JP2023054642A - 超音波検査装置及び超音波検査方法 - Google Patents

超音波検査装置及び超音波検査方法 Download PDF

Info

Publication number
JP2023054642A
JP2023054642A JP2021163615A JP2021163615A JP2023054642A JP 2023054642 A JP2023054642 A JP 2023054642A JP 2021163615 A JP2021163615 A JP 2021163615A JP 2021163615 A JP2021163615 A JP 2021163615A JP 2023054642 A JP2023054642 A JP 2023054642A
Authority
JP
Japan
Prior art keywords
probe
ultrasonic
frequency
component
ultrasonic inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021163615A
Other languages
English (en)
Inventor
睦三 鈴木
Mutsumi Suzuki
友輔 高麗
Yusuke Korai
茂 大野
Shigeru Ono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Power Solutions Co Ltd
Original Assignee
Hitachi Power Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Power Solutions Co Ltd filed Critical Hitachi Power Solutions Co Ltd
Priority to JP2021163615A priority Critical patent/JP2023054642A/ja
Priority to PCT/JP2022/027599 priority patent/WO2023058292A1/ja
Priority to KR1020247008053A priority patent/KR20240042513A/ko
Priority to DE112022003511.0T priority patent/DE112022003511T5/de
Priority to CN202280061875.5A priority patent/CN117980738A/zh
Priority to TW111133637A priority patent/TWI830362B/zh
Publication of JP2023054642A publication Critical patent/JP2023054642A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/28Details, e.g. general constructional or apparatus details providing acoustic coupling, e.g. water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/36Detecting the response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/42Detecting the response signal, e.g. electronic circuits specially adapted therefor by frequency filtering or by tuning to resonant frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/46Processing the detected response signal, e.g. electronic circuits specially adapted therefor by spectral analysis, e.g. Fourier analysis or wavelet analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/102Number of transducers one emitter, one receiver

Landscapes

  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Acoustics & Sound (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

【課題】欠陥部の検出性能、例えば検出可能な欠陥サイズが小さく、微小な欠陥でも検出可能にする超音波検査装置を提供する。【解決手段】超音波検査装置Zは、被検査体Eへの超音波ビームUの走査及び計測を行う走査計測装置1と、走査計測装置1の駆動を制御する制御装置2とを備え、走査計測装置1は、超音波ビームUを放出する送信プローブ110と、超音波ビームUを受信する受信プローブ121とを備え、制御装置2は信号処理部250を備え、信号処理部250は、受信プローブ121の受信信号のうちの少なくとも最大強度周波数成分を低減するフィルタ部240を備え、フィルタ部240は、前記最大強度周波数成分を含む基本波帯のうちの前記最大強度周波数成分以外の裾野成分を検出する。【選択図】図6

