JP2023071333A - 磁石埋込型モータのロータ構造、その製造方法、および、磁石埋込型モータのロータ構造の製造装置 - Google Patents

磁石埋込型モータのロータ構造、その製造方法、および、磁石埋込型モータのロータ構造の製造装置 Download PDF

Info

Publication number
JP2023071333A
JP2023071333A JP2021184023A JP2021184023A JP2023071333A JP 2023071333 A JP2023071333 A JP 2023071333A JP 2021184023 A JP2021184023 A JP 2021184023A JP 2021184023 A JP2021184023 A JP 2021184023A JP 2023071333 A JP2023071333 A JP 2023071333A
Authority
JP
Japan
Prior art keywords
core
rotor
magnet
resin
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021184023A
Other languages
English (en)
Inventor
進 寺岡
Susumu Teraoka
修 山田
Osamu Yamada
紫保 大矢
Shiho Oya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MinebeaMitsumi Inc
Original Assignee
MinebeaMitsumi Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MinebeaMitsumi Inc filed Critical MinebeaMitsumi Inc
Priority to JP2021184023A priority Critical patent/JP2023071333A/ja
Publication of JP2023071333A publication Critical patent/JP2023071333A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】構造が簡易で、軽量化が可能で、ボンド磁石の材料の削減を図ることのできる磁石埋込型モータのロータ構造、その製造方法、および、磁石埋込型モータのロータ構造の製造装置を提供すること。【解決手段】実施形態の磁石埋込型モータのロータ構造は、シャフトと、前記シャフトに装着されたロータコアとを有するロータを含む。前記ロータコアは、外周面が円筒状の電磁鋼板積層体であり、前記シャフトの軸方向に貫通する貫通孔を有する。前記貫通孔には、前記シャフト側から径方向外側に向けて、樹脂鉄心とボンド磁石とが順に配設されている。前記樹脂鉄心は、軟磁性材を含んだ樹脂成形体である。前記ボンド磁石は、前記樹脂鉄心と径方向で対向する面側にゲート痕が形成されている。【選択図】図1

