, an azurenyl ring, or a hydrogenated product thereof can be used. It may be formed. A ring formed by bonding substituents to each other may further have a substituent.
  • the transition metal compound usually has two ligands having a cyclopentadienyl skeleton.
  • the ligands having each cyclopentadienyl skeleton are preferably bonded to each other by a cross-linking group.
  • the cross-linking group include a substituted silylene group such as an alkylene group having 1 or more carbon atoms and 4 or less carbon atoms, a silylene group, a dialkylcyrylene group and a diallylsilylene group, and a substituted gelmilene group such as a dialkylgelmylene group and a diarylgermylene group. ..
  • a substituted silylene group is preferable.
  • the co-catalyst is a component capable of effectively functioning as a polymerization catalyst of a transition metal compound of Group IV of the periodic table, or a component capable of balancing ionic charges in a catalytically activated state.
  • the co-catalyst include benzene-soluble aluminoxane or benzene-insoluble organic aluminum oxy compound, ion-exchangeable layered silicate, boron compound, active hydrogen group-containing or non-containing cation, and non-coordinating anion.
  • examples thereof include sex compounds, lanthanoid salts such as lanthanum oxide, tin oxide, and phenoxy compounds containing a fluoro group.
  • organometallic compound used as necessary examples include organoaluminum compounds, organomagnesium compounds, and organozinc compounds. Among these, organoaluminum compounds are preferable.
  • the transition metal compound may be used by being carried on a carrier of an inorganic or organic compound.
  • a carrier of an inorganic or organic compound As the carrier, a porous oxide of an inorganic or organic compound is preferable, and specifically, an ion-exchangeable layered silicate such as montmorillonite, SiO 2 , Al 2 O 3 , MgO, ZrO 2 , TiO 2 , B 2 O. 3 , CaO, ZnO, BaO, ThO 2 , or a mixture thereof can be mentioned.
  • ethylene derived from biomass may be used instead of ethylene obtained from fossil fuel. Since polyethylene derived from biomass is a carbon-neutral material, it is possible to reduce the environmental load of packaging materials manufactured using a polyethylene multilayer base material.
  • Biomass-derived polyethylene can be produced, for example, by the method described in JP2013-177531A. Commercially available biomass-derived polyethylene (eg, green PE commercially available from Braskem) may be used.
  • Polyethylene recycled by mechanical recycling may be used.
  • Mechanical recycling generally means that the recovered polyethylene film or the like is crushed and alkaline-cleaned to remove stains and foreign substances on the film surface, and then dried under high temperature and reduced pressure for a certain period of time to stay inside the film. This is a method in which contaminants are diffused and decontaminated to remove stains on a film made of polyethylene, and then returned to polyethylene.
  • each component for example, polyethylene such as high density polyethylene, medium density polyethylene, low density polyethylene and linear low density polyethylene, additives, colorants, resin materials, adhesives
  • polyethylene such as high density polyethylene, medium density polyethylene, low density polyethylene and linear low density polyethylene, additives, colorants, resin materials, adhesives
  • seeds may be used, or two or more kinds may be used.
  • the polyethylene multilayer base material is also simply referred to as a “multilayer base material”.
  • the multilayer base material has a multilayer structure of two or more layers.
  • the number of layers of the multilayer base material is preferably 2 layers or more and 7 layers or less, and more preferably 3 layers or more and 5 layers or less.
  • the base material has a multilayer structure, for example, the balance between rigidity, strength, heat resistance, printability and stretchability of the base material can be improved.
  • Examples of the polyethylene contained in the multilayer base material of the present disclosure include high-density polyethylene, medium-density polyethylene, low-density polyethylene (high-pressure method low-density polyethylene), linear low-density polyethylene, and ultra-low-density polyethylene.
  • the melt flow rate (MFR) of polyethylene contained in the multilayer substrate of the present disclosure is preferably 0.1 g / 10 minutes or more and 50 g / 10 minutes or less from the viewpoint of film forming property and processing suitability of the multilayer substrate. It is preferably 0.2 g / 10 minutes or more and 30 g / 10 minutes or less, more preferably 0.2 g / 10 minutes or more and 15 g / 10 minutes or less, still more preferably 0.2 g / 10 minutes or more and 10 g / 10 minutes or less, and particularly preferably. Is 0.2 g / 10 minutes or more and 5 g / 10 minutes or less.
  • the MFR is measured in accordance with ASTM D1238 under the conditions of a temperature of 190 ° C. and a load of 2.16 kg.
  • the polyethylene multilayer base material of the first to fifth aspects will be described, but when referring to the multilayer base material in common with the polyethylene multilayer base materials of these embodiments, “the polyethylene multilayer base material of the present disclosure” is used. Or “multilayer substrate of the present disclosure”.
  • the polyethylene multilayer substrate of the first aspect and the second aspect of the present disclosure is With the first polyethylene layer, With the second polyethylene layer, A third polyethylene layer is provided in this order in the thickness direction, and is stretched.
  • the polyethylene multilayer base material of the first aspect of the present disclosure satisfies the following requirement (A).
  • the polyethylene multilayer substrate of the second aspect of the present disclosure satisfies the following requirement (B).
  • the polyethylene multilayer base material of the first aspect may further satisfy the following requirement (B).
  • the indentation elastic modulus of the first polyethylene layer is 3.0 times or more the indentation elastic modulus of the second polyethylene layer
  • the indentation elastic modulus of the third polyethylene layer is the second polyethylene layer. It is 3.0 times or more of the indentation elastic modulus of.
  • the indentation hardness of the first polyethylene layer is 2.0 times or more the indentation hardness of the second polyethylene layer, and the indentation hardness of the third polyethylene layer is the indentation hardness of the second polyethylene layer. It is more than 2.0 times.
  • the multilayer substrate of the first aspect and the second aspect of the present disclosure includes a second polyethylene layer, a second polyethylene layer and a third polyethylene layer between the first polyethylene layer and the second polyethylene layer.
  • a second b polyethylene layer may be further provided between the two.
  • the multilayer base material has a first polyethylene layer, a second polyethylene layer, a second polyethylene layer, a second polyethylene layer, and a third polyethylene layer in this order in the thickness direction. Be prepared.
  • the second polyethylene layer, the second polyethylene layer, and the second polyethylene layer form an intermediate layer (multilayer intermediate layer) in the multilayer base material.
  • the surface layer on one side of the multilayer substrate of the first aspect and the second embodiment is the first polyethylene layer
  • the surface layer on the other side of the multilayer substrate is the third polyethylene layer.
  • the multilayer substrate of the first aspect and the second aspect is formed between at least one layer in the first polyethylene layer, the second polyethylene layer, the second polyethylene layer, the second polyethylene layer and the third polyethylene layer. Other layers may be provided.
  • the multilayer substrate of the first aspect and the second aspect is only the first polyethylene layer, the second polyethylene layer, the second polyethylene layer, the second polyethylene layer and the third polyethylene layer. Consists of.
  • the polyethylene layer is also referred to as a "PE layer”.
  • the indentation modulus of the first PE layer, the second PE layer, the second PE layer, the second PE layer, and the third PE layer in the polyethylene multilayer base material or the laminate described later is determined.
  • the indentation elastic modulus 1, the indentation elastic modulus 2a, the indentation elastic modulus 2, the indentation elastic modulus 2b, and the indentation elastic modulus 3 are also described, respectively.
  • the ratio of the indentation elastic modulus of the first PE layer to the indentation elastic modulus of the second PE layer is also described as a ratio (elastic modulus 1 / elastic modulus 2). The same applies to other cases.
  • the indentation hardness of the first PE layer, the second PE layer, the second PE layer, the second PE layer, and the third PE layer in the polyethylene multilayer base material or the laminate described later is determined, respectively.
  • Push-in hardness 1, push-in hardness 2a, push-in hardness 2, push-in hardness 2b, and push-in hardness 3 are also described.
  • the ratio of the indentation hardness of the first PE layer to the indentation hardness of the second PE layer is also described as a ratio (hardness 1 / hardness 2). The same applies to other cases.
  • the indentation elastic modulus of the first PE layer is 3.0 times or more the indentation elastic modulus of the second PE layer, and the indentation elasticity of the third PE layer.
  • the ratio is 3.0 times or more the indentation elastic modulus of the second PE layer.
  • the ratio (elastic modulus 1 / elastic modulus 2) and the ratio (elastic modulus 3 / elastic modulus 2) in the multilayer substrate of the first aspect are independently 3.0 or more, preferably 4.0 or more. More preferably 5.0 or more, still more preferably 6.0 or more, even more preferably 7.0 or more; preferably 22.0 or less, more preferably 20.0 or less, still more preferably 18.0 or less, Even more preferably 16.0 or less, particularly preferably 14.0 or less, 13.0 or less or 12.0 or less.
  • the range of the ratio (modulus of elasticity 1 / elastic modulus 2) and the range of the ratio (modulus of elasticity 3 / elastic modulus 2) may be any combination of the above lower limit value and upper limit value, for example, 3.0. It may be 22.0 or less.
  • the indentation elastic modulus of the second PE layer is preferably 2.0 times or more the indentation elastic modulus of the second PE layer, and the indentation elastic modulus of the second PE layer is preferably 2.0 times or more.
  • the indentation elastic modulus of the second PE layer is preferably 2.0 times or more the indentation elastic modulus of the second PE layer.
  • the ratio (elastic modulus 2a / elastic modulus 2) and the ratio (elastic modulus 2b / elastic modulus 2) in the multilayer substrate of the first aspect are independently, preferably 2.0 or more, more preferably 2.5 or more, respectively. It is more preferably 3.0 or more; preferably 18.0 or less, more preferably 16.0 or less, still more preferably 14.0 or less, still more preferably 13.0 or less, and particularly preferably 12.0 or less. It is 11.0 or less or 10.0 or less.
  • the range of the ratio (elastic modulus 2a / elastic modulus 2) and the range of the ratio (elastic modulus 2b / elastic modulus 2) may be independently any combination of the above lower limit value and upper limit value, for example, 2.0. It may be 18.0 or less.
  • the indentation elastic modulus 1 and the indentation elastic modulus 3 in the multilayer substrate of the first aspect are independently, preferably 1.1 GPa or more, more preferably 1.15 GPa or more, still more preferably 1.2 GPa or more, still more preferable.
  • the ranges of the indentation elastic modulus 1 and the indentation elastic modulus 3 may be independently arbitrary combinations of the above lower limit value and upper limit value, and may be, for example, 1.1 GPa or more and 6.0 GPa or less.
  • the indentation elastic modulus 2 in the multilayer substrate of the first aspect is preferably 0.03 GPa or more, more preferably 0.05 GPa or more, still more preferably 0.1 GPa or more, still more preferably 0.13 GPa or more, and particularly preferably 0.13 GPa or more. It is 0.15 GPa or more; preferably 0.7 GPa or less, more preferably 0.6 GPa or less, still more preferably 0.5 GPa or less, still more preferably 0.4 GPa or less, and particularly preferably 0.3 GPa or less. With such a design, for example, the stretchability of the pre-stretched laminate tends to be more excellent.
  • the range of the indentation elastic modulus 2 may be any combination of the above lower limit value and upper limit value, and may be, for example, 0.03 GPa or more and 0.7 GPa or less.
  • the indentation elastic modulus 2a and the indentation elastic modulus 2b in the multilayer substrate of the first aspect are independently, preferably 0.3 GPa or more, more preferably 0.4 GPa or more, still more preferably 0.5 GPa or more, still more preferable. Is 0.6 GPa or more; preferably 4.0 GPa or less, more preferably 3.5 GPa or less, still more preferably 3.0 GPa or less, still more preferably 2.5 GPa or less, and particularly preferably 2.0 GPa or less. Thereby, for example, there is a tendency that the heat shrinkage of the multilayer base material at the time of heat sealing can be further suppressed.
  • the ranges of the indentation elastic modulus 2a and the indentation elastic modulus 2b may be independently arbitrary combinations of the above lower limit value and upper limit value, and may be, for example, 0.3 GPa or more and 4.0 GPa or less.
  • the magnitude of the indentation elastic modulus of each PE layer preferably satisfies the relationship of indentation elastic modulus 1> indentation elastic modulus 2a> indentation elastic modulus 2, and indentation elastic modulus 3> indentation. It is preferable to satisfy the relationship of elastic modulus 2b> indentation elastic modulus 2. This tends to further improve the balance between the heat resistance of the multilayer base material and the stretchability (processability, productivity), for example.
  • the ratio (elastic modulus 1 / elastic modulus 3) is preferably 0.6 or more and 1.7 or less, more preferably 0.7 or more and 1.4 or less, and further preferably 0. It is 8 or more and 1.2 or less, more preferably 0.9 or more and 1.1 or less.
  • the ratio (elastic modulus 2a / elastic modulus 2b) is preferably 0.6 or more and 1.7 or less, more preferably 0.7 or more and 1.4 or less, and further preferably 0. It is 8 or more and 1.2 or less, more preferably 0.9 or more and 1.1 or less.
  • the indentation hardness of the first PE layer is 2.0 times or more the indentation hardness of the second PE layer
  • the indentation hardness of the third PE layer is It is characterized in that it is 2.0 times or more the indentation hardness of the second PE layer.
  • the ratio (hardness 1 / hardness 2) and the ratio (hardness 3 / hardness 2) in the multilayer substrate of the second aspect are independently 2.0 or more, preferably 2.2 or more, and more preferably 2. 0.4 or more, more preferably 2.6 or more; preferably 8.5 or less, more preferably 8.0 or less, still more preferably 7.5 or less, even more preferably 7.0 or less, particularly preferably 6. It is 5.5 or less, 6.0 or less, or 5.5 or less.
  • the range of the ratio (hardness 1 / hardness 2) and the range of the ratio (hardness 3 / hardness 2) may be independently any combination of the above lower limit value and upper limit value, for example, 2.0 or more and 8.5. It may be as follows.
  • the multilayer substrate of the first aspect may further satisfy the above requirements relating to the ratio (hardness 1 / hardness 2) and the ratio (hardness 3 / hardness 2).
  • the indentation hardness of the second PE layer is preferably 1.4 times or more the indentation hardness of the second PE layer, and the indentation hardness of the second PE layer is preferable.
  • the hardness is preferably 1.4 times or more the indentation hardness of the second PE layer.
  • the ratio (hardness 2a / hardness 2) and the ratio (hardness 2b / hardness 2) in the multilayer substrate of the second aspect are independently, preferably 1.4 or more, more preferably 1.6 or more, still more preferably. 1.7 or more; preferably 8.0 or less, more preferably 7.5 or less, still more preferably 7.0 or less, still more preferably 6.5 or less, particularly preferably 6.0 or less, 5.5 or less. Or less or 5.0 or less. Thereby, for example, there is a tendency that the heat shrinkage of the multilayer base material at the time of heat sealing can be further suppressed.
  • the range of the ratio (hardness 2a / hardness 2) and the range of the ratio (hardness 2b / hardness 2) may be independently any combination of the above lower limit value and upper limit value, for example, 1.4 or more and 8.0. It may be as follows.
  • the multilayer substrate of the first aspect may further satisfy the above requirements relating to the ratio (hardness 2a / hardness 2) and the ratio (hardness 2b / hardness 2).
  • the indentation hardness 1 and the indentation hardness 3 in the multilayer substrate of the second aspect are independently, preferably 45 MPa or more, more preferably 47 MPa or more, still more preferably 49 MPa or more, still more preferably 54 MPa or more; preferably. It is 150 MPa or less, more preferably 130 MPa or less, still more preferably 110 MPa or less, still more preferably 100 MPa or less, and particularly preferably 90 MPa or less. Thereby, for example, there is a tendency that the heat shrinkage of the multilayer base material at the time of heat sealing can be further suppressed.
  • the range of the indentation hardness 1 and the indentation hardness 3 may be any combination of the above lower limit value and the upper limit value independently, and may be, for example, 45 MPa or more and 150 MPa or less.
  • the multilayer substrate of the first aspect may further satisfy the above requirements relating to the indentation hardness 1 and the indentation hardness 3.
  • the indentation hardness 2 in the multilayer substrate of the second aspect is preferably 1 MPa or more, more preferably 3 MPa or more, still more preferably 7 MPa or more, still more preferably 10 MPa or more, particularly preferably 15 MPa or more; preferably 40 MPa or less. It is more preferably 35 MPa or less, further preferably 30 MPa or less, still more preferably 26 MPa or less, and particularly preferably 23 MPa or less. With such a design, for example, the stretchability of the pre-stretched laminate tends to be more excellent.
  • the range of the indentation hardness 2 may be any combination of the above lower limit value and the upper limit value, and may be, for example, 1 MPa or more and 40 MPa or less.
  • the multilayer substrate of the first aspect may further satisfy the above requirement relating to the indentation hardness 2.
  • the indentation hardness 2a and the indentation hardness 2b in the multilayer substrate of the second aspect are independently, preferably 20 MPa or more, more preferably 25 MPa or more, still more preferably 30 MPa or more, still more preferably 32 MPa or more, and particularly preferably 34 MPa or more. It is more than 140 MPa or less, more preferably 120 MPa or less, still more preferably 100 MPa or less, still more preferably 90 MPa or less, and particularly preferably 85 MPa or less or 80 MPa or less. Thereby, for example, there is a tendency that the heat shrinkage of the multilayer base material at the time of heat sealing can be further suppressed.
  • the range of the indentation hardness 2a and the indentation hardness 2b may be any combination of the above lower limit value and the upper limit value, and may be, for example, 20 MPa or more and 140 MPa or less.
  • the multilayer substrate of the first aspect may further satisfy the above requirements relating to the indentation hardness 2a and the indentation hardness 2b.
  • the magnitude of the indentation hardness of each PE layer preferably satisfies the relationship of indentation hardness 1> indentation hardness 2a> indentation hardness 2, indentation hardness 3> indentation hardness 2b> indentation hardness. It is preferable to satisfy the relationship of 2. This tends to further improve the balance between the heat resistance of the multilayer base material and the stretchability (processability, productivity), for example.
  • the ratio (hardness 1 / hardness 3) is preferably 0.6 or more and 1.7 or less, more preferably 0.7 or more and 1.4 or less, and further preferably 0.8 or more. It is 1.2 or less, more preferably 0.9 or more and 1.1 or less.
  • the ratio (hardness 2a / hardness 2b) is preferably 0.6 or more and 1.7 or less, more preferably 0.7 or more and 1.4 or less, and further preferably 0.8 or more. It is 1.2 or less, more preferably 0.9 or more and 1.1 or less.
  • the indentation elastic modulus and indentation hardness of each PE layer can be adjusted, for example, by appropriately selecting polyethylene contained in each PE layer.
  • the indentation elastic modulus and the indentation hardness tend to increase.
  • the indentation elastic modulus and the indentation hardness tend to be lowered.
  • the indentation elastic modulus and indentation hardness of each PE layer can also be adjusted by the draw ratio.
  • the indentation elastic modulus and the indentation hardness of each PE layer tend to be high.
  • the draw ratio is low, the indentation elastic modulus and the indentation hardness of each PE layer tend to be low.
  • the indentation elastic modulus and the indentation hardness of each PE layer are measured by the nanoindentation method.
  • the indentation elastic modulus and the indentation elastic modulus and the indentation elastic modulus and the indentation are made by using a nanoindenter and using a cross section of each PE layer of the polyethylene multilayer base material parallel to the TD direction as a measurement surface. Measure the hardness.
  • the measurement conditions are as follows.
  • As the indenter of the nano indenter a Berkovich indenter (triangular pyramid indenter) is used.
  • the indenter was pushed into the PE layer from a cross section parallel to the TD direction of the polyethylene multilayer base material and the laminate to a pushing depth of 200 nm over 10 seconds, held in that state for 5 seconds, and then unloaded over 10 seconds.
  • the maximum load Pmax, the contact projection area A at the maximum depth and the load-displacement curve are obtained.
  • the elastic modulus and hardness values are calculated.
  • the measurement is carried out in a room temperature (25 ° C.) environment. The measurement is carried out at five points on the same cross section, and the average value of the elastic modulus is taken as the indentation elastic modulus and the average value of the hardness is taken as the indentation hardness. Details of the measurement conditions will be described in the Examples column.
  • the first PE layer may contain medium-density polyethylene and high-density polyethylene
  • the third PE layer may contain medium-density polyethylene and high-density polyethylene.
  • the mass ratio of medium-density polyethylene to high-density polyethylene (medium-density polyethylene / high-density polyethylene) in the first PE layer and the third PE layer is independently, preferably 1.1 or more and 5 or less, more preferably. Is 1.5 or more and 3 or less. This makes it possible to further improve the balance between ink adhesion and heat resistance.
  • the total content of the medium-density polyethylene and the high-density polyethylene in the first PE layer and the third PE layer is independently, preferably 80% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass. % Or more. This makes it possible to further improve the ink adhesion and heat resistance of the multilayer base material.
  • the second PE layer may contain linear low-density polyethylene.
  • the indentation elastic modulus and the indentation hardness tend to be adjusted in a low range. This makes it possible to improve the stretchability of the laminate, which is a precursor of the multilayer substrate.
  • the content ratio of the linear low-density polyethylene in the second PE layer is preferably more than 50% by mass, more preferably 60% by mass or more, still more preferably 70% by mass or more, still more preferably 80% by mass or more, 90. By mass or more, or 95% by mass or more. Thereby, the balance between heat resistance, rigidity and stretchability can be further improved.
  • the PE layer of the second a and the PE layer of the second b may each contain high-density polyethylene in one embodiment.
  • the indentation elastic modulus and the indentation hardness tend to be adjusted in a high range.
  • These layers contribute to the improvement of heat resistance of the multilayer base material. That is, by incorporating high-density polyethylene in the second PE layer and the second PE layer in addition to the first PE layer and the third PE layer, the heat resistance of the multilayer base material can be further improved.
  • the PE layer of the second a and the PE layer of the second b may each further contain low-density polyethylene in one embodiment.
  • the indentation elastic modulus and the indentation hardness may be adjusted. This makes it possible to further improve the balance between heat resistance, rigidity and workability of the multilayer base material.
  • the mass ratio of high-density polyethylene to low-density polyethylene (high-density polyethylene / low-density polyethylene) in the second PE layer and the second b PE layer is independently, preferably 1 or more and 4 or less, more preferably 1. .5 or more and 3 or less. This makes it possible to further improve the balance between heat resistance, rigidity and workability of the multilayer base material.
  • the content ratio of the high-density polyethylene in the PE layer of the second a and the PE layer of the second b is independently, preferably more than 50% by mass, more preferably 55% by mass or more, still more preferably 60% by mass or more. Thereby, the heat resistance of the multilayer base material can be further improved.
  • the total content of the high-density polyethylene and the low-density polyethylene in the PE layer of the second a and the PE layer of the second b is independently, preferably 80% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass. % Or more. This makes it possible to further improve the balance between heat resistance, rigidity and workability of the multilayer base material.
  • the second PE layer may contain medium density polyethylene and linear low density polyethylene, and the second PE layer may contain medium density polyethylene and linear low density polyethylene. It may be contained.
  • the indentation elastic modulus and the indentation hardness can be adjusted.
  • the mass ratio of medium-density polyethylene to linear low-density polyethylene (medium-density polyethylene / linear low-density polyethylene) in the second PE layer and the second b PE layer is independently and preferably 0.25, respectively. It is 4 or more, more preferably 0.4 or more and 2.4 or less. Thereby, the balance between heat resistance, rigidity and stretchability can be further improved.
  • the total content of the medium-density polyethylene and the linear low-density polyethylene in the PE layer of the second a and the PE layer of the second b is independently, preferably 80% by mass or more, more preferably 90% by mass or more, still more preferable. Is 95% by mass or more. This makes it possible to further improve the stretchability of the laminate which is the precursor.
  • each of the first PE layer and the third PE layer is independently, preferably 0.5 ⁇ m or more and 10 ⁇ m or less, more preferably 1 ⁇ m or more and 8 ⁇ m or less, and further preferably 1 ⁇ m or more and 5 ⁇ m or less. This makes it possible to further improve the ink adhesion and heat resistance of the multilayer base material.
  • each of the first PE layer and the third PE layer is a combination of the second PE layer, the second PE layer and the second PE layer (hereinafter, the second a, second and second b layers). It is preferable that the thickness is smaller than the total thickness of the "multilayer intermediate layer").
  • the ratio of the respective thicknesses of the first PE layer and the third PE layer to the total thickness of the multilayer intermediate layers (first PE layer or third PE layer / multilayer intermediate layer) is preferably 0.05. It is 0.8 or more, more preferably 0.1 or more and 0.7 or less, and further preferably 0.1 or more and 0.4 or less. Thereby, the rigidity, strength and heat resistance of the multilayer base material can be further improved.
  • the thickness of the second PE layer is preferably 1 ⁇ m or more and 50 ⁇ m or less, more preferably 2 ⁇ m or more and 40 ⁇ m or less, and further preferably 5 ⁇ m or more and 30 ⁇ m or less. Thereby, the balance between heat resistance, rigidity and stretchability can be further improved.
  • each of the second PE layer and the second b PE layer is independently, preferably 0.5 ⁇ m or more and 15 ⁇ m or less, more preferably 1 ⁇ m or more and 10 ⁇ m or less, and further preferably 1 ⁇ m or more and 8 ⁇ m or less.
  • the ratio of the total thickness of the second PE layer and the second PE layer to the thickness of the second PE layer (total thickness of the second PE layer and the second PE layer / thickness of the second PE layer) S) is preferably 0.1 or more and 10 or less, more preferably 0.2 or more and 5 or less, and further preferably 0.5 or more and 2 or less. Thereby, the rigidity, strength and heat resistance of the multilayer base material can be further improved.
  • the thickness of each of the above layers is the thickness after the stretching treatment.
  • Each layer constituting the multilayer base material may independently contain an additive.
  • the additive include a cross-linking agent, an antioxidant, an anti-blocking agent, a slip agent, an ultraviolet absorber, a light stabilizer, a filler, a reinforcing agent, an antistatic agent, a pigment and a resin for modification. Be done.
  • At least one layer selected from the first PE layer, the second PE layer, and the third PE layer in the multilayer substrate of the first aspect and the second aspect of the present disclosure specifically, the first.
  • At least one layer selected from the PE layer, the second PE layer, the second PE layer, the second PE layer, and the third PE layer may contain a slip agent.
  • the processability of the multilayer base material can be improved.
  • the second PE layer may contain a slip agent, and all of the above layers may contain a slip agent.
  • slip agent examples include amide-based lubricants, fatty acid esters such as glycerin fatty acid esters, hydrocarbon-based waxes, higher fatty acid-based waxes, metal soaps, hydrophilic silicones, silicone-modified (meth) acrylic resins, silicone-modified epoxy resins, and silicones.
  • fatty acid esters such as glycerin fatty acid esters
  • hydrocarbon-based waxes such as glycerin fatty acid esters
  • higher fatty acid-based waxes such as glycerin fatty acid esters
  • metal soaps such as glycerin fatty acid esters
  • hydrophilic silicones silicone-modified (meth) acrylic resins
  • silicone-modified epoxy resins examples include silicone-modified epoxy resins, and silicones.
  • silicones examples include modified polyethers, silicone-modified polyesters, block-type silicone (meth) acrylic copolymers, polyglycerol-modified silicones and paraffins.
  • amide-based lubricants are preferable.
  • the amide-based lubricant include saturated fatty acid amides, unsaturated fatty acid amides, substituted amides, methylol amides, saturated fatty acid bisamides, unsaturated fatty acid bisamides, fatty acid ester amides and aromatic bisamides.
  • Examples of the saturated fatty acid amide include lauric acid amide, palmitic acid amide, stearic acid amide, behenic acid amide and hydroxystearic acid amide.
  • Examples of unsaturated fatty acid amides include oleic acid amides and erucic acid amides.
  • Examples of the substituted amide include N-oleyl palmitate amide, N-stearyl stearyl amide, N-stearyl oleate amide, N-oleyl stealic acid amide and N-stearyl erucate amide.
  • Examples of the methylolamide include methylolstearic acid amide.
  • saturated fatty acid bisamide examples include methylene bisstearic acid amide, ethylene biscapric acid amide, ethylene bislauric acid amide, ethylene bisstearic acid amide, ethylene bishydroxystearic acid amide, ethylene bisbechenic acid amide, and hexamethylene bisstearic acid.
  • saturated fatty acid bisamide examples include amides, hexamethylene bisbechenic acid amides, hexamethylene hydroxystearic acid amides, N, N'-distealyl adipic acid amides and N, N'-distealyl sebasic acid amides.
  • Examples of unsaturated fatty acid bisamides include ethylene bisoleic acid amides, ethylene biserukaic acid amides, hexamethylene bisoleic acid amides, N, N'-diorail adipic acid amides and N, N'-diorail sevacinic acid amides. Can be mentioned.
  • Examples of the fatty acid ester amide include stearoamide ethyl stearate.
  • Examples of the aromatic bisamide include m-xylylene bisstearic acid amide, m-xylylene bishydroxystearic acid amide and N, N'-distearylisophthalic acid amide.
  • slip agents erucic acid amide is preferable.
  • a master batch containing the slip agent and polyethylene may be used.
  • the content ratio of the slip agent in the masterbatch is preferably 1% by mass or more and 30% by mass or less, more preferably 2% by mass or more and 20% by mass or less, and further preferably 3% by mass or more and 10% by mass or less.
  • polyethylene include the above-mentioned specific examples.
  • the preferable physical properties (density, MFR, etc.) filled with polyethylene are also as described above.
  • the content ratio of the slip agent in the layer containing the slip agent may be, for example, 0.01% by mass or more and 3% by mass or less, and 0.03% by mass. It may be% or more and 1% by mass or less. Thereby, the processability of the multilayer base material can be further improved.
  • the density of the polyethylene constituting the layer may be measured in accordance with the above JIS K7112.
  • the average density Dav calculated according to the following formula (F1) may be used as the density of the polyethylene constituting the layer.
  • D av ⁇ W i ⁇ Di... (F1)
  • means to take the sum of Wi x Di for i from 1 to n
  • n is an integer of 2 or more
  • Wi is the mass fraction of the i -th polyethylene. Shown, Di indicates the density of the i -th polyethylene (g / cm 3 ).
  • the multilayer substrate of the first aspect and the second aspect of the present disclosure is stretch-treated and has unique physical properties, it is excellent in rigidity, strength and heat resistance as compared with the conventional polyethylene film. It also has excellent ink adhesion. Therefore, the polyethylene multilayer base material of the present disclosure can be used, for example, as a base material for a packaging material, and a clear image can be formed on the surface of the multilayer base material.
  • the polyethylene multilayer base material of the first embodiment has a thickness of a first PE layer, a second PE layer, a second PE layer, a second PE layer, and a third PE layer.
  • the first PE layer contains medium-density polyethylene and high-density polyethylene
  • the second PE layer contains high-density polyethylene and optionally low-density polyethylene.
  • the second PE layer contains linear low density polyethylene
  • the second PE layer contains high density polyethylene and optionally low density polyethylene
  • the third PE layer contains medium density polyethylene and high density. Contains polyethylene.
  • the polyethylene multilayer base material of the second embodiment has a thickness of a first PE layer, a second PE layer, a second PE layer, a second PE layer, and a third PE layer.
  • the first PE layer contains medium-density polyethylene and high-density polyethylene
  • the second PE layer contains medium-density polyethylene and linear low-density polyethylene.
  • the second PE layer contains linear low density polyethylene
  • the second PE layer contains medium density polyethylene and linear low density polyethylene
  • the third PE layer contains medium density polyethylene and Contains high density polyethylene.
  • the medium-density polyethylene contained in the first PE layer and the medium-density polyethylene contained in the third PE layer may be the same or different, and are the same from the viewpoint that a multilayer base material can be easily produced. Is preferable.
  • the high-density polyethylene contained in the first PE layer and the high-density polyethylene contained in the third PE layer may be the same or different, and are the same from the viewpoint that a multilayer base material can be easily produced. Is preferable.
  • the high-density polyethylene contained in the PE layer of the second a and the high-density polyethylene contained in the PE layer of the second b may be the same or different, and a multilayer base material can be easily used. From the viewpoint of being able to be manufactured, they are preferably the same.
  • the linear low-density polyethylene contained in the second PE layer and the linear low-density polyethylene contained in the second PE layer and the second PE layer are the same. May also be different.
  • the medium-density polyethylene contained in the PE layer of the second a and the medium-density polyethylene contained in the PE layer of the second b may be the same or different, and a multilayer base material can be easily used. From the viewpoint of being able to be manufactured, they are preferably the same.
  • the linear low-density polyethylene contained in the PE layer of the second a and the linear low-density polyethylene contained in the PE layer of the second b may be the same or different.
  • the medium-density polyethylene contained in the second PE layer and the second PE layer and the medium-density polyethylene contained in the first PE layer and the third PE layer are the same. May also be different.
  • the polyethylene multilayer base material 10 of the third aspect of the present disclosure is as shown in FIG. Layer (A) 12 containing medium-density polyethylene and Two or more multilayer intermediate layers (B) 16 each containing polyethylene, and A layer (C) 14 containing medium-density polyethylene is provided in this order in the thickness direction.
  • the polyethylene multilayer substrate of the third aspect of the present disclosure has been stretched.
  • a surface treatment such as a corona discharge treatment is usually performed on the base material as a pretreatment.
  • the layer containing medium-density polyethylene tends to have higher durability against surface treatment than the layer containing only high-density polyethylene as polyethylene. Therefore, the layer containing medium-density polyethylene is excellent in ink adhesion at the time of printing after surface treatment.
  • the layer containing medium-density polyethylene also has the heat resistance required for printing and heat sealing. Further, the layer containing medium-density polyethylene contributes to the improvement of the stretchability of the laminate which is the precursor of the multilayer base material.
  • the surface layer on one side of the multilayer substrate of the third aspect is the layer (A), and the surface layer on the other side of the multilayer substrate of the third aspect is the layer (C).
  • the density of the polyethylene constituting the layer (1) and the density of the polyethylene constituting the layer (1) is 0.030 g / cm 3 or less, preferably 0.025 g / cm 3 or less, and more preferably 0.020 g / cm 3 or less. ..
  • this requirement is also referred to as a "density difference requirement". That is, any set of polyethylene-containing layers adjacent in the thickness direction contained in the multilayer substrate of the third aspect satisfies the above-mentioned density difference requirement.
  • the density difference when the density difference is described, it means the absolute value of the difference.
  • a fourth layer containing the high-density polyethylene (e), and a fifth layer containing the medium-density polyethylene (f) will be described in this order in the thickness direction. For convenience, a symbol is added to each polyethylene.
  • the above density difference requirement is, in one embodiment, Density difference between medium density polyethylene (a) and high density polyethylene (b), Difference between the density of high-density polyethylene (b) and the average density of medium-density polyethylene (c) and high-density polyethylene (d), Either the difference between the average density of the medium-density polyethylene (c) and the high-density polyethylene (d) and the density of the high-density polyethylene (e), or the difference in density between the high-density polyethylene (e) and the medium-density polyethylene (f). It means that the polyethylene is 0.030 g / cm 3 or less.
  • the density of the polyethylene constituting the layer may be measured in accordance with the above JIS K7112.
  • the average density Dav calculated according to the above formula (F1) may be used as the density of the polyethylene constituting the layer.
  • the multilayer substrate of the third aspect of the present disclosure the density difference between the polyethylene-containing layers is small as described above. Therefore, the multilayer substrate of the third aspect of the present disclosure exhibits high interlayer strength. Further, the multilayer base material of the third aspect of the present disclosure has excellent ink adhesion as described above, heat resistance and transparency, and is a multilayer used for producing a packaging material or the like. It has sufficient rigidity, strength and rigidity as a base material. Therefore, the multilayer substrate of the third aspect of the present disclosure is useful as a substrate on which a printed layer is formed.
  • the melt flow rate (MFR) of polyethylene contained in the multilayer substrate of the third aspect of the present disclosure is preferably 0.1 g / 10 minutes or more and 50 g / from the viewpoint of film forming property and processability of the multilayer substrate. It is 10 minutes or less, more preferably 0.3 g / 10 minutes or more and 30 g / 10 minutes or less.
  • the MFR is measured in accordance with ASTM D1238 under the conditions of a temperature of 190 ° C. and a load of 2.16 kg.
  • Layer (A) and layer (C)> Layer (A) contains one or more medium density polyethylenes.
  • the layer (C) contains one or more medium density polyethylenes.
  • the medium-density polyethylene contained in the layer (A) and the medium-density polyethylene contained in the layer (C) may be the same or different, and are the same from the viewpoint that a multilayer base material can be easily produced. Is preferable.
  • the layer (A) and the layer (C) may independently contain only medium-density polyethylene as polyethylene.
  • the layer (A) and the layer (C) may each independently contain the medium-density polyethylene and further polyethylene other than the medium-density polyethylene.
  • Examples of polyethylene other than medium-density polyethylene include high-density polyethylene, low-density polyethylene (high-pressure method low-density polyethylene), linear low-density polyethylene, and ultra-low-density polyethylene.
  • high-density polyethylene is preferable from the viewpoint of further improving heat resistance and scratch resistance. That is, in one embodiment, the layer (A) and the layer (C) independently contain medium-density polyethylene and high-density polyethylene, respectively.
  • the mass ratio of the medium-density polyethylene in the layers (A) and (C) to other polyethylene such as high-density polyethylene (medium-density polyethylene / other polyethylene) is independently and preferably 0.25. It is 4 or more, more preferably 0.4 or more and 2.4 or less. Thereby, the ink adhesion of the multilayer base material, the durability against the surface treatment, and the heat resistance can be further improved.
  • the densities of the polyethylene constituting the layer (A) and the layer (C) are independently, preferably more than 0.925 g / cm 3 and 0.960 g / cm 3 or less, more preferably 0.925 g / cm 3 . It is more than 0.955 g / cm 3 or less, more preferably 0.925 g / cm 3 or more and 0.945 g / cm 3 or less.
  • the density of polyethylene means the above-mentioned average density. Thereby, the ink adhesion of the multilayer base material, the durability against the surface treatment, and the heat resistance can be further improved.
  • the content ratio of polyethylene in the layer (A) and the layer (C) is independently, preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more.
  • the layer (A) and the layer (C) may independently contain one or more additives.
  • the additive include a cross-linking agent, an antioxidant, an anti-blocking agent, a slip agent, an ultraviolet absorber, a light stabilizer, a filler, a reinforcing agent, an antistatic agent, a pigment and a resin for modification. Be done.
  • each of the layer (A) and the layer (C) in the multilayer substrate of the third aspect is independently, preferably 0.5 ⁇ m or more and 10 ⁇ m or less, more preferably 1 ⁇ m or more and 8 ⁇ m or less, and further preferably 1 ⁇ m. It is 5 ⁇ m or less. This makes it possible to further improve the ink adhesion and heat resistance of the multilayer base material.
  • each of the layer (A) and the layer (C) is smaller than the total thickness of the multilayer intermediate layer (B).
  • the ratio of the respective thicknesses of the layers (A) and (C) to the total thickness of the multilayer intermediate layer (B) (layer (A) or layer (C) / multilayer intermediate layer (B)) is preferably 0. It is 0.05 or more and 0.8 or less, more preferably 0.1 or more and 0.7 or less, and further preferably 0.1 or more and 0.4 or less. Thereby, the rigidity, strength and heat resistance of the multilayer base material can be further improved.
  • polyethylene examples include high-density polyethylene, medium-density polyethylene, low-density polyethylene (high-pressure method low-density polyethylene), linear low-density polyethylene, and ultra-low-density polyethylene.
  • the multilayer intermediate layer (B) includes a layer containing high-density polyethylene. This makes it possible to improve the heat resistance and rigidity of the multilayer base material.
  • the multilayer intermediate layer (B) includes a layer containing medium-density polyethylene and linear low-density polyethylene. This makes it possible to improve the balance between the heat resistance and the stretchability of the multilayer base material.
  • the content ratio of polyethylene in each layer constituting the multilayer intermediate layer (B) is independently, preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more.
  • Each layer constituting the multilayer intermediate layer (B) may independently contain one or more additives.
  • the additive include a cross-linking agent, an antioxidant, an anti-blocking agent, a slip agent, an ultraviolet absorber, a light stabilizer, a filler, a reinforcing agent, an antistatic agent, a pigment and a resin for modification. Be done.
  • the total thickness of the multilayer intermediate layer (B) is preferably 1 ⁇ m or more and 50 ⁇ m or less, more preferably 5 ⁇ m or more and 40 ⁇ m or less, and further preferably 10 ⁇ m or more and 30 ⁇ m or less. Thereby, the heat resistance of the multilayer base material can be further improved.
  • the number of layers of the multilayer intermediate layer (B) is two or more, preferably three or more, and more preferably three or more and five or less, from the viewpoint of rigidity, strength, and ease of manufacture of the multilayer base material.
  • the multilayer intermediate layer of the first embodiment is A layer containing high density polyethylene and With a layer containing medium density polyethylene and high density polyethylene, A layer containing high-density polyethylene is provided in this order in the thickness direction.
  • the mass ratio of medium-density polyethylene to high-density polyethylene (medium-density polyethylene / high-density polyethylene) in the layer containing medium-density polyethylene and high-density polyethylene is preferably 0.25 or more and 4 or less, more preferably 0.4. It is 2.4 or less.
  • the multilayer base material provided with the multilayer intermediate layer of the first embodiment has, for example, a first layer (layer (A)) containing medium-density polyethylene, a second layer containing high-density polyethylene, and a medium density.
  • a third layer containing polyethylene and high-density polyethylene, a fourth layer containing high-density polyethylene, and a fifth layer (layer (C)) containing medium-density polyethylene are formed in the thickness direction. It is prepared in order and is stretched.
  • the multilayer intermediate layer of the second embodiment is With a layer containing medium density polyethylene, A layer containing medium density polyethylene and linear low density polyethylene, A layer containing medium-density polyethylene is provided in this order in the thickness direction.
  • the mass ratio of medium-density polyethylene to linear low-density polyethylene (medium-density polyethylene / linear low-density polyethylene) in the layer containing medium-density polyethylene and linear low-density polyethylene is preferably 0.25 or more. It is 4 or less, more preferably 0.4 or more and 2.4 or less.
  • the multilayer base material provided with the multilayer intermediate layer of the second embodiment is, for example, a first layer (layer (A)) containing medium-density polyethylene, a second layer containing medium-density polyethylene, and a medium density.
  • a third layer containing polyethylene and linear low-density polyethylene, a fourth layer containing medium-density polyethylene, and a fifth layer (layer (C)) containing medium-density polyethylene have a thickness. It is prepared in this order in the direction and is stretched.
  • the multilayer intermediate layer of the third embodiment is A layer containing medium density polyethylene and linear low density polyethylene, With a layer containing linear low density polyethylene, A layer containing medium-density polyethylene and linear low-density polyethylene is provided in this order in the thickness direction.
  • the mass ratio of medium-density polyethylene to linear low-density polyethylene (medium-density polyethylene / linear low-density polyethylene) in the layer containing medium-density polyethylene and linear low-density polyethylene is preferably 0.25 or more. It is 4 or less, more preferably 0.4 or more and 2.4 or less.
  • the multilayer base material provided with the multilayer intermediate layer of the third embodiment includes, for example, a first layer (layer (A)) containing medium-density polyethylene and high-density polyethylene, and medium-density polyethylene and linear low-density polyethylene.
  • a second layer containing, a third layer containing linear low density polyethylene, a fourth layer containing medium density polyethylene and linear low density polyethylene, medium density polyethylene and high density polyethylene.
  • a fifth layer (layer (C)) containing the above-mentioned material is provided in this order in the thickness direction, and is stretched.
  • the multilayer intermediate layer of the fourth embodiment is With a layer containing medium density polyethylene, Layers containing linear low density polyethylene and medium density polyethylene, A layer containing medium-density polyethylene is provided in this order in the thickness direction.
  • the mass ratio of the linear low-density polyethylene to the medium-density polyethylene (linear low-density polyethylene / medium-density polyethylene) in the layer containing the linear low-density polyethylene and the medium-density polyethylene is preferably 0.25 or more. It is 4 or less, more preferably 0.4 or more and 2.4 or less.
  • the multilayer base material provided with the multilayer intermediate layer of the fourth embodiment is, for example, a first layer (layer (A)) containing high-density polyethylene and medium-density polyethylene, and a second layer containing medium-density polyethylene. And a third layer containing linear low-density polyethylene and medium-density polyethylene, a fourth layer containing medium-density polyethylene, and a fifth layer (layer (layer) containing high-density polyethylene and medium-density polyethylene. C)) are provided in this order in the thickness direction and are stretched.
  • the ratio of the total thickness of the outer two layers to the thickness of the central layer is preferable. Is 0.1 or more and 10 or less, more preferably 0.2 or more and 5 or less, and further preferably 0.5 or more and 2 or less.
  • the rigidity, strength and heat resistance of the multilayer base material can be further improved.
  • the outer two layers in the multilayer intermediate layer refer to the layer containing high-density polyethylene
  • the central layer refers to the layer containing medium-density polyethylene and high-density polyethylene. ..
  • the polyethylene multilayer substrate of the fourth aspect of the present disclosure is directly composed of a first layer containing medium density polyethylene and high density polyethylene, and a second layer containing medium density polyethylene and linear low density polyethylene.
  • the surface layer on one side of the multilayer substrate of the fourth aspect is the first layer, and the surface layer on the other side of the multilayer substrate of the fourth aspect is the fifth layer.
  • the multilayer base material of the fourth aspect may be provided with another layer between the first to fifth layers, but in one embodiment, the multilayer base material of the fourth aspect is the first to fifth layers. Consists of only.
  • first layer and fifth layer> The first layer contains one or more types of medium density polyethylene and one or more types of high density polyethylene.
  • the fifth layer contains one or more types of medium density polyethylene and one or more types of high density polyethylene.
  • a surface treatment such as a corona discharge treatment is usually performed on the substrate as a pretreatment.
  • the layer containing medium-density polyethylene tends to have higher durability against surface treatment than the layer containing only high-density polyethylene as polyethylene. Therefore, the layer containing medium-density polyethylene is excellent in ink adhesion at the time of printing after surface treatment.
  • the layer containing medium-density polyethylene also has the heat resistance required for printing and heat sealing. Further, the layer containing medium-density polyethylene contributes to the improvement of the stretchability of the laminate which is the precursor of the multilayer base material.
  • the medium-density polyethylene contained in the first layer and the medium-density polyethylene contained in the fifth layer may be the same or different, and are the same from the viewpoint that a multilayer base material can be easily produced. Is preferable.
  • the high-density polyethylene contained in the first layer and the high-density polyethylene contained in the fifth layer may be the same or different, and are the same from the viewpoint that a multilayer base material can be easily produced. Is preferable.
  • the first layer and the fifth layer may independently contain medium-density polyethylene and high-density polyethylene, as well as polyethylene other than these polyethylenes.
  • polyethylene other than medium-density polyethylene and high-density polyethylene include low-density polyethylene (high-pressure method low-density polyethylene), linear low-density polyethylene, and ultra-low-density polyethylene.
  • the first layer preferably contains only medium-density polyethylene and high-density polyethylene as polyethylene from the viewpoint of further improving the ink adhesion and heat resistance of the multilayer base material.
  • the fifth layer preferably contains only medium-density polyethylene and high-density polyethylene as polyethylene from the viewpoint of further improving the ink adhesion and heat resistance of the multilayer base material.
  • the mass ratio of medium-density polyethylene to high-density polyethylene (medium-density polyethylene / high-density polyethylene) in the first layer and the fifth layer is independently, preferably 1.1 or more and 5 or less, more preferably 1. .5 or more and 3 or less. This makes it possible to further improve the balance between ink adhesion and heat resistance.
  • the total content of the medium-density polyethylene and the high-density polyethylene in the first layer is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more. This makes it possible to further improve the ink adhesion and heat resistance of the multilayer base material.
  • the total content of the medium-density polyethylene and the high-density polyethylene in the fifth layer is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more. This makes it possible to further improve the ink adhesion and heat resistance of the multilayer base material.
  • each of the first layer and the fifth layer is independently, preferably 0.5 ⁇ m or more and 10 ⁇ m or less, more preferably 1 ⁇ m or more and 8 ⁇ m or less, and further preferably 1 ⁇ m or more and 5 ⁇ m or less. This makes it possible to further improve the ink adhesion and heat resistance of the multilayer base material.
  • the thickness of each of the first layer and the fifth layer is referred to as a second layer, a third layer, and a fourth layer (hereinafter, the second to fourth layers are collectively referred to as a "multilayer intermediate layer”. ) Is preferably smaller than the total thickness.
  • the ratio of the thickness of each of the first layer and the fifth layer to the total thickness of the multilayer intermediate layer (first layer or fifth layer / multilayer intermediate layer) is preferably 0.05 or more and 0.8. Below, it is more preferably 0.1 or more and 0.7 or less, and further preferably 0.1 or more and 0.4 or less. Thereby, the rigidity, strength and heat resistance of the multilayer base material can be further improved.
  • second layer and fourth layer> contains one or more medium density polyethylenes and one or more linear low density polyethylenes.
  • the fourth layer contains one or more medium density polyethylenes and one or more linear low density polyethylenes.
  • Each of the second layer and the fourth layer contributes to the improvement of the stretchability of the laminate which is the precursor of the multilayer base material.
  • the medium-density polyethylene contained in the second layer and the medium-density polyethylene contained in the fourth layer may be the same or different, and are the same from the viewpoint that a multilayer base material can be easily produced. Is preferable.
  • the linear low-density polyethylene contained in the second layer and the linear low-density polyethylene contained in the fourth layer may be the same or different, and a multilayer base material can be easily produced. From the viewpoint, it is preferable that they are the same.
  • the medium-density polyethylene contained in the second layer and the fourth layer and the medium-density polyethylene contained in the first layer and the fifth layer may be the same or different.
  • the second layer and the fourth layer may independently contain medium-density polyethylene and linear low-density polyethylene, as well as polyethylene other than these polyethylenes.
  • polyethylene other than medium-density polyethylene and linear low-density polyethylene include high-density polyethylene, low-density polyethylene (high-pressure method low-density polyethylene), and ultra-low-density polyethylene.
  • the second layer preferably contains only medium-density polyethylene and linear low-density polyethylene as polyethylene from the viewpoint of further improving the stretchability of the laminate which is the precursor of the multilayer base material.
  • the fourth layer preferably contains only medium-density polyethylene and linear low-density polyethylene as polyethylene from the viewpoint of further improving the stretchability of the laminate which is the precursor of the multilayer base material.
  • the mass ratio of medium-density polyethylene to linear low-density polyethylene (medium-density polyethylene / linear low-density polyethylene) in the second layer and the fourth layer is independently, preferably 0.25 or more. Below, it is more preferably 0.4 or more and 2.4 or less. Thereby, the balance between heat resistance, rigidity and stretchability can be further improved.
  • the total content of the medium-density polyethylene and the linear low-density polyethylene in the second layer is preferably 80% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more. This makes it possible to further improve the stretchability of the laminate which is the precursor.
  • the total content of the medium-density polyethylene and the linear low-density polyethylene in the fourth layer is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more. This makes it possible to further improve the stretchability of the laminate which is the precursor.
  • each of the second layer and the fourth layer is independently, preferably 0.5 ⁇ m or more and 15 ⁇ m or less, more preferably 1 ⁇ m or more and 10 ⁇ m or less, and further preferably 1 ⁇ m or more and 8 ⁇ m or less. This makes it possible to further improve the stretchability of the laminate which is the precursor.
  • third layer> contains one or more linear low density polyethylenes.
  • the third layer contributes to the improvement of the stretchability of the laminate which is the precursor of the multilayer base material.
  • the linear low-density polyethylene contained in the third layer and the linear low-density polyethylene contained in the second layer and the fourth layer may be the same or different.
  • the third layer may further contain polyethylene other than the linear low-density polyethylene as well as the linear low-density polyethylene.
  • polyethylene other than linear low-density polyethylene include high-density polyethylene, medium-density polyethylene, low-density polyethylene (high-pressure method low-density polyethylene), and ultra-low-density polyethylene.
  • the third layer preferably contains only linear low-density polyethylene as polyethylene from the viewpoint of further improving the stretchability of the laminate which is the precursor of the multilayer base material.
  • the content ratio of the linear low-density polyethylene in the third layer is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more. Thereby, the balance between heat resistance, rigidity and stretchability can be further improved.
  • the thickness of the third layer is preferably 1 ⁇ m or more and 50 ⁇ m or less, more preferably 2 ⁇ m or more and 40 ⁇ m or less, and further preferably 5 ⁇ m or more and 30 ⁇ m or less. Thereby, the balance between heat resistance, rigidity and stretchability can be further improved.
  • the ratio of the total thickness of the second and fourth layers to the thickness of the third layer is preferably. It is 0.1 or more and 10 or less, more preferably 0.2 or more and 5 or less, and further preferably 0.5 or more and 2 or less. Thereby, the rigidity, strength and heat resistance of the multilayer base material can be further improved.
  • the first to fifth layers constituting the multilayer substrate of the fourth aspect of the present disclosure may independently contain one or more additives.
  • the additive include a cross-linking agent, an antioxidant, an anti-blocking agent, a slip agent, an ultraviolet absorber, a light stabilizer, a filler, a reinforcing agent, an antistatic agent, a pigment and a resin for modification. Be done.
  • the density of polyethylene in the second layer is lower than the density of polyethylene in the first layer, and the density of polyethylene in the second layer is higher than the density of polyethylene in the second layer.
  • the density of polyethylene in the third layer is lower, the density of polyethylene in the fourth layer is higher than the density of polyethylene in the third layer, and the density of polyethylene in the fourth layer is higher than the density of polyethylene in the fifth layer.
  • the density of polyethylene in the layer is higher.
  • the multilayer base material having such a structure is excellent in the balance between ink adhesion, heat resistance and manufacturability (stretchability of the laminate which is a precursor).
  • any adjacent layer selected from the first to fifth layers in the multilayer substrate of the fourth aspect is described as a layer (1) and a layer (2)
  • the polyethylene constituting the layer (1) is described.
  • the absolute value of the difference between the density of the above and the density of the polyethylene constituting the layer (2) is preferably 0.030 g / cm 3 or less, more preferably 0.025 g / cm 3 or less, still more preferably 0. It is 020 g / cm 3 or less.
  • this requirement is also referred to as a "density difference requirement".
  • any set for example, a set of a first layer and a second layer, which is adjacent to each other in the thickness direction selected from the first to fifth layers, which is included in the multilayer substrate of the fourth aspect, the first layer. It is preferable that the pair of the second layer and the third layer, the pair of the third layer and the fourth layer, and the pair of the fourth layer and the fifth layer) also satisfy the above-mentioned density difference requirement.
  • the density difference when the density difference is described, it means the absolute value of the difference.
  • the density difference between the first to fifth layers is small as described above. Therefore, a multilayer substrate that meets the above density difference requirements exhibits high interlayer strength.
  • the polyethylene multilayer substrate of the fifth aspect of the present disclosure is A first layer containing medium density polyethylene and high density polyethylene, A second layer containing high density polyethylene and A third layer containing linear low density polyethylene, A fourth layer containing high density polyethylene, A fifth layer containing medium-density polyethylene and high-density polyethylene is provided in this order in the thickness direction and is stretched.
  • the surface layer on one side of the multilayer substrate of the fifth aspect is the first layer, and the surface layer on the other side of the multilayer substrate of the fifth aspect is the fifth layer.
  • the multilayer base material of the fifth aspect may be provided with another layer between the first to fifth layers, but in one embodiment, the multilayer base material of the fifth aspect is the first to fifth layers. Consists of only.
  • first layer and fifth layer> contains one or more types of medium density polyethylene and one or more types of high density polyethylene.
  • the fifth layer contains one or more types of medium density polyethylene and one or more types of high density polyethylene.
  • a surface treatment such as a corona discharge treatment is usually performed on the base material as a pretreatment.
  • the layer containing medium-density polyethylene tends to have higher durability against surface treatment than the layer containing only high-density polyethylene as polyethylene. Therefore, the layer containing medium-density polyethylene is excellent in ink adhesion at the time of printing after surface treatment.
  • the layer containing medium-density polyethylene and high-density polyethylene also has heat resistance required for printing and heat sealing. Further, the layer containing medium-density polyethylene contributes to the improvement of the stretchability of the laminate which is the precursor of the multilayer base material.
  • the medium-density polyethylene contained in the first layer and the medium-density polyethylene contained in the fifth layer may be the same or different, and are the same from the viewpoint that a multilayer base material can be easily produced. Is preferable.
  • the high-density polyethylene contained in the first layer and the high-density polyethylene contained in the fifth layer may be the same or different, and are the same from the viewpoint that a multilayer base material can be easily produced. Is preferable.
  • the first layer and the fifth layer may independently contain medium-density polyethylene and high-density polyethylene, as well as polyethylene other than these polyethylenes.
  • polyethylene other than medium-density polyethylene and high-density polyethylene include low-density polyethylene (high-pressure method low-density polyethylene), linear low-density polyethylene, and ultra-low-density polyethylene.
  • the first layer may contain only medium-density polyethylene and high-density polyethylene as polyethylene from the viewpoint of further improving the ink adhesion and heat resistance of the multilayer base material.
  • the fifth layer may contain only medium-density polyethylene and high-density polyethylene as polyethylene from the viewpoint of further improving the ink adhesion and heat resistance of the multilayer base material.
  • the mass ratio of medium-density polyethylene to high-density polyethylene (medium-density polyethylene / high-density polyethylene) in the first layer and the fifth layer is independently, preferably 1.1 or more and 5 or less, more preferably 1. .5 or more and 3 or less. This makes it possible to further improve the balance between ink adhesion and heat resistance.
  • the total content of the medium-density polyethylene and the high-density polyethylene in the first layer is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more. This makes it possible to further improve the ink adhesion and heat resistance of the multilayer base material.
  • the total content of the medium-density polyethylene and the high-density polyethylene in the fifth layer is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more. This makes it possible to further improve the ink adhesion and heat resistance of the multilayer base material.
  • each of the first layer and the fifth layer is independently, preferably 0.5 ⁇ m or more and 10 ⁇ m or less, more preferably 1 ⁇ m or more and 8 ⁇ m or less, and further preferably 1 ⁇ m or more and 5 ⁇ m or less. This makes it possible to further improve the ink adhesion and heat resistance of the multilayer base material.
  • the thickness of each of the first layer and the fifth layer is referred to as a second layer, a third layer, and a fourth layer (hereinafter, the second to fourth layers are collectively referred to as a "multilayer intermediate layer”. ) Is preferably smaller than the total thickness.
  • the ratio of the thickness of each of the first layer and the fifth layer to the total thickness of the multilayer intermediate layer (first layer or fifth layer / multilayer intermediate layer) is preferably 0.05 or more and 0.8. Below, it is more preferably 0.1 or more and 0.7 or less, and further preferably 0.1 or more and 0.4 or less. Thereby, the rigidity, strength and heat resistance of the multilayer base material can be further improved.
  • second layer and fourth layer> contains one or more high density polyethylenes.
  • the fourth layer contains one or more high density polyethylenes.
  • the second layer and the fourth layer each contribute to improving the heat resistance of the multilayer base material. That is, by incorporating high-density polyethylene in the second layer and the fourth layer in addition to the first layer and the fifth layer, the heat resistance of the multilayer base material can be further improved.
  • the high-density polyethylene contained in the second layer and the high-density polyethylene contained in the fourth layer may be the same or different, and are the same from the viewpoint that a multilayer base material can be easily produced. Is preferable.
  • the second layer may further contain one or more low density polyethylenes.
  • the fourth layer may further contain one or more low density polyethylenes. This makes it possible to further improve the balance between heat resistance, rigidity and workability of the multilayer base material.
  • the low-density polyethylene contained in the second layer and the low-density polyethylene contained in the fourth layer may be the same or different, and are the same from the viewpoint that a multilayer base material can be easily produced. Is preferable.
  • the second layer and the fourth layer may independently contain high-density polyethylene and low-density polyethylene, as well as polyethylene other than these polyethylenes.
  • polyethylene other than high-density polyethylene and low-density polyethylene include medium-density polyethylene, linear low-density polyethylene, and ultra-low-density polyethylene.
  • the second layer may contain only high-density polyethylene and low-density polyethylene as polyethylene from the viewpoint of further improving the heat resistance of the multilayer base material.
  • the fourth layer may contain only high-density polyethylene and low-density polyethylene as polyethylene from the viewpoint of further improving the heat resistance of the multilayer base material.
  • the mass ratio of high-density polyethylene to low-density polyethylene (high-density polyethylene / low-density polyethylene) in the second layer and the fourth layer is independently, preferably 1 or more and 4 or less, more preferably 1.5. More than 3 or less. This makes it possible to further improve the balance between heat resistance, rigidity and workability of the multilayer base material.
  • the content ratio of the high-density polyethylene in the second layer is preferably more than 50% by mass, more preferably 55% by mass or more, and further preferably 60% by mass or more. Thereby, the heat resistance of the multilayer base material can be further improved.
  • the content ratio of the high-density polyethylene in the fourth layer is preferably more than 50% by mass, more preferably 55% by mass or more, and further preferably 60% by mass or more. Thereby, the heat resistance of the multilayer base material can be further improved.
  • the total content of the high-density polyethylene and the low-density polyethylene in the second layer is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more. This makes it possible to further improve the balance between heat resistance, rigidity and workability of the multilayer base material.
  • the total content of the high-density polyethylene and the low-density polyethylene in the fourth layer is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more. This makes it possible to further improve the balance between heat resistance, rigidity and workability of the multilayer base material.
  • each of the second layer and the fourth layer is independently, preferably 0.5 ⁇ m or more and 15 ⁇ m or less, more preferably 1 ⁇ m or more and 10 ⁇ m or less, and further preferably 1 ⁇ m or more and 8 ⁇ m or less. Thereby, the heat resistance of the multilayer base material can be further improved.
  • third layer contains one or more linear low density polyethylenes.
  • the third layer contributes to the improvement of the stretchability of the laminate which is the precursor of the multilayer base material.
  • the third layer may further contain polyethylene other than the linear low-density polyethylene as well as the linear low-density polyethylene.
  • polyethylene other than linear low-density polyethylene include high-density polyethylene, medium-density polyethylene, low-density polyethylene (high-pressure method low-density polyethylene), and ultra-low-density polyethylene.
  • the third layer may further contain one or more low density polyethylenes.
  • the content of the linear low-density polyethylene in the third layer is preferably more than 50% by mass, more preferably 60% by mass or more, still more preferably 70% by mass or more, still more preferably 80% by mass or more, 90% by mass. % Or more, or 95% by mass or more. Thereby, the balance between heat resistance, rigidity and stretchability can be further improved.
  • the content ratio of the low-density polyethylene is preferably less than 50% by mass, more preferably 5% by mass or more and 40% by mass or less, and further preferably 10% by mass or more and 30% by mass. It is as follows.
  • the thickness of the third layer is preferably 1 ⁇ m or more and 50 ⁇ m or less, more preferably 2 ⁇ m or more and 40 ⁇ m or less, and further preferably 5 ⁇ m or more and 30 ⁇ m or less. Thereby, the balance between heat resistance, rigidity and stretchability can be further improved.
  • the ratio of the total thickness of the second and fourth layers to the thickness of the third layer is preferably. It is 0.1 or more and 10 or less, more preferably 0.2 or more and 5 or less, and further preferably 0.5 or more and 2 or less. Thereby, the rigidity, strength and heat resistance of the multilayer base material can be further improved.
  • the first to fifth layers constituting the multilayer substrate of the fifth aspect of the present disclosure may independently contain one or more additives.
  • the additive include a cross-linking agent, an antioxidant, an anti-blocking agent, a slip agent, an ultraviolet absorber, a light stabilizer, a filler, a reinforcing agent, an antistatic agent, a pigment and a resin for modification. Be done.
  • At least one layer selected from the first layer, the second layer, the third layer, the fourth layer and the fifth layer in the multilayer substrate of the fifth aspect of the present disclosure contains a slip agent. You may. Thereby, for example, the processability of the multilayer base material can be improved.
  • the third layer may contain a slip agent, and all of the first to fifth layers may contain a slip agent.
  • slip agent examples include amide-based lubricants, fatty acid esters such as glycerin fatty acid esters, hydrocarbon-based waxes, higher fatty acid-based waxes, metal soaps, hydrophilic silicones, silicone-modified (meth) acrylic resins, silicone-modified epoxy resins, and silicones.
  • fatty acid esters such as glycerin fatty acid esters
  • hydrocarbon-based waxes such as glycerin fatty acid esters
  • higher fatty acid-based waxes such as glycerin fatty acid esters
  • metal soaps such as glycerin fatty acid esters
  • hydrophilic silicones silicone-modified (meth) acrylic resins
  • silicone-modified epoxy resins examples include silicone-modified epoxy resins, and silicones.
  • silicones examples include modified polyethers, silicone-modified polyesters, block-type silicone (meth) acrylic copolymers, polyglycerol-modified silicones and paraffins.
  • amide-based lubricants are preferable.
  • the amide-based lubricant include saturated fatty acid amides, unsaturated fatty acid amides, substituted amides, methylol amides, saturated fatty acid bisamides, unsaturated fatty acid bisamides, fatty acid ester amides and aromatic bisamides. Specific examples of these are as described in the column of [Polyethylene multilayer base material of the first aspect and the second aspect].
  • slip agents erucic acid amide is preferable.
  • One type or two or more types of slip agents can be used.
  • a master batch containing the slip agent and polyethylene may be used.
  • the content ratio of the slip agent in the masterbatch is preferably 1% by mass or more and 30% by mass or less, more preferably 2% by mass or more and 20% by mass or less, and further preferably 3% by mass or more and 10% by mass or less.
  • polyethylene include the above-mentioned specific examples.
  • the preferable physical properties (density, MFR, etc.) filled with polyethylene are also as described above.
  • the content ratio of the slip agent in the layer containing the slip agent may be, for example, 0.01% by mass or more and 3% by mass or less, and 0.03% by mass or more and 1% by mass. It may be as follows. Thereby, the processability of the multilayer base material can be further improved.
  • the density of polyethylene in the first layer and the density of polyethylene in the second layer are similar, and the density of polyethylene in the second layer.
  • the density of polyethylene in the third layer is lower than that of the third layer
  • the density of polyethylene in the fourth layer is higher than the density of polyethylene in the third layer
  • the density of polyethylene in the fourth layer and the fifth is similar.
  • the multilayer base material having such a structure is excellent in the balance between ink adhesion, heat resistance and manufacturability (stretchability of the laminate which is a precursor).
  • the absolute value of the difference between the density of polyethylene in the first layer and the density of polyethylene in the second layer may be, for example, 0.020 g / cm 3 or less, or 0.010 g / cm 3 or less.
  • the absolute value of the difference between the density of polyethylene in the fourth layer and the density of polyethylene in the fifth layer may be, for example, 0.020 g / cm 3 or less, or 0.010 g / cm 3 or less.
  • the polyethylene multilayer base material of the present disclosure can be produced, for example, by forming a film of a plurality of polyethylene materials by an inflation method or a T-die method to form a laminate, and stretching the obtained laminate.
  • the stretching treatment By the stretching treatment, the transparency, rigidity, strength and heat resistance of the multilayer base material can be improved, and the multilayer base material can be suitably used as a base material for, for example, a packaging material.
  • the multilayer base material is, for example, a laminate in which a layer containing medium-density polyethylene, two or more multilayer intermediate layers each containing polyethylene, and a layer containing medium-density polyethylene are provided in this order in the thickness direction. (Precursor) is obtained by stretching treatment.
  • a layer containing medium-density polyethylene, two or more multilayer intermediate layers each containing polyethylene, and a layer containing medium-density polyethylene are co-extruded into a tubular shape to form a film.
  • the laminate can be manufactured.
  • a laminate is manufactured by co-extruding a layer containing medium-density polyethylene and a layer containing polyethylene in a tube shape from the outside, and then pressure-bonding the layers containing opposite polyethylene with a rubber roll or the like. can.
  • the multilayer substrate includes, for example, a layer containing medium-density polyethylene and high-density polyethylene, a layer containing medium-density polyethylene and linear low-density polyethylene, or a layer containing high-density polyethylene, and linear low-density.
  • a layer containing polyethylene, a layer containing medium-density polyethylene and linear low-density polyethylene, or a layer containing high-density polyethylene, and a layer containing medium-density polyethylene and high-density polyethylene are formed in the thickness direction.
  • the laminate (precursor) prepared in this order is obtained by stretching treatment.
  • a layer containing density polyethylene, a layer containing medium density polyethylene and linear low density polyethylene, or a layer containing high density polyethylene, and a layer containing medium density polyethylene and high density polyethylene are formed into a tube shape. It can be co-extruded to form a film to produce a laminate.
  • a layer containing medium-density polyethylene and high-density polyethylene from the outside, a layer containing medium-density polyethylene and linear low-density polyethylene, or a layer containing high-density polyethylene, and a linear low-density polyethylene.
  • a laminate can be produced by co-extruding the containing layer into a tube shape and then pressure-bonding the opposing layers containing the linear low-density polyethylene with a rubber roll or the like. By manufacturing the laminate by such a method, the number of defective products can be remarkably reduced and the production efficiency can be improved.
  • polyethylene multilayer base materials can also be manufactured by, for example, the above-mentioned method.
  • FIG. 2 shows an embodiment of the multilayer substrate of the present disclosure.
  • the multilayer base material 10 of FIG. 2 includes a layer 12, a layer 18, a layer 20, a layer 22, and a layer 14 in this order in the thickness direction.
  • the layer 12 is the first PE layer
  • the layer 18 is the second PE layer
  • the layer 20 is the second PE layer
  • the layer 22 is the second PE layer
  • the layer 14 is the third PE layer.
  • the second PE layer and the second PE layer may be omitted.
  • the layer 12 is the first layer (layer (A)) containing the medium density polyethylene.
  • the layer 18 is a second layer containing high-density polyethylene, the layer 20 is a third layer containing medium-density polyethylene and high-density polyethylene, and the layer 22 contains high-density polyethylene.
  • the fourth layer is a fifth layer (layer (C)) containing medium-density polyethylene.
  • the layer 12 is the first layer containing the medium density polyethylene and the high density polyethylene
  • the layer 18 is the medium density polyethylene and the linear low density polyethylene.
  • a second layer containing, layer 20 is a third layer containing linear low density polyethylene
  • layer 22 is a fourth layer containing medium density polyethylene and linear low density polyethylene. It is a layer
  • layer 14 is a fifth layer containing medium-density polyethylene and high-density polyethylene.
  • the layer 12 is the first layer containing the medium density polyethylene and the high density polyethylene
  • the layer 18 is the second layer containing the high density polyethylene
  • Layer 20 is a third layer containing linear low density polyethylene
  • layer 22 is a fourth layer containing high density polyethylene
  • layer 14 is medium density polyethylene and high density.
  • the melt flow rate (MFR) of the polyethylene constituting each layer is preferably 3 g / 10 minutes or more and 20 g / 10 from the viewpoint of film forming property and processability of the multilayer base material. Less than a minute.
  • the MFR of the polyethylene constituting each layer is preferably 0.2 g / 10 minutes or more and 5 g / 10 minutes or less from the viewpoint of film forming property and processing suitability of the multilayer base material. It is preferably 0.5 g / 10 minutes or more and 5 g / 10 minutes or less.
  • the multilayer base material of the present disclosure is obtained, for example, by stretching the above-mentioned laminate. In the inflation film forming machine, stretching of the laminate can also be performed. As a result, the multilayer base material can be manufactured, so that the production efficiency can be further improved.
  • the multilayer base material of the present disclosure may be a uniaxially stretched film or a biaxially stretched film.
  • the multilayer base material is, in one embodiment, a uniaxially stretched film, and more specifically, a uniaxially stretched film that has been stretched in the longitudinal direction (MD).
  • the elongation ratio in the longitudinal direction (MD) of the multilayer substrate of the present disclosure is preferably 2 times or more and 10 times or less, and more preferably 3 times or more and 7 times or less in one embodiment.
  • the stretch ratio in the lateral direction (TD) of the multilayer substrate of the present disclosure is preferably 2 times or more and 10 times or less, and more preferably 3 times or more and 7 times or less in one embodiment.
  • the draw ratio is 2 times or more, for example, the rigidity, strength and heat resistance of the multilayer substrate can be improved, the ink adhesion to the multilayer substrate can be improved, and the transparency of the multilayer substrate can be improved.
  • the draw ratio is 10 times or less, the laminate can be satisfactorily stretched.
  • the haze value of the multilayer substrate of the present disclosure is preferably 25% or less, more preferably 15% or less, still more preferably 10% or less.
  • the haze value of the multilayer base material is measured according to JIS K7136.
  • the content ratio of polyethylene in the multilayer substrate of the present disclosure is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more. This makes it possible to improve the recyclability of the multilayer base material.
  • the laminate or the multilayer base material is surface-treated. This makes it possible to improve the adhesion between the surface layer of the multilayer base material and the layer laminated on the multilayer base material.
  • Surface treatment methods include, for example, corona discharge treatment, ozone treatment, low temperature plasma treatment using gases such as oxygen gas and nitrogen gas, physical treatment such as glow discharge treatment; and oxidation treatment using chemicals. Chemical treatment can be mentioned.
  • An anchor coat layer may be formed on the surface of the laminate or the multilayer base material by using a conventionally known anchor coat agent.
  • the total thickness of the multilayer substrate of the present disclosure is preferably 10 ⁇ m or more and 60 ⁇ m or less, and more preferably 15 ⁇ m or more and 50 ⁇ m or less.
  • the thickness of the multilayer substrate is 10 ⁇ m or more, the rigidity and strength of the multilayer substrate can be improved.
  • the thickness of the multilayer substrate is 60 ⁇ m or less, the processability of the multilayer substrate can be improved.
  • the thickness of the multilayer base material is small, for example, from the viewpoint of cost reduction.
  • the printed substrate of the present disclosure includes the polyethylene multilayer substrate of the present disclosure and a printing layer formed on the multilayer substrate.
  • the printed layer is formed, for example, on the first PE layer or the third PE layer in the multilayer substrate of the first aspect and the second aspect.
  • the printed layer is formed, for example, in the layer (A) or the layer (C) in the multilayer substrate of the third aspect.
  • the printed layer is formed, for example, in the first layer or the fifth layer in the multilayer substrate of the fourth aspect and the fifth aspect. Since the multilayer base material has excellent ink adhesion, a good image can be formed.
  • the multilayer substrate of the present disclosure is suitable for printing because it has excellent heat resistance such as heat shrinkage in one embodiment.
  • the print layer contains, for example, an image.
  • Examples of the image include characters, figures, symbols, and combinations thereof.
  • Examples of the method for forming the print layer include a gravure printing method, an offset printing method, and a flexographic printing method.
  • the flexographic printing method is preferable from the viewpoint of reducing the environmental load.
  • a printing layer may be formed on the surface of the multilayer base material using an ink derived from biomass.
  • the printed layer contains a colorant in one embodiment.
  • the colorant include pigments such as inorganic pigments and organic pigments; dyes such as acid dyes, direct dyes, disperse dyes, oil-soluble dyes, metal-containing oil-soluble dyes and sublimation dyes.
  • the colorant include an ultraviolet light emitting material that emits fluorescence by absorbing ultraviolet rays, and a fluorescent light emitting material such as an infrared light emitting material that emits fluorescence by absorbing infrared rays.
  • the printed layer may contain a resin material in one embodiment.
  • the resin material include cellulose resin, (meth) acrylic resin, urethane resin, alkyd resin, polyester, polycarbonate, polyolefin, polystyrene, norbornene-based resin, polyvinyl chloride, polyvinyl acetate and vinyl chloride-vinyl acetate copolymer. Can be mentioned.
  • the laminate of the first to fourth aspects of the present disclosure includes a polyethylene multilayer base material and a heat seal layer containing polyethylene as a main component.
  • the laminate of the fifth aspect of the present disclosure includes a base material and a heat seal layer.
  • the laminate of another aspect of the present disclosure comprises the polyethylene multilayer substrate of the present disclosure and a heat seal layer.
  • the laminate 30 of the present disclosure includes a polyethylene multilayer base material 10 and a heat seal layer 32.
  • the polyethylene multilayer base material 10 may be the polyethylene multilayer base material of the present disclosure described above, or may be another polyethylene multilayer base material.
  • the intermediate layer including the polyethylene layer becomes the multilayer intermediate layer 16.
  • the intermediate layer including the second layer, the third layer and the fourth layer becomes the multilayer intermediate layer 16.
  • the laminate 30 further includes a print layer (not shown) on the multilayer substrate 10.
  • the printed layer is usually on the surface layer provided with the heat seal layer in the multilayer substrate, for example, on the first polyethylene layer in the multilayer substrate of the first and second embodiments described above, and the multilayer substrate of the third aspect. It is formed on the layer (A) in the above, or on the first layer in the multilayer substrate of the fourth and fifth aspects.
  • the details of the print layer are as described in the [Printing substrate] column, and the description in this column is omitted.
  • the laminate 30 includes a barrier layer 34 and an adhesive layer 36 between the multilayer base material 10 and the heat seal layer 32.
  • the barrier layer 34 is formed on the surface of the multilayer base material 10.
  • the laminate 30 includes an adhesive layer 36 and a barrier layer 34 between the multilayer base material 10 and the heat seal layer 32.
  • the barrier layer 34 is formed on the surface of the heat seal layer 32.
  • the laminate 30 includes an adhesive layer 36 between the multilayer base material 10 and the heat seal layer 32.
  • the content ratio of polyethylene is preferably 90% by mass or more. This makes it possible to improve the recyclability of the laminated body.
  • the polyethylene content ratio in the laminate means the ratio of the polyethylene content to the sum of the content of the resin material in each layer constituting the laminate.
  • the laminate of the first to fourth aspects of the present disclosure is Polyethylene multilayer base material and A laminate provided with a heat-sealed layer containing polyethylene as a main component.
  • Polyethylene multilayer base material, The first PE layer and The second PE layer and A third PE layer is provided in this order in the thickness direction, and is stretched.
  • the laminate of the first aspect of the present disclosure satisfies the following requirement (C).
  • the laminate of the second aspect of the present disclosure satisfies the following requirement (D).
  • the laminate of the first aspect may further satisfy the following requirement (D).
  • the indentation elastic modulus of the first PE layer is 3.5 times or more the indentation elastic modulus of the second PE layer, and the indentation elastic modulus of the third PE layer is the second PE layer. It is 3.5 times or more of the indentation elastic modulus of.
  • the indentation hardness of the first PE layer is 2.0 times or more the indentation hardness of the second PE layer, and the indentation hardness of the third PE layer is the indentation hardness of the second PE layer. It is more than 2.0 times.
  • the laminate of the third aspect of the present disclosure satisfies the following requirement (E).
  • the laminate of the fourth aspect of the present disclosure satisfies the following requirement (F).
  • the laminate of the third aspect may further satisfy the following requirement (F).
  • the polyethylene multilayer substrate further includes a second PE layer between the first PE layer and the second PE layer, and a second PE layer between the second PE layer and the third PE layer.
  • the multilayer base material has a first PE layer, a second PE layer, a second PE layer, a second PE layer, and a third PE layer in this order in the thickness direction. Be prepared.
  • the second PE layer, the second PE layer, and the second PE layer form an intermediate layer (multilayer intermediate layer) in the multilayer substrate.
  • the polyethylene multilayer base material constituting the laminate of the first to fourth aspects of the present disclosure has, in one embodiment, the first aspect and the second aspect of the present disclosure described above except for the indentation elastic modulus and the indentation hardness. Since it is the same as the polyethylene multilayer base material of the above, and the laminated structure and the composition and thickness of each layer are as described above, detailed description in this column will be omitted.
  • the indentation elastic modulus and indentation hardness in the polyethylene multilayer base material constituting the laminate of the first to fourth aspects of the present disclosure will be described below.
  • the indentation elastic modulus of the first PE layer is 3.5 times or more the indentation elastic modulus of the second PE layer, and the indentation elastic modulus of the third PE layer. However, it is characterized in that it is 3.5 times or more the indentation elastic modulus of the second PE layer.
  • the heat resistance of the laminated body can be improved, and for example, heat shrinkage of the laminated body at the time of heat application such as heat sealing can be suppressed.
  • the ratio (elastic modulus 1 / elastic modulus 2) and the ratio (elastic modulus 3 / elastic modulus 2) in the laminated body of the first aspect are independently 3.5 or more, preferably 4.0 or more, and more. It is preferably 4.5 or more, more preferably 5.0 or more, still more preferably 5.5 or more; preferably 16.0 or less, more preferably 14.0 or less, still more preferably 12.0 or less, and more. It is more preferably 10.0 or less, and particularly preferably 9.0 or less.
  • the range of the ratio (modulus of elasticity 1 / elastic modulus 2) and the range of the ratio (modulus of elasticity 3 / elastic modulus 2) may be any combination of the above lower limit value and upper limit value, for example, 3.5. It may be 16.0 or less.
  • the indentation elastic modulus of the second PE layer is preferably 2.0 times or more the indentation elastic modulus of the second PE layer, and is more than 2.0 times the indentation elastic modulus of the second PE layer.
  • the indentation elastic modulus is preferably 2.0 times or more the indentation elastic modulus of the second PE layer.
  • the ratio (elastic modulus 2a / elastic modulus 2) and the ratio (elastic modulus 2b / elastic modulus 2) in the laminated body of the first aspect are independently, preferably 2.0 or more, more preferably 2.5 or more, respectively. It is more preferably 3.0 or more; preferably 14.0 or less, more preferably 12.0 or less, still more preferably 10.0 or less, still more preferably 9.0 or less, and particularly preferably 8.5 or less. be.
  • the range of the ratio (elastic modulus 2a / elastic modulus 2) and the range of the ratio (elastic modulus 2b / elastic modulus 2) may be independently any combination of the above lower limit value and upper limit value, for example, 2.0. It may be 14.0 or less.
  • the indentation elastic modulus 1 and the indentation elastic modulus 3 in the laminated body of the first aspect are independently, preferably 1.0 GPa or more, more preferably 1.05 GPa or more, still more preferably 1.1 GPa or more, still more preferably 1.1 GPa or more. 1.15 GPa or more, particularly preferably 1.3 GPa or more; preferably 4.5 GPa or less, more preferably 4.0 GPa or less, still more preferably 3.5 GPa or less, still more preferably 3.0 GPa or less, particularly preferably. It is 2.5 GPa or less, 2.0 GPa or less, or 1.8 GPa or less.
  • the ranges of the indentation elastic modulus 1 and the indentation elastic modulus 3 may be independently arbitrary combinations of the above lower limit value and upper limit value, and may be, for example, 1.0 GPa or more and 4.5 GPa or less.
  • the indentation elastic modulus 2 in the laminate of the first aspect is preferably 0.03 GPa or more, more preferably 0.05 GPa or more, still more preferably 0.1 GPa or more, still more preferably 0.13 GPa or more, and particularly preferably 0. It is .15 GPa or more; preferably 0.7 GPa or less, more preferably 0.6 GPa or less, still more preferably 0.5 GPa or less, still more preferably 0.4 GPa or less, and particularly preferably 0.3 GPa or less. With such a design, for example, the stretchability of the pre-stretched laminate tends to be more excellent.
  • the range of the indentation elastic modulus 2 may be any combination of the above lower limit value and upper limit value, and may be, for example, 0.03 GPa or more and 0.7 GPa or less.
  • the indentation elastic modulus 2a and the indentation elastic modulus 2b in the laminated body of the first aspect are independently, preferably 0.3 GPa or more, more preferably 0.4 GPa or more, still more preferably 0.5 GPa or more, still more preferably 0.5 GPa or more. It is 0.6 GPa or more; preferably 3.5 GPa or less, more preferably 3.0 GPa or less, still more preferably 2.5 GPa or less, still more preferably 2.0 GPa or less, and particularly preferably 1.5 GPa or less. Thereby, for example, there is a tendency that the heat shrinkage of the laminated body at the time of heat sealing can be further suppressed.
  • the ranges of the indentation elastic modulus 2a and the indentation elastic modulus 2b may be independently arbitrary combinations of the above lower limit value and upper limit value, and may be, for example, 0.3 GPa or more and 3.5 GPa or less.
  • the magnitude of the indentation elastic modulus of each PE layer preferably satisfies the relationship of indentation elastic modulus 1> indentation elastic modulus 2a> indentation elastic modulus 2, and indentation elastic modulus 3> indentation elastic modulus. It is preferable to satisfy the relationship of rate 2b> indentation elastic modulus 2. This tends to further improve the balance between the heat resistance of the multilayer base material and the stretchability (processability, productivity), for example.
  • the ratio (elastic modulus 1 / elastic modulus 3) is preferably 0.6 or more and 1.7 or less, more preferably 0.7 or more and 1.4 or less, and further preferably 0.8. It is 1.2 or more, more preferably 0.9 or more and 1.1 or less.
  • the ratio (elastic modulus 2a / elastic modulus 2b) is preferably 0.6 or more and 1.7 or less, more preferably 0.7 or more and 1.4 or less, still more preferably 0.8. It is 1.2 or more, more preferably 0.9 or more and 1.1 or less.
  • the indentation hardness of the first PE layer is 2.0 times or more the indentation hardness of the second PE layer
  • the indentation hardness of the third PE layer is the second. It is characterized in that it is 2.0 times or more the indentation hardness of the PE layer of 2.
  • the ratio (hardness 1 / hardness 2) and the ratio (hardness 3 / hardness 2) in the laminate of the second aspect are independently 2.0 or more, preferably 2.2 or more, and more preferably 2. 4 or more, more preferably 2.6 or more, even more preferably 2.8 or more; preferably 6.0 or less, more preferably 5.5 or less, still more preferably 5.0 or less, still more preferably 4 It is 5.5 or less, particularly preferably 4.0 or less or 3.5 or less.
  • the range of the ratio (hardness 1 / hardness 2) and the range of the ratio (hardness 3 / hardness 2) may be independently any combination of the above lower limit value and upper limit value, for example, 2.0 or more and 6.0. It may be as follows.
  • the laminate of the first aspect may further satisfy the above requirements relating to the ratio (hardness 1 / hardness 2) and the ratio (hardness 3 / hardness 2).
  • the indentation hardness of the second PE layer is preferably 1.5 times or more the indentation hardness of the second PE layer, and the indentation hardness of the second PE layer. Is preferably 1.5 times or more the indentation hardness of the second PE layer.
  • the ratio (hardness 2a / hardness 2) and the ratio (hardness 2b / hardness 2) in the laminate of the second aspect are independently, preferably 1.5 or more, more preferably 1.7 or more, still more preferably 1. 9.9 or more; preferably 6.0 or less, more preferably 5.5 or less, still more preferably 5.0 or less, even more preferably 4.5 or less, particularly preferably 4.0 or less or 3.5 or less. Is. Thereby, for example, there is a tendency that the heat shrinkage of the laminated body at the time of heat sealing can be further suppressed.
  • the range of the ratio (hardness 2a / hardness 2) and the range of the ratio (hardness 2b / hardness 2) may be independently any combination of the above lower limit value and upper limit value, for example, 1.5 or more and 6.0. It may be as follows.
  • the laminate of the first aspect may further satisfy the above requirements relating to the ratio (hardness 2a / hardness 2) and the ratio (hardness 2b / hardness 2).
  • the indentation hardness 1 and the indentation hardness 3 in the laminate of the second aspect are independently, preferably 45 MPa or more, more preferably 48 MPa or more, still more preferably 50 MPa or more, still more preferably 52 MPa or more; preferably 110 MPa or more.
  • it is more preferably 90 MPa or less, further preferably 80 MPa or less, still more preferably 75 MPa or less, and particularly preferably 70 MPa or less.
  • the range of the indentation hardness 1 and the indentation hardness 3 may be any combination of the above lower limit value and the upper limit value independently, and may be, for example, 45 MPa or more and 110 MPa or less.
  • the laminate of the first aspect may further satisfy the above requirements relating to the indentation hardness 1 and the indentation hardness 3.
  • the indentation hardness 2 in the laminate of the second aspect is preferably 1 MPa or more, more preferably 3 MPa or more, still more preferably 7 MPa or more, still more preferably 10 MPa or more, particularly preferably 15 MPa or more; preferably 40 MPa or less, It is more preferably 35 MPa or less, further preferably 30 MPa or less, still more preferably 26 MPa or less, and particularly preferably 23 MPa or less. With such a design, for example, the stretchability of the pre-stretched laminate tends to be more excellent.
  • the range of the indentation hardness 2 may be any combination of the above lower limit value and the upper limit value, and may be, for example, 1 MPa or more and 40 MPa or less.
  • the laminate of the first aspect may further satisfy the above requirement relating to the indentation hardness 2.
  • the indentation hardness 2a and the indentation hardness 2b in the laminate of the second aspect are independently, preferably 20 MPa or more, more preferably 30 MPa or more, still more preferably 35 MPa or more, still more preferably 37 MPa or more; preferably 100 MPa or more.
  • it is more preferably 80 MPa or less, further preferably 70 MPa or less, still more preferably 65 MPa or less, and particularly preferably 60 MPa or less.
  • the range of the indentation hardness 2a and the indentation hardness 2b may be independently any combination of the above lower limit value and the upper limit value, and may be, for example, 20 MPa or more and 100 MPa or less.
  • the laminate of the first aspect may further satisfy the above requirements relating to the indentation hardness 2a and the indentation hardness 2b.
  • the magnitude of the indentation hardness of each PE layer preferably satisfies the relationship of indentation hardness 1> indentation hardness 2a> indentation hardness 2, and indentation hardness 3> indentation hardness 2b> indentation hardness 2 It is preferable to satisfy the relationship of. This tends to further improve the balance between the heat resistance of the multilayer base material and the stretchability (processability, productivity), for example.
  • the ratio (hardness 1 / hardness 3) is preferably 0.6 or more and 1.7 or less, more preferably 0.7 or more and 1.4 or less, still more preferably 0.8 or more and 1 It is .2 or less, more preferably 0.9 or more and 1.1 or less.
  • the ratio (hardness 2a / hardness 2b) is preferably 0.6 or more and 1.7 or less, more preferably 0.7 or more and 1.4 or less, and further preferably 0.8 or more and 1 It is .2 or less, more preferably 0.9 or more and 1.1 or less.
  • the laminate of the third aspect of the present disclosure is characterized in that the indentation elastic modulus of the first PE layer is 1.0 GPa or more and the indentation elastic modulus of the third PE layer is 1.0 GPa or more. And.
  • the heat resistance of the laminated body can be improved, and for example, heat shrinkage of the laminated body at the time of heat application such as heat sealing can be suppressed.
  • the indentation elastic modulus 1 and the indentation elastic modulus 3 in the laminated body of the third aspect are independently 1.0 GPa or more, preferably 1.05 GPa or more, more preferably 1.1 GPa or more, and further preferably 1. 15 GPa or more, particularly preferably 1.3 GPa or more; preferably 4.5 GPa or less, more preferably 4.0 GPa or less, still more preferably 3.5 GPa or less, still more preferably 3.0 GPa or less, particularly preferably 2. It is 5 GPa or less, 2.0 GPa or less, or 1.8 GPa or less. Thereby, for example, there is a tendency that the heat shrinkage of the laminated body at the time of heat sealing can be further suppressed.
  • the ranges of the indentation elastic modulus 1 and the indentation elastic modulus 3 may be independently arbitrary combinations of the above lower limit value and upper limit value, and may be, for example, 1.0 GPa or more and 4.5 GPa or less.
  • the indentation elastic modulus 2 in the laminate of the third aspect is preferably 0.03 GPa or more, more preferably 0.05 GPa or more, still more preferably 0.1 GPa or more, still more preferably 0.13 GPa or more, and particularly preferably 0. It is .15 GPa or more; preferably 0.7 GPa or less, more preferably 0.6 GPa or less, still more preferably 0.5 GPa or less, still more preferably 0.4 GPa or less, and particularly preferably 0.3 GPa or less. With such a design, for example, the stretchability of the pre-stretched laminate tends to be more excellent.
  • the range of the indentation elastic modulus 2 may be any combination of the above lower limit value and upper limit value, and may be, for example, 0.03 GPa or more and 0.7 GPa or less.
  • the indentation elastic modulus 2a and the indentation elastic modulus 2b in the laminated body of the third aspect are independently, preferably 0.3 GPa or more, more preferably 0.4 GPa or more, still more preferably 0.5 GPa or more, still more preferably 0.5 GPa or more. It is 0.6 GPa or more; preferably 3.5 GPa or less, more preferably 3.0 GPa or less, still more preferably 2.5 GPa or less, still more preferably 2.0 GPa or less, and particularly preferably 1.5 GPa or less. Thereby, for example, there is a tendency that the heat shrinkage of the laminated body at the time of heat sealing can be further suppressed.
  • the ranges of the indentation elastic modulus 2a and the indentation elastic modulus 2b may be independently arbitrary combinations of the above lower limit value and upper limit value, and may be, for example, 0.3 GPa or more and 3.5 GPa or less.
  • the magnitude of the indentation elastic modulus of each PE layer preferably satisfies the relationship of indentation elastic modulus 1> indentation elastic modulus 2a> indentation elastic modulus 2, and indentation elastic modulus 3> indentation elastic modulus. It is preferable to satisfy the relationship of rate 2b> indentation elastic modulus 2. This tends to further improve the balance between the heat resistance of the multilayer base material and the stretchability (processability, productivity), for example.
  • the indentation elastic modulus of the first PE layer is preferably 3.5 times or more the indentation elastic modulus of the second PE layer, and the indentation elastic modulus of the third PE layer. Is preferably 3.5 times or more the indentation elastic modulus of the second PE layer.
  • the ratio (elastic modulus 1 / elastic modulus 2) and the ratio (elastic modulus 3 / elastic modulus 2) in the laminated body of the third aspect are independently, preferably 3.5 or more, more preferably 4.0 or more, respectively. More preferably 4.5 or more, even more preferably 5.0 or more, particularly preferably 5.5 or more; preferably 16.0 or less, more preferably 14.0 or less, still more preferably 12.0 or less, It is even more preferably 10.0 or less, and particularly preferably 9.0 or less.
  • the range of the ratio (modulus of elasticity 1 / elastic modulus 2) and the range of the ratio (modulus of elasticity 3 / elastic modulus 2) may be any combination of the above lower limit value and upper limit value, for example, 3.5. It may be 16.0 or less.
  • the indentation elastic modulus of the second PE layer is preferably 2.0 times or more the indentation elastic modulus of the second PE layer, and the indentation elastic modulus of the second PE layer. Is preferably 2.0 times or more the indentation elastic modulus of the second PE layer.
  • the ratio (elastic modulus 2a / elastic modulus 2) and the ratio (elastic modulus 2b / elastic modulus 2) in the laminated body of the third aspect are independently, preferably 2.0 or more, more preferably 2.5 or more, respectively. It is more preferably 3.0 or more; preferably 14.0 or less, more preferably 12.0 or less, still more preferably 10.0 or less, still more preferably 9.0 or less, and particularly preferably 8.5 or less. be.
  • the range of the ratio (elastic modulus 2a / elastic modulus 2) and the range of the ratio (elastic modulus 2b / elastic modulus 2) may be independently any combination of the above lower limit value and upper limit value, for example, 2.0. It may be 14.0 or less.
  • the ratio (elastic modulus 1 / elastic modulus 3) is preferably 0.6 or more and 1.7 or less, more preferably 0.7 or more and 1.4 or less, and further preferably 0.8. It is 1.2 or more, more preferably 0.9 or more and 1.1 or less.
  • the ratio (elastic modulus 2a / elastic modulus 2b) is preferably 0.6 or more and 1.7 or less, more preferably 0.7 or more and 1.4 or less, still more preferably 0.8. It is 1.2 or more, more preferably 0.9 or more and 1.1 or less.
  • the laminate of the fourth aspect of the present disclosure is characterized in that the indentation hardness of the first PE layer is 45 MPa or more, and the indentation hardness of the third PE layer is 45 MPa or more.
  • the heat resistance of the laminated body can be improved, and for example, heat shrinkage of the laminated body at the time of heat application such as heat sealing can be suppressed.
  • the indentation hardness 1 and the indentation hardness 3 in the laminate of the fourth aspect are independently 45 MPa or more, preferably 48 MPa or more, more preferably 50 MPa or more, still more preferably 52 MPa or more; preferably 110 MPa or less, respectively. It is more preferably 90 MPa or less, further preferably 80 MPa or less, still more preferably 75 MPa or less, and particularly preferably 70 MPa or less. Thereby, for example, there is a tendency that the heat shrinkage of the laminated body at the time of heat sealing can be further suppressed.
  • the range of the indentation hardness 1 and the indentation hardness 3 may be any combination of the above lower limit value and the upper limit value independently, and may be, for example, 45 MPa or more and 110 MPa or less.
  • the laminate of the third aspect may further satisfy the above requirements relating to the indentation hardness 1 and the indentation hardness 3.
  • the indentation hardness 2 in the laminate of the fourth aspect is preferably 1 MPa or more, more preferably 3 MPa or more, further preferably 7 MPa or more, still more preferably 10 MPa or more, particularly preferably 15 MPa or more; preferably 40 MPa or less, It is more preferably 35 MPa or less, further preferably 30 MPa or less, still more preferably 26 MPa or less, and particularly preferably 23 MPa or less. With such a design, for example, the stretchability of the pre-stretched laminate tends to be more excellent.
  • the range of the indentation hardness 2 may be any combination of the above lower limit value and the upper limit value, and may be, for example, 1 MPa or more and 40 MPa or less.
  • the laminate of the third aspect may further satisfy the above requirement relating to the indentation hardness 2.
  • the indentation hardness 2a and the indentation hardness 2b in the laminate of the fourth aspect are independently, preferably 20 MPa or more, more preferably 30 MPa or more, still more preferably 35 MPa or more, still more preferably 37 MPa or more; preferably 100 MPa or more. Below, it is more preferably 80 MPa or less, further preferably 70 MPa or less, still more preferably 65 MPa or less, and particularly preferably 60 MPa or less. Thereby, for example, there is a tendency that the heat shrinkage of the laminated body at the time of heat sealing can be further suppressed.
  • the range of the indentation hardness 2a and the indentation hardness 2b may be independently any combination of the above lower limit value and the upper limit value, and may be, for example, 20 MPa or more and 100 MPa or less.
  • the laminate of the third aspect may further satisfy the above requirements relating to the indentation hardness 2a and the indentation hardness 2b.
  • the magnitude of the indentation hardness of each PE layer preferably satisfies the relationship of indentation hardness 1> indentation hardness 2a> indentation hardness 2, and indentation hardness 3> indentation hardness 2b> indentation hardness 2 It is preferable to satisfy the relationship of. This tends to further improve the balance between the heat resistance of the multilayer base material and the stretchability (processability, productivity), for example.
  • the indentation hardness of the first PE layer is preferably 2.0 times or more the indentation hardness of the second PE layer, and the indentation hardness of the third PE layer is the second. It is preferably 2.0 times or more the indentation hardness of the PE layer of 2.
  • the ratio (hardness 1 / hardness 2) and the ratio (hardness 3 / hardness 2) in the laminate of the fourth aspect are independently, preferably 2.0 or more, more preferably 2.2 or more, still more preferably 2. It is 4.4 or more, more preferably 2.6 or more, particularly preferably 2.8 or more; preferably 6.0 or less, more preferably 5.5 or less, still more preferably 5.0 or less, still more preferably. It is 4.5 or less, particularly preferably 4.0 or less or 3.5 or less.
  • the range of the ratio (hardness 1 / hardness 2) and the range of the ratio (hardness 3 / hardness 2) may be independently any combination of the above lower limit value and upper limit value, for example, 2.0 or more and 6.0. It may be as follows.
  • the laminate of the third aspect may further satisfy the above requirements relating to the ratio (hardness 1 / hardness 2) and the ratio (hardness 3 / hardness 2).
  • the indentation hardness of the second PE layer is preferably 1.5 times or more the indentation hardness of the second PE layer, and the indentation hardness of the second PE layer is the first. It is preferably 1.5 times or more the indentation hardness of the PE layer of 2.
  • the ratio (hardness 2a / hardness 2) and the ratio (hardness 2b / hardness 2) in the laminate of the fourth aspect are independently, preferably 1.5 or more, more preferably 1.7 or more, still more preferably 1. 9.9 or more; preferably 6.0 or less, more preferably 5.5 or less, still more preferably 5.0 or less, even more preferably 4.5 or less, particularly preferably 4.0 or less or 3.5 or less. Is. Thereby, for example, there is a tendency that the heat shrinkage of the laminated body at the time of heat sealing can be further suppressed.
  • the range of the ratio (hardness 2a / hardness 2) and the range of the ratio (hardness 2b / hardness 2) may be independently any combination of the above lower limit value and upper limit value, for example, 1.5 or more and 6.0. It may be as follows.
  • the laminate of the third aspect may further satisfy the above requirements relating to the ratio (hardness 2a / hardness 2) and the ratio (hardness 2b / hardness 2).
  • the ratio (hardness 1 / hardness 3) is preferably 0.6 or more and 1.7 or less, more preferably 0.7 or more and 1.4 or less, still more preferably 0.8 or more and 1 It is .2 or less, more preferably 0.9 or more and 1.1 or less.
  • the ratio (hardness 2a / hardness 2b) is preferably 0.6 or more and 1.7 or less, more preferably 0.7 or more and 1.4 or less, and further preferably 0.8 or more and 1 It is .2 or less, more preferably 0.9 or more and 1.1 or less.
  • the laminate of the present disclosure exhibits the following heat shrinkage in one embodiment.
  • the laminated body of the first to fourth aspects of the present disclosure and the laminated body provided with the multilayer base material of the first to fifth aspects show the following heat shrinkage rate in one embodiment.
  • MD refers to the longitudinal direction or flow direction of the laminated body
  • TD refers to the direction perpendicular to MD.
  • the heat shrinkage (MD) of the MD of the laminated body is, for example, 15% or less, preferably 13% or less, more preferably 11% or less, still more preferably 10% or less, still more preferably 8% or less, and particularly preferably. Is less than 7%.
  • the lower the lower limit of the heat shrinkage (MD) is preferable, but it may be, for example, 0.5%, 1%, 2% or 3%.
  • a laminate having such a small heat shrinkage rate (MD) is excellent in, for example, printability and bag making suitability when manufacturing a packaging bag by heat sealing.
  • the heat shrinkage (TD) of the TD of the laminate is, for example, 15% or less, preferably 13% or less, more preferably 11% or less, still more preferably 10% or less, still more preferably 8% or less, particularly preferably. Is less than 7%.
  • the lower the lower limit of the heat shrinkage (MD) is preferable, but it may be, for example, 0.5%, 1%, 2% or 3%.
  • a laminate having such a small heat shrinkage rate (TD) is excellent in, for example, printability and bag making suitability when manufacturing a packaging bag by heat sealing.
  • the ratio (MD / TD) of the heat shrinkage rate (MD) to the heat shrinkage rate (TD) of the laminate is preferably 0.5 or more and 2.0 or less, more preferably 0.7 or more and 1.4 or less, and further. It is preferably 0.8 or more and 1.2 or less, and particularly preferably 0.9 or more and 1.1 or less.
  • the ratio (MD / TD) is in such a range, the laminate shrinks relatively uniformly to MD and TD even after being heat-treated, so that distortion of the image in the print layer of the laminate can be suppressed, for example. ..
  • the heat shrinkage rate of the laminated body is measured as follows.
  • the laminate is cut into 10 cm ⁇ 10 cm to prepare three sample pieces. Fold each sample piece in half parallel to MD or TD so that the heat seal layer side is on the inside, and use a heat seal tester at a temperature of 120 ° C, pressure of 1 kgf / cm 2 , and 1.5 cm x for 1 second.
  • a 10 cm area is heat-sealed (see FIG. 7). In FIG. 7, the shaded area indicates the heat-sealed part.
  • the seal width of the sample is measured, and the shrinkage rate of MD (see FIG. 7A) and the shrinkage rate of TD (see FIG. 7B) are calculated. The average value of the three sample pieces is taken as each heat shrinkage rate.
  • Heat shrinkage rate (MD) (%) ⁇ (Length of the heat-sealed part of the laminated body in the MD direction (1.5 cm) -Length of the heat-sealed part of the laminated body after heat-sealing in the MD direction) / Laminating Length of the planned heat seal part of the body in the MD direction (1.5 cm) ⁇ x 100
  • Heat shrinkage rate (TD) (%) ⁇ (Length of the heat-sealed part of the laminated body in the TD direction (1.5 cm) -Length of the heat-sealed part of the laminated body after heat-sealing in the TD direction) / Laminating Length of the planned heat seal part of the body in the TD direction (1.5 cm) ⁇ x 100
  • the laminate of the present disclosure comprises a heat seal layer.
  • the heat seal layer is preferably made of polyethylene.
  • the heat seal layer is a layer containing polyethylene as a main component, that is, a layer containing polyethylene in a range of more than 50% by mass.
  • the content ratio of polyethylene in the heat seal layer is preferably 60% by mass or more, more preferably 70% by mass or more, still more preferably 80% by mass or more, 85% by mass or more, 90% by mass or more, or 95% by mass or more. .. With such a configuration, a laminate for packaging materials having sufficient rigidity, strength, heat resistance, and excellent recyclability can be obtained.
  • polyethylene films are inferior in heat resistance, so when used as a base material for packaging materials, they may be deformed during heat sheets. Further, since the polyethylene film has poor rigidity, its printability is low, and a clear image cannot be formed on the surface thereof. In addition, the polyethylene film does not have high strength and cannot meet the durability required as an outer layer of the packaging material. Therefore, a laminated body is obtained by laminating a resin film (base material) having excellent rigidity, strength and heat resistance such as a polyester film and a nylon film and a polyethylene film (heat seal layer), and the polyethylene film of the laminated body is obtained. The packaging material is manufactured by heat-sealing the end of the laminate so that the side is on the inside.
  • the polyethylene multilayer base material of the present disclosure is stretched as described above and has a unique layer structure in one embodiment, it has, for example, rigidity, as compared with the conventional polyethylene film. It has excellent strength and heat resistance, and also has excellent ink adhesion. Therefore, the polyethylene multilayer base material of the present disclosure can be used, for example, as a base material for a packaging material, and a clear image can be formed on the surface of the multilayer base material.
  • the laminate of the present disclosure includes the above-mentioned polyethylene multilayer base material and a heat-sealing layer containing polyethylene as a main component (hereinafter, also referred to as “heat-sealing polyethylene layer”).
  • a print layer image is formed on at least one surface of the multilayer substrate. Since deterioration of the image over time can be prevented, it is preferable that the printing layer is formed on the side of the multilayer base material on which the heat-sealing polyethylene layer is provided.
  • the first polyethylene layer or the third polyethylene layer in the multilayer substrate of the first aspect and the second aspect constitutes a surface layer on one side of the laminate, and the heat seal layer is laminated. It constitutes the surface layer on the other side of the body.
  • the resin layer contained in the laminated body is a polyethylene layer in one embodiment, and the laminated body is a polyester film and a nylon film. It does not have a different kind of resin film such as.
  • the polyethylene multilayer base material satisfies the rigidity, strength, heat resistance and the like required for the outer layer film of the packaging material, and the heat-sealable polyethylene layer enables packaging. Therefore, the laminate is suitable as a material for constituting a packaging material that is required to be recyclable.
  • the laminate of the present disclosure comprises only the polyethylene multilayer base material on which a printed layer is formed, if necessary, and a heat seal layer made of polyethylene.
  • a heat seal layer made of polyethylene.
  • the heat seal layer is usually a layer that is not stretched.
  • a heat-sealed layer is formed by laminating an unstretched polyethylene film on a multilayer base material or the like via an adhesive layer as needed, or by melt-extruding a resin material containing polyethylene onto a multilayer base material or the like. Can be formed.
  • the adhesive layer include an adhesive layer described later.
  • polyethylene constituting the heat-sealing layer examples include high-density polyethylene, medium-density polyethylene, low-density polyethylene, linear low-density polyethylene, and ultra-low-density polyethylene. Linear low density polyethylene and ultra low density polyethylene are preferable. From the viewpoint of reducing the environmental load, polyethylene derived from biomass or recycled polyethylene may be used.
  • the content ratio of polyethylene in the heat seal layer is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more. This makes it possible to improve the recyclability of the laminated body.
  • the heat seal layer may contain one or more of the above additives.
  • the heat seal layer may be one layer or two or more layers. In one embodiment, the number of heat seal layers is 1 or more and 3 or less.
  • the thickness of the heat seal layer is, for example, 10 ⁇ m or more and 300 ⁇ m or less.
  • the thickness of the heat-sealed layer may be appropriately changed from the viewpoint of the strength of the heat-sealed layer and the processability of the laminated body, depending on the mass of the contents to be filled in the packaging material produced by the laminated body of the present disclosure, for example. preferable.
  • the thickness of the heat seal layer is preferably 20 ⁇ m or more and 60 ⁇ m or less. In this case, for example, the contents of 1 g or more and 200 g or less are well filled in the pouch.
  • the thickness of the heat seal layer is preferably 50 ⁇ m or more and 200 ⁇ m or less. In this case, for example, the contents of 50 g or more and 2000 g or less are well filled in the stand pouch.
  • the laminate of the present disclosure comprises a barrier layer between the multilayer substrate and the heat seal layer.
  • the gas barrier property of the laminated body specifically, the oxygen barrier property and the water vapor barrier property can be improved.
  • the barrier layer may be formed on the surface of the multilayer base material or may be formed on the surface of the heat seal layer.
  • a barrier layer may be provided between the multilayer base material and the heat seal layer via an adhesive or the like.
  • a barrier film provided with a second base material and a barrier layer formed on the second base material between the multilayer base material and the heat seal layer is provided, if necessary, via an adhesive or the like. It may be provided.
  • the second base material in the barrier film is preferably made of polyethylene.
  • the content ratio of polyethylene in the second base material is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more. This makes it possible to improve the recyclability of the laminated body.
  • the barrier layer is a thin-film deposition layer.
  • the vapor-filmed layer is composed of, for example, a metal such as aluminum and an inorganic oxide such as aluminum oxide, silicon oxide, magsium oxide, calcium oxide, zirconium oxide, titanium oxide, boron oxide, hafnium oxide and barium oxide. Among these, the aluminum vapor deposition layer is preferable.
  • the thickness of the barrier layer is preferably 1 nm or more and 150 nm or less, more preferably 5 nm or more and 60 nm or less, and further preferably 10 nm or more and 40 nm or less.
  • the thickness of the barrier layer is preferably 1 nm or more and 150 nm or less, more preferably 5 nm or more and 60 nm or less, and further preferably 10 nm or more and 40 nm or less.
  • Examples of the method for forming the barrier layer include a physical vapor deposition method (PVD method) such as a vacuum vapor deposition method, a sputtering method and an ion plating method; and a plasma chemical vapor deposition method, a thermochemical vapor deposition method and a photochemical vapor deposition method. Examples thereof include a chemical vapor deposition method (CVD method) such as a phase growth method.
  • PVD method physical vapor deposition method
  • CVD method chemical vapor deposition method
  • the barrier layer may be a composite film containing two or more barrier layers of different kinds of inorganic oxides, which are formed by using both the physical vapor deposition method and the chemical vapor deposition method in combination.
  • the degree of vacuum of the vapor deposition chamber is preferably about 10-2 to 10-8 mbar before the introduction of oxygen, and preferably about 10-1 to 10-6 mbar after the introduction of oxygen.
  • the amount of oxygen introduced depends on the size of the vapor deposition machine.
  • an inert gas such as argon gas, helium gas and nitrogen gas may be used as the carrier gas within a range that does not hinder.
  • the transport speed of the multilayer base material is, for example, about 10 to 800 m / min.
  • the surface of the barrier layer is subjected to the above-mentioned surface treatment. This makes it possible to improve the adhesion between the barrier layer and the adjacent layer.
  • the laminate of the present disclosure includes a multilayer base material, an inorganic oxide-deposited layer, a barrier coat layer, and a heat seal layer in this order in the thickness direction.
  • the barrier coat layer is composed of a gas barrier resin.
  • gas barrier resin include polyamide resins such as ethylene-vinyl alcohol copolymer (EVOH), polyvinyl alcohol, polyacrylonitrile, nylon 6, nylon 6,6 and polymethoxylylen adipamide (MXD6), and polyester resins.
  • EVOH ethylene-vinyl alcohol copolymer
  • MXD6 polymethoxylylen adipamide
  • polyester resins examples include polyurethane resin and (meth) acrylic resin.
  • the thickness of the barrier coat layer is preferably 0.01 ⁇ m or more and 10 ⁇ m or less, and more preferably 0.1 ⁇ m or more and 5 ⁇ m or less.
  • the gas barrier property can be further improved.
  • the thickness of the barrier coat layer can be a laminate that can be suitably used for manufacturing a monomaterial packaging container.
  • the barrier coat layer can be formed by dissolving or dispersing a material such as a gas barrier resin in water or an appropriate organic solvent, and applying and drying the obtained coating liquid.
  • the barrier coat layer is a hydrolyzed metal alkoxide obtained by polycondensing a mixture of a metal alkoxide and a water-soluble polymer in the presence of a sol-gel method catalyst, water, an organic solvent, or the like by a sol-gel method.
  • a gas barrier coating film formed from a composition containing a decomposition product or a hydrolyzed condensate of a metal alkoxide By providing such a barrier coat layer on the thin-film deposition layer, it is possible to effectively prevent the occurrence of cracks in the thin-film deposition layer.
  • the metal alkoxide is represented by the following general formula.
  • R 1 n M (OR 2 ) m independently represent an organic group having 1 or more carbon atoms and 8 or less carbon atoms
  • M represents a metal atom
  • n represents an integer of 0 or more
  • m represents an integer of 1 or more.
  • N + m represent the valence of M.
  • Examples of the organic group represented by R 1 and R 2 include an alkyl group such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group and an isobutyl group.
  • Examples of the metal atom M include silicon, zirconium, titanium and aluminum.
  • Examples of the metal alkoxide satisfying the above general formula include tetramethoxysilane (Si (OCH 3 ) 4 ), tetraethoxysilane (Si (OC 2 H 5 ) 4 ), and tetrapropoxysilane (Si (OC 3 H 7 ) 4 ). ), And tetrabutoxysilane (Si (OC 4 H 9 ) 4 ).
  • silane coupling agent it is preferable to use a silane coupling agent together with the above metal alkoxide.
  • silane coupling agent known organic reactive group-containing organoalkoxysilanes can be used.
  • polyvinyl alcohol and ethylene-vinyl alcohol copolymer are preferable. Either one of polyvinyl alcohol and ethylene-vinyl alcohol copolymer may be used, or both may be used in combination, depending on desired physical properties such as oxygen barrier property, water vapor barrier property, water resistance and weather resistance. Further, a gas barrier coating film obtained by using polyvinyl alcohol and a gas barrier coating film obtained by using an ethylene-vinyl alcohol copolymer may be laminated.
  • an acid or amine compound is suitable.
  • the above composition may further contain an acid.
  • the acid is used as a sol-gel catalyst, mainly as a catalyst for hydrolysis of metal alkoxides and silane coupling agents.
  • the acid include mineral acids such as sulfuric acid, hydrochloric acid and nitric acid, and organic acids such as acetic acid and tartaric acid.
  • the above composition may contain an organic solvent.
  • the organic solvent include methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol and n-butanol.
  • the thickness of the gas barrier coating film is preferably 0.01 ⁇ m or more and 100 ⁇ m or less, and more preferably 0.1 ⁇ m or more and 50 ⁇ m or less. Thereby, the gas barrier property can be further improved.
  • the thickness of the gas barrier coating film By setting the thickness of the gas barrier coating film to 0.01 ⁇ m or more, the oxygen barrier property and the water vapor barrier property of the laminated body can be improved, and the generation of cracks in the thin-film deposition layer can be prevented.
  • By setting the thickness of the gas barrier coating film to 100 ⁇ m or less a laminate that can be suitably used for producing a monomaterial packaging container can be obtained.
  • the gas barrier coating film is prepared by applying a composition containing the above materials by a conventionally known means such as a roll coat such as a gravure roll coater, a spray coat, a spin coat, a dipping, a brush, a bar coat and an applicator.
  • a roll coat such as a gravure roll coater, a spray coat, a spin coat, a dipping, a brush, a bar coat and an applicator.
  • the composition can be formed by polycondensing by the sol-gel method.
  • a composition is prepared by mixing a metal alkoxide, a water-soluble polymer, a sol-gel method catalyst, water, an organic solvent and, if necessary, a silane coupling agent.
  • the polycondensation reaction gradually proceeds in the composition.
  • the composition is applied and dried on the thin-film deposition layer by the conventionally known means. By this drying, the polycondensation reaction of the metal alkoxide and the water-soluble polymer (and the silane coupling agent when the above composition contains a silane coupling agent) further proceeds, and a layer of the composite polymer is formed.
  • a gas barrier coating film can be formed.
  • the laminate of the present disclosure is any layer (eg, between a multilayer substrate and a barrier layer, between a barrier layer and a heat seal layer, or between a multilayer substrate and a heat seal layer). Also provided with an adhesive layer. Thereby, the adhesion between the layers contained in the laminated body can be improved.
  • the adhesive layer contains one or more adhesives.
  • the adhesive include a one-component curable adhesive, a two-component curable adhesive, and a non-curable adhesive.
  • the adhesive may be a solvent-free adhesive or a solvent-type adhesive, and a solvent-free adhesive is preferable from the viewpoint of environmental load.
  • a solvent-free adhesive include a polyether adhesive, a polyester adhesive, a silicone adhesive, an epoxy adhesive and a urethane adhesive.
  • the solvent-based adhesive include rubber-based adhesives, vinyl-based adhesives, silicone-based adhesives, epoxy-based adhesives, phenol-based adhesives, olefin-based adhesives, and urethane-based adhesives. Among these, a two-component curing type urethane adhesive is preferable.
  • the adhesive layer may contain one or more additives.
  • Additives include, for example, pigments, dyes, lubricants, colorants, wetting agents, thickeners, coagulants, gelling agents, antioxidants, softeners, hardeners, plasticizers, leveling agents, antioxidants, etc. Examples include UV absorbers, light stabilizers and flame retardants.
  • an adhesive layer adjacent to a barrier layer such as an aluminum vapor-deposited layer
  • the thickness of the adhesive layer is preferably 0.5 ⁇ m or more and 6 ⁇ m or less, more preferably 0.8 ⁇ m or more and 5 ⁇ m or less, and further preferably 1 ⁇ m or more and 4.5 ⁇ m or less, from the viewpoint of the adhesiveness of the adhesive layer and the processability of the laminated body. Is.
  • the adhesive layer is formed by applying and drying an adhesive on a multilayer substrate or the like by, for example, a direct gravure roll coating method, a gravure roll coating method, a kiss coating method, a reverse roll coating method, a fonten method, a transfer roll coating method, or the like. It can be formed by doing.
  • the laminate of the fifth aspect of the present disclosure includes a base material and a heat seal layer.
  • the base material and the heat seal layer are made of the same kind of resin material. That is, the base material is made of a resin material, and the heat seal layer is made of a resin material of the same type as the resin material constituting the base material.
  • the same type of resin material means a resin material having a common basic structure, and is not limited to the completely same resin material.
  • the same type of resin material includes a resin material having a common main monomer among the monomers forming the resin material.
  • the main monomer is described as Monomer A
  • the homopolymer of Monomer A, the copolymer of Monomer A and Monomer B, and the copolymer of Monomer A, Monomer B, and Monomer C are of the same type. Classified as a resin material.
  • polyethylene examples include high-density polyethylene and linear low-density polyethylene, which are classified into the same type of resin material.
  • polyester examples include polyethylene terephthalate and polyethylene naphthalate, which are classified into the same type of resin material.
  • the content ratio of the same type of resin material in the entire laminate of the fifth aspect of the present disclosure is preferably 80% by mass or more, more preferably 85% by mass or more, still more preferably 90% by mass or more. Since such a laminate uses the same type of resin material, it can be classified as a so-called monomaterial material, and the recyclability of the laminate can be improved.
  • the same kind of resin material is polyolefin.
  • the content ratio of the polyolefin in the entire laminate of the fifth aspect is preferably 80% by mass or more, more preferably 85% by mass or more, and further preferably 90% by mass or more.
  • the content ratio of polyethylene or polypropylene in the entire laminate of the fifth aspect is preferably 80% by mass or more, more preferably 85% by mass or more, still more preferably 90% by mass or more.
  • the same kind of resin material is polyester.
  • the content ratio of the polyester in the entire laminate of the fifth aspect is preferably 80% by mass or more, more preferably 85% by mass or more, and further preferably 90% by mass or more.
  • the laminate 30 of the fifth aspect of the present disclosure includes a base material 10a and a heat seal layer 32 as shown in FIG.
  • the laminate 30 of the fifth aspect of the present disclosure further comprises a printing layer (not shown) on the substrate 10a.
  • the print layer is usually formed on a surface layer provided with a heat seal layer on the substrate.
  • the laminate 30 of the fifth aspect of the present disclosure includes an adhesive layer 36 between the base material 10a and the heat seal layer 32, as shown in FIG.
  • the base material 10a has a multi-layer structure, but the multi-layer structure is not shown.
  • the base material constituting the laminate of the fifth aspect of the present disclosure is a base material that has been stretched and has a multi-layer structure.
  • a base material is also referred to as a “stretched multilayer base material”.
  • the stretching treatment By the stretching treatment, the heat resistance and strength of the base material can be improved, and such a stretched multilayer base material can satisfy the physical properties required as an outer layer such as a packaging material.
  • the stretching may be uniaxial stretching or biaxial stretching.
  • the stretching ratio in the longitudinal direction (MD) of the stretched multilayer substrate is preferably 2 times or more and 10 times or less, and more preferably 3 times or more and 7 times or less. In one embodiment, the stretching ratio in the lateral direction (TD) of the stretched multilayer substrate is preferably 2 times or more and 10 times or less, and more preferably 3 times or more and 7 times or less.
  • the draw ratio is 2 times or more, for example, the rigidity, strength and heat resistance of the base material can be improved, the printability on the base material can be improved, and the transparency of the base material can be improved.
  • the draw ratio is 10 times or less, for example, good stretching can be performed without causing breakage of the film.
  • the stretched multilayer base material constituting the laminated body of the fifth aspect of the present disclosure is a uniaxially stretched film in one embodiment, and more specifically, a uniaxially stretched film stretched in the longitudinal direction (MD). be.
  • the stretched multilayer base material has a multilayer structure of two or more layers.
  • the number of layers of the stretched multilayer base material is preferably 2 layers or more and 7 layers or less, and more preferably 3 layers or more and 5 layers or less.
  • the balance between rigidity, strength, heat resistance, printability and stretchability of the base material can be improved.
  • Each layer of the stretched multilayer base material is also composed of the same type of resin material.
  • Examples of the resin material constituting the stretched multilayer base material include polyolefins such as polyethylene, polypropylene and polymethylpentene; and polyester. Among these, polyolefins are preferable, and polyethylene and polypropylene are more preferable.
  • polyethylene examples include high-density polyethylene, medium-density polyethylene, low-density polyethylene, linear low-density polyethylene, and ultra-low-density polyethylene.
  • high-density polyethylene and medium-density polyethylene are preferable from the viewpoint of strength and heat resistance of the base material, and medium-density polyethylene is more preferable from the viewpoint of stretchability.
  • the melt flow rate (MFR) of polyethylene is preferably 0.1 g / 10 minutes or more and 50 g / 10 minutes or less, more preferably 0.3 g / 10 minutes or more and 30 g, from the viewpoint of film forming property and processing suitability of the base material. / 10 minutes or less.
  • the polyethylene MFR is measured in accordance with ASTM D1238 under the conditions of a temperature of 190 ° C. and a load of 2.16 kg.
  • Polypropylene may be any of propylene homopolymer, propylene random copolymer and propylene block copolymer.
  • Propylene homopolymer is a polymer containing only propylene.
  • the propylene random copolymer is a random copolymer of propylene and an ethylenically unsaturated monomer other than propylene (for example, ⁇ -olefin such as ethylene, 1-butene and 4-methyl-1-pentene).
  • the propylene block copolymer is a polymer block made of propylene and a polymer block made of an ethylenically unsaturated monomer other than propylene (for example, ⁇ -olefin such as ethylene, 1-butene and 4-methyl-1-pentene). It is a copolymer having. For example, it is preferable to use a homopolymer when the rigidity and heat resistance of the packaging material are important, and to use a random copolymer when the impact resistance of the packaging material is important.
  • the polypropylene MFR is preferably 0.1 g / 10 minutes or more and 50 g / 10 minutes or less, more preferably 0.3 g / 10 minutes or more and 30 g / 10 minutes or less, from the viewpoint of film forming property and processing suitability of the base material. be.
  • the polypropylene MFR is measured in accordance with ASTM D1238 under the conditions of a temperature of 230 ° C. and a load of 2.16 kg.
  • polystyrene resin examples include a copolymer of ethylene and an ethylenically unsaturated monomer other than ethylene, and a polymer of propylene and an ethylenically unsaturated monomer other than propylene (however, in the above-mentioned polyethylene and polypropylene). Excluding applicable copolymers).
  • Examples of the ethylenically unsaturated monomer include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene and 1-octadecene.
  • ⁇ -olefins having 2 or more and 20 or less carbon atoms such as 1-eicosene, 3-methyl-1-butene, 4-methyl-1-pentene and 6-methyl-1-heptene; vinyl acetate and vinyl propionate.
  • Monomers; and (meth) acrylic acid esters such as methyl (meth) acrylate and ethyl (meth) acrylate.
  • Polyolefins having different densities or branches can be obtained by appropriately selecting a polymerization method.
  • a multisite catalyst such as a Cheegler-Natta catalyst or a single site catalyst such as a metallocene catalyst as the polymerization catalyst
  • one step is carried out by any of gas phase polymerization, slurry polymerization, solution polymerization and high pressure ion polymerization.
  • a polyolefin derived from biomass may be used as the polyolefin. That is, as a raw material for obtaining a polyolefin, a biomass-derived olefin may be used instead of the olefin obtained from fossil fuel. Since the polyolefin derived from biomass is a carbon-neutral material, the environmental load of the packaging material can be reduced.
  • Biomass-derived polyolefins for example, polyethylene
  • Commercially available biomass-derived polyolefins eg, green PE commercially available from Braskem may be used.
  • a polyolefin recycled by mechanical recycling may be used.
  • Mechanical recycling generally means that the recovered polyolefin film or the like is crushed and alkaline-cleaned to remove stains and foreign substances on the film surface, and then dried under high temperature and reduced pressure for a certain period of time to stay inside the film. This is a method in which a contaminant is diffused and decontaminated to remove stains on a film made of polyolefin, and the film is returned to polyolefin again.
  • polyester as the resin material constituting the stretched multilayer base material examples include a copolymer of a dicarboxylic acid compound and a diol compound.
  • a monomer other than the dicarboxylic acid compound and the diol compound may be used, if necessary.
  • dicarboxylic acid compound examples include malonic acid, succinic acid, glutaric acid, adipic acid, suberic acid, sebacic acid, dodecandionic acid, eicosandionic acid, pimelliic acid, azelaic acid, methylmalonic acid and ethylmalonic acid, and adamantan.
  • diol compound examples include ethylene glycol, 1,2-propanediol, 1,3-propanediol, butanediol, 2-methyl-1,3-propanediol, hexanediol, neopentylglycol, cyclohexanedimethanol, and cyclohexane.
  • polyethylene terephthalate which is a copolymer of terephthalic acid and its ester derivative and ethylene glycol, is preferable.
  • biomass-derived polyester may be used.
  • the diol compound which is a copolymerization component is derived from biomass, the amount of fossil fuel used can be significantly reduced, and the environmental load for producing a laminate can be effectively reduced.
  • Biomass-derived diol compounds for example, biomass-derived ethylene glycol
  • biomass-derived ethylene glycol are made from ethanol (biomass ethanol) produced from biomass as a raw material.
  • Biomass-derived ethylene glycol can be obtained by a method of producing biomass ethanol via ethylene oxide or the like by a conventionally known method.
  • the biomass ethylene glycol sold may be used, and for example, the biomass ethylene glycol sold by India Glycol Co., Ltd. can be preferably used.
  • recycled polyester may be used.
  • the recycled polyester include chemical recycled polyester and mechanical recycled polyester.
  • the chemical recycled polyester means a polyester obtained by decomposing a polyester container to the monomer level and polymerizing the monomer again.
  • Mechanically recycled polyester is a polyester container that is sorted, crushed, and washed to remove contaminants and foreign substances, and flakes are obtained. The flakes are further treated at high temperature and under reduced pressure for a certain period of time to remove contaminants inside the resin. Means the polyester obtained by doing so.
  • the content ratio of the same type of resin material in each layer constituting the stretched multilayer base material is independently, preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more. This makes it possible to improve the recyclability of the laminated body.
  • the content ratio of the same type of resin material in the stretched multilayer base material is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more. This makes it possible to improve the recyclability of the laminated body.
  • the stretched multilayer base material may contain one or more additives.
  • Additives include, for example, cross-linking agents, anti-blocking agents, slip agents, antioxidants, UV absorbers, light stabilizers, fillers, reinforcing agents, antistatic agents, pigments, dyes and modifying resins. Can be mentioned.
  • Each layer constituting the stretched multilayer base material can independently contain the above-mentioned additive.
  • the haze value of the stretched multilayer base material is preferably 25% or less, more preferably 15% or less, still more preferably 10% or less.
  • the haze value of the stretched multilayer base material is measured according to JIS K7136.
  • the total thickness of the stretched multilayer base material is preferably 10 ⁇ m or more and 60 ⁇ m or less, and more preferably 15 ⁇ m or more and 50 ⁇ m or less.
  • the thickness of the stretched multilayer base material is 10 ⁇ m or more, the rigidity and strength of the laminated body can be improved.
  • the thickness of the stretched multilayer base material is 60 ⁇ m or less, the processability of the laminated body can be improved.
  • the stretched multilayer base material is surface-treated. This makes it possible to improve the adhesion between the surface layer of the stretched multilayer base material and the layer laminated on the stretched multilayer base material.
  • Surface treatment methods include, for example, corona discharge treatment, ozone treatment, low temperature plasma treatment using gases such as oxygen gas and nitrogen gas, physical treatment such as glow discharge treatment; and oxidation treatment using chemicals. Chemical treatment can be mentioned.
  • an anchor coat layer may be formed on the surface of the stretched multilayer base material by using a conventionally known anchor coat agent.
  • the stretched multilayer base material can be produced by, for example, forming a laminate by forming a film of a plurality of resin materials or resin compositions by an inflation method or a T-die method, and stretching the obtained laminate.
  • the stretching treatment the transparency, rigidity, strength and heat resistance of the base material can be improved, and the base material can be suitably used as a base material for, for example, a packaging material.
  • the stretched multilayer base material is obtained by stretching a laminate (precursor) having a multilayer structure in one embodiment.
  • each layer can be co-extruded into a tube to form a film, and a laminate can be produced.
  • a laminate can be produced by co-extruding each layer into a tube shape and then pressure-bonding the opposing layers with a rubber roll or the like.
  • the melt flow rate (MFR) of polyethylene constituting each layer of the multilayer substrate has a film-forming property. From the viewpoint of processing suitability of the multilayer substrate, it is preferably 3 g / 10 minutes or more and 20 g / 10 minutes or less.
  • the MFR of polyethylene constituting each layer of the multilayer base material has film-forming properties and processing of the multilayer base material. From the viewpoint of suitability, it is preferably 0.5 g / 10 minutes or more and 5 g / 10 minutes or less.
  • the stretched multilayer base material is obtained, for example, by stretching the above-mentioned laminate.
  • the preferred draw ratio is as described above.
  • stretching of the laminate can also be performed.
  • the stretched multilayer base material can be manufactured, so that the production efficiency can be further improved.
  • the stretched multilayer base material of the first embodiment has a thickness of a medium-density polyethylene layer, a high-density polyethylene layer, a blend layer of medium-density polyethylene and high-density polyethylene, a high-density polyethylene layer, and a medium-density polyethylene layer. Prepare in this order in the vertical direction. With such a configuration, the printability of the base material can be improved, the strength and heat resistance can be improved, and the stretchability of the pre-stretched laminate can be improved.
  • the mass ratio of medium-density polyethylene to high-density polyethylene (medium-density polyethylene / high-density polyethylene) in the above-mentioned blend layer of medium-density polyethylene and high-density polyethylene is preferably 0.25 or more and 4 or less, more preferably 0.4. It is 2.4 or less.
  • the stretched multilayer base material of the second embodiment includes a medium-density polyethylene layer, a medium-density polyethylene layer, a blend layer of medium-density polyethylene and linear low-density polyethylene, a medium-density polyethylene layer, and a medium-density polyethylene layer.
  • a medium-density polyethylene layer includes a medium-density polyethylene layer, a medium-density polyethylene layer, a blend layer of medium-density polyethylene and linear low-density polyethylene, a medium-density polyethylene layer, and a medium-density polyethylene layer.
  • the mass ratio of medium-density polyethylene to linear low-density polyethylene (medium-density polyethylene / linear low-density polyethylene) in the above-mentioned blend layer of medium-density polyethylene and linear low-density polyethylene is preferably 0.25 or more. It is 4 or less, more preferably 0.4 or more and 2.4 or less.
  • the stretched multilayer base material of the third embodiment includes a blend layer of medium-density polyethylene and high-density polyethylene, a blend layer of medium-density polyethylene and linear low-density polyethylene, a linear low-density polyethylene layer, and medium density.
  • a blend layer of polyethylene and linear low-density polyethylene and a blend layer of medium-density polyethylene and high-density polyethylene are provided in this order in the thickness direction.
  • the mass ratio of medium-density polyethylene to high-density polyethylene (medium-density polyethylene / high-density polyethylene) in the above-mentioned blend layer of medium-density polyethylene and high-density polyethylene is independently, preferably 0.25 or more and 4 or less, more preferably. Is 0.4 or more and 2.4 or less.
  • the mass ratio of medium-density polyethylene to linear low-density polyethylene (medium-density polyethylene / linear low-density polyethylene) in the above-mentioned blend layer of medium-density polyethylene and linear low-density polyethylene is preferably 0.25 or more. It is 4 or less, more preferably 0.4 or more and 2.4 or less.
  • the stretched multilayer base material of the fourth embodiment includes a blend layer of high-density polyethylene and medium-density polyethylene, a medium-density polyethylene layer, a blend layer of linear low-density polyethylene and medium-density polyethylene, and a medium-density polyethylene layer.
  • High-density polyethylene and a blend layer of medium-density polyethylene are provided in this order in the thickness direction.
  • the mass ratio of medium-density polyethylene to high-density polyethylene (medium-density polyethylene / high-density polyethylene) in the above-mentioned blend layer of high-density polyethylene and medium-density polyethylene is independently, preferably 0.25 or more and 4 or less, more preferably. Is 0.4 or more and 2.4 or less.
  • the mass ratio of the linear low-density polyethylene to the medium-density polyethylene (linear low-density polyethylene / medium-density polyethylene) in the blend layer of the linear low-density polyethylene and the medium-density polyethylene is preferably 0.25 or more 4 Below, it is more preferably 0.4 or more and 2.4 or less.
  • the thickness of each of the two surface layers is independently, preferably 0.5 ⁇ m or more and 10 ⁇ m or less, more preferably 1 ⁇ m or more and 8 ⁇ m or less, still more preferably. It is 1 ⁇ m or more and 5 ⁇ m or less.
  • the thickness of each of the two surface layers is preferably smaller than the total thickness of the inner three layers (multilayer intermediate layer).
  • the ratio of the thickness of each of the two surface layers to the total thickness of the multilayer intermediate layer (surface layer / multilayer intermediate layer) is preferably 0.05 or more and 0.8 or less, more preferably 0.1 or more and 0.7. Below, it is more preferably 0.1 or more and 0.4 or less. Thereby, the rigidity, strength and heat resistance of the base material can be further improved.
  • the stretched multilayer base material of the fifth embodiment includes a high-density polyethylene layer and a medium-density polyethylene layer in this order in the thickness direction. Since the surface layer of the base material is a high-density polyethylene layer, the strength and heat resistance of the base material can be improved. By providing the base material with a medium-density polyethylene layer, the stretchability of the pre-stretched laminate can be improved.
  • the stretched multilayer base material of the sixth embodiment includes a high-density polyethylene layer, a medium-density polyethylene layer, and a high-density polyethylene layer in this order in the thickness direction.
  • the thickness of the high-density polyethylene layer is preferably less than or equal to the thickness of the medium-density polyethylene layer.
  • the ratio of the thickness of the high-density polyethylene layer to the thickness of the medium-density polyethylene layer is preferably 0.1 or more and 1 or less, and more preferably 0.2 or more and 0.5 or less.
  • the stretched multilayer substrate of the seventh embodiment includes a high-density polyethylene layer, a medium-density polyethylene layer, a low-density polyethylene layer, a linear low-density polyethylene layer, or an ultra-low-density polyethylene layer (for simplification of description, these are used. 3 layers are collectively referred to as "low density polyethylene layer or the like"), a medium density polyethylene layer, and a high density polyethylene layer are provided in this order in the thickness direction. With such a configuration, the stretchability of the pre-stretched laminate can be improved, the strength and heat resistance of the base material can be improved, and the generation of curl in the base material can be suppressed.
  • the thickness of the high-density polyethylene layer is preferably less than or equal to the thickness of the medium-density polyethylene layer.
  • the ratio of the thickness of the high-density polyethylene layer to the thickness of the medium-density polyethylene layer is preferably 0.1 or more and 1 or less, and more preferably 0.2 or more and 0.5 or less.
  • the thickness of the high-density polyethylene layer is preferably greater than or equal to the thickness of the low-density polyethylene layer or the like.
  • the ratio of the thickness of the high-density polyethylene layer to the thickness of the low-density polyethylene layer is preferably 1 or more and 4 or less, and more preferably 1 or more and 2 or less.
  • a high-density polyethylene layer, a high-density polyethylene layer, a blend layer of medium-density polyethylene and high-density polyethylene, a high-density polyethylene layer, and a high-density polyethylene are provided in the thickness direction.
  • Base material provided in this order a base material provided with a medium-density polyethylene layer, a high-density polyethylene layer, a linear low-density polyethylene layer, a high-density polyethylene layer, and a medium-density polyethylene layer in this order in the thickness direction.
  • the stretched multilayer base material may be the polyethylene multilayer base material of the first to fifth aspects of the present disclosure described above.
  • the laminate of the fifth aspect of the present disclosure comprises a barrier layer between the stretched multilayer substrate and the heat seal layer.
  • the gas barrier property of the laminated body specifically, the oxygen barrier property and the water vapor barrier property can be improved.
  • the barrier layer may be formed on the surface of the stretched multilayer base material or may be formed on the surface of the heat seal layer.
  • a barrier layer may be provided between the stretched multilayer base material and the heat seal layer via an adhesive or the like.
  • a barrier film provided with a second base material and a barrier layer formed on the second base material between the stretched multilayer base material and the heat seal layer is provided with an adhesive or the like, if necessary. May be provided.
  • the second base material in the barrier film is made of a resin material of the same type as the resin material constituting the stretched multilayer base material.
  • the content ratio of the same kind of resin material in the second base material is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more. This makes it possible to improve the recyclability of the laminated body.
  • barrier layer The details of the barrier layer are as described in the ⁇ Barrier layer> column of [Laminates of the first to fourth aspects and other embodiments], and the description in this column is omitted.
  • the laminate of the fifth aspect of the present disclosure further comprises, in one embodiment, a printing layer formed on the stretched multilayer substrate described above.
  • the printed layer is formed on the side of the stretched multilayer substrate on which the heat seal layer is provided, because deterioration of the image over time can be suppressed.
  • the laminate of the fifth aspect has a barrier layer on the stretched multilayer base material, for example, a printing layer may be provided on the barrier layer.
  • the laminate of the fifth aspect of the present disclosure includes, for example, a stretched multilayer base material, a barrier layer, a printing layer, and a heat seal layer in this order in the thickness direction. The details of the print layer are as described in the [Printing substrate] column, and the description in this column is omitted.
  • the laminate of the fifth aspect of the present disclosure includes a heat seal layer.
  • the heat seal layer in the laminate of the fifth aspect is a layer that has not been stretched.
  • the heat seal layer is made of a resin material of the same type as the resin material constituting the stretched multilayer base material.
  • the laminate having such a structure has both heat-sealing property and recyclability.
  • the heat seal layer is composed of polyolefin, which is a resin material of the same type as the stretched multilayer substrate.
  • polyolefins polyethylene and polypropylene are preferable.
  • examples of the polyethylene constituting the heat seal layer include high-density polyethylene, medium-density polyethylene, low-density polyethylene, linear low-density polyethylene, and ultra-low-density polyethylene. From the viewpoint of heat-sealing property, low-density polyethylene, linear low-density polyethylene and ultra-low-density polyethylene are preferable. From the viewpoint of reducing the environmental load, polyethylene derived from biomass and / or recycled polyethylene may be used.
  • the content ratio of polyethylene in the heat seal layer is preferably 80% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more. This makes it possible to improve the recyclability of the laminated body.
  • examples of polypropylene constituting the heat seal layer include propylene homopolymers, propylene random copolymers, and propylene block copolymers.
  • the density of polypropylene is preferably 0.88 g / cm 3 or more and 0.92 g / cm 3 or less, and more preferably 0.90 g / cm 3 or more and 0.91 g / cm 3 or less.
  • polypropylene derived from biomass and / or recycled polypropylene may be used.
  • the content ratio of polypropylene in the heat seal layer is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more. This makes it possible to improve the recyclability of the laminated body.
  • the heat seal layer is composed of polyester, which is a resin material of the same type as the stretched multilayer base material.
  • polyesters described above polyethylene terephthalate is preferable. From the viewpoint of reducing the environmental load, biomass-derived polyester and / or recycled polyester may be used.
  • the heat seal layer is preferably made of low crystalline or amorphous polyester from the viewpoint of heat sealability.
  • the crystallinity of the polyester constituting the heat seal layer is preferably 12% or less, more preferably 10% or less. This makes it possible to further improve the heat sealability.
  • the crystallinity of the polyester is the value obtained by dividing the calorific value of melting when the low crystalline or amorphous polyester is melted by the calorific value of melting of the complete crystal (polyethylene terephthalate is 140 J / g) using a differential scanning calorimeter. Obtained by multiplying by 100.
  • the glass transition temperature (Tg) of the polyester constituting the heat seal layer is preferably 60 ° C. or higher and 90 ° C. or lower, more preferably 63 ° C. or higher and 80 ° C. or lower.
  • Tg is 90 ° C. or lower, the heat sealability of the heat seal layer can be improved.
  • Tg is 60 ° C. or higher, the occurrence of blocking can be suppressed.
  • Tg is a value obtained by differential scanning calorimetry in accordance with JIS K7121.
  • the content ratio of polyester in the heat seal layer is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more. This makes it possible to improve the recyclability of the laminated body.
  • the heat seal layer may contain one or more additives.
  • Additives include, for example, cross-linking agents, anti-blocking agents, slip agents, antioxidants, UV absorbers, light stabilizers, fillers, reinforcing agents, antistatic agents, pigments, dyes and modifying resins. Can be mentioned.
  • Each layer constituting the heat seal layer can independently contain the above-mentioned additive.
  • the heat seal layer may be a single layer or may have a multi-layer structure of two or more layers. In one embodiment, the number of layers of the heat seal layer is 2 or more and 7 or less in the case of a multilayer structure. Each layer of the heat seal layer is also composed of the same type of resin material.
  • the heat seal layer is a resin film made of a resin material of the same type as the resin material constituting the stretched multilayer base material.
  • This resin film is an unstretched resin film.
  • This resin film may have a multilayer structure.
  • the resin film can be produced, for example, by using a casting method, a T-die method, an inflation method, or the like.
  • the heat seal layer is a melt extrusion layer made of a resin material of the same type as the resin material constituting the stretched multilayer base material.
  • This melt extruded layer may have a multi-layer structure.
  • a heat-sealing layer can be formed by laminating an unstretched film on a stretched multilayer base material via an adhesive layer as needed, or by melt-extruding a heat-sealing resin material onto a stretched multilayer base material. ..
  • the adhesive layer include an adhesive layer described later.
  • the thickness of the heat seal layer is preferably 10 ⁇ m or more and 300 ⁇ m or less, and more preferably 15 ⁇ m or more and 250 ⁇ m or less.
  • the thickness of the heat-sealed layer is appropriately determined according to the mass of the contents to be filled in the packaging material produced by the laminated body of the fifth aspect of the present disclosure from the viewpoint of the strength of the heat-sealed layer and the processability of the laminated body. It is preferable to change it.
  • the thickness of the heat seal layer is preferably 20 ⁇ m or more and 60 ⁇ m or less. In this case, for example, the contents of 1 g or more and 200 g or less are well filled in the pouch.
  • the thickness of the heat seal layer is preferably 40 ⁇ m or more and 200 ⁇ m or less. In this case, for example, the contents of 50 g or more and 2000 g or less are well filled in the stand pouch.
  • the stretched multilayer base material satisfies the rigidity, strength and heat resistance required for the outer layer film of the packaging material, and the heat seal layer enables packaging. Further, the stretched multilayer base material and the heat seal layer are made of the same kind of resin material. Therefore, the laminate is suitable as a material for constituting a packaging material that is required to be recyclable.
  • the laminate of the fifth aspect of the present disclosure comprises only a stretched multilayer base material on which a printed layer is formed, if necessary, and a heat seal layer. In one embodiment, the laminate of the fifth aspect of the present disclosure comprises only a stretched multilayer base material on which a printed layer is formed, an adhesive layer, and a heat seal layer, if necessary. As a result, in the laminate of the fifth aspect of the present disclosure, since each resin layer is composed of the same type of resin material, recyclability can be particularly improved.
  • the laminate of the fifth aspect of the present disclosure is between a stretched multilayer base material and a heat seal layer, between a stretched multilayer base material and a barrier film, and between a barrier film and a heat seal layer.
  • An adhesive layer is provided between any layers such as. This makes it possible to improve the adhesion between the stretched multilayer base material and the heat seal layer and the adhesion between other layers.
  • the adhesive layer is an olefin adhesive. It may be configured by.
  • the adhesive layer is a polyester adhesive. It may be configured by.
  • the polyethylene multilayer base material, the printed base material and the laminate described above in the present disclosure can be suitably used for packaging material applications such as packaging bags.
  • the packaging material of the present disclosure comprises the polyethylene multilayer base material, the printed base material or the laminate described above in the present disclosure, respectively.
  • a packaging material can be manufactured by folding the laminated body in half so that the multilayer base material is located on the outside and the heat-sealing layer on the inside, and stacking them on top of each other, and heat-sealing the ends thereof.
  • a packaging material can be manufactured by superimposing a plurality of the above-mentioned laminated bodies so that the heat-sealing layers face each other and heat-sealing the end portions thereof.
  • the entire packaging material may be composed of the above-mentioned laminate, or a part of the packaging material may be composed of the above-mentioned laminate.
  • the form of the heat seal in the packaging material is, for example, a side seal type, a two-way seal type, a three-way seal type, a four-way seal type, an envelope sticker type, a gassho sticker type (pillow seal type), a fold seal type, and a flat bottom.
  • Examples include a seal type, a square bottom seal type, and a gusset type.
  • a self-supporting packaging bag stand pouch
  • Examples of the heat sealing method include bar sealing, rotary roll sealing, belt sealing, impulse sealing, high frequency sealing, and ultrasonic sealing.
  • a stand pouch having a body and a bottom can be manufactured as follows. First, the body is formed by heat-sealing one or more of the above laminated bodies into a cylindrical shape so that the heat-sealing layer is on the inside. Next, the further laminated body is folded into a V shape so that the heat seal layer is on the outside. The bottom is formed by sandwiching the V-shaped laminate at one end of the body and heat-sealing.
  • only the body portion may be formed by the above-mentioned laminate, only the bottom portion may be formed by the above-mentioned laminate, or both the body portion and the bottom portion may be formed by the above-mentioned laminate. good.
  • Examples of the contents to be filled in the packaging material include liquids, powders and gels, which may be foods or non-foods. After filling the contents in the packaging material, the opening of the packaging material is heat-sealed to obtain a package.
  • the present disclosure relates to, for example, the following [1] to [19].
  • the first polyethylene layer, the second polyethylene layer, and the third polyethylene layer are provided in this order in the thickness direction and are stretched, and the following requirements (A) and / or the following requirements (B) are provided.
  • the indentation hardness of the first polyethylene layer is 2.0 times or more the indentation hardness of the second polyethylene layer
  • the indentation hardness of the third polyethylene layer is the indentation hardness of the second polyethylene layer. It is more than 2.0 times.
  • the polyethylene multilayer substrate has a second polyethylene layer between the first polyethylene layer and the second polyethylene layer, and a second polyethylene layer between the second polyethylene layer and the third polyethylene layer.
  • the indentation elasticity of the second polyethylene layer is 2.0 times or more the indentation elasticity of the second polyethylene layer
  • the indentation elasticity of the second polyethylene layer is the second polyethylene layer.
  • the indentation elasticity of the second polyethylene layer is 2.0 times or more, and / or the indentation hardness of the second polyethylene layer is 1.4 times or more of the indentation hardness of the second polyethylene layer.
  • the indentation hardness is 1.4 times or more the indentation hardness of the second polyethylene layer.
  • a polyethylene multilayer base material provided in this order, and the multilayer base material is stretch-treated, and any polyethylene-containing layers adjacent to each other in the thickness direction in the multilayer base material are described as layers (1) and (2).
  • the absolute value of the difference between the density of the polyethylene constituting the layer (1) and the density of the polyethylene constituting the layer (2) is 0.030 g / cm 3 or less, which is a polyethylene multilayer base material.
  • a fourth layer containing medium-density polyethylene and linear low-density polyethylene, and a fifth layer containing medium-density polyethylene and high-density polyethylene are provided in this order in the thickness direction, and are stretched.
  • Polyethylene multilayer base material [5] A first layer containing medium-density polyethylene and high-density polyethylene, a second layer containing high-density polyethylene, a third layer containing linear low-density polyethylene, and high-density polyethylene.
  • polyethylene multilayer base material according to any one of the above [1] to [5], wherein the polyethylene content in the polyethylene multilayer base material is 80% by mass or more.
  • a printing substrate comprising the polyethylene multilayer substrate according to any one of [1] to [6] above and a printing layer formed on the polyethylene multilayer substrate.
  • a laminate including a polyethylene multilayer base material and a heat seal layer containing polyethylene as a main component, wherein the polyethylene multilayer base material includes a first polyethylene layer, a second polyethylene layer, and a third.
  • the polyethylene layers of the above are provided in this order in the thickness direction and are stretched, and the laminate meets the following requirements (C) and / or the following requirements (D).
  • the polyethylene multilayer substrate has a second polyethylene layer between the first polyethylene layer and the second polyethylene layer, and a second polyethylene layer between the second polyethylene layer and the third polyethylene layer.
  • the indentation elasticity of the second polyethylene layer is 2.0 times or more the indentation elasticity of the second polyethylene layer, and the indentation elasticity of the second polyethylene layer is the second polyethylene layer.
  • the indentation elasticity of the second polyethylene layer is 2.0 times or more, and / or the indentation hardness of the second polyethylene layer is 1.5 times or more of the indentation hardness of the second polyethylene layer.
  • a laminate including a polyethylene multilayer base material and a heat-sealed layer containing polyethylene as a main component, wherein the polyethylene multilayer base material includes a first polyethylene layer, a second polyethylene layer, and a third.
  • the polyethylene layers of the above are provided in this order in the thickness direction and are stretched, and the laminate meets the following requirements (E) and / or the following requirements (F).
  • the indentation hardness of the first polyethylene layer is 45 MPa or more
  • the indentation hardness of the third polyethylene layer is 45 MPa or more.
  • the polyethylene multilayer substrate has a second polyethylene layer between the first polyethylene layer and the second polyethylene layer, and a second polyethylene layer between the second polyethylene layer and the third polyethylene layer.
  • the indentation elasticity of the second polyethylene layer is 0.03 GPa or more and 0.7 GPa or less, and the indentation elasticity of the second polyethylene layer and the indentation elasticity of the second polyethylene layer are, respectively.
  • the indentation hardness of the second polyethylene layer is 1 MPa or more and 40 MPa or less, the indentation hardness of the second polyethylene layer, and the polyethylene layer of the second b.
  • a laminate comprising the polyethylene multilayer substrate according to any one of the above [1] to [6] and a heat seal layer.
  • the heat shrinkage rate in the longitudinal direction (MD) of the laminated body is 15% or less, and the heat shrinkage rate in the vertical direction (TD) with respect to the MD of the laminated body is 15% or less.
  • the laminate according to any one of. [14] A laminate including a base material and a heat seal layer, wherein the base material and the heat seal layer are made of the same type of resin material, and the base material has a multi-layer structure. However, the laminated body is a base material that has been subjected to a stretching treatment, and the heat seal layer is a layer that has not been subjected to a stretching treatment. [15] The laminate according to the above [14], wherein the same type of resin material is polyolefin or polyester.
  • Heat resistance evaluation The heat resistance was evaluated according to the following criteria. AA: During printing, dry laminating, and heat sealing of the laminates produced in each of the following examples, there was no large shrinkage of the base material (stretched multilayer base material or polyethylene film), and the desired product could be produced neatly. BB: During printing, dry laminating, and heat sealing of the laminates produced in each of the following examples, large shrinkage of the base material (stretched multilayer base material or polyethylene film) occurred, and the target product could not be produced neatly.
  • a dumbbell-shaped test piece having a width of 10 mm was cut out from the stretched multilayer base material and the polyethylene film obtained in each of the following examples.
  • the tensile strength of this test piece in the MD direction was measured by a tensile tester (RTC-1310A, manufactured by Orientec).
  • the distance between the chucks was 10 mm, and the tensile speed was 300 mm / min.
  • Stretchability was evaluated according to the following criteria. AA: The base material (polyethylene film) does not break during stretching, and the base material (polyethylene film) does not break. It was able to be stretched stably. BB: The base material (polyethylene film) breaks during stretching, It could not be stretched stably.
  • AA The content ratio of polyethylene in the entire laminate is It was 90% by mass or more.
  • BB The content ratio of polyethylene in the entire laminate is It was 80% by mass or more and less than 90% by mass.
  • CC The content ratio of polyethylene in the entire laminate is It was less than 80% by mass.
  • the above package was freely dropped from a height of 100 cm onto a hard floor 10 times with the body of the package level with the ground.
  • the test was carried out for each of 10 bags, the presence or absence of damage was visually observed, and the heat sealability was evaluated based on the following evaluation criteria.
  • the sample piece after heat sealing is cut into strips with a width of 15 mm, both ends that have not been heat sealed are grasped by a tensile tester, and a tensile test is performed under the conditions of a speed of 300 mm / min and a load range of 50 N. It was confirmed whether or not delamination of the base material or the polyethylene film occurred.
  • AA Delamination of the stretched multilayer base material or polyethylene film did not occur during the tensile test.
  • BB Delamination of the stretched multilayer base material or polyethylene film occurred during the tensile test.
  • Example A The multilayer base material of the first aspect and the second aspect of the present disclosure, and the laminate of the first to fourth aspects will be described more specifically based on Examples, but the multilayer substrate and the laminate of the present disclosure will be described in more detail. Is not limited by the examples.
  • parts by mass is simply referred to as “parts”.
  • the medium density polyethylene (Enable4002MC) is referred to as "MDPE”
  • the high density polyethylene (1) (Elite5960G)
  • the high density polyethylene (2) (H619F) is referred to as “HDPE (1)”.
  • HDPE (2) the linear low density polyethylene (Exceed XP8656ML) is also referred to as“ LLDPE ”
  • the low density polyethylene (LD2420F) is also referred to as“ LDPE ”.
  • Blended polyethylene A1 having an average density of 0.948 g / cm 3 by mixing 70 parts of MDPE and 30 parts of HDPE (1) (hereinafter referred to as “blended PE (A1)” in the column of Example A).
  • blended PE (B1) Blended polyethylene B1 having an average density of 0.950 g / cm 3 by mixing 70 parts of HDPE (2) and 30 parts of LDPE (hereinafter referred to as "blended PE (B1)” in the column of Example A).
  • Blended PE (A1), blended PE (B1) and blended PE (C1) are blended PE (A1) layer (15 ⁇ m) / blended PE (B1) layer (22.5 ⁇ m) / blended PE (C1) by the inflation molding method. ) Layer (50 ⁇ m) / Blend PE (B1) layer (22.5 ⁇ m) / Blend PE (A1) layer (15 ⁇ m) 5 layers are co-extruded with a layer thickness ratio to form a tube-like film, and the total thickness is 125 ⁇ m.
  • the polyethylene film of No. 1 was obtained, and the tubular film was folded at the nip site to form two layers.
  • the numbers in parentheses indicate the layer thickness.
  • the polyethylene film produced above is stretched in the longitudinal direction (MD) at a draw ratio of 5 times, and further, the blended PE (A1) layer (surface layer) on one side is subjected to a corona discharge treatment, and then the end portion is formed.
  • the slit was made and divided into two pieces to obtain a polyethylene multilayer base material (stretched multilayer base material) having a thickness of 25 ⁇ m.
  • Example 2A and Comparative Example 1A A polyethylene film and a stretched multilayer base material were obtained in the same manner as in Example 1A except that the layer structure was changed as shown in Table 5.
  • First linear low density polyethylene (Prime Polymer, SP2520, density: 0.925 g / cm 3 , melting point: 122 ° C) and second linear low density polyethylene (Prime Polymer, SP0510, A density: 0.903 g / cm 3 , melting point: 98 ° C.) was extruded in multiple layers by an inflation molding method, and a first linear low-density polyethylene layer with a thickness of 20 ⁇ m and a second layer with a thickness of 20 ⁇ m were formed.
  • An unstretched polyethylene film provided with the linear low-density polyethylene layer of the above was prepared. This unstretched polyethylene film was used as a heat seal layer as described below.
  • the first linear low-density polyethylene layer side of the unstretched polyethylene film (heat-sealed layer) produced above and the corona discharge-treated surface side of the stretched multilayer base material obtained in Examples and Comparative Examples are 2
  • a laminated body was obtained by dry laminating via a liquid-curable urethane adhesive (Ru-77T / H-7 manufactured by Rock Paint Co., Ltd.).
  • the thickness of the adhesive layer was 3.0 ⁇ m.
  • the measurement conditions are as follows. An indenter was pushed into the polyethylene layer from a cross section parallel to the TD direction of the stretched multilayer substrate and the laminate to a pushing depth of 200 nm over 10 seconds, and held in that state for 5 seconds. Then, the load was removed over 10 seconds. As a result, the maximum load Pmax, the contact projected area A at the maximum depth, and the load-displacement curve could be obtained, and the elastic modulus and the hardness were calculated from the obtained load-displacement curve.
  • the measurement was carried out in a room temperature (25 ° C.) environment.
  • the cross section was prepared by cutting the stretched multilayer base material and the laminate in parallel with the TD direction in an environment of -100 ° C using a cryoultra microtome. Finishing was done with a diamond knife. The thickness of each layer can also be measured by observing the above cross section.
  • Example B The multilayer base material of the third aspect and the fourth aspect of the present disclosure will be described more specifically based on the examples, but the multilayer base material of the present disclosure is not limited by the examples.
  • parts by mass is simply referred to as “parts”.
  • the medium density polyethylene (Elite5538G) is also referred to as "MDPE”
  • the high density polyethylene (Elite5960G)
  • HDPE high density polyethylene
  • LLDPE linear low density polyethylene
  • Blended polyethylene B1 70 parts of MDPE and 30 parts of LLDPE were mixed to obtain a blended polyethylene B1 having an average density of 0.934 g / cm 3 (hereinafter referred to as "blended PE (B1)" in the column of Example B).
  • B1 blended polyethylene B1 having an average density of 0.934 g / cm 3
  • B1 blended polyethylene B1 having an average density of 0.934 g / cm 3
  • B1 blended polyethylene B1 having an average density of 0.934 g / cm 3
  • B1 blended polyethylene B1 having an average density of 0.934 g / cm 3
  • B1 blended polyethylene B1 having an average density of 0.934 g / cm 3
  • B1 blended polyethylene B1 having an average density of 0.934 g / cm 3
  • C blended polyethylene C having an average density of 0.947 g / cm 3
  • Blended polyethylene D 30 parts of MDPE and 70 parts of HDPE were mixed to obtain a blended polyethylene D having an average density of 0.954 g / cm 3 (hereinafter referred to as "blended PE (D)" in the column of Example B). ..
  • MDPE, HDPE and blend PE (A) are subjected to MDPE layer (15 ⁇ m) / HDPE layer (22.5 ⁇ m) / blend PE (A) layer (50 ⁇ m) / HDPE layer (22.5 ⁇ m) / MDPE layer by inflation molding method.
  • Five layers were co-extruded at a layer thickness ratio of (15 ⁇ m) to form a tubular film, a polyethylene film having a total thickness of 125 ⁇ m was obtained, and the tubular film was folded at the nip site to form two layers.
  • the numbers in parentheses indicate the layer thickness.
  • the polyethylene film produced above is stretched in the longitudinal direction (MD) at a draw ratio of 5 times, and further, the MDPE layer (surface layer) on one side is subjected to a corona discharge treatment, and then the end portion is slit and 2
  • the sheets were divided into sheets to obtain a stretched multilayer substrate having a thickness of 25 ⁇ m.
  • LLDPE, blended PE (B) and blended PE (C) are blended PE (C) layer (15 ⁇ m) / blended PE (B) layer (22.5 ⁇ m) / LLDPE layer (50 ⁇ m) / blended PE by the inflation molding method.
  • Five layers were co-extruded at a layer thickness ratio of (B) layer (22.5 ⁇ m) / blended PE (C) layer (15 ⁇ m) to form a tube-like film, and a polyethylene film with a total thickness of 125 ⁇ m was obtained.
  • the shape of the film was folded at the nip and two layers were stacked.
  • the numbers in parentheses indicate the layer thickness.
  • the polyethylene film produced above is stretched in the longitudinal direction (MD) at a draw ratio of 5 times, and further, the blended PE (C) layer (surface layer) on one side is subjected to a corona discharge treatment, and then the end portion is formed.
  • the slit was made and divided into two pieces to obtain a stretched multilayer base material (Example 3B) having a thickness of 25 ⁇ m. Further, the blended PE (C) layer (surface layer) on one side of the polyethylene film produced above was subjected to a corona discharge treatment (Reference Example 1B).
  • Examples 2B, 4B to 5B and Comparative Examples 1B to 2B A polyethylene film and a stretched multilayer base material were obtained in the same manner as in Example 1B except that the layer structure was changed as described in Tables 6 and 7.
  • First linear low density polyethylene (Prime Polymer, SP2520, density: 0.925 g / cm 3 , melting point: 122 ° C) and second linear low density polyethylene (Prime Polymer, SP1520, A density: 0.913 g / cm 3 , melting point: 116 ° C.) was extruded in multiple layers by an inflation molding method, and a first linear low-density polyethylene layer with a thickness of 20 ⁇ m and a second layer with a thickness of 20 ⁇ m were formed.
  • An unstretched polyethylene film provided with the linear low-density polyethylene layer of the above was prepared. This unstretched polyethylene film was used as a heat seal layer as described below.
  • the first linear low-density polyethylene layer side of the unstretched polyethylene film (heat-sealed layer) produced above, the stretched multilayer base material obtained in Examples and Comparative Examples, or the polyethylene film obtained in Reference Example. was dry-laminated via a two-component curable urethane adhesive (Ru-77T / H-7, manufactured by Rock Paint Co., Ltd.) to obtain a laminated body.
  • the laminate prepared above was cut into 10 cm ⁇ 10 cm to prepare three sample pieces. Each sample piece was folded in half so that the heat seal layer side was on the inside, and a 1 cm ⁇ 10 cm area was heat-sealed using a heat seal tester under the conditions of a temperature of 140 ° C., a pressure of 1 kgf / cm 2 , and 1 second.
  • the above evaluation results are shown in Tables 6 and 7.
  • Example C The multilayer base material of the fifth aspect of the present disclosure will be described in more detail based on Examples, but the multilayer base material of the present disclosure is not limited to the examples.
  • parts by mass is simply referred to as “parts”.
  • the medium density polyethylene (Enable4002MC) is referred to as "MDPE”
  • the high density polyethylene (1) (Elite5960G)
  • the high density polyethylene (2) (H619F) is referred to as “HDPE (1)”.
  • HDPE (2) the linear low density polyethylene (Exceed XP8656ML) is also referred to as“ LLDPE ”
  • the low density polyethylene (LD2420F) is also referred to as“ LDPE ”.
  • Blended polyethylene A1 having an average density of 0.948 g / cm 3 by mixing 70 parts of MDPE and 30 parts of HDPE (1) (hereinafter referred to as “blended PE (A1)” in the column of Example C).
  • blended PE (B1) Blended polyethylene B1 having an average density of 0.950 g / cm 3 by mixing 70 parts of HDPE (2) and 30 parts of LDPE (hereinafter referred to as "blended PE (B1)” in the column of Example C).
  • Blended polyethylene A2 69 parts of MDPE, 30 parts of HDPE (1) and 1 part of slip agent-containing MB are mixed and blended polyethylene A2 having an average density of 0.948 g / cm 3 (in the column of Example C, hereinafter “blended”.
  • PE (A2) was obtained.
  • Blended polyethylene B2 69 parts of HDPE (2), 30 parts of LDPE, and 1 part of slip agent-containing MB are mixed and blended polyethylene B2 with an average density of 0.949 g / cm 3 (in the column of Example C, hereinafter “blended”.
  • PE (B2) ”) was obtained.
  • Blended polyethylene C2 having an average density of 0.916 g / cm 3 by mixing 99 parts of LLDPE and 1 part of slip agent-containing MB (hereinafter referred to as "blended PE (C2)" in the column of Example C).
  • Blended polyethylene C3 68 parts of LLDPE, 30 parts of LDPE, and 2 parts of slip agent-containing MB are mixed to make a blended polyethylene C3 having an average density of 0.918 g / cm 3 (in the column of Example C, hereinafter, "blended PE (C3)”. ) ”) was obtained.
  • Blended PE (A1), blended PE (B1) and blended PE (C1) are blended PE (A1) layer (15 ⁇ m) / blended PE (B1) layer (22.5 ⁇ m) / blended PE (C1) by the inflation molding method. ) Layer (50 ⁇ m) / Blend PE (B1) layer (22.5 ⁇ m) / Blend PE (A1) layer (15 ⁇ m) 5 layers are co-extruded with a layer thickness ratio to form a tube-like film, and the total thickness is 125 ⁇ m.
  • the polyethylene film of No. 1 was obtained, and the tubular film was folded at the nip site to form two layers.
  • the numbers in parentheses indicate the layer thickness.
  • the polyethylene film produced above is stretched in the longitudinal direction (MD) at a draw ratio of 5 times, and further, the blended PE (A1) layer (surface layer) on one side is subjected to a corona discharge treatment, and then the end portion is formed.
  • the slit was made and divided into two pieces to obtain a stretched multilayer base material having a thickness of 25 ⁇ m.
  • Example 2C and 3C, Comparative Examples 1C and 2C A polyethylene film and a stretched multilayer base material were obtained in the same manner as in Example 1C except that the layer structure was changed as shown in Table 8.
  • the slip agent-containing MB is simply referred to as “MB”.
  • Blended PE (A1), blended PE (B1) and blended PE (C1) are blended PE (A1) layer (12 ⁇ m) / blended PE (B1) layer (18 ⁇ m) / blended PE (C1) layer by an inflation molding method.
  • a polyethylene film having a total thickness of 100 ⁇ m was formed by co-extruding 5 layers at a layer thickness ratio of (40 ⁇ m) / blend PE (B1) layer (18 ⁇ m) / blend PE (A1) layer (12 ⁇ m) to form a tube. Obtained, the tubular film was folded at the nip portion, and two sheets were stacked. The numbers in parentheses indicate the layer thickness.
  • the polyethylene film produced above is stretched in the longitudinal direction (MD) at a draw ratio of 5 times, and further, the blended PE (A1) layer (surface layer) on one side is subjected to a corona discharge treatment, and then the end portion is formed.
  • the slit was made and divided into two pieces to obtain a stretched multilayer base material having a thickness of 20 ⁇ m.
  • Example 5C and 6C A polyethylene film and a stretched multilayer base material were obtained in the same manner as in Example 4C except that the layer structure was changed as shown in Table 9.
  • the slip agent-containing MB is simply referred to as “MB”.
  • First linear low density polyethylene (Prime Polymer, SP2520, density: 0.925 g / cm 3 , melting point: 122 ° C) and second linear low density polyethylene (Prime Polymer, SP1520, A density: 0.913 g / cm 3 , melting point: 116 ° C.) was extruded in multiple layers by an inflation molding method, and a first linear low-density polyethylene layer with a thickness of 20 ⁇ m and a second layer with a thickness of 20 ⁇ m were formed.
  • An unstretched polyethylene film provided with the linear low-density polyethylene layer of the above was prepared. This unstretched polyethylene film was used as a heat seal layer as described below.
  • the laminate prepared above was cut into 10 cm ⁇ 10 cm to prepare three sample pieces. Each sample piece was folded in half so that the heat seal layer side was on the inside, and a 1 cm ⁇ 10 cm area was heat-sealed using a heat seal tester under the conditions of a temperature of 140 ° C., a pressure of 1 kgf / cm 2 , and 1 second.
  • the above evaluation results are shown in Tables 8 and 9.
  • Example D The laminate of the fifth aspect of the present disclosure will be described more specifically based on the examples, but the laminate of the fifth aspect of the present disclosure is not limited by the examples.
  • parts by mass is simply referred to as “parts”.
  • the medium density polyethylene (Elite5538G) is also referred to as "MDPE”
  • the high density polyethylene (Elite5960G)
  • HDPE high density polyethylene
  • LLDPE linear low density polyethylene
  • Blended polyethylene B1 70 parts of MDPE and 30 parts of LLDPE were mixed to obtain a blended polyethylene B1 having an average density of 0.934 g / cm 3 (hereinafter referred to as "blended PE (B1)" in the column of Example D).
  • B1 blended polyethylene B1 having an average density of 0.934 g / cm 3
  • B1 blended polyethylene B1 having an average density of 0.934 g / cm 3
  • B1 blended polyethylene B1 having an average density of 0.934 g / cm 3
  • B1 blended polyethylene B1 having an average density of 0.934 g / cm 3
  • B1 blended polyethylene B1 having an average density of 0.934 g / cm 3
  • B1 blended polyethylene B1 having an average density of 0.934 g / cm 3
  • C blended polyethylene C having an average density of 0.947 g / cm 3
  • Blended polyethylene D 30 parts of MDPE and 70 parts of HDPE were mixed to obtain a blended polyethylene D having an average density of 0.954 g / cm 3 (hereinafter referred to as "blended PE (D)" in the column of Example D). ..
  • MDPE, HDPE and blend PE (A) are subjected to MDPE layer (15 ⁇ m) / HDPE layer (22.5 ⁇ m) / blend PE (A) layer (50 ⁇ m) / HDPE layer (22.5 ⁇ m) / MDPE layer by inflation molding method.
  • Five layers were co-extruded at a layer thickness ratio of (15 ⁇ m) to form a tubular film, a polyethylene film having a total thickness of 125 ⁇ m was obtained, and the tubular film was folded at the nip site to form two layers.
  • the numbers in parentheses indicate the layer thickness.
  • the polyethylene film produced above is stretched in the longitudinal direction (MD) at a draw ratio of 5 times, and further, the MDPE layer (surface layer) on one side is subjected to a corona discharge treatment, and then the end portion is slit and 2
  • the sheets were divided into sheets to obtain a stretched multilayer substrate having a thickness of 25 ⁇ m.
  • First linear low density polyethylene (Prime Polymer, SP2520, density: 0.925 g / cm 3 , melting point: 122 ° C) and second linear low density polyethylene (Prime Polymer, SP1520, A density: 0.913 g / cm 3 , melting point: 116 ° C.) was extruded in multiple layers by an inflation molding method, and a first linear low-density polyethylene layer with a thickness of 20 ⁇ m and a second layer with a thickness of 20 ⁇ m were formed.
  • An unstretched polyethylene film having a multilayer structure including the linear low-density polyethylene layer of the above was prepared.
  • the unstretched polyethylene film having this multilayer structure was used as a heat seal layer as described below.
  • the first linear low-density polyethylene layer side of the unstretched polyethylene film (heat seal layer) having the multilayer structure produced above and the stretched multilayer substrate prepared above are bonded to a two-component curable urethane adhesive. (Ru-77T / H-7 manufactured by Rock Paint Co., Ltd.) was dry-laminated to obtain a laminated body.
  • Examples 2D to 7D A laminated body was obtained in the same manner as in Example 1D except that the layer structure of the stretched multilayer base material was changed as shown in Table 10.
  • the multilayer base material and the like of the present disclosure are not limited by the description of the above-mentioned Examples, and the above-mentioned Examples and the specification are merely for explaining the principle of the present disclosure.
  • Various modifications or improvements may be made as long as they do not deviate from the gist and scope of the disclosure, and any of these modifications or improvements are included within the scope of the present disclosure for which protection is claimed.
  • the scope of the claims for protection includes not only the description of the claims but also the equivalent thereof.
  • Polyethylene multilayer base material 10a Base material (stretched multilayer base material) 12: Layer (A) 14: Layer (C) 16: Multilayer intermediate layer (B) 12, 14, 18, 20, 22: Layers constituting the polyethylene multilayer base material 30: Laminated body 32: Heat seal layer 34: Barrier layer 36: Adhesive layer