Description

本開示は、超音波検査装置及び超音波検査方法に関する。
超音波ビームを用いた被検査体の欠陥部の検査方法が知られている。例えば、被検査体の内部に空気等の音響インピーダンスが小さな欠陥部(空洞等)がある場合、被検査体の内部で音響インピーダンスのギャップが生じるため、超音波ビームの透過量が小さくなる。従って、超音波ビームの透過量を計測することで、被検査体内部の欠陥部を検出できる。
超音波検査装置について特許文献1に記載の技術が知られている。特許文献1に記載の超音波検査装置では、連続する所定個数の負の矩形波からなる矩形波バースト信号を被検体に空気を介して対向配設された送信超音波探触子に印加する。被検体に空気を介して対向配設され受信超音波探触子で被検体を伝搬した超音波を透過波信号に変換する。この透過波信号の信号レベルに基づき被検体の欠陥の有無を判定する。また、送信超音波探触子及び受信超音波探触子は、振動子及び当該振動子の超音波の送受信側に取付られた前面板の音響インピーダンスを、被検体に当接して使用する接触型超音波探触子に比較して低く設定している。
特開2008-128965号公報
特許文献1に記載の超音波検査装置では、被検査体中の微小な欠陥を検出することが困難であるという課題がある。特に、検出しようとする欠陥のサイズが、超音波ビームよりも小さい場合に、欠陥の検出が困難になる。
本開示が解決しようとする課題は、欠陥部の検出性能、例えば検出可能な欠陥サイズが小さく、微小な欠陥でも検出可能にする超音波検査装置及び超音波検査方法の提供である。
本開示に係る超音波検査装置は、流体を介して被検査体に超音波ビームを入射することにより前記被検査体の検査を行う超音波検査装置であって、前記被検査体への前記超音波ビームの走査及び計測を行う走査計測装置と、前記走査計測装置の駆動を制御する制御装置とを備え、前記走査計測装置は、前記超音波ビームを放出する送信プローブと、前記超音波ビームを受信する受信プローブとを備え、前記制御装置は信号処理部を備え、前記信号処理部は、前記受信プローブの受信信号のうちの少なくとも最大強度周波数成分を低減するフィルタ部を備え、前記フィルタ部は、前記最大強度周波数成分を含む基本波帯のうちの前記最大強度周波数成分以外の裾野成分を検出する。その他の解決手段は発明を実施するための形態において後記する。
本開示によれば、欠陥部の検出性能、例えば検出可能な欠陥サイズが小さく、微小な欠陥でも検出可能にする超音波検査装置及び超音波検査方法を提供できる。
第1実施形態の超音波検査装置の構成を示す図である。 送信プローブの構造を示す断面模式図である。 従来の超音波検査方法での超音波ビームの伝搬経路を示す図であり、健全部への入射時を示す図である。 従来の超音波検査方法での超音波ビームの伝搬経路を示す図であり、欠陥部への入射時を示す図である。 被検査体内での欠陥部と超音波ビームとの相互作用を示す図であり、直達する超音波ビームを受信する様子を示す図である。 欠陥部と相互作用した超音波ビームである散乱波を模式的に示した図である 制御装置の機能ブロック図である。 受信信号の周波数成分の分布(周波数スペクトル)を模式的に示した図である。 欠陥部をまたがるように送信プローブ及び受信プローブを走査したときの信号強度情報の位置による変化を示したものである。 フィルタ部を備えた制御装置により、信号強度情報を測定した結果である。 送信プローブに印加するバースト波の電圧波形である。 図9に示す条件での受信信号の周波数成分分布を示したものである。 受信信号の周波数成分分布(周波数スペクトル)の実測データを、健全部と欠陥部とで比較した図である。 帯域遮断フィルタでのゲイン(利得)の周波数特性を示す。 帯域遮断フィルタで処理した後の信号の周波数特性を模式的に示した図である。 低域通過フィルタでのゲイン(利得)の周波数特性を示す。 低域通過フィルタで処理した後の信号の周波数特性を模式的に示した図である。 高域通過フィルタでのゲイン(利得)の周波数特性を示す。 高域通過フィルタで処理した後の信号の周波数特性を模式的に示した図である。 デジタル方式のフィルタ部を示すブロック図である。 別の実施形態に係るフィルタ部を示すブロック図である。 送信プローブの焦点距離と受信プローブの焦点距離を等しくした場合の超音波ビームの伝播経路を模式的に示した図である。 送信プローブの焦点距離よりも、受信プローブの焦点距離を長くした場合の超音波ビームの伝播経路を模式的に示した図である。 送信プローブにおけるビーム入射面積及び受信プローブにおけるビーム入射面積の関係を説明する図である。 第2実施形態での超音波検査装置の構成を示す図である。 送信音軸、受信音軸及び偏心距離を説明する図であり、送信音軸及び受信音軸が鉛直方向に延びる場合である。 送信音軸、受信音軸及び偏心距離を説明する図であり、送信音軸及び受信音軸が傾斜して延びる場合である。 第3実施形態での超音波検査装置の構成を示す図である。 第3実施形態による効果が生じる理由を説明する図である。 第4実施形態での超音波検査装置の構成を示す図である。 第5実施形態での超音波検査装置における制御装置の機能ブロック図である。 第6実施形態での超音波検査装置における制御装置の機能ブロック図である。 制御装置のハードウェア構成を示す図である。 上記各実施形態の超音波検査方法を示すフローチャートである。
以下、図面を参照しながら本開示を実施するための形態(実施形態と称する)を説明する。ただし、本開示は以下の実施形態に限られず、例えば異なる実施形態同士を組み合わせたり、本開示の効果を著しく損なわない範囲で任意に変形したりできる。また、同じ部材については同じ符号を付すものとし、重複する説明は省略する。更に、同じ機能を有するものは同じ名称を付すものとする。図示の内容は、あくまで模式的なものであり、図示の都合上、本開示の効果を著しく損なわない範囲で実際の構成から変更することがある。
(第1実施形態)
図1は、第1実施形態の超音波検査装置Zの構成を示す図である。図1では、走査計測装置1は、断面模式図で示している。図1には、紙面左右方向としてのx軸、紙面直交方向としてのy軸、紙面上下方向としてのz軸を含む直交3軸の座標系が示される。
超音波検査装置Zは、流体Fを介して被検査体Eに超音波ビームU(後記する)を入射することで被検査体Eの検査を行うものである。流体Fは例えば水等の液体W(後記する)、空気等の気体Gであり、被検査体Eは流体F中に存在する。第1実施形態では、流体Fとして空気(気体Gの一例)が使用される。従って、走査計測装置1の筐体101の内部は空気で満たされた空洞となっている。図1に示すように、超音波検査装置Zは、走査計測装置1と、制御装置2と、表示装置3とを備える。表示装置3は制御装置2に接続される。
走査計測装置1は、被検査体Eへの超音波ビームUの走査及び計測を行うものであり、筐体101に固定された試料台102を備え、試料台102には被検査体Eが載置される。被検査体Eは、任意の材料で構成されている。被検査体Eは例えば固体材料であり、より具体には例えば金属、ガラス、樹脂材料、あるいはCFRP(炭素繊維強化プラスチック、Carbon-Fiber Reinforced Plastics)等の複合材料等である。また、図1の例において、被検査体Eは内部に欠陥部Dを有している。欠陥部Dは、空洞等である。欠陥部Dの例は、空洞、本来あるべき材料と異なる異物材等である。被検査体Eにおいて、欠陥部D以外の部分を健全部Nと称する。
欠陥部Dと健全部Nとは、構成する材料が異なるため、両者の間では音響インピーダンスが異なり、超音波ビームUの伝搬特性が変化する。超音波検査装置Zは、この変化を観測して、欠陥部Dを検出する。
走査計測装置1は、超音波ビームUを放出する送信プローブ110と、受信プローブ121とを有する。送信プローブ110は、送信プローブ走査部103を介して筐体101に設置され、超音波ビームUを放出する。受信プローブ121は、被検査体Eに関して送信プローブ110の反対側に設置されて超音波ビームUを受信し、送信プローブ110と同軸に配置された(後記する偏心距離Lがゼロ)の受信プローブ140(同軸配置受信プローブ)である。従って、第1実施形態では、送信プローブ110の送信音軸AX1(音軸)と受信プローブ140の受信音軸AX2(音軸)との間の偏心距離L(距離)がゼロである。これにより、送信プローブ110及び受信プローブ140を容易に設置できる。
ここで、「送信プローブ110の反対側」とは、被検査体Eにより区切られる2つの空間のうち、送信プローブ110が位置する空間と反対側(z軸方向において反対側)の空間という意味であり、x、y座標が同一の反対側(つまり、xy平面に関して面対称の位置)という意味ではない。
ここで、送信プローブ110と受信プローブ121の位置関係について述べる。送信プローブ110の送信音軸AX1と受信プローブ121の受信音軸AX2との距離を偏心距離Lと定義する。第1実施形態では、上記のように、偏心距離Lがゼロに設定される。即ち、送信音軸AX1と受信音軸AX2とが同軸上になるような受信プローブ121が配置される。これを同軸配置と呼ぶ。なお、本開示では、偏心距離Lは0に限定されるものではない。
本開示では、受信プローブ121の配置位置として、送信音軸AX1と受信音軸AX2とを同軸に配置したものを同軸配置と呼び、2つの音軸(送信音軸AX1及び受信音軸AX2)をずらしたもの(即ち、偏心させた配置)を偏心配置と呼ぶ。本開示は、受信プローブ121を同軸配置にした場合と、偏心配置にした場合とのいずれの場合でも効果を奏する。従って、本開示は、受信プローブ121の配置として、同軸配置及び偏心配置のいずれも含む。
本明細書において、特に、受信配置位置を指定する場合には、同軸配置された受信プローブ121を受信プローブ140(同軸配置受信プローブ)と記し、偏心配置された受信プローブ121を、受信プローブ120(偏心配置受信プローブ)と記すことにする。
受信プローブ121と記した場合は、同軸配置か偏心配置かは特段に指定しない。
音軸とは、超音波ビームUの中心軸と定義される。ここで、送信音軸AX1は、送信プローブ110が放出する超音波ビームUの伝搬経路の音軸と定義される。言い換えると、送信音軸AX1は、送信プローブ110が放出する超音波ビームUの伝搬経路の中心軸である。送信音軸AX1は、後記する図20Bに示すように、被検査体Eの界面による屈折を含めることとする。つまり、同図に示すように、送信プローブ110から放出された超音波ビームUが、被検査体Eの界面で屈折する場合は、その超音波ビームUの伝搬経路の中心(音軸)が送信音軸AX1となる。
また、受信音軸AX2は、受信プローブ121が超音波ビームUを放出すると想定した場合の仮想超音波ビームの伝搬経路の音軸と定義される。言い換えると、受信音軸AX2は、受信プローブ121が超音波ビームUを放出すると想定した場合の仮想超音波ビームの中心軸である。
具体例として、探触子面が平面状である非収束型の受信プローブの場合を述べる。この場合、受信音軸AX2の方向は探触子面の法線方向であり、探触子面の中心点を通る軸が受信音軸AX2になる。探触子面が長方形の場合は、その中心点は長方形の対角線の交点と定義する。
走査計測装置1には、制御装置2が接続されている。制御装置2は、走査計測装置1の駆動を制御するものであり、送信プローブ走査部103及び受信プローブ走査部104に指示することで、送信プローブ110及び受信プローブ121の移動(走査)を制御する。送信プローブ走査部103及び受信プローブ走査部104がx軸及びy軸方向に同期して移動することにより、送信プローブ110及び受信プローブ121は被検査体Eをx軸及びy軸方向に走査する。更に、制御装置2は、送信プローブ110から超音波ビームUを放出し、受信プローブ121から取得した信号に基づいて波形解析を行う。