Description

本発明は、磁石埋込型モータのロータ構造、その製造方法、および、磁石埋込型モータのロータ構造の製造装置に関する。
ロータコアに永久磁石が埋め込まれた磁石埋込型モータ(IPMモータ:Interior Permanent Magnet Motor)は、永久磁石の磁束により生じるマグネットトルクと、ロータコアの磁気抵抗(リラクタンス)の変化によって生じるリラクタンストルクとの両方が回転力に利用可能であり、各種の分野で用いられている。また、永久磁石として、磁石粉末と樹脂とが混合されたボンド磁石が用いられる場合もある。
従来、ロータの軽量化やボンド磁石の配向度向上やロータ変形抑制が図られた磁石埋込型モータが開示されている(例えば、特許文献1~3等を参照)。
特開2009-100634号公報 特開2001-16810号公報 特開2017-34765号公報
この種の磁石埋込型モータは、一般的に構造が簡易で軽量であることが求められるが、従来の磁石埋込型モータでは、軽量化のためにロータの強度が低下してしまったり、軽量化が不十分であったり、ボンド磁石の充填に際して材料の無駄が発生する等の問題があった。
本発明は、上記に鑑みてなされたものであって、構造が簡易で、軽量化が可能で、ボンド磁石の材料の削減を図ることのできる磁石埋込型モータのロータ構造、その製造方法、および、磁石埋込型モータのロータ構造の製造装置を提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明の一態様に係る磁石埋込型モータのロータ構造は、シャフトと、前記シャフトに装着されたロータコアとを有するロータを含む。前記ロータコアは、外周面が円筒状の電磁鋼板積層体であり、前記シャフトの軸方向に貫通する貫通孔を有する。前記貫通孔には、前記シャフト側から径方向外側に向けて、樹脂鉄心とボンド磁石とが順に配設されている。前記樹脂鉄心は、軟磁性材を含んだ樹脂成形体である。前記ボンド磁石は、前記樹脂鉄心と径方向で対向する面側にゲート痕が形成されている。
本発明の一態様に係る磁石埋込型モータのロータ構造は、構造が簡易で、軽量化が可能で、ボンド磁石の材料の削減を図ることができる。
図1は、一実施形態にかかる完成した状態のロータの斜視図である。 図2は、図1のロータの平面図である。 図3は、ロータの一部となるロータコアの斜視図である。 図4は、図3のロータコアの平面図である。 図5は、ロータの製造に用いられる金型コアの斜視図である。 図6は、図5の金型コアの平面図である。 図7は、ロータコアに金型コアが挿入された状態でボンド磁石のための注入が行われてスプルーおよびランナーが残った状態を示す斜視図である。 図8は、図7の平面図である。 図9は、磁石埋込型モータのロータ構造の製造方法の工程の例を示すフローチャートである。 図10は、一次成型のための金型にロータコアおよび金型コアがセットされ、固定型と可動型とが閉じられた状態の断面図である。 図11は、ボンド磁石のための充填が行われた状態の断面図である。 図12は、固定型から可動型が開いた状態の断面図である。 図13は、図12におけるロータコアの周辺の一点鎖線部の拡大図である。 図14は、一段目エジェクタピンの上昇によりランナーが切り離された状態の断面図である。 図15は、一段目エジェクタピンおよび二段目エジェクタピンの上昇によりロータコア、ボンド磁石および金型コアが可動型から押し出された状態の断面図である。 図16は、一段目エジェクタピンおよび二段目エジェクタピンの下降により金型コアがロータコアおよびボンド磁石から分離された状態の断面図である。 図17は、二次成型のための金型にロータコア、ボンド磁石およびシャフトがセットされ、樹脂鉄心のための注入が行われた状態の断面図である。 図18は、第1の比較例(特許文献1)の構造を示す図である。 図19は、第2の比較例(特許文献2)の構造を示す図である。 図20は、第3の比較例(特許文献3)の構造を示す図である。
以下、実施形態に係る磁石埋込型モータのロータ構造、その製造方法、および、磁石埋込型モータのロータ構造の製造装置について図面を参照して説明する。なお、この実施形態によりこの発明が限定されるものではない。また、図面における各要素の寸法の関係、各要素の比率などは、現実と異なる場合がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。また、1つの実施形態や変形例に記載された内容は、原則として他の実施形態や変形例にも同様に適用される。
(ロータ20の構造)
図1は、一実施形態にかかる完成した状態のロータ20の斜視図である。図2は、図1のロータ20の平面図である。図3は、ロータ20の一部となるロータコア21の斜視図である。図4は、図3のロータコア21の平面図である。図5は、ロータ20の製造に用いられる金型コア4の斜視図である。図6は、図5の金型コア4の平面図である。図7は、ロータコア21に金型コア4が挿入された状態でボンド磁石22のための注入が行われてスプルー50およびランナー51が残った状態を示す斜視図である。図8は、図7の平面図である。なお、便宜上、シャフト10の軸方向をZ軸方向、シャフト10に直交する、ロータコア21の端面上の2軸方向がX軸方向およびY軸方向とされているが、使用時の姿勢が限定されるものではない。
図1~図4に示されるように、所定形状にプレス加工された電磁鋼板によるコアが、所定枚数、軸方向(Z軸方向)に積層され、コアどうしがカシメ固着されることで、電磁鋼板積層体からなるロータコア21が形成される。各コアおよびロータコア21に形成された貫通孔211(図3、図4)は、ロータコア21の軸方向全長に渡って連通(貫通)している。
貫通孔211は、その中心に、シャフト10が配置され、その周囲に樹脂鉄心23が形成され、さらにその周縁にボンド磁石22が形成される。また、ロータコア21には、ロータコア21の回転軸を中心として周方向に均等に並ぶ外側コア部212が設けられている。この外側コア部212は、径方向内側に膨出して湾曲する形状を有している。隣り合う外側コア部212どうしは、連結部213で連結されている。
ロータコア21は、連結部213によって、その外周縁でつながる一つの部品とされており、その内側に貫通孔211が設けられて、その貫通孔211の中にボンド磁石22と樹脂鉄心23とが充填されることで、樹脂鉄心とボンド磁石とによって電磁鋼板積層体の占める比率が減少し、ロータコア21の重さが軽減されるため、ロータ20の軽量化が達成される。また、軽量化のためにロータコア21に中空の孔は設けられないため、中空の孔に起因する強度低下は生じない。
ロータコア21のそれぞれの外側コア部212の間、つまり連結部213には、境界部214が周方向内側に伸びて形成されている。境界部214は、隣り合うボンド磁石22を仕切り、樹脂鉄心23と接する部分となる。