Abstract

A polyethylene multilayer base material which is sequentially provided with a first polyethylene layer, a second polyethylene layer and a third polyethylene layer in this order in the thickness direction, and which is obtained by drawing, while satisfying the requirement (A) and/or the requirement (B). Requirement (A): The indentation elastic modulus of the first polyethylene layer is not less than 3.0 times the indentation elastic modulus of the second polyethylene layer; and the indentation elastic modulus of the third polyethylene layer is not less than 3.0 times the indentation elastic modulus of the second polyethylene layer. Requirement (B): The indentation hardness of the first polyethylene layer is not less than 2.0 times the indentation hardness of the second polyethylene layer; and the indentation hardness of the third polyethylene layer is not less than 2.0 times the indentation hardness of the second polyethylene layer.

Description

ポリエチレン多層基材、印刷基材、積層体及び包装材料Polyethylene multilayer base material, printing base material, laminate and packaging material 関連出願の相互参照Cross-reference of related applications
 本願は、2020年10月30日に出願された日本国特許出願2020-182776号、2020年10月30日に出願された日本国特許出願2020-182808号、2021年4月19日に出願された日本国特許出願2021-070459号、2021年4月19日に出願された日本国特許出願2021-070440号、2021年8月6日に出願された日本国特許出願2021-130255号、2021年10月8日に出願された日本国特許出願2021-166442号及び2021年10月8日に出願された日本国特許出願2021-166438号に基づく優先権を主張するものであり、これら全体の開示内容は参照されることにより、本明細書の開示の一部とされる。 This application is filed in Japanese Patent Application No. 2020-182776 filed on October 30, 2020, Japanese Patent Application No. 2020-182808 filed on October 30, 2020, and filed on April 19, 2021. Japanese Patent Application No. 2021-070459, Japanese Patent Application No. 2021-070440 filed on April 19, 2021, Japanese Patent Application No. 2021-130255 filed on August 6, 2021 It claims priority based on Japanese Patent Application No. 2021-166442 filed on October 8, and Japanese Patent Application No. 2021-166438 filed on October 8, 2021, and disclosure of these in its entirety. The contents are by reference as part of the disclosure herein.
 本開示は、ポリエチレン多層基材、印刷基材、積層体及び包装材料に関する。 The present disclosure relates to polyethylene multilayer base materials, printing base materials, laminates and packaging materials.
 従来、包装材料などは、樹脂材料により構成される樹脂フィルムを用いて製造されている。包装材料は、例えば、基材と、ヒートシール層とを備える。例えば、ポリエチレン等のポリオレフィンにより構成される樹脂フィルムは、柔軟性及び透明性を有すると共に、ヒートシール性に優れることから、包装材料におけるヒートシール層として広く使用されている(例えば、特許文献1参照)。 Conventionally, packaging materials and the like are manufactured using a resin film composed of a resin material. The packaging material includes, for example, a base material and a heat seal layer. For example, a resin film made of a polyolefin such as polyethylene has flexibility and transparency, and is excellent in heat-sealing property, so that it is widely used as a heat-sealing layer in a packaging material (see, for example, Patent Document 1). ).
 一方、ポリエチレンは、他の熱可塑性樹脂と比較して、比較的低温で軟化する樹脂であるため、包装材料の基材として使用するとヒートシート加工する際に変形したり場合によっては溶融したりすることがある。また、ポリエチレンフィルムは、他の熱可塑性樹脂フィルムと比較して、強度が不充分であることがある。このため、包装材料の基材としては、ポリエステルフィルム及びナイロンフィルム等の強度及び耐熱性に優れる樹脂フィルムを使用するのが一般的である。例えば、ポリエステルフィルム及びナイロンフィルム等の基材とポリエチレンフィルムとを積層し、ポリエチレンフィルム側が包装袋の内側になるようにしてヒートシールすることにより製袋することが行われている(例えば、特許文献2の背景技術参照)。 On the other hand, polyethylene is a resin that softens at a relatively low temperature compared to other thermoplastic resins, so when used as a base material for packaging materials, it may be deformed or melted during heat sheet processing. Sometimes. In addition, the polyethylene film may have insufficient strength as compared with other thermoplastic resin films. Therefore, as the base material of the packaging material, it is common to use a resin film having excellent strength and heat resistance such as a polyester film and a nylon film. For example, a base material such as a polyester film or a nylon film and a polyethylene film are laminated and heat-sealed so that the polyethylene film side is inside the packaging bag to make a bag (for example, Patent Document). See background technology in 2).
 ところで、近年、循環型社会の構築を求める声の高まりとともに、包装材料をリサイクルして使用することが試みられている。しかしながら、上記のような異種の樹脂フィルムを貼り合わせて得られた積層体では、樹脂材料の種類ごとに分離することが難しく、リサイクルに適していない。 By the way, in recent years, with the growing demand for the construction of a sound material-cycle society, attempts have been made to recycle and use packaging materials. However, the laminate obtained by laminating different types of resin films as described above is difficult to separate for each type of resin material and is not suitable for recycling.
特開2009-202519号公報Japanese Unexamined Patent Publication No. 2009-20251 特開2017-031233号公報Japanese Unexamined Patent Publication No. 2017-031233
 そこで本開示者らは、ポリエチレンから構成される樹脂フィルムの強度及び耐熱性を延伸処理により向上できることを見出し、基材として、ポリエチレンを含有する層を複数備え、延伸処理されてなるポリエチレン多層基材を用いることを検討した。 Therefore, the present disclosures have found that the strength and heat resistance of a resin film made of polyethylene can be improved by a stretching treatment, and a polyethylene multilayer base material having a plurality of polyethylene-containing layers as a base material and being stretched is provided. Was considered to be used.
 包装材料などに使用される基材には、例えば、包装材料のヒートシール時に熱が付加される。しかしながら、本開示者らは、上記ポリエチレン多層基材を備える積層体は、熱付加による熱収縮が大きい場合があり、耐熱性が充分ではない場合があることを見出した。 Heat is applied to the base material used for packaging materials, for example, when the packaging material is heat-sealed. However, the present disclosures have found that the laminate provided with the polyethylene multilayer base material may have large heat shrinkage due to heat addition and may not have sufficient heat resistance.
 また、包装材料などに使用される基材には、通常、文字及び図形等の画像がインキを用いて印刷される。しかしながら、本開示者らのさらなる検討によれば、ポリエチレン多層基材は、インキ密着性が充分ではない場合や、また層間強度が充分ではない場合があることがわかった。また、ポリエチレン多層基材は、印刷時等において熱が付加されることがあることから、耐熱性に優れることが好ましい。 In addition, images such as characters and figures are usually printed using ink on the base material used for packaging materials and the like. However, according to further studies by the present disclosers, it has been found that the polyethylene multilayer base material may not have sufficient ink adhesion or may not have sufficient interlayer strength. Further, the polyethylene multilayer base material is preferably excellent in heat resistance because heat may be applied at the time of printing or the like.
 本開示の一つの課題は、耐熱性に優れるポリエチレン多層基材を提供することにある。
 本開示の一つの課題は、インキ密着性及び層間強度に優れるポリエチレン多層基材を提供することにある。
 本開示の一つの課題は、インキ密着性及び耐熱性に優れるポリエチレン多層基材を提供することにある。
 本開示の一つの課題は、ポリエチレン多層基材と、ポリエチレンを主成分として含有するヒートシール層とを備え、耐熱性に優れる積層体を提供することにある。
 本開示の一つの課題は、強度、ヒートシール性及びリサイクル性を兼ね備え、包装材料として好適に使用できる積層体を提供することにある。
One object of the present disclosure is to provide a polyethylene multilayer base material having excellent heat resistance.
One object of the present disclosure is to provide a polyethylene multilayer base material having excellent ink adhesion and interlayer strength.
One object of the present disclosure is to provide a polyethylene multilayer base material having excellent ink adhesion and heat resistance.
One object of the present disclosure is to provide a laminate having a polyethylene multilayer base material and a heat seal layer containing polyethylene as a main component and having excellent heat resistance.
One object of the present disclosure is to provide a laminate which has strength, heat sealability and recyclability and can be suitably used as a packaging material.
 本開示の第1の態様及び第2の態様のポリエチレン多層基材は、第1のポリエチレン層と、第2のポリエチレン層と、第3のポリエチレン層とを厚さ方向にこの順に備え、延伸処理されてなり、後述する要件(A)及び/又は要件(B)を充たす。 The polyethylene multilayer base material of the first aspect and the second aspect of the present disclosure is provided with a first polyethylene layer, a second polyethylene layer, and a third polyethylene layer in this order in the order of thickness, and is subjected to stretching treatment. Then, the requirement (A) and / or the requirement (B) described later is satisfied.
 本開示の第3の態様のポリエチレン多層基材は、中密度ポリエチレンを含有する層(A)と、それぞれポリエチレンを含有する、2層以上の多層中間層(B)と、中密度ポリエチレンを含有する層(C)とを、厚さ方向にこの順に備え、延伸処理されており、多層基材における、厚さ方向において任意の互いに隣接するポリエチレン含有層を層(1)及び層(2)と記載する場合に、層(1)を構成するポリエチレンの密度と、層(2)を構成するポリエチレンの密度との差の絶対値が、0.030g/cm以下である。 The polyethylene multilayer base material of the third aspect of the present disclosure contains a layer (A) containing medium-density polyethylene, two or more layers of multi-layer intermediate layers (B) containing polyethylene, respectively, and medium-density polyethylene. The layer (C) is provided in this order in the thickness direction and is stretched, and any polyethylene-containing layers adjacent to each other in the thickness direction in the multilayer substrate are described as the layer (1) and the layer (2). In this case, the absolute value of the difference between the density of the polyethylene constituting the layer (1) and the density of the polyethylene constituting the layer (2) is 0.030 g / cm 3 or less.
 本開示の第4の態様のポリエチレン多層基材は、中密度ポリエチレン及び高密度ポリエチレンを含有する第1の層と、中密度ポリエチレン及び直鎖状低密度ポリエチレンを含有する第2の層と、直鎖状低密度ポリエチレンを含有する第3の層と、中密度ポリエチレン及び直鎖状低密度ポリエチレンを含有する第4の層と、中密度ポリエチレン及び高密度ポリエチレンを含有する第5の層とを、厚さ方向にこの順に備え、延伸処理されてなる。 The polyethylene multilayer substrate of the fourth aspect of the present disclosure is directly composed of a first layer containing medium density polyethylene and high density polyethylene, and a second layer containing medium density polyethylene and linear low density polyethylene. A third layer containing chain low density polyethylene, a fourth layer containing medium density polyethylene and linear low density polyethylene, and a fifth layer containing medium density polyethylene and high density polyethylene. It is prepared in this order in the thickness direction and is stretched.
 本開示の第5の態様のポリエチレン多層基材は、中密度ポリエチレン及び高密度ポリエチレンを含有する第1の層と、高密度ポリエチレンを含有する第2の層と、直鎖状低密度ポリエチレンを含有する第3の層と、高密度ポリエチレンを含有する第4の層と、中密度ポリエチレン及び高密度ポリエチレンを含有する第5の層とを、厚さ方向にこの順に備え、延伸処理されてなる。 The polyethylene multilayer substrate of the fifth aspect of the present disclosure contains a first layer containing medium density polyethylene and high density polyethylene, a second layer containing high density polyethylene, and linear low density polyethylene. A third layer to be used, a fourth layer containing high-density polyethylene, and a fifth layer containing medium-density polyethylene and high-density polyethylene are provided in this order in the thickness direction and are stretched.
 本開示の第1の態様及び第2の態様の積層体は、ポリエチレン多層基材と、ポリエチレンを主成分として含有するヒートシール層とを備え、ポリエチレン多層基材が、第1のポリエチレン層と、第2のポリエチレン層と、第3のポリエチレン層とを厚さ方向にこの順に備え、延伸処理されてなり、積層体が、後述する要件(C)及び/又は要件(D)を充たす。 The laminate of the first aspect and the second aspect of the present disclosure includes a polyethylene multilayer base material and a heat-sealed layer containing polyethylene as a main component, and the polyethylene multilayer base material includes a first polyethylene layer and a polyethylene layer. The second polyethylene layer and the third polyethylene layer are provided in this order in the thickness direction and are stretched, and the laminate satisfies the requirements (C) and / or the requirements (D) described later.
 本開示の第3の態様及び第4の態様の積層体は、ポリエチレン多層基材と、ポリエチレンを主成分として含有するヒートシール層とを備え、ポリエチレン多層基材が、第1のポリエチレン層と、第2のポリエチレン層と、第3のポリエチレン層とを厚さ方向にこの順に備え、延伸処理されてなり、積層体が、後述する要件(E)及び/又は要件(F)を充たす。 The laminate of the third aspect and the fourth aspect of the present disclosure includes a polyethylene multilayer base material and a heat seal layer containing polyethylene as a main component, and the polyethylene multilayer base material includes a first polyethylene layer and a polyethylene layer. The second polyethylene layer and the third polyethylene layer are provided in this order in the thickness direction and are stretched, and the laminate satisfies the requirements (E) and / or the requirements (F) described later.
 本開示の第5の態様の積層体は、基材と、ヒートシール層とを備え、基材とヒートシール層とが、同種の樹脂材料により構成され、基材が、多層構造を有しており、基材が、延伸処理が施された基材であり、ヒートシール層が、延伸処理が施されていない層である。 The laminate of the fifth aspect of the present disclosure includes a base material and a heat seal layer, the base material and the heat seal layer are made of the same type of resin material, and the base material has a multilayer structure. The base material is the base material that has been stretched, and the heat seal layer is the layer that has not been stretched.
 本開示によれば、耐熱性に優れる第1の態様及び第2の態様のポリエチレン多層基材を提供できる。本開示によれば、インキ密着性及び層間強度に優れる第3の態様のポリエチレン多層基材を提供できる。本開示によれば、インキ密着性及び耐熱性に優れる第4の態様及び第5の態様のポリエチレン多層基材を提供できる。本開示によれば、ポリエチレン多層基材と、ポリエチレンを主成分として含有するヒートシール層とを備え、耐熱性に優れる第1~第4の態様の積層体を提供できる。本開示によれば、強度、ヒートシール性及びリサイクル性を兼ね備え、包装材料として好適に使用できる第5の態様の積層体を提供できる。 According to the present disclosure, it is possible to provide the polyethylene multilayer base material of the first aspect and the second aspect, which are excellent in heat resistance. According to the present disclosure, it is possible to provide a polyethylene multilayer base material according to a third aspect, which is excellent in ink adhesion and interlayer strength. According to the present disclosure, it is possible to provide the polyethylene multilayer base material of the fourth aspect and the fifth aspect, which are excellent in ink adhesion and heat resistance. According to the present disclosure, it is possible to provide a laminate of the first to fourth aspects, which comprises a polyethylene multilayer base material and a heat seal layer containing polyethylene as a main component, and has excellent heat resistance. According to the present disclosure, it is possible to provide a laminate of a fifth aspect, which has strength, heat sealability and recyclability and can be suitably used as a packaging material.
本開示のポリエチレン多層基材の一実施形態を示す断面概略図である。It is sectional drawing which shows one Embodiment of the polyethylene multilayer base material of this disclosure. 本開示のポリエチレン多層基材の一実施形態を示す断面概略図である。It is sectional drawing which shows one Embodiment of the polyethylene multilayer base material of this disclosure. 本開示の積層体の一実施形態を示す断面概略図である。It is sectional drawing which shows one Embodiment of the laminated body of this disclosure. 本開示の積層体の一実施形態を示す断面概略図である。It is sectional drawing which shows one Embodiment of the laminated body of this disclosure. 本開示の積層体の一実施形態を示す断面概略図である。It is sectional drawing which shows one Embodiment of the laminated body of this disclosure. 本開示の積層体の一実施形態を示す断面概略図である。It is sectional drawing which shows one Embodiment of the laminated body of this disclosure. 積層体の熱収縮率の測定方法を説明する概略図である。It is a schematic diagram explaining the method of measuring the heat shrinkage rate of a laminated body. 本開示の積層体の一実施形態を示す断面概略図である。It is sectional drawing which shows one Embodiment of the laminated body of this disclosure. 本開示の積層体の一実施形態を示す断面概略図である。It is sectional drawing which shows one Embodiment of the laminated body of this disclosure.
 [用語]
 以下、本開示において使用する用語を説明する。
 「ポリエチレン」とは、エチレン由来の構成単位の含有割合が、全繰返し構成単位中、50モル%以上の重合体をいう。該重合体において、エチレン由来の構成単位の含有割合は、好ましくは70モル%以上、より好ましくは80モル%以上、さらに好ましくは90モル%以上、特に好ましくは95モル%以上である。上記含有割合は、核磁気共鳴法(NMR法)により測定する。
[the term]
The terms used in the present disclosure will be described below.
"Polyethylene" refers to a polymer in which the content ratio of ethylene-derived constituent units is 50 mol% or more in all the repeating constituent units. In the polymer, the content ratio of the structural unit derived from ethylene is preferably 70 mol% or more, more preferably 80 mol% or more, still more preferably 90 mol% or more, and particularly preferably 95 mol% or more. The above content ratio is measured by a nuclear magnetic resonance method (NMR method).
 「ポリエチレン層」とは、ポリエチレンを主成分として含有する層であり、すなわちポリエチレンを50質量%超の範囲で含有する層である。ポリエチレン層におけるポリエチレンの含有割合は、好ましくは60質量%以上、より好ましくは70質量%以上、さらに好ましくは80質量%以上、85質量%以上、90質量%以上、又は95質量%以上である。 The "polyethylene layer" is a layer containing polyethylene as a main component, that is, a layer containing polyethylene in a range of more than 50% by mass. The content ratio of polyethylene in the polyethylene layer is preferably 60% by mass or more, more preferably 70% by mass or more, still more preferably 80% by mass or more, 85% by mass or more, 90% by mass or more, or 95% by mass or more.
 本開示において、各ポリエチレンの密度は好ましくは以下のとおりである。高密度ポリエチレンの密度は、好ましくは0.945g/cmを超える。高密度ポリエチレンの密度の上限は、例えば0.965g/cmである。中密度ポリエチレンの密度は、好ましくは0.925g/cmを超えて0.945g/cm以下である。低密度ポリエチレンの密度は、好ましくは0.900g/cmを超えて0.925g/cm以下である。直鎖状低密度ポリエチレンの密度は、好ましくは0.900g/cmを超えて0.925g/cm以下である。超低密度ポリエチレンの密度は、好ましくは0.900g/cm以下である。超低密度ポリエチレンの密度の下限は、例えば0.860g/cmである。ポリエチレンの密度は、JIS K7112(1999)、特にD法(密度勾配管法、23℃)、に準拠して測定する。 In the present disclosure, the density of each polyethylene is preferably as follows. The density of high density polyethylene preferably exceeds 0.945 g / cm 3 . The upper limit of the density of high-density polyethylene is, for example, 0.965 g / cm 3 . The density of the medium density polyethylene is preferably more than 0.925 g / cm 3 and 0.945 g / cm 3 or less. The density of the low density polyethylene is preferably more than 0.900 g / cm 3 and 0.925 g / cm 3 or less. The density of the linear low density polyethylene is preferably more than 0.900 g / cm 3 and 0.925 g / cm 3 or less. The density of the ultra-low density polyethylene is preferably 0.900 g / cm 3 or less. The lower limit of the density of ultra-low density polyethylene is, for example, 0.860 g / cm 3 . The density of polyethylene is measured according to JIS K7112 (1999), particularly the D method (density gradient tube method, 23 ° C.).
 本開示において、ポリエチレンとしては、例えば、エチレンの単独重合体、及びエチレンと他のモノマーとの共重合体が挙げられる。他のモノマーとしては、例えば、炭素数3以上20以下のα-オレフィン、酢酸ビニル、及び(メタ)アクリル酸エステルが挙げられる。炭素数3以上20以下のα-オレフィンとしては、例えば、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン、3-メチル-1-ブテン、4-メチル-1-ペンテン及び6-メチル-1-ヘプテンが挙げられる。(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸メチル及び(メタ)アクリル酸エチルなどの(メタ)アクリル酸アルキルが挙げられる。 In the present disclosure, examples of polyethylene include homopolymers of ethylene and copolymers of ethylene and other monomers. Examples of other monomers include α-olefins having 3 or more carbon atoms and 20 or less carbon atoms, vinyl acetate, and (meth) acrylic acid esters. Examples of the α-olefin having 3 or more carbon atoms and 20 or less carbon atoms include propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, and 1 -Octadecene, 1-eicosene, 3-methyl-1-butene, 4-methyl-1-pentene and 6-methyl-1-heptene can be mentioned. Examples of the (meth) acrylic acid ester include alkyl (meth) acrylates such as methyl (meth) acrylate and ethyl (meth) acrylate.
 上記共重合体としては、例えば、エチレンと、炭素数3以上20以下のα-オレフィンとの共重合体、エチレンと、酢酸ビニル及び(メタ)アクリル酸エステルから選択される少なくとも1種との共重合体、並びにエチレンと、炭素数3以上20以下のα-オレフィンと、酢酸ビニル及び(メタ)アクリル酸エステルから選択される少なくとも1種との共重合体が挙げられる。 Examples of the copolymer include a copolymer of ethylene and an α-olefin having 3 or more and 20 or less carbon atoms, ethylene, and at least one selected from vinyl acetate and (meth) acrylic acid ester. Examples thereof include polymers and copolymers of ethylene, α-olefins having 3 or more and 20 or less carbon atoms, and at least one selected from vinyl acetate and (meth) acrylic acid esters.
 密度又は分岐が異なるポリエチレンは、重合方法を適宜選択することによって得ることができる。例えば、重合触媒として、チーグラー・ナッタ触媒などのマルチサイト触媒、又はメタロセン触媒などのシングルサイト触媒を用いて、気相重合、スラリー重合、溶液重合及び高圧イオン重合のいずれかの方法により、1段又は2段以上の多段で重合を行うことが好ましい。 Polyethylenes with different densities or branches can be obtained by appropriately selecting the polymerization method. For example, using a multisite catalyst such as a Cheegler-Natta catalyst or a single site catalyst such as a metallocene catalyst as the polymerization catalyst, one step is carried out by any of gas phase polymerization, slurry polymerization, solution polymerization and high pressure ion polymerization. Alternatively, it is preferable to carry out the polymerization in multiple stages of two or more stages.
 シングルサイト触媒とは、均一な活性種を形成しうる触媒であり、通常、メタロセン系遷移金属化合物又は非メタロセン系遷移金属化合物と活性化用助触媒とを接触させることにより、調製される。シングルサイト触媒は、マルチサイト触媒に比べて、活性点の構造が均一であるため、高分子量かつ均一度の高い構造を有する重合体を得ることができるため好ましい。 The single-site catalyst is a catalyst capable of forming a uniform active species, and is usually prepared by contacting a metallocene-based transition metal compound or a non-metallocene-based transition metal compound with an activation co-catalyst. The single-site catalyst is preferable because the structure of the active site is uniform as compared with the multi-site catalyst, so that a polymer having a high molecular weight and a high uniformity structure can be obtained.
 シングルサイト触媒としては、メタロセン触媒が好ましい。メタロセン触媒は、シクロペンタジエニル骨格を有する配位子を含む周期表第IV族の遷移金属化合物と、助触媒と、必要により有機金属化合物と、必要により担体とを含む触媒である。 As the single-site catalyst, a metallocene catalyst is preferable. The metallocene catalyst is a catalyst containing a transition metal compound of Group IV of the Periodic Table containing a ligand having a cyclopentadienyl skeleton, a cocatalyst, an organometallic compound if necessary, and a carrier if necessary.
 遷移金属化合物における遷移金属としては、例えば、ジルコニウム、チタン及びハフニウムが挙げられ、ジルコニウム及びハフニウムが好ましい。 Examples of the transition metal in the transition metal compound include zirconium, titanium and hafnium, and zirconium and hafnium are preferable.
 遷移金属化合物におけるシクロペンタジエニル骨格とは、シクロペンタジエニル基、又は置換シクロペンタジエニル基である。置換シクロペンタジエニル基は、例えば、炭素数1以上30以下の炭化水素基、シリル基、シリル置換アルキル基、シリル置換アリール基、シアノ基、シアノアルキル基、シアノアリール基、ハロゲン基、ハロアルキル基、及びハロシリル基から選択される少なくとも1種の置換基を有する。置換シクロペンタジエニル基は、1つ又は2つ以上の置換基を有し、置換基同士が互いに結合して環を形成し、インデニル環、フルオレニル環、アズレニル環、又はこれらの水添体を形成していてもよい。置換基同士が互いに結合し形成された環が、さらに置換基を有していてもよい。 The cyclopentadienyl skeleton in the transition metal compound is a cyclopentadienyl group or a substituted cyclopentadienyl group. The substituted cyclopentadienyl group is, for example, a hydrocarbon group having 1 or more and 30 or less carbon atoms, a silyl group, a silyl substituted alkyl group, a silyl substituted aryl group, a cyano group, a cyanoalkyl group, a cyanoaryl group, a halogen group and a haloalkyl group. , And at least one substituent selected from the halosilyl group. The substituted cyclopentadienyl group has one or more substituents, and the substituents are bonded to each other to form a ring, and an indenyl ring, a fluorenyl ring, an azurenyl ring, or a hydrogenated product thereof can be used. It may be formed. A ring formed by bonding substituents to each other may further have a substituent.
 遷移金属化合物は、シクロペンタジエニル骨格を有する配位子を通常は2つ有する。各々のシクロペンタジエニル骨格を有する配位子は、架橋基により互いに結合していることが好ましい。架橋基としては、例えば、炭素数1以上4以下のアルキレン基、シリレン基、ジアルキルシリレン基、ジアリールシリレン基などの置換シリレン基、ジアルキルゲルミレン基、ジアリールゲルミレン基などの置換ゲルミレン基が挙げられる。これらの中でも、置換シリレン基が好ましい。 The transition metal compound usually has two ligands having a cyclopentadienyl skeleton. The ligands having each cyclopentadienyl skeleton are preferably bonded to each other by a cross-linking group. Examples of the cross-linking group include a substituted silylene group such as an alkylene group having 1 or more carbon atoms and 4 or less carbon atoms, a silylene group, a dialkylcyrylene group and a diallylsilylene group, and a substituted gelmilene group such as a dialkylgelmylene group and a diarylgermylene group. .. Among these, a substituted silylene group is preferable.
 助触媒とは、周期表第IV族の遷移金属化合物を重合触媒として有効に機能させえる成分、又は触媒的に活性化された状態のイオン性電荷を均衝させえる成分をいう。助触媒としては、例えば、ベンゼン可溶のアルミノキサン又はベンゼン不溶の有機アルミニウムオキシ化合物、イオン交換性層状珪酸塩、ホウ素化合物、活性水素基含有又は非含有のカチオンと非配位性アニオンとからなるイオン性化合物、酸化ランタンなどのランタノイド塩、酸化スズ、及びフルオロ基を含有するフェノキシ化合物が挙げられる。 The co-catalyst is a component capable of effectively functioning as a polymerization catalyst of a transition metal compound of Group IV of the periodic table, or a component capable of balancing ionic charges in a catalytically activated state. Examples of the co-catalyst include benzene-soluble aluminoxane or benzene-insoluble organic aluminum oxy compound, ion-exchangeable layered silicate, boron compound, active hydrogen group-containing or non-containing cation, and non-coordinating anion. Examples thereof include sex compounds, lanthanoid salts such as lanthanum oxide, tin oxide, and phenoxy compounds containing a fluoro group.
 必要により使用される有機金属化合物としては、例えば、有機アルミニウム化合物、有機マグネシウム化合物、及び有機亜鉛化合物が挙げられる。これらの中でも、有機アルミニウム化合物が好ましい。 Examples of the organometallic compound used as necessary include organoaluminum compounds, organomagnesium compounds, and organozinc compounds. Among these, organoaluminum compounds are preferable.
 遷移金属化合物は、無機又は有機化合物の担体に担持して使用されてもよい。担体としては、無機又は有機化合物の多孔質酸化物が好ましく、具体的には、モンモリロナイトなどのイオン交換性層状珪酸塩、SiO、Al、MgO、ZrO、TiO、B、CaO、ZnO、BaO、ThO、又はこれらの混合物が挙げられる。 The transition metal compound may be used by being carried on a carrier of an inorganic or organic compound. As the carrier, a porous oxide of an inorganic or organic compound is preferable, and specifically, an ion-exchangeable layered silicate such as montmorillonite, SiO 2 , Al 2 O 3 , MgO, ZrO 2 , TiO 2 , B 2 O. 3 , CaO, ZnO, BaO, ThO 2 , or a mixture thereof can be mentioned.
 ポリエチレンを得るための原料として、化石燃料から得られるエチレンに代えて、バイオマス由来のエチレンを用いてもよい。バイオマス由来のポリエチレンは、カーボニュートラルな材料であることから、ポリエチレン多層基材を用いて製造される包装材料の環境負荷を低減できる。バイオマス由来のポリエチレンは、例えば、特開2013-177531号公報に記載されている方法により製造できる。市販されているバイオマス由来のポリエチレン(例えば、ブラスケム社から市販されているグリーンPE)を使用してもよい。 As a raw material for obtaining polyethylene, ethylene derived from biomass may be used instead of ethylene obtained from fossil fuel. Since polyethylene derived from biomass is a carbon-neutral material, it is possible to reduce the environmental load of packaging materials manufactured using a polyethylene multilayer base material. Biomass-derived polyethylene can be produced, for example, by the method described in JP2013-177531A. Commercially available biomass-derived polyethylene (eg, green PE commercially available from Braskem) may be used.
 メカニカルリサイクルによりリサイクルされたポリエチレンを使用してもよい。メカニカルリサイクルとは、一般的に、回収されたポリエチレンフィルムなどを粉砕し、アルカリ洗浄してフィルム表面の汚れ、異物を除去した後、高温・減圧下で一定時間乾燥してフィルム内部に留まっている汚染物質を拡散させ除染を行い、ポリエチレンからなるフィルムの汚れを取り除き、再びポリエチレンに戻す方法である。 Polyethylene recycled by mechanical recycling may be used. Mechanical recycling generally means that the recovered polyethylene film or the like is crushed and alkaline-cleaned to remove stains and foreign substances on the film surface, and then dried under high temperature and reduced pressure for a certain period of time to stay inside the film. This is a method in which contaminants are diffused and decontaminated to remove stains on a film made of polyethylene, and then returned to polyethylene.
 以下の説明において、登場する各成分(例えば、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン及び直鎖状低密度ポリエチレンなどのポリエチレン、添加剤、着色剤、樹脂材料、接着剤)は、それぞれ1種用いてもよく、2種以上を用いてもよい。 In the following description, each component (for example, polyethylene such as high density polyethylene, medium density polyethylene, low density polyethylene and linear low density polyethylene, additives, colorants, resin materials, adhesives) is 1 each. Seeds may be used, or two or more kinds may be used.
 以下、ポリエチレン多層基材を単に「多層基材」ともいう。
 多層基材は、2層以上の多層構造を有する。一実施形態において、多層基材の層数は、好ましくは2層以上7層以下、より好ましくは3層以上5層以下である。基材が多層構造を有することにより、例えば、基材の剛性、強度、耐熱性、印刷適性及び延伸性のバランスを向上できる。
Hereinafter, the polyethylene multilayer base material is also simply referred to as a “multilayer base material”.
The multilayer base material has a multilayer structure of two or more layers. In one embodiment, the number of layers of the multilayer base material is preferably 2 layers or more and 7 layers or less, and more preferably 3 layers or more and 5 layers or less. When the base material has a multilayer structure, for example, the balance between rigidity, strength, heat resistance, printability and stretchability of the base material can be improved.
 本開示の多層基材に含まれるポリエチレンとしては、例えば、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン(高圧法低密度ポリエチレン)、直鎖状低密度ポリエチレン及び超低密度ポリエチレンが挙げられる。 Examples of the polyethylene contained in the multilayer base material of the present disclosure include high-density polyethylene, medium-density polyethylene, low-density polyethylene (high-pressure method low-density polyethylene), linear low-density polyethylene, and ultra-low-density polyethylene.
 本開示の多層基材に含まれるポリエチレンのメルトフローレート(MFR)は、製膜性、及び多層基材の加工適性という観点から、好ましくは0.1g/10分以上50g/10分以下、より好ましくは0.2g/10分以上30g/10分以下、さらに好ましくは0.2g/10分以上15g/10分以下、よりさらに好ましくは0.2g/10分以上10g/10分以下、特に好ましくは0.2g/10分以上5g/10分以下である。本開示において、MFRは、ASTM D1238に準拠し、温度190℃、荷重2.16kgの条件で測定する。 The melt flow rate (MFR) of polyethylene contained in the multilayer substrate of the present disclosure is preferably 0.1 g / 10 minutes or more and 50 g / 10 minutes or less from the viewpoint of film forming property and processing suitability of the multilayer substrate. It is preferably 0.2 g / 10 minutes or more and 30 g / 10 minutes or less, more preferably 0.2 g / 10 minutes or more and 15 g / 10 minutes or less, still more preferably 0.2 g / 10 minutes or more and 10 g / 10 minutes or less, and particularly preferably. Is 0.2 g / 10 minutes or more and 5 g / 10 minutes or less. In the present disclosure, the MFR is measured in accordance with ASTM D1238 under the conditions of a temperature of 190 ° C. and a load of 2.16 kg.
 以下、第1~第5の態様のポリエチレン多層基材について説明するが、これらの態様のポリエチレン多層基材について共通する事項について多層基材に言及する際には、「本開示のポリエチレン多層基材」又は「本開示の多層基材」とも記載する。 Hereinafter, the polyethylene multilayer base material of the first to fifth aspects will be described, but when referring to the multilayer base material in common with the polyethylene multilayer base materials of these embodiments, "the polyethylene multilayer base material of the present disclosure" is used. Or "multilayer substrate of the present disclosure".
 [第1の態様及び第2の態様のポリエチレン多層基材]
 本開示の第1の態様及び第2の態様のポリエチレン多層基材は、
 第1のポリエチレン層と、
 第2のポリエチレン層と、
 第3のポリエチレン層と
を厚さ方向にこの順に備え、延伸処理されてなる。
[Polyethylene multilayer base material of the first aspect and the second aspect]
The polyethylene multilayer substrate of the first aspect and the second aspect of the present disclosure is
With the first polyethylene layer,
With the second polyethylene layer,
A third polyethylene layer is provided in this order in the thickness direction, and is stretched.
 本開示の第1の態様のポリエチレン多層基材は、下記要件(A)を充たす。本開示の第2の態様のポリエチレン多層基材は、下記要件(B)を充たす。第1の態様のポリエチレン多層基材がさらに下記要件(B)を充たしてもよい。
 要件(A):第1のポリエチレン層の押込み弾性率が、第2のポリエチレン層の押込み弾性率の3.0倍以上であり、第3のポリエチレン層の押込み弾性率が、第2のポリエチレン層の押込み弾性率の3.0倍以上である。
 要件(B):第1のポリエチレン層の押込み硬度が、第2のポリエチレン層の押込み硬度の2.0倍以上であり、第3のポリエチレン層の押込み硬度が、第2のポリエチレン層の押込み硬度の2.0倍以上である。
The polyethylene multilayer base material of the first aspect of the present disclosure satisfies the following requirement (A). The polyethylene multilayer substrate of the second aspect of the present disclosure satisfies the following requirement (B). The polyethylene multilayer base material of the first aspect may further satisfy the following requirement (B).
Requirement (A): The indentation elastic modulus of the first polyethylene layer is 3.0 times or more the indentation elastic modulus of the second polyethylene layer, and the indentation elastic modulus of the third polyethylene layer is the second polyethylene layer. It is 3.0 times or more of the indentation elastic modulus of.
Requirement (B): The indentation hardness of the first polyethylene layer is 2.0 times or more the indentation hardness of the second polyethylene layer, and the indentation hardness of the third polyethylene layer is the indentation hardness of the second polyethylene layer. It is more than 2.0 times.
 本開示の第1の態様及び第2の態様の多層基材は、第1のポリエチレン層及び第2のポリエチレン層の間に第2aのポリエチレン層と、第2のポリエチレン層及び第3のポリエチレン層の間に第2bのポリエチレン層と、をさらに備えてもよい。この場合の多層基材は、第1のポリエチレン層と、第2aのポリエチレン層と、第2のポリエチレン層と、第2bのポリエチレン層と、第3のポリエチレン層とを、厚さ方向にこの順に備える。第2aのポリエチレン層、第2のポリエチレン層及び第2bのポリエチレン層は、多層基材における中間層(多層中間層)を構成する。 The multilayer substrate of the first aspect and the second aspect of the present disclosure includes a second polyethylene layer, a second polyethylene layer and a third polyethylene layer between the first polyethylene layer and the second polyethylene layer. A second b polyethylene layer may be further provided between the two. In this case, the multilayer base material has a first polyethylene layer, a second polyethylene layer, a second polyethylene layer, a second polyethylene layer, and a third polyethylene layer in this order in the thickness direction. Be prepared. The second polyethylene layer, the second polyethylene layer, and the second polyethylene layer form an intermediate layer (multilayer intermediate layer) in the multilayer base material.
 一実施形態において、第1の態様及び第2の態様の多層基材の一方側の表面層が第1のポリエチレン層であり、多層基材の他方側の表面層が第3のポリエチレン層である。第1の態様及び第2の態様の多層基材は、第1のポリエチレン層、第2aのポリエチレン層、第2のポリエチレン層、第2bのポリエチレン層及び第3のポリエチレン層における少なくとも一つの層間に他の層を備えてもよい。 In one embodiment, the surface layer on one side of the multilayer substrate of the first aspect and the second embodiment is the first polyethylene layer, and the surface layer on the other side of the multilayer substrate is the third polyethylene layer. .. The multilayer substrate of the first aspect and the second aspect is formed between at least one layer in the first polyethylene layer, the second polyethylene layer, the second polyethylene layer, the second polyethylene layer and the third polyethylene layer. Other layers may be provided.
 一実施形態において、第1の態様及び第2の態様の多層基材は、第1のポリエチレン層、第2aのポリエチレン層、第2のポリエチレン層、第2bのポリエチレン層及び第3のポリエチレン層のみからなる。 In one embodiment, the multilayer substrate of the first aspect and the second aspect is only the first polyethylene layer, the second polyethylene layer, the second polyethylene layer, the second polyethylene layer and the third polyethylene layer. Consists of.
 以下、ポリエチレン層を「PE層」ともいう。 Hereinafter, the polyethylene layer is also referred to as a "PE layer".
 本開示において、ポリエチレン多層基材又は後述する積層体における、第1のPE層、第2aのPE層、第2のPE層、第2bのPE層及び第3のPE層の押込み弾性率を、それぞれ、押込み弾性率1、押込み弾性率2a、押込み弾性率2、押込み弾性率2b及び押込み弾性率3とも記載する。第1のPE層の押込み弾性率と、第2のPE層の押込み弾性率との比を、比(弾性率1/弾性率2)とも記載する。その他の場合も同様である。 In the present disclosure, the indentation modulus of the first PE layer, the second PE layer, the second PE layer, the second PE layer, and the third PE layer in the polyethylene multilayer base material or the laminate described later is determined. The indentation elastic modulus 1, the indentation elastic modulus 2a, the indentation elastic modulus 2, the indentation elastic modulus 2b, and the indentation elastic modulus 3 are also described, respectively. The ratio of the indentation elastic modulus of the first PE layer to the indentation elastic modulus of the second PE layer is also described as a ratio (elastic modulus 1 / elastic modulus 2). The same applies to other cases.
 本開示において、ポリエチレン多層基材又は後述する積層体における、第1のPE層、第2aのPE層、第2のPE層、第2bのPE層及び第3のPE層の押込み硬度を、それぞれ、押込み硬度1、押込み硬度2a、押込み硬度2、押込み硬度2b及び押込み硬度3とも記載する。第1のPE層の押込み硬度と、第2のPE層の押込み硬度との比を、比(硬度1/硬度2)とも記載する。その他の場合も同様である。 In the present disclosure, the indentation hardness of the first PE layer, the second PE layer, the second PE layer, the second PE layer, and the third PE layer in the polyethylene multilayer base material or the laminate described later is determined, respectively. , Push-in hardness 1, push-in hardness 2a, push-in hardness 2, push-in hardness 2b, and push-in hardness 3 are also described. The ratio of the indentation hardness of the first PE layer to the indentation hardness of the second PE layer is also described as a ratio (hardness 1 / hardness 2). The same applies to other cases.
 本開示の第1の態様の多層基材は、第1のPE層の押込み弾性率が、第2のPE層の押込み弾性率の3.0倍以上であり、第3のPE層の押込み弾性率が、第2のPE層の押込み弾性率の3.0倍以上であることを特徴とする。これにより、多層基材の耐熱性を向上でき、例えば、ヒートシール時などの熱付加時における多層基材の熱収縮を抑制できる。 In the multilayer substrate of the first aspect of the present disclosure, the indentation elastic modulus of the first PE layer is 3.0 times or more the indentation elastic modulus of the second PE layer, and the indentation elasticity of the third PE layer. The ratio is 3.0 times or more the indentation elastic modulus of the second PE layer. As a result, the heat resistance of the multilayer base material can be improved, and for example, heat shrinkage of the multilayer base material during heat application such as heat sealing can be suppressed.
 第1の態様の多層基材における比(弾性率1/弾性率2)及び比(弾性率3/弾性率2)は、それぞれ独立に、3.0以上であり、好ましくは4.0以上、より好ましくは5.0以上、さらに好ましくは6.0以上、よりさらに好ましくは7.0以上であり;好ましくは22.0以下、より好ましくは20.0以下、さらに好ましくは18.0以下、よりさらに好ましくは16.0以下、特に好ましくは14.0以下、13.0以下又は12.0以下である。比(弾性率1/弾性率2)の範囲、及び比(弾性率3/弾性率2)の範囲は、それぞれ独立に、上記の下限値及び上限値の任意の組合せでもよく、例えば3.0以上22.0以下でもよい。 The ratio (elastic modulus 1 / elastic modulus 2) and the ratio (elastic modulus 3 / elastic modulus 2) in the multilayer substrate of the first aspect are independently 3.0 or more, preferably 4.0 or more. More preferably 5.0 or more, still more preferably 6.0 or more, even more preferably 7.0 or more; preferably 22.0 or less, more preferably 20.0 or less, still more preferably 18.0 or less, Even more preferably 16.0 or less, particularly preferably 14.0 or less, 13.0 or less or 12.0 or less. The range of the ratio (modulus of elasticity 1 / elastic modulus 2) and the range of the ratio (modulus of elasticity 3 / elastic modulus 2) may be any combination of the above lower limit value and upper limit value, for example, 3.0. It may be 22.0 or less.
 本開示の第1の態様の多層基材において、第2aのPE層の押込み弾性率は、第2のPE層の押込み弾性率の2.0倍以上であることが好ましく、第2bのPE層の押込み弾性率は、第2のPE層の押込み弾性率の2.0倍以上であることが好ましい。これにより、例えば、ヒートシール時における多層基材の熱収縮をさらに抑制できる傾向にある。 In the multilayer substrate of the first aspect of the present disclosure, the indentation elastic modulus of the second PE layer is preferably 2.0 times or more the indentation elastic modulus of the second PE layer, and the indentation elastic modulus of the second PE layer is preferably 2.0 times or more. The indentation elastic modulus of the second PE layer is preferably 2.0 times or more the indentation elastic modulus of the second PE layer. Thereby, for example, there is a tendency that the heat shrinkage of the multilayer base material at the time of heat sealing can be further suppressed.
 第1の態様の多層基材における比(弾性率2a/弾性率2)及び比(弾性率2b/弾性率2)は、それぞれ独立に、好ましくは2.0以上、より好ましくは2.5以上、さらに好ましくは3.0以上であり;好ましくは18.0以下、より好ましくは16.0以下、さらに好ましくは14.0以下、よりさらに好ましくは13.0以下、特に好ましくは12.0以下、11.0以下又は10.0以下である。比(弾性率2a/弾性率2)の範囲、及び比(弾性率2b/弾性率2)の範囲は、それぞれ独立に、上記の下限値及び上限値の任意の組合せでもよく、例えば2.0以上18.0以下でもよい。 The ratio (elastic modulus 2a / elastic modulus 2) and the ratio (elastic modulus 2b / elastic modulus 2) in the multilayer substrate of the first aspect are independently, preferably 2.0 or more, more preferably 2.5 or more, respectively. It is more preferably 3.0 or more; preferably 18.0 or less, more preferably 16.0 or less, still more preferably 14.0 or less, still more preferably 13.0 or less, and particularly preferably 12.0 or less. It is 11.0 or less or 10.0 or less. The range of the ratio (elastic modulus 2a / elastic modulus 2) and the range of the ratio (elastic modulus 2b / elastic modulus 2) may be independently any combination of the above lower limit value and upper limit value, for example, 2.0. It may be 18.0 or less.
 第1の態様の多層基材における押込み弾性率1及び押込み弾性率3は、それぞれ独立に、好ましくは1.1GPa以上、より好ましくは1.15GPa以上、さらに好ましくは1.2GPa以上、よりさらに好ましくは1.4GPa以上であり;好ましくは6.0GPa以下、より好ましくは5.5GPa以下、さらに好ましくは5.0GPa以下、よりさらに好ましくは4.5GPa以下、特に好ましくは4.0GPa以下、3.5GPa以下又は3.0GPa以下である。これにより、例えば、ヒートシール時における多層基材の熱収縮をさらに抑制できる傾向にある。押込み弾性率1及び押込み弾性率3の範囲は、それぞれ独立に、上記の下限値及び上限値の任意の組合せでもよく、例えば1.1GPa以上6.0GPa以下でもよい。 The indentation elastic modulus 1 and the indentation elastic modulus 3 in the multilayer substrate of the first aspect are independently, preferably 1.1 GPa or more, more preferably 1.15 GPa or more, still more preferably 1.2 GPa or more, still more preferable. Is 1.4 GPa or more; preferably 6.0 GPa or less, more preferably 5.5 GPa or less, still more preferably 5.0 GPa or less, still more preferably 4.5 GPa or less, particularly preferably 4.0 GPa or less, 3. It is 5 GPa or less or 3.0 GPa or less. Thereby, for example, there is a tendency that the heat shrinkage of the multilayer base material at the time of heat sealing can be further suppressed. The ranges of the indentation elastic modulus 1 and the indentation elastic modulus 3 may be independently arbitrary combinations of the above lower limit value and upper limit value, and may be, for example, 1.1 GPa or more and 6.0 GPa or less.
 第1の態様の多層基材における押込み弾性率2は、好ましくは0.03GPa以上、より好ましくは0.05GPa以上、さらに好ましくは0.1GPa以上、よりさらに好ましくは0.13GPa以上、特に好ましくは0.15GPa以上であり;好ましくは0.7GPa以下、より好ましく0.6GPa以下、さらに好ましくは0.5GPa以下、よりさらに好ましくは0.4GPa以下、特に好ましくは0.3GPa以下である。このような設計であると、例えば、延伸前積層物の延伸性がより優れる傾向にある。押込み弾性率2の範囲は、上記の下限値及び上限値の任意の組合せでもよく、例えば0.03GPa以上0.7GPa以下でもよい。 The indentation elastic modulus 2 in the multilayer substrate of the first aspect is preferably 0.03 GPa or more, more preferably 0.05 GPa or more, still more preferably 0.1 GPa or more, still more preferably 0.13 GPa or more, and particularly preferably 0.13 GPa or more. It is 0.15 GPa or more; preferably 0.7 GPa or less, more preferably 0.6 GPa or less, still more preferably 0.5 GPa or less, still more preferably 0.4 GPa or less, and particularly preferably 0.3 GPa or less. With such a design, for example, the stretchability of the pre-stretched laminate tends to be more excellent. The range of the indentation elastic modulus 2 may be any combination of the above lower limit value and upper limit value, and may be, for example, 0.03 GPa or more and 0.7 GPa or less.
 第1の態様の多層基材における押込み弾性率2a及び押込み弾性率2bは、それぞれ独立に、好ましくは0.3GPa以上、より好ましくは0.4GPa以上、さらに好ましくは0.5GPa以上、よりさらに好ましくは0.6GPa以上であり;好ましくは4.0GPa以下、より好ましくは3.5GPa以下、さらに好ましくは3.0GPa以下、よりさらに好ましくは2.5GPa以下、特に好ましくは2.0GPa以下である。これにより、例えば、ヒートシール時における多層基材の熱収縮をさらに抑制できる傾向にある。押込み弾性率2a及び押込み弾性率2bの範囲は、それぞれ独立に、上記の下限値及び上限値の任意の組合せでもよく、例えば0.3GPa以上4.0GPa以下でもよい。 The indentation elastic modulus 2a and the indentation elastic modulus 2b in the multilayer substrate of the first aspect are independently, preferably 0.3 GPa or more, more preferably 0.4 GPa or more, still more preferably 0.5 GPa or more, still more preferable. Is 0.6 GPa or more; preferably 4.0 GPa or less, more preferably 3.5 GPa or less, still more preferably 3.0 GPa or less, still more preferably 2.5 GPa or less, and particularly preferably 2.0 GPa or less. Thereby, for example, there is a tendency that the heat shrinkage of the multilayer base material at the time of heat sealing can be further suppressed. The ranges of the indentation elastic modulus 2a and the indentation elastic modulus 2b may be independently arbitrary combinations of the above lower limit value and upper limit value, and may be, for example, 0.3 GPa or more and 4.0 GPa or less.
 第1の態様の多層基材において、各PE層の押込み弾性率の大きさは、押込み弾性率1>押込み弾性率2a>押込み弾性率2の関係を充たすことが好ましく、押込み弾性率3>押込み弾性率2b>押込み弾性率2の関係を充たすことが好ましい。これにより、例えば、多層基材の耐熱性と延伸適性(加工性、生産性)とのバランスをさらに向上できる傾向にある。 In the multilayer substrate of the first aspect, the magnitude of the indentation elastic modulus of each PE layer preferably satisfies the relationship of indentation elastic modulus 1> indentation elastic modulus 2a> indentation elastic modulus 2, and indentation elastic modulus 3> indentation. It is preferable to satisfy the relationship of elastic modulus 2b> indentation elastic modulus 2. This tends to further improve the balance between the heat resistance of the multilayer base material and the stretchability (processability, productivity), for example.
 第1の態様の多層基材において、比(弾性率1/弾性率3)は、好ましくは0.6以上1.7以下、より好ましくは0.7以上1.4以下、さらに好ましくは0.8以上1.2以下、よりさらに好ましくは0.9以上1.1以下である。これにより、例えば、多層基材の層構成の対称性を向上でき、したがって、多層基材のカールを抑制でき、印刷及びラミネート等の加工性を向上できる傾向にある。 In the multilayer substrate of the first aspect, the ratio (elastic modulus 1 / elastic modulus 3) is preferably 0.6 or more and 1.7 or less, more preferably 0.7 or more and 1.4 or less, and further preferably 0. It is 8 or more and 1.2 or less, more preferably 0.9 or more and 1.1 or less. Thereby, for example, the symmetry of the layer structure of the multilayer base material can be improved, and therefore the curl of the multilayer base material can be suppressed, and the processability of printing and laminating tends to be improved.
 第1の態様の多層基材において、比(弾性率2a/弾性率2b)は、好ましくは0.6以上1.7以下、より好ましくは0.7以上1.4以下、さらに好ましくは0.8以上1.2以下、よりさらに好ましくは0.9以上1.1以下である。これにより、例えば、多層基材の層構成の対称性を向上でき、したがって、多層基材のカールを抑制でき、印刷及びラミネート等の加工性を向上できる傾向にある。 In the multilayer substrate of the first aspect, the ratio (elastic modulus 2a / elastic modulus 2b) is preferably 0.6 or more and 1.7 or less, more preferably 0.7 or more and 1.4 or less, and further preferably 0. It is 8 or more and 1.2 or less, more preferably 0.9 or more and 1.1 or less. Thereby, for example, the symmetry of the layer structure of the multilayer base material can be improved, and therefore the curl of the multilayer base material can be suppressed, and the processability of printing and laminating tends to be improved.
 本開示の第2の態様の多層基材は、第1のPE層の押込み硬度が、第2のPE層の押込み硬度の2.0倍以上であり、第3のPE層の押込み硬度が、第2のPE層の押込み硬度の2.0倍以上であることを特徴とする。これにより、多層基材の耐熱性を向上でき、例えば、ヒートシール時などの熱付加時における多層基材の熱収縮を抑制できる。 In the multilayer substrate of the second aspect of the present disclosure, the indentation hardness of the first PE layer is 2.0 times or more the indentation hardness of the second PE layer, and the indentation hardness of the third PE layer is It is characterized in that it is 2.0 times or more the indentation hardness of the second PE layer. As a result, the heat resistance of the multilayer base material can be improved, and for example, heat shrinkage of the multilayer base material during heat application such as heat sealing can be suppressed.
 第2の態様の多層基材における比(硬度1/硬度2)及び比(硬度3/硬度2)は、それぞれ独立に、2.0以上であり、好ましくは2.2以上、より好ましくは2.4以上、さらに好ましくは2.6以上であり;好ましくは8.5以下、より好ましくは8.0以下、さらに好ましくは7.5以下、よりさらに好ましくは7.0以下、特に好ましくは6.5以下、6.0以下又は5.5以下である。比(硬度1/硬度2)の範囲、及び比(硬度3/硬度2)の範囲は、それぞれ独立に、上記の下限値及び上限値の任意の組合せでもよく、例えば2.0以上8.5以下でもよい。第1の態様の多層基材が、比(硬度1/硬度2)及び比(硬度3/硬度2)に係る上記要件をさらに充たしてもよい。 The ratio (hardness 1 / hardness 2) and the ratio (hardness 3 / hardness 2) in the multilayer substrate of the second aspect are independently 2.0 or more, preferably 2.2 or more, and more preferably 2. 0.4 or more, more preferably 2.6 or more; preferably 8.5 or less, more preferably 8.0 or less, still more preferably 7.5 or less, even more preferably 7.0 or less, particularly preferably 6. It is 5.5 or less, 6.0 or less, or 5.5 or less. The range of the ratio (hardness 1 / hardness 2) and the range of the ratio (hardness 3 / hardness 2) may be independently any combination of the above lower limit value and upper limit value, for example, 2.0 or more and 8.5. It may be as follows. The multilayer substrate of the first aspect may further satisfy the above requirements relating to the ratio (hardness 1 / hardness 2) and the ratio (hardness 3 / hardness 2).
 本開示の第2の態様の多層基材において、第2aのPE層の押込み硬度は、第2のPE層の押込み硬度の1.4倍以上であることが好ましく、第2bのPE層の押込み硬度は、第2のPE層の押込み硬度の1.4倍以上であることが好ましい。これにより、例えば、ヒートシール時における多層基材の熱収縮をさらに抑制できる傾向にある。 In the multilayer substrate of the second aspect of the present disclosure, the indentation hardness of the second PE layer is preferably 1.4 times or more the indentation hardness of the second PE layer, and the indentation hardness of the second PE layer is preferable. The hardness is preferably 1.4 times or more the indentation hardness of the second PE layer. Thereby, for example, there is a tendency that the heat shrinkage of the multilayer base material at the time of heat sealing can be further suppressed.
 第2の態様の多層基材における比(硬度2a/硬度2)及び比(硬度2b/硬度2)は、それぞれ独立に、好ましくは1.4以上、より好ましくは1.6以上、さらに好ましくは1.7以上であり;好ましくは8.0以下、より好ましくは7.5以下、さらに好ましくは7.0以下、よりさらに好ましくは6.5以下、特に好ましくは6.0以下、5.5以下又は5.0以下である。これにより、例えば、ヒートシール時における多層基材の熱収縮をさらに抑制できる傾向にある。比(硬度2a/硬度2)の範囲、及び比(硬度2b/硬度2)の範囲は、それぞれ独立に、上記の下限値及び上限値の任意の組合せでもよく、例えば1.4以上8.0以下でもよい。第1の態様の多層基材が、比(硬度2a/硬度2)及び比(硬度2b/硬度2)に係る上記要件をさらに充たしてもよい。 The ratio (hardness 2a / hardness 2) and the ratio (hardness 2b / hardness 2) in the multilayer substrate of the second aspect are independently, preferably 1.4 or more, more preferably 1.6 or more, still more preferably. 1.7 or more; preferably 8.0 or less, more preferably 7.5 or less, still more preferably 7.0 or less, still more preferably 6.5 or less, particularly preferably 6.0 or less, 5.5 or less. Or less or 5.0 or less. Thereby, for example, there is a tendency that the heat shrinkage of the multilayer base material at the time of heat sealing can be further suppressed. The range of the ratio (hardness 2a / hardness 2) and the range of the ratio (hardness 2b / hardness 2) may be independently any combination of the above lower limit value and upper limit value, for example, 1.4 or more and 8.0. It may be as follows. The multilayer substrate of the first aspect may further satisfy the above requirements relating to the ratio (hardness 2a / hardness 2) and the ratio (hardness 2b / hardness 2).
 第2の態様の多層基材における押込み硬度1及び押込み硬度3は、それぞれ独立に、好ましくは45MPa以上、より好ましくは47MPa以上、さらに好ましくは49MPa以上、よりさらに好ましくは54MPa以上であり;好ましくは150MPa以下、より好ましくは130MPa以下、さらに好ましくは110MPa以下、よりさらに好ましくは100MPa以下、特に好ましくは90MPa以下である。これにより、例えば、ヒートシール時における多層基材の熱収縮をさらに抑制できる傾向にある。押込み硬度1及び押込み硬度3の範囲は、それぞれ独立に、上記の下限値及び上限値の任意の組合せでもよく、例えば45MPa以上150MPa以下でもよい。第1の態様の多層基材が、押込み硬度1及び押込み硬度3に係る上記要件をさらに充たしてもよい。 The indentation hardness 1 and the indentation hardness 3 in the multilayer substrate of the second aspect are independently, preferably 45 MPa or more, more preferably 47 MPa or more, still more preferably 49 MPa or more, still more preferably 54 MPa or more; preferably. It is 150 MPa or less, more preferably 130 MPa or less, still more preferably 110 MPa or less, still more preferably 100 MPa or less, and particularly preferably 90 MPa or less. Thereby, for example, there is a tendency that the heat shrinkage of the multilayer base material at the time of heat sealing can be further suppressed. The range of the indentation hardness 1 and the indentation hardness 3 may be any combination of the above lower limit value and the upper limit value independently, and may be, for example, 45 MPa or more and 150 MPa or less. The multilayer substrate of the first aspect may further satisfy the above requirements relating to the indentation hardness 1 and the indentation hardness 3.
 第2の態様の多層基材における押込み硬度2は、好ましくは1MPa以上、より好ましくは3MPa以上、さらに好ましくは7MPa以上、よりさらに好ましくは10MPa以上、特に好ましくは15MPa以上であり;好ましくは40MPa以下、より好ましく35MPa以下、さらに好ましくは30MPa以下、よりさらに好ましくは26MPa以下、特に好ましくは23MPa以下である。このような設計であると、例えば、延伸前積層物の延伸性がより優れる傾向にある。押込み硬度2の範囲は、上記の下限値及び上限値の任意の組合せでもよく、例えば1MPa以上40MPa以下でもよい。第1の態様の多層基材が、押込み硬度2に係る上記要件をさらに充たしてもよい。 The indentation hardness 2 in the multilayer substrate of the second aspect is preferably 1 MPa or more, more preferably 3 MPa or more, still more preferably 7 MPa or more, still more preferably 10 MPa or more, particularly preferably 15 MPa or more; preferably 40 MPa or less. It is more preferably 35 MPa or less, further preferably 30 MPa or less, still more preferably 26 MPa or less, and particularly preferably 23 MPa or less. With such a design, for example, the stretchability of the pre-stretched laminate tends to be more excellent. The range of the indentation hardness 2 may be any combination of the above lower limit value and the upper limit value, and may be, for example, 1 MPa or more and 40 MPa or less. The multilayer substrate of the first aspect may further satisfy the above requirement relating to the indentation hardness 2.
 第2の態様の多層基材における押込み硬度2a及び押込み硬度2bは、それぞれ独立に、好ましくは20MPa以上、より好ましくは25MPa以上、さらに好ましくは30MPa以上、よりさらに好ましくは32MPa以上、特に好ましくは34MPa以上であり;好ましくは140MPa以下、より好ましくは120MPa以下、さらに好ましくは100MPa以下、よりさらに好ましくは90MPa以下、特に好ましくは85MPa以下又は80MPa以下である。これにより、例えば、ヒートシール時における多層基材の熱収縮をさらに抑制できる傾向にある。押込み硬度2a及び押込み硬度2bの範囲は、それぞれ独立に、上記の下限値及び上限値の任意の組合せでもよく、例えば20MPa以上140MPa以下でもよい。第1の態様の多層基材が、押込み硬度2a及び押込み硬度2bに係る上記要件をさらに充たしてもよい。 The indentation hardness 2a and the indentation hardness 2b in the multilayer substrate of the second aspect are independently, preferably 20 MPa or more, more preferably 25 MPa or more, still more preferably 30 MPa or more, still more preferably 32 MPa or more, and particularly preferably 34 MPa or more. It is more than 140 MPa or less, more preferably 120 MPa or less, still more preferably 100 MPa or less, still more preferably 90 MPa or less, and particularly preferably 85 MPa or less or 80 MPa or less. Thereby, for example, there is a tendency that the heat shrinkage of the multilayer base material at the time of heat sealing can be further suppressed. The range of the indentation hardness 2a and the indentation hardness 2b may be any combination of the above lower limit value and the upper limit value, and may be, for example, 20 MPa or more and 140 MPa or less. The multilayer substrate of the first aspect may further satisfy the above requirements relating to the indentation hardness 2a and the indentation hardness 2b.
 第2の態様の多層基材において、各PE層の押込み硬度の大きさは、押込み硬度1>押込み硬度2a>押込み硬度2の関係を充たすことが好ましく、押込み硬度3>押込み硬度2b>押込み硬度2の関係を充たすことが好ましい。これにより、例えば、多層基材の耐熱性と延伸適性(加工性、生産性)とのバランスをさらに向上できる傾向にある。 In the multilayer substrate of the second aspect, the magnitude of the indentation hardness of each PE layer preferably satisfies the relationship of indentation hardness 1> indentation hardness 2a> indentation hardness 2, indentation hardness 3> indentation hardness 2b> indentation hardness. It is preferable to satisfy the relationship of 2. This tends to further improve the balance between the heat resistance of the multilayer base material and the stretchability (processability, productivity), for example.
 第2の態様の多層基材において、比(硬度1/硬度3)は、好ましくは0.6以上1.7以下、より好ましくは0.7以上1.4以下、さらに好ましくは0.8以上1.2以下、よりさらに好ましくは0.9以上1.1以下である。これにより、例えば、多層基材の層構成の対称性を向上でき、したがって、多層基材のカールを抑制でき、印刷及びラミネート等の加工性を向上できる傾向にある。 In the multilayer substrate of the second aspect, the ratio (hardness 1 / hardness 3) is preferably 0.6 or more and 1.7 or less, more preferably 0.7 or more and 1.4 or less, and further preferably 0.8 or more. It is 1.2 or less, more preferably 0.9 or more and 1.1 or less. Thereby, for example, the symmetry of the layer structure of the multilayer base material can be improved, and therefore the curl of the multilayer base material can be suppressed, and the processability of printing and laminating tends to be improved.
 第2の態様の多層基材において、比(硬度2a/硬度2b)は、好ましくは0.6以上1.7以下、より好ましくは0.7以上1.4以下、さらに好ましくは0.8以上1.2以下、よりさらに好ましくは0.9以上1.1以下である。これにより、例えば、多層基材の層構成の対称性を向上でき、したがって、多層基材のカールを抑制でき、印刷及びラミネート等の加工性を向上できる傾向にある。 In the multilayer substrate of the second aspect, the ratio (hardness 2a / hardness 2b) is preferably 0.6 or more and 1.7 or less, more preferably 0.7 or more and 1.4 or less, and further preferably 0.8 or more. It is 1.2 or less, more preferably 0.9 or more and 1.1 or less. Thereby, for example, the symmetry of the layer structure of the multilayer base material can be improved, and therefore the curl of the multilayer base material can be suppressed, and the processability of printing and laminating tends to be improved.
 本開示において、各PE層の押込み弾性率及び押込み硬度は、例えば、各PE層に含まれるポリエチレンを適切に選択することにより調整できる。PE層において、例えば高密度ポリエチレンのように密度の高いポリエチレンの含有割合を高くすることにより、押込み弾性率及び押込み硬度は高くなる傾向にある。PE層において、例えば低密度ポリエチレン及び直鎖状低密度ポリエチレンのように密度の低いポリエチレンの含有割合を高くすることにより、押込み弾性率及び押込み硬度は低くなる傾向にある。各PE層の押込み弾性率及び押込み硬度は、また、延伸倍率により調整できる。例えば、延伸倍率を高くすると、各PE層の押込み弾性率及び押込み硬度は高くなる傾向にあり、例えば、延伸倍率を低くすると、各PE層の押込み弾性率及び押込み硬度は低くなる傾向にある。 In the present disclosure, the indentation elastic modulus and indentation hardness of each PE layer can be adjusted, for example, by appropriately selecting polyethylene contained in each PE layer. By increasing the content ratio of high-density polyethylene such as high-density polyethylene in the PE layer, the indentation elastic modulus and the indentation hardness tend to increase. By increasing the content ratio of low-density polyethylene such as low-density polyethylene and linear low-density polyethylene in the PE layer, the indentation elastic modulus and the indentation hardness tend to be lowered. The indentation elastic modulus and indentation hardness of each PE layer can also be adjusted by the draw ratio. For example, when the draw ratio is high, the indentation elastic modulus and the indentation hardness of each PE layer tend to be high. For example, when the draw ratio is low, the indentation elastic modulus and the indentation hardness of each PE layer tend to be low.
 本開示において、各PE層の押込み弾性率及び押込み硬度は、ナノインデンテーション法により測定される。具体的には、ポリエチレン多層基材及び後述する積層体について、ナノインデンターを用いて、ポリエチレン多層基材の各PE層の後述するTD方向に平行な断面を測定面として、押込み弾性率及び押込み硬度を測定する。測定条件は、以下の通りである。ナノインデンターの圧子としては、Berkovich圧子(三角錐圧子)を用いる。10秒間かけて、ポリエチレン多層基材及び積層体のTD方向に平行な断面から押込み深さ200nmまで圧子をPE層に押し込み、その状態で5秒間保持し、続いて10秒間かけて除荷し、最大荷重Pmax、最大深さ時の接触投影面積A及び荷重-変位曲線を得る。得られた荷重-変位曲線から、弾性率及び硬度の値を算出する。測定は室温(25℃)環境下にて実施する。測定は同一断面において5箇所で実施し、弾性率の平均値を押込み弾性率とし、硬度の平均値を押込み硬度とする。測定条件の詳細は、実施例欄に記載する。 In the present disclosure, the indentation elastic modulus and the indentation hardness of each PE layer are measured by the nanoindentation method. Specifically, with respect to the polyethylene multilayer base material and the laminate described later, the indentation elastic modulus and the indentation elastic modulus and the indentation elastic modulus and the indentation are made by using a nanoindenter and using a cross section of each PE layer of the polyethylene multilayer base material parallel to the TD direction as a measurement surface. Measure the hardness. The measurement conditions are as follows. As the indenter of the nano indenter, a Berkovich indenter (triangular pyramid indenter) is used. The indenter was pushed into the PE layer from a cross section parallel to the TD direction of the polyethylene multilayer base material and the laminate to a pushing depth of 200 nm over 10 seconds, held in that state for 5 seconds, and then unloaded over 10 seconds. The maximum load Pmax, the contact projection area A at the maximum depth and the load-displacement curve are obtained. From the obtained load-displacement curve, the elastic modulus and hardness values are calculated. The measurement is carried out in a room temperature (25 ° C.) environment. The measurement is carried out at five points on the same cross section, and the average value of the elastic modulus is taken as the indentation elastic modulus and the average value of the hardness is taken as the indentation hardness. Details of the measurement conditions will be described in the Examples column.
 例えば、第1のPE層は、中密度ポリエチレン及び高密度ポリエチレンを含有してもよく、第3のPE層は、中密度ポリエチレン及び高密度ポリエチレンを含有してもよい。中密度ポリエチレン及び高密度ポリエチレンの量比を調整することにより、例えば、押込み弾性率及び押込み硬度の大きさを調整できる。これにより、多層基材のインキ密着性及び耐熱性をより向上できる。 For example, the first PE layer may contain medium-density polyethylene and high-density polyethylene, and the third PE layer may contain medium-density polyethylene and high-density polyethylene. By adjusting the amount ratio of the medium-density polyethylene and the high-density polyethylene, for example, the indentation elastic modulus and the indentation hardness can be adjusted. This makes it possible to further improve the ink adhesion and heat resistance of the multilayer base material.
 第1のPE層及び第3のPE層における、中密度ポリエチレンと高密度ポリエチレンとの質量比(中密度ポリエチレン/高密度ポリエチレン)は、それぞれ独立に、好ましくは1.1以上5以下、より好ましくは1.5以上3以下である。これにより、インキ密着性及び耐熱性のバランスをより向上できる。 The mass ratio of medium-density polyethylene to high-density polyethylene (medium-density polyethylene / high-density polyethylene) in the first PE layer and the third PE layer is independently, preferably 1.1 or more and 5 or less, more preferably. Is 1.5 or more and 3 or less. This makes it possible to further improve the balance between ink adhesion and heat resistance.
 第1のPE層及び第3のPE層における、中密度ポリエチレン及び高密度ポリエチレンの合計含有割合は、それぞれ独立に、好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。これにより、多層基材のインキ密着性及び耐熱性をより向上できる。 The total content of the medium-density polyethylene and the high-density polyethylene in the first PE layer and the third PE layer is independently, preferably 80% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass. % Or more. This makes it possible to further improve the ink adhesion and heat resistance of the multilayer base material.
 例えば、第2のPE層は、直鎖状低密度ポリエチレンを含有してもよい。このような構成により、例えば、押込み弾性率及び押込み硬度を低い範囲に調整できる傾向にある。これにより、多層基材の前駆体である積層物の延伸性を向上できる。 For example, the second PE layer may contain linear low-density polyethylene. With such a configuration, for example, the indentation elastic modulus and the indentation hardness tend to be adjusted in a low range. This makes it possible to improve the stretchability of the laminate, which is a precursor of the multilayer substrate.
 第2のPE層における直鎖状低密度ポリエチレンの含有割合は、好ましくは50質量%超、より好ましくは60質量%以上、さらに好ましくは70質量%以上、よりさらに好ましくは80質量%以上、90質量%以上、又は95質量%以上である。これにより、耐熱性、剛性及び延伸性のバランスをより向上できる。 The content ratio of the linear low-density polyethylene in the second PE layer is preferably more than 50% by mass, more preferably 60% by mass or more, still more preferably 70% by mass or more, still more preferably 80% by mass or more, 90. By mass or more, or 95% by mass or more. Thereby, the balance between heat resistance, rigidity and stretchability can be further improved.
 第2aのPE層及び第2bのPE層は、一実施形態において、それぞれ、高密度ポリエチレンを含有してもよい。このような構成により、例えば、押込み弾性率及び押込み硬度を高い範囲に調整できる傾向にある。これらの層は、多層基材の耐熱性の向上に寄与する。すなわち、第1のPE層及び第3のPE層に加えて、第2aのPE層及び第2bのPE層に高密度ポリエチレンを含有させることにより、多層基材の耐熱性を更に向上できる。 The PE layer of the second a and the PE layer of the second b may each contain high-density polyethylene in one embodiment. With such a configuration, for example, the indentation elastic modulus and the indentation hardness tend to be adjusted in a high range. These layers contribute to the improvement of heat resistance of the multilayer base material. That is, by incorporating high-density polyethylene in the second PE layer and the second PE layer in addition to the first PE layer and the third PE layer, the heat resistance of the multilayer base material can be further improved.
 第2aのPE層及び第2bのPE層は、一実施形態において、それぞれ、低密度ポリエチレンをさらに含有してもよい。このような構成により、例えば、押込み弾性率及び押込み硬度を調整してもよい。これにより、多層基材の耐熱性、剛性及び加工性のバランスをより向上できる。 The PE layer of the second a and the PE layer of the second b may each further contain low-density polyethylene in one embodiment. With such a configuration, for example, the indentation elastic modulus and the indentation hardness may be adjusted. This makes it possible to further improve the balance between heat resistance, rigidity and workability of the multilayer base material.
 第2aのPE層及び第2bのPE層における、高密度ポリエチレンと低密度ポリエチレンとの質量比(高密度ポリエチレン/低密度ポリエチレン)は、それぞれ独立に、好ましくは1以上4以下、より好ましくは1.5以上3以下である。これにより、多層基材の耐熱性、剛性及び加工性のバランスをより向上できる。 The mass ratio of high-density polyethylene to low-density polyethylene (high-density polyethylene / low-density polyethylene) in the second PE layer and the second b PE layer is independently, preferably 1 or more and 4 or less, more preferably 1. .5 or more and 3 or less. This makes it possible to further improve the balance between heat resistance, rigidity and workability of the multilayer base material.
 第2aのPE層及び第2bのPE層における、高密度ポリエチレンの含有割合は、それぞれ独立に、好ましくは50質量%超、より好ましくは55質量%以上、さらに好ましくは60質量%以上である。これにより、多層基材の耐熱性をより向上できる。 The content ratio of the high-density polyethylene in the PE layer of the second a and the PE layer of the second b is independently, preferably more than 50% by mass, more preferably 55% by mass or more, still more preferably 60% by mass or more. Thereby, the heat resistance of the multilayer base material can be further improved.
 第2aのPE層及び第2bのPE層における、高密度ポリエチレン及び低密度ポリエチレンの合計含有割合は、それぞれ独立に、好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。これにより、多層基材の耐熱性、剛性及び加工性のバランスをより向上できる。 The total content of the high-density polyethylene and the low-density polyethylene in the PE layer of the second a and the PE layer of the second b is independently, preferably 80% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass. % Or more. This makes it possible to further improve the balance between heat resistance, rigidity and workability of the multilayer base material.
 他の実施形態において、第2aのPE層は、中密度ポリエチレンと直鎖状低密度ポリエチレンとを含有してもよく、第2bのPE層は、中密度ポリエチレンと直鎖状低密度ポリエチレンとを含有してもよい。中密度ポリエチレン及び直鎖状低密度ポリエチレンの量比を調整することにより、例えば、押込み弾性率及び押込み硬度の大きさを調整できる。これらの層は、多層基材の前駆体である積層物の延伸性の向上に寄与する。 In another embodiment, the second PE layer may contain medium density polyethylene and linear low density polyethylene, and the second PE layer may contain medium density polyethylene and linear low density polyethylene. It may be contained. By adjusting the amount ratio of medium-density polyethylene and linear low-density polyethylene, for example, the indentation elastic modulus and the indentation hardness can be adjusted. These layers contribute to the improvement of the stretchability of the laminate which is the precursor of the multilayer base material.
 第2aのPE層及び第2bのPE層における、中密度ポリエチレンと直鎖状低密度ポリエチレンとの質量比(中密度ポリエチレン/直鎖状低密度ポリエチレン)は、それぞれ独立に、好ましくは0.25以上4以下、より好ましくは0.4以上2.4以下である。これにより、耐熱性、剛性及び延伸性のバランスをより向上できる。 The mass ratio of medium-density polyethylene to linear low-density polyethylene (medium-density polyethylene / linear low-density polyethylene) in the second PE layer and the second b PE layer is independently and preferably 0.25, respectively. It is 4 or more, more preferably 0.4 or more and 2.4 or less. Thereby, the balance between heat resistance, rigidity and stretchability can be further improved.
 第2aのPE層及び第2bのPE層における、中密度ポリエチレン及び直鎖状低密度ポリエチレンの合計含有割合は、それぞれ独立に、好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。これにより、前駆体である積層物の延伸性をより向上できる。 The total content of the medium-density polyethylene and the linear low-density polyethylene in the PE layer of the second a and the PE layer of the second b is independently, preferably 80% by mass or more, more preferably 90% by mass or more, still more preferable. Is 95% by mass or more. This makes it possible to further improve the stretchability of the laminate which is the precursor.
 第1のPE層及び第3のPE層のそれぞれの厚さは、それぞれ独立に、好ましくは0.5μm以上10μm以下、より好ましくは1μm以上8μm以下、さらに好ましくは1μm以上5μm以下である。これにより、多層基材のインキ密着性及び耐熱性をより向上できる。 The thickness of each of the first PE layer and the third PE layer is independently, preferably 0.5 μm or more and 10 μm or less, more preferably 1 μm or more and 8 μm or less, and further preferably 1 μm or more and 5 μm or less. This makes it possible to further improve the ink adhesion and heat resistance of the multilayer base material.
 第1のPE層及び第3のPE層のそれぞれの厚さは、第2aのPE層、第2のPE層及び第2bのPE層(以下、第2a、第2及び第2bの層をまとめて「多層中間層」ともいう)の合計厚さよりも小さいことが好ましい。第1のPE層及び第3のPE層のそれぞれの厚さと、多層中間層の合計厚さとの比(第1のPE層又は第3のPE層/多層中間層)は、好ましくは0.05以上0.8以下、より好ましくは0.1以上0.7以下、さらに好ましくは0.1以上0.4以下である。これにより、多層基材の剛性、強度及び耐熱性をより向上できる。 The thickness of each of the first PE layer and the third PE layer is a combination of the second PE layer, the second PE layer and the second PE layer (hereinafter, the second a, second and second b layers). It is preferable that the thickness is smaller than the total thickness of the "multilayer intermediate layer"). The ratio of the respective thicknesses of the first PE layer and the third PE layer to the total thickness of the multilayer intermediate layers (first PE layer or third PE layer / multilayer intermediate layer) is preferably 0.05. It is 0.8 or more, more preferably 0.1 or more and 0.7 or less, and further preferably 0.1 or more and 0.4 or less. Thereby, the rigidity, strength and heat resistance of the multilayer base material can be further improved.
 第2のPE層の厚さは、好ましくは1μm以上50μm以下、より好ましくは2μm以上40μm以下、さらに好ましくは5μm以上30μm以下である。これにより、耐熱性、剛性及び延伸性のバランスをより向上できる。 The thickness of the second PE layer is preferably 1 μm or more and 50 μm or less, more preferably 2 μm or more and 40 μm or less, and further preferably 5 μm or more and 30 μm or less. Thereby, the balance between heat resistance, rigidity and stretchability can be further improved.
 第2aのPE層及び第2bのPE層のそれぞれの厚さは、それぞれ独立に、好ましくは0.5μm以上15μm以下、より好ましくは1μm以上10μm以下、さらに好ましくは1μm以上8μm以下である。これにより、多層基材の耐熱性、又は前駆体である積層物の延伸性をより向上できる。 The thickness of each of the second PE layer and the second b PE layer is independently, preferably 0.5 μm or more and 15 μm or less, more preferably 1 μm or more and 10 μm or less, and further preferably 1 μm or more and 8 μm or less. Thereby, the heat resistance of the multilayer base material or the stretchability of the laminate as a precursor can be further improved.
 第2aのPE層及び第2bのPE層の合計厚さと、第2のPE層の厚さとの比(第2aのPE層及び第2bのPE層の合計厚さ/第2のPE層の厚さ)は、好ましくは0.1以上10以下、より好ましくは0.2以上5以下、さらに好ましくは0.5以上2以下である。これにより、多層基材の剛性、強度及び耐熱性をより向上できる。
 以上の各層の厚さは、いずれも延伸処理後の厚さである。
The ratio of the total thickness of the second PE layer and the second PE layer to the thickness of the second PE layer (total thickness of the second PE layer and the second PE layer / thickness of the second PE layer) S) is preferably 0.1 or more and 10 or less, more preferably 0.2 or more and 5 or less, and further preferably 0.5 or more and 2 or less. Thereby, the rigidity, strength and heat resistance of the multilayer base material can be further improved.
The thickness of each of the above layers is the thickness after the stretching treatment.
 多層基材を構成する各層は、それぞれ独立に、添加剤を含有してもよい。添加剤としては、例えば、架橋剤、酸化防止剤、アンチブロッキング剤、滑(スリップ)剤、紫外線吸収剤、光安定剤、充填剤、補強剤、帯電防止剤、顔料及び改質用樹脂が挙げられる。 Each layer constituting the multilayer base material may independently contain an additive. Examples of the additive include a cross-linking agent, an antioxidant, an anti-blocking agent, a slip agent, an ultraviolet absorber, a light stabilizer, a filler, a reinforcing agent, an antistatic agent, a pigment and a resin for modification. Be done.
 本開示の第1の態様及び第2の態様の多層基材における第1のPE層、第2のPE層、及び第3のPE層から選ばれる少なくとも1つの層、具体的には、第1のPE層、第2aのPE層、第2のPE層、第2bのPE層、及び第3のPE層から選ばれる少なくとも1つの層は、スリップ剤を含有してもよい。これにより、例えば、多層基材の加工性を向上できる。例えば、第2のPE層がスリップ剤を含有してもよく、上記各層の全てがスリップ剤を含有してもよい。 At least one layer selected from the first PE layer, the second PE layer, and the third PE layer in the multilayer substrate of the first aspect and the second aspect of the present disclosure, specifically, the first. At least one layer selected from the PE layer, the second PE layer, the second PE layer, the second PE layer, and the third PE layer may contain a slip agent. Thereby, for example, the processability of the multilayer base material can be improved. For example, the second PE layer may contain a slip agent, and all of the above layers may contain a slip agent.
 スリップ剤としては、例えば、アミド系滑剤、グリセリン脂肪酸エステル等の脂肪酸エステル、炭化水素系ワックス、高級脂肪酸系ワックス、金属石鹸、親水性シリコーン、シリコーン変性(メタ)アクリル樹脂、シリコーン変性エポキシ樹脂、シリコーン変性ポリエーテル、シリコーン変性ポリエステル、ブロック型シリコーン(メタ)アクリル共重合体、ポリグリセロール変性シリコーン及びパラフィンが挙げられる。 Examples of the slip agent include amide-based lubricants, fatty acid esters such as glycerin fatty acid esters, hydrocarbon-based waxes, higher fatty acid-based waxes, metal soaps, hydrophilic silicones, silicone-modified (meth) acrylic resins, silicone-modified epoxy resins, and silicones. Examples thereof include modified polyethers, silicone-modified polyesters, block-type silicone (meth) acrylic copolymers, polyglycerol-modified silicones and paraffins.
 滑剤の中でも、アミド系滑剤が好ましい。アミド系滑剤としては、例えば、飽和脂肪酸アミド、不飽和脂肪酸アミド、置換アミド、メチロールアミド、飽和脂肪酸ビスアミド、不飽和脂肪酸ビスアミド、脂肪酸エステルアミド及び芳香族ビスアミドが挙げられる。 Among the lubricants, amide-based lubricants are preferable. Examples of the amide-based lubricant include saturated fatty acid amides, unsaturated fatty acid amides, substituted amides, methylol amides, saturated fatty acid bisamides, unsaturated fatty acid bisamides, fatty acid ester amides and aromatic bisamides.
 飽和脂肪酸アミドとしては、例えば、ラウリン酸アミド、パルミチン酸アミド、ステアリン酸アミド、ベヘン酸アミド及びヒドロキシステアリン酸アミドが挙げられる。不飽和脂肪酸アミドとしては、例えば、オレイン酸アミド及びエルカ酸アミドが挙げられる。置換アミドとしては、例えば、N-オレイルパルミチン酸アミド、N-ステアリルステアリン酸アミド、N-ステアリルオレイン酸アミド、N-オレイルステアリン酸アミド及びN-ステアリルエルカ酸アミドが挙げられる。メチロールアミドとしては、例えば、メチロールステアリン酸アミドが挙げられる。飽和脂肪酸ビスアミドとしては、例えば、メチレンビスステアリン酸アミド、エチレンビスカプリン酸アミド、エチレンビスラウリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスヒドロキシステアリン酸アミド、エチレンビスベヘン酸アミド、ヘキサメチレンビスステアリン酸アミド、ヘキサメチレンビスベヘン酸アミド、ヘキサメチレンヒドロキシステアリン酸アミド、N,N'-ジステアリルアジピン酸アミド及びN,N'-ジステアリルセバシン酸アミドが挙げられる。不飽和脂肪酸ビスアミドとしては、例えば、エチレンビスオレイン酸アミド、エチレンビスエルカ酸アミド、ヘキサメチレンビスオレイン酸アミド、N,N'-ジオレイルアジピン酸アミド及びN,N'-ジオレイルセバシン酸アミドが挙げられる。脂肪酸エステルアミドとしては、例えば、ステアロアミドエチルステアレートが挙げられる。芳香族ビスアミドとしては、例えば、m-キシリレンビスステアリン酸アミド、m-キシリレンビスヒドロキシステアリン酸アミド及びN,N'-ジステアリルイソフタル酸アミドが挙げられる。