なお、第1実施形態では、被検査体Eが試料台102を介して筐体101に固定された状態、つまり、被検査体Eは筐体101に対し固定された状態で、送信プローブ110と受信プローブ121とを走査する例が示される。これとは逆に、送信プローブ110と受信プローブ121とが筐体101に対して固定され、被検査体Eが移動することで、走査が行われる構成としてもよい。
送信プローブ110と被検査体Eとの間、及び受信プローブ121と被検査体Eとの間には、図示の例では気体G(流体Fの一例。液体W(後記する)でもよい)が介在する。このため、送信プローブ110及び受信プローブ121を被検査体Eに非接触で検査できるため、xy面内方向の相対位置をスムーズかつ高速に変えることが可能である。即ち、送信プローブ110及び受信プローブ121と被検査体Eとの間に流体Fを介在させることにより、スムーズな走査が可能になる。
送信プローブ110は、収束型の送信プローブ110である。一方で、受信プローブ121は、収束性が送信プローブ110よりも緩いプローブを用いる。本実施形態では、受信プローブ121には探触子面が平面である非収束型のプローブが使用される。このような、非収束型の受信プローブ121を用いることで、幅広い範囲について欠陥部Dの情報を収集することができる。
図2は、送信プローブ110の構造を示す断面模式図である。図2では、簡略化のために、放出される超音波ビームUの外郭のみを図示しているが、実際には、探触子面114の全域にわたり、探触子面114の法線ベクトル方向に多数の超音波ビームUが放出される。
送信プローブ110は、超音波ビームUを収束するように構成される。これにより、被検査体E中の微小な欠陥部Dを高精度に検出できる。微小な欠陥部Dを検出できる理由は後記する。送信プローブ110は、送信プローブ筐体115を備え、送信プローブ筐体115の内部に、バッキング112と、振動子111と、整合層113とを備える。振動子111には電極(図示せず)が取り付けられており、電極はリード線118により、コネクタ116に接続されている。さらに、コネクタ116はリード線117により電源装置(図示しない)及び制御装置2に接続される。
本明細書において、送信プローブ110又は受信プローブ121の探触子面114とは、整合層113を備える場合は整合層113の表面と定義し、整合層113を備えない場合は振動子111の表面と定義する。即ち、探触子面114は、送信プローブ110の場合は、超音波ビームUを放出する面であり、受信プローブ121の場合は、超音波ビームUを受信する面である。
ここで、比較例として、従来の超音波検査の手法を説明する。
図3Aは、従来の超音波検査方法での超音波ビームUの伝搬経路を示す図であり、健全部Nへの入射時を示す図である。図3Bは、従来の超音波検査方法での超音波ビームUの伝搬経路を示す図であり、欠陥部Dへの入射時を示す図である。従来の超音波検査方法では、例えば特許文献1に記載されているように、送信音軸AX1と受信音軸AX2とが一致するように、送信プローブ110及び受信プローブ121としての受信プローブ140が配置される。
図3Aに示すように、被検査体Eの健全部Nに超音波ビームUが入射された場合、超音波ビームUが被検査体Eを通過して受信プローブ140に到達する。従って、受信信号が大きくなる。一方、図3Bに示すように、欠陥部Dに超音波ビームUが入射された場合、欠陥部Dにより超音波ビームUの透過が阻止されるために受信信号が減少する。このように受信信号の減少により欠陥部Dを検出する。これは、特許文献1に示されている通りである。
ここで、図3A及び図3Bに示すように、欠陥部Dにおいて超音波ビームUの透過が阻止されることによって受信信号が減少し、欠陥部Dを検出する方法を、ここででは「阻止法」と呼ぶことにする。
従来技術の問題点は、欠陥サイズがビームサイズよりも小さくなると検出が困難になることである。この点を、図4Aを参照して説明する。
図4は、被検査体E内での欠陥部Dと超音波ビームUとの相互作用を示す図であり、直達する超音波ビームU(以下、「直達波U3」という)を受信する様子を示す図である。直達波U3については後記する。ここでは、欠陥部Dの大きさが超音波ビームUの幅(以下、ビーム幅BWと称する)よりも小さい場合を考察する。ここでのビーム幅BWとは、欠陥部Dに到達した時の超音波ビームUの幅である。
また、図4は、欠陥部D近傍の微小領域での超音波ビームUの形状を模式的に示しているので超音波ビームUを平行に描いてあるが、実際には収束させた超音波ビームUである。さらに、図4での受信プローブ121の位置は、わかりやすく説明するために概念的な位置を記入したものであり、受信プローブ121の位置と形状は正確にスケールされていない。即ち、欠陥部Dと超音波ビームUとの形状の拡大スケールで考えると、図4に示す位置よりも、図面上下方向で離れた位置に受信プローブ121は位置する。
図4では、送信音軸AX1と受信音軸AX2とを一致させた阻止法の場合が示される。欠陥部Dがビーム幅BWよりも小さい場合、一部の超音波ビームUは阻止されるので受信信号は減少するが、ゼロにはならない。例えば、欠陥部Dの断面積がビーム幅BWで規定されるビーム断面積の5%の場合、受信信号は概ね5%の減少に止まるので、欠陥部Dの検出が困難である。つまり、図4に示すような場合、欠陥部Dが存在する箇所では、受信信号が5%減少するにとどまる。このように、欠陥部Dがビーム幅BWよりも小さい場合、欠陥部Dと相互作用することなく、素通りするビームが多くなるので、欠陥の検出が困難になる。
図5は、欠陥部Dと相互作用した超音波ビームUである散乱波U1を模式的に示した図である。本明細書では、欠陥部Dと相互作用した超音波ビームUを散乱波U1と呼ぶ。従って、本明細書での「散乱波U1」とは、欠陥部Dと相互作用した超音波を指す。散乱波U1には、図5のように方向を変える波もある。また、散乱波U1には、欠陥部Dとの相互作用により波の位相又は周波数の少なくとも一方が変化するが、進行方向は変わらない波もある。欠陥部Dと相互作用することなく、通過する超音波を直達波U3と呼ぶ。直達波U3と区別して、散乱波U1のみを検出できれば、小さな欠陥部Dを検出し易くできる。本開示では、周波数の違いに着目することで、散乱波U1が効率的に検出される。
図6は、制御装置2の機能ブロック図である。制御装置2は、走査計測装置1の駆動を制御するものである。制御装置2は、送信系統210と、受信系統220と、データ処理部201と、スキャンコントローラ204と、駆動部202と、位置計測部203と、信号処理部250とを備える。受信系統220とデータ処理部201とを合わせて、信号処理部250と呼ぶ。信号処理部250は、受信プローブ121からの信号を増幅処理、フィルタ処理等により、有意な情報を抽出する信号処理を行う。
送信系統210は、送信プローブ110への印加電圧を生成する系統である。送信系統210は、波形発生器211及び信号アンプ212を備える。波形発生器211でバースト波信号が発生する。そして、発生したバースト波信号は信号アンプ212で増幅される。信号アンプ212から出力された電圧は送信プローブ110に印加される。
信号処理部250は、受信系統220を備える。受信系統220は、受信プローブ121から出力される受信信号を検出する系統である。受信プローブ121から出力された信号は、信号アンプ222に入力されて増幅される。増幅された信号は、フィルタ部240(遮断フィルタ)に入力される。フィルタ部240は、入力信号の特定の周波数範囲の成分を低減する(遮断する)。フィルタ部240については後述する。フィルタ部240からの出力信号は、データ処理部201に入力される。
データ処理部201では、フィルタ部240から入力された信号から、信号強度データを生成する。信号強度データの生成方法として、本実施例ではピーク間信号量(Peak-to-Peak signal)を用いた。これは信号のうち最大値と最小値との差である。信号強度データの生成方法には、この他、フーリエ変換をして特定周波数範囲の周波数成分の強度を用いてもよい。
データ処理部201は、スキャンコントローラ204から走査位置の情報も受け取る。このようにして、現在の2次元走査位置(x、y)における信号強度データの値が得られる。信号強度データの値を走査位置に対してプロットすると、欠陥部Dの位置又は形状の少なくとも一方に対応した画像(欠陥画像)が得られる。この欠陥画像は表示装置3に出力される。
(フィルタ部240)
本明細書においてフィルタ部240とは、所定の周波数範囲の信号成分の強度を低減させる信号処理を行う制御部と定義する。また、フィルタ処理は、所定の周波数範囲の信号成分の強度を低減させる信号処理と定義する。受信信号をフーリエ変換等で周波数成分毎の成分強度に分解した際、成分強度が最大になる周波数を最大成分周波数と呼ぶ。最大強度周波数成分は最大成分周波数における周波数成分である。本明細書のフィルタ部240は、最大強度周波数成分を含む基本波帯、即ち、最大成分周波数を含む周波数範囲の信号成分の強度を低減する。なお、周波数成分毎の成分強度の分布を周波数スペクトルと呼ぶ。
図7は、受信信号の周波数成分の分布(周波数スペクトル)を模式的に示した図である。図7を用いて、フィルタ部240をさらに具体的に説明する。同図において、横軸が周波数、縦軸は成分強度を示す。縦軸は、対数スケールで示してあり、幅広い強度範囲を模式的に示している。
成分強度が最大になる最大成分周波数をfmとする。最大成分周波数fmは、送信プローブ110から送信したバースト波の基本周波数f0にほぼ等しい。信号の周波数成分は、最大成分周波数fmの前後に広がりを持ち、これを基本波帯W1と呼ぶ。
最大成分周波数fmのN倍の周波数(N×fm)の成分は、高調波である。最大成分周波数fmの1/N倍の周波数(fm/N)の成分は、分調波である。ここで、Nは、N≧2の整数である。高調波、分調波もそれぞれ広がりをもつ。本明細書では、高調波、分調波が周波数的な広がりを持つことを特に強調する場合に、それぞれ高調波帯、分調波帯と呼ぶ。従って、単に「高調波」と記した場合も、周波数的な広がりを持つ。高調波帯、分調波帯は、非線形現象で発生するものであり、被検査体Eに入力した超音波ビームUの音圧が極めて強い場合に発生する。
第1実施形態のように、送信プローブ110と被検査体Eとの間に気体Gを介した場合には、被検査体Eの内部に音圧が強い超音波ビームUを入れることは、一般的には困難なため、高調波帯又は分調波帯の少なくとも一方は観測されないことが多い。第1実施形態での条件でも、高調波帯及び分調波帯は検出限界以下であった。
図7に示すように、基本波帯W1は周波数的に広がりを持つ。基本波帯W1のうち、最大成分周波数fmの成分以外の周波数成分を「裾野成分W3」と呼ぶことにする。裾野成分W3には、基本波のサイドローブも含まれる。
第1実施形態では、フィルタ部240は、最大成分周波数fmを含む遮断周波数範囲の成分強度を低減する。即ち、フィルタ部240は、受信プローブ121の受信信号のうちの少なくとも最大強度周波数成分(最大成分周波数fmに対応する成分)を低減する。そして、フィルタ部240は、最大強度周波数成分を含む基本波帯W1のうちの最大強度周波数成分以外の裾野成分W3を検出する。フィルタ部240により、遮断周波数範囲の成分強度が低減するので、フィルタ部240を通過した後の信号では、基本波帯W1のうち裾野成分W3が占める割合が増加する。このようにすることで、後記のように、欠陥部Dの検出性能を向上できる。