一方、ロータ20の製造時に用いられる金型コア4は、図5および図6に示されるように、略円柱形状であり、その外周縁は、凸部40と凹部41とが周方向に交互に並ぶ形状をしている。そして、ロータコア21の貫通孔211内に金型コア4が挿入されることで、金型コア4の凸部40の径方向外側を向く面が、ロータコア21の境界部214(図3、図4)の径方向内側を向く面と当接し、ロータコア21の貫通孔211内に、境界部214と凸部40と凹部41とで、略U字状のボンド磁石22の磁石充填用孔(604)が形成される。
金型コア4の頂面42は、図5および図6に示されるように、その中心には軸方向に凹むスラッグウェル44が形成されており、このスラッグウェル44を中心に放射状に外周側に向かって伸びるランナー溝43が設けられている。スラッグウェル44は、後述の金型(A)が閉じられた際に、固定型(60)に設けられた射出成型機のノズル(E1)がちょうど平面視で重なる位置にあり、射出成型機のノズル(E1)から射出された磁石成形樹脂材(流動状態のボンド磁石)がスラッグウェル44を経由してランナー溝43を通り、磁石充填用孔(604)に充填される。
図7および図8は、ロータコア21に磁石成形樹脂材の注入によりボンド磁石22が形成され、磁石成形樹脂材の流路となったランナー51とスプルー50とがまだ残っている状態を示している。図8の平面図にあるように、ゲートG1は、先細りの構造になっている。図7の斜視図にあるように、金型(A)の固定型(60)の底面に対応する金型コア4の頂面42がロータコア21の頂面から一段下がっていることで、ゲートG1がボンド磁石22のサイド(内径側)に配置可能となっている。なお、その後の工程でスプルー50およびランナー51が取り払われ、樹脂鉄心23の充填によってゲートG1部分は隠されてしまうため、ゲートG1のあった部分に残るゲート痕の除去処理が必要なくなり、作業効率が向上する。
(ボンド磁石22および樹脂鉄心23の材料)
ボンド磁石22よりも径方向外側の領域は、電磁鋼板が積層された積層体で構成されている。この外側の領域は、ロータ20の外周面と所定のギャップを介して対向配置されるステータのティースに巻回されたコイルに供給された電流によって生じる磁束が、ステータのティースから積層体を通って隣接するティースに向かうことによって生じるリラクタンストルクに寄与する磁束や、ボンド磁石22からステータのティースに向かって流れる磁束、など、トルクに寄与する磁束が通過する領域となり、磁束の変化が激しい箇所となるため、高透磁率で高周波領域での損失が低い材料で形成される必要がある。このため、ボンド磁石22は、希土類磁石粉末が混合された磁石成形樹脂材が用いられる。希土類磁石としては、SmCo5磁石、Sm2Co17磁石、希土類鉄系磁石(NdFeB系磁石やSmFeN系磁石)等を用いることができる。
これに対して、ボンド磁石22よりも径方向内側の領域は、軟磁性材を含んだ樹脂成形体からなる樹脂鉄心23で構成されている。この内側の領域では、電磁鋼板が積層された積層鉄心に比べて磁束の変動がなく、主にボンド磁石22のバックヨークとして機能する領域である。このため、樹脂鉄心23は、高い透磁率を有する軟磁性材の粉末が混合され、磁路として機能させるようになっている。また、樹脂材に軟磁性材の粉末が混合されて樹脂鉄心23が形成されたものであるため、電磁鋼板の積層体で形成された構成に比べて大幅に軽量化できる。
このように、ボンド磁石22よりも径方向外側の領域にのみ、電磁鋼板が積層された積層体で構成されているため、ロータ20全体の軽量化が図られる。
(ロータ20の製造方法)
図9は、磁石埋込型モータのロータ構造の製造方法の工程の例を示すフローチャートである。なお、以下の製造工程は、作業者の人手により行われるか、制御装置(コンピュータ装置)の制御により動作するロボット機構により行われるか、両者の組み合わせによって行われる。図10~図16は、一次成型の工程に用いられる金型Aの状態を示す断面図である。図17は、二次成型の工程に用いられる金型Bの状態を示す断面図である。
(一次成型に用いられる金型Aの構成)
一次成型に用いられる金型Aは、図10~図16に示されるように、固定型60と可動型61とによって構成されている。固定型60は、板状の部材601と、部材601の中央部の、外周に段差のある孔に嵌り、外周に段差がある部材602と、部材601および部材602の図における下面に配置される、中央の下方に凸部を有する部材603とから構成されている。部材602の中央部から部材603の中央部を通して、ボンド磁石流路605が設けられ、部材602のボンド磁石流路605と反対側には、射出成型機のノズルE1が中心を合わせて当接するようになっている。部材603の底面609(図12)は、底面視で金型コア4の頂面42(図5、図6)と同一の形をしており、金型Aが閉じた際に、底面609の外周縁と金型コア4の頂面42の外周縁がぴったり重なる。
可動型61は、板状の部材6101と、部材6101の図における上側に配置される筒状の部材6102と、部材6102の上側に配置される板状の部材6103と、部材6103の上側に配置される略筒状の部材6104と、部材6104の内側に配置される略筒状の部材6105と、部材6105の内側に配置される板状の部材6106とから構成されている。部材6106の上側には、円筒状の界磁用磁性体S1が配置され、界磁用磁性体S1の内側にロータコア21と金型コア4とがセットされる空間が設けられている。
また、可動型61には、金型コア4やロータコア21の位置を変位させるための一段目エジェクタピン6110および二段目エジェクタピン6111と、一段目エジェクタピン6110および二段目エジェクタピン6111を動かすエジェクト操作板6107~6109が設けられている。エジェクト操作板6107~6109は3つに分割されており、一番上の一段目エジェクト操作板6107は、一段目エジェクタピン6110の下端が収納される空間を有しており、二段目エジェクト操作板6108および三段目エジェクト操作板6109は、二段目エジェクタピン6111とそれぞれ接続されている。
一段目エジェクタピン6110は、図示しないエジェクタロッドがその下端に配置されており、このエジェクタロッドの動きに追従して、二段目エジェクタピン6111とは独立に軸方向に動く。二段目エジェクタピン6111は、その底部が三段目エジェクト操作板6109に固定されており、三段目エジェクト操作板6109の軸方向の動きに追従して、上下に変位するようになっている。
