WO2024024832A1 - 超音波検査装置及び超音波検査方法 - Google Patents

超音波検査装置及び超音波検査方法 Download PDF

Info

Publication number
WO2024024832A1
WO2024024832A1 PCT/JP2023/027361 JP2023027361W WO2024024832A1 WO 2024024832 A1 WO2024024832 A1 WO 2024024832A1 JP 2023027361 W JP2023027361 W JP 2023027361W WO 2024024832 A1 WO2024024832 A1 WO 2024024832A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
probe
inspected
ultrasonic
ultrasonic inspection
Prior art date
Application number
PCT/JP2023/027361
Other languages
English (en)
French (fr)
Inventor
睦三 鈴木
友輔 高麗
茂 大野
Original Assignee
株式会社日立パワーソリューションズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立パワーソリューションズ filed Critical 株式会社日立パワーソリューションズ
Publication of WO2024024832A1 publication Critical patent/WO2024024832A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/46Processing the detected response signal, e.g. electronic circuits specially adapted therefor by spectral analysis, e.g. Fourier analysis or wavelet analysis

Definitions

  • the present disclosure relates to an ultrasonic inspection device and an ultrasonic inspection method.
  • a method of inspecting a defective part of an object to be inspected using an ultrasonic beam is known. For example, if there is a defect (such as a cavity) with low acoustic impedance, such as air, inside the object to be inspected, a gap in acoustic impedance will occur inside the object to be inspected, and the amount of ultrasound beam transmitted will be small. Therefore, by measuring the amount of transmission of the ultrasonic beam, a defective portion inside the object to be inspected can be detected.
  • Patent Document 1 A technique described in Patent Document 1 is known regarding an ultrasonic inspection device.
  • a rectangular wave burst signal consisting of a predetermined number of continuous negative rectangular waves is applied to a transmitting ultrasonic probe disposed opposite to a subject through the air.
  • a receiving ultrasonic probe placed opposite the subject through the air converts the ultrasonic waves propagated through the subject into transmitted wave signals. Based on the signal level of this transmitted wave signal, the presence or absence of a defect in the object to be inspected is determined.
  • transmitting ultrasound probes and receiving ultrasound probes are contact type in which the acoustic impedance of a transducer and a front plate attached to the ultrasound transmitting and receiving side of the transducer is used by contacting the subject. It is set lower than the ultrasonic probe.
  • the ultrasonic inspection apparatus described in Patent Document 1 has a problem in that it is difficult to detect minute defects in an object to be inspected. In particular, when the size of the defect to be detected is smaller than the ultrasonic beam, it becomes difficult to detect the defect.
  • the problem to be solved by the present disclosure is to provide an ultrasonic inspection apparatus and an ultrasonic inspection method that have defect detection performance, for example, have a small detectable defect size and can detect even minute defects.
  • An ultrasonic inspection apparatus is an ultrasonic inspection apparatus that inspects an object to be inspected by injecting an ultrasonic beam into the object through a fluid.
  • the scanning measurement device includes a scanning measurement device that scans and measures the ultrasound beam, and a control device that controls driving of the scanning measurement device, and the scanning measurement device includes a transmission probe that emits the ultrasound beam, and a transmission probe that emits the ultrasound beam.
  • the control device includes a signal processing section, and the signal processing section includes a frequency conversion section that converts the received signal of the reception probe into frequency components, and a frequency component of the converted frequency components.
  • an imaging unit that generates an image indicating a defect position using a frequency component portion designated by a frequency parameter
  • a display unit that displays an image on a display device; , displays a frequency spectrum corresponding to the frequency component converted by the frequency conversion section, and displays an input section that accepts input of the frequency parameter.
  • an ultrasonic inspection device and an ultrasonic inspection method that have defect detection performance, for example, a detectable defect size is small, and even minute defects can be detected.
  • FIG. 1 is a diagram showing the configuration of an ultrasonic testing apparatus according to a first embodiment.
  • FIG. 2 is a schematic cross-sectional diagram showing the structure of a transmitting probe.
  • FIG. 3 is a diagram showing the propagation path of an ultrasound beam in a conventional ultrasound inspection method, and is a diagram showing the time of incidence on a healthy part.
  • FIG. 3 is a diagram showing a propagation path of an ultrasonic beam in a conventional ultrasonic inspection method, and is a diagram showing the time of incidence on a defective part.
  • FIG. 3 is a diagram illustrating the interaction between a defective part and an ultrasonic beam within the body to be inspected, and is a diagram illustrating how a direct ultrasonic beam is received.
  • FIG. 7A is a diagram illustrating the database shown in FIG. 7A in three dimensions.
  • FIG. 2 is a diagram schematically showing a distribution of frequency components (frequency spectrum) of a received signal. It shows the change in signal strength information depending on the position when scanning the transmitting probe and the receiving probe so as to straddle the defective part. This is the result of calculating and plotting a signal feature amount from frequency component data including a plurality of appropriate frequencies. This is the voltage waveform of the burst wave applied to the transmitting probe.
  • FIG. 11 shows the frequency component distribution of the received signal under the conditions shown in FIG. 10.
  • FIG. 3 is a diagram comparing actually measured data of frequency component distribution (frequency spectrum) of a received signal between a healthy part and a defective part.
  • FIG. 2 is a diagram schematically showing a configuration example of an operation screen of an ultrasonic inspection apparatus in an example of the present disclosure.
  • FIG. 3 is a functional block diagram of an ultrasonic inspection apparatus according to another embodiment.
  • FIG. 3 is a diagram illustrating the flow of processing in an example of the present disclosure.
  • FIG. 7 is a diagram schematically showing a configuration example of an operation screen in a second embodiment. It is a figure showing the flow of processing of this example in a 2nd embodiment.
  • FIG. 7 is a diagram schematically showing a propagation path of an ultrasound beam when the focal length of a transmitting probe and the focal length of a receiving probe are made equal in the fourth embodiment.
  • FIG. 7 is a diagram schematically showing the propagation path of an ultrasound beam when the focal length of the receiving probe is longer than the focal length of the transmitting probe in the fourth embodiment.
  • FIG. 3 is a diagram illustrating the relationship between a beam incident area on a transmitting probe and a beam incident area on a receiving probe. It is a figure showing the composition of the ultrasonic inspection device in a 5th embodiment.
  • FIG. 2 is a diagram illustrating a transmitting sound axis, a receiving sound axis, and an eccentric distance, and is a diagram for explaining a transmitting sound axis and a receiving sound axis extending in the vertical direction. It is a figure explaining a transmission sound axis, a reception sound axis, and an eccentric distance, and is a case where a transmission sound axis and a reception sound axis extend in an inclined manner. It is a figure showing the composition of the ultrasonic inspection device in a 6th embodiment. It is a figure explaining the reason why the effect by 6th Embodiment arises. It is a figure which shows the structure of the ultrasonic examination apparatus in 7th Embodiment.
  • FIG. 3 is a diagram showing the hardware configuration of a control device. It is a flow chart which shows the ultrasonic inspection method of each above-mentioned embodiment.
  • FIG. 1 is a diagram showing the configuration of an ultrasonic testing apparatus Z according to the first embodiment.
  • the scanning measurement device 1 is shown in a schematic cross-sectional view.
  • FIG. 1 shows a coordinate system of three orthogonal axes, including an x-axis in the horizontal direction of the paper, a y-axis in the direction perpendicular to the paper, and a z-axis in the vertical direction of the paper.
  • the ultrasonic inspection device Z inspects the object to be inspected E by making an ultrasonic beam U (described later) incident on the object to be inspected E via a fluid F.
  • the fluid F is, for example, a liquid W such as water (described later), or a gas G such as air, and the object to be inspected E exists in the fluid F.
  • air an example of gas G
  • the inside of the housing 101 of the scanning measurement device 1 is a cavity filled with air.
  • the ultrasonic inspection apparatus Z includes a scanning measurement device 1, a control device 2, and a display device 3. Display device 3 is connected to control device 2 .
  • the scanning measurement device 1 scans and measures the ultrasonic beam U on the object E to be inspected, and includes a sample stage 102 fixed to a housing 101, on which the object E to be inspected is placed. be placed.
  • the object to be inspected E is made of any material.
  • the object to be inspected E is, for example, a solid material, more specifically, for example, metal, glass, a resin material, or a composite material such as CFRP (Carbon-Fiber Reinforced Plastics).
  • CFRP Carbon-Fiber Reinforced Plastics
  • the object to be inspected E has a defective portion D inside.
  • the defective portion D (defect) is a cavity or the like. Examples of the defective portion D include a cavity, a foreign material different from the original material, and the like.
  • a portion other than the defective portion D is referred to as a healthy portion N.
  • the ultrasonic inspection device Z detects the defective portion D by observing this change.
  • the scanning measurement device 1 includes a transmitting probe 110 that emits an ultrasonic beam U, and a receiving probe 121 that receives the ultrasonic beam U.
  • the transmitting probe 110 is installed in the housing 101 via the transmitting probe scanning unit 103, and emits an ultrasonic beam U.