図8Aは、欠陥部Dをまたがるように送信プローブ110及び受信プローブ121を走査したときの信号強度情報の位置による変化を示したものである。図8Aでは、上記図6の構成からフィルタ部240を除いた構成で測定した結果である。健全部Nでの信号強度はv0である。一方で、欠陥部Dに対応する位置(x=0)で、信号強度がΔvだけ低下しており、欠陥部Dを検出できている。しかし、信号強度の変化率(Δv/v0)は小さい。ここで信号強度の変化率とは、欠陥部Dでの信号変化量Δvを健全部Nでの信号強度v0で割った値と定義する。
図8Bは、フィルタ部240を備えた制御装置2(図6)により、信号強度情報を測定した結果である。欠陥部Dの場所での信号強度の変化率(Δv/v0)が大きくなり、欠陥部Dの検出性が改善したことがわかる。
図8A及び図8Bの実験結果を取得した実験条件を説明する。
図9は、送信プローブ110に印加するバースト波の電圧波形である。横軸は時間、縦軸は電圧である。基本周波数f0が0.82MHzの正弦波を10波印加した。この10波を波束と呼ぶ。なお、基本周波数f0の逆数を基本周期T0と呼ぶ。基本周期T0は、同図に示した通り、1波束を構成する波の周期である。波束は繰り返し周期Tr=5msで印加した。
図10は、図9に示す条件での受信信号の周波数成分分布を示したものである。同図は、横軸が周波数で、縦軸がそれぞれの周波数での成分強度の実測データをプロットしている。これは、フィルタ部240で処理していない信号の周波数成分分布である。成分強度が最大になる0.82MHzが最大成分周波数fmである。基本波帯W1は、0.74MHzから0.88MHzに拡がっており、このうち最大成分周波数fmを除いた成分が裾野成分W3である。本実施例では、最大成分周波数fmは、送信プローブ110が送信する超音波の基本周波数f0と等しくなっている。このように、多くの場合、最大成分周波数fmは送信する超音波の基本周波数f0に概ね等しくなる。
フィルタ部240(図6)は、上記のように、最大成分周波数fmを除く。具体的には、図示の例では、フィルタ部240(図6)は0.78MHz以下の裾野成分W3を透過させ、0.82MHzを含む、0.78MHzを超える波を遮断した。このようなフィルタ部240を用いると、上記図8Bのように、欠陥部Dでの信号強度の変化率が増大し、欠陥の検出性が大幅に改善することがわかる。
図11は、受信信号の周波数成分分布(周波数スペクトル)の実測データを、健全部N(実線)と欠陥部D(破線)とで比較した図である。フィルタ部240により欠陥部Dの検出性が改善するメカニズムは以下の通りである。最大成分周波数fm=0.82MHzでは、健全部Nと欠陥部Dとで成分強度(信号の大きさ)の違いは小さい。一方、最大成分周波数fm以外である裾野成分W3、特に低域帯については、健全部Nと欠陥部Dとの差が大きくなっている。
このように、受信信号の周波数成分を調べ、最大成分周波数fmよりも、裾野成分W3の方が健全部Nと欠陥部Dとの差が大きい、ことを発明者らは見出した。この知見に基づき、健全部Nと欠陥部Dとの差が小さい最大成分周波数fmの周波数成分を低減するようなフィルタ部240を用いることにより、欠陥部Dの検出性を改善できることを見出した。
このように、本開示は受信信号の周波数成分分布において、最大成分周波数fmでの信号成分よりも、基本波帯W1の裾野成分W3の方が欠陥部Dでの信号変化率が大きいという、発明者らが見出した新しい知見に基づくものである。最大成分周波数fmの成分は、受信信号の中で大きな割合を占めるが、欠陥部Dでの信号変化率が小さいので、この成分を低減することで、その結果、裾野成分W3が占める割合が増大する。このようにすることで、フィルタ部240で処理後の信号は、欠陥部Dでの信号変化率が増大するために、欠陥部Dの検出性を改善できる。そして、図8A及び図8Bに示した実測データを比較しても、フィルタ部240による欠陥部Dの検出性が改善する効果は明らかである。
本開示の効果を奏するためのフィルタ部240の周波数特性の代表的な例を以下に示す。フィルタ部240は、帯域遮断フィルタ、低域通過フィルタ、又は、高域通過フィルタの少なくとも1つを含むことが好ましい。これらの少なくとも1つを含むことで、最大成分周波数fmを含む周波数範囲の成分を低減できる。中でも、低域通過フィルタ、又は、高域通過フィルタの少なくとも1つを含むことで、高域又は低域の一方のみが遮断されるため、遮断のためのプログラムを簡便にできる。また、フィルタ部240を電子回路で実装する場合は、遮断のための回路構成を簡便にできる。
図12Aは、帯域遮断フィルタでのゲイン(利得)の周波数特性を示す。帯域遮断フィルタは、最大成分周波数fm(最大強度周波数成分)を含む基本波帯W1(図12B)のうち、最大成分周波数fmを含む周波数範囲W2(図12B)の成分を低減する。低減率xは、透過領域でのゲインG0と遮断領域でのゲインG1との比G1/G0である。第1実施形態では、低減率xを-20dB(1/10)~-40dB(1/100)にした。
図12Bは、帯域遮断フィルタで処理した後の信号の周波数特性を模式的に示した図である。実線及び点線で示される波形が基本波帯W1である。点線は処理前の信号成分であり、点線の部分に示す周波数範囲W2の成分が帯域遮断フィルタで低減される。この結果、実線で示した、基本波帯W1の裾野成分W3を検出できる。
図13Aは、低域通過フィルタでのゲイン(利得)の周波数特性を示す。遮断周波数を最大成分周波数fmよりも小さな周波数に設定することで、最大成分周波数fmでの信号成分を低減できる。第1実施形態では、遮断周波数を0.78MHzとした。即ち、最大成分周波数fmよりも40kHz小さな周波数に設定した。遮断部での低減率は-40dB程度にした。
図13Bは、低域通過フィルタで処理した後の信号の周波数特性を模式的に示した図である。点線及び実線の意味は、図12Bと同じである。低域通過フィルタを用いると、裾野成分W3のうち、実線で示すように、最大成分周波数fmよりも小さな周波数成分を検出できる。
図14Aは、高域通過フィルタでのゲイン(利得)の周波数特性を示す。遮断周波数を最大成分周波数fmよりも大きな周波数に設定することで、最大成分周波数fmでの信号成分を低減できる。
図14Bは、高域通過フィルタで処理した後の信号の周波数特性を模式的に示した図である。点線及び実線の意味は、図12Bと同じである。高域通過フィルタを用いると、裾野成分W3のうち、実線で示すように、最大成分周波数fmよりも大きな周波数成分を検出できる。
(フィルタ部240の実装方法)
フィルタ部240の実装方法の代表的な構成例を以下に述べる。フィルタ部240の実装方法は、アナログ方式及びデジタル方式に大別される。
アナログ方式は、アナログ回路により所望の周波数範囲の信号成分を低減するものである。フィルタ部240の周波数特性としては、帯域遮断フィルタ(図12A及び図12B)、低域通過フィルタ(図13A及び図13B)、高域通過フィルタ(図14A及び図14B)が代表的な例である。このような周波数特性を持つアナログ回路の実現方式は種々の既知のものが知られている。
図15は、デジタル方式のフィルタ部240を示すブロック図である。フィルタ部240は、周波数成分変換部241と、周波数選択部242と、周波数成分逆変換部243とを備える。周波数成分変換部241は、信号アンプ222から入力される受信プローブ121の受信信号を周波数成分に変換するものである。周波数選択部242は、最大成分周波数fm(最大強度周波数成分)を含む周波数帯の除去により上記裾野成分W3を選択するものである。周波数成分逆変換部243は、必要な周波数成分のみを、時間領域信号に戻すものである。これらのうち、特に、周波数成分変換部241及び周波数選択部242を備えることで、デジタル方式のフィルタ部240を構成できる。
このようなデジタル方式のフィルタ部240によっても、最大成分周波数fmを含む周波数範囲の成分を低減できる。周波数成分変換部241で行う処理は、時間領域の信号波形を周波数成分に変換する処理であり、典型的にはフーリエ変換を用いる。周波数成分逆変換部243で行う処理は、周波数成分(周波数スペクトル)から時間領域の信号波形に変換する処理であり、典型的にはフーリエ逆変換を用いる。
図16は、別の実施形態に係るフィルタ部240を示すブロック図である。フィルタ部240は、信号処理部250の中に設けられている。フィルタ部240は、周波数成分変換部241及び周波数選択部242を備える。周波数選択部242の出力は、データ処理部201内の信号強度算出部231に入力される。信号強度算出部231は、周波数成分の情報に基づいて信号強度を算出する。
上記図11の周波数スペクトルに示したように、基本波帯W1の裾野成分W3が欠陥部Dに敏感に変化する理由は以下のように考えられる。
欠陥部Dと相互作用しない直達波U3は、波の伝播方向、位相、周波数等が変化しない。従って、最大成分周波数fmの信号成分は、直達波U3が占める割合が多い。そのため、欠陥部Dと健全部Nとの変化が小さい。
上記図5に示したように、欠陥部Dと相互作用する散乱波U1は、伝播方向を変える成分もあり、また、伝播方向は変わらないが位相又は周波数の少なくとも一方が変化する成分もある。従って、最大周波数fmからずれた成分である基本波帯W1の裾野成分W3には、欠陥部Dと相互作用した超音波ビームUである散乱波U1の成分が占める割合が増える。このため、欠陥部Dと健全部Nとの変化が大きくなる。このようにして、最大成分周波数fmの成分を低減して、かつ基本波帯W1の裾野成分W3を検出することで、欠陥部Dの検出性能を向上できる。
(受信プローブの焦点距離)
受信プローブ121の焦点距離R2は、送信プローブ110の焦点距離R1よりも長くするとさらに好ましい。このようにすると、後述の通り、散乱波U1の成分をより多く検出できるようになるためである。前述の通り、散乱波U1は、欠陥部Dと相互作用した超音波ビームUであるから、散乱波U1の成分の割合が増えるほど、欠陥部Dを検出し易くできる。
受信プローブ121の焦点距離を長くすると散乱波の成分を多く検出できる理由を図17A及び図17Bを用いて述べる。
図17Aは、送信プローブ110の焦点距離R1と受信プローブ121の焦点距離R2を等しくした場合の超音波ビームUの伝播経路を模式的に示した図である。コーンC3は、図17Bにおいて説明する。図17Aに示す例では、送信プローブ110から送信された超音波ビームUの収束点と、受信プローブ121から仮想的に放出される仮想ビームの収束点が同じである。従って、欠陥部Dにおいて伝播方向が変化しない超音波ビームUを効率的に受信できる。一方、欠陥部Dで伝播方向が変化した超音波ビームUは、検出が困難になる。
図17Bは、送信プローブ110の焦点距離R1よりも、受信プローブ121の焦点距離R2を長くした場合の超音波ビームUの伝播経路を模式的に示した図である。受信プローブ121から仮想的に放出される仮想ビームのコーン(形状)C3の範囲内の超音波ビームUを受信プローブ121は検出可能である。そのため、欠陥部Dで伝播方向が少し変化した散乱波U1であっても、コーンC3の範囲に入っていれば検出できる。このように、受信プローブ121の焦点距離R2を送信プローブ110の焦点距離R1よりも長くすることにより、検出可能な散乱波U1を増加できる。前述の通り、散乱波U1は欠陥部Dと相互作用した波であるから、これにより欠陥部Dの検出性能をさらに向上できる。