 スリップ剤の中でも、エルカ酸アミドが好ましい。
Examples of the saturated fatty acid amide include lauric acid amide, palmitic acid amide, stearic acid amide, behenic acid amide and hydroxystearic acid amide. Examples of unsaturated fatty acid amides include oleic acid amides and erucic acid amides. Examples of the substituted amide include N-oleyl palmitate amide, N-stearyl stearyl amide, N-stearyl oleate amide, N-oleyl stealic acid amide and N-stearyl erucate amide. Examples of the methylolamide include methylolstearic acid amide. Examples of the saturated fatty acid bisamide include methylene bisstearic acid amide, ethylene biscapric acid amide, ethylene bislauric acid amide, ethylene bisstearic acid amide, ethylene bishydroxystearic acid amide, ethylene bisbechenic acid amide, and hexamethylene bisstearic acid. Examples thereof include amides, hexamethylene bisbechenic acid amides, hexamethylene hydroxystearic acid amides, N, N'-distealyl adipic acid amides and N, N'-distealyl sebasic acid amides. Examples of unsaturated fatty acid bisamides include ethylene bisoleic acid amides, ethylene biserukaic acid amides, hexamethylene bisoleic acid amides, N, N'-diorail adipic acid amides and N, N'-diorail sevacinic acid amides. Can be mentioned. Examples of the fatty acid ester amide include stearoamide ethyl stearate. Examples of the aromatic bisamide include m-xylylene bisstearic acid amide, m-xylylene bishydroxystearic acid amide and N, N'-distearylisophthalic acid amide.
Among the slip agents, erucic acid amide is preferable.
 各層を形成する樹脂組成物中でのスリップ剤の分散性を高くするために、スリップ剤とポリエチレンとを含有するマスターバッチを用いてもよい。マスターバッチにおけるスリップ剤の含有割合は、好ましくは1質量%以上30質量%以下、より好ましくは2質量%以上20質量%以下、さらに好ましくは3質量%以上10質量%以下である。ポリエチレンとしては、上述した具体例が挙げられる。ポリエチレンが充たす好ましい物性(密度及びMFR等)も上述したとおりである。 In order to increase the dispersibility of the slip agent in the resin composition forming each layer, a master batch containing the slip agent and polyethylene may be used. The content ratio of the slip agent in the masterbatch is preferably 1% by mass or more and 30% by mass or less, more preferably 2% by mass or more and 20% by mass or less, and further preferably 3% by mass or more and 10% by mass or less. Examples of polyethylene include the above-mentioned specific examples. The preferable physical properties (density, MFR, etc.) filled with polyethylene are also as described above.
 本開示の第1の態様及び第2の態様の多層基材において、スリップ剤を含有する層におけるスリップ剤の含有割合は、例えば0.01質量%以上3質量%以下でもよく、0.03質量%以上1質量%以下でもよい。これにより、多層基材の加工性をより向上できる。 In the multilayer substrate of the first aspect and the second aspect of the present disclosure, the content ratio of the slip agent in the layer containing the slip agent may be, for example, 0.01% by mass or more and 3% by mass or less, and 0.03% by mass. It may be% or more and 1% by mass or less. Thereby, the processability of the multilayer base material can be further improved.
 一つの層中に、密度が異なるポリエチレンが複数種(n種;nは2以上の整数)含まれる場合は、上記JIS K7112に準拠して当該層を構成するポリエチレンの密度を測定してもよく、下記式(F1)に従い計算された平均密度Davを、当該層を構成するポリエチレンの密度としてもよい。 When one layer contains a plurality of types of polyethylene having different densities (n types; n is an integer of 2 or more), the density of the polyethylene constituting the layer may be measured in accordance with the above JIS K7112. , The average density Dav calculated according to the following formula (F1) may be used as the density of the polyethylene constituting the layer.
 Dav = ΣW×D …(F1)
 式(F1)中、Σは、iについて1からnまでW×Dの和を取ることを意味し、nは2以上の整数であり、Wはi番目のポリエチレンの質量分率を示し、Dはi番目のポリエチレンの密度(g/cm)を示す。
D av = ΣW i × Di… (F1)
In equation (F1), Σ means to take the sum of Wi x Di for i from 1 to n, n is an integer of 2 or more, and Wi is the mass fraction of the i -th polyethylene. Shown, Di indicates the density of the i -th polyethylene (g / cm 3 ).
 本開示の第1の態様及び第2の態様の多層基材は、延伸処理されており、また特有の物性を有することから、従来のポリエチレンフィルムに比べて、剛性、強度及び耐熱性に優れ、またインキ密着性に優れる。したがって、本開示のポリエチレン多層基材は例えば包装材料の基材として使用でき、該多層基材の表面に、鮮明な画像を形成できる。 Since the multilayer substrate of the first aspect and the second aspect of the present disclosure is stretch-treated and has unique physical properties, it is excellent in rigidity, strength and heat resistance as compared with the conventional polyethylene film. It also has excellent ink adhesion. Therefore, the polyethylene multilayer base material of the present disclosure can be used, for example, as a base material for a packaging material, and a clear image can be formed on the surface of the multilayer base material.
 以下、第1の態様及び第2の態様の多層基材の具体的な実施形態について説明する。
 第1の実施形態のポリエチレン多層基材は、第1のPE層と、第2aのPE層と、第2のPE層と、第2bのPE層と、第3のPE層とを、厚さ方向にこの順に備え、延伸処理されてなり、第1のPE層が、中密度ポリエチレン及び高密度ポリエチレンを含有し、第2aのPE層が、高密度ポリエチレン及び任意に低密度ポリエチレンを含有し、第2のPE層が、直鎖状低密度ポリエチレンを含有し、第2bのPE層が、高密度ポリエチレン及び任意に低密度ポリエチレンを含有し、第3のPE層が、中密度ポリエチレン及び高密度ポリエチレンを含有する。
Hereinafter, specific embodiments of the multilayer base material of the first aspect and the second aspect will be described.
The polyethylene multilayer base material of the first embodiment has a thickness of a first PE layer, a second PE layer, a second PE layer, a second PE layer, and a third PE layer. The first PE layer contains medium-density polyethylene and high-density polyethylene, and the second PE layer contains high-density polyethylene and optionally low-density polyethylene. The second PE layer contains linear low density polyethylene, the second PE layer contains high density polyethylene and optionally low density polyethylene, and the third PE layer contains medium density polyethylene and high density. Contains polyethylene.
 第2の実施形態のポリエチレン多層基材は、第1のPE層と、第2aのPE層と、第2のPE層と、第2bのPE層と、第3のPE層とを、厚さ方向にこの順に備え、延伸処理されてなり、第1のPE層が、中密度ポリエチレン及び高密度ポリエチレンを含有し、第2aのPE層が、中密度ポリエチレン及び直鎖状低密度ポリエチレンを含有し、第2のPE層が、直鎖状低密度ポリエチレンを含有し、第2bのPE層が、中密度ポリエチレン及び直鎖状低密度ポリエチレンを含有し、第3のPE層が、中密度ポリエチレン及び高密度ポリエチレンを含有する。 The polyethylene multilayer base material of the second embodiment has a thickness of a first PE layer, a second PE layer, a second PE layer, a second PE layer, and a third PE layer. The first PE layer contains medium-density polyethylene and high-density polyethylene, and the second PE layer contains medium-density polyethylene and linear low-density polyethylene. , The second PE layer contains linear low density polyethylene, the second PE layer contains medium density polyethylene and linear low density polyethylene, and the third PE layer contains medium density polyethylene and Contains high density polyethylene.
 第1のPE層に含まれる中密度ポリエチレンと、第3のPE層に含まれる中密度ポリエチレンとは、同一であっても異なってもよく、多層基材を容易に製造できるという観点から、同一であることが好ましい。
 第1のPE層に含まれる高密度ポリエチレンと、第3のPE層に含まれる高密度ポリエチレンとは、同一であっても異なってもよく、多層基材を容易に製造できるという観点から、同一であることが好ましい。
The medium-density polyethylene contained in the first PE layer and the medium-density polyethylene contained in the third PE layer may be the same or different, and are the same from the viewpoint that a multilayer base material can be easily produced. Is preferable.
The high-density polyethylene contained in the first PE layer and the high-density polyethylene contained in the third PE layer may be the same or different, and are the same from the viewpoint that a multilayer base material can be easily produced. Is preferable.
 第1の実施形態において、第2aのPE層に含まれる高密度ポリエチレンと、第2bのPE層に含まれる高密度ポリエチレンとは、同一であっても異なってもよく、多層基材を容易に製造できるという観点から、同一であることが好ましい。 In the first embodiment, the high-density polyethylene contained in the PE layer of the second a and the high-density polyethylene contained in the PE layer of the second b may be the same or different, and a multilayer base material can be easily used. From the viewpoint of being able to be manufactured, they are preferably the same.
 第2の実施形態において、第2のPE層に含まれる直鎖状低密度ポリエチレンと、第2aのPE層及び第2bのPE層に含まれる直鎖状低密度ポリエチレンとは、同一であっても異なってもよい。
 第2の実施形態において、第2aのPE層に含まれる中密度ポリエチレンと、第2bのPE層に含まれる中密度ポリエチレンとは、同一であっても異なってもよく、多層基材を容易に製造できるという観点から、同一であることが好ましい。
 第2の実施形態において、第2aのPE層に含まれる直鎖状低密度ポリエチレンと、第2bのPE層に含まれる直鎖状低密度ポリエチレンとは、同一であっても異なってもよく、多層基材を容易に製造できるという観点から、同一であることが好ましい。
 第2の実施形態において、第2aのPE層及び第2bのPE層に含まれる中密度ポリエチレンと、第1のPE層及び第3のPE層に含まれる中密度ポリエチレンとは、同一であっても異なってもよい。
In the second embodiment, the linear low-density polyethylene contained in the second PE layer and the linear low-density polyethylene contained in the second PE layer and the second PE layer are the same. May also be different.
In the second embodiment, the medium-density polyethylene contained in the PE layer of the second a and the medium-density polyethylene contained in the PE layer of the second b may be the same or different, and a multilayer base material can be easily used. From the viewpoint of being able to be manufactured, they are preferably the same.
In the second embodiment, the linear low-density polyethylene contained in the PE layer of the second a and the linear low-density polyethylene contained in the PE layer of the second b may be the same or different. From the viewpoint that the multilayer base material can be easily produced, it is preferable that they are the same.
In the second embodiment, the medium-density polyethylene contained in the second PE layer and the second PE layer and the medium-density polyethylene contained in the first PE layer and the third PE layer are the same. May also be different.
 [第3の態様のポリエチレン多層基材]
 本開示の第3の態様のポリエチレン多層基材10は、図1に示すように、
 中密度ポリエチレンを含有する層(A)12と、
 それぞれポリエチレンを含有する、2層以上の多層中間層(B)16と、
 中密度ポリエチレンを含有する層(C)14と
を、厚さ方向にこの順に備える。
 本開示の第3の態様のポリエチレン多層基材は、延伸処理されている。
[Polyethylene multilayer base material of the third aspect]
As shown in FIG. 1, the polyethylene multilayer base material 10 of the third aspect of the present disclosure is as shown in FIG.
Layer (A) 12 containing medium-density polyethylene and
Two or more multilayer intermediate layers (B) 16 each containing polyethylene, and
A layer (C) 14 containing medium-density polyethylene is provided in this order in the thickness direction.
The polyethylene multilayer substrate of the third aspect of the present disclosure has been stretched.
 基材に画像を印刷する際には、通常、前処理として、コロナ放電処理などの表面処理が基材に対してなされる。中密度ポリエチレンを含有する層は、ポリエチレンとして高密度ポリエチレンのみを含有する層に比べて、表面処理に対する耐久性が高い傾向にある。このため、中密度ポリエチレンを含有する層は、表面処理後の印刷時におけるインキ密着性に優れる。また、中密度ポリエチレンを含有する層は、印刷時及びヒートシール時に必要な耐熱性も有する。また、中密度ポリエチレンを含有する層は、多層基材の前駆体である積層物の延伸性の向上に寄与する。 When printing an image on a base material, a surface treatment such as a corona discharge treatment is usually performed on the base material as a pretreatment. The layer containing medium-density polyethylene tends to have higher durability against surface treatment than the layer containing only high-density polyethylene as polyethylene. Therefore, the layer containing medium-density polyethylene is excellent in ink adhesion at the time of printing after surface treatment. The layer containing medium-density polyethylene also has the heat resistance required for printing and heat sealing. Further, the layer containing medium-density polyethylene contributes to the improvement of the stretchability of the laminate which is the precursor of the multilayer base material.
 一実施形態において、第3の態様の多層基材の一方側の表面層が層(A)であり、第3の態様の多層基材の他方側の表面層が層(C)である。 In one embodiment, the surface layer on one side of the multilayer substrate of the third aspect is the layer (A), and the surface layer on the other side of the multilayer substrate of the third aspect is the layer (C).
 第3の態様の多層基材における、厚さ方向において任意の互いに隣接するポリエチレン含有層を層(1)及び層(2)と記載する場合に、層(1)を構成するポリエチレンの密度と、層(2)を構成するポリエチレンの密度との差の絶対値は、0.030g/cm以下であり、好ましくは0.025g/cm以下、より好ましくは0.020g/cm以下である。以下、この要件を「密度差要件」ともいう。すなわち、第3の態様の多層基材に含まれる、厚さ方向に隣接するポリエチレン含有層のいずれの組も、上記密度差要件を充たす。
 以下では密度差を記載するときは、いずれも差の絶対値を意味する。
When the polyethylene-containing layers arbitrarily adjacent to each other in the thickness direction in the multilayer substrate of the third aspect are described as the layer (1) and the layer (2), the density of the polyethylene constituting the layer (1) and the density of the polyethylene constituting the layer (1). The absolute value of the difference from the density of the polyethylene constituting the layer (2) is 0.030 g / cm 3 or less, preferably 0.025 g / cm 3 or less, and more preferably 0.020 g / cm 3 or less. .. Hereinafter, this requirement is also referred to as a "density difference requirement". That is, any set of polyethylene-containing layers adjacent in the thickness direction contained in the multilayer substrate of the third aspect satisfies the above-mentioned density difference requirement.
In the following, when the density difference is described, it means the absolute value of the difference.
 例えば、中密度ポリエチレン(a)を含有する第1の層と、高密度ポリエチレン(b)を含有する第2の層と、中密度ポリエチレン(c)及び高密度ポリエチレン(d)を含有する第3の層と、高密度ポリエチレン(e)を含有する第4の層と、中密度ポリエチレン(f)を含有する第5の層とを、厚さ方向にこの順に備える積層体について説明する。便宜上、各ポリエチレンに記号を付記した。 For example, a first layer containing medium density polyethylene (a), a second layer containing high density polyethylene (b), and a third layer containing medium density polyethylene (c) and high density polyethylene (d). , A fourth layer containing the high-density polyethylene (e), and a fifth layer containing the medium-density polyethylene (f) will be described in this order in the thickness direction. For convenience, a symbol is added to each polyethylene.
 上記密度差要件は、一実施形態において、
 中密度ポリエチレン(a)と高密度ポリエチレン(b)との密度差、
 高密度ポリエチレン(b)の密度と、中密度ポリエチレン(c)及び高密度ポリエチレン(d)の平均密度との差、
 中密度ポリエチレン(c)及び高密度ポリエチレン(d)の平均密度と、高密度ポリエチレン(e)の密度との差、並びに
 高密度ポリエチレン(e)と中密度ポリエチレン(f)との密度差
のいずれもが、0.030g/cm以下であることを意味する。
The above density difference requirement is, in one embodiment,
Density difference between medium density polyethylene (a) and high density polyethylene (b),
Difference between the density of high-density polyethylene (b) and the average density of medium-density polyethylene (c) and high-density polyethylene (d),
Either the difference between the average density of the medium-density polyethylene (c) and the high-density polyethylene (d) and the density of the high-density polyethylene (e), or the difference in density between the high-density polyethylene (e) and the medium-density polyethylene (f). It means that the polyethylene is 0.030 g / cm 3 or less.
 一つの層中に、密度が異なるポリエチレンが複数種(n種;nは2以上の整数)含まれる場合は、上記JIS K7112に準拠して当該層を構成するポリエチレンの密度を測定してもよく、上記式(F1)に従い計算された平均密度Davを、当該層を構成するポリエチレンの密度としてもよい。 When one layer contains a plurality of types of polyethylene having different densities (n types; n is an integer of 2 or more), the density of the polyethylene constituting the layer may be measured in accordance with the above JIS K7112. The average density Dav calculated according to the above formula (F1) may be used as the density of the polyethylene constituting the layer.
 本開示の第3の態様の多層基材は、ポリエチレン含有層の層間の密度差が上述のとおり小さい。したがって、本開示の第3の態様の多層基材は、高い層間強度を示す。また、本開示の第3の態様の多層基材は、上述したように優れたインキ密着性を有するとともに、耐熱性及び透明性を有し、また、包装材料などを製造するために用いられる多層基材として充分な剛性、強度及び剛性を有する。したがって、本開示の第3の態様の多層基材は、印刷層が形成される基材として有用である。 In the multilayer substrate of the third aspect of the present disclosure, the density difference between the polyethylene-containing layers is small as described above. Therefore, the multilayer substrate of the third aspect of the present disclosure exhibits high interlayer strength. Further, the multilayer base material of the third aspect of the present disclosure has excellent ink adhesion as described above, heat resistance and transparency, and is a multilayer used for producing a packaging material or the like. It has sufficient rigidity, strength and rigidity as a base material. Therefore, the multilayer substrate of the third aspect of the present disclosure is useful as a substrate on which a printed layer is formed.
 本開示の第3の態様の多層基材に含まれるポリエチレンのメルトフローレート(MFR)は、製膜性、及び多層基材の加工適性という観点から、好ましくは0.1g/10分以上50g/10分以下、より好ましくは0.3g/10分以上30g/10分以下である。本開示において、MFRは、ASTM D1238に準拠し、温度190℃、荷重2.16kgの条件で測定する。 The melt flow rate (MFR) of polyethylene contained in the multilayer substrate of the third aspect of the present disclosure is preferably 0.1 g / 10 minutes or more and 50 g / from the viewpoint of film forming property and processability of the multilayer substrate. It is 10 minutes or less, more preferably 0.3 g / 10 minutes or more and 30 g / 10 minutes or less. In the present disclosure, the MFR is measured in accordance with ASTM D1238 under the conditions of a temperature of 190 ° C. and a load of 2.16 kg.
 <第3の態様:層(A)及び層(C)>
 層(A)は、1種又は2種以上の中密度ポリエチレンを含有する。
 層(C)は、1種又は2種以上の中密度ポリエチレンを含有する。
<Third aspect: layer (A) and layer (C)>
Layer (A) contains one or more medium density polyethylenes.
The layer (C) contains one or more medium density polyethylenes.
 層(A)に含まれる中密度ポリエチレンと、層(C)に含まれる中密度ポリエチレンとは、同一であっても異なってもよく、多層基材を容易に製造できるという観点から、同一であることが好ましい。 The medium-density polyethylene contained in the layer (A) and the medium-density polyethylene contained in the layer (C) may be the same or different, and are the same from the viewpoint that a multilayer base material can be easily produced. Is preferable.
 層(A)及び層(C)は、それぞれ独立に、ポリエチレンとして中密度ポリエチレンのみを含有してもよい。
 層(A)及び層(C)は、それぞれ独立に、中密度ポリエチレンとともに、中密度ポリエチレン以外の他のポリエチレンをさらに含有してもよい。中密度ポリエチレン以外の他のポリエチレンとしては、例えば、高密度ポリエチレン、低密度ポリエチレン(高圧法低密度ポリエチレン)、直鎖状低密度ポリエチレン及び超低密度ポリエチレンが挙げられる。これらの中でも、耐熱性及び耐擦傷性をより向上できるという観点から、高密度ポリエチレンが好ましい。すなわち、一実施形態において、層(A)及び層(C)は、それぞれ独立に、中密度ポリエチレンと高密度ポリエチレンとを含有する。
The layer (A) and the layer (C) may independently contain only medium-density polyethylene as polyethylene.
The layer (A) and the layer (C) may each independently contain the medium-density polyethylene and further polyethylene other than the medium-density polyethylene. Examples of polyethylene other than medium-density polyethylene include high-density polyethylene, low-density polyethylene (high-pressure method low-density polyethylene), linear low-density polyethylene, and ultra-low-density polyethylene. Among these, high-density polyethylene is preferable from the viewpoint of further improving heat resistance and scratch resistance. That is, in one embodiment, the layer (A) and the layer (C) independently contain medium-density polyethylene and high-density polyethylene, respectively.
 この場合、層(A)及び層(C)における中密度ポリエチレンと、高密度ポリエチレンなどの他のポリエチレンとの質量比(中密度ポリエチレン/他のポリエチレン)は、それぞれ独立に、好ましくは0.25以上4以下、より好ましくは0.4以上2.4以下である。これにより、多層基材のインキ密着性、表面処理に対する耐久性、及び耐熱性をより向上できる。 In this case, the mass ratio of the medium-density polyethylene in the layers (A) and (C) to other polyethylene such as high-density polyethylene (medium-density polyethylene / other polyethylene) is independently and preferably 0.25. It is 4 or more, more preferably 0.4 or more and 2.4 or less. Thereby, the ink adhesion of the multilayer base material, the durability against the surface treatment, and the heat resistance can be further improved.
 層(A)及び層(C)を構成するポリエチレンの密度は、それぞれ独立に、好ましくは0.925g/cmを超えて0.960g/cm以下、より好ましくは0.925g/cmを超えて0.955g/cm以下、さらに好ましくは0.925g/cmを超えて0.945g/cm以下である。同一の層中にポリエチレンが2種以上含まれる場合は、ポリエチレンの密度とは、上述した平均密度を意味する。これにより、多層基材のインキ密着性、表面処理に対する耐久性、及び耐熱性をより向上できる。 The densities of the polyethylene constituting the layer (A) and the layer (C) are independently, preferably more than 0.925 g / cm 3 and 0.960 g / cm 3 or less, more preferably 0.925 g / cm 3 . It is more than 0.955 g / cm 3 or less, more preferably 0.925 g / cm 3 or more and 0.945 g / cm 3 or less. When two or more kinds of polyethylene are contained in the same layer, the density of polyethylene means the above-mentioned average density. Thereby, the ink adhesion of the multilayer base material, the durability against the surface treatment, and the heat resistance can be further improved.
 層(A)及び層(C)におけるポリエチレンの含有割合は、それぞれ独立に、好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。 The content ratio of polyethylene in the layer (A) and the layer (C) is independently, preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more.
 層(A)及び層(C)は、それぞれ独立に、添加剤を1種又は2種以上含有してもよい。添加剤としては、例えば、架橋剤、酸化防止剤、アンチブロッキング剤、滑(スリップ)剤、紫外線吸収剤、光安定剤、充填剤、補強剤、帯電防止剤、顔料及び改質用樹脂が挙げられる。 The layer (A) and the layer (C) may independently contain one or more additives. Examples of the additive include a cross-linking agent, an antioxidant, an anti-blocking agent, a slip agent, an ultraviolet absorber, a light stabilizer, a filler, a reinforcing agent, an antistatic agent, a pigment and a resin for modification. Be done.
 第3の態様の多層基材における層(A)及び層(C)のそれぞれの厚さは、それぞれ独立に、好ましくは0.5μm以上10μm以下、より好ましくは1μm以上8μm以下、さらに好ましくは1μm以上5μm以下である。これにより、多層基材のインキ密着性及び耐熱性をより向上できる。 The thickness of each of the layer (A) and the layer (C) in the multilayer substrate of the third aspect is independently, preferably 0.5 μm or more and 10 μm or less, more preferably 1 μm or more and 8 μm or less, and further preferably 1 μm. It is 5 μm or less. This makes it possible to further improve the ink adhesion and heat resistance of the multilayer base material.
 層(A)及び層(C)のそれぞれの厚さは、多層中間層(B)の合計厚さよりも小さいことが好ましい。層(A)及び層(C)のそれぞれの厚さと、多層中間層(B)の合計厚さとの比(層(A)又は層(C)/多層中間層(B))は、好ましくは0.05以上0.8以下、より好ましくは0.1以上0.7以下、さらに好ましくは0.1以上0.4以下である。これにより、多層基材の剛性、強度及び耐熱性をより向上できる。 It is preferable that the thickness of each of the layer (A) and the layer (C) is smaller than the total thickness of the multilayer intermediate layer (B). The ratio of the respective thicknesses of the layers (A) and (C) to the total thickness of the multilayer intermediate layer (B) (layer (A) or layer (C) / multilayer intermediate layer (B)) is preferably 0. It is 0.05 or more and 0.8 or less, more preferably 0.1 or more and 0.7 or less, and further preferably 0.1 or more and 0.4 or less. Thereby, the rigidity, strength and heat resistance of the multilayer base material can be further improved.
 <第3の態様:多層中間層(B)>
 多層中間層(B)は、1種又は2種以上のポリエチレンを含有する層を2層以上備える。
<Third aspect: Multilayer intermediate layer (B)>
The multilayer intermediate layer (B) includes two or more layers containing one or more types of polyethylene.
 ポリエチレンとしては、例えば、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン(高圧法低密度ポリエチレン)、直鎖状低密度ポリエチレン及び超低密度ポリエチレンが挙げられる。 Examples of polyethylene include high-density polyethylene, medium-density polyethylene, low-density polyethylene (high-pressure method low-density polyethylene), linear low-density polyethylene, and ultra-low-density polyethylene.
 例えば、層(A)及び層(C)が高密度ポリエチレンを含有しない場合は、多層中間層(B)は、高密度ポリエチレンを含有する層を備えることが好ましい。これにより、多層基材の耐熱性及び剛性を向上できる。 For example, when the layer (A) and the layer (C) do not contain high-density polyethylene, it is preferable that the multilayer intermediate layer (B) includes a layer containing high-density polyethylene. This makes it possible to improve the heat resistance and rigidity of the multilayer base material.
 例えば、層(A)及び層(C)が高密度ポリエチレンを含有する場合は、多層中間層(B)は、中密度ポリエチレン及び直鎖状低密度ポリエチレンを含有する層を備えることが好ましい。これにより、多層基材の耐熱性と延伸性とのバランスを向上できる。 For example, when the layer (A) and the layer (C) contain high-density polyethylene, it is preferable that the multilayer intermediate layer (B) includes a layer containing medium-density polyethylene and linear low-density polyethylene. This makes it possible to improve the balance between the heat resistance and the stretchability of the multilayer base material.
 多層中間層(B)を構成する各層におけるポリエチレンの含有割合は、それぞれ独立に、好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。 The content ratio of polyethylene in each layer constituting the multilayer intermediate layer (B) is independently, preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more.
 多層中間層(B)を構成する各層は、それぞれ独立に、添加剤を1種又は2種以上含有してもよい。添加剤としては、例えば、架橋剤、酸化防止剤、アンチブロッキング剤、滑(スリップ)剤、紫外線吸収剤、光安定剤、充填剤、補強剤、帯電防止剤、顔料及び改質用樹脂が挙げられる。 Each layer constituting the multilayer intermediate layer (B) may independently contain one or more additives. Examples of the additive include a cross-linking agent, an antioxidant, an anti-blocking agent, a slip agent, an ultraviolet absorber, a light stabilizer, a filler, a reinforcing agent, an antistatic agent, a pigment and a resin for modification. Be done.
 多層中間層(B)の合計厚さは、好ましくは1μm以上50μm以下、より好ましくは5μm以上40μm以下、さらに好ましくは10μm以上30μm以下である。これにより、多層基材の耐熱性をより向上できる。 The total thickness of the multilayer intermediate layer (B) is preferably 1 μm or more and 50 μm or less, more preferably 5 μm or more and 40 μm or less, and further preferably 10 μm or more and 30 μm or less. Thereby, the heat resistance of the multilayer base material can be further improved.
 多層中間層(B)の層数は、多層基材の剛性、強度及び製造容易性という観点から、2層以上であり、好ましくは3層以上、より好ましくは3層以上5層以下である。 The number of layers of the multilayer intermediate layer (B) is two or more, preferably three or more, and more preferably three or more and five or less, from the viewpoint of rigidity, strength, and ease of manufacture of the multilayer base material.
 多層中間層(B)の具体例として、第1~4の実施形態を説明する。
 第1の実施形態の多層中間層は、
 高密度ポリエチレンを含有する層と、
 中密度ポリエチレン及び高密度ポリエチレンを含有する層と、
 高密度ポリエチレンを含有する層と
を、厚さ方向にこの順に備える。
 中密度ポリエチレン及び高密度ポリエチレンを含有する層における、中密度ポリエチレンと高密度ポリエチレンとの質量比(中密度ポリエチレン/高密度ポリエチレン)は、好ましくは0.25以上4以下、より好ましくは0.4以上2.4以下である。
As a specific example of the multilayer intermediate layer (B), the first to fourth embodiments will be described.
The multilayer intermediate layer of the first embodiment is
A layer containing high density polyethylene and
With a layer containing medium density polyethylene and high density polyethylene,
A layer containing high-density polyethylene is provided in this order in the thickness direction.
The mass ratio of medium-density polyethylene to high-density polyethylene (medium-density polyethylene / high-density polyethylene) in the layer containing medium-density polyethylene and high-density polyethylene is preferably 0.25 or more and 4 or less, more preferably 0.4. It is 2.4 or less.
 第1の実施形態の多層中間層を備える多層基材は、例えば、中密度ポリエチレンを含有する第1の層(層(A))と、高密度ポリエチレンを含有する第2の層と、中密度ポリエチレン及び高密度ポリエチレンを含有する第3の層と、高密度ポリエチレンを含有する第4の層と、中密度ポリエチレンを含有する第5の層(層(C))とを、厚さ方向にこの順に備え、延伸処理されてなる。 The multilayer base material provided with the multilayer intermediate layer of the first embodiment has, for example, a first layer (layer (A)) containing medium-density polyethylene, a second layer containing high-density polyethylene, and a medium density. A third layer containing polyethylene and high-density polyethylene, a fourth layer containing high-density polyethylene, and a fifth layer (layer (C)) containing medium-density polyethylene are formed in the thickness direction. It is prepared in order and is stretched.
 第2の実施形態の多層中間層は、
 中密度ポリエチレンを含有する層と、
 中密度ポリエチレン及び直鎖状低密度ポリエチレンを含有する層と、
 中密度ポリエチレンを含有する層と
を、厚さ方向にこの順に備える。
 中密度ポリエチレン及び直鎖状低密度ポリエチレンを含有する層における、中密度ポリエチレンと直鎖状低密度ポリエチレンとの質量比(中密度ポリエチレン/直鎖状低密度ポリエチレン)は、好ましくは0.25以上4以下、より好ましくは0.4以上2.4以下である。
The multilayer intermediate layer of the second embodiment is
With a layer containing medium density polyethylene,
A layer containing medium density polyethylene and linear low density polyethylene,
A layer containing medium-density polyethylene is provided in this order in the thickness direction.
The mass ratio of medium-density polyethylene to linear low-density polyethylene (medium-density polyethylene / linear low-density polyethylene) in the layer containing medium-density polyethylene and linear low-density polyethylene is preferably 0.25 or more. It is 4 or less, more preferably 0.4 or more and 2.4 or less.
 第2の実施形態の多層中間層を備える多層基材は、例えば、中密度ポリエチレンを含有する第1の層(層(A))と、中密度ポリエチレンを含有する第2の層と、中密度ポリエチレン及び直鎖状低密度ポリエチレンを含有する第3の層と、中密度ポリエチレンを含有する第4の層と、中密度ポリエチレンを含有する第5の層(層(C))とを、厚さ方向にこの順に備え、延伸処理されてなる。 The multilayer base material provided with the multilayer intermediate layer of the second embodiment is, for example, a first layer (layer (A)) containing medium-density polyethylene, a second layer containing medium-density polyethylene, and a medium density. A third layer containing polyethylene and linear low-density polyethylene, a fourth layer containing medium-density polyethylene, and a fifth layer (layer (C)) containing medium-density polyethylene have a thickness. It is prepared in this order in the direction and is stretched.
 第3の実施形態の多層中間層は、
 中密度ポリエチレン及び直鎖状低密度ポリエチレンを含有する層と、
 直鎖状低密度ポリエチレンを含有する層と、
 中密度ポリエチレン及び直鎖状低密度ポリエチレンを含有する層と
を、厚さ方向にこの順に備える。
 中密度ポリエチレン及び直鎖状低密度ポリエチレンを含有する層における、中密度ポリエチレンと直鎖状低密度ポリエチレンとの質量比(中密度ポリエチレン/直鎖状低密度ポリエチレン)は、好ましくは0.25以上4以下、より好ましくは0.4以上2.4以下である。
The multilayer intermediate layer of the third embodiment is
A layer containing medium density polyethylene and linear low density polyethylene,
With a layer containing linear low density polyethylene,
A layer containing medium-density polyethylene and linear low-density polyethylene is provided in this order in the thickness direction.
The mass ratio of medium-density polyethylene to linear low-density polyethylene (medium-density polyethylene / linear low-density polyethylene) in the layer containing medium-density polyethylene and linear low-density polyethylene is preferably 0.25 or more. It is 4 or less, more preferably 0.4 or more and 2.4 or less.
 第3の実施形態の多層中間層を備える多層基材は、例えば、中密度ポリエチレン及び高密度ポリエチレンを含有する第1の層(層(A))と、中密度ポリエチレン及び直鎖状低密度ポリエチレンを含有する第2の層と、直鎖状低密度ポリエチレンを含有する第3の層と、中密度ポリエチレン及び直鎖状低密度ポリエチレンを含有する第4の層と、中密度ポリエチレン及び高密度ポリエチレンを含有する第5の層(層(C))とを、厚さ方向にこの順に備え、延伸処理されてなる。 The multilayer base material provided with the multilayer intermediate layer of the third embodiment includes, for example, a first layer (layer (A)) containing medium-density polyethylene and high-density polyethylene, and medium-density polyethylene and linear low-density polyethylene. A second layer containing, a third layer containing linear low density polyethylene, a fourth layer containing medium density polyethylene and linear low density polyethylene, medium density polyethylene and high density polyethylene. A fifth layer (layer (C)) containing the above-mentioned material is provided in this order in the thickness direction, and is stretched.
 第4の実施形態の多層中間層は、
 中密度ポリエチレンを含有する層と、
 直鎖状低密度ポリエチレン及び中密度ポリエチレンを含有する層と、
 中密度ポリエチレンを含有する層と
を、厚さ方向にこの順に備える。
 直鎖状低密度ポリエチレン及び中密度ポリエチレンを含有する層における、直鎖状低密度ポリエチレンと中密度ポリエチレンとの質量比(直鎖状低密度ポリエチレン/中密度ポリエチレン)は、好ましくは0.25以上4以下、より好ましくは0.4以上2.4以下である。
The multilayer intermediate layer of the fourth embodiment is
With a layer containing medium density polyethylene,
Layers containing linear low density polyethylene and medium density polyethylene,
A layer containing medium-density polyethylene is provided in this order in the thickness direction.
The mass ratio of the linear low-density polyethylene to the medium-density polyethylene (linear low-density polyethylene / medium-density polyethylene) in the layer containing the linear low-density polyethylene and the medium-density polyethylene is preferably 0.25 or more. It is 4 or less, more preferably 0.4 or more and 2.4 or less.
 第4の実施形態の多層中間層を備える多層基材は、例えば、高密度ポリエチレン及び中密度ポリエチレンを含有する第1の層(層(A))と、中密度ポリエチレンを含有する第2の層と、直鎖状低密度ポリエチレン及び中密度ポリエチレンを含有する第3の層と、中密度ポリエチレンを含有する第4の層と、高密度ポリエチレン及び中密度ポリエチレンを含有する第5の層(層(C))とを、厚さ方向にこの順に備え、延伸処理されてなる。 The multilayer base material provided with the multilayer intermediate layer of the fourth embodiment is, for example, a first layer (layer (A)) containing high-density polyethylene and medium-density polyethylene, and a second layer containing medium-density polyethylene. And a third layer containing linear low-density polyethylene and medium-density polyethylene, a fourth layer containing medium-density polyethylene, and a fifth layer (layer (layer) containing high-density polyethylene and medium-density polyethylene. C)) are provided in this order in the thickness direction and are stretched.
 第1~第4の実施形態の多層中間層における、外側の2層の合計厚さと、中央の層の厚さとの比(外側2層の合計厚さ/中央の層の厚さ)は、好ましくは0.1以上10以下、より好ましくは0.2以上5以下、さらに好ましくは0.5以上2以下である。これにより、多層基材の剛性、強度及び耐熱性をより向上できる。例えば第1の実施形態の場合は、多層中間層における外側の2層とは、高密度ポリエチレンを含有する層を指し、中央の層とは、中密度ポリエチレン及び高密度ポリエチレンを含有する層を指す。 In the multilayer intermediate layer of the first to fourth embodiments, the ratio of the total thickness of the outer two layers to the thickness of the central layer (total thickness of the outer two layers / thickness of the central layer) is preferable. Is 0.1 or more and 10 or less, more preferably 0.2 or more and 5 or less, and further preferably 0.5 or more and 2 or less. Thereby, the rigidity, strength and heat resistance of the multilayer base material can be further improved. For example, in the case of the first embodiment, the outer two layers in the multilayer intermediate layer refer to the layer containing high-density polyethylene, and the central layer refers to the layer containing medium-density polyethylene and high-density polyethylene. ..
 [第4の態様のポリエチレン多層基材]
 本開示の第4の態様のポリエチレン多層基材は、中密度ポリエチレン及び高密度ポリエチレンを含有する第1の層と、中密度ポリエチレン及び直鎖状低密度ポリエチレンを含有する第2の層と、直鎖状低密度ポリエチレンを含有する第3の層と、中密度ポリエチレン及び直鎖状低密度ポリエチレンを含有する第4の層と、中密度ポリエチレン及び高密度ポリエチレンを含有する第5の層とを、厚さ方向にこの順に備え、延伸処理されてなる。
[Polyethylene multilayer base material of the fourth aspect]
The polyethylene multilayer substrate of the fourth aspect of the present disclosure is directly composed of a first layer containing medium density polyethylene and high density polyethylene, and a second layer containing medium density polyethylene and linear low density polyethylene. A third layer containing chain low density polyethylene, a fourth layer containing medium density polyethylene and linear low density polyethylene, and a fifth layer containing medium density polyethylene and high density polyethylene. It is prepared in this order in the thickness direction and is stretched.
 一実施形態において、第4の態様の多層基材の一方側の表面層が第1の層であり、第4の態様の多層基材の他方側の表面層が第5の層である。第4の態様の多層基材は、第1~第5の層間に他の層を備えてもよいが、一実施形態において、第4の態様の多層基材は、第1~第5の層のみからなる。 In one embodiment, the surface layer on one side of the multilayer substrate of the fourth aspect is the first layer, and the surface layer on the other side of the multilayer substrate of the fourth aspect is the fifth layer. The multilayer base material of the fourth aspect may be provided with another layer between the first to fifth layers, but in one embodiment, the multilayer base material of the fourth aspect is the first to fifth layers. Consists of only.
 以下、第4の態様の多層基材を構成する各層について説明する。 Hereinafter, each layer constituting the multilayer base material of the fourth aspect will be described.
 <第4の態様:第1の層及び第5の層>
 第1の層は、1種又は2種以上の中密度ポリエチレンと、1種又は2種以上の高密度ポリエチレンとを含有する。
 第5の層は、1種又は2種以上の中密度ポリエチレンと、1種又は2種以上の高密度ポリエチレンとを含有する。
 基材に画像を印刷する際には、通常、前処理として、コロナ放電処理などの表面処理が基材に対してなされる。中密度ポリエチレンを含有する層は、ポリエチレンとして高密度ポリエチレンのみを含有する層に比べて、表面処理に対する耐久性が高い傾向にある。このため、中密度ポリエチレンを含有する層は、表面処理後の印刷時におけるインキ密着性に優れる。また、中密度ポリエチレンを含有する層は、印刷時及びヒートシール時に必要な耐熱性も有する。また、中密度ポリエチレンを含有する層は、多層基材の前駆体である積層物の延伸性の向上に寄与する。
<Fourth aspect: first layer and fifth layer>
The first layer contains one or more types of medium density polyethylene and one or more types of high density polyethylene.
The fifth layer contains one or more types of medium density polyethylene and one or more types of high density polyethylene.
When printing an image on a substrate, a surface treatment such as a corona discharge treatment is usually performed on the substrate as a pretreatment. The layer containing medium-density polyethylene tends to have higher durability against surface treatment than the layer containing only high-density polyethylene as polyethylene. Therefore, the layer containing medium-density polyethylene is excellent in ink adhesion at the time of printing after surface treatment. The layer containing medium-density polyethylene also has the heat resistance required for printing and heat sealing. Further, the layer containing medium-density polyethylene contributes to the improvement of the stretchability of the laminate which is the precursor of the multilayer base material.
 第1の層に含まれる中密度ポリエチレンと、第5の層に含まれる中密度ポリエチレンとは、同一であっても異なってもよく、多層基材を容易に製造できるという観点から、同一であることが好ましい。
 第1の層に含まれる高密度ポリエチレンと、第5の層に含まれる高密度ポリエチレンとは、同一であっても異なってもよく、多層基材を容易に製造できるという観点から、同一であることが好ましい。
The medium-density polyethylene contained in the first layer and the medium-density polyethylene contained in the fifth layer may be the same or different, and are the same from the viewpoint that a multilayer base material can be easily produced. Is preferable.
The high-density polyethylene contained in the first layer and the high-density polyethylene contained in the fifth layer may be the same or different, and are the same from the viewpoint that a multilayer base material can be easily produced. Is preferable.
 第1の層及び第5の層は、それぞれ独立に、中密度ポリエチレン及び高密度ポリエチレンとともに、これらのポリエチレン以外の他のポリエチレンをさらに含有してもよい。中密度ポリエチレン及び高密度ポリエチレン以外の他のポリエチレンとしては、例えば、低密度ポリエチレン(高圧法低密度ポリエチレン)、直鎖状低密度ポリエチレン及び超低密度ポリエチレンが挙げられる。第1の層は、多層基材のインキ密着性及び耐熱性をより向上できるという観点から、ポリエチレンとして中密度ポリエチレン及び高密度ポリエチレンのみを含有することが好ましい。第5の層は、多層基材のインキ密着性及び耐熱性をより向上できるという観点から、ポリエチレンとして中密度ポリエチレン及び高密度ポリエチレンのみを含有することが好ましい。 The first layer and the fifth layer may independently contain medium-density polyethylene and high-density polyethylene, as well as polyethylene other than these polyethylenes. Examples of polyethylene other than medium-density polyethylene and high-density polyethylene include low-density polyethylene (high-pressure method low-density polyethylene), linear low-density polyethylene, and ultra-low-density polyethylene. The first layer preferably contains only medium-density polyethylene and high-density polyethylene as polyethylene from the viewpoint of further improving the ink adhesion and heat resistance of the multilayer base material. The fifth layer preferably contains only medium-density polyethylene and high-density polyethylene as polyethylene from the viewpoint of further improving the ink adhesion and heat resistance of the multilayer base material.
 第1の層及び第5の層における、中密度ポリエチレンと高密度ポリエチレンとの質量比(中密度ポリエチレン/高密度ポリエチレン)は、それぞれ独立に、好ましくは1.1以上5以下、より好ましくは1.5以上3以下である。これにより、インキ密着性及び耐熱性のバランスをより向上できる。
 第1の層における、中密度ポリエチレン及び高密度ポリエチレンの合計含有割合は、好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。これにより、多層基材のインキ密着性及び耐熱性をより向上できる。
 第5の層における、中密度ポリエチレン及び高密度ポリエチレンの合計含有割合は、好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。これにより、多層基材のインキ密着性及び耐熱性をより向上できる。
The mass ratio of medium-density polyethylene to high-density polyethylene (medium-density polyethylene / high-density polyethylene) in the first layer and the fifth layer is independently, preferably 1.1 or more and 5 or less, more preferably 1. .5 or more and 3 or less. This makes it possible to further improve the balance between ink adhesion and heat resistance.
The total content of the medium-density polyethylene and the high-density polyethylene in the first layer is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more. This makes it possible to further improve the ink adhesion and heat resistance of the multilayer base material.
The total content of the medium-density polyethylene and the high-density polyethylene in the fifth layer is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more. This makes it possible to further improve the ink adhesion and heat resistance of the multilayer base material.
 第1の層及び第5の層のそれぞれの厚さは、それぞれ独立に、好ましくは0.5μm以上10μm以下、より好ましくは1μm以上8μm以下、さらに好ましくは1μm以上5μm以下である。これにより、多層基材のインキ密着性及び耐熱性をより向上できる。 The thickness of each of the first layer and the fifth layer is independently, preferably 0.5 μm or more and 10 μm or less, more preferably 1 μm or more and 8 μm or less, and further preferably 1 μm or more and 5 μm or less. This makes it possible to further improve the ink adhesion and heat resistance of the multilayer base material.
 第1の層及び第5の層のそれぞれの厚さは、第2の層、第3の層及び第4の層(以下、第2~第4の層をまとめて「多層中間層」ともいう)の合計厚さよりも小さいことが好ましい。第1の層及び第5の層のそれぞれの厚さと、多層中間層の合計厚さとの比(第1の層又は第5の層/多層中間層)は、好ましくは0.05以上0.8以下、より好ましくは0.1以上0.7以下、さらに好ましくは0.1以上0.4以下である。これにより、多層基材の剛性、強度及び耐熱性をより向上できる。 The thickness of each of the first layer and the fifth layer is referred to as a second layer, a third layer, and a fourth layer (hereinafter, the second to fourth layers are collectively referred to as a "multilayer intermediate layer". ) Is preferably smaller than the total thickness. The ratio of the thickness of each of the first layer and the fifth layer to the total thickness of the multilayer intermediate layer (first layer or fifth layer / multilayer intermediate layer) is preferably 0.05 or more and 0.8. Below, it is more preferably 0.1 or more and 0.7 or less, and further preferably 0.1 or more and 0.4 or less. Thereby, the rigidity, strength and heat resistance of the multilayer base material can be further improved.
 <第4の態様:第2の層及び第4の層>
 第2の層は、1種又は2種以上の中密度ポリエチレンと、1種又は2種以上の直鎖状低密度ポリエチレンとを含有する。
 第4の層は、1種又は2種以上の中密度ポリエチレンと、1種又は2種以上の直鎖状低密度ポリエチレンとを含有する。
 第2の層及び第4の層は、それぞれ、多層基材の前駆体である積層物の延伸性の向上に寄与する。
<Fourth aspect: second layer and fourth layer>
The second layer contains one or more medium density polyethylenes and one or more linear low density polyethylenes.
The fourth layer contains one or more medium density polyethylenes and one or more linear low density polyethylenes.
Each of the second layer and the fourth layer contributes to the improvement of the stretchability of the laminate which is the precursor of the multilayer base material.
 第2の層に含まれる中密度ポリエチレンと、第4の層に含まれる中密度ポリエチレンとは、同一であっても異なってもよく、多層基材を容易に製造できるという観点から、同一であることが好ましい。
 第2の層に含まれる直鎖状低密度ポリエチレンと、第4の層に含まれる直鎖状低密度ポリエチレンとは、同一であっても異なってもよく、多層基材を容易に製造できるという観点から、同一であることが好ましい。
 第2の層及び第4の層に含まれる中密度ポリエチレンと、第1の層及び第5の層に含まれる中密度ポリエチレンとは、同一であっても異なってもよい。
The medium-density polyethylene contained in the second layer and the medium-density polyethylene contained in the fourth layer may be the same or different, and are the same from the viewpoint that a multilayer base material can be easily produced. Is preferable.
The linear low-density polyethylene contained in the second layer and the linear low-density polyethylene contained in the fourth layer may be the same or different, and a multilayer base material can be easily produced. From the viewpoint, it is preferable that they are the same.
The medium-density polyethylene contained in the second layer and the fourth layer and the medium-density polyethylene contained in the first layer and the fifth layer may be the same or different.
 第2の層及び第4の層は、それぞれ独立に、中密度ポリエチレン及び直鎖状低密度ポリエチレンとともに、これらのポリエチレン以外の他のポリエチレンをさらに含有してもよい。中密度ポリエチレン及び直鎖状低密度ポリエチレン以外の他のポリエチレンとしては、例えば、高密度ポリエチレン、低密度ポリエチレン(高圧法低密度ポリエチレン)及び超低密度ポリエチレンが挙げられる。第2の層は、多層基材の前駆体である積層物の延伸性をより向上できるという観点から、ポリエチレンとして中密度ポリエチレン及び直鎖状低密度ポリエチレンのみを含有することが好ましい。第4の層は、多層基材の前駆体である積層物の延伸性をより向上できるという観点から、ポリエチレンとして中密度ポリエチレン及び直鎖状低密度ポリエチレンのみを含有することが好ましい。 The second layer and the fourth layer may independently contain medium-density polyethylene and linear low-density polyethylene, as well as polyethylene other than these polyethylenes. Examples of polyethylene other than medium-density polyethylene and linear low-density polyethylene include high-density polyethylene, low-density polyethylene (high-pressure method low-density polyethylene), and ultra-low-density polyethylene. The second layer preferably contains only medium-density polyethylene and linear low-density polyethylene as polyethylene from the viewpoint of further improving the stretchability of the laminate which is the precursor of the multilayer base material. The fourth layer preferably contains only medium-density polyethylene and linear low-density polyethylene as polyethylene from the viewpoint of further improving the stretchability of the laminate which is the precursor of the multilayer base material.
 第2の層及び第4の層における、中密度ポリエチレンと直鎖状低密度ポリエチレンとの質量比(中密度ポリエチレン/直鎖状低密度ポリエチレン)は、それぞれ独立に、好ましくは0.25以上4以下、より好ましくは0.4以上2.4以下である。これにより、耐熱性、剛性及び延伸性のバランスをより向上できる。
 第2の層における、中密度ポリエチレン及び直鎖状低密度ポリエチレンの合計含有割合は、好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。これにより、前駆体である積層物の延伸性をより向上できる。
 第4の層における、中密度ポリエチレン及び直鎖状低密度ポリエチレンの合計含有割合は、好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。これにより、前駆体である積層物の延伸性をより向上できる。
The mass ratio of medium-density polyethylene to linear low-density polyethylene (medium-density polyethylene / linear low-density polyethylene) in the second layer and the fourth layer is independently, preferably 0.25 or more. Below, it is more preferably 0.4 or more and 2.4 or less. Thereby, the balance between heat resistance, rigidity and stretchability can be further improved.
The total content of the medium-density polyethylene and the linear low-density polyethylene in the second layer is preferably 80% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more. This makes it possible to further improve the stretchability of the laminate which is the precursor.
The total content of the medium-density polyethylene and the linear low-density polyethylene in the fourth layer is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more. This makes it possible to further improve the stretchability of the laminate which is the precursor.
 第2の層及び第4の層のそれぞれの厚さは、それぞれ独立に、好ましくは0.5μm以上15μm以下、より好ましくは1μm以上10μm以下、さらに好ましくは1μm以上8μm以下である。これにより、前駆体である積層物の延伸性をより向上できる。 The thickness of each of the second layer and the fourth layer is independently, preferably 0.5 μm or more and 15 μm or less, more preferably 1 μm or more and 10 μm or less, and further preferably 1 μm or more and 8 μm or less. This makes it possible to further improve the stretchability of the laminate which is the precursor.
 <第4の態様:第3の層>
 第3の層は、1種又は2種以上の直鎖状低密度ポリエチレンを含有する。第3の層は、多層基材の前駆体である積層物の延伸性の向上に寄与する。
<Fourth aspect: third layer>
The third layer contains one or more linear low density polyethylenes. The third layer contributes to the improvement of the stretchability of the laminate which is the precursor of the multilayer base material.
 第3の層に含まれる直鎖状低密度ポリエチレンと、第2の層及び第4の層に含まれる直鎖状低密度ポリエチレンとは、同一であっても異なってもよい。 The linear low-density polyethylene contained in the third layer and the linear low-density polyethylene contained in the second layer and the fourth layer may be the same or different.
 第3の層は、直鎖状低密度ポリエチレンとともに、直鎖状低密度ポリエチレン以外の他のポリエチレンをさらに含有してもよい。直鎖状低密度ポリエチレン以外の他のポリエチレンとしては、例えば、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン(高圧法低密度ポリエチレン)及び超低密度ポリエチレンが挙げられる。第3の層は、多層基材の前駆体である積層物の延伸性をより向上できるという観点から、ポリエチレンとして直鎖状低密度ポリエチレンのみを含有することが好ましい。 The third layer may further contain polyethylene other than the linear low-density polyethylene as well as the linear low-density polyethylene. Examples of polyethylene other than linear low-density polyethylene include high-density polyethylene, medium-density polyethylene, low-density polyethylene (high-pressure method low-density polyethylene), and ultra-low-density polyethylene. The third layer preferably contains only linear low-density polyethylene as polyethylene from the viewpoint of further improving the stretchability of the laminate which is the precursor of the multilayer base material.
 第3の層における直鎖状低密度ポリエチレンの含有割合は、好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。これにより、耐熱性、剛性及び延伸性のバランスをより向上できる。 The content ratio of the linear low-density polyethylene in the third layer is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more. Thereby, the balance between heat resistance, rigidity and stretchability can be further improved.
 第3の層の厚さは、好ましくは1μm以上50μm以下、より好ましくは2μm以上40μm以下、さらに好ましくは5μm以上30μm以下である。これにより、耐熱性、剛性及び延伸性のバランスをより向上できる。 The thickness of the third layer is preferably 1 μm or more and 50 μm or less, more preferably 2 μm or more and 40 μm or less, and further preferably 5 μm or more and 30 μm or less. Thereby, the balance between heat resistance, rigidity and stretchability can be further improved.
 第2の層及び第4の層の合計厚さと、第3の層の厚さとの比(第2の層及び第4の層の合計厚さ/第3の層の厚さ)は、好ましくは0.1以上10以下、より好ましくは0.2以上5以下、さらに好ましくは0.5以上2以下である。これにより、多層基材の剛性、強度及び耐熱性をより向上できる。 The ratio of the total thickness of the second and fourth layers to the thickness of the third layer (total thickness of the second and fourth layers / thickness of the third layer) is preferably. It is 0.1 or more and 10 or less, more preferably 0.2 or more and 5 or less, and further preferably 0.5 or more and 2 or less. Thereby, the rigidity, strength and heat resistance of the multilayer base material can be further improved.
 本開示の第4の態様の多層基材を構成する第1~第5の層は、それぞれ独立に、添加剤を1種又は2種以上含有してもよい。添加剤としては、例えば、架橋剤、酸化防止剤、アンチブロッキング剤、滑(スリップ)剤、紫外線吸収剤、光安定剤、充填剤、補強剤、帯電防止剤、顔料及び改質用樹脂が挙げられる。 The first to fifth layers constituting the multilayer substrate of the fourth aspect of the present disclosure may independently contain one or more additives. Examples of the additive include a cross-linking agent, an antioxidant, an anti-blocking agent, a slip agent, an ultraviolet absorber, a light stabilizer, a filler, a reinforcing agent, an antistatic agent, a pigment and a resin for modification. Be done.
 一実施形態において、本開示の第4の態様の多層基材において、第1の層におけるポリエチレンの密度よりも第2の層におけるポリエチレンの密度の方が低く、第2の層におけるポリエチレンの密度よりも第3の層におけるポリエチレンの密度の方が低く、第3の層におけるポリエチレンの密度よりも第4の層におけるポリエチレンの密度の方が高く、第4の層におけるポリエチレンの密度よりも第5の層におけるポリエチレンの密度の方が高い。このような構成を有する多層基材は、インキ密着性と、耐熱性及び製造性(前駆体である積層物の延伸性)のバランスとにより優れる。 In one embodiment, in the multilayer substrate of the fourth aspect of the present disclosure, the density of polyethylene in the second layer is lower than the density of polyethylene in the first layer, and the density of polyethylene in the second layer is higher than the density of polyethylene in the second layer. Also, the density of polyethylene in the third layer is lower, the density of polyethylene in the fourth layer is higher than the density of polyethylene in the third layer, and the density of polyethylene in the fourth layer is higher than the density of polyethylene in the fifth layer. The density of polyethylene in the layer is higher. The multilayer base material having such a structure is excellent in the balance between ink adhesion, heat resistance and manufacturability (stretchability of the laminate which is a precursor).
 第4の態様の多層基材における、第1~第5の層から選ばれる任意の互いに隣接する層を層(1)及び層(2)と記載する場合に、層(1)を構成するポリエチレンの密度と、層(2)を構成するポリエチレンの密度との差の絶対値は、好ましくは0.030g/cm以下であり、より好ましくは0.025g/cm以下、さらに好ましくは0.020g/cm以下である。以下、この要件を「密度差要件」ともいう。すなわち、第4の態様の多層基材に含まれる、第1~第5の層から選ばれる厚さ方向に隣接するいずれの組(例えば、第1の層と第2の層との組、第2の層と第3の層との組、第3の層と第4の層との組、第4の層と第5の層との組)も、上記密度差要件を充たすことが好ましい。
 以下では密度差を記載するときは、いずれも差の絶対値を意味する。
When any adjacent layer selected from the first to fifth layers in the multilayer substrate of the fourth aspect is described as a layer (1) and a layer (2), the polyethylene constituting the layer (1) is described. The absolute value of the difference between the density of the above and the density of the polyethylene constituting the layer (2) is preferably 0.030 g / cm 3 or less, more preferably 0.025 g / cm 3 or less, still more preferably 0. It is 020 g / cm 3 or less. Hereinafter, this requirement is also referred to as a "density difference requirement". That is, any set (for example, a set of a first layer and a second layer, which is adjacent to each other in the thickness direction selected from the first to fifth layers, which is included in the multilayer substrate of the fourth aspect, the first layer. It is preferable that the pair of the second layer and the third layer, the pair of the third layer and the fourth layer, and the pair of the fourth layer and the fifth layer) also satisfy the above-mentioned density difference requirement.
In the following, when the density difference is described, it means the absolute value of the difference.
 上記密度差要件を充たす多層基材は、第1~第5の層における各層間の密度差が上述のとおり小さい。したがって、上記密度差要件を充たす多層基材は、高い層間強度を示す。 In the multilayer base material satisfying the above density difference requirement, the density difference between the first to fifth layers is small as described above. Therefore, a multilayer substrate that meets the above density difference requirements exhibits high interlayer strength.
 [第5の態様のポリエチレン多層基材]
 本開示の第5の態様のポリエチレン多層基材は、
 中密度ポリエチレン及び高密度ポリエチレンを含有する第1の層と、
 高密度ポリエチレンを含有する第2の層と、
 直鎖状低密度ポリエチレンを含有する第3の層と、
 高密度ポリエチレンを含有する第4の層と、
 中密度ポリエチレン及び高密度ポリエチレンを含有する第5の層と
を、厚さ方向にこの順に備え、延伸処理されてなる。
[Polyethylene multilayer base material of the fifth aspect]
The polyethylene multilayer substrate of the fifth aspect of the present disclosure is
A first layer containing medium density polyethylene and high density polyethylene,
A second layer containing high density polyethylene and
A third layer containing linear low density polyethylene,
A fourth layer containing high density polyethylene,
A fifth layer containing medium-density polyethylene and high-density polyethylene is provided in this order in the thickness direction and is stretched.
 一実施形態において、第5の態様の多層基材の一方側の表面層が第1の層であり、第5の態様の多層基材の他方側の表面層が第5の層である。第5の態様の多層基材は、第1~第5の層間に他の層を備えてもよいが、一実施形態において、第5の態様の多層基材は、第1~第5の層のみからなる。 In one embodiment, the surface layer on one side of the multilayer substrate of the fifth aspect is the first layer, and the surface layer on the other side of the multilayer substrate of the fifth aspect is the fifth layer. The multilayer base material of the fifth aspect may be provided with another layer between the first to fifth layers, but in one embodiment, the multilayer base material of the fifth aspect is the first to fifth layers. Consists of only.
 以下、第5の態様の多層基材を構成する各層について説明する。 Hereinafter, each layer constituting the multilayer base material of the fifth aspect will be described.
 <第5の態様:第1の層及び第5の層>
 第1の層は、1種又は2種以上の中密度ポリエチレンと、1種又は2種以上の高密度ポリエチレンとを含有する。
 第5の層は、1種又は2種以上の中密度ポリエチレンと、1種又は2種以上の高密度ポリエチレンとを含有する。
<Fifth aspect: first layer and fifth layer>
The first layer contains one or more types of medium density polyethylene and one or more types of high density polyethylene.
The fifth layer contains one or more types of medium density polyethylene and one or more types of high density polyethylene.
 基材に画像を印刷する際には、通常、前処理として、コロナ放電処理などの表面処理が基材に対してなされる。中密度ポリエチレンを含有する層は、ポリエチレンとして高密度ポリエチレンのみを含有する層に比べて、表面処理に対する耐久性が高い傾向にある。このため、中密度ポリエチレンを含有する層は、表面処理後の印刷時におけるインキ密着性に優れる。また、中密度ポリエチレン及び高密度ポリエチレンを含有する層は、印刷時及びヒートシール時に必要な耐熱性も有する。また、中密度ポリエチレンを含有する層は、多層基材の前駆体である積層物の延伸性の向上に寄与する。 When printing an image on a base material, a surface treatment such as a corona discharge treatment is usually performed on the base material as a pretreatment. The layer containing medium-density polyethylene tends to have higher durability against surface treatment than the layer containing only high-density polyethylene as polyethylene. Therefore, the layer containing medium-density polyethylene is excellent in ink adhesion at the time of printing after surface treatment. The layer containing medium-density polyethylene and high-density polyethylene also has heat resistance required for printing and heat sealing. Further, the layer containing medium-density polyethylene contributes to the improvement of the stretchability of the laminate which is the precursor of the multilayer base material.
 第1の層に含まれる中密度ポリエチレンと、第5の層に含まれる中密度ポリエチレンとは、同一であっても異なってもよく、多層基材を容易に製造できるという観点から、同一であることが好ましい。
 第1の層に含まれる高密度ポリエチレンと、第5の層に含まれる高密度ポリエチレンとは、同一であっても異なってもよく、多層基材を容易に製造できるという観点から、同一であることが好ましい。
The medium-density polyethylene contained in the first layer and the medium-density polyethylene contained in the fifth layer may be the same or different, and are the same from the viewpoint that a multilayer base material can be easily produced. Is preferable.
The high-density polyethylene contained in the first layer and the high-density polyethylene contained in the fifth layer may be the same or different, and are the same from the viewpoint that a multilayer base material can be easily produced. Is preferable.
 第1の層及び第5の層は、それぞれ独立に、中密度ポリエチレン及び高密度ポリエチレンとともに、これらのポリエチレン以外の他のポリエチレンをさらに含有してもよい。中密度ポリエチレン及び高密度ポリエチレン以外の他のポリエチレンとしては、例えば、低密度ポリエチレン(高圧法低密度ポリエチレン)、直鎖状低密度ポリエチレン及び超低密度ポリエチレンが挙げられる。第1の層は、多層基材のインキ密着性及び耐熱性をより向上できるという観点から、ポリエチレンとして中密度ポリエチレン及び高密度ポリエチレンのみを含有してもよい。第5の層は、多層基材のインキ密着性及び耐熱性をより向上できるという観点から、ポリエチレンとして中密度ポリエチレン及び高密度ポリエチレンのみを含有してもよい。 The first layer and the fifth layer may independently contain medium-density polyethylene and high-density polyethylene, as well as polyethylene other than these polyethylenes. Examples of polyethylene other than medium-density polyethylene and high-density polyethylene include low-density polyethylene (high-pressure method low-density polyethylene), linear low-density polyethylene, and ultra-low-density polyethylene. The first layer may contain only medium-density polyethylene and high-density polyethylene as polyethylene from the viewpoint of further improving the ink adhesion and heat resistance of the multilayer base material. The fifth layer may contain only medium-density polyethylene and high-density polyethylene as polyethylene from the viewpoint of further improving the ink adhesion and heat resistance of the multilayer base material.
 第1の層及び第5の層における、中密度ポリエチレンと高密度ポリエチレンとの質量比(中密度ポリエチレン/高密度ポリエチレン)は、それぞれ独立に、好ましくは1.1以上5以下、より好ましくは1.5以上3以下である。これにより、インキ密着性及び耐熱性のバランスをより向上できる。 The mass ratio of medium-density polyethylene to high-density polyethylene (medium-density polyethylene / high-density polyethylene) in the first layer and the fifth layer is independently, preferably 1.1 or more and 5 or less, more preferably 1. .5 or more and 3 or less. This makes it possible to further improve the balance between ink adhesion and heat resistance.
 第1の層における、中密度ポリエチレン及び高密度ポリエチレンの合計含有割合は、好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。これにより、多層基材のインキ密着性及び耐熱性をより向上できる。 The total content of the medium-density polyethylene and the high-density polyethylene in the first layer is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more. This makes it possible to further improve the ink adhesion and heat resistance of the multilayer base material.
 第5の層における、中密度ポリエチレン及び高密度ポリエチレンの合計含有割合は、好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。これにより、多層基材のインキ密着性及び耐熱性をより向上できる。 The total content of the medium-density polyethylene and the high-density polyethylene in the fifth layer is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more. This makes it possible to further improve the ink adhesion and heat resistance of the multilayer base material.
 第1の層及び第5の層のそれぞれの厚さは、それぞれ独立に、好ましくは0.5μm以上10μm以下、より好ましくは1μm以上8μm以下、さらに好ましくは1μm以上5μm以下である。これにより、多層基材のインキ密着性及び耐熱性をより向上できる。 The thickness of each of the first layer and the fifth layer is independently, preferably 0.5 μm or more and 10 μm or less, more preferably 1 μm or more and 8 μm or less, and further preferably 1 μm or more and 5 μm or less. This makes it possible to further improve the ink adhesion and heat resistance of the multilayer base material.
 第1の層及び第5の層のそれぞれの厚さは、第2の層、第3の層及び第4の層(以下、第2~第4の層をまとめて「多層中間層」ともいう)の合計厚さよりも小さいことが好ましい。第1の層及び第5の層のそれぞれの厚さと、多層中間層の合計厚さとの比(第1の層又は第5の層/多層中間層)は、好ましくは0.05以上0.8以下、より好ましくは0.1以上0.7以下、さらに好ましくは0.1以上0.4以下である。これにより、多層基材の剛性、強度及び耐熱性をより向上できる。 The thickness of each of the first layer and the fifth layer is referred to as a second layer, a third layer, and a fourth layer (hereinafter, the second to fourth layers are collectively referred to as a "multilayer intermediate layer". ) Is preferably smaller than the total thickness. The ratio of the thickness of each of the first layer and the fifth layer to the total thickness of the multilayer intermediate layer (first layer or fifth layer / multilayer intermediate layer) is preferably 0.05 or more and 0.8. Below, it is more preferably 0.1 or more and 0.7 or less, and further preferably 0.1 or more and 0.4 or less. Thereby, the rigidity, strength and heat resistance of the multilayer base material can be further improved.
 <第5の態様:第2の層及び第4の層>
 第2の層は、1種又は2種以上の高密度ポリエチレンを含有する。
 第4の層は、1種又は2種以上の高密度ポリエチレンを含有する。
 第2の層及び第4の層は、それぞれ、多層基材の耐熱性の向上に寄与する。すなわち、第1の層及び第5の層に加えて、第2の層及び第4の層に高密度ポリエチレンを含有させることにより、多層基材の耐熱性を更に向上できる。
<Fifth aspect: second layer and fourth layer>
The second layer contains one or more high density polyethylenes.
The fourth layer contains one or more high density polyethylenes.
The second layer and the fourth layer each contribute to improving the heat resistance of the multilayer base material. That is, by incorporating high-density polyethylene in the second layer and the fourth layer in addition to the first layer and the fifth layer, the heat resistance of the multilayer base material can be further improved.
 第2の層に含まれる高密度ポリエチレンと、第4の層に含まれる高密度ポリエチレンとは、同一であっても異なってもよく、多層基材を容易に製造できるという観点から、同一であることが好ましい。 The high-density polyethylene contained in the second layer and the high-density polyethylene contained in the fourth layer may be the same or different, and are the same from the viewpoint that a multilayer base material can be easily produced. Is preferable.
 第2の層は、1種又は2種以上の低密度ポリエチレンをさらに含有してもよい。第4の層は、1種又は2種以上の低密度ポリエチレンをさらに含有してもよい。これにより、多層基材の耐熱性、剛性及び加工性のバランスをより向上できる。
 第2の層に含まれる低密度ポリエチレンと、第4の層に含まれる低密度ポリエチレンとは、同一であっても異なってもよく、多層基材を容易に製造できるという観点から、同一であることが好ましい。
The second layer may further contain one or more low density polyethylenes. The fourth layer may further contain one or more low density polyethylenes. This makes it possible to further improve the balance between heat resistance, rigidity and workability of the multilayer base material.
The low-density polyethylene contained in the second layer and the low-density polyethylene contained in the fourth layer may be the same or different, and are the same from the viewpoint that a multilayer base material can be easily produced. Is preferable.
 第2の層及び第4の層は、それぞれ独立に、高密度ポリエチレン及び低密度ポリエチレンとともに、これらのポリエチレン以外の他のポリエチレンをさらに含有してもよい。高密度ポリエチレン及び低密度ポリエチレン以外の他のポリエチレンとしては、例えば、中密度ポリエチレン、直鎖状低密度ポリエチレン及び超低密度ポリエチレンが挙げられる。第2の層は、多層基材の耐熱性をより向上できるという観点から、ポリエチレンとして高密度ポリエチレン及び低密度ポリエチレンのみを含有してもよい。第4の層は、多層基材の耐熱性をより向上できるという観点から、ポリエチレンとして高密度ポリエチレン及び低密度ポリエチレンのみを含有してもよい。 The second layer and the fourth layer may independently contain high-density polyethylene and low-density polyethylene, as well as polyethylene other than these polyethylenes. Examples of polyethylene other than high-density polyethylene and low-density polyethylene include medium-density polyethylene, linear low-density polyethylene, and ultra-low-density polyethylene. The second layer may contain only high-density polyethylene and low-density polyethylene as polyethylene from the viewpoint of further improving the heat resistance of the multilayer base material. The fourth layer may contain only high-density polyethylene and low-density polyethylene as polyethylene from the viewpoint of further improving the heat resistance of the multilayer base material.
 第2の層及び第4の層における、高密度ポリエチレンと低密度ポリエチレンとの質量比(高密度ポリエチレン/低密度ポリエチレン)は、それぞれ独立に、好ましくは1以上4以下、より好ましくは1.5以上3以下である。これにより、多層基材の耐熱性、剛性及び加工性のバランスをより向上できる。 The mass ratio of high-density polyethylene to low-density polyethylene (high-density polyethylene / low-density polyethylene) in the second layer and the fourth layer is independently, preferably 1 or more and 4 or less, more preferably 1.5. More than 3 or less. This makes it possible to further improve the balance between heat resistance, rigidity and workability of the multilayer base material.
 第2の層における、高密度ポリエチレンの含有割合は、好ましくは50質量%超、より好ましくは55質量%以上、さらに好ましくは60質量%以上である。これにより、多層基材の耐熱性をより向上できる。 The content ratio of the high-density polyethylene in the second layer is preferably more than 50% by mass, more preferably 55% by mass or more, and further preferably 60% by mass or more. Thereby, the heat resistance of the multilayer base material can be further improved.
 第4の層における、高密度ポリエチレンの含有割合は、好ましくは50質量%超、より好ましくは55質量%以上、さらに好ましくは60質量%以上である。これにより、多層基材の耐熱性をより向上できる。 The content ratio of the high-density polyethylene in the fourth layer is preferably more than 50% by mass, more preferably 55% by mass or more, and further preferably 60% by mass or more. Thereby, the heat resistance of the multilayer base material can be further improved.
 第2の層における、高密度ポリエチレン及び低密度ポリエチレンの合計含有割合は、好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。これにより、多層基材の耐熱性、剛性及び加工性のバランスをより向上できる。 The total content of the high-density polyethylene and the low-density polyethylene in the second layer is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more. This makes it possible to further improve the balance between heat resistance, rigidity and workability of the multilayer base material.
 第4の層における、高密度ポリエチレン及び低密度ポリエチレンの合計含有割合は、好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。これにより、多層基材の耐熱性、剛性及び加工性のバランスをより向上できる。 The total content of the high-density polyethylene and the low-density polyethylene in the fourth layer is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more. This makes it possible to further improve the balance between heat resistance, rigidity and workability of the multilayer base material.
 第2の層及び第4の層のそれぞれの厚さは、それぞれ独立に、好ましくは0.5μm以上15μm以下、より好ましくは1μm以上10μm以下、さらに好ましくは1μm以上8μm以下である。これにより、多層基材の耐熱性をより向上できる。 The thickness of each of the second layer and the fourth layer is independently, preferably 0.5 μm or more and 15 μm or less, more preferably 1 μm or more and 10 μm or less, and further preferably 1 μm or more and 8 μm or less. Thereby, the heat resistance of the multilayer base material can be further improved.
 <第5の態様:第3の層>
 第3の層は、1種又は2種以上の直鎖状低密度ポリエチレンを含有する。第3の層は、多層基材の前駆体である積層物の延伸性の向上に寄与する。
<Fifth aspect: third layer>
The third layer contains one or more linear low density polyethylenes. The third layer contributes to the improvement of the stretchability of the laminate which is the precursor of the multilayer base material.
 第3の層は、直鎖状低密度ポリエチレンとともに、直鎖状低密度ポリエチレン以外の他のポリエチレンをさらに含有してもよい。直鎖状低密度ポリエチレン以外の他のポリエチレンとしては、例えば、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン(高圧法低密度ポリエチレン)及び超低密度ポリエチレンが挙げられる。 The third layer may further contain polyethylene other than the linear low-density polyethylene as well as the linear low-density polyethylene. Examples of polyethylene other than linear low-density polyethylene include high-density polyethylene, medium-density polyethylene, low-density polyethylene (high-pressure method low-density polyethylene), and ultra-low-density polyethylene.
 第3の層は、1種又は2種以上の低密度ポリエチレンをさらに含有してもよい。 The third layer may further contain one or more low density polyethylenes.
 第3の層における直鎖状低密度ポリエチレンの含有割合は、好ましくは50質量%超、より好ましくは60質量%以上、さらに好ましくは70質量%以上、よりさらに好ましくは80質量%以上、90質量%以上、又は95質量%以上である。これにより、耐熱性、剛性及び延伸性のバランスをより向上できる。 The content of the linear low-density polyethylene in the third layer is preferably more than 50% by mass, more preferably 60% by mass or more, still more preferably 70% by mass or more, still more preferably 80% by mass or more, 90% by mass. % Or more, or 95% by mass or more. Thereby, the balance between heat resistance, rigidity and stretchability can be further improved.
 第3の層が低密度ポリエチレンを含有する場合における低密度ポリエチレンの含有割合は、好ましくは50質量%未満、より好ましくは5質量%以上40質量%以下、さらに好ましくは10質量%以上30質量%以下である。 When the third layer contains low-density polyethylene, the content ratio of the low-density polyethylene is preferably less than 50% by mass, more preferably 5% by mass or more and 40% by mass or less, and further preferably 10% by mass or more and 30% by mass. It is as follows.
 第3の層の厚さは、好ましくは1μm以上50μm以下、より好ましくは2μm以上40μm以下、さらに好ましくは5μm以上30μm以下である。これにより、耐熱性、剛性及び延伸性のバランスをより向上できる。 The thickness of the third layer is preferably 1 μm or more and 50 μm or less, more preferably 2 μm or more and 40 μm or less, and further preferably 5 μm or more and 30 μm or less. Thereby, the balance between heat resistance, rigidity and stretchability can be further improved.
 第2の層及び第4の層の合計厚さと、第3の層の厚さとの比(第2の層及び第4の層の合計厚さ/第3の層の厚さ)は、好ましくは0.1以上10以下、より好ましくは0.2以上5以下、さらに好ましくは0.5以上2以下である。これにより、多層基材の剛性、強度及び耐熱性をより向上できる。 The ratio of the total thickness of the second and fourth layers to the thickness of the third layer (total thickness of the second and fourth layers / thickness of the third layer) is preferably. It is 0.1 or more and 10 or less, more preferably 0.2 or more and 5 or less, and further preferably 0.5 or more and 2 or less. Thereby, the rigidity, strength and heat resistance of the multilayer base material can be further improved.
 <添加剤>
 本開示の第5の態様の多層基材を構成する第1~第5の層は、それぞれ独立に、添加剤を1種又は2種以上含有してもよい。添加剤としては、例えば、架橋剤、酸化防止剤、アンチブロッキング剤、滑(スリップ)剤、紫外線吸収剤、光安定剤、充填剤、補強剤、帯電防止剤、顔料及び改質用樹脂が挙げられる。
<Additives>
The first to fifth layers constituting the multilayer substrate of the fifth aspect of the present disclosure may independently contain one or more additives. Examples of the additive include a cross-linking agent, an antioxidant, an anti-blocking agent, a slip agent, an ultraviolet absorber, a light stabilizer, a filler, a reinforcing agent, an antistatic agent, a pigment and a resin for modification. Be done.
 本開示の第5の態様の多層基材における第1の層、第2の層、第3の層、第4の層及び第5の層から選ばれる少なくとも1つの層は、スリップ剤を含有してもよい。これにより、例えば、多層基材の加工性を向上できる。例えば、第3の層がスリップ剤を含有してもよく、第1~第5の層の全てがスリップ剤を含有してもよい。 At least one layer selected from the first layer, the second layer, the third layer, the fourth layer and the fifth layer in the multilayer substrate of the fifth aspect of the present disclosure contains a slip agent. You may. Thereby, for example, the processability of the multilayer base material can be improved. For example, the third layer may contain a slip agent, and all of the first to fifth layers may contain a slip agent.
 スリップ剤としては、例えば、アミド系滑剤、グリセリン脂肪酸エステル等の脂肪酸エステル、炭化水素系ワックス、高級脂肪酸系ワックス、金属石鹸、親水性シリコーン、シリコーン変性(メタ)アクリル樹脂、シリコーン変性エポキシ樹脂、シリコーン変性ポリエーテル、シリコーン変性ポリエステル、ブロック型シリコーン(メタ)アクリル共重合体、ポリグリセロール変性シリコーン及びパラフィンが挙げられる。 Examples of the slip agent include amide-based lubricants, fatty acid esters such as glycerin fatty acid esters, hydrocarbon-based waxes, higher fatty acid-based waxes, metal soaps, hydrophilic silicones, silicone-modified (meth) acrylic resins, silicone-modified epoxy resins, and silicones. Examples thereof include modified polyethers, silicone-modified polyesters, block-type silicone (meth) acrylic copolymers, polyglycerol-modified silicones and paraffins.
 滑剤の中でも、アミド系滑剤が好ましい。アミド系滑剤としては、例えば、飽和脂肪酸アミド、不飽和脂肪酸アミド、置換アミド、メチロールアミド、飽和脂肪酸ビスアミド、不飽和脂肪酸ビスアミド、脂肪酸エステルアミド及び芳香族ビスアミドが挙げられる。これらの具体例は、[第1の態様及び第2の態様のポリエチレン多層基材]の欄にて記載したとおりである。 Among the lubricants, amide-based lubricants are preferable. Examples of the amide-based lubricant include saturated fatty acid amides, unsaturated fatty acid amides, substituted amides, methylol amides, saturated fatty acid bisamides, unsaturated fatty acid bisamides, fatty acid ester amides and aromatic bisamides. Specific examples of these are as described in the column of [Polyethylene multilayer base material of the first aspect and the second aspect].
 スリップ剤の中でも、エルカ酸アミドが好ましい。
 スリップ剤は1種又は2種以上用いることができる。
Among the slip agents, erucic acid amide is preferable.
One type or two or more types of slip agents can be used.
 各層を形成する樹脂組成物中でのスリップ剤の分散性を高くするために、スリップ剤とポリエチレンとを含有するマスターバッチを用いてもよい。マスターバッチにおけるスリップ剤の含有割合は、好ましくは1質量%以上30質量%以下、より好ましくは2質量%以上20質量%以下、さらに好ましくは3質量%以上10質量%以下である。ポリエチレンとしては、上述した具体例が挙げられる。ポリエチレンが充たす好ましい物性(密度及びMFR等)も上述したとおりである。 In order to increase the dispersibility of the slip agent in the resin composition forming each layer, a master batch containing the slip agent and polyethylene may be used. The content ratio of the slip agent in the masterbatch is preferably 1% by mass or more and 30% by mass or less, more preferably 2% by mass or more and 20% by mass or less, and further preferably 3% by mass or more and 10% by mass or less. Examples of polyethylene include the above-mentioned specific examples. The preferable physical properties (density, MFR, etc.) filled with polyethylene are also as described above.
 本開示の第5の態様の多層基材において、スリップ剤を含有する層におけるスリップ剤の含有割合は、例えば0.01質量%以上3質量%以下でもよく、0.03質量%以上1質量%以下でもよい。これにより、多層基材の加工性をより向上できる。 In the multilayer substrate of the fifth aspect of the present disclosure, the content ratio of the slip agent in the layer containing the slip agent may be, for example, 0.01% by mass or more and 3% by mass or less, and 0.03% by mass or more and 1% by mass. It may be as follows. Thereby, the processability of the multilayer base material can be further improved.