  • the receiving probe 121 is installed on the opposite side of the transmitting probe 110 with respect to the subject E to receive the ultrasonic beam U, and the receiving probe 140 is placed coaxially with the transmitting probe 110 (the eccentric distance L described later is zero). (coaxial arrangement receiving probe). Therefore, in the present disclosure, the eccentric distance L (distance; FIGS.
  • the opposite side of the transmitting probe 110 means a space on the opposite side (opposite side in the z-axis direction) to the space where the transmitting probe 110 is located, of the two spaces separated by the object to be inspected E.
  • this does not mean that it is limited to opposite sides with the same x and y coordinates (that is, positions that are plane symmetrical with respect to the xy plane).
  • the transmitting probe 110 is installed so that the transmitting sound axis AX1 of the transmitting probe 110 is perpendicular to the mounting surface 1021 of the sample stage 102. That is, the transmitting probe 110 is installed so that the transmitting sound axis AX1 is in the normal direction of the mounting surface 1021 of the specimen E on the sample stage 102. In this way, in the plate-shaped object to be inspected E, the transmission sound axis AX1 is arranged perpendicular to the surface of the object to be inspected E, so it becomes easier to understand the correspondence between the scanning position and the position of the defective part D. There is an effect.
  • the present disclosure is not limited to installing the transmitting probe 110 so that the transmitting sound axis AX1 is perpendicular to the mounting surface 1021 of the test object E on the sample stage 102. Even when the transmission sound axis AX1 is not perpendicular to the mounting surface 1021 of the specimen E on the sample stage 102, the effects of the present disclosure can be obtained. In the latter case, in order to accurately know the position of the defective portion D, it is sufficient to calculate the path of the transmission sound axis AX1 according to the inclination of the transmission sound axis AX1 from the vertical direction.
  • the distance between the transmitting acoustic axis AX1 of the transmitting probe 110 and the receiving acoustic axis AX2 of the receiving probe 121 is defined as the eccentric distance L as described above.
  • the eccentric distance L is set to zero as described above. That is, the receiving probe 121 is arranged such that the transmitting sound axis AX1 and the receiving sound axis AX2 are coaxial. This is called a coaxial arrangement. Note that in the present disclosure, the eccentric distance L is not limited to zero.
  • the arrangement position of the receiving probe 121 a configuration in which the transmitting sound axis AX1 and the receiving sound axis AX2 are coaxially arranged is referred to as a coaxial arrangement, and the two sound axes (transmitting sound axis AX1 and receiving sound axis AX2) are arranged coaxially.
  • a shifted arrangement that is, an eccentric arrangement
  • the present disclosure is effective regardless of whether the receiving probe 121 is arranged coaxially or eccentrically. Therefore, the present disclosure includes both a coaxial arrangement and an eccentric arrangement as the arrangement of the receiving probe 121. Specific illustrations of the eccentric arrangement will be made in FIG. 22 and subsequent figures.
  • the coaxially arranged receiving probe 121 is referred to as receiving probe 140 (coaxially arranged receiving probe), and the eccentrically arranged receiving probe 121 is referred to as receiving probe 120 (eccentrically arranged receiving probe). This will be written as (placement reception probe). In the case of receiving probe 121, coaxial arrangement or eccentric arrangement is not specified.
  • the sound axis is defined as the central axis of the ultrasound beam U.
  • the transmission acoustic axis AX1 is defined as the acoustic axis of the propagation path of the ultrasound beam U emitted by the transmission probe 110.
  • the transmission acoustic axis AX1 is the central axis of the propagation path of the ultrasound beam U emitted by the transmission probe 110.
  • the transmission sound axis AX1 includes refraction due to the interface of the object to be inspected E, as shown in FIG. 21B, which will be described later.
  • the center of the propagation path (acoustic axis) of the ultrasonic beam U is the transmitter.
  • the sound axis becomes AX1.
  • reception acoustic axis AX2 is defined as the acoustic axis of the propagation path of the virtual ultrasound beam when it is assumed that the reception probe 121 emits the ultrasound beam U.
  • the reception acoustic axis AX2 is the central axis of a virtual ultrasound beam when it is assumed that the reception probe 121 emits the ultrasound beam U.
  • the direction of the reception sound axis AX2 is the normal direction of the probe surface, and the axis passing through the center point of the probe surface becomes the reception sound axis AX2. If the probe surface is rectangular, the center point is defined as the intersection of the diagonals of the rectangle.
  • a control device 2 is connected to the scanning measurement device 1.
  • the control device 2 controls the driving of the scanning measurement device 1, and controls the movement (scanning) of the transmitting probe 110 and the receiving probe 121 by instructing the transmitting probe scanning section 103 and the receiving probe scanning section 104.
  • the transmitting probe 110 and the receiving probe 121 scan the test object E in the x-axis and y-axis directions.
  • the control device 2 emits the ultrasonic beam U from the transmitting probe 110 and performs waveform analysis based on the signal acquired from the receiving probe 121.
  • a plane formed by two axes, the x-axis and the y-axis, which are the scanning directions of the transmitting probe 110 will be referred to as a scanning plane.
  • the transmitting probe 110 and the receiving probe An example of scanning 121 is shown. On the contrary, a configuration may be adopted in which the transmitting probe 110 and the receiving probe 121 are fixed to the housing 101 and scanning is performed by moving the inspected object E.
  • gas G an example of fluid F; liquid W (described later) may also be used
  • gas G is present between the transmitting probe 110 and the subject E and between the receiving probe 121 and the subject E. do. Therefore, since the transmitting probe 110 and the receiving probe 121 can be inspected without contacting the subject E, the relative position in the xy plane direction can be changed smoothly and at high speed. That is, by interposing the fluid F between the transmitting probe 110 and the receiving probe 121 and the subject E, smooth scanning becomes possible.
  • the transmission probe 110 is a convergence type transmission probe 110.
  • the reception probe 121 uses a probe whose convergence is looser than that of the transmission probe 110.
  • a non-convergence type probe having a flat probe surface is used as the reception probe 121.
  • FIG. 2 is a schematic cross-sectional view showing the structure of the transmitting probe 110.
  • FIG. 2 only the outline of the emitted ultrasonic beam U is illustrated for the sake of simplification, but in reality, the entire area of the probe surface 114 is covered in the normal vector direction of the probe surface 114. A large number of ultrasonic beams U are emitted.
  • the transmitting probe 110 is configured to focus the ultrasound beam U. Thereby, minute defects D in the object E to be inspected can be detected with high precision. The reason why the minute defective portion D can be detected will be described later.
  • the transmission probe 110 includes a transmission probe housing 115, and includes a backing 112, a vibrator 111, and a matching layer 113 inside the transmission probe housing 115.
  • An electrode (not shown) is attached to the vibrator 111, and the electrode is connected to the connector 116 by a lead wire 118.
  • the connector 116 is connected to a power supply device (not shown) and the control device 2 by a lead wire 117.
  • the probe surface 114 of the transmitting probe 110 or the receiving probe 121 is defined as the surface of the matching layer 113 when the matching layer 113 is provided, and the surface of the transducer 111 when the matching layer 113 is not provided.
  • the probe surface 114 is a surface that emits the ultrasonic beam U in the case of the transmitting probe 110, and is a surface that receives the ultrasonic beam U in the case of the receiving probe 121.
  • FIG. 3A is a diagram showing the propagation path of the ultrasound beam U in the conventional ultrasound inspection method, and is a diagram showing the time of incidence on the healthy part N.
  • FIG. 3B is a diagram showing the propagation path of the ultrasound beam U in the conventional ultrasound inspection method, and is a diagram showing the time of incidence on the defective part D.
  • the transmitting probe 110 and the receiving probe 140 as the receiving probe 121 are arranged so that the transmitting sound axis AX1 and the receiving sound axis AX2 coincide with each other. be done.
  • the reception signal is reduced by blocking the transmission of the ultrasonic beam U at the defective portion D, and the method of detecting the defective portion D is herein referred to as the “blocking method.” ” I will call it.
  • FIG. 4 is a diagram showing the interaction between the defective part D and the ultrasonic beam U within the inspected object E, and shows how the direct ultrasonic beam U (hereinafter referred to as "direct wave U3") is received.
  • FIG. The direct wave U3 will be described later.
  • a case will be considered in which the size of the defective portion D is smaller than the width of the ultrasonic beam U (hereinafter referred to as beam width BW).
  • the beam width BW here is the width of the ultrasonic beam U when it reaches the defective portion D.
  • FIG. 4 schematically shows the shape of the ultrasonic beam U in a minute area near the defect D
  • the ultrasonic beam U is drawn in parallel, but in reality, the ultrasonic beam U is a converged ultrasonic beam. It is U.
  • the position of the receiving probe 121 in FIG. 4 is a conceptual position for easy explanation, and the position and shape of the receiving probe 121 are not accurately scaled. That is, when considering the shapes of the defective portion D and the ultrasonic beam U on an enlarged scale, the receiving probe 121 is located at a position further away from the position shown in FIG. 4 in the vertical direction of the drawing.
  • FIG. 4 shows the case of a blocking method in which the transmission sound axis AX1 and the reception sound axis AX2 are made coincident.
  • FIG. 5 is a diagram schematically showing the scattered wave U1, which is the ultrasonic beam U that interacted with the defective portion D.