収束性の大小関係は、被検査体Eの表面におけるビーム入射面積T1、T2の大小関係でも定義される。ビーム入射面積T1、T2について説明する。
図18は、送信プローブ110におけるビーム入射面積T1及び受信プローブ121におけるビーム入射面積T2の関係を説明する図である。送信プローブ110の被検査体Eでのビーム入射面積T1は、送信プローブ110から放出された超音波ビームUの被検査体E表面での交差面積である。また、受信プローブ121のビーム入射面積T2は、受信プローブ121から超音波ビームUが放出された場合を想定した仮想的な超音波ビームU2と被検査体E表面での交差面積である。
なお、図18において、超音波ビームUの経路は、被検査体Eがない場合における経路を示したものである。被検査体Eがある場合は、被検査体E表面で超音波ビームUが屈折するため、超音波ビームUは破線で示した経路とは異なる経路を伝搬する。ここで、図18に示すように、受信プローブ121の被検査体Eでのビーム入射面積T2は、送信プローブ110の被検査体Eでのビーム入射面積T1よりも大きい。このようにすることで、受信プローブ121の収束性を、送信プローブ110の収束性よりも緩くできる。
さらに、受信プローブ121の焦点距離R2は、送信プローブ110の焦点距離R1よりも長い。このようにしても、受信プローブ121の収束性を、送信プローブ110の収束性よりも緩くできる。このとき、被検査体Eから送信プローブ110及び受信プローブ121までの距離は例えば何れも同じであるが、同じでなくてもよい。
このように、本実施形態では、受信プローブ121の収束性を送信プローブ110の収束性よりも緩くしている。即ち、受信プローブ121の焦点距離R2は、送信プローブ110の焦点距離R1よりも長く設定されている。この結果、受信プローブ121のビーム入射面積T2が広くなるため、広い範囲の散乱波U1を検出できる。これにより、散乱波U1の伝搬経路が多少変化しても、受信プローブ121で散乱波U1を検出可能になる。その結果、広い範囲の欠陥部Dを検出できる。
また、受信プローブ121の焦点P1は、送信プローブ110の焦点P2よりも、送信プローブ110の側(図示の例では上方)に存在する。このように焦点P1,P2をずらすことで、受信プローブ121で散乱波U1を受信し易くでき、散乱波U1を検出し易くできる。
なお、送信プローブ110の焦点距離R1よりも受信プローブ121の焦点距離R2を長くする構成として、受信プローブ121として、非収束型のプローブ(不図示)が用いられてもよい。非収束型のプローブでは焦点距離R2が無限大なので、送信プローブ110の焦点距離R1よりも長くなる。即ち、非収束型の受信プローブ121でも、受信プローブ121の収束性は送信プローブ110の収束性よりも緩くなる。
(第2実施形態)
図19は、第2実施形態での超音波検査装置Zの構成を示す図である。第2実施形態では、送信プローブ110の送信音軸AX1と受信プローブ121の受信音軸AX2とがずらして配置される。即ち、第2実施形態での受信プローブ121は、送信プローブ110の送信音軸AX1とは異なる位置に配置された受信音軸AX2を有する受信プローブ120(偏心配置受信プローブ)である。従って、送信プローブ110の送信音軸AX1(音軸)と受信プローブ120の受信音軸AX(音軸)との間の偏心距離L(距離)がゼロより大きい。
このような配置にすることで、散乱波U1のうち空間的な方向が変わった波を検出できる。フィルタ部240(図6)による周波数的な散乱波U1の抽出原理と、偏心配置による空間的な散乱波U1の抽出原理とを組み合わせることで、欠陥部Dの検出性をさらに向上できる。
第2実施形態では、送信プローブ110に対して、図19のx軸方向に偏心距離Lだけ受信プローブ120がずらされて配置されているが、図19のy軸方向にずらされた状態で受信プローブ120が配置されてもよい。又は、x軸方向にL1、y軸方向にL2(即ち、送信プローブ110のxy平面での位置を原点とすると、(L1、L2)の位置)に受信プローブ120が配置されてもよい。
図20Aは、送信音軸AX1、受信音軸AX2及び偏心距離Lを説明する図であり、送信音軸AX1及び受信音軸AX2が鉛直方向に延びる場合である。図20Bは、送信音軸AX1、受信音軸AX2及び偏心距離Lを説明する図であり、送信音軸AX1及び受信音軸AX2が傾斜して延びる場合である。図20A及び図20Bには、参考として、破線で受信プローブ140(同軸配置受信プローブ)も図示される。
音軸とは、超音波ビームUの中心軸と定義される。ここで、送信音軸AX1は、送信プローブ110が放出する超音波ビームUの伝搬経路の音軸と定義される。言い換えると、送信音軸AX1は、送信プローブ110が放出する超音波ビームUの伝搬経路の中心軸である。送信音軸AX1は、図20Bに示すように、被検査体Eの界面による屈折を含めることとする。つまり、図20Bに示すように、送信プローブ110から放出された超音波ビームUが、被検査体Eの界面で屈折する場合は、その超音波ビームUの伝搬経路の中心(音軸)が送信音軸AX1となる。
また、受信音軸AX2は、受信プローブ121が超音波ビームUを放出すると想定した場合の仮想超音波ビームの伝搬経路の音軸と定義される。言い換えると、受信音軸AX2は、受信プローブ121が超音波ビームUを放出すると想定した場合の仮想超音波ビームの中心軸である。
具体例として、探触子面が平面状である非収束型の受信プローブ(不図示)の場合を述べる。この場合、受信音軸AX2の方向は探触子面の法線方向であり、探触子面の中心点を通る軸が受信音軸AX2になる。探触子面が長方形の場合は、その中心点は長方形の対角線の交点と定義する。
受信音軸AX2の方向が探触子面の法線方向である理由は、その受信プローブ121から放射する仮想的な超音波ビームUが探触子面の法線方向に出射するからである。超音波ビームUを受信する場合も、探触子面の法線方向で入射する超音波ビームUを感度よく受信できる。
偏心距離Lとは、送信音軸AX1と、受信音軸AX2とのずれの距離で定義される。従って、図20Bに示すように、送信プローブ110から放出された超音波ビームUが屈折する場合、偏心距離Lは、屈折している送信音軸AX1と、受信音軸AX2とのずれの距離で定義される。第2実施形態の超音波検査装置Zは、このように定義される偏心距離Lが、ゼロより大きな距離となるよう、偏心距離調整部105(図19)によって送信プローブ110及び受信プローブ120が調整される。
図20Aでは、送信プローブ110を被検査体Eの表面における法線方向に配置した場合が示される。図20A及び図20Bにおいて、送信音軸AX1を実線の矢印で示している。また、受信音軸AX2を一点鎖線の矢印で示している。なお、図20A及び図20Bにおいて、破線で示す受信プローブ121の位置が偏心距離Lがゼロの位置であり、送信音軸AX1と受信音軸AX2とが一致する受信プローブ121は同軸配置受信プローブとしての受信プローブ140である。また、実線で示す受信プローブ121はゼロより大きな偏心距離Lの位置に配置されている受信プローブ120(偏心配置受信プローブ)である。送信音軸AX1が水平面(図19のxy平面)に対して垂直になるように送信プローブ110が設置される場合、超音波ビームUの伝搬経路は屈折しない。つまり、送信音軸AX1は屈折しない。
図20Bでは、送信プローブ110を被検査体Eの表面における法線方向から角度αだけ傾けて配置した場合が示される。図20Bでも図20Aと同様、送信音軸AX1を実線の矢印で示し、受信音軸AX2を一点鎖線の矢印で示している。図20Bに示す例の場合、前記したように、被検査体Eと流体Fとの界面で、超音波ビームUの伝搬経路が屈折角βで屈折する。そのため、送信音軸AX1は、図20Bの実線矢印で示すように折れ曲がる(屈折する)。この場合、破線で示した受信プローブ140の位置は、送信音軸AX1上に位置するため偏心距離Lがゼロの位置である。そして、前記したように、超音波ビームUが屈折する場合であっても、受信プローブ120は、送信音軸AX1と受信音軸AX2との距離がLになるように、配置される。なお、図19に示す例では、送信プローブ110を被検査体Eの表面における法線方向に設置しているので、偏心距離Lは、図20Aに示すようなものとなる。
偏心距離Lは、被検査体Eの健全部Nでの受信信号よりも、欠陥部Dでの信号強度の方が大きくなるような位置に設定するとさらに好ましい。
(第3実施形態)
図21は、第3実施形態での超音波検査装置の構成を示す図である。第3実施形態では、走査計測装置1は、受信プローブ120の傾きを調整する設置角度調整部106を備える。これにより、受信信号の強度を増大でき、信号のSN比(Signal to Noise比、信号雑音比)を大きくできる。設置角度調整部106は、例えば、いずれも図示しないが、アクチュエータ、モータ等により構成される。
ここで、送信音軸AX1と受信音軸AX2とが為す角度θを受信プローブ設置角度と定義する。図21の場合、送信プローブ110は鉛直方向に設置されているので送信音軸AX1は鉛直方向であるため、受信プローブ設置角度である角度θは、送信音軸AX1(即ち鉛直方向)と受信プローブ120の探触子面の法線との為す角度である。そして、設置角度調整部106により、角度θを送信音軸AX1が存在する側に傾け、角度θをゼロより大きな値に設定する。即ち、受信プローブ120が傾斜配置される。具体的には、受信プローブ120は、0°<θ<90°を満たすように傾斜配置され、角度θは例えば10°であるがこれに限られない。
また、受信プローブ120を傾斜配置する場合の偏心距離Lは以下のように定義される。受信音軸AX2と、受信プローブ120の探触子面との交点C2を定義する。また、送信音軸AX1と、送信プローブ110の探触子面との交点C1を定義する。交点C1の位置をxy平面に投影した座標位置(x4、y4)(図示せず)と、交点C2の位置をxy平面に投影した座標位置(x5、y5)(図示せず)との距離を偏心距離Lと定義する。
このように受信プローブ120を傾斜配置して、本発明者が実際に欠陥部Dの検出を行ったところ、受信信号の信号強度がθ=0の場合と比較して3倍に増加した。
図22は、第3実施形態による効果が生じる理由を説明する図である。散乱波U1は送信音軸AX1から外れた方向に伝搬する。従って、図22に示すように、散乱波U1は被検査体Eの外側に到達した際、被検査体E表面の法線ベクトルとは非ゼロの角度α2をもって被検査体Eと外部との界面に入射する。そして、被検査体Eの表面から出る散乱波U1の角度は被検査体E表面の法線方向に対して非ゼロの出射角である角度β2を有する。散乱波U1は、受信プローブ120の探触子面の法線ベクトルを散乱波U1の進行方向と一致させたときに、最も効率よく受信できる。つまり、受信プローブ120を傾斜配置することで受信信号強度を増大できる。
なお、被検査体Eから出射する超音波ビームUの角度β2と、送信音軸AX1と受信音軸AX2との為す角度θとが一致すると、最も受信効果が高くなる。しかしながら、角度β2と角度θとが完全に一致しない場合であっても、受信信号増大の効果が得られるので、図22に示しているように、角度β2と角度θとが完全に一致しなくてもよい。
(第4実施形態)
図23は、第4実施形態の超音波検査装置Zの構成を示す図である。第4実施形態では、流体Fは液体Wであり、図示の例では水である。超音波検査装置Zは、流体Fである液体Wを介して被検査体Eに超音波ビームUを入射することで被検査体Eの検査を行うものである。被検査体Eは、液体Wの液面L0の下に配置され、液体Wに浸かっている。