また、図10に示されるように、ロータコア21の頂面と、金型コア4の頂面42(図5、図6)とは、金型コア4の頂面42の方がロータコア21の頂面よりも下方に位置するようにずれて配置される。このずれによって、金型コア4のランナー溝43と固定型60とによって形成されるボンド磁石流路605(ノズルE1から図の縦方向に下り、ランナー溝43に沿って横に続く流路)を用いて、磁石成形樹脂材を頂面からではなくサイドからの注入(サイドゲート方式)が可能となる。サイドからの注入により、金型コア4の上昇によりゲートの容易な切断(切り離し)が可能となるとともに、後の二次成型における樹脂鉄心23の充填によりボンド磁石22のゲート痕の埋没が可能となる。
(一次成型の工程)
図9において、一次成型の工程として、作業者または制御装置は、ロータコア21および金型コア4を金型Aの可動型61内にセットし(ステップST11)、可動型61を閉じる(ステップST12)。図10は、一次成型のための金型Aにロータコア21および金型コア4がセットされ、固定型60と可動型61とが閉じられた状態の断面図である。すなわち、作業者または制御装置は、磁石成形樹脂材を充填可能な状態に金型Aを準備する。可動型61を閉じる際には、可動型61に連結されている位置決めピンCにより、可動型61と固定型60との位置合わせが行われる。
次いで、作業者または制御装置は、ボンド磁石22を充填する(磁石成形樹脂材の充填によりボンド磁石22を形成する)(ステップST13)。図11は、ボンド磁石22のための充填が行われた状態の断面図である。すなわち、固定型60の中央に開けられたボンド磁石流路605を通って、固定型60の上面にセットされた射出成型機のノズルE1から磁石成形樹脂材がロータコア21内に充填される。
ロータコア21の空間内でのボンド磁石22の形成にあたって、樹脂鉄心23の形成に必要な空間が確保されるように、この箇所にボンド磁石22を形成する磁石成形樹脂材が流入しないよう、金型コア4がセットされている。ロータコア21と金型コア4とによって平面視で略U字状の空間が形成され、この略U字状の空間に、熱可塑性樹脂(たとえば、PA樹脂、PPS樹脂、など)に所定の粒度分布を有する異方性の希土類磁石粉末が混合された磁石成形樹脂材が、注入・充填され、平面視で略U字状のボンド磁石22が形成される。充填の際、可動型61内にてボンド磁石22を囲うように配置された、配向用の永久磁石を用いる界磁用磁性体S1によって、ボンド磁石22に所望の配向がなされる。
次いで、作業者または制御装置は、可動型61を開け、一段目エジェクタピン6110によりゲートG1を切断し、スプルー50とランナー51を金型Aから取り出す(ステップST14)。図12は、固定型60から可動型61が開いた状態の断面図である。図13は、図12におけるロータコア21の周辺の一点鎖線部の拡大図である。図14は、一段目エジェクタピン6110の上昇によりランナー51が切り離された状態の断面図である。
すなわち、図12および図13は、可動型61が開けられた状態である。可動型61と固定型60が対向する面がパーティングラインPとなり、このパーティングラインPによって、ボンド磁石22の頂面が形成される。図12および図13の状態ではまだスプルー50とランナー51が残っている状態である。また、可動型61に内蔵されている一段目エジェクタピン6110は、あらかじめ金型コア4の下端側にある。
図13に示される様に、ゲートG1は、一方(図における下側)に傾斜が設けられており、テーパ状に形成されている。これによって、磁石成形樹脂材の充填の勢いが増すとともに、ゲートG1の断面積を小さく形成することができるので、ゲートG1の切断作業が容易となる。
図14では、一段目エジェクタピン6110が上方に移動することで、金型コア4が上方へ押し出されている。これによって、ゲートG1が切断され、その切断箇所にゲート痕が残る。ゲートG1が切断される際、スプルー50とランナー51は一段目エジェクタピン6110が上昇する勢いによって、自然と脱落する場合もあれば、手動あるいはピックアップロボットによって取り出される場合もある。なお、通常、このような金型Aは、図におけるZ軸方向を水平方向にした横置きとされることが多いため、スプルー50とランナー51は自然に落下する場合が多い。
次いで、作業者または制御装置は、二段目エジェクタピン6111により、ロータコア21を金型Aから押し出して取り出す(ステップST15)。図15は、一段目エジェクタピン6110および二段目エジェクタピン6111の上昇によりロータコア21、ボンド磁石22および金型コア4が可動型61から押し出された状態の断面図である。図16は、一段目エジェクタピン6110および二段目エジェクタピン6111の下降により金型コア4がロータコア21およびボンド磁石22から分離された状態の断面図である。
一段目エジェクタピン6110に隣接して設けられる二段目エジェクタピン6111は、ボンド磁石22が充填される箇所と平面視で重なる位置にその頂部が配置されている。よって、一段目エジェクタピン6110と同時に二段目エジェクタピン6111を上方へ移動させると、図15のように、金型コア4とともに、ボンド磁石22が充填されたロータコア21が上方へ変位することとなる。その後、一段目エジェクタピン6110および二段目エジェクタピン6111を下方へ変位させることで、図16のように、金型コア4が下降してロータコア21から分離し、ロータコア21を金型Aから取り出すことが可能となる。この一段目エジェクタピン6110および二段目エジェクタピン6111が下方へ変位される動作は、図示しないスプリング等を用いた一般的な機構により弾性的に元の位置に戻る機構により行われる。
(二次成型に用いられる金型Bの構成)
二次成型に用いられる金型Bは、図17に示されるように、いわゆる3プレート方式の金型が採用されている。すなわち、金型Bは、第一固定型62と、第二固定型63と、可動型64とを有している。第一固定型62は、板状の部材621と、部材621の中央部の、外周に段差のある孔に嵌り、外周に段差がある部材622と、部材621および部材622の図における下面に配置される板状の部材623とから構成されている。部材622の中央部から部材623の中央部を通して、第一樹脂鉄心流路606が設けられ、部材622の第一樹脂鉄心流路606と反対側には、射出成型機のノズルE2が中心を合わせて当接するようになっている。第一樹脂鉄心流路606には射出成型機のノズルE2から射出される樹脂鉄心23用の溶融した樹脂が通る。第一固定型62の底面は、金型Aとは異なり、段部等は存在せず、平坦な面を有している。
第二固定型63は、可動型64と第一固定型62との間に挟まれるものであり、内周面に段部を有する略筒状の部材631と、部材631の内部に配置され、図の下側の中央に孔が設けられた略板状の部材632と、部材632の下側に配置される略板状の部材633と、部材632の上側の中央の凹部に配置された略板状の部材634とから構成されている。また、部材634の頂面に軸方向に直交する方向に樹脂鉄心流路溝607が形成され、この樹脂鉄心流路溝607から、さらに軸方向に沿って第二樹脂鉄心流路608が形成されている。この第二樹脂鉄心流路608は、その下端がテーパ状に形成されており、樹脂鉄心23の充填の勢いを増す効果と、先端のゲートG2の断面積を小さくすることでゲート切断作業をやりやすくする効果がある。