  • the ultrasonic beam U that interacted with the defective portion D is referred to as a scattered wave U1. Therefore, the "scattered wave U1" in this specification refers to the ultrasonic wave that interacted with the defective portion D.
  • the scattered waves U1 include waves that change direction as shown in FIG. Furthermore, some of the scattered waves U1 change at least one of the wave phase or frequency due to interaction with the defective portion D, but the traveling direction does not change.
  • the ultrasonic wave that passes through without interacting with the defective portion D is called a direct wave U3. If only the scattered wave U1 can be detected while being distinguished from the direct wave U3, the small defect D can be easily detected. In the present disclosure, the scattered waves U1 are efficiently detected by focusing on the difference in frequency.
  • FIG. 6 is a functional block diagram of the ultrasonic testing device Z.
  • the control device 2 controls the driving of the scanning measurement device 1.
  • the control device 2 includes a transmission system 210, a reception system 220, a data processing section 201, a scan controller 204, a drive section 202, a position measurement section 203, and a signal processing section 250.
  • the driving unit 202 changes the relative positions of the transmitting probe 110 and the receiving probe 121 with respect to the subject E by driving the transmitting probe 110 and the receiving probe 121, for example.
  • the position measurement unit 203 measures the scanning position.
  • the scan controller 204 drives the transmitting probe 110 and the receiving probe 121 through the driving section 202. Scanning positions by the transmitting probe 110 and the receiving probe 121 are input to the scan controller 204 through the position measuring section 203.
  • the reception system 220 and data processing section 201 are collectively referred to as a signal processing section 250.
  • the signal processing unit 250 performs signal processing on the signal from the receiving probe 121 to extract significant information by amplifying processing, frequency selection processing, and the like.
  • the transmission system 210 is a system that generates a voltage to be applied to the transmission probe 110.
  • the transmission system 210 includes a waveform generator 211 and a signal amplifier 212.
  • a waveform generator 211 generates a burst wave signal.
  • the generated burst wave signal is then amplified by the signal amplifier 212.
  • the voltage output from the signal amplifier 212 is applied to the transmission probe 110.
  • the signal processing section 250 includes a data processing section 201 and a receiving system 220.
  • the receiving system 220 is a system that detects the received signal output from the receiving probe 121.
  • the signal output from the receiving probe 121 is input to the signal amplifier 222 and amplified.
  • the amplified signal is input to frequency conversion section 230.
  • the frequency conversion unit 230 is included in the signal processing unit 250 and converts the received signal of the reception probe 121 into frequency components (signal processing).
  • the received signal having a time domain waveform is converted into frequency components. Convert to The frequency component is the magnitude (spectrum) of each frequency component. Examples of the frequency component include a method in which it is expressed as a complex number and expressed in a combination of a real part and an imaginary part, a method in which it is expressed in terms of amplitude (absolute value) and phase, and the like.
  • the conversion in the frequency conversion unit 230 can be performed by, for example, Fourier transform. Further, the conversion may be performed while extracting only frequency components within a pre-specified frequency range (frequency parameter).
  • the signal converted into frequency components by the frequency conversion section 230 is input to the data processing section 201. Note that the frequency conversion section 230 may be provided inside the data processing section 201. That is, it may be converted into frequency components in the data processing section.
  • the frequency conversion unit 230 converts the time domain waveform into frequency component data and stores it in the storage unit 261 together with position information.
  • the imaging unit 262 then generates an image 273 (FIG. 13) indicating the defect position using a portion of the frequency component specified by the frequency parameter among the converted frequency components, as will be described in detail later. That is, the imaging unit 262 images the signal feature amount based on the input frequency parameter. That is, when measuring the object E to be inspected once, the conversion to frequency component data only needs to be performed once, and the signal feature amount is extracted from the frequency component data multiple times.
  • the conversion process to frequency component data in the frequency conversion unit 230 takes time.
  • Fourier transform is used as described above, but even if fast Fourier transform (FFT), which is known as a high-speed algorithm, is used, the processing time for this transform is long.
  • FFT fast Fourier transform
  • the calculation of the signal feature amount is performed using the following equation (1), but the time required for this calculation is short.
  • processing for measurement points of 100 rows x 100 columns can be completed in 0.2 seconds or less.
  • the signal waveform of the receiving probe 140 has about 100,000 points for one measurement position in the time domain waveform, whereas the frequency component data only needs to have complex numbers for 20 to 100 different frequencies. That is, the amount of data for the inspected object E can be reduced to about 1/1000. There is also the advantage that the amount of data stored in the storage unit 261 can be significantly reduced in this way.
  • the data processing unit 201 also receives scan position information from the scan controller 204. In this way, data regarding the frequency component of the received signal at the current two-dimensional scanning position (x, y) (hereinafter referred to as frequency component data) is obtained.
  • the data processing unit 201 stores the scanning position (x, y) and the frequency component data at that position in the storage unit 261 in association with each other. Note that the image 273 regarding the defective portion D is created by determining the signal feature amount determined from the frequency component data for each scanning position.
  • the frequency component data is frequency components corresponding to multiple frequencies.
  • the frequency component data is a frequency spectrum obtained by Fourier transform of the received signal.
  • the frequency component includes phase information in addition to amplitude (absolute value). This is equivalent to treating frequency components as complex numbers. As described later, by including phase information, it is possible to calculate signal features with higher performance.
  • the control device 2 includes a database 261a in the storage unit 261 that constitutes the data processing unit 201.
  • the database 261a associates information that affects the detection accuracy of the defective portion D in the object E to be inspected (hereinafter referred to as "information regarding the object E to be inspected") and frequency parameters.
  • the information here includes, for example, inspection conditions for the subject E. Appropriate frequency parameters may vary depending on test conditions.
  • the appropriate frequency parameter here is a frequency parameter for increasing the difference between the frequency spectrum of the healthy part N and the frequency spectrum of the defective part D to an extent that the defective part D can be detected.
  • the frequency parameter indicates a frequency set ⁇ n ⁇ suitable for detecting the defective portion D. Therefore, by inputting inspection conditions into the input section 272 (FIG. 13), the user can specify the portion of the frequency spectrum to be used for creating the image 273 (FIG. 13).
  • the inspection conditions include, for example, the material of the inspected object E, the thickness of the inspected object E, the structure of the inspected object E (for example, single layer structure or multilayer structure), and the inspected object for the receiving probe 121 and the transmitting probe 110. It includes at least one of the position of E (for example, the position in the z direction) and the type of fluid F. Since these are pieces of information that can affect the appropriate frequency parameters, the user can input at least one of these to determine the appropriate frequency parameters.
  • FIG. 7A is an example of the database 261a.
  • the frequency parameters in the example of this disclosure, are a set of ratios f/f0 to the transmission frequency f0 (FIG. 10).
  • suitable frequency parameters for information regarding the subject E are expressed as a certain range.
  • the information here includes, for example, the thickness and material of the object to be inspected E, as an example for explanation.
  • FIG. 7B is a three-dimensional diagram showing the database 261a shown in FIG. 7A.
  • It[1] is the thickness of the object E to be inspected
  • It[2] is the material of the object E to be inspected.
  • the database 261a is a database centered on specimen information, which is multidimensional information.
  • the database 261a may be represented in a table format. That is, a table listing suitable frequency parameters may be created as one record (row) for each piece of information regarding the multidimensional object E to be inspected. Furthermore, when the database 261a is processed by a computer or the like, it may be expressed in a table format database, or in a database format in which each piece of information regarding the multidimensional object E is treated as one record. .
  • the data processing section 201 includes an imaging section 262.
  • the imaging unit 262 is provided in the signal processing unit 250 and uses a portion of the frequency component specified by the frequency parameter among the converted frequency components to generate an image 273 ( Figure 13) is generated. Specifically, the imaging unit 262 detects the defective portion of the object E in the frequency spectrum of the portion corresponding to the input frequency parameter among the frequency spectrum corresponding to the frequency component converted by the frequency conversion unit 230. An image 273 is created based on the change (amount of change) in the signal caused by D. By doing so, the image 273 can be generated.
  • the signal change (change in the received signal) referred to here is a signal feature amount in the example of the present disclosure. Therefore, the imaging unit 262 first calculates the signal feature amount from the frequency parameter portion input by the user in the frequency spectrum corresponding to the converted frequency component.
  • the signal feature amount is, for example, a value representing a change in the signal as described above, and is a value calculated from frequency component data so as to appropriately include defect information (for example, the position of the defective portion D).
  • a specific example of a method for calculating the signal feature amount will be described later.
  • a two-dimensional image (defect image) of the defective portion D existing inside the object E to be inspected is generated by plotting the signal feature amount obtained in this way with respect to the scanning position (x, y).
  • the data processing unit 201 (signal processing unit 250) includes a display unit 263 that performs display on the display device 3.
  • the display unit 263 outputs the image 273 to the display device 3 for display.
  • the display device 3 is, for example, a monitor, a display, or the like.
  • the display unit 263 displays a frequency spectrum 271 (FIG. 13) corresponding to the frequency component converted by the frequency conversion unit 230 on the display device 3.
  • the display unit 263 displays on the display device 3 an input unit 272 (FIG. 13) that accepts input of frequency parameters.