なお、流体Fは上記のように気体G(図1)でもよく、本実施形態のように液体W(図23)でもよい。ただし、流体Fとして空気等の気体Gを用いた場合、以下の理由により、さらに好ましい効果を与える。
液体W中と比較して、気体G中では超音波の減衰量が大きい。超音波の気体G中での減衰量は周波数の2乗に比例することが知られている。このため、気体G中で超音波を伝搬させるには1MHz程度が上限となる。液体W中の場合は、5MHz~数10MHzの超音波でも伝搬するので、気体G中で使用可能な周波数は、液体W中のそれより小さいことになる。
一般に、超音波ビームUの周波数が低くなると、超音波ビームUの収束が困難になる。そのため、気体G中を伝搬させる1MHzの超音波ビームUは、液体W中の超音波ビームUと比べて収束可能なビーム径が大きくなる。一方、上記図4に示したように、従来法である阻止モードでは、ビームサイズよりも小さな欠陥部Dを検出することが困難である。しかし、本開示によれば、上記図5に示したように、散乱波成分の割合を増やして検出するため、ビームサイズよりも小さな欠陥部Dを検出することが可能である。
流体Fとして気体Gを用いた場合、超音波ビームUのビームサイズを小さくすることがより困難であるため、本開示の効果を一層大きな効果を得ることになる。このように、本開示は、流体Fとして気体Gを用いた場合に、より好ましい効果を得ることができる。
(第5実施形態)
図24は、第5実施形態での超音波検査装置Zにおける制御装置2の機能ブロック図である。第5実施形態では、フィルタ部240で使用されるフィルタが、被検査体Eの検査前に、欠陥部Dの位置が既知の試料(不図示)に対して超音波ビームUを照射することにより決定される。そして、被検査体Eの検査は、検査前に決定されたフィルタを使用して行われる。
フィルタ部240は、検出部244及び決定部245を備える。検出部244は、周波数と信号強度(成分強度)との関係において、基本波帯W1のうちの異なる複数の裾野成分W3を検出するものである。ここでいう関係は、例えば図11に示した関係であり、欠陥部Dの位置が既知の試料(不図示)での健全部N及び欠陥部Dに超音波ビームUを照射することで得られたものである。決定部245は、検出した複数の裾野成分W3同士の比較により、どの裾野成分W3を使用するかを決定するものである。フィルタ部240をこのように構成することで、欠陥部Dに起因する信号変化を識別し易い裾野成分W3を使用でき、欠陥部Dの検出精度を向上できる。
検出部244は、例えば、異なる裾野成分W3を検出可能なフィルタを備える。ここでいうフィルタは、例えば、上記の帯域遮断フィルタ(図12A)、低域通過フィルタ(図12B)、高域通過フィルタ(図12C)のうちの少なくとも2つである。例えば、検出部244がこれら3つのフィルタを備える場合、検出部244は、例えば図11に示す関係において、3つのフィルタを用いて、図12Bに示す裾野成分W3、図13Bに示す裾野成分W3、及び、図14Bに示す裾野成分W3を検出する。そして、決定部245は、検出した3つの裾野成分W3同士の比較により、例えば健全部Nと欠陥部Dとの差分が最も大きくなる裾野成分W3の選択等により、どの裾野成分W3を使用するかを決定する。フィルタ部240は、決定した裾野成分W3を使用して、被検査体Eの検査を行うことで、欠陥部Dの検出精度を向上できる。
(第6実施形態)
図25は、第6実施形態での超音波検査装置Zにおける制御装置2の機能ブロック図である。第6実施形態では、被検査体Eの検査前、欠陥部Dの位置が既知の試料(不図示)に対して超音波ビームUを照射することにより得られたデータを使用者に提示し、使用者が、どの裾野成分W3を使用するか、即ち、どのフィルタを使用するのかを決定する。
制御装置2は、表示部223及び受付部224を備える。表示部223及び受付部224は、図示の例ではデータ処理部201に備えられる。表示部223は、周波数と信号強度(成分強度)との関係を表示装置3に表示させるものである。ここでいう関係は、例えば図11に示す関係であり、欠陥部Dの位置が既知の試料(不図示)での健全部N及び欠陥部Dに超音波ビームUを照射することで得られたものである。受付部224は、周波数と信号強度との関係に基づいて使用者によって入力され、検出すべき裾野成分W3を表す情報を受け付けるものである。入力は、例えばキーボード、マウス、タッチパネル等である入力装置4を通じて行われる。そして、フィルタ部240は、受付部224が受け付けた情報に基づいて、当該情報に対応する裾野成分W3を検出する。
制御装置2をこのように構成することで、使用者の主観に基づいて検出すべき裾野成分W3を判断できる。これにより、使用者の経験に基づき判断ができるため、検査実体に即した検査を実行できる。
図26は、制御装置2のハードウェア構成を示す図である。前記した各構成、機能、ブロック図を構成する各部等は、それらの一部又はすべてを、例えば集積回路で設計すること等によりハードウェアで実現してもよい。また、図26に示すように、前記した各構成、機能等は、CPU252等のプロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。制御装置2は、例えば、メモリ251、CPU252、記憶装置253(SSD,HDD等)、通信装置254及びI/F255を備える。各機能を実現するプログラム、テーブル、ファイル等の情報は、HDDに格納すること以外に、メモリ、SSD(Solid State Drive)等の記録装置、又は、IC(Integrated Circuit)カード、SD(Secure Digital)カード、DVD(Digital Versatile Disc)等の記録媒体に格納することができる。
図27は、上記各実施形態の超音波検査方法を示すフローチャートである。第1実施形態の超音波検査方法は上記の超音波検査装置Zにより実行でき、一例として適宜、図1及び図6を参照して説明する。第1実施形態の超音波検査方法は、気体G(図1。流体Fの一例)を介して被検査体E(図1)に超音波ビームUを入射することにより被検査体Eの検査を行うものである。なお、この超音波検査方法を流体Fとして気体Gを用いた実施形態について説明するが、この超音波検査方法は、流体Fとして液体W(図23)を用いた実施形態についても有効であることはいうまでもない。
まず、制御装置2の指令により、送信プローブ110が、送信プローブ110から超音波ビームUを放出する放出ステップS101を行う。続いて、受信プローブ121が、超音波ビームUを受信する受信ステップS102を行う。
その後、フィルタ部240は、受信プローブ121が受信した超音波ビームUの信号(例えば波形信号)を基に、特定の周波数範囲、具体的には、最大成分周波数fmを含む周波数範囲の成分(最大強度周波数成分)を低減するフィルタ処理ステップS103を行う。そして、データ処理部201は、フィルタ処理を行った信号から、基本波帯W1の裾野成分W3を検出して信号強度データを生成する信号強度算出ステップS104を行う。信号強度データの生成方法として、本実施例ではピーク間信号量(Peak-to-Peak signal)が使用される。これは信号のうち最大値と最小値との差である。
この次に、形状表示ステップS105が行われる。送信プローブ110及び受信プローブ121の走査位置情報は、位置計測部203からスキャンコントローラ204に送信される。データ処理部201は、スキャンコントローラ204から取得した送信プローブ110の走査位置情報に対して、それぞれの走査位置での信号強度データをプロットする。このようにして、信号強度データが画像化される。これが形状表示ステップS105である。
なお、図8Bは走査位置情報が1次元(1方向)の場合であり、走査位置情報がx、yの2次元の場合については、信号強度データをプロットすることで、欠陥部Dが2次元画像として示され、それが表示装置3に表示される。
データ処理部201は、走査が完了したか否かを判定する(ステップS111)。走査が完了している場合(Yes)、制御装置2は処理を終了する。走査が完了していない場合(No)、データ処理部201は駆動部202に指令を出力することによって、次の走査位置まで送信プローブ110及び受信プローブ121を移動させ(ステップS112)、放出ステップS101へ処理を戻す。
以上の超音波検査装置Z及び超音波検査方法によれば、欠陥部Dの検出性能、例えば微小欠陥を検出する性能を向上できる。
以上の各実施形態では、欠陥部Dは空洞である例を記載しているが、欠陥部Dとして被検査体Eの材質とは異なる材質が混入している異物であってもよい。この場合も、異なる材料が接する界面で音響インピーダンスの差(Gap)があるため、散乱波U1が発生するので、上記各実施形態の構成が有効である。上記各実施形態に係る超音波検査装置Zは、超音波欠陥映像装置を前提としているが、非接触インライン内部欠陥検査装置に適用されてもよい。
本開示は前記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、前記した実施形態は本開示を分かりやすく説明するために詳細に説明したものであり、必ずしも説明したすべての構成を有するものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
また、各実施形態において、制御線及び情報線は説明上必要と考えられるものを示しており、製品上必ずしもすべての制御線及び情報線を示しているとは限らない。実際には、ほとんどすべての構成が相互に接続されていると考えてよい。
1 走査計測装置
101 筐体
102 試料台
103 送信プローブ走査部
104 受信プローブ走査部
105 偏心距離調整部
106 設置角度調整部
110 送信プローブ
111 振動子
112 バッキング
113 整合層
114 探触子面
115 送信プローブ筐体
116 コネクタ
117 リード線
118 リード線
120 受信プローブ
121 受信プローブ
140 受信プローブ
2 制御装置
201 データ処理部
202 駆動部
203 位置計測部
204 スキャンコントローラ
210 送信系統
211 波形発生器
212 信号アンプ
220 受信系統
222 信号アンプ
223 表示部
224 受付部
231 信号強度算出部
240 フィルタ部
241 周波数成分変換部
242 周波数選択部
243 周波数成分逆変換部
244 検出部
245 決定部
250 信号処理部
251 メモリ
252 CPU
253 記憶装置
254 通信装置
255 I/F
3 表示装置
4 入力装置
AX1 送信音軸
AX2 受信音軸
BW ビーム幅
C1 交点
C2 交点
C3 コーン
D 欠陥部
E 被検査体
F 流体
G 気体
G0 ゲイン
G1 ゲイン
L 偏心距離
L0 液面
N 健全部
P1 焦点
P2 焦点
R1 焦点距離
R2 焦点距離
S101 放出ステップ
S102 受信ステップ
S103 フィルタ処理ステップ
S104 信号強度算出ステップ
S105 形状表示ステップ
S111 ステップ
S112 ステップ
T0 基本周期
T1 ビーム入射面積
T2 ビーム入射面積
U 超音波ビーム
U1 散乱波
U2 超音波ビーム
U3 直達波
W 液体
W1 基本波帯
W2 周波数範囲
W3 裾野成分
Z 超音波検査装置
α 角度
α2 角度
β 屈折角
β2 角度
Δv 変化量
θ 角度