 一実施形態において、本開示の第5の態様の多層基材において、第1の層におけるポリエチレンの密度と第2の層におけるポリエチレンの密度とが同程度であり、第2の層におけるポリエチレンの密度よりも第3の層におけるポリエチレンの密度の方が低く、第3の層におけるポリエチレンの密度よりも第4の層におけるポリエチレンの密度の方が高く、第4の層におけるポリエチレンの密度と第5の層におけるポリエチレンの密度とが同程度である。このような構成を有する多層基材は、インキ密着性と、耐熱性及び製造性(前駆体である積層物の延伸性)のバランスとにより優れる。第1の層におけるポリエチレンの密度と第2の層におけるポリエチレンの密度との差の絶対値は、例えば0.020g/cm以下でもよく、0.010g/cm以下でもよい。第4の層におけるポリエチレンの密度と第5の層におけるポリエチレンの密度との差の絶対値は、例えば0.020g/cm以下でもよく、0.010g/cm以下でもよい。 In one embodiment, in the multilayer substrate of the fifth aspect of the present disclosure, the density of polyethylene in the first layer and the density of polyethylene in the second layer are similar, and the density of polyethylene in the second layer. The density of polyethylene in the third layer is lower than that of the third layer, the density of polyethylene in the fourth layer is higher than the density of polyethylene in the third layer, and the density of polyethylene in the fourth layer and the fifth. The density of polyethylene in the layer is similar. The multilayer base material having such a structure is excellent in the balance between ink adhesion, heat resistance and manufacturability (stretchability of the laminate which is a precursor). The absolute value of the difference between the density of polyethylene in the first layer and the density of polyethylene in the second layer may be, for example, 0.020 g / cm 3 or less, or 0.010 g / cm 3 or less. The absolute value of the difference between the density of polyethylene in the fourth layer and the density of polyethylene in the fifth layer may be, for example, 0.020 g / cm 3 or less, or 0.010 g / cm 3 or less.
 [ポリエチレン多層基材の製造方法]
 本開示のポリエチレン多層基材は、例えば、インフレーション法又はTダイ法により、複数のポリエチレン材料を製膜して積層物を形成し、得られた積層物を延伸することにより製造できる。延伸処理により、多層基材の透明性、剛性、強度及び耐熱性を向上でき、該多層基材を例えば包装材料の基材として好適に使用できる。
[Manufacturing method of polyethylene multilayer base material]
The polyethylene multilayer base material of the present disclosure can be produced, for example, by forming a film of a plurality of polyethylene materials by an inflation method or a T-die method to form a laminate, and stretching the obtained laminate. By the stretching treatment, the transparency, rigidity, strength and heat resistance of the multilayer base material can be improved, and the multilayer base material can be suitably used as a base material for, for example, a packaging material.
 多層基材は、例えば、中密度ポリエチレンを含有する層と、それぞれポリエチレンを含有する、2層以上の多層中間層と、中密度ポリエチレンを含有する層とを、厚さ方向にこの順に備える積層物(前駆体)を、延伸処理して得られる。 The multilayer base material is, for example, a laminate in which a layer containing medium-density polyethylene, two or more multilayer intermediate layers each containing polyethylene, and a layer containing medium-density polyethylene are provided in this order in the thickness direction. (Precursor) is obtained by stretching treatment.
 具体的には、外側から、中密度ポリエチレンを含有する層と、それぞれポリエチレンを含有する、2層以上の多層中間層と、中密度ポリエチレンを含有する層とを、チューブ状に共押出して製膜し、積層物を製造できる。あるいは、外側から、中密度ポリエチレンを含有する層と、ポリエチレンを含有する層とをチューブ状に共押出し、次いで、対向するポリエチレンを含有する層同士をゴムロールなどにより圧着することによって、積層物を製造できる。このような方法により積層物を製造することにより、欠陥品数を顕著に低減でき、生産効率を向上できる。 Specifically, from the outside, a layer containing medium-density polyethylene, two or more multilayer intermediate layers each containing polyethylene, and a layer containing medium-density polyethylene are co-extruded into a tubular shape to form a film. And the laminate can be manufactured. Alternatively, a laminate is manufactured by co-extruding a layer containing medium-density polyethylene and a layer containing polyethylene in a tube shape from the outside, and then pressure-bonding the layers containing opposite polyethylene with a rubber roll or the like. can. By manufacturing the laminate by such a method, the number of defective products can be remarkably reduced and the production efficiency can be improved.
 多層基材は、例えば、中密度ポリエチレン及び高密度ポリエチレンを含有する層と、中密度ポリエチレン及び直鎖状低密度ポリエチレンを含有する層、又は高密度ポリエチレンを含有する層と、直鎖状低密度ポリエチレンを含有する層と、中密度ポリエチレン及び直鎖状低密度ポリエチレンを含有する層、又は高密度ポリエチレンを含有する層と、中密度ポリエチレン及び高密度ポリエチレンを含有する層とを、厚さ方向にこの順に備える積層物(前駆体)を、延伸処理して得られる。 The multilayer substrate includes, for example, a layer containing medium-density polyethylene and high-density polyethylene, a layer containing medium-density polyethylene and linear low-density polyethylene, or a layer containing high-density polyethylene, and linear low-density. A layer containing polyethylene, a layer containing medium-density polyethylene and linear low-density polyethylene, or a layer containing high-density polyethylene, and a layer containing medium-density polyethylene and high-density polyethylene are formed in the thickness direction. The laminate (precursor) prepared in this order is obtained by stretching treatment.
 具体的には、外側から、中密度ポリエチレン及び高密度ポリエチレンを含有する層と、中密度ポリエチレン及び直鎖状低密度ポリエチレンを含有する層、又は高密度ポリエチレンを含有する層と、直鎖状低密度ポリエチレンを含有する層と、中密度ポリエチレン及び直鎖状低密度ポリエチレンを含有する層、又は高密度ポリエチレンを含有する層と、中密度ポリエチレン及び高密度ポリエチレンを含有する層とを、チューブ状に共押出して製膜し、積層物を製造できる。あるいは、外側から、中密度ポリエチレン及び高密度ポリエチレンを含有する層と、中密度ポリエチレン及び直鎖状低密度ポリエチレンを含有する層、又は高密度ポリエチレンを含有する層と、直鎖状低密度ポリエチレンを含有する層とをチューブ状に共押出し、次いで、対向する直鎖状低密度ポリエチレンを含有する層同士をゴムロールなどにより圧着することによって、積層物を製造できる。このような方法により積層物を製造することにより、欠陥品数を顕著に低減でき、生産効率を向上できる。 Specifically, from the outside, a layer containing medium-density polyethylene and high-density polyethylene, a layer containing medium-density polyethylene and linear low-density polyethylene, or a layer containing high-density polyethylene, and a linear low A layer containing density polyethylene, a layer containing medium density polyethylene and linear low density polyethylene, or a layer containing high density polyethylene, and a layer containing medium density polyethylene and high density polyethylene are formed into a tube shape. It can be co-extruded to form a film to produce a laminate. Alternatively, from the outside, a layer containing medium-density polyethylene and high-density polyethylene, a layer containing medium-density polyethylene and linear low-density polyethylene, or a layer containing high-density polyethylene, and a linear low-density polyethylene. A laminate can be produced by co-extruding the containing layer into a tube shape and then pressure-bonding the opposing layers containing the linear low-density polyethylene with a rubber roll or the like. By manufacturing the laminate by such a method, the number of defective products can be remarkably reduced and the production efficiency can be improved.
 その他のポリエチレン多層基材についても、例えば、上述した方法により製造できる。 Other polyethylene multilayer base materials can also be manufactured by, for example, the above-mentioned method.
 図2に、本開示の多層基材の一実施形態を示す。図2の多層基材10は、層12と、層18と、層20と、層22と、層14とを、厚さ方向にこの順に備える。 FIG. 2 shows an embodiment of the multilayer substrate of the present disclosure. The multilayer base material 10 of FIG. 2 includes a layer 12, a layer 18, a layer 20, a layer 22, and a layer 14 in this order in the thickness direction.
 第1の態様及び第2の態様のポリエチレン多層基材の場合は、例えば、層12が第1のPE層であり、層18が第2aのPE層であり、層20が第2のPE層であり、層22が第2bのPE層であり、層14が第3のPE層である。第2aのPE層及び第2bのPE層を省略してもよい。 In the case of the polyethylene multilayer base material of the first aspect and the second aspect, for example, the layer 12 is the first PE layer, the layer 18 is the second PE layer, and the layer 20 is the second PE layer. The layer 22 is the second PE layer, and the layer 14 is the third PE layer. The second PE layer and the second PE layer may be omitted.
 第3の態様のポリエチレン多層基材における第1の実施形態の多層中間層を備える多層基材の場合は、例えば、層12が、中密度ポリエチレンを含有する第1の層(層(A))であり、層18が、高密度ポリエチレンを含有する第2の層であり、層20が、中密度ポリエチレン及び高密度ポリエチレンを含有する第3の層であり、層22が、高密度ポリエチレンを含有する第4の層であり、層14が、中密度ポリエチレンを含有する第5の層(層(C))である。 In the case of the multilayer substrate including the multilayer intermediate layer of the first embodiment in the polyethylene multilayer substrate of the third aspect, for example, the layer 12 is the first layer (layer (A)) containing the medium density polyethylene. The layer 18 is a second layer containing high-density polyethylene, the layer 20 is a third layer containing medium-density polyethylene and high-density polyethylene, and the layer 22 contains high-density polyethylene. The fourth layer is a fifth layer (layer (C)) containing medium-density polyethylene.
 第4の態様のポリエチレン多層基材の場合は、例えば、層12が、中密度ポリエチレン及び高密度ポリエチレンを含有する第1の層であり、層18が、中密度ポリエチレン及び直鎖状低密度ポリエチレンを含有する第2の層であり、層20が、直鎖状低密度ポリエチレンを含有する第3の層であり、層22が、中密度ポリエチレン及び直鎖状低密度ポリエチレンを含有する第4の層であり、層14が、中密度ポリエチレン及び高密度ポリエチレンを含有する第5の層である。 In the case of the polyethylene multilayer base material of the fourth aspect, for example, the layer 12 is the first layer containing the medium density polyethylene and the high density polyethylene, and the layer 18 is the medium density polyethylene and the linear low density polyethylene. A second layer containing, layer 20 is a third layer containing linear low density polyethylene, and layer 22 is a fourth layer containing medium density polyethylene and linear low density polyethylene. It is a layer, and layer 14 is a fifth layer containing medium-density polyethylene and high-density polyethylene.
 第5の態様のポリエチレン多層基材の場合は、例えば、層12が、中密度ポリエチレン及び高密度ポリエチレンを含有する第1の層であり、層18が、高密度ポリエチレンを含有する第2の層であり、層20が、直鎖状低密度ポリエチレンを含有する第3の層であり、層22が、高密度ポリエチレンを含有する第4の層であり、層14が、中密度ポリエチレン及び高密度ポリエチレンを含有する第5の層である。 In the case of the polyethylene multilayer base material of the fifth aspect, for example, the layer 12 is the first layer containing the medium density polyethylene and the high density polyethylene, and the layer 18 is the second layer containing the high density polyethylene. Layer 20 is a third layer containing linear low density polyethylene, layer 22 is a fourth layer containing high density polyethylene, and layer 14 is medium density polyethylene and high density. A fifth layer containing polyethylene.
 Tダイ法により積層物を製造する場合、各層を構成するポリエチレンのメルトフローレート(MFR)は、製膜性、及び多層基材の加工適性という観点から、好ましくは3g/10分以上20g/10分以下である。 When the laminate is manufactured by the T-die method, the melt flow rate (MFR) of the polyethylene constituting each layer is preferably 3 g / 10 minutes or more and 20 g / 10 from the viewpoint of film forming property and processability of the multilayer base material. Less than a minute.
 インフレーション法により積層物を製造する場合、各層を構成するポリエチレンのMFRは、製膜性、及び多層基材の加工適性という観点から、好ましくは0.2g/10分以上5g/10分以下、より好ましくは0.5g/10分以上5g/10分以下である。 When the laminate is manufactured by the inflation method, the MFR of the polyethylene constituting each layer is preferably 0.2 g / 10 minutes or more and 5 g / 10 minutes or less from the viewpoint of film forming property and processing suitability of the multilayer base material. It is preferably 0.5 g / 10 minutes or more and 5 g / 10 minutes or less.
 本開示の多層基材は、例えば、上述した積層物を延伸して得られる。なお、インフレーション製膜機において、積層物の延伸も合わせて行うことができる。これにより、多層基材を製造できることから、生産効率をより向上できる。 The multilayer base material of the present disclosure is obtained, for example, by stretching the above-mentioned laminate. In the inflation film forming machine, stretching of the laminate can also be performed. As a result, the multilayer base material can be manufactured, so that the production efficiency can be further improved.
 本開示の多層基材は、一軸延伸フィルムであっても、二軸延伸フィルムであってもよい。多層基材は、一実施形態において、一軸延伸フィルムであり、より具体的には、長手方向(MD)に延伸処理された一軸延伸フィルムである。 The multilayer base material of the present disclosure may be a uniaxially stretched film or a biaxially stretched film. The multilayer base material is, in one embodiment, a uniaxially stretched film, and more specifically, a uniaxially stretched film that has been stretched in the longitudinal direction (MD).
 本開示の多層基材の長手方向(MD)の延伸倍率は、一実施形態において、2倍以上10倍以下が好ましく、3倍以上7倍以下がより好ましい。本開示の多層基材の横手方向(TD)の延伸倍率は、一実施形態において、2倍以上10倍以下が好ましく、3倍以上7倍以下がより好ましい。 The elongation ratio in the longitudinal direction (MD) of the multilayer substrate of the present disclosure is preferably 2 times or more and 10 times or less, and more preferably 3 times or more and 7 times or less in one embodiment. The stretch ratio in the lateral direction (TD) of the multilayer substrate of the present disclosure is preferably 2 times or more and 10 times or less, and more preferably 3 times or more and 7 times or less in one embodiment.
 延伸倍率が2倍以上であると、例えば、多層基材の剛性、強度及び耐熱性を向上でき、多層基材へのインキ密着性を向上でき、また、多層基材の透明性を向上できる。延伸倍率が10倍以下であると、積層物を良好に延伸できる。 When the draw ratio is 2 times or more, for example, the rigidity, strength and heat resistance of the multilayer substrate can be improved, the ink adhesion to the multilayer substrate can be improved, and the transparency of the multilayer substrate can be improved. When the draw ratio is 10 times or less, the laminate can be satisfactorily stretched.
 本開示の多層基材のヘイズ値は、好ましくは25%以下、より好ましくは15%以下、さらに好ましくは10%以下である。ヘイズ値は小さいほど好ましいが、一実施形態において、その下限値は0.1%又は1%であってもよい。多層基材のヘイズ値は、JIS K7136に準拠して測定する。 The haze value of the multilayer substrate of the present disclosure is preferably 25% or less, more preferably 15% or less, still more preferably 10% or less. The smaller the haze value is, the more preferable it is, but in one embodiment, the lower limit value may be 0.1% or 1%. The haze value of the multilayer base material is measured according to JIS K7136.
 本開示の多層基材におけるポリエチレンの含有割合は、好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。これにより、多層基材のリサイクル性を向上できる。 The content ratio of polyethylene in the multilayer substrate of the present disclosure is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more. This makes it possible to improve the recyclability of the multilayer base material.
 積層物又は多層基材には、表面処理が施されていることが好ましい。これにより、多層基材の表面層と、多層基材に積層される層との密着性を向上できる。表面処理の方法としては、例えば、コロナ放電処理、オゾン処理、酸素ガス及び窒素ガスなどのガスを用いた低温プラズマ処理、グロー放電処理などの物理的処理;並びに化学薬品を用いた酸化処理などの化学的処理が挙げられる。 It is preferable that the laminate or the multilayer base material is surface-treated. This makes it possible to improve the adhesion between the surface layer of the multilayer base material and the layer laminated on the multilayer base material. Surface treatment methods include, for example, corona discharge treatment, ozone treatment, low temperature plasma treatment using gases such as oxygen gas and nitrogen gas, physical treatment such as glow discharge treatment; and oxidation treatment using chemicals. Chemical treatment can be mentioned.
 積層物又は多層基材の表面には、従来公知のアンカーコート剤を用いて、アンカーコート層を形成してもよい。 An anchor coat layer may be formed on the surface of the laminate or the multilayer base material by using a conventionally known anchor coat agent.
 本開示の多層基材の総厚さは、好ましくは10μm以上60μm以下、より好ましくは15μm以上50μm以下である。多層基材の厚さが10μm以上であると、多層基材の剛性及び強度を向上できる。多層基材の厚さが60μm以下であると、多層基材の加工適性を向上できる。上述した効果が得られる範囲において、多層基材の厚さが小さいと、例えばコスト低減の観点から好ましい。 The total thickness of the multilayer substrate of the present disclosure is preferably 10 μm or more and 60 μm or less, and more preferably 15 μm or more and 50 μm or less. When the thickness of the multilayer substrate is 10 μm or more, the rigidity and strength of the multilayer substrate can be improved. When the thickness of the multilayer substrate is 60 μm or less, the processability of the multilayer substrate can be improved. Within the range where the above-mentioned effects can be obtained, it is preferable that the thickness of the multilayer base material is small, for example, from the viewpoint of cost reduction.
 [印刷基材]
 本開示の印刷基材は、本開示のポリエチレン多層基材と、該多層基材上に形成された印刷層とを備える。印刷層は、例えば、第1の態様及び第2の態様の多層基材における第1のPE層又は第3のPE層に形成される。印刷層は、例えば、第3の態様の多層基材における層(A)又は層(C)に形成される。印刷層は、例えば、第4の態様及び第5の態様の多層基材における第1の層又は第5の層に形成される。多層基材はインキ密着性に優れることから、良好な画像を形成できる。本開示の多層基材は一実施形態において耐熱収縮性などの耐熱性に優れることから、印刷用途に好適である。
[Printing substrate]
The printed substrate of the present disclosure includes the polyethylene multilayer substrate of the present disclosure and a printing layer formed on the multilayer substrate. The printed layer is formed, for example, on the first PE layer or the third PE layer in the multilayer substrate of the first aspect and the second aspect. The printed layer is formed, for example, in the layer (A) or the layer (C) in the multilayer substrate of the third aspect. The printed layer is formed, for example, in the first layer or the fifth layer in the multilayer substrate of the fourth aspect and the fifth aspect. Since the multilayer base material has excellent ink adhesion, a good image can be formed. The multilayer substrate of the present disclosure is suitable for printing because it has excellent heat resistance such as heat shrinkage in one embodiment.
 印刷層は、例えば、画像を含む。画像としては、例えば、文字、図形、記号及びこれらの組合せが挙げられる。印刷層の形成方法としては、例えば、グラビア印刷法、オフセット印刷法及びフレキソ印刷法が挙げられる。一実施形態において、環境負荷低減という観点から、フレキソ印刷法が好ましい。また、環境負荷低減という観点から、バイオマス由来のインキを用いて多層基材の表面に印刷層を形成してもよい。 The print layer contains, for example, an image. Examples of the image include characters, figures, symbols, and combinations thereof. Examples of the method for forming the print layer include a gravure printing method, an offset printing method, and a flexographic printing method. In one embodiment, the flexographic printing method is preferable from the viewpoint of reducing the environmental load. Further, from the viewpoint of reducing the environmental load, a printing layer may be formed on the surface of the multilayer base material using an ink derived from biomass.
 印刷層は、一実施形態において、着色剤を含有する。着色剤としては、例えば、無機顔料及び有機顔料等の顔料;酸性染料、直接染料、分散染料、油溶性染料、含金属油溶性染料及び昇華性色素等の染料が挙げられる。着色剤としては、紫外線を吸収することにより蛍光を発する紫外線発光材料、及び赤外線を吸収することにより蛍光を発する赤外線発光材料等の蛍光発光材料も挙げられる。 The printed layer contains a colorant in one embodiment. Examples of the colorant include pigments such as inorganic pigments and organic pigments; dyes such as acid dyes, direct dyes, disperse dyes, oil-soluble dyes, metal-containing oil-soluble dyes and sublimation dyes. Examples of the colorant include an ultraviolet light emitting material that emits fluorescence by absorbing ultraviolet rays, and a fluorescent light emitting material such as an infrared light emitting material that emits fluorescence by absorbing infrared rays.
 印刷層は、一実施形態において、樹脂材料を含有してもよい。樹脂材料としては、例えば、セルロース樹脂、(メタ)アクリル樹脂、ウレタン樹脂、アルキド樹脂、ポリエステル、ポリカーボネート、ポリオレフィン、ポリスチレン、ノルボルネン系樹脂、ポリ塩化ビニル、ポリ酢酸ビニル及び塩化ビニル-酢酸ビニル共重合体が挙げられる。 The printed layer may contain a resin material in one embodiment. Examples of the resin material include cellulose resin, (meth) acrylic resin, urethane resin, alkyd resin, polyester, polycarbonate, polyolefin, polystyrene, norbornene-based resin, polyvinyl chloride, polyvinyl acetate and vinyl chloride-vinyl acetate copolymer. Can be mentioned.
 [積層体]
 本開示の第1~第4の態様の積層体は、ポリエチレン多層基材と、ポリエチレンを主成分として含有するヒートシール層とを備える。本開示の第5の態様の積層体は、基材と、ヒートシール層とを備える。本開示の他の態様の積層体は、本開示のポリエチレン多層基材と、ヒートシール層とを備える。
[Laminate]
The laminate of the first to fourth aspects of the present disclosure includes a polyethylene multilayer base material and a heat seal layer containing polyethylene as a main component. The laminate of the fifth aspect of the present disclosure includes a base material and a heat seal layer. The laminate of another aspect of the present disclosure comprises the polyethylene multilayer substrate of the present disclosure and a heat seal layer.
 [第1~第4の態様及び他の態様の積層体]
 以下、第1~第4の態様の積層体及び他の態様の積層体について説明するが、これらの態様の積層体について共通する事項について積層体に言及する際には、「本開示の積層体」とも記載する。
[Laminates of the first to fourth aspects and other embodiments]
Hereinafter, the laminates of the first to fourth aspects and the laminates of other embodiments will be described, but when referring to the laminates with respect to the matters common to the laminates of these embodiments, "the laminates of the present disclosure" will be described. Also described.
 本開示の積層体30は、図3に示すように、ポリエチレン多層基材10と、ヒートシール層32とを備える。ポリエチレン多層基材10は、上述した本開示のポリエチレン多層基材でもよく、その他のポリエチレン多層基材でもよい。図3において、第1~第4の態様の積層体の場合や、第1及び第2の態様の多層基材の場合は、第2のポリエチレン層、及び必要に応じて第2a、第2bのポリエチレン層を含む中間層が、多層中間層16となる。図3において、第4及び第5の態様の多層基材の場合は、第2の層、第3の層及び第4の層を含む中間層が、多層中間層16となる。 As shown in FIG. 3, the laminate 30 of the present disclosure includes a polyethylene multilayer base material 10 and a heat seal layer 32. The polyethylene multilayer base material 10 may be the polyethylene multilayer base material of the present disclosure described above, or may be another polyethylene multilayer base material. In FIG. 3, in the case of the laminated body of the first to fourth aspects, or in the case of the multilayer base material of the first and second aspects, the second polyethylene layer and, if necessary, the second a and the second b. The intermediate layer including the polyethylene layer becomes the multilayer intermediate layer 16. In FIG. 3, in the case of the multilayer base material of the fourth and fifth aspects, the intermediate layer including the second layer, the third layer and the fourth layer becomes the multilayer intermediate layer 16.
 一実施形態において、積層体30は、多層基材10上に図示せぬ印刷層をさらに備える。印刷層は、通常、多層基材におけるヒートシール層が設けられる表面層上、例えば上述した第1及び第2の態様の多層基材における第1のポリエチレン層上、第3の態様の多層基材における層(A)上、又は第4及び第5の態様の多層基材における第1の層上、に形成されている。印刷層の詳細は、[印刷基材]の欄にて説明したとおりであり、本欄での説明は省略する。 In one embodiment, the laminate 30 further includes a print layer (not shown) on the multilayer substrate 10. The printed layer is usually on the surface layer provided with the heat seal layer in the multilayer substrate, for example, on the first polyethylene layer in the multilayer substrate of the first and second embodiments described above, and the multilayer substrate of the third aspect. It is formed on the layer (A) in the above, or on the first layer in the multilayer substrate of the fourth and fifth aspects. The details of the print layer are as described in the [Printing substrate] column, and the description in this column is omitted.
 一実施形態において、図4に示すように、積層体30は、多層基材10とヒートシール層32との間に、バリア層34及び接着層36を備える。この実施形態では、バリア層34は、多層基材10の表面に形成されている。 In one embodiment, as shown in FIG. 4, the laminate 30 includes a barrier layer 34 and an adhesive layer 36 between the multilayer base material 10 and the heat seal layer 32. In this embodiment, the barrier layer 34 is formed on the surface of the multilayer base material 10.
 一実施形態において、図5に示すように、積層体30は、多層基材10とヒートシール層32との間に、接着層36及びバリア層34を備える。この実施形態では、バリア層34は、ヒートシール層32の表面に形成されている。 In one embodiment, as shown in FIG. 5, the laminate 30 includes an adhesive layer 36 and a barrier layer 34 between the multilayer base material 10 and the heat seal layer 32. In this embodiment, the barrier layer 34 is formed on the surface of the heat seal layer 32.
 一実施形態において、図6に示すように、積層体30は、多層基材10とヒートシール層32との間に、接着層36を備える。 In one embodiment, as shown in FIG. 6, the laminate 30 includes an adhesive layer 36 between the multilayer base material 10 and the heat seal layer 32.
 本開示の積層体において、ポリエチレンの含有割合は、好ましくは90質量%以上である。これにより、積層体のリサイクル性を向上できる。積層体におけるポリエチレンの含有割合とは、積層体を構成する各層における樹脂材料の含有量の和に対する、ポリエチレンの含有量の割合を意味する。 In the laminate of the present disclosure, the content ratio of polyethylene is preferably 90% by mass or more. This makes it possible to improve the recyclability of the laminated body. The polyethylene content ratio in the laminate means the ratio of the polyethylene content to the sum of the content of the resin material in each layer constituting the laminate.
 本開示の第1~第4の態様の積層体は、
 ポリエチレン多層基材と、
 ポリエチレンを主成分として含有するヒートシール層と
を備える積層体であって、
 ポリエチレン多層基材が、
 第1のPE層と、
 第2のPE層と、
 第3のPE層と
を厚さ方向にこの順に備え、延伸処理されてなる。
The laminate of the first to fourth aspects of the present disclosure is
Polyethylene multilayer base material and
A laminate provided with a heat-sealed layer containing polyethylene as a main component.
Polyethylene multilayer base material,
The first PE layer and
The second PE layer and
A third PE layer is provided in this order in the thickness direction, and is stretched.
 本開示の第1の態様の積層体は、下記要件(C)を充たす。本開示の第2の態様の積層体は、下記要件(D)を充たす。第1の態様の積層体がさらに下記要件(D)を充たしてもよい。
 要件(C):第1のPE層の押込み弾性率が、第2のPE層の押込み弾性率の3.5倍以上であり、第3のPE層の押込み弾性率が、第2のPE層の押込み弾性率の3.5倍以上である。
 要件(D):第1のPE層の押込み硬度が、第2のPE層の押込み硬度の2.0倍以上であり、第3のPE層の押込み硬度が、第2のPE層の押込み硬度の2.0倍以上である。
The laminate of the first aspect of the present disclosure satisfies the following requirement (C). The laminate of the second aspect of the present disclosure satisfies the following requirement (D). The laminate of the first aspect may further satisfy the following requirement (D).
Requirement (C): The indentation elastic modulus of the first PE layer is 3.5 times or more the indentation elastic modulus of the second PE layer, and the indentation elastic modulus of the third PE layer is the second PE layer. It is 3.5 times or more of the indentation elastic modulus of.
Requirement (D): The indentation hardness of the first PE layer is 2.0 times or more the indentation hardness of the second PE layer, and the indentation hardness of the third PE layer is the indentation hardness of the second PE layer. It is more than 2.0 times.
 本開示の第3の態様の積層体は、下記要件(E)を充たす。本開示の第4の態様の積層体は、下記要件(F)を充たす。第3の態様の積層体がさらに下記要件(F)を充たしてもよい。
 要件(E):第1のPE層の押込み弾性率が、1.0GPa以上であり、第3のPE層の押込み弾性率が、1.0GPa以上である。
 要件(F):第1のPE層の押込み硬度が、45MPa以上であり、第3のPE層の押込み硬度が、45MPa以上である。
The laminate of the third aspect of the present disclosure satisfies the following requirement (E). The laminate of the fourth aspect of the present disclosure satisfies the following requirement (F). The laminate of the third aspect may further satisfy the following requirement (F).
Requirement (E): The indentation elastic modulus of the first PE layer is 1.0 GPa or more, and the indentation elastic modulus of the third PE layer is 1.0 GPa or more.
Requirement (F): The indentation hardness of the first PE layer is 45 MPa or more, and the indentation hardness of the third PE layer is 45 MPa or more.
 ポリエチレン多層基材は、第1のPE層及び第2のPE層の間に第2aのPE層と、第2のPE層及び第3のPE層の間に第2bのPE層と、をさらに備えてもよい。この場合の多層基材は、第1のPE層と、第2aのPE層と、第2のPE層と、第2bのPE層と、第3のPE層とを、厚さ方向にこの順に備える。第2aのPE層、第2のPE層、及び第2bのPE層は、多層基材における中間層(多層中間層)を構成する。 The polyethylene multilayer substrate further includes a second PE layer between the first PE layer and the second PE layer, and a second PE layer between the second PE layer and the third PE layer. You may prepare. In this case, the multilayer base material has a first PE layer, a second PE layer, a second PE layer, a second PE layer, and a third PE layer in this order in the thickness direction. Be prepared. The second PE layer, the second PE layer, and the second PE layer form an intermediate layer (multilayer intermediate layer) in the multilayer substrate.
 本開示の第1~第4の態様の積層体を構成するポリエチレン多層基材は、一実施形態において、押込み弾性率及び押込み硬度を除いて上述した本開示の第1の態様及び第2の態様のポリエチレン多層基材と同様であり、積層構成、並びに各層の組成及び厚さ等は上述したとおりであるから、本欄での詳細な説明は省略する。本開示の第1~第4の態様の積層体を構成するポリエチレン多層基材における押込み弾性率及び押込み硬度については、以下に説明する。 The polyethylene multilayer base material constituting the laminate of the first to fourth aspects of the present disclosure has, in one embodiment, the first aspect and the second aspect of the present disclosure described above except for the indentation elastic modulus and the indentation hardness. Since it is the same as the polyethylene multilayer base material of the above, and the laminated structure and the composition and thickness of each layer are as described above, detailed description in this column will be omitted. The indentation elastic modulus and indentation hardness in the polyethylene multilayer base material constituting the laminate of the first to fourth aspects of the present disclosure will be described below.
 <第1の態様の積層体>
 本開示の第1の態様の積層体は、第1のPE層の押込み弾性率が、第2のPE層の押込み弾性率の3.5倍以上であり、第3のPE層の押込み弾性率が、第2のPE層の押込み弾性率の3.5倍以上であることを特徴とする。これにより、積層体の耐熱性を向上でき、例えば、ヒートシール時などの熱付加時における積層体の熱収縮を抑制できる。
<Laminated body of the first aspect>
In the laminate of the first aspect of the present disclosure, the indentation elastic modulus of the first PE layer is 3.5 times or more the indentation elastic modulus of the second PE layer, and the indentation elastic modulus of the third PE layer. However, it is characterized in that it is 3.5 times or more the indentation elastic modulus of the second PE layer. As a result, the heat resistance of the laminated body can be improved, and for example, heat shrinkage of the laminated body at the time of heat application such as heat sealing can be suppressed.
 第1の態様の積層体における比(弾性率1/弾性率2)及び比(弾性率3/弾性率2)は、それぞれ独立に、3.5以上であり、好ましくは4.0以上、より好ましくは4.5以上、さらに好ましくは5.0以上、よりさらに好ましくは5.5以上であり;好ましくは16.0以下、より好ましくは14.0以下、さらに好ましくは12.0以下、よりさらに好ましくは10.0以下、特に好ましくは9.0以下である。比(弾性率1/弾性率2)の範囲、及び比(弾性率3/弾性率2)の範囲は、それぞれ独立に、上記の下限値及び上限値の任意の組合せでもよく、例えば3.5以上16.0以下でもよい。 The ratio (elastic modulus 1 / elastic modulus 2) and the ratio (elastic modulus 3 / elastic modulus 2) in the laminated body of the first aspect are independently 3.5 or more, preferably 4.0 or more, and more. It is preferably 4.5 or more, more preferably 5.0 or more, still more preferably 5.5 or more; preferably 16.0 or less, more preferably 14.0 or less, still more preferably 12.0 or less, and more. It is more preferably 10.0 or less, and particularly preferably 9.0 or less. The range of the ratio (modulus of elasticity 1 / elastic modulus 2) and the range of the ratio (modulus of elasticity 3 / elastic modulus 2) may be any combination of the above lower limit value and upper limit value, for example, 3.5. It may be 16.0 or less.
 本開示の第1の態様の積層体において、第2aのPE層の押込み弾性率は、第2のPE層の押込み弾性率の2.0倍以上であることが好ましく、第2bのPE層の押込み弾性率は、第2のPE層の押込み弾性率の2.0倍以上であることが好ましい。これにより、例えば、ヒートシール時における積層体の熱収縮をさらに抑制できる傾向にある。 In the laminated body of the first aspect of the present disclosure, the indentation elastic modulus of the second PE layer is preferably 2.0 times or more the indentation elastic modulus of the second PE layer, and is more than 2.0 times the indentation elastic modulus of the second PE layer. The indentation elastic modulus is preferably 2.0 times or more the indentation elastic modulus of the second PE layer. Thereby, for example, there is a tendency that the heat shrinkage of the laminated body at the time of heat sealing can be further suppressed.
 第1の態様の積層体における比(弾性率2a/弾性率2)及び比(弾性率2b/弾性率2)は、それぞれ独立に、好ましくは2.0以上、より好ましくは2.5以上、さらに好ましくは3.0以上であり;好ましくは14.0以下、より好ましくは12.0以下、さらに好ましくは10.0以下、よりさらに好ましくは9.0以下、特に好ましくは8.5以下である。比(弾性率2a/弾性率2)の範囲、及び比(弾性率2b/弾性率2)の範囲は、それぞれ独立に、上記の下限値及び上限値の任意の組合せでもよく、例えば2.0以上14.0以下でもよい。 The ratio (elastic modulus 2a / elastic modulus 2) and the ratio (elastic modulus 2b / elastic modulus 2) in the laminated body of the first aspect are independently, preferably 2.0 or more, more preferably 2.5 or more, respectively. It is more preferably 3.0 or more; preferably 14.0 or less, more preferably 12.0 or less, still more preferably 10.0 or less, still more preferably 9.0 or less, and particularly preferably 8.5 or less. be. The range of the ratio (elastic modulus 2a / elastic modulus 2) and the range of the ratio (elastic modulus 2b / elastic modulus 2) may be independently any combination of the above lower limit value and upper limit value, for example, 2.0. It may be 14.0 or less.
 第1の態様の積層体における押込み弾性率1及び押込み弾性率3は、それぞれ独立に、好ましくは1.0GPa以上、より好ましくは1.05GPa以上、さらに好ましくは1.1GPa以上、よりさらに好ましくは1.15GPa以上、特に好ましくは1.3GPa以上であり;好ましくは4.5GPa以下、より好ましくは4.0GPa以下、さらに好ましくは3.5GPa以下、よりさらに好ましくは3.0GPa以下、特に好ましくは2.5GPa以下、2.0GPa以下又は1.8GPa以下である。これにより、例えば、ヒートシール時における積層体の熱収縮をさらに抑制できる傾向にある。押込み弾性率1及び押込み弾性率3の範囲は、それぞれ独立に、上記の下限値及び上限値の任意の組合せでもよく、例えば1.0GPa以上4.5GPa以下でもよい。 The indentation elastic modulus 1 and the indentation elastic modulus 3 in the laminated body of the first aspect are independently, preferably 1.0 GPa or more, more preferably 1.05 GPa or more, still more preferably 1.1 GPa or more, still more preferably 1.1 GPa or more. 1.15 GPa or more, particularly preferably 1.3 GPa or more; preferably 4.5 GPa or less, more preferably 4.0 GPa or less, still more preferably 3.5 GPa or less, still more preferably 3.0 GPa or less, particularly preferably. It is 2.5 GPa or less, 2.0 GPa or less, or 1.8 GPa or less. Thereby, for example, there is a tendency that the heat shrinkage of the laminated body at the time of heat sealing can be further suppressed. The ranges of the indentation elastic modulus 1 and the indentation elastic modulus 3 may be independently arbitrary combinations of the above lower limit value and upper limit value, and may be, for example, 1.0 GPa or more and 4.5 GPa or less.
 第1の態様の積層体における押込み弾性率2は、好ましくは0.03GPa以上、より好ましくは0.05GPa以上、さらに好ましくは0.1GPa以上、よりさらに好ましくは0.13GPa以上、特に好ましくは0.15GPa以上であり;好ましくは0.7GPa以下、より好ましく0.6GPa以下、さらに好ましくは0.5GPa以下、よりさらに好ましくは0.4GPa以下、特に好ましくは0.3GPa以下である。このような設計であると、例えば、延伸前積層物の延伸性がより優れる傾向にある。押込み弾性率2の範囲は、上記の下限値及び上限値の任意の組合せでもよく、例えば0.03GPa以上0.7GPa以下でもよい。 The indentation elastic modulus 2 in the laminate of the first aspect is preferably 0.03 GPa or more, more preferably 0.05 GPa or more, still more preferably 0.1 GPa or more, still more preferably 0.13 GPa or more, and particularly preferably 0. It is .15 GPa or more; preferably 0.7 GPa or less, more preferably 0.6 GPa or less, still more preferably 0.5 GPa or less, still more preferably 0.4 GPa or less, and particularly preferably 0.3 GPa or less. With such a design, for example, the stretchability of the pre-stretched laminate tends to be more excellent. The range of the indentation elastic modulus 2 may be any combination of the above lower limit value and upper limit value, and may be, for example, 0.03 GPa or more and 0.7 GPa or less.
 第1の態様の積層体における押込み弾性率2a及び押込み弾性率2bは、それぞれ独立に、好ましくは0.3GPa以上、より好ましくは0.4GPa以上、さらに好ましくは0.5GPa以上、よりさらに好ましくは0.6GPa以上であり;好ましくは3.5GPa以下、より好ましくは3.0GPa以下、さらに好ましくは2.5GPa以下、よりさらに好ましくは2.0GPa以下、特に好ましくは1.5GPa以下である。これにより、例えば、ヒートシール時における積層体の熱収縮をさらに抑制できる傾向にある。押込み弾性率2a及び押込み弾性率2bの範囲は、それぞれ独立に、上記の下限値及び上限値の任意の組合せでもよく、例えば0.3GPa以上3.5GPa以下でもよい。 The indentation elastic modulus 2a and the indentation elastic modulus 2b in the laminated body of the first aspect are independently, preferably 0.3 GPa or more, more preferably 0.4 GPa or more, still more preferably 0.5 GPa or more, still more preferably 0.5 GPa or more. It is 0.6 GPa or more; preferably 3.5 GPa or less, more preferably 3.0 GPa or less, still more preferably 2.5 GPa or less, still more preferably 2.0 GPa or less, and particularly preferably 1.5 GPa or less. Thereby, for example, there is a tendency that the heat shrinkage of the laminated body at the time of heat sealing can be further suppressed. The ranges of the indentation elastic modulus 2a and the indentation elastic modulus 2b may be independently arbitrary combinations of the above lower limit value and upper limit value, and may be, for example, 0.3 GPa or more and 3.5 GPa or less.
 第1の態様の積層体において、各PE層の押込み弾性率の大きさは、押込み弾性率1>押込み弾性率2a>押込み弾性率2の関係を充たすことが好ましく、押込み弾性率3>押込み弾性率2b>押込み弾性率2の関係を充たすことが好ましい。これにより、例えば、多層基材の耐熱性と延伸適性(加工性、生産性)とのバランスをさらに向上できる傾向にある。 In the laminated body of the first aspect, the magnitude of the indentation elastic modulus of each PE layer preferably satisfies the relationship of indentation elastic modulus 1> indentation elastic modulus 2a> indentation elastic modulus 2, and indentation elastic modulus 3> indentation elastic modulus. It is preferable to satisfy the relationship of rate 2b> indentation elastic modulus 2. This tends to further improve the balance between the heat resistance of the multilayer base material and the stretchability (processability, productivity), for example.
 第1の態様の積層体において、比(弾性率1/弾性率3)は、好ましくは0.6以上1.7以下、より好ましくは0.7以上1.4以下、さらに好ましくは0.8以上1.2以下、よりさらに好ましくは0.9以上1.1以下である。これにより、例えば、多層基材の層構成の対称性を向上でき、したがって、多層基材のカールを抑制でき、印刷及びラミネート等の加工性を向上できる傾向にある。 In the laminate of the first aspect, the ratio (elastic modulus 1 / elastic modulus 3) is preferably 0.6 or more and 1.7 or less, more preferably 0.7 or more and 1.4 or less, and further preferably 0.8. It is 1.2 or more, more preferably 0.9 or more and 1.1 or less. Thereby, for example, the symmetry of the layer structure of the multilayer base material can be improved, and therefore the curl of the multilayer base material can be suppressed, and the processability of printing and laminating tends to be improved.
 第1の態様の積層体において、比(弾性率2a/弾性率2b)は、好ましくは0.6以上1.7以下、より好ましくは0.7以上1.4以下、さらに好ましくは0.8以上1.2以下、よりさらに好ましくは0.9以上1.1以下である。これにより、例えば、多層基材の層構成の対称性を向上でき、したがって、多層基材のカールを抑制でき、印刷及びラミネート等の加工性を向上できる傾向にある。 In the laminate of the first aspect, the ratio (elastic modulus 2a / elastic modulus 2b) is preferably 0.6 or more and 1.7 or less, more preferably 0.7 or more and 1.4 or less, still more preferably 0.8. It is 1.2 or more, more preferably 0.9 or more and 1.1 or less. Thereby, for example, the symmetry of the layer structure of the multilayer base material can be improved, and therefore the curl of the multilayer base material can be suppressed, and the processability of printing and laminating tends to be improved.
 <第2の態様の積層体>
 本開示の第2の態様の積層体は、第1のPE層の押込み硬度が、第2のPE層の押込み硬度の2.0倍以上であり、第3のPE層の押込み硬度が、第2のPE層の押込み硬度の2.0倍以上であることを特徴とする。これにより、積層体の耐熱性を向上でき、例えば、ヒートシール時などの熱付加時における積層体の熱収縮を抑制できる。
<Laminated body of the second aspect>
In the laminate of the second aspect of the present disclosure, the indentation hardness of the first PE layer is 2.0 times or more the indentation hardness of the second PE layer, and the indentation hardness of the third PE layer is the second. It is characterized in that it is 2.0 times or more the indentation hardness of the PE layer of 2. As a result, the heat resistance of the laminated body can be improved, and for example, heat shrinkage of the laminated body at the time of heat application such as heat sealing can be suppressed.
 第2の態様の積層体における比(硬度1/硬度2)及び比(硬度3/硬度2)は、それぞれ独立に、2.0以上であり、好ましくは2.2以上、より好ましくは2.4以上、さらに好ましくは2.6以上、よりさらに好ましくは2.8以上であり;好ましくは6.0以下、より好ましくは5.5以下、さらに好ましくは5.0以下、よりさらに好ましくは4.5以下、特に好ましくは4.0以下又は3.5以下である。比(硬度1/硬度2)の範囲、及び比(硬度3/硬度2)の範囲は、それぞれ独立に、上記の下限値及び上限値の任意の組合せでもよく、例えば2.0以上6.0以下でもよい。第1の態様の積層体が、比(硬度1/硬度2)及び比(硬度3/硬度2)に係る上記要件をさらに充たしてもよい。 The ratio (hardness 1 / hardness 2) and the ratio (hardness 3 / hardness 2) in the laminate of the second aspect are independently 2.0 or more, preferably 2.2 or more, and more preferably 2. 4 or more, more preferably 2.6 or more, even more preferably 2.8 or more; preferably 6.0 or less, more preferably 5.5 or less, still more preferably 5.0 or less, still more preferably 4 It is 5.5 or less, particularly preferably 4.0 or less or 3.5 or less. The range of the ratio (hardness 1 / hardness 2) and the range of the ratio (hardness 3 / hardness 2) may be independently any combination of the above lower limit value and upper limit value, for example, 2.0 or more and 6.0. It may be as follows. The laminate of the first aspect may further satisfy the above requirements relating to the ratio (hardness 1 / hardness 2) and the ratio (hardness 3 / hardness 2).
 本開示の第2の態様の積層体において、第2aのPE層の押込み硬度は、第2のPE層の押込み硬度の1.5倍以上であることが好ましく、第2bのPE層の押込み硬度は、第2のPE層の押込み硬度の1.5倍以上であることが好ましい。これにより、例えば、ヒートシール時における積層体の熱収縮をさらに抑制できる傾向にある。 In the laminated body of the second aspect of the present disclosure, the indentation hardness of the second PE layer is preferably 1.5 times or more the indentation hardness of the second PE layer, and the indentation hardness of the second PE layer. Is preferably 1.5 times or more the indentation hardness of the second PE layer. Thereby, for example, there is a tendency that the heat shrinkage of the laminated body at the time of heat sealing can be further suppressed.
 第2の態様の積層体における比(硬度2a/硬度2)及び比(硬度2b/硬度2)は、それぞれ独立に、好ましくは1.5以上、より好ましくは1.7以上、さらに好ましくは1.9以上であり;好ましくは6.0以下、より好ましくは5.5以下、さらに好ましくは5.0以下、よりさらに好ましくは4.5以下、特に好ましくは4.0以下又は3.5以下である。これにより、例えば、ヒートシール時における積層体の熱収縮をさらに抑制できる傾向にある。比(硬度2a/硬度2)の範囲、及び比(硬度2b/硬度2)の範囲は、それぞれ独立に、上記の下限値及び上限値の任意の組合せでもよく、例えば1.5以上6.0以下でもよい。第1の態様の積層体が、比(硬度2a/硬度2)及び比(硬度2b/硬度2)に係る上記要件をさらに充たしてもよい。 The ratio (hardness 2a / hardness 2) and the ratio (hardness 2b / hardness 2) in the laminate of the second aspect are independently, preferably 1.5 or more, more preferably 1.7 or more, still more preferably 1. 9.9 or more; preferably 6.0 or less, more preferably 5.5 or less, still more preferably 5.0 or less, even more preferably 4.5 or less, particularly preferably 4.0 or less or 3.5 or less. Is. Thereby, for example, there is a tendency that the heat shrinkage of the laminated body at the time of heat sealing can be further suppressed. The range of the ratio (hardness 2a / hardness 2) and the range of the ratio (hardness 2b / hardness 2) may be independently any combination of the above lower limit value and upper limit value, for example, 1.5 or more and 6.0. It may be as follows. The laminate of the first aspect may further satisfy the above requirements relating to the ratio (hardness 2a / hardness 2) and the ratio (hardness 2b / hardness 2).
 第2の態様の積層体における押込み硬度1及び押込み硬度3は、それぞれ独立に、好ましくは45MPa以上、より好ましくは48MPa以上、さらに好ましくは50MPa以上、よりさらに好ましくは52MPa以上であり;好ましくは110MPa以下、より好ましくは90MPa以下、さらに好ましくは80MPa以下、よりさらに好ましくは75MPa以下、特に好ましくは70MPa以下である。これにより、例えば、ヒートシール時における積層体の熱収縮をさらに抑制できる傾向にある。押込み硬度1及び押込み硬度3の範囲は、それぞれ独立に、上記の下限値及び上限値の任意の組合せでもよく、例えば45MPa以上110MPa以下でもよい。第1の態様の積層体が、押込み硬度1及び押込み硬度3に係る上記要件をさらに充たしてもよい。 The indentation hardness 1 and the indentation hardness 3 in the laminate of the second aspect are independently, preferably 45 MPa or more, more preferably 48 MPa or more, still more preferably 50 MPa or more, still more preferably 52 MPa or more; preferably 110 MPa or more. Below, it is more preferably 90 MPa or less, further preferably 80 MPa or less, still more preferably 75 MPa or less, and particularly preferably 70 MPa or less. Thereby, for example, there is a tendency that the heat shrinkage of the laminated body at the time of heat sealing can be further suppressed. The range of the indentation hardness 1 and the indentation hardness 3 may be any combination of the above lower limit value and the upper limit value independently, and may be, for example, 45 MPa or more and 110 MPa or less. The laminate of the first aspect may further satisfy the above requirements relating to the indentation hardness 1 and the indentation hardness 3.
 第2の態様の積層体における押込み硬度2は、好ましくは1MPa以上、より好ましくは3MPa以上、さらに好ましくは7MPa以上、よりさらに好ましくは10MPa以上、特に好ましくは15MPa以上であり;好ましくは40MPa以下、より好ましく35MPa以下、さらに好ましくは30MPa以下、よりさらに好ましくは26MPa以下、特に好ましくは23MPa以下である。このような設計であると、例えば、延伸前積層物の延伸性がより優れる傾向にある。押込み硬度2の範囲は、上記の下限値及び上限値の任意の組合せでもよく、例えば1MPa以上40MPa以下でもよい。第1の態様の積層体が、押込み硬度2に係る上記要件をさらに充たしてもよい。 The indentation hardness 2 in the laminate of the second aspect is preferably 1 MPa or more, more preferably 3 MPa or more, still more preferably 7 MPa or more, still more preferably 10 MPa or more, particularly preferably 15 MPa or more; preferably 40 MPa or less, It is more preferably 35 MPa or less, further preferably 30 MPa or less, still more preferably 26 MPa or less, and particularly preferably 23 MPa or less. With such a design, for example, the stretchability of the pre-stretched laminate tends to be more excellent. The range of the indentation hardness 2 may be any combination of the above lower limit value and the upper limit value, and may be, for example, 1 MPa or more and 40 MPa or less. The laminate of the first aspect may further satisfy the above requirement relating to the indentation hardness 2.
 第2の態様の積層体における押込み硬度2a及び押込み硬度2bは、それぞれ独立に、好ましくは20MPa以上、より好ましくは30MPa以上、さらに好ましくは35MPa以上、よりさらに好ましくは37MPa以上であり;好ましくは100MPa以下、より好ましくは80MPa以下、さらに好ましくは70MPa以下、よりさらに好ましくは65MPa以下、特に好ましくは60MPa以下である。これにより、例えば、ヒートシール時における積層体の熱収縮をさらに抑制できる傾向にある。押込み硬度2a及び押込み硬度2bの範囲は、それぞれ独立に、上記の下限値及び上限値の任意の組合せでもよく、例えば20MPa以上100MPa以下でもよい。第1の態様の積層体が、押込み硬度2a及び押込み硬度2bに係る上記要件をさらに充たしてもよい。 The indentation hardness 2a and the indentation hardness 2b in the laminate of the second aspect are independently, preferably 20 MPa or more, more preferably 30 MPa or more, still more preferably 35 MPa or more, still more preferably 37 MPa or more; preferably 100 MPa or more. Below, it is more preferably 80 MPa or less, further preferably 70 MPa or less, still more preferably 65 MPa or less, and particularly preferably 60 MPa or less. Thereby, for example, there is a tendency that the heat shrinkage of the laminated body at the time of heat sealing can be further suppressed. The range of the indentation hardness 2a and the indentation hardness 2b may be independently any combination of the above lower limit value and the upper limit value, and may be, for example, 20 MPa or more and 100 MPa or less. The laminate of the first aspect may further satisfy the above requirements relating to the indentation hardness 2a and the indentation hardness 2b.
 第2の態様の積層体において、各PE層の押込み硬度の大きさは、押込み硬度1>押込み硬度2a>押込み硬度2の関係を充たすことが好ましく、押込み硬度3>押込み硬度2b>押込み硬度2の関係を充たすことが好ましい。これにより、例えば、多層基材の耐熱性と延伸適性(加工性、生産性)とのバランスをさらに向上できる傾向にある。 In the laminate of the second aspect, the magnitude of the indentation hardness of each PE layer preferably satisfies the relationship of indentation hardness 1> indentation hardness 2a> indentation hardness 2, and indentation hardness 3> indentation hardness 2b> indentation hardness 2 It is preferable to satisfy the relationship of. This tends to further improve the balance between the heat resistance of the multilayer base material and the stretchability (processability, productivity), for example.
 第2の態様の積層体において、比(硬度1/硬度3)は、好ましくは0.6以上1.7以下、より好ましくは0.7以上1.4以下、さらに好ましくは0.8以上1.2以下、よりさらに好ましくは0.9以上1.1以下である。これにより、例えば、多層基材の層構成の対称性を向上でき、したがって、多層基材のカールを抑制でき、印刷及びラミネート等の加工性を向上できる傾向にある。 In the laminate of the second aspect, the ratio (hardness 1 / hardness 3) is preferably 0.6 or more and 1.7 or less, more preferably 0.7 or more and 1.4 or less, still more preferably 0.8 or more and 1 It is .2 or less, more preferably 0.9 or more and 1.1 or less. Thereby, for example, the symmetry of the layer structure of the multilayer base material can be improved, and therefore the curl of the multilayer base material can be suppressed, and the processability of printing and laminating tends to be improved.
 第2の態様の積層体において、比(硬度2a/硬度2b)は、好ましくは0.6以上1.7以下、より好ましくは0.7以上1.4以下、さらに好ましくは0.8以上1.2以下、よりさらに好ましくは0.9以上1.1以下である。これにより、例えば、多層基材の層構成の対称性を向上でき、したがって、多層基材のカールを抑制でき、印刷及びラミネート等の加工性を向上できる傾向にある。 In the laminate of the second aspect, the ratio (hardness 2a / hardness 2b) is preferably 0.6 or more and 1.7 or less, more preferably 0.7 or more and 1.4 or less, and further preferably 0.8 or more and 1 It is .2 or less, more preferably 0.9 or more and 1.1 or less. Thereby, for example, the symmetry of the layer structure of the multilayer base material can be improved, and therefore the curl of the multilayer base material can be suppressed, and the processability of printing and laminating tends to be improved.
 <第3の態様の積層体>
 本開示の第3の態様の積層体は、第1のPE層の押込み弾性率が、1.0GPa以上であり、第3のPE層の押込み弾性率が、1.0GPa以上であることを特徴とする。これにより、積層体の耐熱性を向上でき、例えば、ヒートシール時などの熱付加時における積層体の熱収縮を抑制できる。
<Laminated body of the third aspect>
The laminate of the third aspect of the present disclosure is characterized in that the indentation elastic modulus of the first PE layer is 1.0 GPa or more and the indentation elastic modulus of the third PE layer is 1.0 GPa or more. And. As a result, the heat resistance of the laminated body can be improved, and for example, heat shrinkage of the laminated body at the time of heat application such as heat sealing can be suppressed.
 第3の態様の積層体における押込み弾性率1及び押込み弾性率3は、それぞれ独立に、1.0GPa以上であり、好ましくは1.05GPa以上、より好ましくは1.1GPa以上、さらに好ましくは1.15GPa以上、特に好ましくは1.3GPa以上であり;好ましくは4.5GPa以下、より好ましくは4.0GPa以下、さらに好ましくは3.5GPa以下、よりさらに好ましくは3.0GPa以下、特に好ましくは2.5GPa以下、2.0GPa以下又は1.8GPa以下である。これにより、例えば、ヒートシール時における積層体の熱収縮をさらに抑制できる傾向にある。押込み弾性率1及び押込み弾性率3の範囲は、それぞれ独立に、上記の下限値及び上限値の任意の組合せでもよく、例えば1.0GPa以上4.5GPa以下でもよい。 The indentation elastic modulus 1 and the indentation elastic modulus 3 in the laminated body of the third aspect are independently 1.0 GPa or more, preferably 1.05 GPa or more, more preferably 1.1 GPa or more, and further preferably 1. 15 GPa or more, particularly preferably 1.3 GPa or more; preferably 4.5 GPa or less, more preferably 4.0 GPa or less, still more preferably 3.5 GPa or less, still more preferably 3.0 GPa or less, particularly preferably 2. It is 5 GPa or less, 2.0 GPa or less, or 1.8 GPa or less. Thereby, for example, there is a tendency that the heat shrinkage of the laminated body at the time of heat sealing can be further suppressed. The ranges of the indentation elastic modulus 1 and the indentation elastic modulus 3 may be independently arbitrary combinations of the above lower limit value and upper limit value, and may be, for example, 1.0 GPa or more and 4.5 GPa or less.
 第3の態様の積層体における押込み弾性率2は、好ましくは0.03GPa以上、より好ましくは0.05GPa以上、さらに好ましくは0.1GPa以上、よりさらに好ましくは0.13GPa以上、特に好ましくは0.15GPa以上であり;好ましくは0.7GPa以下、より好ましく0.6GPa以下、さらに好ましくは0.5GPa以下、よりさらに好ましくは0.4GPa以下、特に好ましくは0.3GPa以下である。このような設計であると、例えば、延伸前積層物の延伸性がより優れる傾向にある。押込み弾性率2の範囲は、上記の下限値及び上限値の任意の組合せでもよく、例えば0.03GPa以上0.7GPa以下でもよい。 The indentation elastic modulus 2 in the laminate of the third aspect is preferably 0.03 GPa or more, more preferably 0.05 GPa or more, still more preferably 0.1 GPa or more, still more preferably 0.13 GPa or more, and particularly preferably 0. It is .15 GPa or more; preferably 0.7 GPa or less, more preferably 0.6 GPa or less, still more preferably 0.5 GPa or less, still more preferably 0.4 GPa or less, and particularly preferably 0.3 GPa or less. With such a design, for example, the stretchability of the pre-stretched laminate tends to be more excellent. The range of the indentation elastic modulus 2 may be any combination of the above lower limit value and upper limit value, and may be, for example, 0.03 GPa or more and 0.7 GPa or less.
 第3の態様の積層体における押込み弾性率2a及び押込み弾性率2bは、それぞれ独立に、好ましくは0.3GPa以上、より好ましくは0.4GPa以上、さらに好ましくは0.5GPa以上、よりさらに好ましくは0.6GPa以上であり;好ましくは3.5GPa以下、より好ましくは3.0GPa以下、さらに好ましくは2.5GPa以下、よりさらに好ましくは2.0GPa以下、特に好ましくは1.5GPa以下である。これにより、例えば、ヒートシール時における積層体の熱収縮をさらに抑制できる傾向にある。押込み弾性率2a及び押込み弾性率2bの範囲は、それぞれ独立に、上記の下限値及び上限値の任意の組合せでもよく、例えば0.3GPa以上3.5GPa以下でもよい。 The indentation elastic modulus 2a and the indentation elastic modulus 2b in the laminated body of the third aspect are independently, preferably 0.3 GPa or more, more preferably 0.4 GPa or more, still more preferably 0.5 GPa or more, still more preferably 0.5 GPa or more. It is 0.6 GPa or more; preferably 3.5 GPa or less, more preferably 3.0 GPa or less, still more preferably 2.5 GPa or less, still more preferably 2.0 GPa or less, and particularly preferably 1.5 GPa or less. Thereby, for example, there is a tendency that the heat shrinkage of the laminated body at the time of heat sealing can be further suppressed. The ranges of the indentation elastic modulus 2a and the indentation elastic modulus 2b may be independently arbitrary combinations of the above lower limit value and upper limit value, and may be, for example, 0.3 GPa or more and 3.5 GPa or less.
 第3の態様の積層体において、各PE層の押込み弾性率の大きさは、押込み弾性率1>押込み弾性率2a>押込み弾性率2の関係を充たすことが好ましく、押込み弾性率3>押込み弾性率2b>押込み弾性率2の関係を充たすことが好ましい。これにより、例えば、多層基材の耐熱性と延伸適性(加工性、生産性)とのバランスをさらに向上できる傾向にある。 In the laminated body of the third aspect, the magnitude of the indentation elastic modulus of each PE layer preferably satisfies the relationship of indentation elastic modulus 1> indentation elastic modulus 2a> indentation elastic modulus 2, and indentation elastic modulus 3> indentation elastic modulus. It is preferable to satisfy the relationship of rate 2b> indentation elastic modulus 2. This tends to further improve the balance between the heat resistance of the multilayer base material and the stretchability (processability, productivity), for example.
 第3の態様の積層体において、第1のPE層の押込み弾性率は、第2のPE層の押込み弾性率の3.5倍以上であることが好ましく、第3のPE層の押込み弾性率は、第2のPE層の押込み弾性率の3.5倍以上であることが好ましい。これにより、積層体の耐熱性を向上でき、例えば、ヒートシール時などの熱付加時における積層体の熱収縮をさらに抑制できる。 In the laminated body of the third aspect, the indentation elastic modulus of the first PE layer is preferably 3.5 times or more the indentation elastic modulus of the second PE layer, and the indentation elastic modulus of the third PE layer. Is preferably 3.5 times or more the indentation elastic modulus of the second PE layer. As a result, the heat resistance of the laminated body can be improved, and for example, the thermal shrinkage of the laminated body at the time of heat application such as heat sealing can be further suppressed.
 第3の態様の積層体における比(弾性率1/弾性率2)及び比(弾性率3/弾性率2)は、それぞれ独立に、好ましくは3.5以上、より好ましくは4.0以上、さらに好ましくは4.5以上、よりさらに好ましくは5.0以上、特に好ましくは5.5以上であり;好ましくは16.0以下、より好ましくは14.0以下、さらに好ましくは12.0以下、よりさらに好ましくは10.0以下、特に好ましくは9.0以下である。比(弾性率1/弾性率2)の範囲、及び比(弾性率3/弾性率2)の範囲は、それぞれ独立に、上記の下限値及び上限値の任意の組合せでもよく、例えば3.5以上16.0以下でもよい。 The ratio (elastic modulus 1 / elastic modulus 2) and the ratio (elastic modulus 3 / elastic modulus 2) in the laminated body of the third aspect are independently, preferably 3.5 or more, more preferably 4.0 or more, respectively. More preferably 4.5 or more, even more preferably 5.0 or more, particularly preferably 5.5 or more; preferably 16.0 or less, more preferably 14.0 or less, still more preferably 12.0 or less, It is even more preferably 10.0 or less, and particularly preferably 9.0 or less. The range of the ratio (modulus of elasticity 1 / elastic modulus 2) and the range of the ratio (modulus of elasticity 3 / elastic modulus 2) may be any combination of the above lower limit value and upper limit value, for example, 3.5. It may be 16.0 or less.
 第3の態様の積層体において、第2aのPE層の押込み弾性率は、第2のPE層の押込み弾性率の2.0倍以上であることが好ましく、第2bのPE層の押込み弾性率は、第2のPE層の押込み弾性率の2.0倍以上であることが好ましい。これにより、例えば、ヒートシール時における積層体の熱収縮をさらに抑制できる傾向にある。 In the laminated body of the third aspect, the indentation elastic modulus of the second PE layer is preferably 2.0 times or more the indentation elastic modulus of the second PE layer, and the indentation elastic modulus of the second PE layer. Is preferably 2.0 times or more the indentation elastic modulus of the second PE layer. Thereby, for example, there is a tendency that the heat shrinkage of the laminated body at the time of heat sealing can be further suppressed.
 第3の態様の積層体における比(弾性率2a/弾性率2)及び比(弾性率2b/弾性率2)は、それぞれ独立に、好ましくは2.0以上、より好ましくは2.5以上、さらに好ましくは3.0以上であり;好ましくは14.0以下、より好ましくは12.0以下、さらに好ましくは10.0以下、よりさらに好ましくは9.0以下、特に好ましくは8.5以下である。比(弾性率2a/弾性率2)の範囲、及び比(弾性率2b/弾性率2)の範囲は、それぞれ独立に、上記の下限値及び上限値の任意の組合せでもよく、例えば2.0以上14.0以下でもよい。 The ratio (elastic modulus 2a / elastic modulus 2) and the ratio (elastic modulus 2b / elastic modulus 2) in the laminated body of the third aspect are independently, preferably 2.0 or more, more preferably 2.5 or more, respectively. It is more preferably 3.0 or more; preferably 14.0 or less, more preferably 12.0 or less, still more preferably 10.0 or less, still more preferably 9.0 or less, and particularly preferably 8.5 or less. be. The range of the ratio (elastic modulus 2a / elastic modulus 2) and the range of the ratio (elastic modulus 2b / elastic modulus 2) may be independently any combination of the above lower limit value and upper limit value, for example, 2.0. It may be 14.0 or less.
 第3の態様の積層体において、比(弾性率1/弾性率3)は、好ましくは0.6以上1.7以下、より好ましくは0.7以上1.4以下、さらに好ましくは0.8以上1.2以下、よりさらに好ましくは0.9以上1.1以下である。これにより、例えば、多層基材の層構成の対称性を向上でき、したがって、多層基材のカールを抑制でき、印刷及びラミネート等の加工性を向上できる傾向にある。 In the laminate of the third aspect, the ratio (elastic modulus 1 / elastic modulus 3) is preferably 0.6 or more and 1.7 or less, more preferably 0.7 or more and 1.4 or less, and further preferably 0.8. It is 1.2 or more, more preferably 0.9 or more and 1.1 or less. Thereby, for example, the symmetry of the layer structure of the multilayer base material can be improved, and therefore the curl of the multilayer base material can be suppressed, and the processability of printing and laminating tends to be improved.
 第3の態様の積層体において、比(弾性率2a/弾性率2b)は、好ましくは0.6以上1.7以下、より好ましくは0.7以上1.4以下、さらに好ましくは0.8以上1.2以下、よりさらに好ましくは0.9以上1.1以下である。これにより、例えば、多層基材の層構成の対称性を向上でき、したがって、多層基材のカールを抑制でき、印刷及びラミネート等の加工性を向上できる傾向にある。 In the laminate of the third aspect, the ratio (elastic modulus 2a / elastic modulus 2b) is preferably 0.6 or more and 1.7 or less, more preferably 0.7 or more and 1.4 or less, still more preferably 0.8. It is 1.2 or more, more preferably 0.9 or more and 1.1 or less. Thereby, for example, the symmetry of the layer structure of the multilayer base material can be improved, and therefore the curl of the multilayer base material can be suppressed, and the processability of printing and laminating tends to be improved.
 <第4の態様の積層体>
 本開示の第4の態様の積層体は、第1のPE層の押込み硬度が、45MPa以上であり、第3のPE層の押込み硬度が、45MPa以上であることを特徴とする。これにより、積層体の耐熱性を向上でき、例えば、ヒートシール時などの熱付加時における積層体の熱収縮を抑制できる。
<Laminated body of the fourth aspect>
The laminate of the fourth aspect of the present disclosure is characterized in that the indentation hardness of the first PE layer is 45 MPa or more, and the indentation hardness of the third PE layer is 45 MPa or more. As a result, the heat resistance of the laminated body can be improved, and for example, heat shrinkage of the laminated body at the time of heat application such as heat sealing can be suppressed.
 第4の態様の積層体における押込み硬度1及び押込み硬度3は、それぞれ独立に、45MPa以上であり、好ましくは48MPa以上、より好ましくは50MPa以上、さらに好ましくは52MPa以上であり;好ましくは110MPa以下、より好ましくは90MPa以下、さらに好ましくは80MPa以下、よりさらに好ましくは75MPa以下、特に好ましくは70MPa以下である。これにより、例えば、ヒートシール時における積層体の熱収縮をさらに抑制できる傾向にある。押込み硬度1及び押込み硬度3の範囲は、それぞれ独立に、上記の下限値及び上限値の任意の組合せでもよく、例えば45MPa以上110MPa以下でもよい。第3の態様の積層体が、押込み硬度1及び押込み硬度3に係る上記要件をさらに充たしてもよい。 The indentation hardness 1 and the indentation hardness 3 in the laminate of the fourth aspect are independently 45 MPa or more, preferably 48 MPa or more, more preferably 50 MPa or more, still more preferably 52 MPa or more; preferably 110 MPa or less, respectively. It is more preferably 90 MPa or less, further preferably 80 MPa or less, still more preferably 75 MPa or less, and particularly preferably 70 MPa or less. Thereby, for example, there is a tendency that the heat shrinkage of the laminated body at the time of heat sealing can be further suppressed. The range of the indentation hardness 1 and the indentation hardness 3 may be any combination of the above lower limit value and the upper limit value independently, and may be, for example, 45 MPa or more and 110 MPa or less. The laminate of the third aspect may further satisfy the above requirements relating to the indentation hardness 1 and the indentation hardness 3.
 第4の態様の積層体における押込み硬度2は、好ましくは1MPa以上、より好ましくは3MPa以上、さらに好ましくは7MPa以上、よりさらに好ましくは10MPa以上、特に好ましくは15MPa以上であり;好ましくは40MPa以下、より好ましく35MPa以下、さらに好ましくは30MPa以下、よりさらに好ましくは26MPa以下、特に好ましくは23MPa以下である。このような設計であると、例えば、延伸前積層物の延伸性がより優れる傾向にある。押込み硬度2の範囲は、上記の下限値及び上限値の任意の組合せでもよく、例えば1MPa以上40MPa以下でもよい。第3の態様の積層体が、押込み硬度2に係る上記要件をさらに充たしてもよい。 The indentation hardness 2 in the laminate of the fourth aspect is preferably 1 MPa or more, more preferably 3 MPa or more, further preferably 7 MPa or more, still more preferably 10 MPa or more, particularly preferably 15 MPa or more; preferably 40 MPa or less, It is more preferably 35 MPa or less, further preferably 30 MPa or less, still more preferably 26 MPa or less, and particularly preferably 23 MPa or less. With such a design, for example, the stretchability of the pre-stretched laminate tends to be more excellent. The range of the indentation hardness 2 may be any combination of the above lower limit value and the upper limit value, and may be, for example, 1 MPa or more and 40 MPa or less. The laminate of the third aspect may further satisfy the above requirement relating to the indentation hardness 2.
 第4の態様の積層体における押込み硬度2a及び押込み硬度2bは、それぞれ独立に、好ましくは20MPa以上、より好ましくは30MPa以上、さらに好ましくは35MPa以上、よりさらに好ましくは37MPa以上であり;好ましくは100MPa以下、より好ましくは80MPa以下、さらに好ましくは70MPa以下、よりさらに好ましくは65MPa以下、特に好ましくは60MPa以下である。これにより、例えば、ヒートシール時における積層体の熱収縮をさらに抑制できる傾向にある。押込み硬度2a及び押込み硬度2bの範囲は、それぞれ独立に、上記の下限値及び上限値の任意の組合せでもよく、例えば20MPa以上100MPa以下でもよい。第3の態様の積層体が、押込み硬度2a及び押込み硬度2bに係る上記要件をさらに充たしてもよい。 The indentation hardness 2a and the indentation hardness 2b in the laminate of the fourth aspect are independently, preferably 20 MPa or more, more preferably 30 MPa or more, still more preferably 35 MPa or more, still more preferably 37 MPa or more; preferably 100 MPa or more. Below, it is more preferably 80 MPa or less, further preferably 70 MPa or less, still more preferably 65 MPa or less, and particularly preferably 60 MPa or less. Thereby, for example, there is a tendency that the heat shrinkage of the laminated body at the time of heat sealing can be further suppressed. The range of the indentation hardness 2a and the indentation hardness 2b may be independently any combination of the above lower limit value and the upper limit value, and may be, for example, 20 MPa or more and 100 MPa or less. The laminate of the third aspect may further satisfy the above requirements relating to the indentation hardness 2a and the indentation hardness 2b.
 第4の態様の積層体において、各PE層の押込み硬度の大きさは、押込み硬度1>押込み硬度2a>押込み硬度2の関係を充たすことが好ましく、押込み硬度3>押込み硬度2b>押込み硬度2の関係を充たすことが好ましい。これにより、例えば、多層基材の耐熱性と延伸適性(加工性、生産性)とのバランスをさらに向上できる傾向にある。 In the laminate of the fourth aspect, the magnitude of the indentation hardness of each PE layer preferably satisfies the relationship of indentation hardness 1> indentation hardness 2a> indentation hardness 2, and indentation hardness 3> indentation hardness 2b> indentation hardness 2 It is preferable to satisfy the relationship of. This tends to further improve the balance between the heat resistance of the multilayer base material and the stretchability (processability, productivity), for example.
 第4の態様の積層体において、第1のPE層の押込み硬度は、第2のPE層の押込み硬度の2.0倍以上であることが好ましく、第3のPE層の押込み硬度は、第2のPE層の押込み硬度の2.0倍以上であることが好ましい。これにより、積層体の耐熱性を向上でき、例えば、ヒートシール時などの熱付加時における積層体の熱収縮をさらに抑制できる。 In the laminated body of the fourth aspect, the indentation hardness of the first PE layer is preferably 2.0 times or more the indentation hardness of the second PE layer, and the indentation hardness of the third PE layer is the second. It is preferably 2.0 times or more the indentation hardness of the PE layer of 2. As a result, the heat resistance of the laminated body can be improved, and for example, the thermal shrinkage of the laminated body at the time of heat application such as heat sealing can be further suppressed.
 第4の態様の積層体における比(硬度1/硬度2)及び比(硬度3/硬度2)は、それぞれ独立に、好ましくは2.0以上、より好ましくは2.2以上、さらに好ましくは2.4以上、よりさらに好ましくは2.6以上、特に好ましくは2.8以上であり;好ましくは6.0以下、より好ましくは5.5以下、さらに好ましくは5.0以下、よりさらに好ましくは4.5以下、特に好ましくは4.0以下又は3.5以下である。比(硬度1/硬度2)の範囲、及び比(硬度3/硬度2)の範囲は、それぞれ独立に、上記の下限値及び上限値の任意の組合せでもよく、例えば2.0以上6.0以下でもよい。第3の態様の積層体が、比(硬度1/硬度2)及び比(硬度3/硬度2)に係る上記要件をさらに充たしてもよい。 The ratio (hardness 1 / hardness 2) and the ratio (hardness 3 / hardness 2) in the laminate of the fourth aspect are independently, preferably 2.0 or more, more preferably 2.2 or more, still more preferably 2. It is 4.4 or more, more preferably 2.6 or more, particularly preferably 2.8 or more; preferably 6.0 or less, more preferably 5.5 or less, still more preferably 5.0 or less, still more preferably. It is 4.5 or less, particularly preferably 4.0 or less or 3.5 or less. The range of the ratio (hardness 1 / hardness 2) and the range of the ratio (hardness 3 / hardness 2) may be independently any combination of the above lower limit value and upper limit value, for example, 2.0 or more and 6.0. It may be as follows. The laminate of the third aspect may further satisfy the above requirements relating to the ratio (hardness 1 / hardness 2) and the ratio (hardness 3 / hardness 2).
 第4の態様の積層体において、第2aのPE層の押込み硬度は、第2のPE層の押込み硬度の1.5倍以上であることが好ましく、第2bのPE層の押込み硬度は、第2のPE層の押込み硬度の1.5倍以上であることが好ましい。これにより、例えば、ヒートシール時における積層体の熱収縮をさらに抑制できる傾向にある。 In the laminated body of the fourth aspect, the indentation hardness of the second PE layer is preferably 1.5 times or more the indentation hardness of the second PE layer, and the indentation hardness of the second PE layer is the first. It is preferably 1.5 times or more the indentation hardness of the PE layer of 2. Thereby, for example, there is a tendency that the heat shrinkage of the laminated body at the time of heat sealing can be further suppressed.
 第4の態様の積層体における比(硬度2a/硬度2)及び比(硬度2b/硬度2)は、それぞれ独立に、好ましくは1.5以上、より好ましくは1.7以上、さらに好ましくは1.9以上であり;好ましくは6.0以下、より好ましくは5.5以下、さらに好ましくは5.0以下、よりさらに好ましくは4.5以下、特に好ましくは4.0以下又は3.5以下である。これにより、例えば、ヒートシール時における積層体の熱収縮をさらに抑制できる傾向にある。比(硬度2a/硬度2)の範囲、及び比(硬度2b/硬度2)の範囲は、それぞれ独立に、上記の下限値及び上限値の任意の組合せでもよく、例えば1.5以上6.0以下でもよい。第3の態様の積層体が、比(硬度2a/硬度2)及び比(硬度2b/硬度2)に係る上記要件をさらに充たしてもよい。 The ratio (hardness 2a / hardness 2) and the ratio (hardness 2b / hardness 2) in the laminate of the fourth aspect are independently, preferably 1.5 or more, more preferably 1.7 or more, still more preferably 1. 9.9 or more; preferably 6.0 or less, more preferably 5.5 or less, still more preferably 5.0 or less, even more preferably 4.5 or less, particularly preferably 4.0 or less or 3.5 or less. Is. Thereby, for example, there is a tendency that the heat shrinkage of the laminated body at the time of heat sealing can be further suppressed. The range of the ratio (hardness 2a / hardness 2) and the range of the ratio (hardness 2b / hardness 2) may be independently any combination of the above lower limit value and upper limit value, for example, 1.5 or more and 6.0. It may be as follows. The laminate of the third aspect may further satisfy the above requirements relating to the ratio (hardness 2a / hardness 2) and the ratio (hardness 2b / hardness 2).
 第4の態様の積層体において、比(硬度1/硬度3)は、好ましくは0.6以上1.7以下、より好ましくは0.7以上1.4以下、さらに好ましくは0.8以上1.2以下、よりさらに好ましくは0.9以上1.1以下である。これにより、例えば、多層基材の層構成の対称性を向上でき、したがって、多層基材のカールを抑制でき、印刷及びラミネート等の加工性を向上できる傾向にある。 In the laminate of the fourth aspect, the ratio (hardness 1 / hardness 3) is preferably 0.6 or more and 1.7 or less, more preferably 0.7 or more and 1.4 or less, still more preferably 0.8 or more and 1 It is .2 or less, more preferably 0.9 or more and 1.1 or less. Thereby, for example, the symmetry of the layer structure of the multilayer base material can be improved, and therefore the curl of the multilayer base material can be suppressed, and the processability of printing and laminating tends to be improved.
 第4の態様の積層体において、比(硬度2a/硬度2b)は、好ましくは0.6以上1.7以下、より好ましくは0.7以上1.4以下、さらに好ましくは0.8以上1.2以下、よりさらに好ましくは0.9以上1.1以下である。これにより、例えば、多層基材の層構成の対称性を向上でき、したがって、多層基材のカールを抑制でき、印刷及びラミネート等の加工性を向上できる傾向にある。 In the laminate of the fourth aspect, the ratio (hardness 2a / hardness 2b) is preferably 0.6 or more and 1.7 or less, more preferably 0.7 or more and 1.4 or less, and further preferably 0.8 or more and 1 It is .2 or less, more preferably 0.9 or more and 1.1 or less. Thereby, for example, the symmetry of the layer structure of the multilayer base material can be improved, and therefore the curl of the multilayer base material can be suppressed, and the processability of printing and laminating tends to be improved.
 本開示の積層体は、一実施形態において、以下の熱収縮率を示す。例えば、本開示の第1~第4の態様の積層体、及び第1~第5の態様の多層基材を備える積層体は、一実施形態において、以下の熱収縮率を示す。MDとは、積層体の長手方向又は流れ方向を指し、TDとは、MDに対して垂直な方向を指す。 The laminate of the present disclosure exhibits the following heat shrinkage in one embodiment. For example, the laminated body of the first to fourth aspects of the present disclosure and the laminated body provided with the multilayer base material of the first to fifth aspects show the following heat shrinkage rate in one embodiment. MD refers to the longitudinal direction or flow direction of the laminated body, and TD refers to the direction perpendicular to MD.
 積層体のMDの熱収縮率(MD)は、例えば15%以下であり、好ましくは13%以下、より好ましくは11%以下、さらに好ましくは10%以下、よりさらに好ましくは8%以下、特に好ましくは7%以下である。熱収縮率(MD)の下限値は低いほど好ましいが、例えば0.5%、1%、2%又は3%でもよい。熱収縮率(MD)がこのように小さい積層体は、例えば、印刷適性や、ヒートシールにより包装袋を作製する際の製袋適性に優れる。 The heat shrinkage (MD) of the MD of the laminated body is, for example, 15% or less, preferably 13% or less, more preferably 11% or less, still more preferably 10% or less, still more preferably 8% or less, and particularly preferably. Is less than 7%. The lower the lower limit of the heat shrinkage (MD) is preferable, but it may be, for example, 0.5%, 1%, 2% or 3%. A laminate having such a small heat shrinkage rate (MD) is excellent in, for example, printability and bag making suitability when manufacturing a packaging bag by heat sealing.
 積層体のTDの熱収縮率(TD)は、例えば15%以下であり、好ましくは13%以下、より好ましくは11%以下、さらに好ましくは10%以下、よりさらに好ましくは8%以下、特に好ましくは7%以下である。熱収縮率(MD)の下限値は低いほど好ましいが、例えば0.5%、1%、2%又は3%でもよい。熱収縮率(TD)がこのように小さい積層体は、例えば、印刷適性や、ヒートシールにより包装袋を作製する際の製袋適性に優れる。 The heat shrinkage (TD) of the TD of the laminate is, for example, 15% or less, preferably 13% or less, more preferably 11% or less, still more preferably 10% or less, still more preferably 8% or less, particularly preferably. Is less than 7%. The lower the lower limit of the heat shrinkage (MD) is preferable, but it may be, for example, 0.5%, 1%, 2% or 3%. A laminate having such a small heat shrinkage rate (TD) is excellent in, for example, printability and bag making suitability when manufacturing a packaging bag by heat sealing.
 積層体の熱収縮率(MD)と熱収縮率(TD)との比(MD/TD)は、好ましくは0.5以上2.0以下、より好ましくは0.7以上1.4以下、さらに好ましくは0.8以上1.2以下、特に好ましくは0.9以上1.1以下である。比(MD/TD)がこのような範囲にあれば、積層体は熱処理を受けてもMD及びTDに比較的均一に収縮することから、例えば、積層体の印刷層における画像の歪みを抑制できる。 The ratio (MD / TD) of the heat shrinkage rate (MD) to the heat shrinkage rate (TD) of the laminate is preferably 0.5 or more and 2.0 or less, more preferably 0.7 or more and 1.4 or less, and further. It is preferably 0.8 or more and 1.2 or less, and particularly preferably 0.9 or more and 1.1 or less. When the ratio (MD / TD) is in such a range, the laminate shrinks relatively uniformly to MD and TD even after being heat-treated, so that distortion of the image in the print layer of the laminate can be suppressed, for example. ..
 積層体の熱収縮率は、以下の様にして測定する。積層体を、10cm×10cmにカットしてサンプル片を3つずつ作製する。各サンプル片のヒートシール層側が内側になるようにMD又はTDに平行に二つ折りにし、ヒートシールテスターを用いて、温度120℃、圧力1kgf/cm、1秒の条件にて1.5cm×10cmの領域をヒートシールする(図7参照)。図7において、斜線部はヒートシール部を示す。ヒートシール後、サンプルのシール幅を測定し、MDの収縮率(図7(a)参照)及びTDの収縮率(図7(b)参照)を算出する。3つのサンプル片の平均値を、各熱収縮率とする。 The heat shrinkage rate of the laminated body is measured as follows. The laminate is cut into 10 cm × 10 cm to prepare three sample pieces. Fold each sample piece in half parallel to MD or TD so that the heat seal layer side is on the inside, and use a heat seal tester at a temperature of 120 ° C, pressure of 1 kgf / cm 2 , and 1.5 cm x for 1 second. A 10 cm area is heat-sealed (see FIG. 7). In FIG. 7, the shaded area indicates the heat-sealed part. After heat sealing, the seal width of the sample is measured, and the shrinkage rate of MD (see FIG. 7A) and the shrinkage rate of TD (see FIG. 7B) are calculated. The average value of the three sample pieces is taken as each heat shrinkage rate.
 各熱収縮率は、以下の式により算出される。
 熱収縮率(MD)(%)={(積層体のヒートシール予定部のMD方向の長さ(1.5cm)-ヒートシール後の積層体のヒートシール部のMD方向の長さ)/積層体のヒートシール予定部のMD方向の長さ(1.5cm)}×100
 熱収縮率(TD)(%)={(積層体のヒートシール予定部のTD方向の長さ(1.5cm)-ヒートシール後の積層体のヒートシール部のTD方向の長さ)/積層体のヒートシール予定部のTD方向の長さ(1.5cm)}×100
Each heat shrinkage rate is calculated by the following formula.
Heat shrinkage rate (MD) (%) = {(Length of the heat-sealed part of the laminated body in the MD direction (1.5 cm) -Length of the heat-sealed part of the laminated body after heat-sealing in the MD direction) / Laminating Length of the planned heat seal part of the body in the MD direction (1.5 cm)} x 100
Heat shrinkage rate (TD) (%) = {(Length of the heat-sealed part of the laminated body in the TD direction (1.5 cm) -Length of the heat-sealed part of the laminated body after heat-sealing in the TD direction) / Laminating Length of the planned heat seal part of the body in the TD direction (1.5 cm)} x 100
 一例を挙げると、1.5cmのヒートシールバーで積層体をシールした際に、サンプルのシール幅が1.4cmになっていた場合、熱収縮率は、(1.5-1.4)/1.5×100=6.7%となる。 As an example, when the laminate is sealed with a 1.5 cm heat seal bar, if the seal width of the sample is 1.4 cm, the heat shrinkage rate is (1.5-1.4) /. It becomes 1.5 × 100 = 6.7%.
 <ヒートシール層>
 本開示の積層体は、ヒートシール層を備える。
 ヒートシール層は、ポリエチレンにより構成されていることが好ましい。ヒートシール層は、一実施形態において、ポリエチレンを主成分として含有する層であり、すなわちポリエチレンを50質量%超の範囲で含有する層である。ヒートシール層におけるポリエチレンの含有割合は、好ましくは60質量%以上、より好ましくは70質量%以上、さらに好ましくは80質量%以上、85質量%以上、90質量%以上、又は95質量%以上である。このような構成とすることにより、充分な剛性、強度及び耐熱性を有し、かつリサイクル性に優れた、包装材料用の積層体が得られる。
<Heat seal layer>
The laminate of the present disclosure comprises a heat seal layer.
The heat seal layer is preferably made of polyethylene. In one embodiment, the heat seal layer is a layer containing polyethylene as a main component, that is, a layer containing polyethylene in a range of more than 50% by mass. The content ratio of polyethylene in the heat seal layer is preferably 60% by mass or more, more preferably 70% by mass or more, still more preferably 80% by mass or more, 85% by mass or more, 90% by mass or more, or 95% by mass or more. .. With such a configuration, a laminate for packaging materials having sufficient rigidity, strength, heat resistance, and excellent recyclability can be obtained.