  • the input is performed, for example, by a user of the ultrasonic testing device Z, but may also be input from another device (not shown). In this disclosure, a case where a user inputs frequency parameters will be described as an example.
  • the desired range is scanned.
  • the frequency component data and signal feature amount corresponding to the scanning position (x, y) are stored in the storage unit 261 in the data processing unit 201.
  • a signal feature amount is calculated every time a signal is acquired at a scanning position.
  • the frequency component data may be stored in the storage unit 261 during the measurement, and the signal feature amounts may be collectively calculated after the measurement to generate the defect image.
  • the frequency at which the component strength is maximum is referred to as the maximum component frequency.
  • the component strength is the amplitude when a frequency component is expressed by amplitude and phase, and is the absolute value when a frequency component is expressed by a complex number.
  • the maximum intensity frequency component is the frequency component at the maximum component frequency. Further, the distribution of component intensities for each frequency component is called a frequency spectrum.
  • FIG. 8 is a diagram schematically showing the distribution of frequency components (frequency spectrum) of the received signal.
  • the horizontal axis represents frequency
  • the vertical axis represents intensity (component intensity).
  • the vertical axis is shown on a logarithmic scale, schematically showing a wide range of intensity.
  • fm be the maximum component frequency, which is the frequency at which the intensity is maximum.
  • the maximum component frequency fm is approximately equal to the fundamental frequency f0 of the burst wave transmitted from the transmission probe 110.
  • the frequency components of the signal have a spread around the maximum component frequency fm, and this is called a fundamental wave band W1.
  • a component with a frequency (N ⁇ fm) that is N times the maximum component frequency fm is a harmonic.
  • a component with a frequency (fm/N) that is 1/N times the maximum component frequency fm is a subharmonic wave.
  • N is an integer satisfying N ⁇ 2.
  • Harmonics and subharmonics each have their own spread. In the example of the present disclosure, when it is particularly emphasized that harmonics and subharmonics have a frequency spread, they are called a harmonic band and a subharmonic band, respectively. Therefore, even when simply written as "harmonic,” it has a frequency spread.
  • the harmonic band and subharmonic band are generated by nonlinear phenomena, and occur when the sound pressure of the ultrasonic beam U input to the object E to be inspected is extremely strong.
  • the gas G when the gas G is interposed between the transmitting probe 110 and the object E to be inspected, it is generally not possible to introduce the ultrasonic beam U having a strong sound pressure into the object E to be inspected. Because of the practical difficulties, at least one of the harmonic bands and subharmonic bands is often not observed. Even under the conditions in the example of the present disclosure, the harmonic band and subharmonic band were below the detection limit.
  • the fundamental wave band W1 has a frequency spread.
  • frequency components other than the component of the maximum component frequency fm are referred to as "base components W3."
  • the base component W3 also includes side lobes of the fundamental wave.
  • the signal processing unit 250 extracts the frequency component specified by the frequency parameter input by the user, for example, from among the frequency components of the fundamental wave band W1 including the maximum component frequency. Calculate the feature amount. By inputting appropriate frequency parameters, the detection performance of the defective portion D can be improved as described later.
  • FIG. 9A shows changes in signal strength information depending on the position when the transmitting probe 110 and the receiving probe 121 are scanned so as to straddle the defective part D.
  • FIG. 9A shows the results of a conventional signal processing method, ie, plotting the peak-to-peak voltage of a received time-domain waveform.
  • the signal strength in the healthy part N is v0.
  • the rate of change in signal strength ( ⁇ v/v0) is small.
  • the rate of change in signal strength is defined as a value obtained by dividing the amount of signal change ⁇ v in the defective portion D by the signal strength v0 in the healthy portion N.
  • FIG. 9B shows the results of calculating and plotting signal feature quantities from frequency component data including a plurality of appropriate frequencies. It can be seen that the rate of change in signal intensity ( ⁇ v/v0) at the location of the defective portion D is increased, and the detectability of the defective portion D is improved.
  • FIG. 10 shows the voltage waveform of the burst wave applied to the transmission probe 110.
  • the horizontal axis is time and the vertical axis is voltage.
  • Ten sine waves with a fundamental frequency f0 of 0.82 MHz were applied. These 10 waves are called a wave packet.
  • the reciprocal of the fundamental frequency f0 is called the fundamental period T0.
  • the fundamental period T0 is the period of waves constituting one wave packet.
  • FIG. 11 shows the frequency component distribution of the received signal under the conditions shown in FIG. 10.
  • the horizontal axis represents frequency
  • the vertical axis plots the measured data of component intensity at each frequency. 0.82 MHz at which the component strength is maximum is the maximum component frequency fm (FIG. 8).
  • the fundamental wave band W1 (FIG. 8) extends from 0.74 MHz to 0.88 MHz, and the components excluding the maximum component frequency fm are the base component W3 (FIG. 8).
  • the maximum component frequency fm is equal to the fundamental frequency f0 (FIG. 10) of the ultrasound transmitted by the transmission probe 110. In this way, in many cases, the maximum component frequency fm is approximately equal to the fundamental frequency f0 of the transmitted ultrasound.
  • FIG. 12 is a diagram comparing the actually measured data of the frequency component distribution (frequency spectrum) of the received signal between the healthy part N (solid line) and the defective part D (broken line).
  • the base component W3 other than the maximum component frequency fm especially in the low band, the difference between the healthy part N and the defective part D is large. The larger the difference, the easier it is to distinguish the spectrum of the defective part D from the spectrum of the healthy part N, and the defective part D can be detected. Therefore, in the case shown in FIG. 12, the detection accuracy of the defective portion D can be improved by specifying the frequency parameter to be less than 0.82 MHz.
  • the signal processing unit 250 calculates a signal feature amount representing a change in the signal by reducing the frequency component of the maximum component frequency fm in the fundamental wave band W1 including the maximum component frequency fm (FIG. 8). do. If the frequency parameters are set in this manner and the signal feature amount is calculated, the accuracy of detecting the defective portion D can be further improved, and a more favorable effect can be obtained. That is, the influence of the frequency component of the maximum component frequency fm can be reduced. "Reduction" is, for example, exclusion of the frequency component of the maximum component frequency fm, but examples of reduction are not limited to exclusion. Moreover, although it is preferable to exclude completely, only a part may be excluded. Reduction can be performed, for example, on the frequency components (original frequency components) of the received signal.
  • the frequency parameters are selected so as not to include the frequency component of the maximum component frequency fm, a more preferable effect can be obtained. That is, a more preferable effect can be obtained by calculating the signal feature amount from the base component W3 of the fundamental wave band W1.
  • the direct wave U3 that does not interact with the defective portion D does not change its wave propagation direction, phase, frequency, etc. Therefore, the direct wave U3 occupies a large proportion of the signal component with the maximum component frequency fm. Therefore, the change between the defective part D and the healthy part N is small.
  • the scattered wave U1 that interacts with the defective portion D has a component that changes the propagation direction, and also a component that does not change the propagation direction but changes at least one of the phase or frequency. Therefore, the proportion of the component of the scattered wave U1, which is the ultrasonic beam U that interacted with the defective portion D, increases in the base component W3 of the fundamental wave band W1, which is a component shifted from the maximum frequency fm. Therefore, the change between the defective part D and the healthy part N becomes large. In this way, the detection performance of the defective portion D can be improved by reducing the component of the maximum component frequency fm and detecting the base component W3 of the fundamental wave band W1.
  • the inventors investigated the frequency components of the received signal and found that the difference between the healthy part N and the defective part D is larger in the base component W3 than in the maximum component frequency fm. Based on this knowledge, by extracting the frequency component with a large difference between the healthy part N and the defective part D (in the example of FIG. 1, a frequency region smaller than the maximum component frequency fm), and calculating the signal feature amount, It has been found that the detectability of the defective portion D can be improved.
  • the frequency spectrum includes a frequency spectrum (first frequency spectrum) indicating the defective portion D of the inspected object E, and a frequency spectrum indicating the healthy portion N, which is a portion of the inspected object E other than the defective portion D. (second frequency spectrum).
  • first frequency spectrum indicating the defective portion D of the inspected object E
  • second frequency spectrum indicating the healthy portion N, which is a portion of the inspected object E other than the defective portion D.
  • the second frequency spectrum shown by the solid line in FIG. 12 is obtained.
  • a first frequency spectrum shown by a broken line in FIG. 12 is obtained. Therefore, by scanning the object E, a first frequency spectrum is obtained in a certain portion, and a second frequency spectrum is obtained in a certain portion. Therefore, the total frequency spectrum obtained by scanning includes the first frequency spectrum and the second frequency spectrum.
  • a method for acquiring the first frequency spectrum corresponding to the defective part D and the second frequency spectrum corresponding to the healthy part N will be described.
  • the frequency spectrum at the defective part D is acquired as the first frequency spectrum
  • the frequency spectrum in the healthy part N is acquired and the first frequency spectrum is obtained.
  • a two-frequency spectrum was used.
  • the method for acquiring the first frequency spectrum and the second frequency spectrum is not limited to the method using a standard test specimen.