Claims (14)

  1. 流体を介して被検査体に超音波ビームを入射することにより前記被検査体の検査を行う超音波検査装置であって、
    前記被検査体への前記超音波ビームの走査及び計測を行う走査計測装置と、前記走査計測装置の駆動を制御する制御装置とを備え、
    前記走査計測装置は、
    前記超音波ビームを放出する送信プローブと、前記超音波ビームを受信する受信プローブとを備え、
    前記制御装置は信号処理部を備え、
    前記信号処理部は、前記受信プローブの受信信号のうちの少なくとも最大強度周波数成分を低減するフィルタ部を備え、
    前記フィルタ部は、前記最大強度周波数成分を含む基本波帯のうちの前記最大強度周波数成分以外の裾野成分を検出する超音波検査装置。
  2. 前記受信プローブの焦点距離は、前記送信プローブの焦点距離よりも長いことを特徴とする請求項1に記載の超音波検査装置。
  3. 前記受信プローブのビーム入射面積は、前記送信プローブのビーム入射面積よりも大きいことを特徴とする請求項1に記載の超音波検査装置。
  4. 前記流体は気体であることを特徴とする請求項1に記載の超音波検査装置。
  5. 前記フィルタ部は、帯域遮断フィルタを含むことを特徴とする請求項1に記載の超音波検査装置。
  6. 前記フィルタ部は、低域通過フィルタを含むことを特徴とする請求項1に記載の超音波検査装置。
  7. 前記フィルタ部は、高域通過フィルタを含むことを特徴とする請求項1に記載の超音波検査装置。
  8. 前記フィルタ部は、
    前記受信プローブの受信信号を周波数成分に変換する周波数成分変換部と、
    前記最大強度周波数成分を含む周波数帯の除去により前記裾野成分を選択する周波数選択部と、
    を備えることを特徴とする請求項1に記載の超音波検査装置。
  9. 前記フィルタ部は、
    欠陥部の位置が既知の試料での健全部及び欠陥部に前記超音波ビームを照射することで得られた、周波数と信号強度との関係において、前記基本波帯のうちの異なる複数の前記裾野成分を検出する検出部と、
    検出した複数の前記裾野成分同士の比較により、どの前記裾野成分を使用するかを決定する決定部とを備えることを特徴とする請求項1に記載の超音波検査装置。
  10. 前記制御装置は、
    欠陥部の位置が既知の試料での健全部及び欠陥部に前記超音波ビームを照射することで得られた、周波数と信号強度との関係を表示装置に表示させる表示部と、
    前記関係に基づいて使用者によって入力され、検出すべき前記裾野成分を表す情報を受け付ける受付部とを備え、
    前記フィルタ部は、前記受付部が受け付けた前記情報に基づいて、前記裾野成分を検出することを特徴とする請求項1に記載の超音波検査装置。
  11. 前記送信プローブの音軸と前記受信プローブの音軸との間の距離がゼロより大きいことを特徴とする請求項1に記載の超音波検査装置。
  12. 前記送信プローブの音軸と前記受信プローブの音軸との間の距離がゼロであることを特徴とする請求項1に記載の超音波検査装置。
  13. 流体を介して被検査体に超音波ビームを入射することにより前記被検査体の検査を行う超音波検査方法であって、
    送信プローブから超音波ビームを放出する放出ステップと、
    前記超音波ビームを受信する受信ステップと、
    前記受信ステップで受信した前記超音波ビームの信号の最大強度周波数成分を低減するフィルタ処理ステップと、
    前記超音波ビームの信号の基本波帯の裾野成分を検出する信号強度算出ステップとを含む
    ことを特徴とする超音波検査方法。
  14. 前記流体は気体であることを特徴とする請求項13に記載の超音波検査方法。
JP2021163615A 2021-10-04 2021-10-04 超音波検査装置及び超音波検査方法 Pending JP2023054642A (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2021163615A JP2023054642A (ja) 2021-10-04 2021-10-04 超音波検査装置及び超音波検査方法
PCT/JP2022/027599 WO2023058292A1 (ja) 2021-10-04 2022-07-13 超音波検査装置及び超音波検査方法
KR1020247008053A KR20240042513A (ko) 2021-10-04 2022-07-13 초음파 검사 장치 및 초음파 검사 방법
DE112022003511.0T DE112022003511T5 (de) 2021-10-04 2022-07-13 Ultraschallprüfvorrichtung und ultraschallprüfverfahren
CN202280061875.5A CN117980738A (zh) 2021-10-04 2022-07-13 超声波检查装置及超声波检查方法
TW111133637A TWI830362B (zh) 2021-10-04 2022-09-06 超音波檢查裝置及超音波檢查方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021163615A JP2023054642A (ja) 2021-10-04 2021-10-04 超音波検査装置及び超音波検査方法