可動型64は、板状の部材641と、部材641の図における上側に配置される筒状の部材642と、部材642の上側に配置される板状の部材643と、部材643の上側に配置される略筒状の部材644と、部材644の内側に配置される略板状の部材645と、部材645の上側に配置される筒状の部材646とから構成されている。部材646の内側にロータコア21とシャフト10とがセットされる空間が設けられている。
また、可動型64には、シャフト10の軸方向の位置を変位させるためのエジェクタピン649と、エジェクタピン649を動かす第一エジェクト操作板647および第二エジェクト操作板648が設けられている。エジェクタピン649は、ロータコア21に挿入されたシャフト10の底面と当接している。エジェクタピン649の下端は第一エジェクト操作板647および第二エジェクト操作板648に接続されている。
(二次成型の工程)
図9において、二次成型の工程として、作業者または制御装置は、ロータコア21の貫通孔211(図3、図4)にシャフト10を挿入し、ロータコア21とシャフト10とを金型Bに嵌め、可動型64を閉じる(ステップST21)。次いで、作業者または制御装置は、樹脂鉄心23を充填する(充填により樹脂鉄心23を形成する)(ステップST22)。図17は、二次成型のための金型Bにロータコア21、ボンド磁石22およびシャフト10がセットされ、樹脂鉄心23のための注入が行われた状態の断面図である。
すなわち、一次成型の最後に取り出されたロータコア21の貫通孔211にシャフト10がセットされ、シャフト10が挿入されたロータコア21が金型Bにセットされた後、金型Bが閉じられる。
ロータコア21が金型Bに嵌められた後、熱可塑性樹脂(たとえば、PA樹脂、PPS樹脂、など)に所定の粒径を有する鉄粉(鉄を主成分とする粉体を指す)が混合された樹脂材が、ロータコア21の貫通孔211に、一次スプルー52、ランナー53および二次スプルー54によるピンゲート方式によって注入、充填されて樹脂鉄心23が形成される。なお、樹脂鉄心23との結合面となるシャフト10の外周面には、結合力向上と回り止め防止のため、ローレット加工(アヤメ)が施されている。
今回の二次成型における樹脂鉄心23の充填により、一次成型におけるボンド磁石22の充填時に発生するゲートG1は、その側面、つまり、樹脂鉄心23と径方向に対向する面に設けられるため、樹脂鉄心23の充填により外から見えなくなることで見栄えが良くなる。さらに、他の部品等とのクリアランスを確保するために充填後のゲート痕の除去作業が不要となるため、工程数の削減にも貢献する。
樹脂鉄心23は、軟磁性材を含んだ樹脂成形体である。軟磁性材としては、鉄を主成分とする紛体(鉄粉、純鉄粉)の他、ケイ素鋼(Fe-Si合金)、センダスト(Fe-Si-Al合金)、パーマロイ(Fe-Ni合金)等の粉末を用いてもよい。軟磁性材は、所定の粒径を有する。樹脂成形体に軟磁性材と共に含まれる樹脂としては、熱可塑性樹脂(たとえば、PA12、PA6、PA66等のポリアミド(PA)樹脂、ポリフェニレンサルファイド(PPS)樹脂など)が好適に用いられる。樹脂鉄心23がさらに耐熱性を必要とする場合は、PA12に代えて、耐熱ナイロン(PA6、PA66)やPPS樹脂を利用することができる。樹脂成形体100体積%において、軟磁性材は40体積%以上60体積%以下の量で、樹脂は40体積%以上60体積%以下の量で含まれることが好ましい。軟磁性材の体積が60%を超えると、樹脂鉄心23を成形する際に、樹脂材の流動性が低下し、樹脂鉄心を良好に成形できない虞がある。一方、40%未満では、軟磁性材の比率が低下するため、樹脂鉄心の飽和磁束密度が十分得られず、バックヨークとして十分な機能を有しない虞がある。より具体的には、純鉄粉の体積と、ポリアミド12(PA12)樹脂の体積とを、各々50%で用いることができる。このボンド磁石22の形成と樹脂鉄心23の形成とは、所謂、2色成形技術を利用することで作製できる。
次いで、作業者または制御装置は、可動型64を開き、成形体(ロータ20)を取り出す(ステップST23)。すなわち、図17において、第一エジェクト操作板647および第二エジェクト操作板648が軸方向に変位されると、エジェクタピン649もそれに追従して軸方向に変位することで、樹脂鉄心23が充填されて完成されたロータコア21が金型Bから押し出され、取り出しが可能となる。金型Bが開かれた際、一次スプルー52、ランナー53、二次スプルー54は、廃棄される。これにより、ロータコア21の成型が完了する。
金型Bから取り出された成形体は、不規則な磁化の除去のために脱磁される。次いで、着磁コイルが巻回された着磁ヨーク(不図示)に脱磁された成形体がセットされ、着磁コイルにパルス電流が印加されて、ロータコア21の外周側から所定方向に磁化されるように着磁される。
(第1の比較例)
図18は、第1の比較例(特許文献1)の構造を示す図である。図18において、ロータ10’はロータコア14’とシャフト12’とから構成されている。ロータコア14’は、磁性体の鋼板22’が軸方向に積層されて構成されている。ロータコア14’には、周方向に所定の間隔をあけて磁石収納孔18’が形成されていると共に、磁石収納孔18’より径方向の内側には、周方向に所定の間隔をあけて、ロータ10’を軽量化するための中空孔20’が形成されている。ロータコア14’に形成された中空孔20’によってロータ10’の軽量化が図られている。
(第2の比較例)
図19は、第2の比較例(特許文献2)の構造を示す図である。図19において、回転子(ロータ)15’は、積層鉄心31’と出力軸30’とから構成されている。積層鉄心31’は、磁性体の鉄心板37’が軸方向に積層されて構成されている。積層鉄心31’の外周縁近傍に設けられた外縁貫通孔39’には樹脂磁石40’が充填されている。積層鉄心31’には貫通孔42’が形成され、軽量化が図られている。
(第3の比較例)
図20は、第3の比較例(特許文献3)の構造を示す図である。図20において、ロータコア1’の一端には、スプルー部21’から各スロット121’~126’の開口中央に向かって横方向に延在するランナー部221’~226’と、各ランナー部221’~226’の下流側から各スロット121’~126’の開口へ軸方向にそれぞれ延在する短い二次スプルー部231’~236’とが設けられ、二次スプルー部231’~236’の先端にゲートが形成される。ゲートは略U字状のスロット121’~126’の中央に位置している。符号11’はシャフト穴を示している。