  • the position of the defective portion D can be identified by first scanning the object E to be inspected, measuring the received signal at each coordinate position, and creating a defect image using frequency components in a predetermined frequency range. Thereafter, the frequency spectra in the defective part D and the healthy part N may be measured and used as the first frequency spectrum and the second frequency spectrum, respectively.
  • the imaging unit 262 (FIG. 6) generates an image 273 ( Figure 13) is created. Thereby, an image 273 that appropriately shows the position of the defective portion D can be created.
  • Equation (1) j is an imaginary number unit
  • Re[ ] is a process for extracting the real part of a complex number.
  • the subscript ⁇ of the ⁇ symbol indicates a frequency set of angular frequency components to be integrated.
  • the angular frequency components to be integrated are calculated for the frequency set ⁇ input by the user. This point is one of the features of the present disclosure, and as described later, it is possible to obtain an image of the defective portion D more clearly.
  • h(t) obtained from equation (2) is a time domain signal waveform synthesized from a frequency set input by the user.
  • the difference between the maximum value and the minimum value of h(t) (Peak-to-Peak value) is taken as the signal feature quantity.
  • the difference between the maximum value and the minimum value (Peak-to-Peak value) is abbreviated as PP value.
  • both H( ⁇ ) and exp(j ⁇ t) are complex numbers, and are calculated as complex numbers. That is, the signal feature amount is calculated by also considering the phase information of the frequency component H( ⁇ ). This is more preferable since it is possible to obtain a signal feature amount that accurately reflects the positional information of the defective portion D.
  • the selection of the set of frequencies ⁇ to be included in the integration is important.
  • the selection is performed by the user, for example.
  • selecting a frequency range in the fundamental wave band W1 (FIG. 8) where the difference between the healthy part N and the defective part D is large makes the image of the defective part D clearer. You can get it. Therefore, it is preferable for the user to input the frequency range (frequency parameter) of the portion where the difference between the healthy portion N and the defective portion D is large.
  • “large” may be, for example, a difference that allows the user to clearly recognize the difference between the two frequency spectra, or a value that is greater than or equal to a predetermined threshold.
  • the signal feature amount may be a value calculated from the frequency component data so as to appropriately include the position information of the defective portion D, and is not limited to the calculation method described above.
  • the PP value of the signal waveform h(t) in the time domain was used as the signal feature quantity, but the absolute value of h(t) was calculated, and the area of h(t) was calculated and used as the signal feature quantity. Good too.
  • the procedure for calculating the area is to sample h(t) at appropriate time intervals and calculate the sum of h(t) at the sampling points.
  • the square value of h(t) may be used instead of using equations (1) and (2), a value obtained by summing the absolute values of the frequency components H( ⁇ ) for the input frequency set ⁇ may be used as the signal feature amount.
  • FIG. 13 is a diagram schematically showing a configuration example of the operation screen 270 of the ultrasonic testing apparatus Z in the example of the present disclosure.
  • the operation screen 270 is displayed on the display device 3 (FIG. 6) by the display unit 263 (FIG. 6).
  • the display unit 263 includes a frequency spectrum 271 corresponding to the frequency component converted by the frequency converter 230 (FIG. 6) and an input unit 272 that accepts input of frequency parameters by the user, as described above, on the display device 3. , display.
  • the display unit 263 displays the operation screen 270 of the ultrasonic testing apparatus Z on the display device 3, and also displays the frequency spectrum 271 and the input unit 272 on the operation screen 270. Thereby, the user can operate the input section 272 while checking the operation screen 270 including the frequency spectrum 271.
  • an image 273 showing the position of the defective portion D of the object E to be inspected is displayed on the left side.
  • a frequency spectrum 271 is displayed on the upper right side.
  • the frequency spectrum 271 includes the first frequency spectrum indicated by a broken line and the second frequency spectrum indicated by a solid line. This allows the user to compare frequency spectra and input appropriate frequency components.
  • the frequency spectrum 271 to be displayed may be only one of the first frequency spectrum and the second frequency spectrum. If a user has a certain amount of experience, he or she may be able to determine a suitable frequency parameter based on only one of the frequency parameters.
  • the input section 272 is for inputting frequency parameters by the user.
  • the input section 272 is a frequency selection section configured by a slide bar whose length and position are adjustable. The user adjusts the length and position of the slide bar using a mouse, keyboard, etc. to a position corresponding to the frequency position of the frequency spectrum, thereby determining the frequency range (frequency set) can be input.
  • the frequency range input here is the frequency parameter.
  • the imaging unit 262 uses the newly selected frequency set ⁇ n ⁇ to update the signal in the manner described above.
  • a feature quantity is calculated for each scanning position.
  • the imaging unit 262 generates an image 273 that is a two-dimensional image of the defective portion D inside the object E by plotting the signal feature amount against the scanning position (x, y).
  • the display unit 263 displays the image 273 on the display device 3. The user visually recognizes the image 273 based on the newly calculated signal feature amount, and if necessary, adjusts the input unit 272 again to update the signal feature amount.
  • the frequency parameters (frequency set ⁇ n ⁇ ) for calculating the signal feature amount By setting the frequency parameters (frequency set ⁇ n ⁇ ) for calculating the signal feature amount in this way, the rate of change in the signal intensity of the image 273 showing the defective portion D can be increased. Thereby, the contrast that distinguishes the defective part D and the healthy part N can be improved. Furthermore, since the rate of change in signal intensity increases, it becomes possible to detect smaller defective portions D, and the detection performance improves.
  • the display unit 263 displays an input unit 275 that receives information regarding the subject E on the display device 3.
  • the information here is the same as the information explained for the database 261a above.
  • an input section 275 that receives the material of the object E to be inspected and the shape (thickness) of the object E to be inspected is displayed.
  • the input unit 275 does not need to be displayed on the display device 3, and may be read in the form of a settings file, for example.
  • the input unit 275 constitutes a part of the data processing unit 201 (FIG. 6).
  • Appropriate frequency parameters may vary depending on the material, shape, etc. of the object to be inspected E, as described above. Furthermore, since there are many combinations of frequency parameters, it is not easy to determine appropriate frequency parameters. Therefore, in the example of the present disclosure, by displaying frequency spectra at multiple positions, the user can compare the frequency spectra and determine frequency parameters. Thereby, the contrast (visibility) of the defective portion D can be confirmed by visually recognizing the image 273 based on the determined frequency parameters. As a result, an appropriate frequency set for obtaining the image 273 of the defective portion D can be selected. Therefore, the detection performance of the defective portion D can be improved, such as by improving the contrast of the image 273.
  • a slide bar was used to input the frequency parameter, but the input is not limited to the slide bar, and any method that allows input may be used.
  • the numerical value of the desired frequency may be input using a mouse, keyboard, or the like.
  • the configuration example of the operation screen 270 shown in FIG. 12 is also an example, and it goes without saying that the configuration is not limited to this arrangement.
  • the display section 263 (FIG. 6) displays the input section 275 (first input section) and the input section 272 (second input section) on the display device 3. do.
  • the input unit 275 receives information that affects the detection accuracy of the defective portion D in the object to be inspected (information regarding the object to be inspected E).
  • the input unit 272 receives input of frequency parameters. The input is performed by a user, for example.
  • the database 261a is provided in the signal processing unit 250.
  • the frequency spectrum 271 may not be displayed. If it is not displayed, for example, the imaging unit 262 determines the frequency parameter corresponding to the information regarding the subject E received through the input unit 275 from the database 261a (FIG. 6) as the initial frequency parameter. If there is no corresponding frequency parameter, the frequency parameter corresponding to the information closest to that information is determined. The imaging unit 262 creates an image 273 (FIG. 13) based on the determined frequency parameters. By using the information in the database 261a, the detection accuracy of the defective portion D can be improved.
  • FIG. 14 is a functional block diagram of an ultrasonic inspection apparatus Z according to another embodiment.
  • the signal processing section 250 includes an updating section 291 (frequency parameter updating section).
  • the updating unit 291 automatically updates the frequency parameters. An example of more specific processing in the update unit 291 will be shown.
  • the imaging unit 262 calculates the signal feature amount for the received signals at two points, the defective part D and the healthy part N, while changing the frequency parameters. Then, the updating unit 291 searches for and determines a frequency parameter that maximizes the difference between the signal features of the defective portion D and the healthy portion N.
  • the imaging unit 262 creates an image 273 using the frequency parameters updated by the updating unit 291 in this manner. Further, the frequency parameters updated in this way are registered in the database 261a, and the database 261a is updated.
  • the determined frequency parameters may be displayed on the display device 3. Furthermore, instead of automatically updating the frequency parameters using the updating section 291, the user may designate the frequency parameters through the input section 272 while viewing the image 273. Even in this case, the accuracy of detecting the defective portion D can be further improved.
  • the frequency resolution etc. of the frequency spectrum 271 shown in FIG. 13 may be different from the resolution of frequency conversion during defect inspection of the object E to be inspected.
  • the frequency resolution of the frequency spectrum 271 shown in FIG. 13 may be measured and displayed higher than the frequency resolution of the frequency converter 230 during defect inspection.
  • the frequency spectrum may be remeasured at two representative points, the defective part D and the healthy part N, by setting the frequency resolution of the frequency converter 230 to a higher condition.