Publications (1)

Publication Number Publication Date
JP2023054642A true JP2023054642A (ja) 2023-04-14

Family

ID=85804128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021163615A Pending JP2023054642A (ja) 2021-10-04 2021-10-04 超音波検査装置及び超音波検査方法

Country Status (6)

Country Link
JP (1) JP2023054642A (ja)
KR (1) KR20240042513A (ja)
CN (1) CN117980738A (ja)
DE (1) DE112022003511T5 (ja)
TW (1) TWI830362B (ja)
WO (1) WO2023058292A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024120595A (ja) * 2023-02-24 2024-09-05 株式会社日立パワーソリューションズ 超音波検査装置及び超音波検査方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138160A (ja) * 1984-12-11 1986-06-25 Toshiba Corp 超音波探傷装置
JPH06242086A (ja) * 1993-02-16 1994-09-02 Toshiba Corp 超音波検査装置
JPH07190995A (ja) * 1993-12-27 1995-07-28 Hitachi Constr Mach Co Ltd 超音波による溶接欠陥検出方法およびその装置
JPH0894588A (ja) * 1994-09-21 1996-04-12 Jgc Corp 超音波探傷における探傷信号の補正方法
JP4764921B2 (ja) * 2006-05-12 2011-09-07 株式会社エッチアンドビーシステム 共振現象を利用した超音波探査方法
JP4903032B2 (ja) 2006-11-24 2012-03-21 ジャパンプローブ株式会社 空中超音波探傷システム
JP2018004296A (ja) * 2016-06-28 2018-01-11 Ntn株式会社 超音波探傷装置および部品の製造方法
JP6692380B2 (ja) * 2018-03-09 2020-05-13 帝人株式会社 超音波を用いる検査方法
JP6397600B1 (ja) * 2018-05-23 2018-09-26 株式会社日立パワーソリューションズ 位置制御装置、位置制御方法、及び超音波映像システム
JP6479243B1 (ja) * 2018-07-02 2019-03-06 株式会社日立パワーソリューションズ 超音波映像システム
CN109507304B (zh) * 2018-12-26 2021-03-16 西安科技大学 一种基于超声探伤的缺陷检测方法
JP7264770B2 (ja) * 2019-08-28 2023-04-25 株式会社日立パワーソリューションズ 超音波検査システム及び超音波検査方法

Also Published As

Publication number Publication date
CN117980738A (zh) 2024-05-03
KR20240042513A (ko) 2024-04-02
TW202316112A (zh) 2023-04-16
TWI830362B (zh) 2024-01-21
DE112022003511T5 (de) 2024-05-02
WO2023058292A1 (ja) 2023-04-13

Similar Documents

Publication Publication Date Title
US6823736B1 (en) Nondestructive acoustic emission testing system using electromagnetic excitation and method for using same
JP6827298B2 (ja) 非破壊試験用の超音波システム
WO2021039640A1 (ja) 超音波検査装置及び超音波検査方法
JP6905422B2 (ja) 超音波探触子、超音波探傷装置及び方法
WO2023058292A1 (ja) 超音波検査装置及び超音波検査方法
Bolotina et al. Ultrasonic arrays for quantitative nondestructive testing an engineering approach
WO2024024832A1 (ja) 超音波検査装置及び超音波検査方法
KR101830461B1 (ko) 기계 부품 내부에 존재하는 결함의 방향을 측정하기 위한 방법 및 그 장치
Li et al. Micro-defect imaging with an improved resolution using nonlinear ultrasonic Lamb waves
JP7463202B2 (ja) 超音波検査装置及び超音波検査方法
WO2022180972A1 (ja) 超音波検査装置
WO2022044467A1 (ja) 超音波検査装置及び超音波検査方法
KR101877769B1 (ko) 복합 다중 주파수 초음파 위상배열 영상화 장치
CN111665296A (zh) 基于emat测量超声换能器三维辐射声场的方法及装置
WO2024176635A1 (ja) 超音波検査装置及び超音波検査方法
JP5957297B2 (ja) 欠損探索装置、スキャン装置、および欠損探索方法
Vangi et al. On the use of two emerging laser-based flaw-detection techniques–Considerations and practicalities
Wang et al. Defect detection and imaging using electromagnetic acoustic transducer with butterfly coil
CN118330035A (zh) B型套筒角焊缝缺陷检测方法、系统、设备及介质
Boris et al. The Doppler Detection Fault
Zheng et al. Highly Sensitive and Quantitative Emat Testing with Single Butterfly Coil Probe and Saft Imaging Method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240624