(比較例と実施形態との対比)
図18の第1の比較例では、ロータコア14’に形成された中空孔20’によってロータ10’の軽量化が図られており、形成される中空孔20’が大きくされることで軽量化が促進される。しかし、中空孔20’が大きすぎるとロータ10’の強度低下を招く虞がある。
また、図19の第2の比較例では、第1の比較例と同様、積層鉄心31’に形成された貫通孔42’によって回転子15’の軽量化が図られており、形成される貫通孔42’が大きくされることで軽量化が促進される。しかし、貫通孔42’が大きすぎると回転子15’の強度低下を招く虞がある。
この点、図1および図2の実施形態では、中空の孔は存在せず、ロータコア21内の空間はボンド磁石22、樹脂鉄心23およびシャフト10により充填されているため、中空の孔に起因する強度低下が起こることはない。
また、図1および図2の実施形態では、ボンド磁石22が径方向内側方向に凸の略U字状であるので、ロータコア21の外側コア部212の面積を確保することができ、ロータ20の強度を維持しつつ、軽量化を図ることができる。
また、図20の第3の比較例では、スプルー部21’およびランナー部221’~226’の他に二次スプルー部231’~236’が形成され、それらは廃棄されることになるため、ボンド磁石のための磁石成形樹脂材の無駄が多い。
この点、実施形態では、サイドゲート方式とすることで、図7、図13等のように、廃棄されるのはスプルー50およびランナー51であり、二次スプルー部に相当するものは存在しないため、残留ボンド磁石の低減によるコスト削減効果を奏する。特に、希土類磁石粉末を混合したボンド磁石22における削減効果が大きい。
また、断面略U字状のボンド磁石22の底部223(図1、図2)の側部から充填が可能となるので、ボンド磁石22を先端部222まで均等に充填することができる。よって、ボンド磁石の配向を均一にできる。
また、ゲートG1の位置に生じるゲート痕は、ボンド磁石22の側面、つまり、樹脂鉄心23と対向する面に形成されるため、樹脂鉄心23の充填時に埋没し外から見えなくなることで見栄えが良く、充填後のゲート痕の除去作業が不要となるため、工程数の削減にも貢献する。
以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて種々の変更が可能である。
以上のように、実施形態に係る磁石埋込型モータのロータ構造は、シャフトと、シャフトに装着されたロータコアとを有するロータを含み、ロータコアは、外周面が円筒状の電磁鋼板積層体であり、シャフトの軸方向に貫通する貫通孔を有し、貫通孔には、シャフト側から径方向外側に向けて、樹脂鉄心とボンド磁石とが順に配設されており、樹脂鉄心は、軟磁性材を含んだ樹脂成形体であり、ボンド磁石は、樹脂鉄心と径方向で対向する面側にゲート痕が形成されている。これにより、構造が簡易で、軽量化が可能で、ボンド磁石の材料の削減を図ることができる磁石埋込型モータのロータ構造を提供することができる。
すなわち、シャフトと樹脂鉄心とボンド磁石とロータコアとによりロータが構成され、簡易な構造となる。また、樹脂鉄心とボンド磁石とによって電磁鋼板積層体の占める比率が減少し、ロータコアの重さが軽減されるため、ロータの軽量化が図られる。また、いわゆるサイドゲート方式によりボンド磁石が充填されるため、特許文献3に示されるような二次スプルーが不要となり、残留ボンド磁石が低減し、ボンド磁石の材料の削減が図られる。
また、ロータコアは、ロータコアの外縁から径方向内側に伸びて周方向に並ぶ複数の境界部を備え、境界部の径方向内側を向く面は、ロータの製造時にロータコアの貫通孔に挿入される円柱形状の金型コアの外周縁に周方向に交互に並ぶ凸部と凹部のうち、凸部の径方向外側を向く面に当接し、ロータコアの貫通孔内に、金型コアと境界部と凸部と凹部とで、略U字状のボンド磁石の充填用孔を形成する。これにより、ロータコアと金型コアとにより、ボンド磁石の充填用孔が容易に形成される。
また、金型コアの軸方向における一方の端面は、その中央にスラッグウェルが設けられており、スラッグウェルを中心として放射状に延びるランナー溝が金型コアの外縁まで伸びている。これにより、射出成型機のノズルからスラッグウェルおよびランナー溝を介して磁石成形樹脂材の充填が可能となる。
また、シャフトと、シャフトに装着されたロータコアとを有するロータを含み、ロータコアは、外周面が円筒状の電磁鋼板積層体であり、シャフトの軸方向に貫通する貫通孔を有し、貫通孔には、シャフト側から径方向外側に向けて、樹脂鉄心とボンド磁石とが順に配設されている、磁石埋込型モータのロータ構造の製造方法であって、ボンド磁石を、樹脂鉄心と径方向で対向する面側から充填する第1充填工程と、軟磁性材および樹脂を含む樹脂材から作成され、軟磁性材を含んだ樹脂成形体である樹脂鉄心を、貫通孔に充填する第2充填工程とを含む。これにより、磁石埋込型モータのロータ構造の製造方法が提供される。
また、第1充填工程は、ロータコアの貫通孔に金型コアを挿入する工程を含み、ロータコアと金型コアとによって、ボンド磁石が充填される充填孔が形成される。これにより、ボンド磁石の充填用孔が容易に形成される。
また、第2充填工程は、樹脂鉄心を充填することにより、ボンド磁石を充填する際にできるゲート痕を埋没させる工程を含む。これにより、見栄えがよくなり、充填後のゲート痕の除去作業が不要になって工数の削減が図られる。
また、樹脂鉄心とボンド磁石とのそれぞれの充填によって、ロータが得られた後、ロータを脱磁し、次いで、ロータコアの外周側から所定方向に磁化されるように着磁する工程を含む。これにより、完成したロータが得られる。
また、シャフトと、シャフトに装着されたロータコアとを有するロータを含み、ロータコアは、外周面が円筒状の電磁鋼板積層体であり、シャフトの軸方向に貫通する貫通孔を有し、貫通孔には、シャフト側から径方向外側に向けて、樹脂鉄心とボンド磁石とが順に配設されている、磁石埋込型モータのロータ構造の製造装置であって、ボンド磁石を、樹脂鉄心と径方向で対向する面側から充填する第1の金型と、軟磁性材および樹脂を含む樹脂材から作成され、軟磁性材を含んだ樹脂成形体である樹脂鉄心を、貫通孔に充填する第2の金型とを含む。これにより、磁石埋込型モータのロータ構造の製造装置が提供される。
また、上記実施の形態により本発明が限定されるものではない。上述した各構成要素を適宜組み合わせて構成したものも本発明に含まれる。また、さらなる効果や変形例は、当業者によって容易に導き出すことができる。よって、本発明のより広範な態様は、上記の実施の形態に限定されるものではなく、様々な変更が可能である。
10 シャフト,20 ロータ,21 ロータコア,211 貫通孔,212 外側コア部,213 連結部,22 ボンド磁石,222 先端部,223 底部,23 樹脂鉄心