 以下、上記リサイクル性について説明する。
 他の熱可塑性樹脂フィルムと比較して、ポリエチレンフィルムは、耐熱性が劣るため、包装材料の基材として使用するとヒートシート時に変形することがあった。また、ポリエチレンフィルムは、剛性が劣るため、印刷適性が低く、その表面に鮮明な画像を形成することができなかった。また、ポリエチレンフィルムは、高い強度を有しておらず、包装材料の外層として要求される耐久性を充たすことができなかった。そのため、ポリエステルフィルム及びナイロンフィルム等の剛性、強度及び耐熱性に優れる樹脂フィルム(基材)と、ポリエチレンフィルム(ヒートシール層)とをラミネートすることで積層体を得て、該積層体のポリエチレンフィルム側が内側となるように、積層体端部をヒートシールすることにより包装材料が製造されている。
Hereinafter, the recyclability will be described.
Compared with other thermoplastic resin films, polyethylene films are inferior in heat resistance, so when used as a base material for packaging materials, they may be deformed during heat sheets. Further, since the polyethylene film has poor rigidity, its printability is low, and a clear image cannot be formed on the surface thereof. In addition, the polyethylene film does not have high strength and cannot meet the durability required as an outer layer of the packaging material. Therefore, a laminated body is obtained by laminating a resin film (base material) having excellent rigidity, strength and heat resistance such as a polyester film and a nylon film and a polyethylene film (heat seal layer), and the polyethylene film of the laminated body is obtained. The packaging material is manufactured by heat-sealing the end of the laminate so that the side is on the inside.
 近年、循環型社会の構築を求める声の高まりとともに、包装材料をリサイクルして使用することが試みられている。しかしながら、上記のような異種の樹脂フィルムを貼り合わせて積層体を製造した場合、樹脂フィルム同士を分離することが難しい。このため、このような積層体はリサイクルに適していない。 In recent years, with the growing demand for the construction of a sound material-cycle society, attempts have been made to recycle and use packaging materials. However, when a laminate is produced by laminating different types of resin films as described above, it is difficult to separate the resin films from each other. Therefore, such a laminate is not suitable for recycling.
 これに対して、本開示のポリエチレン多層基材は、上述のとおり延伸処理されており、また一実施形態において特有の層構成を備えていることから、従来のポリエチレンフィルムに比べて、例えば剛性、強度及び耐熱性に優れ、またインキ密着性に優れる。したがって、本開示のポリエチレン多層基材は例えば包装材料の基材として使用でき、該多層基材の表面に、鮮明な画像を形成できる。 On the other hand, since the polyethylene multilayer base material of the present disclosure is stretched as described above and has a unique layer structure in one embodiment, it has, for example, rigidity, as compared with the conventional polyethylene film. It has excellent strength and heat resistance, and also has excellent ink adhesion. Therefore, the polyethylene multilayer base material of the present disclosure can be used, for example, as a base material for a packaging material, and a clear image can be formed on the surface of the multilayer base material.
 本開示の積層体は、一実施形態において、上記ポリエチレン多層基材と、ポリエチレンを好ましくは主成分として含有するヒートシール層(以下「ヒートシール性ポリエチレン層」ともいう)とを備える。一実施形態において、多層基材の少なくとも一方の面に印刷層(画像)が形成されている。画像の経時的な劣化を防止できることから、多層基材におけるヒートシール性ポリエチレン層が設けられる側に印刷層が形成されていることが好ましい。 In one embodiment, the laminate of the present disclosure includes the above-mentioned polyethylene multilayer base material and a heat-sealing layer containing polyethylene as a main component (hereinafter, also referred to as “heat-sealing polyethylene layer”). In one embodiment, a print layer (image) is formed on at least one surface of the multilayer substrate. Since deterioration of the image over time can be prevented, it is preferable that the printing layer is formed on the side of the multilayer base material on which the heat-sealing polyethylene layer is provided.
 一実施形態において、第1の態様及び第2の態様の多層基材における第1のポリエチレン層又は第3のポリエチレン層が、積層体の一方側の表面層を構成し、ヒートシール層が、積層体の他方側の表面層を構成する。 In one embodiment, the first polyethylene layer or the third polyethylene layer in the multilayer substrate of the first aspect and the second aspect constitutes a surface layer on one side of the laminate, and the heat seal layer is laminated. It constitutes the surface layer on the other side of the body.
 上記ポリエチレン多層基材とヒートシール性ポリエチレン層とを備える上記積層体において、該積層体に含まれる樹脂層は、一実施形態においていずれもポリエチレン層であり、該積層体は、ポリエステルフィルム及びナイロンフィルム等の異種の樹脂フィルムを備えない。また、ポリエチレン多層基材が包装材料の外層フィルムとして要求される剛性、強度及び耐熱性などを充たし、ヒートシール性ポリエチレン層が包装化を可能とする。このため、上記積層体は、リサイクル性が求められる包装材料を構成する材料として適している。 In the laminated body including the polyethylene multilayer base material and the heat-sealing polyethylene layer, the resin layer contained in the laminated body is a polyethylene layer in one embodiment, and the laminated body is a polyester film and a nylon film. It does not have a different kind of resin film such as. Further, the polyethylene multilayer base material satisfies the rigidity, strength, heat resistance and the like required for the outer layer film of the packaging material, and the heat-sealable polyethylene layer enables packaging. Therefore, the laminate is suitable as a material for constituting a packaging material that is required to be recyclable.
 一実施形態において、本開示の積層体は、必要に応じて印刷層が形成された上記ポリエチレン多層基材と、ポリエチレンにより構成されたヒートシール層とのみからなる。これにより、本開示の積層体は、各樹脂層が同一材料であるポリエチレンにより構成されることから、リサイクル性を特に向上できる。 In one embodiment, the laminate of the present disclosure comprises only the polyethylene multilayer base material on which a printed layer is formed, if necessary, and a heat seal layer made of polyethylene. As a result, in the laminate of the present disclosure, since each resin layer is made of polyethylene, which is the same material, recyclability can be particularly improved.
 ヒートシール層は、通常、延伸されていない層である。例えば、未延伸ポリエチレンフィルムを必要に応じて接着層を介して多層基材等の上に積層するか、或いはポリエチレンを含む樹脂材料を多層基材等の上に溶融押出しすることにより、ヒートシール層を形成できる。接着層としては、例えば、後述する接着層が挙げられる。 The heat seal layer is usually a layer that is not stretched. For example, a heat-sealed layer is formed by laminating an unstretched polyethylene film on a multilayer base material or the like via an adhesive layer as needed, or by melt-extruding a resin material containing polyethylene onto a multilayer base material or the like. Can be formed. Examples of the adhesive layer include an adhesive layer described later.
 ヒートシール層を構成するポリエチレンとしては、例えば、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン及び超低密度ポリエチレンが挙げられ、ヒートシール性という観点から、低密度ポリエチレン、直鎖状低密度ポリエチレン及び超低密度ポリエチレンが好ましい。環境負荷低減という観点から、バイオマス由来のポリエチレン又はリサイクルされたポリエチレンを用いてもよい。 Examples of the polyethylene constituting the heat-sealing layer include high-density polyethylene, medium-density polyethylene, low-density polyethylene, linear low-density polyethylene, and ultra-low-density polyethylene. Linear low density polyethylene and ultra low density polyethylene are preferable. From the viewpoint of reducing the environmental load, polyethylene derived from biomass or recycled polyethylene may be used.
 ヒートシール層におけるポリエチレンの含有割合は、好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。これにより、積層体のリサイクル性を向上できる。
 ヒートシール層は、上記添加剤を1種又は2種以上含有してもよい。
The content ratio of polyethylene in the heat seal layer is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more. This makes it possible to improve the recyclability of the laminated body.
The heat seal layer may contain one or more of the above additives.
 ヒートシール層は、1層であっても、2層以上であってもよい。一実施形態において、ヒートシール層の層数は、1層以上3層以下である。
 ヒートシール層の厚さは、例えば、10μm以上300μm以下である。
 ヒートシール層の厚さは、ヒートシール層の強度及び積層体の加工適性という観点から、本開示の積層体により例えば製造される包装材料に充填される内容物の質量に応じ適宜変更することが好ましい。
The heat seal layer may be one layer or two or more layers. In one embodiment, the number of heat seal layers is 1 or more and 3 or less.
The thickness of the heat seal layer is, for example, 10 μm or more and 300 μm or less.
The thickness of the heat-sealed layer may be appropriately changed from the viewpoint of the strength of the heat-sealed layer and the processability of the laminated body, depending on the mass of the contents to be filled in the packaging material produced by the laminated body of the present disclosure, for example. preferable.
 例えば、包装材料が小袋である場合、ヒートシール層の厚さは、好ましくは20μm以上60μm以下である。この場合、例えば1g以上200g以下の内容物が小袋内に良好に充填される。 For example, when the packaging material is a pouch, the thickness of the heat seal layer is preferably 20 μm or more and 60 μm or less. In this case, for example, the contents of 1 g or more and 200 g or less are well filled in the pouch.
 例えば、包装材料がスタンドパウチである場合、ヒートシール層の厚さは、好ましくは50μm以上200μm以下である。この場合、例えば50g以上2000g以下の内容物がスタンドパウチ内に良好に充填される。 For example, when the packaging material is a stand pouch, the thickness of the heat seal layer is preferably 50 μm or more and 200 μm or less. In this case, for example, the contents of 50 g or more and 2000 g or less are well filled in the stand pouch.
 <バリア層>
 一実施形態において、本開示の積層体は、多層基材とヒートシール層との間に、バリア層を備える。これにより、積層体のガスバリア性、具体的には、酸素バリア性及び水蒸気バリア性を向上できる。バリア層は、多層基材の表面に形成してもよいし、ヒートシール層の表面に形成してもよい。
<Barrier layer>
In one embodiment, the laminate of the present disclosure comprises a barrier layer between the multilayer substrate and the heat seal layer. Thereby, the gas barrier property of the laminated body, specifically, the oxygen barrier property and the water vapor barrier property can be improved. The barrier layer may be formed on the surface of the multilayer base material or may be formed on the surface of the heat seal layer.
 多層基材とヒートシール層との間に、バリア層を接着剤等を介して設けてもよい。例えば、多層基材とヒートシール層との間に、第2の基材と、第2の基材上に形成されたバリア層とを備えるバリアフィルムを、必要に応じて接着剤等を介して設けてもよい。この態様では、リサイクル性という観点から、バリアフィルムにおける第2の基材は、ポリエチレンにより構成されることが好ましい。第2の基材におけるポリエチレンの含有割合は、好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。これにより、積層体のリサイクル性を向上できる。 A barrier layer may be provided between the multilayer base material and the heat seal layer via an adhesive or the like. For example, a barrier film provided with a second base material and a barrier layer formed on the second base material between the multilayer base material and the heat seal layer is provided, if necessary, via an adhesive or the like. It may be provided. In this aspect, from the viewpoint of recyclability, the second base material in the barrier film is preferably made of polyethylene. The content ratio of polyethylene in the second base material is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more. This makes it possible to improve the recyclability of the laminated body.
 一実施形態において、バリア層は、蒸着層である。蒸着層としては、例えば、アルミニウムなどの金属、並びに酸化アルミニウム、酸化珪素、酸化マグシウム、酸化カルシウム、酸化ジルコニウム、酸化チタン、酸化ホウ素、酸化ハフニウム及び酸化バリウムなどの無機酸化物から構成される。これらの中でも、アルミニウム蒸着層が好ましい。 In one embodiment, the barrier layer is a thin-film deposition layer. The vapor-filmed layer is composed of, for example, a metal such as aluminum and an inorganic oxide such as aluminum oxide, silicon oxide, magsium oxide, calcium oxide, zirconium oxide, titanium oxide, boron oxide, hafnium oxide and barium oxide. Among these, the aluminum vapor deposition layer is preferable.
 バリア層の厚さは、好ましくは1nm以上150nm以下、より好ましくは5nm以上60nm以下、さらに好ましくは10nm以上40nm以下である。バリア層の厚さを1nm以上とすることにより、積層体の酸素バリア性及び水蒸気バリア性をより向上できる。バリア層の厚さを150nm以下とすることにより、バリア層におけるクラックの発生を抑制できると共に、積層体のリサイクル性を向上できる。 The thickness of the barrier layer is preferably 1 nm or more and 150 nm or less, more preferably 5 nm or more and 60 nm or less, and further preferably 10 nm or more and 40 nm or less. By setting the thickness of the barrier layer to 1 nm or more, the oxygen barrier property and the water vapor barrier property of the laminated body can be further improved. By setting the thickness of the barrier layer to 150 nm or less, it is possible to suppress the occurrence of cracks in the barrier layer and improve the recyclability of the laminated body.
 バリア層の形成方法としては、例えば、真空蒸着法、スパッタリング法及びイオンプレーティング法などの物理気相成長法(PVD法);並びにプラズマ化学気相成長法、熱化学気相成長法及び光化学気相成長法などの化学気相成長法(CVD法)が挙げられる。バリア層は、物理気相成長法及び化学気相成長法の両者を併用して形成される、異種の無機酸化物のバリア層を2層以上含む複合膜であってもよい。 Examples of the method for forming the barrier layer include a physical vapor deposition method (PVD method) such as a vacuum vapor deposition method, a sputtering method and an ion plating method; and a plasma chemical vapor deposition method, a thermochemical vapor deposition method and a photochemical vapor deposition method. Examples thereof include a chemical vapor deposition method (CVD method) such as a phase growth method. The barrier layer may be a composite film containing two or more barrier layers of different kinds of inorganic oxides, which are formed by using both the physical vapor deposition method and the chemical vapor deposition method in combination.
 蒸着チャンバーの真空度としては、酸素導入前においては、10-2~10-8mbar程度が好ましく、酸素導入後においては、10-1~10-6mbar程度が好ましい。酸素導入量などは、蒸着機の大きさなどによって異なる。導入される酸素には、キャリヤーガスとしてアルゴンガス、ヘリウムガス及び窒素ガスなどの不活性ガスを支障のない範囲で使用してもよい。多層基材の搬送速度は、例えば、10~800m/min程度である。 The degree of vacuum of the vapor deposition chamber is preferably about 10-2 to 10-8 mbar before the introduction of oxygen, and preferably about 10-1 to 10-6 mbar after the introduction of oxygen. The amount of oxygen introduced depends on the size of the vapor deposition machine. As the introduced oxygen, an inert gas such as argon gas, helium gas and nitrogen gas may be used as the carrier gas within a range that does not hinder. The transport speed of the multilayer base material is, for example, about 10 to 800 m / min.
 バリア層の表面には、上述した表面処理が施されていることが好ましい。これにより、バリア層と、隣接する層との密着性を向上できる。 It is preferable that the surface of the barrier layer is subjected to the above-mentioned surface treatment. This makes it possible to improve the adhesion between the barrier layer and the adjacent layer.
 蒸着層が酸化アルミニウム及び酸化珪素などの無機酸化物から構成される場合は、蒸着層の表面にバリアコート層を設けて、蒸着層及びバリアコート層を備えるバリア層としてもよい。本開示の積層体は、一実施形態において、多層基材と、無機酸化物蒸着層と、バリアコート層と、ヒートシール層とを厚さ方向にこの順に備える。このような構成とすることにより、例えば、積層体の酸素バリア性及び水蒸気バリア性を向上でき、また、無機酸化物蒸着層におけるクラックの発生を効果的に抑制できる。 When the vapor-deposited layer is composed of an inorganic oxide such as aluminum oxide and silicon oxide, a barrier coat layer may be provided on the surface of the vapor-deposited layer to form a barrier layer having the vapor-deposited layer and the barrier coat layer. In one embodiment, the laminate of the present disclosure includes a multilayer base material, an inorganic oxide-deposited layer, a barrier coat layer, and a heat seal layer in this order in the thickness direction. With such a configuration, for example, the oxygen barrier property and the water vapor barrier property of the laminated body can be improved, and the generation of cracks in the inorganic oxide vapor-deposited layer can be effectively suppressed.
 一実施形態において、バリアコート層は、ガスバリア性樹脂から構成される。ガスバリア性樹脂としては、例えば、エチレン-ビニルアルコール共重合体(EVOH)、ポリビニルアルコール、ポリアクリロニトリル、ナイロン6、ナイロン6,6及びポリメタキシリレンアジパミド(MXD6)などのポリアミド樹脂、ポリエステル樹脂、ポリウレタン樹脂、並びに(メタ)アクリル樹脂が挙げられる。 In one embodiment, the barrier coat layer is composed of a gas barrier resin. Examples of the gas barrier resin include polyamide resins such as ethylene-vinyl alcohol copolymer (EVOH), polyvinyl alcohol, polyacrylonitrile, nylon 6, nylon 6,6 and polymethoxylylen adipamide (MXD6), and polyester resins. Examples include polyurethane resin and (meth) acrylic resin.
 バリアコート層の厚さは、好ましくは0.01μm以上10μm以下、より好ましくは0.1μm以上5μm以下である。バリアコート層の厚さを0.01μm以上とすることにより、ガスバリア性をより向上できる。バリアコート層の厚さを10μm以下とすることにより、積層体の加工適性を向上できる。また、モノマテリアル包装容器の作製に好適に使用可能な積層体とすることができる。 The thickness of the barrier coat layer is preferably 0.01 μm or more and 10 μm or less, and more preferably 0.1 μm or more and 5 μm or less. By setting the thickness of the barrier coat layer to 0.01 μm or more, the gas barrier property can be further improved. By setting the thickness of the barrier coat layer to 10 μm or less, the processability of the laminated body can be improved. Further, it can be a laminate that can be suitably used for manufacturing a monomaterial packaging container.
 バリアコート層は、例えば、ガスバリア性樹脂などの材料を水又は適当な有機溶剤に溶解又は分散させ、得られた塗布液を塗布、乾燥することにより形成できる。 The barrier coat layer can be formed by dissolving or dispersing a material such as a gas barrier resin in water or an appropriate organic solvent, and applying and drying the obtained coating liquid.
 他の実施形態において、バリアコート層は、金属アルコキシドと水溶性高分子との混合物を、ゾルゲル法触媒、水及び有機溶剤などの存在下で、ゾルゲル法によって重縮合して得られる金属アルコキシドの加水分解物又は金属アルコキシドの加水分解縮合物などを含む組成物から形成されるガスバリア性塗布膜である。
 このようなバリアコート層を蒸着層上に設けることにより、蒸着層におけるクラックの発生を効果的に防止できる。
In another embodiment, the barrier coat layer is a hydrolyzed metal alkoxide obtained by polycondensing a mixture of a metal alkoxide and a water-soluble polymer in the presence of a sol-gel method catalyst, water, an organic solvent, or the like by a sol-gel method. A gas barrier coating film formed from a composition containing a decomposition product or a hydrolyzed condensate of a metal alkoxide.
By providing such a barrier coat layer on the thin-film deposition layer, it is possible to effectively prevent the occurrence of cracks in the thin-film deposition layer.
 一実施形態において、金属アルコキシドは、下記一般式で表される。
   R M(OR
 上記式中、R及びRは、それぞれ独立に炭素数1以上8以下の有機基を表し、Mは金属原子を表し、nは0以上の整数を表し、mは1以上の整数を表し、n+mはMの原子価を表す。
In one embodiment, the metal alkoxide is represented by the following general formula.
R 1 n M (OR 2 ) m
In the above formula, R 1 and R 2 independently represent an organic group having 1 or more carbon atoms and 8 or less carbon atoms, M represents a metal atom, n represents an integer of 0 or more, and m represents an integer of 1 or more. , N + m represent the valence of M.
 R及びRで表される有機基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基及びイソブチル基などのアルキル基が挙げられる。金属原子Mとしては、例えば、珪素、ジルコニウム、チタン及びアルミニウムが挙げられる。 Examples of the organic group represented by R 1 and R 2 include an alkyl group such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group and an isobutyl group. Examples of the metal atom M include silicon, zirconium, titanium and aluminum.
 上記一般式を充たす金属アルコキシドとしては、例えば、テトラメトキシシラン(Si(OCH)、テトラエトキシシラン(Si(OC)、テトラプロポキシシラン(Si(OC)、及びテトラブトキシシラン(Si(OC)が挙げられる。 Examples of the metal alkoxide satisfying the above general formula include tetramethoxysilane (Si (OCH 3 ) 4 ), tetraethoxysilane (Si (OC 2 H 5 ) 4 ), and tetrapropoxysilane (Si (OC 3 H 7 ) 4 ). ), And tetrabutoxysilane (Si (OC 4 H 9 ) 4 ).
 上記金属アルコキシドと共に、シランカップリング剤を使用することが好ましい。シランカップリング剤としては、既知の有機反応性基含有オルガノアルコキシシランを用いることができる。 It is preferable to use a silane coupling agent together with the above metal alkoxide. As the silane coupling agent, known organic reactive group-containing organoalkoxysilanes can be used.
 水溶性高分子としては、ポリビニルアルコール及びエチレン-ビニルアルコール共重合体が好ましい。酸素バリア性、水蒸気バリア性、耐水性及び耐候性などの所望の物性に応じて、ポリビニルアルコール及びエチレン-ビニルアルコール共重合体のいずれか一方を用いてもよく、両者を併用してもよく、また、ポリビニルアルコールを用いて得られるガスバリア性塗布膜及びエチレン-ビニルアルコール共重合体を用いて得られるガスバリア性塗布膜を積層してもよい。 As the water-soluble polymer, polyvinyl alcohol and ethylene-vinyl alcohol copolymer are preferable. Either one of polyvinyl alcohol and ethylene-vinyl alcohol copolymer may be used, or both may be used in combination, depending on desired physical properties such as oxygen barrier property, water vapor barrier property, water resistance and weather resistance. Further, a gas barrier coating film obtained by using polyvinyl alcohol and a gas barrier coating film obtained by using an ethylene-vinyl alcohol copolymer may be laminated.
 ゾルゲル法触媒としては、酸又はアミン系化合物が好適である。 As the sol-gel method catalyst, an acid or amine compound is suitable.
 上記組成物は、さらに酸を含んでいてもよい。酸は、ゾルゲル法触媒、主として金属アルコキシド及びシランカップリング剤などの加水分解のための触媒として用いられる。酸としては、例えば、硫酸、塩酸及び硝酸などの鉱酸、並びに酢酸及び酒石酸などの有機酸が挙げられる。 The above composition may further contain an acid. The acid is used as a sol-gel catalyst, mainly as a catalyst for hydrolysis of metal alkoxides and silane coupling agents. Examples of the acid include mineral acids such as sulfuric acid, hydrochloric acid and nitric acid, and organic acids such as acetic acid and tartaric acid.
 上記組成物は、有機溶剤を含んでいてもよい。有機溶剤としては、例えば、メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール及びn-ブタノールが挙げられる。 The above composition may contain an organic solvent. Examples of the organic solvent include methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol and n-butanol.
 ガスバリア性塗布膜の厚さは、好ましくは0.01μm以上100μm以下、より好ましくは0.1μm以上50μm以下である。これにより、ガスバリア性をより向上できる。ガスバリア性塗布膜の厚さを0.01μm以上とすることにより、積層体の酸素バリア性及び水蒸気バリア性を向上でき、また、蒸着層におけるクラックの発生を防止できる。ガスバリア性塗布膜の厚さを100μm以下とすることにより、モノマテリアル包装容器の作製に好適に使用可能な積層体とすることができる。 The thickness of the gas barrier coating film is preferably 0.01 μm or more and 100 μm or less, and more preferably 0.1 μm or more and 50 μm or less. Thereby, the gas barrier property can be further improved. By setting the thickness of the gas barrier coating film to 0.01 μm or more, the oxygen barrier property and the water vapor barrier property of the laminated body can be improved, and the generation of cracks in the thin-film deposition layer can be prevented. By setting the thickness of the gas barrier coating film to 100 μm or less, a laminate that can be suitably used for producing a monomaterial packaging container can be obtained.
 ガスバリア性塗布膜は、例えば、グラビアロールコーターなどのロールコート、スプレーコート、スピンコート、ディッピング、刷毛、バーコート及びアプリケータなどの従来公知の手段により、上記材料を含む組成物を塗布し、その組成物をゾルゲル法により重縮合することにより形成させることができる。 The gas barrier coating film is prepared by applying a composition containing the above materials by a conventionally known means such as a roll coat such as a gravure roll coater, a spray coat, a spin coat, a dipping, a brush, a bar coat and an applicator. The composition can be formed by polycondensing by the sol-gel method.
 ガスバリア性塗布膜の形成方法の一実施形態について以下に説明する。まず、金属アルコキシド、水溶性高分子、ゾルゲル法触媒、水、有機溶剤及び必要に応じてシランカップリング剤などを混合し、組成物を調製する。該組成物中では次第に重縮合反応が進行する。次いで、蒸着層上に、上記従来公知の手段により、上記組成物を塗布、乾燥する。この乾燥により、金属アルコキシド及び水溶性高分子(上記組成物がシランカップリング剤を含む場合は、シランカップリング剤も)の重縮合反応がさらに進行し、複合ポリマーの層が形成される。最後に、加熱することにより、ガスバリア性塗布膜を形成できる。 An embodiment of a method for forming a gas barrier coating film will be described below. First, a composition is prepared by mixing a metal alkoxide, a water-soluble polymer, a sol-gel method catalyst, water, an organic solvent and, if necessary, a silane coupling agent. The polycondensation reaction gradually proceeds in the composition. Next, the composition is applied and dried on the thin-film deposition layer by the conventionally known means. By this drying, the polycondensation reaction of the metal alkoxide and the water-soluble polymer (and the silane coupling agent when the above composition contains a silane coupling agent) further proceeds, and a layer of the composite polymer is formed. Finally, by heating, a gas barrier coating film can be formed.
 <接着層>
 一実施形態において、本開示の積層体は、任意の層間(例えば、多層基材とバリア層との間、バリア層とヒートシール層との間、又は多層基材とヒートシール層との間)に、接着層を備える。これにより、積層体に含まれる層間の密着性を向上できる。
<Adhesive layer>
In one embodiment, the laminate of the present disclosure is any layer (eg, between a multilayer substrate and a barrier layer, between a barrier layer and a heat seal layer, or between a multilayer substrate and a heat seal layer). Also provided with an adhesive layer. Thereby, the adhesion between the layers contained in the laminated body can be improved.
 接着層は、接着剤を1種又は2種以上含有する。接着剤としては、例えば、1液硬化型の接着剤、2液硬化型の接着剤、及び非硬化型の接着剤が挙げられる。 The adhesive layer contains one or more adhesives. Examples of the adhesive include a one-component curable adhesive, a two-component curable adhesive, and a non-curable adhesive.
 接着剤は、無溶剤型の接着剤であっても、溶剤型の接着剤であってもよく、環境負荷の観点から、無溶剤型の接着剤が好ましい。無溶剤型の接着剤としては、例えば、ポリエーテル系接着剤、ポリエステル系接着剤、シリコーン系接着剤、エポキシ系接着剤及びウレタン系接着剤が挙げられる。溶剤型の接着剤としては、例えば、ゴム系接着剤、ビニル系接着剤、シリコーン系接着剤、エポキシ系接着剤、フェノール系接着剤、オレフィン系接着剤及びウレタン系接着剤が挙げられる。これらの中でも、2液硬化型のウレタン系接着剤が好ましい。 The adhesive may be a solvent-free adhesive or a solvent-type adhesive, and a solvent-free adhesive is preferable from the viewpoint of environmental load. Examples of the solvent-free adhesive include a polyether adhesive, a polyester adhesive, a silicone adhesive, an epoxy adhesive and a urethane adhesive. Examples of the solvent-based adhesive include rubber-based adhesives, vinyl-based adhesives, silicone-based adhesives, epoxy-based adhesives, phenol-based adhesives, olefin-based adhesives, and urethane-based adhesives. Among these, a two-component curing type urethane adhesive is preferable.
 接着層は、添加剤を1種又は2種以上含有してもよい。添加剤としては、例えば、顔料、染料、滑剤、着色剤、湿潤剤、増粘剤、凝固剤、ゲル化剤、沈降防止剤、軟化剤、硬化剤、可塑剤、レベリング剤、酸化防止剤、紫外線吸収剤、光安定剤及び難燃剤が挙げられる。 The adhesive layer may contain one or more additives. Additives include, for example, pigments, dyes, lubricants, colorants, wetting agents, thickeners, coagulants, gelling agents, antioxidants, softeners, hardeners, plasticizers, leveling agents, antioxidants, etc. Examples include UV absorbers, light stabilizers and flame retardants.
 アルミニウム蒸着層等のバリア層と隣接する接着層の場合は、ポリエステルポリオール、イソシアネート化合物及びリン酸変性化合物を含有する樹脂組成物の硬化物により、該接着層を構成することが好ましい。接着層をこのような構成とすることにより、本開示の積層体の酸素バリア性及び水蒸気バリア性をより向上できる。 In the case of an adhesive layer adjacent to a barrier layer such as an aluminum vapor-deposited layer, it is preferable to form the adhesive layer with a cured product of a resin composition containing a polyester polyol, an isocyanate compound and a phosphoric acid-modified compound. By having such a structure of the adhesive layer, the oxygen barrier property and the water vapor barrier property of the laminate of the present disclosure can be further improved.
 接着層の厚さは、接着層の接着性及び積層体の加工適性という観点から、好ましくは0.5μm以上6μm以下、より好ましくは0.8μm以上5μm以下、さらに好ましくは1μm以上4.5μm以下である。 The thickness of the adhesive layer is preferably 0.5 μm or more and 6 μm or less, more preferably 0.8 μm or more and 5 μm or less, and further preferably 1 μm or more and 4.5 μm or less, from the viewpoint of the adhesiveness of the adhesive layer and the processability of the laminated body. Is.
 接着層は、例えば、ダイレクトグラビアロールコート法、グラビアロールコート法、キスコート法、リバースロールコート法、フォンテン法及びトランスファーロールコート法などの方法により、多層基材等の上に接着剤を塗布及び乾燥することにより形成できる。 The adhesive layer is formed by applying and drying an adhesive on a multilayer substrate or the like by, for example, a direct gravure roll coating method, a gravure roll coating method, a kiss coating method, a reverse roll coating method, a fonten method, a transfer roll coating method, or the like. It can be formed by doing.
 [第5の態様の積層体]
 本開示の第5の態様の積層体は、基材と、ヒートシール層とを備える。
 本開示の第5の態様の積層体において、基材とヒートシール層とは、同種の樹脂材料により構成される。すなわち、基材は、樹脂材料により構成され、ヒートシール層は、基材を構成する樹脂材料と同種の樹脂材料により構成される。このような構成を有する積層体を用いることにより、例えば、リサイクル性に優れる包装材料を作製できる。
[Laminate of the fifth aspect]
The laminate of the fifth aspect of the present disclosure includes a base material and a heat seal layer.
In the laminate of the fifth aspect of the present disclosure, the base material and the heat seal layer are made of the same kind of resin material. That is, the base material is made of a resin material, and the heat seal layer is made of a resin material of the same type as the resin material constituting the base material. By using a laminate having such a structure, for example, a packaging material having excellent recyclability can be produced.
 同種の樹脂材料とは、基本構造を共通にする樹脂材料を意味し、完全同一の樹脂材料に限られない。同種の樹脂材料には、樹脂材料を形成するモノマーのうち主体となるモノマーを共通にする樹脂材料が含まれる。例えば主体とするモノマーをモノマーAと記載する場合に、モノマーAの単独重合体、モノマーAとモノマーBとの共重合体、及びモノマーAとモノマーBとモノマーCとの共重合体は、同種の樹脂材料に分類される。 The same type of resin material means a resin material having a common basic structure, and is not limited to the completely same resin material. The same type of resin material includes a resin material having a common main monomer among the monomers forming the resin material. For example, when the main monomer is described as Monomer A, the homopolymer of Monomer A, the copolymer of Monomer A and Monomer B, and the copolymer of Monomer A, Monomer B, and Monomer C are of the same type. Classified as a resin material.
 例えばポリエチレンとしては、高密度ポリエチレン及び直鎖状低密度ポリエチレン等が例示されるが、これらは同種の樹脂材料に分類される。例えばポリエステルとしては、ポリエチレンテレフタレート及びポリエチレンナフタレート等が例示されるが、これらは同種の樹脂材料に分類される。 Examples of polyethylene include high-density polyethylene and linear low-density polyethylene, which are classified into the same type of resin material. For example, examples of polyester include polyethylene terephthalate and polyethylene naphthalate, which are classified into the same type of resin material.
 本開示の第5の態様の積層体全体における上記同種の樹脂材料の含有割合は、好ましくは80質量%以上、より好ましくは85質量%以上、さらに好ましくは90質量%以上である。このような積層体は、同種の樹脂材料を使用していることから、いわゆるモノマテリアル材料に分類でき、積層体のリサイクル性を向上できる。 The content ratio of the same type of resin material in the entire laminate of the fifth aspect of the present disclosure is preferably 80% by mass or more, more preferably 85% by mass or more, still more preferably 90% by mass or more. Since such a laminate uses the same type of resin material, it can be classified as a so-called monomaterial material, and the recyclability of the laminate can be improved.
 一実施形態において、上記同種の樹脂材料は、ポリオレフィンである。この場合、第5の態様の積層体全体におけるポリオレフィンの含有割合は、好ましくは80質量%以上、より好ましくは85質量%以上、さらに好ましくは90質量%以上である。一実施形態において、第5の態様の積層体全体におけるポリエチレン又はポリプロピレンの含有割合は、好ましくは80質量%以上、より好ましくは85質量%以上、さらに好ましくは90質量%以上である。 In one embodiment, the same kind of resin material is polyolefin. In this case, the content ratio of the polyolefin in the entire laminate of the fifth aspect is preferably 80% by mass or more, more preferably 85% by mass or more, and further preferably 90% by mass or more. In one embodiment, the content ratio of polyethylene or polypropylene in the entire laminate of the fifth aspect is preferably 80% by mass or more, more preferably 85% by mass or more, still more preferably 90% by mass or more.
 一実施形態において、上記同種の樹脂材料は、ポリエステルである。この場合、第5の態様の積層体全体におけるポリエステルの含有割合は、好ましくは80質量%以上、より好ましくは85質量%以上、さらに好ましくは90質量%以上である。 In one embodiment, the same kind of resin material is polyester. In this case, the content ratio of the polyester in the entire laminate of the fifth aspect is preferably 80% by mass or more, more preferably 85% by mass or more, and further preferably 90% by mass or more.
 一実施形態において、本開示の第5の態様の積層体30は、図8に示すように、基材10aと、ヒートシール層32とを備える。一実施形態において、本開示の第5の態様の積層体30は、基材10a上に図示せぬ印刷層をさらに備える。印刷層は、通常、基材におけるヒートシール層が設けられる表面層上に形成されている。一実施形態において、本開示の第5の態様の積層体30は、図9に示すように、基材10aとヒートシール層32との間に、接着層36を備える。基材10aは、多層構造を有するが、該多層構造は図示していない。 In one embodiment, the laminate 30 of the fifth aspect of the present disclosure includes a base material 10a and a heat seal layer 32 as shown in FIG. In one embodiment, the laminate 30 of the fifth aspect of the present disclosure further comprises a printing layer (not shown) on the substrate 10a. The print layer is usually formed on a surface layer provided with a heat seal layer on the substrate. In one embodiment, the laminate 30 of the fifth aspect of the present disclosure includes an adhesive layer 36 between the base material 10a and the heat seal layer 32, as shown in FIG. The base material 10a has a multi-layer structure, but the multi-layer structure is not shown.
 <基材>
 本開示の第5の態様の積層体を構成する基材は、延伸処理が施された基材であり、かつ、多層構造を有する。以下、このような基材を「延伸多層基材」ともいう。
<Base material>
The base material constituting the laminate of the fifth aspect of the present disclosure is a base material that has been stretched and has a multi-layer structure. Hereinafter, such a base material is also referred to as a “stretched multilayer base material”.
 延伸処理により、基材の耐熱性及び強度を向上でき、このような延伸多層基材は、例えば包装材料などの外層として要求される物性を満足することができる。延伸は、一軸延伸であってもよく、二軸延伸であってもよい。 By the stretching treatment, the heat resistance and strength of the base material can be improved, and such a stretched multilayer base material can satisfy the physical properties required as an outer layer such as a packaging material. The stretching may be uniaxial stretching or biaxial stretching.
 延伸多層基材における長手方向(MD)の延伸倍率は、一実施形態において、好ましくは2倍以上10倍以下、より好ましくは3倍以上7倍以下である。延伸多層基材における横手方向(TD)の延伸倍率は、一実施形態において、好ましくは2倍以上10倍以下、より好ましくは3倍以上7倍以下である。 In one embodiment, the stretching ratio in the longitudinal direction (MD) of the stretched multilayer substrate is preferably 2 times or more and 10 times or less, and more preferably 3 times or more and 7 times or less. In one embodiment, the stretching ratio in the lateral direction (TD) of the stretched multilayer substrate is preferably 2 times or more and 10 times or less, and more preferably 3 times or more and 7 times or less.
 延伸倍率が2倍以上であると、例えば、基材の剛性、強度及び耐熱性を向上でき、基材への印刷適性を向上でき、また、基材の透明性を向上できる。延伸倍率が10倍以下であると、例えば、フィルムの破断等を起こさず、良好な延伸を実施できる。 When the draw ratio is 2 times or more, for example, the rigidity, strength and heat resistance of the base material can be improved, the printability on the base material can be improved, and the transparency of the base material can be improved. When the draw ratio is 10 times or less, for example, good stretching can be performed without causing breakage of the film.
 本開示の第5の態様の積層体を構成する延伸多層基材は、一実施形態において、一軸延伸フィルムであり、より具体的には、長手方向(MD)に延伸処理された一軸延伸フィルムである。 The stretched multilayer base material constituting the laminated body of the fifth aspect of the present disclosure is a uniaxially stretched film in one embodiment, and more specifically, a uniaxially stretched film stretched in the longitudinal direction (MD). be.
 延伸多層基材は、2層以上の多層構造を有する。一実施形態において、延伸多層基材の層数は、好ましくは2層以上7層以下、より好ましくは3層以上5層以下である。延伸多層基材が多層構造を有することにより、基材の剛性、強度、耐熱性、印刷適性及び延伸性のバランスを向上できる。延伸多層基材の各層も、それぞれ同種の樹脂材料により構成される。 The stretched multilayer base material has a multilayer structure of two or more layers. In one embodiment, the number of layers of the stretched multilayer base material is preferably 2 layers or more and 7 layers or less, and more preferably 3 layers or more and 5 layers or less. When the stretched multilayer base material has a multi-layer structure, the balance between rigidity, strength, heat resistance, printability and stretchability of the base material can be improved. Each layer of the stretched multilayer base material is also composed of the same type of resin material.
 延伸多層基材を構成する樹脂材料としては、例えば、ポリエチレン、ポリプロピレン及びポリメチルペンテン等のポリオレフィン;並びにポリエステルが挙げられる。これらの中でも、ポリオレフィンが好ましく、ポリエチレン及びポリプロピレンがより好ましい。 Examples of the resin material constituting the stretched multilayer base material include polyolefins such as polyethylene, polypropylene and polymethylpentene; and polyester. Among these, polyolefins are preferable, and polyethylene and polypropylene are more preferable.
 ポリエチレンとしては、例えば、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン及び超低密度ポリエチレンが挙げられる。これらの中でも、基材の強度及び耐熱性という観点から、高密度ポリエチレン及び中密度ポリエチレンが好ましく、延伸適性という観点から、中密度ポリエチレンがより好ましい。 Examples of polyethylene include high-density polyethylene, medium-density polyethylene, low-density polyethylene, linear low-density polyethylene, and ultra-low-density polyethylene. Among these, high-density polyethylene and medium-density polyethylene are preferable from the viewpoint of strength and heat resistance of the base material, and medium-density polyethylene is more preferable from the viewpoint of stretchability.
 ポリエチレンのメルトフローレート(MFR)は、製膜性、及び基材の加工適性という観点から、好ましくは0.1g/10分以上50g/10分以下、より好ましくは0.3g/10分以上30g/10分以下である。本開示において、ポリエチレンのMFRは、ASTM D1238に準拠し、温度190℃、荷重2.16kgの条件で測定する。 The melt flow rate (MFR) of polyethylene is preferably 0.1 g / 10 minutes or more and 50 g / 10 minutes or less, more preferably 0.3 g / 10 minutes or more and 30 g, from the viewpoint of film forming property and processing suitability of the base material. / 10 minutes or less. In the present disclosure, the polyethylene MFR is measured in accordance with ASTM D1238 under the conditions of a temperature of 190 ° C. and a load of 2.16 kg.
 ポリプロピレンは、プロピレンホモポリマー、プロピレンランダムコポリマー及びプロピレンブロックコポリマーのいずれであってもよい。プロピレンホモポリマーとは、プロピレンのみの重合体である。プロピレンランダムコポリマーとは、プロピレンとプロピレン以外のエチレン性不飽和モノマー(例えばエチレン、1-ブテン、4-メチル-1-ペンテン等のα-オレフィン)とのランダム共重合体である。プロピレンブロックコポリマーとは、プロピレンからなる重合体ブロックと、プロピレン以外のエチレン性不飽和モノマー(例えばエチレン、1-ブテン、4-メチル-1-ペンテン等のα-オレフィン)からなる重合体ブロックとを有する共重合体である。例えば、包装材料の剛性及び耐熱性を重視する場合にはホモポリマーを使用し、包装材料の耐衝撃性を重視する場合にはランダムコポリマーを使用することが好ましい。 Polypropylene may be any of propylene homopolymer, propylene random copolymer and propylene block copolymer. Propylene homopolymer is a polymer containing only propylene. The propylene random copolymer is a random copolymer of propylene and an ethylenically unsaturated monomer other than propylene (for example, α-olefin such as ethylene, 1-butene and 4-methyl-1-pentene). The propylene block copolymer is a polymer block made of propylene and a polymer block made of an ethylenically unsaturated monomer other than propylene (for example, α-olefin such as ethylene, 1-butene and 4-methyl-1-pentene). It is a copolymer having. For example, it is preferable to use a homopolymer when the rigidity and heat resistance of the packaging material are important, and to use a random copolymer when the impact resistance of the packaging material is important.
 ポリプロピレンのMFRは、製膜性、及び基材の加工適性という観点から、好ましくは0.1g/10分以上50g/10分以下、より好ましくは0.3g/10分以上30g/10分以下である。本開示において、ポリプロピレンのMFRは、ASTM D1238に準拠し、温度230℃、荷重2.16kgの条件で測定する。 The polypropylene MFR is preferably 0.1 g / 10 minutes or more and 50 g / 10 minutes or less, more preferably 0.3 g / 10 minutes or more and 30 g / 10 minutes or less, from the viewpoint of film forming property and processing suitability of the base material. be. In the present disclosure, the polypropylene MFR is measured in accordance with ASTM D1238 under the conditions of a temperature of 230 ° C. and a load of 2.16 kg.
 ポリオレフィンとしては、エチレンとエチレン以外のエチレン性不飽和モノマーとの共重合体や、プロピレンとプロピレン以外のエチレン性不飽和モノマーとの共重合体を挙げることもできる(ただし、上述したポリエチレン及びポリプロピレンに該当する共重合体は除く)。 Examples of the polyolefin include a copolymer of ethylene and an ethylenically unsaturated monomer other than ethylene, and a polymer of propylene and an ethylenically unsaturated monomer other than propylene (however, in the above-mentioned polyethylene and polypropylene). Excluding applicable copolymers).
 上記エチレン性不飽和モノマーとしては、例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン、3-メチル-1-ブテン、4-メチル-1-ペンテン及び6-メチル-1-ヘプテン等の炭素数2以上20以下のα-オレフィン;酢酸ビニル及びプロピオン酸ビニル等のビニルモノマー;並びに(メタ)アクリル酸メチル及び(メタ)アクリル酸エチル等の(メタ)アクリル酸エステルが挙げられる。 Examples of the ethylenically unsaturated monomer include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene and 1-octadecene. Α-olefins having 2 or more and 20 or less carbon atoms such as 1-eicosene, 3-methyl-1-butene, 4-methyl-1-pentene and 6-methyl-1-heptene; vinyl acetate and vinyl propionate. Monomers; and (meth) acrylic acid esters such as methyl (meth) acrylate and ethyl (meth) acrylate.
 密度又は分岐が異なるポリオレフィンは、重合方法を適宜選択することによって得ることができる。例えば、重合触媒として、チーグラー・ナッタ触媒などのマルチサイト触媒、又はメタロセン触媒などのシングルサイト触媒を用いて、気相重合、スラリー重合、溶液重合及び高圧イオン重合のいずれかの方法により、1段又は2段以上の多段で重合を行うことが好ましい。シングルサイト触媒の詳細は上述したとおりである。 Polyolefins having different densities or branches can be obtained by appropriately selecting a polymerization method. For example, using a multisite catalyst such as a Cheegler-Natta catalyst or a single site catalyst such as a metallocene catalyst as the polymerization catalyst, one step is carried out by any of gas phase polymerization, slurry polymerization, solution polymerization and high pressure ion polymerization. Alternatively, it is preferable to carry out the polymerization in multiple stages of two or more stages. Details of the single-site catalyst are as described above.
 ポリオレフィンとしては、バイオマス由来のポリオレフィンを使用してもよい。すなわち、ポリオレフィンを得るための原料として、化石燃料から得られるオレフィンに代えて、バイオマス由来のオレフィンを用いてもよい。バイオマス由来のポリオレフィンは、カーボニュートラルな材料であるため、包装材料の環境負荷を低減できる。バイオマス由来のポリオレフィン(例えばポリエチレン)は、例えば、特開2013-177531号公報に記載されている方法により製造できる。市販されているバイオマス由来のポリオレフィン(例えば、ブラスケム社から市販されているグリーンPE)を使用してもよい。 As the polyolefin, a polyolefin derived from biomass may be used. That is, as a raw material for obtaining a polyolefin, a biomass-derived olefin may be used instead of the olefin obtained from fossil fuel. Since the polyolefin derived from biomass is a carbon-neutral material, the environmental load of the packaging material can be reduced. Biomass-derived polyolefins (for example, polyethylene) can be produced, for example, by the method described in JP2013-177531A. Commercially available biomass-derived polyolefins (eg, green PE commercially available from Braskem) may be used.
 ポリオレフィンとしては、メカニカルリサイクルによりリサイクルされたポリオレフィンを使用してもよい。メカニカルリサイクルとは、一般的に、回収されたポリオレフィンフィルムなどを粉砕し、アルカリ洗浄してフィルム表面の汚れ、異物を除去した後、高温・減圧下で一定時間乾燥してフィルム内部に留まっている汚染物質を拡散させ除染を行い、ポリオレフィンからなるフィルムの汚れを取り除き、再びポリオレフィンに戻す方法である。 As the polyolefin, a polyolefin recycled by mechanical recycling may be used. Mechanical recycling generally means that the recovered polyolefin film or the like is crushed and alkaline-cleaned to remove stains and foreign substances on the film surface, and then dried under high temperature and reduced pressure for a certain period of time to stay inside the film. This is a method in which a contaminant is diffused and decontaminated to remove stains on a film made of polyolefin, and the film is returned to polyolefin again.
 延伸多層基材を構成する樹脂材料としてのポリエステルとしては、例えば、ジカルボン酸化合物とジオール化合物との共重合体が挙げられる。該共重合体を形成するモノマーとして、必要に応じて、ジカルボン酸化合物及びジオール化合物以外のモノマーを用いてもよい。 Examples of the polyester as the resin material constituting the stretched multilayer base material include a copolymer of a dicarboxylic acid compound and a diol compound. As the monomer forming the copolymer, a monomer other than the dicarboxylic acid compound and the diol compound may be used, if necessary.
 ジカルボン酸化合物としては、例えば、マロン酸、コハク酸、グルタル酸、アジピン酸、スベリン酸、セバシン酸、ドデカンジオン酸、エイコサンジオン酸、ピメリン酸、アゼライン酸、メチルマロン酸及びエチルマロン酸、アダマンタンジカルボン酸、ノルボルネンジカルボン酸、シクロヘキサンジカルボン酸、デカリンジカルボン酸、テレフタル酸、イソフタル酸、フタル酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、4,4’-ジフェニルジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、5-ナトリウムスルホイソフタル酸、フェニルエンダンジカルボン酸、アントラセンジカルボン酸、フェナントレンジカルボン酸、9,9’-ビス(4-カルボキシフェニル)フルオレン酸及びこれらのエステル誘導体が挙げられる。 Examples of the dicarboxylic acid compound include malonic acid, succinic acid, glutaric acid, adipic acid, suberic acid, sebacic acid, dodecandionic acid, eicosandionic acid, pimelliic acid, azelaic acid, methylmalonic acid and ethylmalonic acid, and adamantan. Dicarboxylic acid, norbornenedicarboxylic acid, cyclohexanedicarboxylic acid, decalindicarboxylic acid, terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1, 8-naphthalenedicarboxylic acid, 4,4'-diphenyldicarboxylic acid, 4,4'-diphenyletherdicarboxylic acid, 5-sodium sulfoisophthalic acid, phenylendandicarboxylic acid, anthracendicarboxylic acid, phenanthrangecarboxylic acid, 9,9'-bis Examples thereof include (4-carboxyphenyl) fluorenic acid and ester derivatives thereof.
 ジオール化合物としては、例えば、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、ブタンジオール、2-メチル-1,3-プロパンジオール、ヘキサンジオール、ネオペンチルグリコール、シクロヘキサンジメタノール、シクロヘキサンジエタノール、デカヒドロナフタレンジメタノール、デカヒドロナフタレンジエタノール、ノルボルナンジメタノール、ノルボルナンジエタノール、トリシクロデカンジメタノール、トリシクロデカンエタノール、テトラシクロドデカンジメタノール、テトラシクロドデカンジエタノール、デカリンジメタノール、デカリンジエタノール、5-メチロール-5-エチル-2-(1,1-ジメチル-2-ヒドロキシエチル)-1,3-ジオキサン、シクロヘキサンジオール、ビシクロヘキシル-4,4’-ジオール、2,2-ビス(4-ヒドロキシシクロヘキシルプロパン)、2,2-ビス(4-(2-ヒドロキシエトキシ)シクロヘキシル)プロパン、シクロペンタンジオール、3-メチル-1,2-シクロペンタジオール、4-シクロペンテン-1,3-ジオール、アダマンジオール、パラキシレングリコール、ビスフェノールA、ビスフェノールS,スチレングリコール、トリメチロールプロパン及びペンタエリスリトールが挙げられる。 Examples of the diol compound include ethylene glycol, 1,2-propanediol, 1,3-propanediol, butanediol, 2-methyl-1,3-propanediol, hexanediol, neopentylglycol, cyclohexanedimethanol, and cyclohexane. Diethanol, decahydronaphthalenedimethanol, decahydronaphthalenediethanol, norbornanedimethanol, norbornandiethanol, tricyclodecanedimethanol, tricyclodecaneethanol, tetracyclododecanedimethanol, tetracyclododecanediethanol, decalindiethanol, decalindiethanol, 5 -Methylol-5-ethyl-2- (1,1-dimethyl-2-hydroxyethyl) -1,3-dioxane, cyclohexanediol, bicyclohexyl-4,4'-diol, 2,2-bis (4-hydroxy) Cyclohexylpropane), 2,2-bis (4- (2-hydroxyethoxy) cyclohexyl) propane, cyclopentanediol, 3-methyl-1,2-cyclopentadiol, 4-cyclopentene-1,3-diol, adamandiol , Paraxylene glycol, bisphenol A, bisphenol S, styrene glycol, trimethylolpropane and pentaerythritol.
 上記した中でも、テレフタル酸及びそのエステル誘導体とエチレングリコールとの共重合体である、ポリエチレンテレフタレートが好ましい。 Among the above, polyethylene terephthalate, which is a copolymer of terephthalic acid and its ester derivative and ethylene glycol, is preferable.
 ポリエステルとしては、バイオマス由来のポリエステルを使用してもよい。このポリエステルは、共重合成分であるジオール化合物がバイオマス由来であり、化石燃料の使用量を大幅に削減することができ、積層体作製の環境負荷を効果的に低減できる。 As the polyester, biomass-derived polyester may be used. In this polyester, the diol compound which is a copolymerization component is derived from biomass, the amount of fossil fuel used can be significantly reduced, and the environmental load for producing a laminate can be effectively reduced.
 バイオマス由来のジオール化合物、例えば、バイオマス由来のエチレングリコールは、バイオマスを原料として製造されたエタノール(バイオマスエタノール)を原料としたものである。バイオマス由来のエチレングリコールは、バイオマスエタノールを、従来公知の方法により、エチレンオキサイドを経由してエチレングリコールを生成する方法などにより得ることができる。また、販売されているバイオマスエチレングリコールを使用してもよく、例えば、インディアグライコール社から販売されているバイオマスエチレングリコールを好適に使用できる。 Biomass-derived diol compounds, for example, biomass-derived ethylene glycol, are made from ethanol (biomass ethanol) produced from biomass as a raw material. Biomass-derived ethylene glycol can be obtained by a method of producing biomass ethanol via ethylene oxide or the like by a conventionally known method. Further, the biomass ethylene glycol sold may be used, and for example, the biomass ethylene glycol sold by India Glycol Co., Ltd. can be preferably used.
 ポリエステルとしては、リサイクルポリエステルを使用してもよい。リサイクルポリエステルとしては、例えば、ケミカルリサイクルポリエステル及びメカニカルリサイクルポリエステルが挙げられる。ケミカルリサイクルポリエステルとは、ポリエステル容器をモノマーレベルまで分解して、再度、該モノマーを重合することにより得られたポリエステルを意味する。メカニカルリサイクルポリエステルとは、ポリエステル容器を選別・粉砕・洗浄して汚染物質や異物を除去し、フレークを得て、フレークを更に高温・減圧下などで一定時間処理して樹脂内部の汚染物質を除去することにより得られたポリエステルを意味する。 As the polyester, recycled polyester may be used. Examples of the recycled polyester include chemical recycled polyester and mechanical recycled polyester. The chemical recycled polyester means a polyester obtained by decomposing a polyester container to the monomer level and polymerizing the monomer again. Mechanically recycled polyester is a polyester container that is sorted, crushed, and washed to remove contaminants and foreign substances, and flakes are obtained. The flakes are further treated at high temperature and under reduced pressure for a certain period of time to remove contaminants inside the resin. Means the polyester obtained by doing so.
 延伸多層基材を構成する各層における上記同種の樹脂材料の含有割合は、それぞれ独立に、好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。これにより、積層体のリサイクル性を向上できる。 The content ratio of the same type of resin material in each layer constituting the stretched multilayer base material is independently, preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more. This makes it possible to improve the recyclability of the laminated body.
 延伸多層基材における上記同種の樹脂材料の含有割合は、好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。これにより、積層体のリサイクル性を向上できる。 The content ratio of the same type of resin material in the stretched multilayer base material is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more. This makes it possible to improve the recyclability of the laminated body.
 延伸多層基材は、添加剤を1種又は2種以上含有してもよい。添加剤としては、例えば、架橋剤、アンチブロッキング剤、滑(スリップ)剤、酸化防止剤、紫外線吸収剤、光安定剤、充填剤、補強剤、帯電防止剤、顔料、染料及び改質用樹脂が挙げられる。延伸多層基材を構成する各層は、それぞれ独立に、上記添加剤を含有できる。 The stretched multilayer base material may contain one or more additives. Additives include, for example, cross-linking agents, anti-blocking agents, slip agents, antioxidants, UV absorbers, light stabilizers, fillers, reinforcing agents, antistatic agents, pigments, dyes and modifying resins. Can be mentioned. Each layer constituting the stretched multilayer base material can independently contain the above-mentioned additive.
 延伸多層基材のヘイズ値は、好ましくは25%以下、より好ましくは15%以下、さらに好ましくは10%以下である。ヘイズ値は小さいほど好ましいが、一実施形態において、その下限値は0.1%又は1%であってもよい。延伸多層基材のヘイズ値は、JIS K7136に準拠して測定する。 The haze value of the stretched multilayer base material is preferably 25% or less, more preferably 15% or less, still more preferably 10% or less. The smaller the haze value is, the more preferable it is, but in one embodiment, the lower limit value may be 0.1% or 1%. The haze value of the stretched multilayer base material is measured according to JIS K7136.
 延伸多層基材の総厚さは、好ましくは10μm以上60μm以下、より好ましくは15μm以上50μm以下である。延伸多層基材の厚さが10μm以上であると、積層体の剛性及び強度を向上できる。延伸多層基材の厚さが60μm以下であると、積層体の加工適性を向上できる。 The total thickness of the stretched multilayer base material is preferably 10 μm or more and 60 μm or less, and more preferably 15 μm or more and 50 μm or less. When the thickness of the stretched multilayer base material is 10 μm or more, the rigidity and strength of the laminated body can be improved. When the thickness of the stretched multilayer base material is 60 μm or less, the processability of the laminated body can be improved.
 延伸多層基材には、表面処理が施されていることが好ましい。これにより、延伸多層基材の表面層と、延伸多層基材に積層される層との密着性を向上できる。表面処理の方法としては、例えば、コロナ放電処理、オゾン処理、酸素ガス及び窒素ガスなどのガスを用いた低温プラズマ処理、グロー放電処理などの物理的処理;並びに化学薬品を用いた酸化処理などの化学的処理が挙げられる。また、延伸多層基材表面に、従来公知のアンカーコート剤を用いて、アンカーコート層を形成してもよい。 It is preferable that the stretched multilayer base material is surface-treated. This makes it possible to improve the adhesion between the surface layer of the stretched multilayer base material and the layer laminated on the stretched multilayer base material. Surface treatment methods include, for example, corona discharge treatment, ozone treatment, low temperature plasma treatment using gases such as oxygen gas and nitrogen gas, physical treatment such as glow discharge treatment; and oxidation treatment using chemicals. Chemical treatment can be mentioned. Further, an anchor coat layer may be formed on the surface of the stretched multilayer base material by using a conventionally known anchor coat agent.
 延伸多層基材は、例えば、インフレーション法又はTダイ法により、複数の樹脂材料又は樹脂組成物を製膜して積層物を形成し、得られた積層物を延伸することにより製造できる。延伸処理により、基材の透明性、剛性、強度及び耐熱性を向上でき、該基材を例えば包装材料の基材として好適に使用できる。 The stretched multilayer base material can be produced by, for example, forming a laminate by forming a film of a plurality of resin materials or resin compositions by an inflation method or a T-die method, and stretching the obtained laminate. By the stretching treatment, the transparency, rigidity, strength and heat resistance of the base material can be improved, and the base material can be suitably used as a base material for, for example, a packaging material.
 延伸多層基材は、一実施形態において、多層構造を有する積層物(前駆体)を、延伸処理して得られる。具体的には、各層をチューブ状に共押出して製膜し、積層物を製造できる。あるいは、各層をチューブ状に共押出し、次いで、対向する層同士をゴムロールなどにより圧着することによって、積層物を製造できる。このような方法により積層物を製造することにより、欠陥品数を顕著に低減でき、生産効率を向上できる。 The stretched multilayer base material is obtained by stretching a laminate (precursor) having a multilayer structure in one embodiment. Specifically, each layer can be co-extruded into a tube to form a film, and a laminate can be produced. Alternatively, a laminate can be produced by co-extruding each layer into a tube shape and then pressure-bonding the opposing layers with a rubber roll or the like. By manufacturing the laminate by such a method, the number of defective products can be remarkably reduced and the production efficiency can be improved.
 例えば延伸多層基材がポリエチレンにより構成される場合であって、Tダイ法により多層基材を製造する場合、多層基材の各層を構成するポリエチレンのメルトフローレート(MFR)は、製膜性、及び多層基材の加工適性という観点から、好ましくは3g/10分以上20g/10分以下である。 For example, when the stretched multilayer substrate is made of polyethylene and the multilayer substrate is manufactured by the T-die method, the melt flow rate (MFR) of polyethylene constituting each layer of the multilayer substrate has a film-forming property. From the viewpoint of processing suitability of the multilayer substrate, it is preferably 3 g / 10 minutes or more and 20 g / 10 minutes or less.
 例えば延伸多層基材がポリエチレンにより構成される場合であって、インフレーション法により多層基材を製造する場合、多層基材の各層を構成するポリエチレンのMFRは、製膜性、及び多層基材の加工適性という観点から、好ましくは0.5g/10分以上5g/10分以下である。 For example, when the stretched multilayer base material is composed of polyethylene and the multilayer base material is manufactured by the inflation method, the MFR of polyethylene constituting each layer of the multilayer base material has film-forming properties and processing of the multilayer base material. From the viewpoint of suitability, it is preferably 0.5 g / 10 minutes or more and 5 g / 10 minutes or less.
 延伸多層基材は、例えば、上述した積層物を延伸して得られる。好ましい延伸倍率は、上述したとおりである。なお、インフレーション製膜機において、積層物の延伸も合わせて行うことができる。これにより、延伸多層基材を製造できることから、生産効率をより向上できる。 The stretched multilayer base material is obtained, for example, by stretching the above-mentioned laminate. The preferred draw ratio is as described above. In the inflation film forming machine, stretching of the laminate can also be performed. As a result, the stretched multilayer base material can be manufactured, so that the production efficiency can be further improved.
 以下、延伸多層基材の実施形態について、数例を説明する。以下、ポリエチレンにより構成される層を「ポリエチレン層」のように記載する。
 第1の実施形態の延伸多層基材は、中密度ポリエチレン層と、高密度ポリエチレン層と、中密度ポリエチレン及び高密度ポリエチレンのブレンド層と、高密度ポリエチレン層と、中密度ポリエチレン層とを、厚さ方向にこの順に備える。このような構成とすることにより、基材の印刷適性を向上でき、強度及び耐熱性を向上でき、延伸前積層物の延伸適性を向上できる。
Hereinafter, some examples of the embodiments of the stretched multilayer base material will be described. Hereinafter, the layer made of polyethylene is described as "polyethylene layer".
The stretched multilayer base material of the first embodiment has a thickness of a medium-density polyethylene layer, a high-density polyethylene layer, a blend layer of medium-density polyethylene and high-density polyethylene, a high-density polyethylene layer, and a medium-density polyethylene layer. Prepare in this order in the vertical direction. With such a configuration, the printability of the base material can be improved, the strength and heat resistance can be improved, and the stretchability of the pre-stretched laminate can be improved.
 中密度ポリエチレン及び高密度ポリエチレンの上記ブレンド層における、中密度ポリエチレンと高密度ポリエチレンとの質量比(中密度ポリエチレン/高密度ポリエチレン)は、好ましくは0.25以上4以下、より好ましくは0.4以上2.4以下である。 The mass ratio of medium-density polyethylene to high-density polyethylene (medium-density polyethylene / high-density polyethylene) in the above-mentioned blend layer of medium-density polyethylene and high-density polyethylene is preferably 0.25 or more and 4 or less, more preferably 0.4. It is 2.4 or less.
 第2の実施形態の延伸多層基材は、中密度ポリエチレン層と、中密度ポリエチレン層と、中密度ポリエチレン及び直鎖状低密度ポリエチレンのブレンド層と、中密度ポリエチレン層と、中密度ポリエチレン層とを、厚さ方向にこの順に備える。このような構成とすることにより、基材の印刷適性を向上でき、強度及び耐熱性を向上でき、延伸前積層物の延伸適性を向上できる。 The stretched multilayer base material of the second embodiment includes a medium-density polyethylene layer, a medium-density polyethylene layer, a blend layer of medium-density polyethylene and linear low-density polyethylene, a medium-density polyethylene layer, and a medium-density polyethylene layer. Are provided in this order in the thickness direction. With such a configuration, the printability of the base material can be improved, the strength and heat resistance can be improved, and the stretchability of the pre-stretched laminate can be improved.
 中密度ポリエチレン及び直鎖状低密度ポリエチレンの上記ブレンド層における、中密度ポリエチレンと直鎖状低密度ポリエチレンとの質量比(中密度ポリエチレン/直鎖状低密度ポリエチレン)は、好ましくは0.25以上4以下、より好ましくは0.4以上2.4以下である。 The mass ratio of medium-density polyethylene to linear low-density polyethylene (medium-density polyethylene / linear low-density polyethylene) in the above-mentioned blend layer of medium-density polyethylene and linear low-density polyethylene is preferably 0.25 or more. It is 4 or less, more preferably 0.4 or more and 2.4 or less.
 第3の実施形態の延伸多層基材は、中密度ポリエチレン及び高密度ポリエチレンのブレンド層と、中密度ポリエチレン及び直鎖状低密度ポリエチレンのブレンド層と、直鎖状低密度ポリエチレン層と、中密度ポリエチレン及び直鎖状低密度ポリエチレンのブレンド層と、中密度ポリエチレン及び高密度ポリエチレンのブレンド層とを、厚さ方向にこの順に備える。このような構成とすることにより、基材の印刷適性を向上でき、強度及び耐熱性を向上でき、延伸前積層物の延伸適性を向上できる。 The stretched multilayer base material of the third embodiment includes a blend layer of medium-density polyethylene and high-density polyethylene, a blend layer of medium-density polyethylene and linear low-density polyethylene, a linear low-density polyethylene layer, and medium density. A blend layer of polyethylene and linear low-density polyethylene and a blend layer of medium-density polyethylene and high-density polyethylene are provided in this order in the thickness direction. With such a configuration, the printability of the base material can be improved, the strength and heat resistance can be improved, and the stretchability of the pre-stretched laminate can be improved.
 中密度ポリエチレン及び高密度ポリエチレンの上記ブレンド層における、中密度ポリエチレンと高密度ポリエチレンとの質量比(中密度ポリエチレン/高密度ポリエチレン)は、それぞれ独立に、好ましくは0.25以上4以下、より好ましくは0.4以上2.4以下である。
 中密度ポリエチレン及び直鎖状低密度ポリエチレンの上記ブレンド層における、中密度ポリエチレンと直鎖状低密度ポリエチレンとの質量比(中密度ポリエチレン/直鎖状低密度ポリエチレン)は、好ましくは0.25以上4以下、より好ましくは0.4以上2.4以下である。
The mass ratio of medium-density polyethylene to high-density polyethylene (medium-density polyethylene / high-density polyethylene) in the above-mentioned blend layer of medium-density polyethylene and high-density polyethylene is independently, preferably 0.25 or more and 4 or less, more preferably. Is 0.4 or more and 2.4 or less.
The mass ratio of medium-density polyethylene to linear low-density polyethylene (medium-density polyethylene / linear low-density polyethylene) in the above-mentioned blend layer of medium-density polyethylene and linear low-density polyethylene is preferably 0.25 or more. It is 4 or less, more preferably 0.4 or more and 2.4 or less.
 第4の実施形態の延伸多層基材は、高密度ポリエチレン及び中密度ポリエチレンのブレンド層と、中密度ポリエチレン層と、直鎖状低密度ポリエチレン及び中密度ポリエチレンのブレンド層と、中密度ポリエチレン層と、高密度ポリエチレン及び中密度ポリエチレンのブレンド層とを、厚さ方向にこの順に備える。このような構成とすることにより、基材の印刷適性を向上でき、強度及び耐熱性を向上でき、延伸前積層物の延伸適性を向上できる。 The stretched multilayer base material of the fourth embodiment includes a blend layer of high-density polyethylene and medium-density polyethylene, a medium-density polyethylene layer, a blend layer of linear low-density polyethylene and medium-density polyethylene, and a medium-density polyethylene layer. , High-density polyethylene and a blend layer of medium-density polyethylene are provided in this order in the thickness direction. With such a configuration, the printability of the base material can be improved, the strength and heat resistance can be improved, and the stretchability of the pre-stretched laminate can be improved.
 高密度ポリエチレン及び中密度ポリエチレンの上記ブレンド層における、中密度ポリエチレンと高密度ポリエチレンとの質量比(中密度ポリエチレン/高密度ポリエチレン)は、それぞれ独立に、好ましくは0.25以上4以下、より好ましくは0.4以上2.4以下である。
 直鎖状低密度ポリエチレン及び中密度ポリエチレンのブレンド層における、直鎖状低密度ポリエチレンと中密度ポリエチレンとの質量比(直鎖状低密度ポリエチレン/中密度ポリエチレン)は、好ましくは0.25以上4以下、より好ましくは0.4以上2.4以下である。
The mass ratio of medium-density polyethylene to high-density polyethylene (medium-density polyethylene / high-density polyethylene) in the above-mentioned blend layer of high-density polyethylene and medium-density polyethylene is independently, preferably 0.25 or more and 4 or less, more preferably. Is 0.4 or more and 2.4 or less.
The mass ratio of the linear low-density polyethylene to the medium-density polyethylene (linear low-density polyethylene / medium-density polyethylene) in the blend layer of the linear low-density polyethylene and the medium-density polyethylene is preferably 0.25 or more 4 Below, it is more preferably 0.4 or more and 2.4 or less.
 第1~第4の実施形態の延伸多層基材において、2つの表面層のそれぞれの厚さは、それぞれ独立に、好ましくは0.5μm以上10μm以下、より好ましくは1μm以上8μm以下、さらに好ましくは1μm以上5μm以下である。これにより、基材の耐熱性及び印刷適性をより向上できる。 In the stretched multilayer substrate of the first to fourth embodiments, the thickness of each of the two surface layers is independently, preferably 0.5 μm or more and 10 μm or less, more preferably 1 μm or more and 8 μm or less, still more preferably. It is 1 μm or more and 5 μm or less. Thereby, the heat resistance and printability of the base material can be further improved.
 第1~第4の実施形態の延伸多層基材において、2つの表面層のそれぞれの厚さは、内側3層(多層中間層)の合計厚さよりも小さいことが好ましい。2つの表面層のそれぞれの厚さと、多層中間層の合計厚さとの比(表面層/多層中間層)は、好ましくは0.05以上0.8以下、より好ましくは0.1以上0.7以下、さらに好ましくは0.1以上0.4以下である。これにより、基材の剛性、強度及び耐熱性をより向上できる。 In the stretched multilayer base material of the first to fourth embodiments, the thickness of each of the two surface layers is preferably smaller than the total thickness of the inner three layers (multilayer intermediate layer). The ratio of the thickness of each of the two surface layers to the total thickness of the multilayer intermediate layer (surface layer / multilayer intermediate layer) is preferably 0.05 or more and 0.8 or less, more preferably 0.1 or more and 0.7. Below, it is more preferably 0.1 or more and 0.4 or less. Thereby, the rigidity, strength and heat resistance of the base material can be further improved.
 第5の実施形態の延伸多層基材は、高密度ポリエチレン層と、中密度ポリエチレン層とを、厚さ方向にこの順に備える。基材の表面層が高密度ポリエチレン層であることにより、基材の強度及び耐熱性を向上できる。基材が中密度ポリエチレン層を備えることにより、延伸前積層物の延伸適性を向上できる。 The stretched multilayer base material of the fifth embodiment includes a high-density polyethylene layer and a medium-density polyethylene layer in this order in the thickness direction. Since the surface layer of the base material is a high-density polyethylene layer, the strength and heat resistance of the base material can be improved. By providing the base material with a medium-density polyethylene layer, the stretchability of the pre-stretched laminate can be improved.
 第6の実施形態の延伸多層基材は、高密度ポリエチレン層と、中密度ポリエチレン層と、高密度ポリエチレン層とを、厚さ方向にこの順に備える。このような構成とすることにより、基材の強度及び耐熱性を向上でき、基材におけるカールの発生を抑制でき、延伸前積層物の延伸適性を向上できる。 The stretched multilayer base material of the sixth embodiment includes a high-density polyethylene layer, a medium-density polyethylene layer, and a high-density polyethylene layer in this order in the thickness direction. With such a configuration, the strength and heat resistance of the base material can be improved, the generation of curl in the base material can be suppressed, and the stretchability of the pre-stretched laminate can be improved.
 第5~第6の実施形態の延伸多層基材において、高密度ポリエチレン層の厚さは、中密度ポリエチレン層の厚さ以下であることが好ましい。高密度ポリエチレン層の厚さと、中密度ポリエチレン層の厚さとの比は、好ましくは0.1以上1以下、より好ましくは0.2以上0.5以下である。 In the stretched multilayer base material of the fifth to sixth embodiments, the thickness of the high-density polyethylene layer is preferably less than or equal to the thickness of the medium-density polyethylene layer. The ratio of the thickness of the high-density polyethylene layer to the thickness of the medium-density polyethylene layer is preferably 0.1 or more and 1 or less, and more preferably 0.2 or more and 0.5 or less.
 第7の実施形態の延伸多層基材は、高密度ポリエチレン層と、中密度ポリエチレン層と、低密度ポリエチレン層、直鎖状低密度ポリエチレン層又は超低密度ポリエチレン層(記載簡略化のため、これらの3層をまとめて「低密度ポリエチレン層等」と記載する。)と、中密度ポリエチレン層と、高密度ポリエチレン層とを、厚さ方向にこの順に備える。このような構成とすることにより、延伸前積層物の延伸適性を向上でき、基材の強度及び耐熱性を向上でき、基材におけるカールの発生を抑制できる。 The stretched multilayer substrate of the seventh embodiment includes a high-density polyethylene layer, a medium-density polyethylene layer, a low-density polyethylene layer, a linear low-density polyethylene layer, or an ultra-low-density polyethylene layer (for simplification of description, these are used. 3 layers are collectively referred to as "low density polyethylene layer or the like"), a medium density polyethylene layer, and a high density polyethylene layer are provided in this order in the thickness direction. With such a configuration, the stretchability of the pre-stretched laminate can be improved, the strength and heat resistance of the base material can be improved, and the generation of curl in the base material can be suppressed.
 第7の実施形態の延伸多層基材において、高密度ポリエチレン層の厚さは、中密度ポリエチレン層の厚さ以下であることが好ましい。高密度ポリエチレン層の厚さと、中密度ポリエチレン層の厚さとの比は、好ましくは0.1以上1以下、より好ましくは0.2以上0.5以下である。 In the stretched multilayer base material of the seventh embodiment, the thickness of the high-density polyethylene layer is preferably less than or equal to the thickness of the medium-density polyethylene layer. The ratio of the thickness of the high-density polyethylene layer to the thickness of the medium-density polyethylene layer is preferably 0.1 or more and 1 or less, and more preferably 0.2 or more and 0.5 or less.
 第7の実施形態の延伸多層基材において、高密度ポリエチレン層の厚さは、低密度ポリエチレン層等の厚さ以上であることが好ましい。高密度ポリエチレン層の厚さと、低密度ポリエチレン層の厚さとの比は、好ましくは1以上4以下、より好ましくは1以上2以下である。 In the stretched multilayer base material of the seventh embodiment, the thickness of the high-density polyethylene layer is preferably greater than or equal to the thickness of the low-density polyethylene layer or the like. The ratio of the thickness of the high-density polyethylene layer to the thickness of the low-density polyethylene layer is preferably 1 or more and 4 or less, and more preferably 1 or more and 2 or less.
 他の実施形態の延伸多層基材として、高密度ポリエチレン層と、高密度ポリエチレン層と、中密度ポリエチレン及び高密度ポリエチレンのブレンド層と、高密度ポリエチレン層と、高密度ポリエチレンとを、厚さ方向にこの順に備える基材;中密度ポリエチレン層と、高密度ポリエチレン層と、直鎖状低密度ポリエチレン層と、高密度ポリエチレン層と、中密度ポリエチレン層とを、厚さ方向にこの順に備える基材も挙げられる。 As the stretched multilayer base material of another embodiment, a high-density polyethylene layer, a high-density polyethylene layer, a blend layer of medium-density polyethylene and high-density polyethylene, a high-density polyethylene layer, and a high-density polyethylene are provided in the thickness direction. Base material provided in this order; a base material provided with a medium-density polyethylene layer, a high-density polyethylene layer, a linear low-density polyethylene layer, a high-density polyethylene layer, and a medium-density polyethylene layer in this order in the thickness direction. Can also be mentioned.
 延伸多層基材は、上述した本開示の第1~第5の態様のポリエチレン多層基材であってもよい。 The stretched multilayer base material may be the polyethylene multilayer base material of the first to fifth aspects of the present disclosure described above.
 <バリア層>
 一実施形態において、本開示の第5の態様の積層体は、延伸多層基材とヒートシール層との間に、バリア層を備える。これにより、積層体のガスバリア性、具体的には、酸素バリア性及び水蒸気バリア性を向上できる。バリア層は、延伸多層基材の表面に形成してもよいし、ヒートシール層の表面に形成してもよい。
<Barrier layer>
In one embodiment, the laminate of the fifth aspect of the present disclosure comprises a barrier layer between the stretched multilayer substrate and the heat seal layer. Thereby, the gas barrier property of the laminated body, specifically, the oxygen barrier property and the water vapor barrier property can be improved. The barrier layer may be formed on the surface of the stretched multilayer base material or may be formed on the surface of the heat seal layer.
 延伸多層基材とヒートシール層との間に、バリア層を接着剤等を介して設けてもよい。例えば、延伸多層基材とヒートシール層との間に、第2の基材と、第2の基材上に形成されたバリア層とを備えるバリアフィルムを、必要に応じて接着剤等を介して設けてもよい。この態様では、リサイクル性という観点から、バリアフィルムにおける第2の基材は、延伸多層基材を構成する樹脂材料と同種の樹脂材料により構成されることが好ましい。第2の基材における上記同種の樹脂材料の含有割合は、好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。これにより、積層体のリサイクル性を向上できる。 A barrier layer may be provided between the stretched multilayer base material and the heat seal layer via an adhesive or the like. For example, a barrier film provided with a second base material and a barrier layer formed on the second base material between the stretched multilayer base material and the heat seal layer is provided with an adhesive or the like, if necessary. May be provided. In this aspect, from the viewpoint of recyclability, it is preferable that the second base material in the barrier film is made of a resin material of the same type as the resin material constituting the stretched multilayer base material. The content ratio of the same kind of resin material in the second base material is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more. This makes it possible to improve the recyclability of the laminated body.
 バリア層の詳細は、[第1~第4の態様及び他の態様の積層体]の<バリア層>の欄にて説明したとおりであり、本欄での説明は省略する。 The details of the barrier layer are as described in the <Barrier layer> column of [Laminates of the first to fourth aspects and other embodiments], and the description in this column is omitted.
 <印刷層>
 本開示の第5の態様の積層体は、一実施形態において、上述した延伸多層基材上に形成された印刷層をさらに備える。一実施形態において、画像の経時的な劣化を抑制できることから、延伸多層基材におけるヒートシール層が設けられる側に印刷層が形成されていることが好ましい。第5の態様の積層体が延伸多層基材上にバリア層を備える場合は、例えば、バリア層上に印刷層を設けてもよい。この場合、本開示の第5の態様の積層体は、例えば、延伸多層基材と、バリア層と、印刷層と、ヒートシール層とを厚さ方向にこの順に備える。印刷層の詳細は、[印刷基材]の欄にて説明したとおりであり、本欄での説明は省略する。
<Print layer>
The laminate of the fifth aspect of the present disclosure further comprises, in one embodiment, a printing layer formed on the stretched multilayer substrate described above. In one embodiment, it is preferable that the printed layer is formed on the side of the stretched multilayer substrate on which the heat seal layer is provided, because deterioration of the image over time can be suppressed. When the laminate of the fifth aspect has a barrier layer on the stretched multilayer base material, for example, a printing layer may be provided on the barrier layer. In this case, the laminate of the fifth aspect of the present disclosure includes, for example, a stretched multilayer base material, a barrier layer, a printing layer, and a heat seal layer in this order in the thickness direction. The details of the print layer are as described in the [Printing substrate] column, and the description in this column is omitted.
 <ヒートシール層>
 本開示の第5の態様の積層体は、ヒートシール層を備える。第5の態様の積層体におけるヒートシール層は、延伸処理が施されていない層である。ヒートシール層は、延伸多層基材を構成する樹脂材料と同種の樹脂材料により構成される。このような構成を有する積層体は、ヒートシール性及びリサイクル性を兼ね備える。
<Heat seal layer>
The laminate of the fifth aspect of the present disclosure includes a heat seal layer. The heat seal layer in the laminate of the fifth aspect is a layer that has not been stretched. The heat seal layer is made of a resin material of the same type as the resin material constituting the stretched multilayer base material. The laminate having such a structure has both heat-sealing property and recyclability.
 例えば延伸多層基材がポリオレフィンにより構成される場合は、ヒートシール層は、延伸多層基材と同種の樹脂材料である、ポリオレフィンにより構成される。上述したポリオレフィンの中でも、ポリエチレン及びポリプロピレンが好ましい。 For example, when the stretched multilayer substrate is composed of polyolefin, the heat seal layer is composed of polyolefin, which is a resin material of the same type as the stretched multilayer substrate. Among the above-mentioned polyolefins, polyethylene and polypropylene are preferable.
 延伸多層基材がポリエチレンにより構成される実施形態では、ヒートシール層を構成するポリエチレンとしては、例えば、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン及び超低密度ポリエチレンが挙げられ、ヒートシール性という観点から、低密度ポリエチレン、直鎖状低密度ポリエチレン及び超低密度ポリエチレンが好ましい。環境負荷低減という観点から、バイオマス由来のポリエチレン及び/又はリサイクルされたポリエチレンを用いてもよい。 In the embodiment in which the stretched multilayer base material is made of polyethylene, examples of the polyethylene constituting the heat seal layer include high-density polyethylene, medium-density polyethylene, low-density polyethylene, linear low-density polyethylene, and ultra-low-density polyethylene. From the viewpoint of heat-sealing property, low-density polyethylene, linear low-density polyethylene and ultra-low-density polyethylene are preferable. From the viewpoint of reducing the environmental load, polyethylene derived from biomass and / or recycled polyethylene may be used.
 延伸多層基材がポリエチレンにより構成される実施形態において、ヒートシール層におけるポリエチレンの含有割合は、好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。これにより、積層体のリサイクル性を向上できる。 In the embodiment in which the stretched multilayer base material is made of polyethylene, the content ratio of polyethylene in the heat seal layer is preferably 80% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more. This makes it possible to improve the recyclability of the laminated body.
 延伸多層基材がポリプロピレンにより構成される実施形態では、ヒートシール層を構成するポリプロピレンとしては、例えば、プロピレンホモポリマー、プロピレンランダムコポリマー及びプロピレンブロックコポリマーが挙げられる。ヒートシール性という観点から、ポリプロピレンの密度は、好ましくは0.88g/cm以上0.92g/cm以下、より好ましくは0.90g/cm以上0.91g/cm以下である。環境負荷低減という観点から、バイオマス由来のポリプロピレン及び/又はリサイクルされたポリプロピレンを用いてもよい。 In the embodiment in which the stretched multilayer substrate is made of polypropylene, examples of polypropylene constituting the heat seal layer include propylene homopolymers, propylene random copolymers, and propylene block copolymers. From the viewpoint of heat-sealing property, the density of polypropylene is preferably 0.88 g / cm 3 or more and 0.92 g / cm 3 or less, and more preferably 0.90 g / cm 3 or more and 0.91 g / cm 3 or less. From the viewpoint of reducing the environmental load, polypropylene derived from biomass and / or recycled polypropylene may be used.
 延伸多層基材がポリプロピレンにより構成される実施形態において、ヒートシール層におけるポリプロピレンの含有割合は、好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。これにより、積層体のリサイクル性を向上できる。 In the embodiment in which the stretched multilayer base material is made of polypropylene, the content ratio of polypropylene in the heat seal layer is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more. This makes it possible to improve the recyclability of the laminated body.
 例えば延伸多層基材がポリエステルにより構成される場合は、ヒートシール層は、延伸多層基材と同種の樹脂材料である、ポリエステルにより構成される。上述したポリエステルの中でも、ポリエチレンテレフタレートが好ましい。環境負荷低減という観点から、バイオマス由来のポリエステル及び/又はリサイクルされたポリエステルを用いてもよい。 For example, when the stretched multilayer base material is composed of polyester, the heat seal layer is composed of polyester, which is a resin material of the same type as the stretched multilayer base material. Among the polyesters described above, polyethylene terephthalate is preferable. From the viewpoint of reducing the environmental load, biomass-derived polyester and / or recycled polyester may be used.