  • the frequency range in which the frequency spectrum 271 is measured may be wider than the conditions for defect inspection. In this way, frequency parameters can be set based on more detailed frequency spectrum information.
  • FIG. 15 is a diagram showing the flow of processing in an example of the present disclosure.
  • the processing of the present disclosure broadly includes a measurement step S1 and an imaging step S2.
  • the frequency converter 230 (FIG. 6) converts the frequency of the received signal of the ultrasound beam U at each scanning position (x, y) (step S11).
  • the frequency conversion unit 230 (FIG. 6) acquires frequency component data (step S12).
  • the imaging unit 262 uses the frequency component data acquired in step S12 to create an image 273 (FIG. 6) using a frequency set ⁇ set in advance as an initial frequency parameter. 13) is imaged (step S21).
  • the converted image 273 is displayed on the display device 3 (FIG. 13) as an operation screen 270 (FIG. 6).
  • the display unit 263 (FIG. 6) displays the frequency spectrum 271 (FIG. 13) on the display device 3 (FIG. 13) as the operation screen 270 (FIG. 6) (step S22).
  • the user inputs frequency parameters while referring to the frequency spectrum 271 displayed on the operation screen 270 (step S23). It is preferable that the input is performed by selecting an appropriate range that generates the image 273 that appropriately shows the defective portion D. Specifically, it is preferable to select a frequency component in which the difference between the frequency spectrum of the defective part D and the frequency spectrum of the healthy part N is as large as possible.
  • the imaging unit 262 newly calculates the signal feature amount of each scanning position (x, y) using the newly set frequency parameter, specifically, the frequency set ⁇ .
  • the imaging unit 262 updates the image 273 using the recalculated signal feature amount (step S24). At the same time, the display unit 263 displays the updated image on the operation screen 270 (FIG. 6) (step S24).
  • FIG. 16 is a diagram schematically showing a configuration example of the operation screen 270 in the second embodiment.
  • frequency parameter learning is further performed in the first embodiment.
  • the display section 263 (FIG. 6) further includes a registration button 276.
  • appropriate frequency parameters may vary depending on information such as inspection conditions, so it is not easy to input appropriate frequency parameters. In other words, once information such as the measurement conditions of the subject E is determined, appropriate frequency parameters can be predicted to some extent. Therefore, in the example of the present disclosure, when the user presses the registration button 276 after inputting appropriate frequency parameters, the control device 2 stores information regarding the inspected object E (inspection conditions, etc.). , and the input frequency parameters, and updates the database 261a (FIG. 6). As a result, the data recorded in the database 261a increases as the number of inspections increases, making it easier to create images based on that data. Therefore, the trouble of checking and inputting the frequency spectrum by the user can be omitted.
  • FIG. 17 is a diagram showing the flow of processing of this example in the second embodiment.
  • a learning step S3 is further included.
  • the frequency parameters associated with the information regarding the inspected object E are learned by registering the information and frequency parameters (appropriate frequency set ⁇ n ⁇ ) regarding the inspected object E in the database 261a (FIG. 6).
  • Ru That is, when the registration button 276 (FIG. 16) is pressed by the user (step S31), the control device 2 (FIG. 6; specifically, the imaging unit 262) records the information regarding the subject E and the input information.
  • the database 261a is updated by associating the frequency parameters with the calculated frequency parameters (step S32).
  • the initial frequency parameters when performing a new measurement are set based on this learned database 261a (step S25). By doing so, an image 273 with good performance can be obtained even with imaging using the initial frequency parameters.
  • the results obtained by imaging with the initial parameters can be updated to frequency parameters with better defect detectability.
  • the database 261a is further updated.
  • a feature of the present disclosure is that the know-how that was conventionally accumulated by the user of the ultrasonic inspection apparatus Z through measurement experience can be stored in the ultrasonic inspection apparatus Z as the database 261a. Since measurement know-how is accumulated in the ultrasonic inspection apparatus Z, the more the number of measurements (experience) is increased, the more the defect detection performance in the imaging results using the initial frequency parameters can be improved. Furthermore, since the measurement know-how is accumulated in the ultrasonic inspection apparatus Z itself, the measurement know-how can be automatically utilized even if the user changes.
  • FIG. 18 is a functional block diagram of the ultrasonic testing apparatus Z in the third embodiment.
  • the database 261a is stored in, for example, a server 281 located away from the ultrasonic testing apparatus Z.
  • the ultrasonic inspection device Z (particularly the control device 2) can be connected to the network 280.
  • the ultrasonic testing device Z (particularly the control device 2) is connected to the database 261a via the network 280.
  • the database 261a can be used regardless of the installation location of the ultrasonic inspection apparatus Z.
  • the number of updates of the database 261a can be increased, and the accuracy of information recorded in the database 261a can be improved.
  • FIG. 19 is a diagram showing the flow of processing in the third embodiment.
  • the general flow is the same as the flow in the second embodiment (FIG. 17), but in step S321, the database 261a (FIG. 18; that is, the database 261a connected online) stored in the remote server 281 is updated.
  • control device 2 may include the database 261a (FIG. 6) locally, and the control device 2 may also be connected online to the database 261a at a remote location via the network 280. Thereby, the contents of the local database 261a can be connected through online connection, and the online database 261a can be updated.
  • the focal length R2 of the receiving probe 121 is longer than the focal length R1 of the transmitting probe 110. This is because, as described later, more components of the scattered wave U1 can be detected. As described above, since the scattered wave U1 is the ultrasonic beam U that interacted with the defective portion D, the defective portion D can be more easily detected as the proportion of the components of the scattered wave U1 increases.
  • FIG. 20A is a diagram schematically showing the propagation path of the ultrasound beam U when the focal length R1 of the transmitting probe 110 and the focal length R2 of the receiving probe 121 are made equal in the fourth embodiment. Cone C3 is illustrated in FIG. 20B.
  • the convergence point of the ultrasound beam U transmitted from the transmission probe 110 and the convergence point of the virtual beam virtually emitted from the reception probe 121 are the same. Therefore, the ultrasonic beam U whose propagation direction does not change at the defective portion D can be efficiently received. On the other hand, the ultrasonic beam U whose propagation direction has changed at the defective portion D becomes difficult to detect.
  • FIG. 20B is a diagram schematically showing the propagation path of the ultrasound beam U when the focal length R2 of the receiving probe 121 is longer than the focal length R1 of the transmitting probe 110 in the fourth embodiment.
  • the receiving probe 121 can detect the ultrasonic beam U within the range of the virtual beam cone (shape) C3 that is virtually emitted from the receiving probe 121. Therefore, even if the scattered wave U1 has a slightly changed propagation direction at the defective portion D, it can be detected as long as it falls within the range of the cone C3. In this way, by making the focal length R2 of the receiving probe 121 longer than the focal length R1 of the transmitting probe 110, it is possible to increase the number of scattered waves U1 that can be detected. As described above, since the scattered wave U1 is a wave that has interacted with the defective portion D, the detection performance of the defective portion D can be further improved.
  • the magnitude relationship of convergence is also defined by the magnitude relationship of the beam incident areas T1 and T2 on the surface of the object E to be inspected.
  • the beam incident areas T1 and T2 will be explained.
  • FIG. 21 is a diagram illustrating the relationship between the beam incident area T1 on the transmitting probe 110 and the beam incident area T2 on the receiving probe 121.
  • the beam incident area T1 of the transmitting probe 110 on the subject E is the intersection area of the ultrasonic beam U emitted from the transmitting probe 110 on the surface of the subject E.
  • the beam incidence area T2 of the receiving probe 121 is the intersection area between the virtual ultrasonic beam U2 and the surface of the object E, assuming that the ultrasonic beam U is emitted from the receiving probe 121.
  • the path of the ultrasonic beam U is the path in the case where the object to be inspected E is not present.
  • the ultrasonic beam U is refracted at the surface of the object to be inspected, so that the ultrasonic beam U propagates along a path different from the path shown by the broken line.
  • the beam incidence area T2 of the receiving probe 121 on the subject E is larger than the beam incidence area T1 of the transmitting probe 110 on the subject E.
  • the focal length R2 of the receiving probe 121 is longer than the focal length R1 of the transmitting probe 110. Even in this case, the convergence of the reception probe 121 can be made looser than the convergence of the transmission probe 110. At this time, the distances from the object E to the transmitting probe 110 and the receiving probe 121 are, for example, the same, but they do not have to be the same.
  • the convergence of the reception probe 121 is made looser than the convergence of the transmission probe 110. That is, the focal length R2 of the receiving probe 121 is set longer than the focal length R1 of the transmitting probe 110. As a result, the beam incident area T2 of the receiving probe 121 becomes wider, so that scattered waves U1 can be detected over a wider range. Thereby, even if the propagation path of the scattered wave U1 changes somewhat, the receiving probe 121 can detect the scattered wave U1. As a result, defective portions D can be detected over a wide range.
  • the focal point P1 of the receiving probe 121 is located closer to the transmitting probe 110 (in the illustrated example, above) than the focal point P2 of the transmitting probe 110. By shifting the focal points P1 and P2 in this way, the receiving probe 121 can easily receive the scattered wave U1 and can easily detect the scattered wave U1.