Claims (8)

  1. シャフトと、前記シャフトに装着されたロータコアとを有するロータを含み、
    前記ロータコアは、外周面が円筒状の電磁鋼板積層体であり、前記シャフトの軸方向に貫通する貫通孔を有し、
    前記貫通孔には、前記シャフト側から径方向外側に向けて、樹脂鉄心とボンド磁石とが順に配設されており、
    前記樹脂鉄心は、軟磁性材を含んだ樹脂成形体であり、
    前記ボンド磁石は、前記樹脂鉄心と径方向で対向する面側にゲート痕が形成されている、
    磁石埋込型モータのロータ構造。
  2. 前記ロータコアは、前記ロータコアの外縁から径方向内側に伸びて周方向に並ぶ複数の境界部を備え、
    前記境界部の径方向内側を向く面は、前記ロータの製造時に前記ロータコアの前記貫通孔に挿入される円柱形状の金型コアの外周縁に周方向に交互に並ぶ凸部と凹部のうち、前記凸部の径方向外側を向く面に当接し、前記ロータコアの前記貫通孔内に、前記金型コアと前記境界部と前記凸部と前記凹部とで、略U字状の前記ボンド磁石の充填用孔を形成する、
    請求項1に記載の磁石埋込型モータのロータ構造。
  3. 前記金型コアの軸方向における一方の端面は、その中央にスラッグウェルが設けられており、
    前記スラッグウェルを中心として放射状に延びるランナー溝が前記金型コアの外縁まで伸びている、
    請求項2に記載の磁石埋込型モータのロータ構造。
  4. シャフトと、前記シャフトに装着されたロータコアとを有するロータを含み、
    前記ロータコアは、外周面が円筒状の電磁鋼板積層体であり、前記シャフトの軸方向に貫通する貫通孔を有し、
    前記貫通孔には、前記シャフト側から径方向外側に向けて、樹脂鉄心とボンド磁石とが順に配設されている、磁石埋込型モータのロータ構造の製造方法であって、
    前記ボンド磁石を、前記樹脂鉄心と径方向で対向する面側から充填する第1充填工程と、
    軟磁性材および樹脂を含む樹脂材から作成され、前記軟磁性材を含んだ樹脂成形体である前記樹脂鉄心を、前記貫通孔に充填する第2充填工程とを含む、
    磁石埋込型モータのロータ構造の製造方法。
  5. 前記第1充填工程は、前記ロータコアの前記貫通孔に金型コアを挿入する工程を含み、
    前記ロータコアと前記金型コアとによって、前記ボンド磁石が充填される充填孔が形成される、
    請求項4に記載の磁石埋込型モータのロータ構造の製造方法。
  6. 前記第2充填工程は、前記樹脂鉄心を充填することにより、前記ボンド磁石を充填する際にできるゲート痕を埋没させる工程を含む、
    請求項4または5に記載の磁石埋込型モータのロータ構造の製造方法。
  7. 前記樹脂鉄心と前記ボンド磁石とのそれぞれの充填によって、前記ロータが得られた後、
    前記ロータを脱磁し、次いで、前記ロータコアの外周側から所定方向に磁化されるように着磁する工程を含む、
    請求項4~6のいずれか一つに記載の磁石埋込型モータのロータ構造の製造方法。
  8. シャフトと、前記シャフトに装着されたロータコアとを有するロータを含み、
    前記ロータコアは、外周面が円筒状の電磁鋼板積層体であり、前記シャフトの軸方向に貫通する貫通孔を有し、
    前記貫通孔には、前記シャフト側から径方向外側に向けて、樹脂鉄心とボンド磁石とが順に配設されている、磁石埋込型モータのロータ構造の製造装置であって、
    前記ボンド磁石を、前記樹脂鉄心と径方向で対向する面側から充填する第1の金型と、
    軟磁性材および樹脂を含む樹脂材から作成され、前記軟磁性材を含んだ樹脂成形体である前記樹脂鉄心を、前記貫通孔に充填する第2の金型とを含む、
    磁石埋込型モータのロータ構造の製造装置。
JP2021184023A 2021-11-11 2021-11-11 磁石埋込型モータのロータ構造、その製造方法、および、磁石埋込型モータのロータ構造の製造装置 Pending JP2023071333A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021184023A JP2023071333A (ja) 2021-11-11 2021-11-11 磁石埋込型モータのロータ構造、その製造方法、および、磁石埋込型モータのロータ構造の製造装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021184023A JP2023071333A (ja) 2021-11-11 2021-11-11 磁石埋込型モータのロータ構造、その製造方法、および、磁石埋込型モータのロータ構造の製造装置