 延伸多層基材がポリエステルにより構成される実施形態では、ヒートシール層は、ヒートシール性という観点から、低結晶性又は非晶性ポリエステルにより構成されることが好ましい。ヒートシール層を構成するポリエステルの結晶化度は、好ましくは12%以下、より好ましくは10%以下である。これにより、ヒートシール性をより向上できる。 In the embodiment in which the stretched multilayer base material is made of polyester, the heat seal layer is preferably made of low crystalline or amorphous polyester from the viewpoint of heat sealability. The crystallinity of the polyester constituting the heat seal layer is preferably 12% or less, more preferably 10% or less. This makes it possible to further improve the heat sealability.
 ポリエステルの結晶化度は、示差走査熱量計を用いて、低結晶性又は非晶性ポリエステルを融解させたときの融解熱量を完全結晶の融解熱量(ポリエチレンテレフタレートは140J/g)で除した値に100を乗じることにより求める。 The crystallinity of the polyester is the value obtained by dividing the calorific value of melting when the low crystalline or amorphous polyester is melted by the calorific value of melting of the complete crystal (polyethylene terephthalate is 140 J / g) using a differential scanning calorimeter. Obtained by multiplying by 100.
 ヒートシール層を構成するポリエステルのガラス転移温度(Tg)は、好ましくは60℃以上90℃以下、より好ましくは63℃以上80℃以下である。Tgが90℃以下であると、ヒートシール層のヒートシール性を向上できる。Tgが60℃以上であると、ブロッキングの発生を抑制できる。Tgは、JIS K7121に準拠して、示差走査熱量測定により求める値である。 The glass transition temperature (Tg) of the polyester constituting the heat seal layer is preferably 60 ° C. or higher and 90 ° C. or lower, more preferably 63 ° C. or higher and 80 ° C. or lower. When Tg is 90 ° C. or lower, the heat sealability of the heat seal layer can be improved. When Tg is 60 ° C. or higher, the occurrence of blocking can be suppressed. Tg is a value obtained by differential scanning calorimetry in accordance with JIS K7121.
 延伸多層基材がポリエステルにより構成される実施形態において、ヒートシール層におけるポリエステルの含有割合は、好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上である。これにより、積層体のリサイクル性を向上できる。 In the embodiment in which the stretched multilayer base material is made of polyester, the content ratio of polyester in the heat seal layer is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more. This makes it possible to improve the recyclability of the laminated body.
 ヒートシール層は、添加剤を1種又は2種以上含有してもよい。添加剤としては、例えば、架橋剤、アンチブロッキング剤、滑(スリップ)剤、酸化防止剤、紫外線吸収剤、光安定剤、充填剤、補強剤、帯電防止剤、顔料、染料及び改質用樹脂が挙げられる。ヒートシール層を構成する各層は、それぞれ独立に、上記添加剤を含有できる。 The heat seal layer may contain one or more additives. Additives include, for example, cross-linking agents, anti-blocking agents, slip agents, antioxidants, UV absorbers, light stabilizers, fillers, reinforcing agents, antistatic agents, pigments, dyes and modifying resins. Can be mentioned. Each layer constituting the heat seal layer can independently contain the above-mentioned additive.
 ヒートシール層は、単層であってもよく、2層以上の多層構造であってもよい。一実施形態において、ヒートシール層の層数は、多層構造の場合は、2層以上7層以下である。ヒートシール層の各層も、それぞれ同種の樹脂材料により構成される。 The heat seal layer may be a single layer or may have a multi-layer structure of two or more layers. In one embodiment, the number of layers of the heat seal layer is 2 or more and 7 or less in the case of a multilayer structure. Each layer of the heat seal layer is also composed of the same type of resin material.
 ヒートシール層は、一実施形態において、延伸多層基材を構成する樹脂材料と同種の樹脂材料により構成される樹脂フィルムである。この樹脂フィルムは、未延伸の樹脂フィルムである。これにより、優れたヒートシール性が得られる。この樹脂フィルムは、多層構造を有してもよい。上記樹脂フィルムは、例えば、キャスト法、Tダイ法又はインフレーション法などを利用することにより作製できる。 In one embodiment, the heat seal layer is a resin film made of a resin material of the same type as the resin material constituting the stretched multilayer base material. This resin film is an unstretched resin film. As a result, excellent heat-sealing properties can be obtained. This resin film may have a multilayer structure. The resin film can be produced, for example, by using a casting method, a T-die method, an inflation method, or the like.
 ヒートシール層は、一実施形態において、延伸多層基材を構成する樹脂材料と同種の樹脂材料により構成される溶融押出層である。この溶融押出層は、多層構造を有してもよい。 In one embodiment, the heat seal layer is a melt extrusion layer made of a resin material of the same type as the resin material constituting the stretched multilayer base material. This melt extruded layer may have a multi-layer structure.
 例えば、未延伸フィルムを必要に応じて接着層を介して延伸多層基材上に積層するか、或いはヒートシール性樹脂材料を延伸多層基材上に溶融押出しすることにより、ヒートシール層を形成できる。接着層としては、例えば、後述する接着層が挙げられる。 For example, a heat-sealing layer can be formed by laminating an unstretched film on a stretched multilayer base material via an adhesive layer as needed, or by melt-extruding a heat-sealing resin material onto a stretched multilayer base material. .. Examples of the adhesive layer include an adhesive layer described later.
 ヒートシール層の厚さは、好ましくは10μm以上300μm以下、より好ましくは15μm以上250μm以下である。ヒートシール層の厚さは、ヒートシール層の強度及び積層体の加工適性という観点から、本開示の第5の態様の積層体により製造される包装材料に充填される内容物の質量に応じ適宜変更することが好ましい。 The thickness of the heat seal layer is preferably 10 μm or more and 300 μm or less, and more preferably 15 μm or more and 250 μm or less. The thickness of the heat-sealed layer is appropriately determined according to the mass of the contents to be filled in the packaging material produced by the laminated body of the fifth aspect of the present disclosure from the viewpoint of the strength of the heat-sealed layer and the processability of the laminated body. It is preferable to change it.
 例えば、包装材料が小袋である場合、ヒートシール層の厚さは、好ましくは20μm以上60μm以下である。この場合、例えば1g以上200g以下の内容物が小袋内に良好に充填される。 For example, when the packaging material is a pouch, the thickness of the heat seal layer is preferably 20 μm or more and 60 μm or less. In this case, for example, the contents of 1 g or more and 200 g or less are well filled in the pouch.
 例えば、包装材料がスタンドパウチである場合、ヒートシール層の厚さは、好ましくは40μm以上200μm以下である。この場合、例えば50g以上2000g以下の内容物がスタンドパウチ内に良好に充填される。 For example, when the packaging material is a stand pouch, the thickness of the heat seal layer is preferably 40 μm or more and 200 μm or less. In this case, for example, the contents of 50 g or more and 2000 g or less are well filled in the stand pouch.
 本開示の第5の態様の積層体は、延伸多層基材が包装材料の外層フィルムとして要求される剛性、強度及び耐熱性を充たし、ヒートシール層が包装化を可能とする。さらに、延伸多層基材とヒートシール層とは、同種の樹脂材料により構成される。このため、上記積層体は、リサイクル性が求められる包装材料を構成する材料として適している。 In the laminate of the fifth aspect of the present disclosure, the stretched multilayer base material satisfies the rigidity, strength and heat resistance required for the outer layer film of the packaging material, and the heat seal layer enables packaging. Further, the stretched multilayer base material and the heat seal layer are made of the same kind of resin material. Therefore, the laminate is suitable as a material for constituting a packaging material that is required to be recyclable.
 本開示の第5の態様の積層体は、一実施形態において、必要に応じて印刷層が形成された延伸多層基材と、ヒートシール層とのみからなる。本開示の第5の態様の積層体は、一実施形態において、必要に応じて印刷層が形成された延伸多層基材と、接着層と、ヒートシール層とのみからなる。これにより、本開示の第5の態様の積層体は、各樹脂層が同種の樹脂材料により構成されることから、リサイクル性を特に向上できる。
 <接着層>
 本開示の第5の態様の積層体は、一実施形態において、延伸多層基材とヒートシール層との間や、延伸多層基材とバリアフィルムとの間、バリアフィルムとヒートシール層との間などの任意の層間に、接着層を備える。これにより、延伸多層基材とヒートシール層との密着性や、他の層間の密着性を向上できる。
In one embodiment, the laminate of the fifth aspect of the present disclosure comprises only a stretched multilayer base material on which a printed layer is formed, if necessary, and a heat seal layer. In one embodiment, the laminate of the fifth aspect of the present disclosure comprises only a stretched multilayer base material on which a printed layer is formed, an adhesive layer, and a heat seal layer, if necessary. As a result, in the laminate of the fifth aspect of the present disclosure, since each resin layer is composed of the same type of resin material, recyclability can be particularly improved.
<Adhesive layer>
In one embodiment, the laminate of the fifth aspect of the present disclosure is between a stretched multilayer base material and a heat seal layer, between a stretched multilayer base material and a barrier film, and between a barrier film and a heat seal layer. An adhesive layer is provided between any layers such as. This makes it possible to improve the adhesion between the stretched multilayer base material and the heat seal layer and the adhesion between other layers.
 接着層の詳細は、[第1~第4の態様及び他の態様の積層体]の<接着層>の欄にて説明したとおりであり、本欄での説明は省略する。 The details of the adhesive layer are as described in the <Adhesive layer> column of [Laminates of the first to fourth aspects and other embodiments], and the description in this column is omitted.
 一実施形態において、リサイクル性という観点から、本開示の第5の態様の積層体を構成する延伸多層基材及びヒートシール層がそれぞれポリオレフィンにより構成される場合は、接着層は、オレフィン系接着剤により構成してもよい。 In one embodiment, from the viewpoint of recyclability, when the stretched multilayer base material and the heat seal layer constituting the laminate of the fifth aspect of the present disclosure are each composed of polyolefin, the adhesive layer is an olefin adhesive. It may be configured by.
 一実施形態において、リサイクル性という観点から、本開示の第5の態様の積層体を構成する延伸多層基材及びヒートシール層がそれぞれポリエステルにより構成される場合は、接着層は、ポリエステル系接着剤により構成してもよい。 In one embodiment, from the viewpoint of recyclability, when the stretched multilayer base material and the heat seal layer constituting the laminate of the fifth aspect of the present disclosure are each made of polyester, the adhesive layer is a polyester adhesive. It may be configured by.
 [用途]
 本開示においてそれぞれ上述したポリエチレン多層基材、印刷基材及び積層体は、包装袋などの包装材料用途に好適に使用できる。本開示の包装材料は、本開示においてそれぞれ上述したポリエチレン多層基材、印刷基材又は積層体を備える。
[Use]
The polyethylene multilayer base material, the printed base material and the laminate described above in the present disclosure can be suitably used for packaging material applications such as packaging bags. The packaging material of the present disclosure comprises the polyethylene multilayer base material, the printed base material or the laminate described above in the present disclosure, respectively.
 例えば、上記積層体を、多層基材が外側、ヒートシール層が内側に位置するように二つ折にして重ね合わせて、その端部等をヒートシールすることにより、包装材料を製造できる。また、複数の上記積層体をヒートシール層が対向するように重ね合わせて、その端部等をヒートシールすることにより、包装材料を製造できる。包装材料の全部が上記積層体で構成されていてもよく、包装材料の一部が上記積層体で構成されていてもよい。 For example, a packaging material can be manufactured by folding the laminated body in half so that the multilayer base material is located on the outside and the heat-sealing layer on the inside, and stacking them on top of each other, and heat-sealing the ends thereof. Further, a packaging material can be manufactured by superimposing a plurality of the above-mentioned laminated bodies so that the heat-sealing layers face each other and heat-sealing the end portions thereof. The entire packaging material may be composed of the above-mentioned laminate, or a part of the packaging material may be composed of the above-mentioned laminate.
 包装材料におけるヒートシールの形態としては、例えば、側面シール型、二方シール型、三方シール型、四方シール型、封筒貼りシール型、合掌貼りシール型(ピローシール型)、ひだ付シール型、平底シール型、角底シール型、及びガゼット型が挙げられる。また、自立性包装用袋(スタンドパウチ)も可能である。ヒートシールの方法としては、例えば、バーシール、回転ロールシール、ベルトシール、インパルスシール、高周波シール、及び超音波シールが挙げられる。 The form of the heat seal in the packaging material is, for example, a side seal type, a two-way seal type, a three-way seal type, a four-way seal type, an envelope sticker type, a gassho sticker type (pillow seal type), a fold seal type, and a flat bottom. Examples include a seal type, a square bottom seal type, and a gusset type. In addition, a self-supporting packaging bag (stand pouch) is also possible. Examples of the heat sealing method include bar sealing, rotary roll sealing, belt sealing, impulse sealing, high frequency sealing, and ultrasonic sealing.
 例えば、胴部及び底部を備えるスタンドパウチは、以下のようにして製造できる。まず、1つ又は複数の上記積層体を、ヒートシール層が内側となるように筒状にしてヒートシールすることにより胴部を形成する。次いで、更なる上記積層体を、ヒートシール層が外側となるようにV字状に折る。V字状の積層体を胴部の一端に挟み込み、ヒートシールすることにより底部を形成する。 For example, a stand pouch having a body and a bottom can be manufactured as follows. First, the body is formed by heat-sealing one or more of the above laminated bodies into a cylindrical shape so that the heat-sealing layer is on the inside. Next, the further laminated body is folded into a V shape so that the heat seal layer is on the outside. The bottom is formed by sandwiching the V-shaped laminate at one end of the body and heat-sealing.
 スタンドパウチにおいては、胴部のみが上記積層体により形成されていてもよく、底部のみが上記積層体により形成されていてもよく、胴部及び底部の両方が上記積層体により形成されていてもよい。 In the stand pouch, only the body portion may be formed by the above-mentioned laminate, only the bottom portion may be formed by the above-mentioned laminate, or both the body portion and the bottom portion may be formed by the above-mentioned laminate. good.
 包装材料に充填される内容物としては、例えば、液体、粉体及びゲル体が挙げられ、食品であっても、非食品であってもよい。包装材料中に内容物を充填した後、包装材料の開口をヒートシールすることにより、包装体が得られる。 Examples of the contents to be filled in the packaging material include liquids, powders and gels, which may be foods or non-foods. After filling the contents in the packaging material, the opening of the packaging material is heat-sealed to obtain a package.
 本開示は、例えば以下の[1]~[19]に関する。
 [1]第1のポリエチレン層と、第2のポリエチレン層と、第3のポリエチレン層とを厚さ方向にこの順に備え、延伸処理されてなり、下記要件(A)及び/又は下記要件(B)を充たす、ポリエチレン多層基材:
 要件(A):第1のポリエチレン層の押込み弾性率が、第2のポリエチレン層の押込み弾性率の3.0倍以上であり、第3のポリエチレン層の押込み弾性率が、第2のポリエチレン層の押込み弾性率の3.0倍以上である、
 要件(B):第1のポリエチレン層の押込み硬度が、第2のポリエチレン層の押込み硬度の2.0倍以上であり、第3のポリエチレン層の押込み硬度が、第2のポリエチレン層の押込み硬度の2.0倍以上である。
 [2]ポリエチレン多層基材が、第1のポリエチレン層及び第2のポリエチレン層の間に第2aのポリエチレン層と、第2のポリエチレン層及び第3のポリエチレン層の間に第2bのポリエチレン層と、をさらに備え、第2aのポリエチレン層の押込み弾性率が、第2のポリエチレン層の押込み弾性率の2.0倍以上であり、第2bのポリエチレン層の押込み弾性率が、第2のポリエチレン層の押込み弾性率の2.0倍以上であり、及び/又は、第2aのポリエチレン層の押込み硬度が、第2のポリエチレン層の押込み硬度の1.4倍以上であり、第2bのポリエチレン層の押込み硬度が、第2のポリエチレン層の押込み硬度の1.4倍以上である、
上記[1]に記載のポリエチレン多層基材。
 [3]中密度ポリエチレンを含有する層(A)と、それぞれポリエチレンを含有する、2層以上の多層中間層(B)と、中密度ポリエチレンを含有する層(C)とを、厚さ方向にこの順に備えるポリエチレン多層基材であり、多層基材は、延伸処理されており、多層基材における、厚さ方向において任意の互いに隣接するポリエチレン含有層を層(1)及び層(2)と記載する場合に、層(1)を構成するポリエチレンの密度と、層(2)を構成するポリエチレンの密度との差の絶対値が、0.030g/cm以下である、ポリエチレン多層基材。
 [4]中密度ポリエチレン及び高密度ポリエチレンを含有する第1の層と、中密度ポリエチレン及び直鎖状低密度ポリエチレンを含有する第2の層と、直鎖状低密度ポリエチレンを含有する第3の層と、中密度ポリエチレン及び直鎖状低密度ポリエチレンを含有する第4の層と、中密度ポリエチレン及び高密度ポリエチレンを含有する第5の層とを、厚さ方向にこの順に備え、延伸処理されてなる、ポリエチレン多層基材。
 [5]中密度ポリエチレン及び高密度ポリエチレンを含有する第1の層と、高密度ポリエチレンを含有する第2の層と、直鎖状低密度ポリエチレンを含有する第3の層と、高密度ポリエチレンを含有する第4の層と、中密度ポリエチレン及び高密度ポリエチレンを含有する第5の層とを、厚さ方向にこの順に備え、延伸処理されてなる、ポリエチレン多層基材。
 [6]ポリエチレン多層基材におけるポリエチレンの含有割合が、80質量%以上である、上記[1]~[5]のいずれかに記載のポリエチレン多層基材。
 [7]上記[1]~[6]のいずれかに記載のポリエチレン多層基材と、ポリエチレン多層基材上に形成された印刷層とを備える印刷基材。
 [8]ポリエチレン多層基材と、ポリエチレンを主成分として含有するヒートシール層とを備える積層体であって、ポリエチレン多層基材が、第1のポリエチレン層と、第2のポリエチレン層と、第3のポリエチレン層とを厚さ方向にこの順に備え、延伸処理されてなり、積層体が、下記要件(C)及び/又は下記要件(D)を充たす、積層体:
 要件(C):第1のポリエチレン層の押込み弾性率が、第2のポリエチレン層の押込み弾性率の3.5倍以上であり、第3のポリエチレン層の押込み弾性率が、第2のポリエチレン層の押込み弾性率の3.5倍以上である、
 要件(D):第1のポリエチレン層の押込み硬度が、第2のポリエチレン層の押込み硬度の2.0倍以上であり、第3のポリエチレン層の押込み硬度が、第2のポリエチレン層の押込み硬度の2.0倍以上である。
 [9]ポリエチレン多層基材が、第1のポリエチレン層及び第2のポリエチレン層の間に第2aのポリエチレン層と、第2のポリエチレン層及び第3のポリエチレン層の間に第2bのポリエチレン層と、をさらに備え、第2aのポリエチレン層の押込み弾性率が、第2のポリエチレン層の押込み弾性率の2.0倍以上であり、第2bのポリエチレン層の押込み弾性率が、第2のポリエチレン層の押込み弾性率の2.0倍以上であり、及び/又は、第2aのポリエチレン層の押込み硬度が、第2のポリエチレン層の押込み硬度の1.5倍以上であり、第2bのポリエチレン層の押込み硬度が、第2のポリエチレン層の押込み硬度の1.5倍以上である、上記[8]に記載の積層体。
 [10]ポリエチレン多層基材と、ポリエチレンを主成分として含有するヒートシール層とを備える積層体であって、ポリエチレン多層基材が、第1のポリエチレン層と、第2のポリエチレン層と、第3のポリエチレン層とを厚さ方向にこの順に備え、延伸処理されてなり、積層体が、下記要件(E)及び/又は下記要件(F)を充たす、積層体:
 要件(E):第1のポリエチレン層の押込み弾性率が、1.0GPa以上であり、第3のポリエチレン層の押込み弾性率が、1.0GPa以上である、
 要件(F):第1のポリエチレン層の押込み硬度が、45MPa以上であり、第3のポリエチレン層の押込み硬度が、45MPa以上である。
 [11]ポリエチレン多層基材が、第1のポリエチレン層及び第2のポリエチレン層の間に第2aのポリエチレン層と、第2のポリエチレン層及び第3のポリエチレン層の間に第2bのポリエチレン層と、をさらに備え、第2のポリエチレン層の押込み弾性率が、0.03GPa以上0.7GPa以下であり、第2aのポリエチレン層の押込み弾性率、及び第2bのポリエチレン層の押込み弾性率が、それぞれ独立に、0.3GPa以上3.5GPa以下であり、及び/又は、第2のポリエチレン層の押込み硬度が、1MPa以上40MPa以下であり、第2aのポリエチレン層の押込み硬度、及び第2bのポリエチレン層の押込み硬度が、それぞれ独立に、20MPa以上100MPa以下である、上記[10]に記載の積層体。
 [12]上記[1]~[6]のいずれかに記載のポリエチレン多層基材と、ヒートシール層とを備える積層体。
 [13]積層体の長手方向(MD)の熱収縮率が15%以下であり、積層体のMDに対する垂直方向(TD)の熱収縮率が15%以下である、上記[8]~[12]のいずれかに記載の積層体。
 [14]基材と、ヒートシール層とを備える積層体であって、基材とヒートシール層とが、同種の樹脂材料により構成され、基材が、多層構造を有しており、基材が、延伸処理が施された基材であり、ヒートシール層が、延伸処理が施されていない層である、積層体。
 [15]同種の樹脂材料が、ポリオレフィン又はポリエステルである、上記[14]に記載の積層体。
 [16]同種の樹脂材料が、ポリエチレンである、上記[14]に記載の積層体。
 [17]ヒートシール層が、多層構造を有している、上記[14]~[16]のいずれかに記載の積層体。
 [18]基材の表面、又はヒートシール層の表面に形成されたバリア層をさらに備える、上記[8]~[17]のいずれかに記載の積層体。
 [19]上記[1]~[6]のいずれかに記載のポリエチレン多層基材、上記[7]に記載の印刷基材、又は上記[8]~[18]のいずれかに記載の積層体を備える、包装材料。
The present disclosure relates to, for example, the following [1] to [19].
[1] The first polyethylene layer, the second polyethylene layer, and the third polyethylene layer are provided in this order in the thickness direction and are stretched, and the following requirements (A) and / or the following requirements (B) are provided. ) Is filled with a polyethylene multilayer base material:
Requirement (A): The indentation elastic modulus of the first polyethylene layer is 3.0 times or more the indentation elastic modulus of the second polyethylene layer, and the indentation elastic modulus of the third polyethylene layer is the second polyethylene layer. It is more than 3.0 times the indentation modulus of
Requirement (B): The indentation hardness of the first polyethylene layer is 2.0 times or more the indentation hardness of the second polyethylene layer, and the indentation hardness of the third polyethylene layer is the indentation hardness of the second polyethylene layer. It is more than 2.0 times.
[2] The polyethylene multilayer substrate has a second polyethylene layer between the first polyethylene layer and the second polyethylene layer, and a second polyethylene layer between the second polyethylene layer and the third polyethylene layer. , The indentation elasticity of the second polyethylene layer is 2.0 times or more the indentation elasticity of the second polyethylene layer, and the indentation elasticity of the second polyethylene layer is the second polyethylene layer. The indentation elasticity of the second polyethylene layer is 2.0 times or more, and / or the indentation hardness of the second polyethylene layer is 1.4 times or more of the indentation hardness of the second polyethylene layer. The indentation hardness is 1.4 times or more the indentation hardness of the second polyethylene layer.
The polyethylene multilayer base material according to the above [1].
[3] A layer (A) containing medium-density polyethylene, two or more multilayer intermediate layers (B) each containing polyethylene, and a layer (C) containing medium-density polyethylene are formed in the thickness direction. It is a polyethylene multilayer base material provided in this order, and the multilayer base material is stretch-treated, and any polyethylene-containing layers adjacent to each other in the thickness direction in the multilayer base material are described as layers (1) and (2). In this case, the absolute value of the difference between the density of the polyethylene constituting the layer (1) and the density of the polyethylene constituting the layer (2) is 0.030 g / cm 3 or less, which is a polyethylene multilayer base material.
[4] A first layer containing medium-density polyethylene and high-density polyethylene, a second layer containing medium-density polyethylene and linear low-density polyethylene, and a third layer containing linear low-density polyethylene. A fourth layer containing medium-density polyethylene and linear low-density polyethylene, and a fifth layer containing medium-density polyethylene and high-density polyethylene are provided in this order in the thickness direction, and are stretched. Polyethylene multilayer base material.
[5] A first layer containing medium-density polyethylene and high-density polyethylene, a second layer containing high-density polyethylene, a third layer containing linear low-density polyethylene, and high-density polyethylene. A polyethylene multilayer base material in which a fourth layer containing the polyethylene and a fifth layer containing the medium-density polyethylene and the high-density polyethylene are provided in this order in the thickness direction and subjected to a stretching treatment.
[6] The polyethylene multilayer base material according to any one of the above [1] to [5], wherein the polyethylene content in the polyethylene multilayer base material is 80% by mass or more.
[7] A printing substrate comprising the polyethylene multilayer substrate according to any one of [1] to [6] above and a printing layer formed on the polyethylene multilayer substrate.
[8] A laminate including a polyethylene multilayer base material and a heat seal layer containing polyethylene as a main component, wherein the polyethylene multilayer base material includes a first polyethylene layer, a second polyethylene layer, and a third. The polyethylene layers of the above are provided in this order in the thickness direction and are stretched, and the laminate meets the following requirements (C) and / or the following requirements (D).
Requirement (C): The indentation elastic modulus of the first polyethylene layer is 3.5 times or more the indentation elastic modulus of the second polyethylene layer, and the indentation elastic modulus of the third polyethylene layer is the second polyethylene layer. It is more than 3.5 times the indentation modulus of
Requirement (D): The indentation hardness of the first polyethylene layer is 2.0 times or more the indentation hardness of the second polyethylene layer, and the indentation hardness of the third polyethylene layer is the indentation hardness of the second polyethylene layer. It is more than 2.0 times.
[9] The polyethylene multilayer substrate has a second polyethylene layer between the first polyethylene layer and the second polyethylene layer, and a second polyethylene layer between the second polyethylene layer and the third polyethylene layer. , The indentation elasticity of the second polyethylene layer is 2.0 times or more the indentation elasticity of the second polyethylene layer, and the indentation elasticity of the second polyethylene layer is the second polyethylene layer. The indentation elasticity of the second polyethylene layer is 2.0 times or more, and / or the indentation hardness of the second polyethylene layer is 1.5 times or more of the indentation hardness of the second polyethylene layer. The laminate according to the above [8], wherein the indentation hardness is 1.5 times or more the indentation hardness of the second polyethylene layer.
[10] A laminate including a polyethylene multilayer base material and a heat-sealed layer containing polyethylene as a main component, wherein the polyethylene multilayer base material includes a first polyethylene layer, a second polyethylene layer, and a third. The polyethylene layers of the above are provided in this order in the thickness direction and are stretched, and the laminate meets the following requirements (E) and / or the following requirements (F).
Requirement (E): The indentation elastic modulus of the first polyethylene layer is 1.0 GPa or more, and the indentation elastic modulus of the third polyethylene layer is 1.0 GPa or more.
Requirement (F): The indentation hardness of the first polyethylene layer is 45 MPa or more, and the indentation hardness of the third polyethylene layer is 45 MPa or more.
[11] The polyethylene multilayer substrate has a second polyethylene layer between the first polyethylene layer and the second polyethylene layer, and a second polyethylene layer between the second polyethylene layer and the third polyethylene layer. , And the indentation elasticity of the second polyethylene layer is 0.03 GPa or more and 0.7 GPa or less, and the indentation elasticity of the second polyethylene layer and the indentation elasticity of the second polyethylene layer are, respectively. Independently, it is 0.3 GPa or more and 3.5 GPa or less, and / or the indentation hardness of the second polyethylene layer is 1 MPa or more and 40 MPa or less, the indentation hardness of the second polyethylene layer, and the polyethylene layer of the second b. The laminate according to the above [10], wherein the indentation hardness of each is independently 20 MPa or more and 100 MPa or less.
[12] A laminate comprising the polyethylene multilayer substrate according to any one of the above [1] to [6] and a heat seal layer.
[13] The heat shrinkage rate in the longitudinal direction (MD) of the laminated body is 15% or less, and the heat shrinkage rate in the vertical direction (TD) with respect to the MD of the laminated body is 15% or less. ] The laminate according to any one of.
[14] A laminate including a base material and a heat seal layer, wherein the base material and the heat seal layer are made of the same type of resin material, and the base material has a multi-layer structure. However, the laminated body is a base material that has been subjected to a stretching treatment, and the heat seal layer is a layer that has not been subjected to a stretching treatment.
[15] The laminate according to the above [14], wherein the same type of resin material is polyolefin or polyester.
[16] The laminate according to the above [14], wherein the same type of resin material is polyethylene.
[17] The laminate according to any one of the above [14] to [16], wherein the heat seal layer has a multilayer structure.
[18] The laminate according to any one of [8] to [17] above, further comprising a barrier layer formed on the surface of the base material or the surface of the heat seal layer.
[19] The polyethylene multilayer base material according to any one of the above [1] to [6], the printing base material according to the above [7], or the laminate according to any one of the above [8] to [18]. The packaging material.
 [評価方法]
 [インキ密着評価]
 以下の各例において得られた延伸多層基材及びポリエチレンフィルムのコロナ放電処理面側に、油性グラビアインキ(DICグラフィックス(株)製、商品名:フィナート)を用いて、グラビア印刷法により、画像を形成した。延伸多層基材及びポリエチレンフィルム上に形成された画像を目視により観察し、以下の評価基準に基づいて、評価した。
[Evaluation methods]
[Ink adhesion evaluation]
An image by a gravure printing method using an oil-based gravure ink (manufactured by DIC Graphics Co., Ltd., trade name: Finato) on the corona discharge-treated surface side of the stretched multilayer base material and the polyethylene film obtained in each of the following examples. Formed. The images formed on the stretched multilayer substrate and the polyethylene film were visually observed and evaluated based on the following evaluation criteria.
 (評価基準)
AA:延伸多層基材又はポリエチレンフィルムの画像形成面側にセロテープ(登録商標)を貼り、剥がした際に、延伸多層基材又はポリエチレンフィルムへのインキ密着が良好で、セロテープ(登録商標)へのインキ剥離が発生しなかった。
BB:延伸多層基材又はポリエチレンフィルムの画像形成面側にセロテープ(登録商標)を貼り、剥がした際に、延伸多層基材又はポリエチレンフィルムへのインキ密着が弱く、セロテープ(登録商標)へのインキ剥離が発生した。
(Evaluation criteria)
AA: When cellophane tape (registered trademark) is attached to the image-forming surface side of the stretched multilayer substrate or polyethylene film and peeled off, the ink adheres well to the stretched multilayer substrate or polyethylene film, and it adheres to the cellophane tape (registered trademark). No ink peeling occurred.
BB: When cellophane tape (registered trademark) is attached to the image forming surface side of the stretched multilayer substrate or polyethylene film and peeled off, the ink adhesion to the stretched multilayer substrate or polyethylene film is weak, and the ink on the cellophane tape (registered trademark) is weak. Peeling occurred.
 [収縮評価]
 以下の各例において得られた積層体を、10cm×10cmにカットしてサンプル片を3つずつ作製した。各サンプル片のヒートシール層側が内側になるように二つ折りにし、ヒートシールテスターを用いて、温度120℃、圧力1kgf/cm、1秒の条件にて1.5cm×10cmの領域をヒートシールした。ヒートシール後、サンプルのシール幅を測定し、MD及びTDの収縮率を算出した。3つのサンプル片の平均値を、各熱収縮率とした。
[Shrinkage evaluation]
The laminates obtained in each of the following examples were cut into 10 cm × 10 cm to prepare three sample pieces. Fold each sample piece in half so that the heat seal layer side is on the inside, and use a heat seal tester to heat seal the area of 1.5 cm x 10 cm under the conditions of temperature 120 ° C, pressure 1 kgf / cm 2 , and 1 second. bottom. After heat sealing, the seal width of the sample was measured, and the shrinkage rates of MD and TD were calculated. The average value of the three sample pieces was taken as each heat shrinkage rate.
 [耐熱性評価]
 耐熱性を以下の基準で評価した。
AA:印刷時、ドライラミネート時及び以下の各例で作製した積層体のヒートシール時に基材(延伸多層基材又はポリエチレンフィルム)の大きな収縮が無く、目的物を綺麗に製造できた。
BB:印刷時、ドライラミネート時及び以下の各例で作製した積層体のヒートシール時に基材(延伸多層基材又はポリエチレンフィルム)の大きな収縮が発生し、目的物を綺麗に製造できなかった。
[Heat resistance evaluation]
The heat resistance was evaluated according to the following criteria.
AA: During printing, dry laminating, and heat sealing of the laminates produced in each of the following examples, there was no large shrinkage of the base material (stretched multilayer base material or polyethylene film), and the desired product could be produced neatly.
BB: During printing, dry laminating, and heat sealing of the laminates produced in each of the following examples, large shrinkage of the base material (stretched multilayer base material or polyethylene film) occurred, and the target product could not be produced neatly.
 [ヘイズ評価]
 以下の各例において得られた延伸多層基材及びポリエチレンフィルムのヘイズ値を、JIS K7136に準拠し測定した。
[Haze evaluation]
The haze values of the stretched multilayer base material and the polyethylene film obtained in each of the following examples were measured according to JIS K7136.
 [剛性評価]
 以下の各例において得られた延伸多層基材及びポリエチレンフィルムを、10mm幅の試験片に切断し、ループスティフネス測定試験器(東洋精機製作所製、商品名:ループスティフネステスタ)により、試験片の剛性を測定した。ループの長さは、60mmとした。
[Rigidity evaluation]
The stretched multilayer base material and polyethylene film obtained in each of the following examples are cut into test pieces having a width of 10 mm, and the rigidity of the test pieces is measured by a loop stiffness measuring tester (manufactured by Toyo Seiki Seisakusho, trade name: loop stiff nestester). Was measured. The length of the loop was 60 mm.
 [強度評価]
 以下の各例において得られた延伸多層基材及びポリエチレンフィルムから、10mm幅のダンベル型試験片を切り出した。この試験片のMD方向の引張強度を、引張試験機(オリエンテック社製、RTC-1310A)により測定した。チャック間距離は10mm、引張速度は300mm/分とした。
[Strength evaluation]
A dumbbell-shaped test piece having a width of 10 mm was cut out from the stretched multilayer base material and the polyethylene film obtained in each of the following examples. The tensile strength of this test piece in the MD direction was measured by a tensile tester (RTC-1310A, manufactured by Orientec). The distance between the chucks was 10 mm, and the tensile speed was 300 mm / min.
 [延伸性評価]
 延伸性を以下の基準で評価した。
AA:延伸時に基材(ポリエチレンフィルム)の破断が生じず、
   安定して延伸できた。
BB:延伸時に基材(ポリエチレンフィルム)の破断が生じ、
   安定して延伸できなかった。
[Evaluation of stretchability]
Stretchability was evaluated according to the following criteria.
AA: The base material (polyethylene film) does not break during stretching, and the base material (polyethylene film) does not break.
It was able to be stretched stably.
BB: The base material (polyethylene film) breaks during stretching,
It could not be stretched stably.
 [リサイクル性評価]
 以下の各例において得られた積層体全体におけるポリエチレンの含有割合を求め、以下の評価基準に基づいて、そのリサイクル性について評価した。
[Recyclability evaluation]
The content ratio of polyethylene in the whole laminate obtained in each of the following examples was determined, and its recyclability was evaluated based on the following evaluation criteria.
 (評価基準)
 AA:積層体全体におけるポリエチレンの含有割合が、
    90質量%以上であった。
 BB:積層体全体におけるポリエチレンの含有割合が、
    80質量%以上90質量%未満であった。
 CC:積層体全体におけるポリエチレンの含有割合が、
    80質量%未満であった。
(Evaluation criteria)
AA: The content ratio of polyethylene in the entire laminate is
It was 90% by mass or more.
BB: The content ratio of polyethylene in the entire laminate is
It was 80% by mass or more and less than 90% by mass.
CC: The content ratio of polyethylene in the entire laminate is
It was less than 80% by mass.
 [ヒートシール性評価]
 以下の各例において得られた積層体を、縦220mm×横130mmのサイズにカットした。このようにカットした2枚の積層体をヒートシール層が向かい合うようにして重ね合わせると共に、以下の各例において得られた積層体を、ヒートシール層が外側となるようにV字状に折ったものを、胴部の一端に挟み込んだ。次いで、縦2辺およびV字状の積層体を挟み込んだ辺をヒートシール(140℃、1kgf、1秒)した。得られた包装袋に液体洗剤300mLを充填し、残り一辺をヒートシール(140℃、1kgf、1秒)し、包装体を得た。
[Heat sealability evaluation]
The laminates obtained in each of the following examples were cut into a size of 220 mm in length × 130 mm in width. The two laminates cut in this way were laminated so that the heat seal layers face each other, and the laminates obtained in each of the following examples were folded into a V shape so that the heat seal layer was on the outside. I put something in one end of the body. Next, two vertical sides and a side sandwiching the V-shaped laminate were heat-sealed (140 ° C., 1 kgf, 1 second). The obtained packaging bag was filled with 300 mL of liquid detergent, and the remaining side was heat-sealed (140 ° C., 1 kgf, 1 second) to obtain a package.
 上記包装体を100cmの高さから、包装体の胴部を地面と水平にした状態で、硬い床に10回自由落下させた。該試験を10袋ずつ行い、破損の有無を目視により観察し、以下の評価基準に基づいて、ヒートシール性を評価した。 The above package was freely dropped from a height of 100 cm onto a hard floor 10 times with the body of the package level with the ground. The test was carried out for each of 10 bags, the presence or absence of damage was visually observed, and the heat sealability was evaluated based on the following evaluation criteria.
 (評価基準)
 AA:10袋全てにおいて破損は確認されなかった。
 NG:10袋中1袋以上において破損が確認され、実用上問題があった。
(Evaluation criteria)
AA: No damage was confirmed in all 10 bags.
NG: Damage was confirmed in 1 or more of the 10 bags, and there was a problem in practical use.
 [層間剥離評価]
 以下の各例において得られた積層体を、10cm×10cmにカットしてサンプル片を3つずつ作製した。各サンプル片のヒートシール層側が内側になるように二つ折りにし、ヒートシールテスターを用いて、温度140℃、圧力1kgf/cm、1秒の条件にて1cm×10cmの領域をヒートシールした。
[Evaluation of delamination]
The laminates obtained in each of the following examples were cut into 10 cm × 10 cm to prepare three sample pieces. Each sample piece was folded in half so that the heat seal layer side was on the inside, and a 1 cm × 10 cm area was heat-sealed using a heat seal tester under the conditions of a temperature of 140 ° C., a pressure of 1 kgf / cm 2 , and 1 second.
 ヒートシール後のサンプル片を15mm幅で短冊状に切り、ヒートシールしなかった両端部を引張試験機に把持し、速度300mm/分、荷重レンジ50Nの条件にて引張試験を実施し、延伸多層基材又はポリエチレンフィルムの層間剥離発生の有無を確認した。
AA:引張試験時に延伸多層基材又はポリエチレンフィルムの層間剥離が
   発生しなかった。
BB:引張試験時に延伸多層基材又はポリエチレンフィルムの層間剥離が
   発生した。
 [例A]
 本開示の第1の態様及び第2の態様の多層基材、並びに第1~第4の態様の積層体について実施例に基づきさらに具体的に説明するが、本開示の多層基材及び積層体は実施例によって限定されない。以下、「質量部」は単に「部」と記載する。
The sample piece after heat sealing is cut into strips with a width of 15 mm, both ends that have not been heat sealed are grasped by a tensile tester, and a tensile test is performed under the conditions of a speed of 300 mm / min and a load range of 50 N. It was confirmed whether or not delamination of the base material or the polyethylene film occurred.
AA: Delamination of the stretched multilayer base material or polyethylene film did not occur during the tensile test.
BB: Delamination of the stretched multilayer base material or polyethylene film occurred during the tensile test.
[Example A]
The multilayer base material of the first aspect and the second aspect of the present disclosure, and the laminate of the first to fourth aspects will be described more specifically based on Examples, but the multilayer substrate and the laminate of the present disclosure will be described in more detail. Is not limited by the examples. Hereinafter, "parts by mass" is simply referred to as "parts".
 以下の実施例及び比較例で用いるポリエチレンについて記載する。
・中密度ポリエチレン:
  商品名Enable4002MC
  密度:0.940g/cm、融点:128℃、
  MFR:0.25g/10分、ExxonMobil社製
・高密度ポリエチレン(1):
  商品名Elite5960G
  密度:0.960g/cm、融点:134℃、
  MFR:0.8g/10分、Dowchemical社製
・高密度ポリエチレン(2):
  商品名H619F
  密度:0.965g/cm、融点:135℃、
  MFR:0.7g/10分、SCG社製
・直鎖状低密度ポリエチレン:
  商品名Exceed XP8656ML
  密度:0.916g/cm、融点:121℃、
  MFR:0.5g/10分、ExxonMobil社製
・低密度ポリエチレン:
  商品名LD2420F
  密度:0.922g/cm、融点:112℃、
  MFR:0.75g/10分、PTT社製
・スリップ剤含有MB:
  商品名SLIP61 10061-K
  密度:0.910g/cm、MFR:10g/10分、
  ポリエチレンベース、エルカ酸アミド系スリップ剤5質量%含有、
  Ampacet社製
The polyethylene used in the following examples and comparative examples will be described.
・ Medium density polyethylene:
Product name Allow4002MC
Density: 0.940 g / cm 3 , Melting point: 128 ° C,
MFR: 0.25 g / 10 minutes, ExxonMobil high-density polyethylene (1):
Product name Elite5960G
Density: 0.960 g / cm 3 , Melting point: 134 ° C,
MFR: 0.8g / 10 minutes, Dowchemical High Density Polyethylene (2):
Product name H619F
Density: 0.965 g / cm 3 , Melting point: 135 ° C,
MFR: 0.7g / 10 minutes, SCG linear low density polyethylene:
Product name Exceed XP8656ML
Density: 0.916 g / cm 3 , Melting point: 121 ° C,
MFR: 0.5g / 10 minutes, ExxonMobil low density polyethylene:
Product name LD2420F
Density: 0.922 g / cm 3 , Melting point: 112 ° C,
MFR: 0.75g / 10 minutes, manufactured by PTT Public Company Limited, containing slip agent: MB:
Product name SLIP61 10061-K
Density: 0.910 g / cm 3 , MFR: 10 g / 10 minutes,
Polyethylene base, containing 5% by mass of erucic acid amide slip agent,
Made by Ampcate
 例Aの欄において、以下、上記中密度ポリエチレン(Enable4002MC)を「MDPE」、上記高密度ポリエチレン(1)(Elite5960G)を「HDPE(1)」、上記高密度ポリエチレン(2)(H619F)を「HDPE(2)」、上記直鎖状低密度ポリエチレン(Exceed XP8656ML)を「LLDPE」、上記低密度ポリエチレン(LD2420F)を「LDPE」とも記載する。 In the column of Example A, the medium density polyethylene (Enable4002MC) is referred to as "MDPE", the high density polyethylene (1) (Elite5960G) is referred to as "HDPE (1)", and the high density polyethylene (2) (H619F) is referred to as "HDPE (1)". HDPE (2) ”, the linear low density polyethylene (Exceed XP8656ML) is also referred to as“ LLDPE ”, and the low density polyethylene (LD2420F) is also referred to as“ LDPE ”.
 <ブレンドポリエチレンの作製>
・ブレンドポリエチレンA1
 70部のMDPEと、30部のHDPE(1)とを混合して、平均密度0.948g/cmのブレンドポリエチレンA1(例Aの欄において、以下「ブレンドPE(A1)」と記載する)を得た。
・ブレンドポリエチレンB1
 70部のHDPE(2)と、30部のLDPEとを混合して、平均密度0.950g/cmのブレンドポリエチレンB1(例Aの欄において、以下「ブレンドPE(B1)」と記載する)を得た。
・ブレンドポリエチレンB2
 50部のMDPEと、50部のLLDPEとを混合して、平均密度0.929g/cmのブレンドポリエチレンB2(例Aの欄において、以下「ブレンドPE(B2)」と記載する)を得た。
・ブレンドポリエチレンC1
 98部のLLDPEと、2部のスリップ剤含有MBとを混合して、平均密度0.916g/cmのブレンドポリエチレンC1(例Aの欄において、以下「ブレンドPE(C1)」と記載する)を得た。
<Making blended polyethylene>
・ Blended polyethylene A1
Blended polyethylene A1 having an average density of 0.948 g / cm 3 by mixing 70 parts of MDPE and 30 parts of HDPE (1) (hereinafter referred to as "blended PE (A1)" in the column of Example A). Got
・ Blended polyethylene B1
Blended polyethylene B1 having an average density of 0.950 g / cm 3 by mixing 70 parts of HDPE (2) and 30 parts of LDPE (hereinafter referred to as "blended PE (B1)" in the column of Example A). Got
・ Blended polyethylene B2
50 parts of MDPE and 50 parts of LLDPE were mixed to obtain a blended polyethylene B2 having an average density of 0.929 g / cm 3 (hereinafter referred to as "blended PE (B2)" in the column of Example A). ..
・ Blended polyethylene C1
98 parts of LLDPE and 2 parts of slip agent-containing MB are mixed and blended polyethylene C1 having an average density of 0.916 g / cm 3 (hereinafter referred to as "blended PE (C1)" in the column of Example A). Got
 [実施例1A]
 ブレンドPE(A1)、ブレンドPE(B1)及びブレンドPE(C1)を、インフレーション成形法により、ブレンドPE(A1)層(15μm)/ブレンドPE(B1)層(22.5μm)/ブレンドPE(C1)層(50μm)/ブレンドPE(B1)層(22.5μm)/ブレンドPE(A1)層(15μm)の層厚さ比で5層共押出しを行いチューブ状に製膜し、総厚さ125μmのポリエチレンフィルムを得て、チューブ状のフィルムをニップ箇所で折りたたみ、2枚重ねにした。括弧内の数値は層の厚さを示す。
[Example 1A]
Blended PE (A1), blended PE (B1) and blended PE (C1) are blended PE (A1) layer (15 μm) / blended PE (B1) layer (22.5 μm) / blended PE (C1) by the inflation molding method. ) Layer (50 μm) / Blend PE (B1) layer (22.5 μm) / Blend PE (A1) layer (15 μm) 5 layers are co-extruded with a layer thickness ratio to form a tube-like film, and the total thickness is 125 μm. The polyethylene film of No. 1 was obtained, and the tubular film was folded at the nip site to form two layers. The numbers in parentheses indicate the layer thickness.
 上記で作製したポリエチレンフィルムを長手方向(MD)に5倍の延伸倍率で延伸し、さらに、片方の面のブレンドPE(A1)層(表面層)にコロナ放電処理を行った後、端部をスリットし、2枚に分けて、厚さ25μmのポリエチレン多層基材(延伸多層基材)を得た。 The polyethylene film produced above is stretched in the longitudinal direction (MD) at a draw ratio of 5 times, and further, the blended PE (A1) layer (surface layer) on one side is subjected to a corona discharge treatment, and then the end portion is formed. The slit was made and divided into two pieces to obtain a polyethylene multilayer base material (stretched multilayer base material) having a thickness of 25 μm.
 [実施例2A及び比較例1A]
 層構成を表5に記載したとおりに変更した以外は実施例1Aと同様にして、ポリエチレンフィルム及び延伸多層基材を得た。
[Example 2A and Comparative Example 1A]
A polyethylene film and a stretched multilayer base material were obtained in the same manner as in Example 1A except that the layer structure was changed as shown in Table 5.
 [積層体の作製]
 第一の直鎖状低密度ポリエチレン(プライムポリマー社製、SP2520、密度:0.925g/cm、融点:122℃)と、第二の直鎖状低密度ポリエチレン(プライムポリマー社製、SP0510、密度:0.903g/cm、融点:98℃)とを、インフレーション成形法により、多層押出製膜し、厚さ20μmの第一の直鎖状低密度ポリエチレン層と、厚さ20μmの第二の直鎖状低密度ポリエチレン層とを備える未延伸ポリエチレンフィルムを作製した。この未延伸ポリエチレンフィルムを、以下に説明するとおりヒートシール層として用いた。
[Preparation of laminated body]
First linear low density polyethylene (Prime Polymer, SP2520, density: 0.925 g / cm 3 , melting point: 122 ° C) and second linear low density polyethylene (Prime Polymer, SP0510, A density: 0.903 g / cm 3 , melting point: 98 ° C.) was extruded in multiple layers by an inflation molding method, and a first linear low-density polyethylene layer with a thickness of 20 μm and a second layer with a thickness of 20 μm were formed. An unstretched polyethylene film provided with the linear low-density polyethylene layer of the above was prepared. This unstretched polyethylene film was used as a heat seal layer as described below.
 上記で作製した未延伸ポリエチレンフィルム(ヒートシール層)の第一の直鎖状低密度ポリエチレン層側と、実施例及び比較例において得られた延伸多層基材のコロナ放電処理面側とを、2液硬化型ウレタン系接着剤(ロックペイント社製、Ru-77T/H-7)を介してドライラミネートし、積層体を得た。接着層の厚さは3.0μmであった。 The first linear low-density polyethylene layer side of the unstretched polyethylene film (heat-sealed layer) produced above and the corona discharge-treated surface side of the stretched multilayer base material obtained in Examples and Comparative Examples are 2 A laminated body was obtained by dry laminating via a liquid-curable urethane adhesive (Ru-77T / H-7 manufactured by Rock Paint Co., Ltd.). The thickness of the adhesive layer was 3.0 μm.
 [押込み弾性率、押込み硬度評価]
 実施例及び比較例において得られた延伸多層基材及び積層体について、ナノインデンター(HYSITRON(ハイジトロン)社製の「TI950 TriboIndenter」)を用いて、延伸多層基材の各ポリエチレン層のTD方向に平行な断面を測定面として、同一断面において5箇所で測定して得た弾性率の値及び硬度の値をそれぞれ平均して、押込み弾性率及び押込み硬度をそれぞれ求めた。ナノインデンターの圧子としては、Berkovich圧子(三角錐圧子)を用いて測定した。
[Indentation elastic modulus, indentation hardness evaluation]
With respect to the stretched multilayer base material and the laminated body obtained in Examples and Comparative Examples, the TD direction of each polyethylene layer of the stretched multilayer base material using a nanoindenter (“TI950 TriboIndenter” manufactured by HYSITRON). The indentation elastic modulus and the indentation hardness were obtained by averaging the elastic modulus values and the hardness values obtained by measuring at five points in the same cross section with the cross section parallel to the measuring surface. As the indenter of the nanoindenter, a Berkovich indenter (triangular pyramid indenter) was used for the measurement.
 測定条件は、以下のとおりである。10秒間かけて、延伸多層基材及び積層体のTD方向に平行な断面から押込み深さ200nmまで圧子をポリエチレン層に押し込み、その状態で5秒間保持した。続いて10秒間かけて除荷した。これにより、最大荷重Pmax、最大深さ時の接触投影面積A及び荷重-変位曲線を得ることができ、得られた荷重-変位曲線から、弾性率及び硬度の値を算出した。測定は室温(25℃)環境下にて実施した。断面作製は、クライオウルトラミクロトームを用いて-100℃環境下にて、延伸多層基材及び積層体をTD方向と平行に切断することにより実施した。仕上げはダイヤモンドナイフにて実施した。各層の厚さも、上記断面を観察することにより測定できる。 The measurement conditions are as follows. An indenter was pushed into the polyethylene layer from a cross section parallel to the TD direction of the stretched multilayer substrate and the laminate to a pushing depth of 200 nm over 10 seconds, and held in that state for 5 seconds. Then, the load was removed over 10 seconds. As a result, the maximum load Pmax, the contact projected area A at the maximum depth, and the load-displacement curve could be obtained, and the elastic modulus and the hardness were calculated from the obtained load-displacement curve. The measurement was carried out in a room temperature (25 ° C.) environment. The cross section was prepared by cutting the stretched multilayer base material and the laminate in parallel with the TD direction in an environment of -100 ° C using a cryoultra microtome. Finishing was done with a diamond knife. The thickness of each layer can also be measured by observing the above cross section.
 以上の評価結果を表1~表5に示す。なお、実施例及び比較例のポリエチレン多層基材において、第1のPE層と第3のPE層との押込み弾性率は同程度であり、第2aのPE層と第2bのPE層との押込み弾性率は同程度であることから、第2bのPE層及び第3のPE層の押込み弾性率の記載は省略した。押込み硬度についても同様である。 The above evaluation results are shown in Tables 1 to 5. In the polyethylene multilayer base materials of Examples and Comparative Examples, the indentation elastic modulus of the first PE layer and the third PE layer is about the same, and the indentation elastic modulus of the second PE layer and the second PE layer is about the same. Since the elastic moduli are about the same, the description of the indentation elastic modulus of the second PE layer and the third PE layer is omitted. The same applies to the indentation hardness.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 [例B]
 本開示の第3の態様及び第4の態様の多層基材について実施例に基づきさらに具体的に説明するが、本開示の多層基材は実施例によって限定されない。以下、「質量部」は単に「部」と記載する。
[Example B]
The multilayer base material of the third aspect and the fourth aspect of the present disclosure will be described more specifically based on the examples, but the multilayer base material of the present disclosure is not limited by the examples. Hereinafter, "parts by mass" is simply referred to as "parts".
 以下の実施例及び比較例で用いるポリエチレンについて記載する。
・中密度ポリエチレン:
  商品名Elite5538G
  密度:0.941g/cm、融点:129℃、
  MFR:1.3g/10分、Dowchemical社製
・高密度ポリエチレン:
  商品名Elite5960G
  密度:0.960g/cm、融点:134℃、
  MFR:0.8g/10分、Dowchemical社製
・直鎖状低密度ポリエチレン:
  商品名Elite5400G
  密度:0.916g/cm、融点:123℃、
  MFR:1.3g/10分、Dowchemical社製
The polyethylene used in the following examples and comparative examples will be described.
・ Medium density polyethylene:
Product name Elite5538G
Density: 0.941 g / cm 3 , Melting point: 129 ° C,
MFR: 1.3g / 10 minutes, Dowchemical High Density Polyethylene:
Product name Elite5960G
Density: 0.960 g / cm 3 , Melting point: 134 ° C,
MFR: 0.8 g / 10 minutes, manufactured by Dowchemical, linear low-density polyethylene:
Product name Elite5400G
Density: 0.916 g / cm 3 , Melting point: 123 ° C,
MFR: 1.3g / 10 minutes, manufactured by Dowchemical
 例Bの欄において、以下、上記中密度ポリエチレン(Elite5538G)を「MDPE」、上記高密度ポリエチレン(Elite5960G)を「HDPE」、上記直鎖状低密度ポリエチレン(Elite5400G)を「LLDPE」とも記載する。 In the column of Example B, the medium density polyethylene (Elite5538G) is also referred to as "MDPE", the high density polyethylene (Elite5960G) is referred to as "HDPE", and the linear low density polyethylene (Elite5400G) is also referred to as "LLDPE".
 <ブレンドポリエチレンの作製>
・ブレンドポリエチレンA
 50部のMDPEと、50部のHDPEとを混合して、平均密度0.951g/cmのブレンドポリエチレンA(例Bの欄において、以下「ブレンドPE(A)」と記載する)を得た。
・ブレンドポリエチレンB
 50部のMDPEと、50部のLLDPEとを混合して、平均密度0.929g/cmのブレンドポリエチレンB(例Bの欄において、以下「ブレンドPE(B)」と記載する)を得た。
・ブレンドポリエチレンB1
 70部のMDPEと、30部のLLDPEとを混合して、平均密度0.934g/cmのブレンドポリエチレンB1(例Bの欄において、以下「ブレンドPE(B1)」と記載する)を得た。
・ブレンドポリエチレンC
 70部のMDPEと、30部のHDPEとを混合して、平均密度0.947g/cmのブレンドポリエチレンC(例Bの欄において、以下「ブレンドPE(C)」と記載する)を得た。
・ブレンドポリエチレンD
 30部のMDPEと、70部のHDPEとを混合して、平均密度0.954g/cmのブレンドポリエチレンD(例Bの欄において、以下「ブレンドPE(D)」と記載する)を得た。
<Making blended polyethylene>
・ Blended polyethylene A
50 parts of MDPE and 50 parts of HDPE were mixed to obtain a blended polyethylene A having an average density of 0.951 g / cm 3 (hereinafter referred to as "blended PE (A)" in the column of Example B). ..
・ Blended polyethylene B
50 parts of MDPE and 50 parts of LLDPE were mixed to obtain a blended polyethylene B having an average density of 0.929 g / cm 3 (hereinafter referred to as "blended PE (B)" in the column of Example B). ..
・ Blended polyethylene B1
70 parts of MDPE and 30 parts of LLDPE were mixed to obtain a blended polyethylene B1 having an average density of 0.934 g / cm 3 (hereinafter referred to as "blended PE (B1)" in the column of Example B). ..
・ Blended polyethylene C
70 parts of MDPE and 30 parts of HDPE were mixed to obtain a blended polyethylene C having an average density of 0.947 g / cm 3 (hereinafter referred to as "blended PE (C)" in the column of Example B). ..
・ Blended polyethylene D
30 parts of MDPE and 70 parts of HDPE were mixed to obtain a blended polyethylene D having an average density of 0.954 g / cm 3 (hereinafter referred to as "blended PE (D)" in the column of Example B). ..
 [実施例1B]
 MDPE、HDPE及びブレンドPE(A)を、インフレーション成形法により、MDPE層(15μm)/HDPE層(22.5μm)/ブレンドPE(A)層(50μm)/HDPE層(22.5μm)/MDPE層(15μm)の層厚さ比で5層共押出しを行いチューブ状に製膜し、総厚さ125μmのポリエチレンフィルムを得て、チューブ状のフィルムをニップ箇所で折りたたみ、2枚重ねにした。括弧内の数値は層の厚さを示す。
[Example 1B]
MDPE, HDPE and blend PE (A) are subjected to MDPE layer (15 μm) / HDPE layer (22.5 μm) / blend PE (A) layer (50 μm) / HDPE layer (22.5 μm) / MDPE layer by inflation molding method. Five layers were co-extruded at a layer thickness ratio of (15 μm) to form a tubular film, a polyethylene film having a total thickness of 125 μm was obtained, and the tubular film was folded at the nip site to form two layers. The numbers in parentheses indicate the layer thickness.
 上記で作製したポリエチレンフィルムを長手方向(MD)に5倍の延伸倍率で延伸し、さらに、片方の面のMDPE層(表面層)にコロナ放電処理を行った後、端部をスリットし、2枚に分けて、厚さ25μmの延伸多層基材を得た。 The polyethylene film produced above is stretched in the longitudinal direction (MD) at a draw ratio of 5 times, and further, the MDPE layer (surface layer) on one side is subjected to a corona discharge treatment, and then the end portion is slit and 2 The sheets were divided into sheets to obtain a stretched multilayer substrate having a thickness of 25 μm.
 [参考例1B及び実施例3B]
 LLDPE、ブレンドPE(B)及びブレンドPE(C)を、インフレーション成形法により、ブレンドPE(C)層(15μm)/ブレンドPE(B)層(22.5μm)/LLDPE層(50μm)/ブレンドPE(B)層(22.5μm)/ブレンドPE(C)層(15μm)の層厚さ比で5層共押出しを行いチューブ状に製膜し、総厚さ125μmのポリエチレンフィルムを得て、チューブ状のフィルムをニップ箇所で折りたたみ、2枚重ねにした。括弧内の数値は層の厚さを示す。
[Reference Example 1B and Example 3B]
LLDPE, blended PE (B) and blended PE (C) are blended PE (C) layer (15 μm) / blended PE (B) layer (22.5 μm) / LLDPE layer (50 μm) / blended PE by the inflation molding method. Five layers were co-extruded at a layer thickness ratio of (B) layer (22.5 μm) / blended PE (C) layer (15 μm) to form a tube-like film, and a polyethylene film with a total thickness of 125 μm was obtained. The shape of the film was folded at the nip and two layers were stacked. The numbers in parentheses indicate the layer thickness.
 上記で作製したポリエチレンフィルムを長手方向(MD)に5倍の延伸倍率で延伸し、さらに、片方の面のブレンドPE(C)層(表面層)にコロナ放電処理を行った後、端部をスリットし、2枚に分けて、厚さ25μmの延伸多層基材(実施例3B)を得た。また、上記で作製したポリエチレンフィルムの片方の面のブレンドPE(C)層(表面層)にコロナ放電処理を行った(参考例1B)。 The polyethylene film produced above is stretched in the longitudinal direction (MD) at a draw ratio of 5 times, and further, the blended PE (C) layer (surface layer) on one side is subjected to a corona discharge treatment, and then the end portion is formed. The slit was made and divided into two pieces to obtain a stretched multilayer base material (Example 3B) having a thickness of 25 μm. Further, the blended PE (C) layer (surface layer) on one side of the polyethylene film produced above was subjected to a corona discharge treatment (Reference Example 1B).
 [実施例2B、4B~5B及び比較例1B~2B]
 層構成を表6及び表7に記載したとおりに変更した以外は実施例1Bと同様にして、ポリエチレンフィルム及び延伸多層基材を得た。
[Examples 2B, 4B to 5B and Comparative Examples 1B to 2B]
A polyethylene film and a stretched multilayer base material were obtained in the same manner as in Example 1B except that the layer structure was changed as described in Tables 6 and 7.
 [積層体の作製]
 第一の直鎖状低密度ポリエチレン(プライムポリマー社製、SP2520、密度:0.925g/cm、融点:122℃)と、第二の直鎖状低密度ポリエチレン(プライムポリマー社製、SP1520、密度:0.913g/cm、融点:116℃)とを、インフレーション成形法により、多層押出製膜し、厚さ20μmの第一の直鎖状低密度ポリエチレン層と、厚さ20μmの第二の直鎖状低密度ポリエチレン層とを備える未延伸ポリエチレンフィルムを作製した。この未延伸ポリエチレンフィルムを、以下に説明するとおりヒートシール層として用いた。
[Preparation of laminated body]
First linear low density polyethylene (Prime Polymer, SP2520, density: 0.925 g / cm 3 , melting point: 122 ° C) and second linear low density polyethylene (Prime Polymer, SP1520, A density: 0.913 g / cm 3 , melting point: 116 ° C.) was extruded in multiple layers by an inflation molding method, and a first linear low-density polyethylene layer with a thickness of 20 μm and a second layer with a thickness of 20 μm were formed. An unstretched polyethylene film provided with the linear low-density polyethylene layer of the above was prepared. This unstretched polyethylene film was used as a heat seal layer as described below.
 上記で作製した未延伸ポリエチレンフィルム(ヒートシール層)の第一の直鎖状低密度ポリエチレン層側と、実施例及び比較例において得られた延伸多層基材、又は参考例において得られたポリエチレンフィルムとを、2液硬化型ウレタン系接着剤(ロックペイント社製、Ru-77T/H-7)を介してドライラミネートし、積層体を得た。 The first linear low-density polyethylene layer side of the unstretched polyethylene film (heat-sealed layer) produced above, the stretched multilayer base material obtained in Examples and Comparative Examples, or the polyethylene film obtained in Reference Example. Was dry-laminated via a two-component curable urethane adhesive (Ru-77T / H-7, manufactured by Rock Paint Co., Ltd.) to obtain a laminated body.
 上記で作製した積層体を、10cm×10cmにカットしてサンプル片を3つずつ作製した。各サンプル片のヒートシール層側が内側になるように二つ折りにし、ヒートシールテスターを用いて、温度140℃、圧力1kgf/cm、1秒の条件にて1cm×10cmの領域をヒートシールした。
 上記評価結果を表6及び表7に示す。
The laminate prepared above was cut into 10 cm × 10 cm to prepare three sample pieces. Each sample piece was folded in half so that the heat seal layer side was on the inside, and a 1 cm × 10 cm area was heat-sealed using a heat seal tester under the conditions of a temperature of 140 ° C., a pressure of 1 kgf / cm 2 , and 1 second.
The above evaluation results are shown in Tables 6 and 7.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 [例C]
 本開示の第5の態様の多層基材について実施例に基づきさらに具体的に説明するが、本開示の多層基材は実施例によって限定されない。以下、「質量部」は単に「部」と記載する。
[Example C]
The multilayer base material of the fifth aspect of the present disclosure will be described in more detail based on Examples, but the multilayer base material of the present disclosure is not limited to the examples. Hereinafter, "parts by mass" is simply referred to as "parts".
 以下の実施例及び比較例で用いるポリエチレンについて記載する。
・中密度ポリエチレン:
  商品名Enable4002MC
  密度:0.940g/cm、融点:128℃、
  MFR:0.25g/10分、ExxonMobil社製
・高密度ポリエチレン(1):
  商品名Elite5960G
  密度:0.960g/cm、融点:134℃、
  MFR:0.8g/10分、Dowchemical社製
・高密度ポリエチレン(2):
  商品名H619F
  密度:0.965g/cm、融点:135℃、
  MFR:0.7g/10分、SCG社製
・直鎖状低密度ポリエチレン:
  商品名Exceed XP8656ML
  密度:0.916g/cm、融点:121℃、
  MFR:0.5g/10分、ExxonMobil社製
・低密度ポリエチレン:
  商品名LD2420F
  密度:0.922g/cm、融点:112℃、
  MFR:0.75g/10分、PTT社製
・スリップ剤含有MB:
  商品名SLIP61 10061-K
  密度:0.910g/cm、MFR:10g/10分、
  ポリエチレンベース、エルカ酸アミド系スリップ剤5質量%含有、
  Ampacet社製
The polyethylene used in the following examples and comparative examples will be described.
・ Medium density polyethylene:
Product name Allow4002MC
Density: 0.940 g / cm 3 , Melting point: 128 ° C,
MFR: 0.25 g / 10 minutes, ExxonMobil high-density polyethylene (1):
Product name Elite5960G
Density: 0.960 g / cm 3 , Melting point: 134 ° C,
MFR: 0.8g / 10 minutes, Dowchemical High Density Polyethylene (2):
Product name H619F
Density: 0.965 g / cm 3 , Melting point: 135 ° C,
MFR: 0.7g / 10 minutes, SCG linear low density polyethylene:
Product name Exceed XP8656ML
Density: 0.916 g / cm 3 , Melting point: 121 ° C,
MFR: 0.5g / 10 minutes, ExxonMobil low density polyethylene:
Product name LD2420F
Density: 0.922 g / cm 3 , Melting point: 112 ° C,
MFR: 0.75g / 10 minutes, manufactured by PTT Public Company Limited, containing slip agent: MB:
Product name SLIP61 10061-K
Density: 0.910 g / cm 3 , MFR: 10 g / 10 minutes,
Polyethylene base, containing 5% by mass of erucic acid amide slip agent,
Made by Ampcate
 例Cの欄において、以下、上記中密度ポリエチレン(Enable4002MC)を「MDPE」、上記高密度ポリエチレン(1)(Elite5960G)を「HDPE(1)」、上記高密度ポリエチレン(2)(H619F)を「HDPE(2)」、上記直鎖状低密度ポリエチレン(Exceed XP8656ML)を「LLDPE」、上記低密度ポリエチレン(LD2420F)を「LDPE」とも記載する。 In the column of Example C, the medium density polyethylene (Enable4002MC) is referred to as "MDPE", the high density polyethylene (1) (Elite5960G) is referred to as "HDPE (1)", and the high density polyethylene (2) (H619F) is referred to as "HDPE (1)". HDPE (2) ”, the linear low density polyethylene (Exceed XP8656ML) is also referred to as“ LLDPE ”, and the low density polyethylene (LD2420F) is also referred to as“ LDPE ”.
 <ブレンドポリエチレンの作製>
・ブレンドポリエチレンA1
 70部のMDPEと、30部のHDPE(1)とを混合して、平均密度0.948g/cmのブレンドポリエチレンA1(例Cの欄において、以下「ブレンドPE(A1)」と記載する)を得た。
・ブレンドポリエチレンB1
 70部のHDPE(2)と、30部のLDPEとを混合して、平均密度0.950g/cmのブレンドポリエチレンB1(例Cの欄において、以下「ブレンドPE(B1)」と記載する)を得た。
・ブレンドポリエチレンC1
 98部のLLDPEと、2部のスリップ剤含有MBとを混合して、平均密度0.916g/cmのブレンドポリエチレンC1(例Cの欄において、以下「ブレンドPE(C1)」と記載する)を得た。
<Making blended polyethylene>
・ Blended polyethylene A1
Blended polyethylene A1 having an average density of 0.948 g / cm 3 by mixing 70 parts of MDPE and 30 parts of HDPE (1) (hereinafter referred to as "blended PE (A1)" in the column of Example C). Got
・ Blended polyethylene B1
Blended polyethylene B1 having an average density of 0.950 g / cm 3 by mixing 70 parts of HDPE (2) and 30 parts of LDPE (hereinafter referred to as "blended PE (B1)" in the column of Example C). Got
・ Blended polyethylene C1
98 parts of LLDPE and 2 parts of slip agent-containing MB are mixed and blended polyethylene C1 having an average density of 0.916 g / cm 3 (hereinafter referred to as "blended PE (C1)" in the column of Example C). Got
・ブレンドポリエチレンA2
 69部のMDPEと、30部のHDPE(1)と、1部のスリップ剤含有MBとを混合して、平均密度0.948g/cmのブレンドポリエチレンA2(例Cの欄において、以下「ブレンドPE(A2)」と記載する)を得た。
・ブレンドポリエチレンB2
 69部のHDPE(2)と、30部のLDPEと、1部のスリップ剤含有MBとを混合して、平均密度0.949g/cmのブレンドポリエチレンB2(例Cの欄において、以下「ブレンドPE(B2)」と記載する)を得た。
・ブレンドポリエチレンC2
 99部のLLDPEと、1部のスリップ剤含有MBとを混合して、平均密度0.916g/cmのブレンドポリエチレンC2(例Cの欄において、以下「ブレンドPE(C2)」と記載する)を得た。
・ Blended polyethylene A2
69 parts of MDPE, 30 parts of HDPE (1) and 1 part of slip agent-containing MB are mixed and blended polyethylene A2 having an average density of 0.948 g / cm 3 (in the column of Example C, hereinafter "blended". PE (A2) ”) was obtained.
・ Blended polyethylene B2
69 parts of HDPE (2), 30 parts of LDPE, and 1 part of slip agent-containing MB are mixed and blended polyethylene B2 with an average density of 0.949 g / cm 3 (in the column of Example C, hereinafter "blended". PE (B2) ”) was obtained.
・ Blended polyethylene C2
Blended polyethylene C2 having an average density of 0.916 g / cm 3 by mixing 99 parts of LLDPE and 1 part of slip agent-containing MB (hereinafter referred to as "blended PE (C2)" in the column of Example C). Got
・ブレンドポリエチレンC3
 68部のLLDPEと、30部のLDPEと、2部のスリップ剤含有MBとを混合して、平均密度0.918g/cmのブレンドポリエチレンC3(例Cの欄において、以下「ブレンドPE(C3)」と記載する)を得た。
・ Blended polyethylene C3
68 parts of LLDPE, 30 parts of LDPE, and 2 parts of slip agent-containing MB are mixed to make a blended polyethylene C3 having an average density of 0.918 g / cm 3 (in the column of Example C, hereinafter, "blended PE (C3)". ) ”) Was obtained.
 [実施例1C]
 ブレンドPE(A1)、ブレンドPE(B1)及びブレンドPE(C1)を、インフレーション成形法により、ブレンドPE(A1)層(15μm)/ブレンドPE(B1)層(22.5μm)/ブレンドPE(C1)層(50μm)/ブレンドPE(B1)層(22.5μm)/ブレンドPE(A1)層(15μm)の層厚さ比で5層共押出しを行いチューブ状に製膜し、総厚さ125μmのポリエチレンフィルムを得て、チューブ状のフィルムをニップ箇所で折りたたみ、2枚重ねにした。括弧内の数値は層の厚さを示す。
[Example 1C]
Blended PE (A1), blended PE (B1) and blended PE (C1) are blended PE (A1) layer (15 μm) / blended PE (B1) layer (22.5 μm) / blended PE (C1) by the inflation molding method. ) Layer (50 μm) / Blend PE (B1) layer (22.5 μm) / Blend PE (A1) layer (15 μm) 5 layers are co-extruded with a layer thickness ratio to form a tube-like film, and the total thickness is 125 μm. The polyethylene film of No. 1 was obtained, and the tubular film was folded at the nip site to form two layers. The numbers in parentheses indicate the layer thickness.
 上記で作製したポリエチレンフィルムを長手方向(MD)に5倍の延伸倍率で延伸し、さらに、片方の面のブレンドPE(A1)層(表面層)にコロナ放電処理を行った後、端部をスリットし、2枚に分けて、厚さ25μmの延伸多層基材を得た。 The polyethylene film produced above is stretched in the longitudinal direction (MD) at a draw ratio of 5 times, and further, the blended PE (A1) layer (surface layer) on one side is subjected to a corona discharge treatment, and then the end portion is formed. The slit was made and divided into two pieces to obtain a stretched multilayer base material having a thickness of 25 μm.
 [実施例2C及び3C、比較例1C及び2C]
 層構成を表8に記載したとおりに変更した以外は実施例1Cと同様にして、ポリエチレンフィルム及び延伸多層基材を得た。表8において、スリップ剤含有MBを単に「MB」と記載する。
[Examples 2C and 3C, Comparative Examples 1C and 2C]
A polyethylene film and a stretched multilayer base material were obtained in the same manner as in Example 1C except that the layer structure was changed as shown in Table 8. In Table 8, the slip agent-containing MB is simply referred to as “MB”.
 [実施例4C]
 ブレンドPE(A1)、ブレンドPE(B1)及びブレンドPE(C1)を、インフレーション成形法により、ブレンドPE(A1)層(12μm)/ブレンドPE(B1)層(18μm)/ブレンドPE(C1)層(40μm)/ブレンドPE(B1)層(18μm)/ブレンドPE(A1)層(12μm)の層厚さ比で5層共押出しを行いチューブ状に製膜し、総厚さ100μmのポリエチレンフィルムを得て、チューブ状のフィルムをニップ箇所で折りたたみ、2枚重ねにした。括弧内の数値は層の厚さを示す。
[Example 4C]
Blended PE (A1), blended PE (B1) and blended PE (C1) are blended PE (A1) layer (12 μm) / blended PE (B1) layer (18 μm) / blended PE (C1) layer by an inflation molding method. A polyethylene film having a total thickness of 100 μm was formed by co-extruding 5 layers at a layer thickness ratio of (40 μm) / blend PE (B1) layer (18 μm) / blend PE (A1) layer (12 μm) to form a tube. Obtained, the tubular film was folded at the nip portion, and two sheets were stacked. The numbers in parentheses indicate the layer thickness.
 上記で作製したポリエチレンフィルムを長手方向(MD)に5倍の延伸倍率で延伸し、さらに、片方の面のブレンドPE(A1)層(表面層)にコロナ放電処理を行った後、端部をスリットし、2枚に分けて、厚さ20μmの延伸多層基材を得た。 The polyethylene film produced above is stretched in the longitudinal direction (MD) at a draw ratio of 5 times, and further, the blended PE (A1) layer (surface layer) on one side is subjected to a corona discharge treatment, and then the end portion is formed. The slit was made and divided into two pieces to obtain a stretched multilayer base material having a thickness of 20 μm.
 [実施例5C及び6C]
 層構成を表9に記載したとおりに変更した以外は実施例4Cと同様にして、ポリエチレンフィルム及び延伸多層基材を得た。表9において、スリップ剤含有MBを単に「MB」と記載する。
[Examples 5C and 6C]
A polyethylene film and a stretched multilayer base material were obtained in the same manner as in Example 4C except that the layer structure was changed as shown in Table 9. In Table 9, the slip agent-containing MB is simply referred to as “MB”.
 [積層体の作製]
 第一の直鎖状低密度ポリエチレン(プライムポリマー社製、SP2520、密度:0.925g/cm、融点:122℃)と、第二の直鎖状低密度ポリエチレン(プライムポリマー社製、SP1520、密度:0.913g/cm、融点:116℃)とを、インフレーション成形法により、多層押出製膜し、厚さ20μmの第一の直鎖状低密度ポリエチレン層と、厚さ20μmの第二の直鎖状低密度ポリエチレン層とを備える未延伸ポリエチレンフィルムを作製した。この未延伸ポリエチレンフィルムを、以下に説明するとおりヒートシール層として用いた。
[Preparation of laminated body]
First linear low density polyethylene (Prime Polymer, SP2520, density: 0.925 g / cm 3 , melting point: 122 ° C) and second linear low density polyethylene (Prime Polymer, SP1520, A density: 0.913 g / cm 3 , melting point: 116 ° C.) was extruded in multiple layers by an inflation molding method, and a first linear low-density polyethylene layer with a thickness of 20 μm and a second layer with a thickness of 20 μm were formed. An unstretched polyethylene film provided with the linear low-density polyethylene layer of the above was prepared. This unstretched polyethylene film was used as a heat seal layer as described below.
 上記で作製した未延伸ポリエチレンフィルム(ヒートシール層)の第一の直鎖状低密度ポリエチレン層側と、実施例及び比較例において得られた延伸多層基材とを、2液硬化型ウレタン系接着剤(ロックペイント社製、Ru-77T/H-7)を介してドライラミネートし、積層体を得た。 Two-component curable urethane-based adhesion between the first linear low-density polyethylene layer side of the unstretched polyethylene film (heat seal layer) produced above and the stretched multilayer base material obtained in Examples and Comparative Examples. A laminate was obtained by dry laminating with an agent (Ru-77T / H-7 manufactured by Rock Paint Co., Ltd.).
 上記で作製した積層体を、10cm×10cmにカットしてサンプル片を3つずつ作製した。各サンプル片のヒートシール層側が内側になるように二つ折りにし、ヒートシールテスターを用いて、温度140℃、圧力1kgf/cm、1秒の条件にて1cm×10cmの領域をヒートシールした。
 上記評価結果を表8及び表9に示す。
The laminate prepared above was cut into 10 cm × 10 cm to prepare three sample pieces. Each sample piece was folded in half so that the heat seal layer side was on the inside, and a 1 cm × 10 cm area was heat-sealed using a heat seal tester under the conditions of a temperature of 140 ° C., a pressure of 1 kgf / cm 2 , and 1 second.
The above evaluation results are shown in Tables 8 and 9.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 [例D]
 本開示の第5の態様の積層体について実施例に基づきさらに具体的に説明するが、本開示の第5の態様の積層体は実施例によって限定されない。以下、「質量部」は単に「部」と記載する。
[Example D]
The laminate of the fifth aspect of the present disclosure will be described more specifically based on the examples, but the laminate of the fifth aspect of the present disclosure is not limited by the examples. Hereinafter, "parts by mass" is simply referred to as "parts".
 以下の実施例で用いるポリエチレンについて記載する。
・中密度ポリエチレン:
  商品名Elite5538G
  密度:0.941g/cm、融点:129℃、
  MFR:1.3g/10分、Dowchemical社製
・高密度ポリエチレン:
  商品名Elite5960G
  密度:0.960g/cm、融点:134℃、
  MFR:0.8g/10分、Dowchemical社製
・直鎖状低密度ポリエチレン:
  商品名Elite5400G
  密度:0.916g/cm、融点:123℃、
  MFR:1.3g/10分、Dowchemical社製
The polyethylene used in the following examples will be described.
・ Medium density polyethylene:
Product name Elite5538G
Density: 0.941 g / cm 3 , Melting point: 129 ° C,
MFR: 1.3g / 10 minutes, Dowchemical High Density Polyethylene:
Product name Elite5960G
Density: 0.960 g / cm 3 , Melting point: 134 ° C,
MFR: 0.8 g / 10 minutes, manufactured by Dowchemical, linear low-density polyethylene:
Product name Elite5400G
Density: 0.916 g / cm 3 , Melting point: 123 ° C,
MFR: 1.3g / 10 minutes, manufactured by Dowchemical
 例Dの欄において、以下、上記中密度ポリエチレン(Elite5538G)を「MDPE」、上記高密度ポリエチレン(Elite5960G)を「HDPE」、上記直鎖状低密度ポリエチレン(Elite5400G)を「LLDPE」とも記載する。 In the column of Example D, the medium density polyethylene (Elite5538G) is also referred to as "MDPE", the high density polyethylene (Elite5960G) is referred to as "HDPE", and the linear low density polyethylene (Elite5400G) is also referred to as "LLDPE".
 <ブレンドポリエチレンの作製>
・ブレンドポリエチレンA
 50部のMDPEと、50部のHDPEとを混合して、平均密度0.951g/cmのブレンドポリエチレンA(例Dの欄において、以下「ブレンドPE(A)」と記載する)を得た。
・ブレンドポリエチレンB
 50部のMDPEと、50部のLLDPEとを混合して、平均密度0.929g/cmのブレンドポリエチレンB(例Dの欄において、以下「ブレンドPE(B)」と記載する)を得た。
・ブレンドポリエチレンB1
 70部のMDPEと、30部のLLDPEとを混合して、平均密度0.934g/cmのブレンドポリエチレンB1(例Dの欄において、以下「ブレンドPE(B1)」と記載する)を得た。
・ブレンドポリエチレンC
 70部のMDPEと、30部のHDPEとを混合して、平均密度0.947g/cmのブレンドポリエチレンC(例Dの欄において、以下「ブレンドPE(C)」と記載する)を得た。
・ブレンドポリエチレンD
 30部のMDPEと、70部のHDPEとを混合して、平均密度0.954g/cmのブレンドポリエチレンD(例Dの欄において、以下「ブレンドPE(D)」と記載する)を得た。
<Making blended polyethylene>
・ Blended polyethylene A
50 parts of MDPE and 50 parts of HDPE were mixed to obtain a blended polyethylene A having an average density of 0.951 g / cm 3 (hereinafter referred to as "blended PE (A)" in the column of Example D). ..
・ Blended polyethylene B
50 parts of MDPE and 50 parts of LLDPE were mixed to obtain a blended polyethylene B having an average density of 0.929 g / cm 3 (hereinafter referred to as "blended PE (B)" in the column of Example D). ..
・ Blended polyethylene B1
70 parts of MDPE and 30 parts of LLDPE were mixed to obtain a blended polyethylene B1 having an average density of 0.934 g / cm 3 (hereinafter referred to as "blended PE (B1)" in the column of Example D). ..
・ Blended polyethylene C
70 parts of MDPE and 30 parts of HDPE were mixed to obtain a blended polyethylene C having an average density of 0.947 g / cm 3 (hereinafter referred to as "blended PE (C)" in the column of Example D). ..
・ Blended polyethylene D
30 parts of MDPE and 70 parts of HDPE were mixed to obtain a blended polyethylene D having an average density of 0.954 g / cm 3 (hereinafter referred to as "blended PE (D)" in the column of Example D). ..
 [実施例1D]
 MDPE、HDPE及びブレンドPE(A)を、インフレーション成形法により、MDPE層(15μm)/HDPE層(22.5μm)/ブレンドPE(A)層(50μm)/HDPE層(22.5μm)/MDPE層(15μm)の層厚さ比で5層共押出しを行いチューブ状に製膜し、総厚さ125μmのポリエチレンフィルムを得て、チューブ状のフィルムをニップ箇所で折りたたみ、2枚重ねにした。括弧内の数値は層の厚さを示す。
[Example 1D]
MDPE, HDPE and blend PE (A) are subjected to MDPE layer (15 μm) / HDPE layer (22.5 μm) / blend PE (A) layer (50 μm) / HDPE layer (22.5 μm) / MDPE layer by inflation molding method. Five layers were co-extruded at a layer thickness ratio of (15 μm) to form a tubular film, a polyethylene film having a total thickness of 125 μm was obtained, and the tubular film was folded at the nip site to form two layers. The numbers in parentheses indicate the layer thickness.
 上記で作製したポリエチレンフィルムを長手方向(MD)に5倍の延伸倍率で延伸し、さらに、片方の面のMDPE層(表面層)にコロナ放電処理を行った後、端部をスリットし、2枚に分けて、厚さ25μmの延伸多層基材を得た。 The polyethylene film produced above is stretched in the longitudinal direction (MD) at a draw ratio of 5 times, and further, the MDPE layer (surface layer) on one side is subjected to a corona discharge treatment, and then the end portion is slit and 2 The sheets were divided into sheets to obtain a stretched multilayer substrate having a thickness of 25 μm.
 第一の直鎖状低密度ポリエチレン(プライムポリマー社製、SP2520、密度:0.925g/cm、融点:122℃)と、第二の直鎖状低密度ポリエチレン(プライムポリマー社製、SP1520、密度:0.913g/cm、融点:116℃)とを、インフレーション成形法により、多層押出製膜し、厚さ20μmの第一の直鎖状低密度ポリエチレン層と、厚さ20μmの第二の直鎖状低密度ポリエチレン層とを備える多層構造を有する未延伸ポリエチレンフィルムを作製した。この多層構造を有する未延伸ポリエチレンフィルムを、以下に説明するとおりヒートシール層として用いた。 First linear low density polyethylene (Prime Polymer, SP2520, density: 0.925 g / cm 3 , melting point: 122 ° C) and second linear low density polyethylene (Prime Polymer, SP1520, A density: 0.913 g / cm 3 , melting point: 116 ° C.) was extruded in multiple layers by an inflation molding method, and a first linear low-density polyethylene layer with a thickness of 20 μm and a second layer with a thickness of 20 μm were formed. An unstretched polyethylene film having a multilayer structure including the linear low-density polyethylene layer of the above was prepared. The unstretched polyethylene film having this multilayer structure was used as a heat seal layer as described below.
 上記で作製した多層構造を有する未延伸ポリエチレンフィルム(ヒートシール層)の第一の直鎖状低密度ポリエチレン層側と、上記で作製した延伸多層基材とを、2液硬化型ウレタン系接着剤(ロックペイント社製、Ru-77T/H-7)を介してドライラミネートし、積層体を得た。 The first linear low-density polyethylene layer side of the unstretched polyethylene film (heat seal layer) having the multilayer structure produced above and the stretched multilayer substrate prepared above are bonded to a two-component curable urethane adhesive. (Ru-77T / H-7 manufactured by Rock Paint Co., Ltd.) was dry-laminated to obtain a laminated body.
 [実施例2D~7D]
 延伸多層基材の層構成を表10に記載したとおりに変更した以外は実施例1Dと同様にして、積層体を得た。
[Examples 2D to 7D]
A laminated body was obtained in the same manner as in Example 1D except that the layer structure of the stretched multilayer base material was changed as shown in Table 10.
 上記評価結果を表10に示す。表10の結果からも明らかなように、本開示の第5の態様の積層体によれば、強度、ヒートシール性及びリサイクル性に優れる包装袋を作製可能であることがわかる。 The above evaluation results are shown in Table 10. As is clear from the results in Table 10, it can be seen that according to the laminate of the fifth aspect of the present disclosure, it is possible to produce a packaging bag having excellent strength, heat sealability and recyclability.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 当業者であれば理解するように、本開示の多層基材等は上記実施例の記載によって限定されず、上記実施例及び明細書は本開示の原理を説明するためのものにすぎず、本開示の主旨及び範囲から逸脱しない限り、様々な改変又は改善を行うことができ、これら改変又は改善はいずれも保護請求している本開示の範囲内に含まれる。さらに本開示が保護請求している範囲は、請求の範囲の記載のみならずその均等物を含む。 As those skilled in the art will understand, the multilayer base material and the like of the present disclosure are not limited by the description of the above-mentioned Examples, and the above-mentioned Examples and the specification are merely for explaining the principle of the present disclosure. Various modifications or improvements may be made as long as they do not deviate from the gist and scope of the disclosure, and any of these modifications or improvements are included within the scope of the present disclosure for which protection is claimed. Further, the scope of the claims for protection includes not only the description of the claims but also the equivalent thereof.
10:ポリエチレン多層基材
10a:基材(延伸多層基材)
12:層(A)
14:層(C)
16:多層中間層(B)
12、14、18、20、22:ポリエチレン多層基材を構成する層
30:積層体
32:ヒートシール層
34:バリア層
36:接着層
10: Polyethylene multilayer base material 10a: Base material (stretched multilayer base material)
12: Layer (A)
14: Layer (C)
16: Multilayer intermediate layer (B)
12, 14, 18, 20, 22: Layers constituting the polyethylene multilayer base material 30: Laminated body 32: Heat seal layer 34: Barrier layer 36: Adhesive layer