  • a non-convergent probe (not shown) may be used as the receiving probe 121 in a configuration in which the focal length R2 of the receiving probe 121 is longer than the focal length R1 of the transmitting probe 110. Since the focal length R2 of a non-convergent probe is infinite, it is longer than the focal length R1 of the transmitting probe 110. That is, even in the case of the non-convergent receiving probe 121, the convergence of the receiving probe 121 is slower than that of the transmitting probe 110.
  • FIG. 22 is a diagram showing the configuration of an ultrasonic testing apparatus Z in the fifth embodiment.
  • the transmitting acoustic axis AX1 of the transmitting probe 110 and the receiving acoustic axis AX2 of the receiving probe 121 are staggered. That is, the receiving probe 121 in the second embodiment is a receiving probe 120 (eccentrically arranged receiving probe) having a receiving acoustic axis AX2 disposed at a position different from the transmitting acoustic axis AX1 of the transmitting probe 110.
  • the eccentric distance L (distance) between the transmitting acoustic axis AX1 (acoustic axis) of the transmitting probe 110 and the receiving acoustic axis AX (acoustic axis) of the receiving probe 120 is greater than zero.
  • the receiving probe 120 is arranged offset from the transmitting probe 110 by an eccentric distance L in the x-axis direction in FIG.
  • a probe 120 may be arranged.
  • the receiving probe 120 may be arranged at L1 in the x-axis direction and L2 in the y-axis direction (that is, at the position (L1, L2) when the position of the transmitting probe 110 on the xy plane is the origin).
  • FIG. 23A is a diagram illustrating the transmitting sound axis AX1, the receiving sound axis AX2, and the eccentric distance L, and shows the case where the transmitting sound axis AX1 and the receiving sound axis AX2 extend in the vertical direction.
  • FIG. 23B is a diagram illustrating the transmitting sound axis AX1, the receiving sound axis AX2, and the eccentric distance L, and shows a case where the transmitting sound axis AX1 and the receiving sound axis AX2 extend obliquely.
  • a receiving probe 140 coaxially arranged receiving probe is also illustrated in FIGS. 23A and 23B in broken lines.
  • the direction of the reception sound axis AX2 is the normal direction of the probe surface 114 (FIG. 2). This is because the virtual ultrasonic beam U emitted from the receiving probe 121 is emitted in the normal direction of the probe surface 114.
  • the ultrasonic beam U incident in the normal direction of the probe surface 114 can be received with high sensitivity.
  • the eccentric distance L is defined as the distance of deviation between the transmitting sound axis AX1 and the receiving sound axis AX2. Therefore, as shown in FIG. 23B, when the ultrasonic beam U emitted from the transmitting probe 110 is refracted, the eccentric distance L is the distance of the deviation between the refracted transmitting sound axis AX1 and the receiving sound axis AX2. defined.
  • the ultrasonic testing apparatus Z of the fifth embodiment has an eccentric distance adjustment section 105 (FIG. 22) that adjusts the eccentric distance L so that the eccentric distance L defined in this way becomes a distance greater than zero. and receiving probe 120 are adjusted.
  • FIG. 23A shows a case where the transmitting probe 110 is arranged in the normal direction on the surface of the object E to be inspected.
  • the transmission sound axis AX1 is indicated by a solid arrow.
  • the reception sound axis AX2 is indicated by a dashed-dotted arrow.
  • the position of the receiving probe 121 indicated by the broken line is the position where the eccentric distance L is zero, and the receiving probe 121 where the transmitting acoustic axis AX1 and the receiving acoustic axis AX2 coincide is used as a coaxially arranged receiving probe. This is the receiving probe 140 of.
  • a receiving probe 121 shown by a solid line is a receiving probe 120 (eccentrically placed receiving probe) placed at a position with an eccentric distance L greater than zero.
  • the transmission probe 110 is installed so that the transmission acoustic axis AX1 is perpendicular to the horizontal plane (the xy plane in FIG. 22), the propagation path of the ultrasound beam U is not refracted. In other words, the transmission acoustic axis AX1 is not refracted. This corresponds to the case where the transmitting probe 110 is installed so that the transmitting acoustic axis AX1 of the transmitting probe 110 is perpendicular to the mounting surface 1021 of the sample stage 102.
  • FIG. 23B shows a case where the transmitting probe 110 is arranged at an angle ⁇ from the normal direction on the surface of the object E to be inspected.
  • the transmission sound axis AX1 is shown by a solid line arrow
  • the reception sound axis AX2 is shown by a dashed-dotted line arrow.
  • the propagation path of the ultrasonic beam U is refracted at the refraction angle ⁇ at the interface between the object E and the fluid F. Therefore, the transmission sound axis AX1 is bent (refracted) as shown by the solid arrow in FIG. 23B.
  • the position of the receiving probe 140 indicated by the broken line is located on the transmission sound axis AX1, so the eccentric distance L is zero.
  • the reception probe 120 is arranged so that the distance between the transmission acoustic axis AX1 and the reception acoustic axis AX2 is L.
  • the transmitting probe 110 is installed in the normal direction on the surface of the object to be inspected E, so the eccentric distance L is as shown in FIG. 23A.
  • the eccentric distance L is set at a position such that the signal strength at the defective part D is greater than the received signal at the healthy part N of the object E to be inspected.
  • FIG. 24 is a diagram showing the configuration of an ultrasonic testing apparatus Z in the sixth embodiment.
  • the scanning measurement device 1 includes an installation angle adjustment section 106 that adjusts the inclination of the reception probe 120. Thereby, the strength of the received signal can be increased, and the SN ratio (Signal to Noise ratio) of the signal can be increased.
  • the installation angle adjustment section 106 is configured by, for example, an actuator, a motor, etc., although neither is shown in the drawings.
  • the angle ⁇ formed by the transmitting sound axis AX1 and the receiving sound axis AX2 is defined as the receiving probe installation angle.
  • the angle ⁇ which is the receiving probe installation angle, is between the transmitting sound axis AX1 (that is, the vertical direction) and the receiving probe. 120 and the normal line of the probe surface.
  • the installation angle adjustment unit 106 tilts the angle ⁇ toward the side where the transmission sound axis AX1 exists, and sets the angle ⁇ to a value larger than zero. That is, the receiving probe 120 is arranged at an angle.
  • the receiving probe 120 is arranged at an angle such that 0° ⁇ 90°, and the angle ⁇ is, for example, 10°, but is not limited thereto.
  • the eccentric distance L when the receiving probe 120 is arranged at an angle is defined as follows.
  • An intersection C2 between the receiving sound axis AX2 and the probe surface of the receiving probe 120 is defined.
  • an intersection C1 between the transmission acoustic axis AX1 and the probe surface of the transmission probe 110 is defined.
  • the eccentric distance is defined as L.
  • FIG. 25 is a diagram illustrating the reason why the effects of the sixth embodiment are produced.
  • the scattered wave U1 propagates in a direction away from the transmission acoustic axis AX1. Therefore, as shown in FIG. 25, when the scattered wave U1 reaches the outside of the object E, it forms a non-zero angle ⁇ 2 with respect to the normal vector of the surface of the object E. incident on .
  • the angle of the scattered wave U1 emitted from the surface of the object E to be inspected has an angle ⁇ 2, which is a non-zero emission angle, with respect to the normal direction of the surface of the object E to be inspected.
  • the scattered wave U1 can be received most efficiently when the normal vector of the probe surface of the receiving probe 120 is made to match the traveling direction of the scattered wave U1. That is, by arranging the receiving probe 120 at an angle, the received signal strength can be increased.
  • FIG. 26 is a diagram showing the configuration of an ultrasonic testing apparatus Z according to the seventh embodiment.
  • the fluid F is a liquid W, which in the illustrated example is water.
  • the ultrasonic inspection apparatus Z inspects the object to be inspected E by making an ultrasonic beam U incident on the object to be inspected E via a liquid W that is a fluid F.
  • the object to be inspected E is placed below the liquid level L0 of the liquid W and is immersed in the liquid W.
  • the fluid F may be the gas G (FIG. 1) as described above, or the liquid W (FIG. 26) as in this embodiment.
  • a gas G such as air
  • a more preferable effect is provided for the following reasons.
  • the amount of attenuation of ultrasonic waves in gas G is greater than in liquid W. It is known that the amount of attenuation of ultrasonic waves in gas G is proportional to the square of the frequency. Therefore, the upper limit for propagating ultrasonic waves in gas G is about 1 MHz. In the liquid W, even ultrasonic waves of 5 MHz to several tens of MHz propagate, so the usable frequency in the gas G is smaller than that in the liquid W.
  • the 1 MHz ultrasonic beam U propagating in the gas G has a convergable beam diameter larger than that of the ultrasonic beam U in the liquid W.
  • the conventional blocking mode it is difficult to detect a defect D smaller than the beam size.
  • the present disclosure as shown in FIG. 5 above, since the proportion of scattered wave components is increased and detected, it is possible to detect a defect D smaller than the beam size.
  • FIG. 27 is a diagram showing the hardware configuration of the control device 2. Part or all of the configurations, functions, and units included in the block diagram described above may be realized by hardware, for example, by designing an integrated circuit. Further, as shown in FIG. 27, each of the above-described configurations, functions, etc. may be realized by software by having a processor such as the CPU 252 interpret and execute a program for realizing each function.