Publications (1)

Publication Number Publication Date
JP2023071333A true JP2023071333A (ja) 2023-05-23

Family

ID=86409800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021184023A Pending JP2023071333A (ja) 2021-11-11 2021-11-11 磁石埋込型モータのロータ構造、その製造方法、および、磁石埋込型モータのロータ構造の製造装置

Country Status (1)

Country Link
JP (1) JP2023071333A (ja)

Similar Documents

Publication Publication Date Title
CN105576865B (zh) 磁铁埋入型转子及其制造方法与其制造装置
US7556082B2 (en) Interior permanent magnet rotors with multiple properties and methods of making same
CN107408873B (zh) 磁铁埋入型铁芯的树脂填充方法和树脂填充装置
EP1176700A2 (en) Embedded magnet type rotor, manufacturing method and mold device
CN108736605B (zh) 粘结磁铁的注射成型装置以及粘结磁铁的注射成型方法
JP2005020991A (ja) 回転子およびその製造方法
JP2018127668A (ja) 異方性ボンド磁石の成形用金型及びこれを用いた製造方法
CN107249844B (zh) 磁铁埋入型铁芯的树脂填充装置和树脂填充方法
JP2023071333A (ja) 磁石埋込型モータのロータ構造、その製造方法、および、磁石埋込型モータのロータ構造の製造装置
JP2014036488A (ja) 界磁子製造方法及び射出成形装置
CN111819645B (zh) 磁铁模块制造方法
CN116436185A (zh) 三极磁体阵列
JP2002373805A (ja) ネオジゥム系ボンド磁石およびその成形方法
JP6660546B2 (ja) 磁石埋込型ロータ並びにその製造方法及び製造装置
JP6575202B2 (ja) 内包磁石型ロータの製造装置
JP6107299B2 (ja) 内包磁石型同期機のアウターロータの製造方法
JP2005277180A (ja) 磁石の製造方法、磁性粉末の成形方法及び乾式成形装置
CN109565228A (zh) 转子及旋转电机
JP2023054983A (ja) 磁石埋込型モータのロータ構造およびその製造方法
JP5870523B2 (ja) ボンド磁石およびその製造方法並びにボンド磁石の製造装置
JP2017034763A (ja) 内包磁石型ロータの製造装置
JP7354729B2 (ja) 異方性ボンド磁石の成形用金型及びこれを用いた製造方法
JP3774876B2 (ja) 円筒状ラジアル異方性磁石の成形装置
JP2020156203A (ja) 磁石部材の製造装置およびその製造方法
JP2002373806A (ja) ネオジゥム系ボンド磁石およびその成形方法