Claims (19)

  1.  第1のポリエチレン層と、
     第2のポリエチレン層と、
     第3のポリエチレン層と
    を厚さ方向にこの順に備え、延伸処理されてなり、
     下記要件(A)及び/又は下記要件(B)を充たす、
    ポリエチレン多層基材:
     要件(A):前記第1のポリエチレン層の押込み弾性率が、前記第2のポリエチレン層の押込み弾性率の3.0倍以上であり、前記第3のポリエチレン層の押込み弾性率が、前記第2のポリエチレン層の押込み弾性率の3.0倍以上である、
     要件(B):前記第1のポリエチレン層の押込み硬度が、前記第2のポリエチレン層の押込み硬度の2.0倍以上であり、前記第3のポリエチレン層の押込み硬度が、前記第2のポリエチレン層の押込み硬度の2.0倍以上である。
    With the first polyethylene layer,
    With the second polyethylene layer,
    A third polyethylene layer is provided in this order in the thickness direction, and the polyethylene layer is stretched.
    Satisfy the following requirements (A) and / or the following requirements (B),
    Polyethylene multilayer base material:
    Requirement (A): The indentation elastic modulus of the first polyethylene layer is 3.0 times or more the indentation elastic modulus of the second polyethylene layer, and the indentation elastic modulus of the third polyethylene layer is the first. It is 3.0 times or more the indentation elastic modulus of the polyethylene layer of 2.
    Requirement (B): The indentation hardness of the first polyethylene layer is 2.0 times or more the indentation hardness of the second polyethylene layer, and the indentation hardness of the third polyethylene layer is the second polyethylene. It is 2.0 times or more the indentation hardness of the layer.
  2.  前記ポリエチレン多層基材が、前記第1のポリエチレン層及び前記第2のポリエチレン層の間に第2aのポリエチレン層と、前記第2のポリエチレン層及び前記第3のポリエチレン層の間に第2bのポリエチレン層と、をさらに備え、
     前記第2aのポリエチレン層の押込み弾性率が、前記第2のポリエチレン層の押込み弾性率の2.0倍以上であり、前記第2bのポリエチレン層の押込み弾性率が、前記第2のポリエチレン層の押込み弾性率の2.0倍以上であり、及び/又は、
     前記第2aのポリエチレン層の押込み硬度が、前記第2のポリエチレン層の押込み硬度の1.4倍以上であり、前記第2bのポリエチレン層の押込み硬度が、前記第2のポリエチレン層の押込み硬度の1.4倍以上である、
    請求項1に記載のポリエチレン多層基材。
    The polyethylene multilayer substrate has a second polyethylene layer between the first polyethylene layer and the second polyethylene layer, and a second polyethylene between the second polyethylene layer and the third polyethylene layer. With more layers,
    The indentation elastic modulus of the second polyethylene layer is 2.0 times or more the indentation elastic modulus of the second polyethylene layer, and the indentation elastic modulus of the second polyethylene layer is that of the second polyethylene layer. More than 2.0 times the indentation modulus and / or
    The indentation hardness of the second polyethylene layer is 1.4 times or more the indentation hardness of the second polyethylene layer, and the indentation hardness of the second polyethylene layer is the indentation hardness of the second polyethylene layer. 1.4 times or more,
    The polyethylene multilayer base material according to claim 1.
  3.  中密度ポリエチレンを含有する層(A)と、
     それぞれポリエチレンを含有する、2層以上の多層中間層(B)と、
     中密度ポリエチレンを含有する層(C)と
    を、厚さ方向にこの順に備えるポリエチレン多層基材であり、
     前記多層基材は、延伸処理されており、
     前記多層基材における、厚さ方向において任意の互いに隣接するポリエチレン含有層を層(1)及び層(2)と記載する場合に、前記層(1)を構成するポリエチレンの密度と、前記層(2)を構成するポリエチレンの密度との差の絶対値が、0.030g/cm以下である、
    ポリエチレン多層基材。
    The layer (A) containing medium-density polyethylene and
    Two or more layers of the multilayer intermediate layer (B), each containing polyethylene, and
    A polyethylene multilayer base material in which a layer (C) containing medium-density polyethylene is provided in this order in the thickness direction.
    The multilayer base material has been stretched and has been stretched.
    When the polyethylene-containing layers arbitrarily adjacent to each other in the thickness direction in the multilayer substrate are described as the layer (1) and the layer (2), the density of the polyethylene constituting the layer (1) and the layer ( The absolute value of the difference from the density of polyethylene constituting 2) is 0.030 g / cm 3 or less.
    Polyethylene multilayer base material.
  4.  中密度ポリエチレン及び高密度ポリエチレンを含有する第1の層と、
     中密度ポリエチレン及び直鎖状低密度ポリエチレンを含有する第2の層と、
     直鎖状低密度ポリエチレンを含有する第3の層と、
     中密度ポリエチレン及び直鎖状低密度ポリエチレンを含有する第4の層と、
     中密度ポリエチレン及び高密度ポリエチレンを含有する第5の層と
    を、厚さ方向にこの順に備え、延伸処理されてなる、
    ポリエチレン多層基材。
    A first layer containing medium density polyethylene and high density polyethylene,
    A second layer containing medium density polyethylene and linear low density polyethylene,
    A third layer containing linear low density polyethylene,
    A fourth layer containing medium density polyethylene and linear low density polyethylene,
    A fifth layer containing medium-density polyethylene and high-density polyethylene is provided in this order in the thickness direction, and is stretched.
    Polyethylene multilayer base material.
  5.  中密度ポリエチレン及び高密度ポリエチレンを含有する第1の層と、
     高密度ポリエチレンを含有する第2の層と、
     直鎖状低密度ポリエチレンを含有する第3の層と、
     高密度ポリエチレンを含有する第4の層と、
     中密度ポリエチレン及び高密度ポリエチレンを含有する第5の層と
    を、厚さ方向にこの順に備え、延伸処理されてなる、
    ポリエチレン多層基材。
    A first layer containing medium density polyethylene and high density polyethylene,
    A second layer containing high density polyethylene and
    A third layer containing linear low density polyethylene,
    A fourth layer containing high density polyethylene,
    A fifth layer containing medium-density polyethylene and high-density polyethylene is provided in this order in the thickness direction, and is stretched.
    Polyethylene multilayer base material.
  6.  前記ポリエチレン多層基材におけるポリエチレンの含有割合が、80質量%以上である、請求項1~5のいずれか一項に記載のポリエチレン多層基材。 The polyethylene multilayer base material according to any one of claims 1 to 5, wherein the polyethylene content in the polyethylene multilayer base material is 80% by mass or more.
  7.  請求項1~6のいずれか一項に記載のポリエチレン多層基材と、
     前記ポリエチレン多層基材上に形成された印刷層と
    を備える印刷基材。
    The polyethylene multilayer base material according to any one of claims 1 to 6 and the polyethylene multilayer substrate.
    A printing substrate including a printing layer formed on the polyethylene multilayer substrate.
  8.  ポリエチレン多層基材と、
     ポリエチレンを主成分として含有するヒートシール層と
    を備える積層体であって、
     前記ポリエチレン多層基材が、
     第1のポリエチレン層と、
     第2のポリエチレン層と、
     第3のポリエチレン層と
    を厚さ方向にこの順に備え、延伸処理されてなり、
     前記積層体が、下記要件(C)及び/又は下記要件(D)を充たす、
    積層体:
     要件(C):前記第1のポリエチレン層の押込み弾性率が、前記第2のポリエチレン層の押込み弾性率の3.5倍以上であり、前記第3のポリエチレン層の押込み弾性率が、前記第2のポリエチレン層の押込み弾性率の3.5倍以上である、
     要件(D):前記第1のポリエチレン層の押込み硬度が、前記第2のポリエチレン層の押込み硬度の2.0倍以上であり、前記第3のポリエチレン層の押込み硬度が、前記第2のポリエチレン層の押込み硬度の2.0倍以上である。
    Polyethylene multilayer base material and
    A laminate provided with a heat-sealed layer containing polyethylene as a main component.
    The polyethylene multilayer base material is
    With the first polyethylene layer,
    With the second polyethylene layer,
    A third polyethylene layer is provided in this order in the thickness direction, and the polyethylene layer is stretched.
    The laminate satisfies the following requirement (C) and / or the following requirement (D).
    Laminate:
    Requirement (C): The indentation elastic modulus of the first polyethylene layer is 3.5 times or more the indentation elastic modulus of the second polyethylene layer, and the indentation elastic modulus of the third polyethylene layer is the first. It is 3.5 times or more the indentation elastic modulus of the polyethylene layer of 2.
    Requirement (D): The indentation hardness of the first polyethylene layer is 2.0 times or more the indentation hardness of the second polyethylene layer, and the indentation hardness of the third polyethylene layer is the second polyethylene. It is 2.0 times or more the indentation hardness of the layer.
  9.  前記ポリエチレン多層基材が、前記第1のポリエチレン層及び前記第2のポリエチレン層の間に第2aのポリエチレン層と、前記第2のポリエチレン層及び前記第3のポリエチレン層の間に第2bのポリエチレン層と、をさらに備え、
     前記第2aのポリエチレン層の押込み弾性率が、前記第2のポリエチレン層の押込み弾性率の2.0倍以上であり、前記第2bのポリエチレン層の押込み弾性率が、前記第2のポリエチレン層の押込み弾性率の2.0倍以上であり、及び/又は、
     前記第2aのポリエチレン層の押込み硬度が、前記第2のポリエチレン層の押込み硬度の1.5倍以上であり、前記第2bのポリエチレン層の押込み硬度が、前記第2のポリエチレン層の押込み硬度の1.5倍以上である、
    請求項8に記載の積層体。
    The polyethylene multilayer substrate has a second polyethylene layer between the first polyethylene layer and the second polyethylene layer, and a second polyethylene between the second polyethylene layer and the third polyethylene layer. With more layers,
    The indentation elastic modulus of the second polyethylene layer is 2.0 times or more the indentation elastic modulus of the second polyethylene layer, and the indentation elastic modulus of the second polyethylene layer is that of the second polyethylene layer. More than 2.0 times the indentation modulus and / or
    The indentation hardness of the second polyethylene layer is 1.5 times or more the indentation hardness of the second polyethylene layer, and the indentation hardness of the second polyethylene layer is the indentation hardness of the second polyethylene layer. 1.5 times or more,
    The laminate according to claim 8.
  10.  ポリエチレン多層基材と、
     ポリエチレンを主成分として含有するヒートシール層と
    を備える積層体であって、
     前記ポリエチレン多層基材が、
     第1のポリエチレン層と、
     第2のポリエチレン層と、
     第3のポリエチレン層と
    を厚さ方向にこの順に備え、延伸処理されてなり、
     前記積層体が、下記要件(E)及び/又は下記要件(F)を充たす、
    積層体:
     要件(E):前記第1のポリエチレン層の押込み弾性率が、1.0GPa以上であり、前記第3のポリエチレン層の押込み弾性率が、1.0GPa以上である、
     要件(F):前記第1のポリエチレン層の押込み硬度が、45MPa以上であり、前記第3のポリエチレン層の押込み硬度が、45MPa以上である。
    Polyethylene multilayer base material and
    A laminate provided with a heat-sealed layer containing polyethylene as a main component.
    The polyethylene multilayer base material is
    With the first polyethylene layer,
    With the second polyethylene layer,
    A third polyethylene layer is provided in this order in the thickness direction, and the polyethylene layer is stretched.
    The laminate satisfies the following requirement (E) and / or the following requirement (F).
    Laminate:
    Requirement (E): The indentation elastic modulus of the first polyethylene layer is 1.0 GPa or more, and the indentation elastic modulus of the third polyethylene layer is 1.0 GPa or more.
    Requirement (F): The indentation hardness of the first polyethylene layer is 45 MPa or more, and the indentation hardness of the third polyethylene layer is 45 MPa or more.
  11.  前記ポリエチレン多層基材が、前記第1のポリエチレン層及び前記第2のポリエチレン層の間に第2aのポリエチレン層と、前記第2のポリエチレン層及び前記第3のポリエチレン層の間に第2bのポリエチレン層と、をさらに備え、
     前記第2のポリエチレン層の押込み弾性率が、0.03GPa以上0.7GPa以下であり、前記第2aのポリエチレン層の押込み弾性率、及び前記第2bのポリエチレン層の押込み弾性率が、それぞれ独立に、0.3GPa以上3.5GPa以下であり、及び/又は、
     前記第2のポリエチレン層の押込み硬度が、1MPa以上40MPa以下であり、前記第2aのポリエチレン層の押込み硬度、及び前記第2bのポリエチレン層の押込み硬度が、それぞれ独立に、20MPa以上100MPa以下である、
    請求項10に記載の積層体。
    The polyethylene multilayer substrate has a second polyethylene layer between the first polyethylene layer and the second polyethylene layer, and a second polyethylene between the second polyethylene layer and the third polyethylene layer. With more layers,
    The indentation elastic modulus of the second polyethylene layer is 0.03 GPa or more and 0.7 GPa or less, and the indentation elastic modulus of the second polyethylene layer and the indentation elastic modulus of the second polyethylene layer are independent of each other. , 0.3 GPa or more and 3.5 GPa or less, and / or
    The indentation hardness of the second polyethylene layer is 1 MPa or more and 40 MPa or less, and the indentation hardness of the second polyethylene layer and the indentation hardness of the second polyethylene layer are independently 20 MPa or more and 100 MPa or less. ,
    The laminate according to claim 10.
  12.  請求項1~6のいずれか一項に記載のポリエチレン多層基材と、
     ヒートシール層と
    を備える積層体。
    The polyethylene multilayer base material according to any one of claims 1 to 6 and the polyethylene multilayer substrate.
    A laminate with a heat seal layer.
  13.  前記積層体の長手方向(MD)の熱収縮率が15%以下であり、
     前記積層体のMDに対する垂直方向(TD)の熱収縮率が15%以下である、
    請求項8~12のいずれか一項に記載の積層体。
    The heat shrinkage rate in the longitudinal direction (MD) of the laminated body is 15% or less, and the heat shrinkage rate is 15% or less.
    The heat shrinkage rate of the laminated body in the vertical direction (TD) with respect to MD is 15% or less.
    The laminate according to any one of claims 8 to 12.
  14.  基材と、ヒートシール層とを備える積層体であって、
     前記基材と前記ヒートシール層とが、同種の樹脂材料により構成され、
     前記基材が、多層構造を有しており、
     前記基材が、延伸処理が施された基材であり、
     前記ヒートシール層が、延伸処理が施されていない層である、
    積層体。
    A laminate comprising a base material and a heat seal layer.
    The base material and the heat seal layer are made of the same type of resin material.
    The base material has a multi-layer structure and has a multi-layer structure.
    The base material is a base material that has been subjected to a stretching treatment.
    The heat seal layer is a layer that has not been stretched.
    Laminated body.
  15.  前記同種の樹脂材料が、ポリオレフィン又はポリエステルである、請求項14に記載の積層体。 The laminate according to claim 14, wherein the resin material of the same type is polyolefin or polyester.
  16.  前記同種の樹脂材料が、ポリエチレンである、請求項14に記載の積層体。 The laminate according to claim 14, wherein the resin material of the same type is polyethylene.
  17.  前記ヒートシール層が、多層構造を有している、請求項14~16のいずれか一項に記載の積層体。 The laminate according to any one of claims 14 to 16, wherein the heat seal layer has a multilayer structure.
  18.  前記基材の表面、又は前記ヒートシール層の表面に形成されたバリア層をさらに備える、請求項8~17のいずれか一項に記載の積層体。 The laminate according to any one of claims 8 to 17, further comprising a barrier layer formed on the surface of the base material or the surface of the heat seal layer.
  19.  請求項1~6のいずれか一項に記載のポリエチレン多層基材、請求項7に記載の印刷基材、又は請求項8~18のいずれか一項に記載の積層体を備える、包装材料。 A packaging material comprising the polyethylene multilayer base material according to any one of claims 1 to 6, the printing base material according to claim 7, or the laminate according to any one of claims 8 to 18.
PCT/JP2021/040142 2020-10-30 2021-10-29 Polyethylene multillayer base material, printing base material, multilayer body and packaging material WO2022092296A1 (en)

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
JP2020-182776 2020-10-30
JP2020182808 2020-10-30
JP2020182776A JP2022073027A (en) 2020-10-30 2020-10-30 Polyethylene multilayer base material, print base material, laminate and packaging material
JP2020-182808 2020-10-30
JP2021-070459 2021-04-19
JP2021070440A JP2022165191A (en) 2021-04-19 2021-04-19 Laminate and packaging material
JP2021070459A JP2022073902A (en) 2020-10-30 2021-04-19 Polyethylene multilayer base material, print base material, laminate and packaging material
JP2021-070440 2021-04-19
JP2021130255A JP2023024142A (en) 2021-08-06 2021-08-06 Polyethylene multilayer substrate, printing substrate, laminate and packaging material
JP2021-130255 2021-08-06
JP2021-166438 2021-10-08
JP2021166442A JP2023056930A (en) 2021-10-08 2021-10-08 Polyethylene multilayer substrate, printing substrate, laminate and packaging material
JP2021-166442 2021-10-08
JP2021166438A JP2023056928A (en) 2021-10-08 2021-10-08 Laminate and packaging material

Publications (1)

Publication Number Publication Date
WO2022092296A1 true WO2022092296A1 (en) 2022-05-05

Family

ID=81382621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040142 WO2022092296A1 (en) 2020-10-30 2021-10-29 Polyethylene multillayer base material, printing base material, multilayer body and packaging material

Country Status (1)

Country Link
WO (1) WO2022092296A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7453633B1 (en) 2022-10-06 2024-03-21 Dic株式会社 Multilayer films and packaging materials

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0270433A (en) * 1988-09-07 1990-03-09 Tonen Sekiyukagaku Kk Polyethylene composite film
JP2019517938A (en) * 2016-06-03 2019-06-27 ボレアリス エージー Multilayer structure
WO2019189092A1 (en) * 2018-03-26 2019-10-03 大日本印刷株式会社 Laminate, and packaging material, packaging bag and stand-up pouch each comprising said laminate, and multi-layer substrate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0270433A (en) * 1988-09-07 1990-03-09 Tonen Sekiyukagaku Kk Polyethylene composite film
JP2019517938A (en) * 2016-06-03 2019-06-27 ボレアリス エージー Multilayer structure
WO2019189092A1 (en) * 2018-03-26 2019-10-03 大日本印刷株式会社 Laminate, and packaging material, packaging bag and stand-up pouch each comprising said laminate, and multi-layer substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7453633B1 (en) 2022-10-06 2024-03-21 Dic株式会社 Multilayer films and packaging materials

Similar Documents

Publication Publication Date Title
WO2020045629A1 (en) Heat-sealable laminate, layered substrate, laminate for gas barrier intermediate layer, laminate for packaging material, and packaging material
JP7192238B2 (en) Polyethylene laminate for packaging material and packaging material comprising said laminate
JP2024045489A (en) Polyethylene laminate for packaging material and packaging material made from the laminate
JP2024040160A (en) Laminates, packaging materials, packaging bags and stand-up pouches
JP7192239B2 (en) Polyethylene laminate for packaging material and packaging material comprising said laminate
JP2023153189A (en) Laminate, packaging material, packaging bag and stand pouch
WO2022092296A1 (en) Polyethylene multillayer base material, printing base material, multilayer body and packaging material
JP2023056928A (en) Laminate and packaging material
JP2020055162A (en) Laminate, packaging material, packaging bag and stand pouch
JP2022088456A (en) Polyethylene laminate for packaging material and packaging material including the laminate
WO2020067426A1 (en) Laminate, packaging material, packaging bag, and stand pouch
JP2023056930A (en) Polyethylene multilayer substrate, printing substrate, laminate and packaging material
JP2023111712A (en) Polyethylene multilayer substrate, printing substrate, laminate, and packaging material
JP2023024142A (en) Polyethylene multilayer substrate, printing substrate, laminate and packaging material
JP2023111717A (en) Polyethylene multilayer substrate, printing substrate, laminate, and packaging material
JP2023111720A (en) Polyethylene multilayer substrate, printing substrate, laminate, and packaging material
JP2022073035A (en) Polyethylene multilayer base material, print base material, laminate and packaging material
JP2022073902A (en) Polyethylene multilayer base material, print base material, laminate and packaging material
JP2022073059A (en) Polyethylene multilayer base material, print base material, laminate and packaging material
JP2022073027A (en) Polyethylene multilayer base material, print base material, laminate and packaging material
JP2022073042A (en) Polyethylene multilayer base material, print base material, laminate and packaging material
JP2022165191A (en) Laminate and packaging material
WO2022168867A1 (en) Sealant film, laminate, and packaging container
WO2024070896A1 (en) Packaging film, packaging material, and food package
JP7358727B2 (en) Polyethylene laminate and packaging materials using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21886413

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21886413

Country of ref document: EP

Kind code of ref document: A1