  • the control device 2 includes, for example, a memory 251, a CPU 252, a storage device 253 (SSD, HDD, etc.), a communication device 254, and an I/F 255.
  • HDD High Speed Digital
  • recording devices such as SSD (Solid State Drive), or IC (Integrated Circuit) cards, and SD (Secure Digital). It can be stored in a recording medium such as a card or a DVD (Digital Versatile Disc).
  • FIG. 28 is a flowchart showing the ultrasonic testing method of each of the above embodiments.
  • the ultrasonic inspection method of the present disclosure can be executed by the control device 2 of the ultrasonic inspection apparatus Z described above, and will be described as an example with reference to FIGS. 1 and 6 as appropriate.
  • the ultrasonic inspection method of the present disclosure is one in which an object to be inspected E is inspected by injecting an ultrasonic beam U into the object to be inspected E (see FIG. 1) via gas G (see FIG. 1; an example of fluid F). It is.
  • gas G is used as the fluid F
  • this ultrasonic inspection method is also effective in an embodiment in which liquid W (FIG. 24) is used as the fluid F. Needless to say.
  • the ultrasonic testing method of the present disclosure includes steps S101, S102, S103, S104, S105, S111, S112, S120, S121, S122, and S123.
  • step S101 emitting step
  • step S102 receiving step
  • the frequency conversion unit 230 performs step S103 (conversion step) of converting the signal (for example, a waveform signal) of the ultrasound beam U received in step S102 into frequency components.
  • the frequency component data is transmitted to the data processing section 201, and the data processing section 201 performs step S104 (signal feature amount calculation step) of calculating a signal feature amount from the frequency component data.
  • the data processing unit 201 calculates a signal feature amount by integrating frequency components of a preset frequency set while taking phase into consideration.
  • step S105 shape display step
  • Scanning position information of the transmitting probe 110 and the receiving probe 121 is transmitted from the position measuring unit 203 to the scan controller 204.
  • the data processing unit 201 plots signal strength data at each scanning position with respect to the scanning position information of the transmitting probe 110 acquired from the scan controller 204. In this way, imaging is performed from the frequency spectrum and signal features determined from the signal strength data.
  • the scanning position information is one-dimensional (one direction), and when the scanning position information is two-dimensional (x, y), the defect can be detected by plotting the signal strength data as shown in Figure 13.
  • Section D is shown as a two-dimensional image 273, which is displayed on the display device 3.
  • the data processing unit 201 determines whether scanning is completed (step S111). If the scanning has been completed (Yes), the control device 2 ends the measurement process (step S120). If the scanning is not completed (No), the data processing unit 201 outputs a command to the driving unit 202 to move the transmitting probe 110 and the receiving probe 121 to the next scanning position (step S112), and returns to step S101. Return processing. With the above steps, the first image 273 (FIG. 13) is displayed on the display device 3.
  • the input unit 272 receives input of frequency parameters among the frequency components (step S121, input step).
  • the input is performed by the user, for example.
  • the imaging unit 262 determines the signal feature amount using the input frequency parameters (step S122, imaging step).
  • the imaging unit 262 generates an image 273 (FIG. 13) indicating the position of the defective portion D (defect position) based on the determined signal feature amount (step S122, imaging step).
  • the created image 273 is displayed on the display device 3.
  • the detection performance of the defective portion D for example, the performance of detecting minute defects, can be improved.
  • the defective part D is a cavity
  • the defective part D may be a foreign object mixed with a material different from the material of the object to be inspected E.
  • Gap a difference in acoustic impedance at the interface where different materials come into contact
  • scattered waves U1 are generated, so the configurations of the above embodiments are effective.
  • the ultrasonic inspection apparatus Z according to each of the embodiments described above is premised on being an ultrasonic defect imaging apparatus, it may also be applied to a non-contact inline internal defect inspection apparatus.
  • the present disclosure is not limited to the embodiments described above, and includes various modifications.
  • the embodiments described above are described in detail to explain the present disclosure in an easy-to-understand manner, and the embodiments are not necessarily limited to having all the configurations described.
  • control lines and information lines are shown that are considered necessary for explanation, and not all control lines and information lines are necessarily shown in the product. In reality, almost all configurations can be considered interconnected.

Landscapes

  • Signal Processing (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

欠陥部の検出性能、例えば検出可能な欠陥サイズが小さく、微小な欠陥でも検出可能にする超音波検査装置を提供する。超音波検査装置(Z)の制御装置(2)は信号処理部(250)を備え、信号処理部(250)は、受信プローブ(121)の受信信号を周波数成分に変換する周波数変換部(230)と、変換された前記周波数成分のうち、周波数パラメータにより指定された周波数成分の部分を用いて、欠陥位置を示す画像を生成する画像化部(262)と、表示装置(3)への表示を行う表示部(263)と、を備え、表示部(263)は、表示装置(3)に、周波数変換部(230)により変換された前記周波数成分に対応する周波数スペクトルを表示するとともに、前記周波数パラメータの入力を受け付ける入力部を表示する。

Description

超音波検査装置及び超音波検査方法
 本開示は、超音波検査装置及び超音波検査方法に関する。
 超音波ビームを用いた被検査体の欠陥部の検査方法が知られている。例えば、被検査体の内部に空気等の音響インピーダンスが小さな欠陥部(空洞等)がある場合、被検査体の内部で音響インピーダンスのギャップが生じるため、超音波ビームの透過量が小さくなる。従って、超音波ビームの透過量を計測することで、被検査体内部の欠陥部を検出できる。
 超音波検査装置について特許文献1に記載の技術が知られている。特許文献1に記載の超音波検査装置では、連続する所定個数の負の矩形波からなる矩形波バースト信号を被検体に空気を介して対向配設された送信超音波探触子に印加する。被検体に空気を介して対向配設され受信超音波探触子で被検体を伝搬した超音波を透過波信号に変換する。この透過波信号の信号レベルに基づき被検体の欠陥の有無を判定する。また、送信超音波探触子及び受信超音波探触子は、振動子及び当該振動子の超音波の送受信側に取付られた前面板の音響インピーダンスを、被検体に当接して使用する接触型超音波探触子に比較して低く設定している。
特開2008-128965号公報
 特許文献1に記載の超音波検査装置では、被検査体中の微小な欠陥を検出することが困難であるという課題がある。特に、検出しようとする欠陥のサイズが、超音波ビームよりも小さい場合に、欠陥の検出が困難になる。
 本開示が解決しようとする課題は、欠陥部の検出性能、例えば検出可能な欠陥サイズが小さく、微小な欠陥でも検出可能にする超音波検査装置及び超音波検査方法の提供である。
 本開示に係る超音波検査装置は、流体を介して被検査体に超音波ビームを入射することにより前記被検査体の検査を行う超音波検査装置であって、前記被検査体への前記超音波ビームの走査及び計測を行う走査計測装置と、前記走査計測装置の駆動を制御する制御装置とを備え、前記走査計測装置は、前記超音波ビームを放出する送信プローブと、前記超音波ビームを受信する受信プローブとを備え、前記制御装置は信号処理部を備え、前記信号処理部は、前記受信プローブの受信信号を周波数成分に変換する周波数変換部と、変換された前記周波数成分のうち、周波数パラメータにより指定された周波数成分の部分を用いて、欠陥位置を示す画像を生成する画像化部と、表示装置への表示を行う表示部と、を備え、前記表示部は、前記表示装置に、前記周波数変換部により変換された前記周波数成分に対応する周波数スペクトルを表示するとともに、前記周波数パラメータの入力を受け付ける入力部を表示する。その他の解決手段は発明を実施するための形態において後記する。
 本開示によれば、欠陥部の検出性能、例えば検出可能な欠陥サイズが小さく、微小な欠陥でも検出可能にする超音波検査装置及び超音波検査方法を提供できる。
第1実施形態の超音波検査装置の構成を示す図である。 送信プローブの構造を示す断面模式図である。 従来の超音波検査方法での超音波ビームの伝搬経路を示す図であり、健全部への入射時を示す図である。 従来の超音波検査方法での超音波ビームの伝搬経路を示す図であり、欠陥部への入射時を示す図である。 被検査体内での欠陥部と超音波ビームとの相互作用を示す図であり、直達する超音波ビームを受信する様子を示す図である。 欠陥部と相互作用した超音波ビームである散乱波を模式的に示した図である 超音波検査装置の機能ブロック図である。 データベースの一例である。 図7Aに示すデータベースを立体的に示す図である。 受信信号の周波数成分の分布(周波数スペクトル)を模式的に示した図である。 欠陥部をまたがるように送信プローブ及び受信プローブを走査したときの信号強度情報の位置による変化を示したものである。 適切な複数個の周波数を含む周波数成分データから信号特徴量を算出してプロットした結果である。 送信プローブに印加するバースト波の電圧波形である。 図10に示す条件での受信信号の周波数成分分布を示したものである。 受信信号の周波数成分分布(周波数スペクトル)の実測データを、健全部と欠陥部とで比較した図である。 本開示の例での超音波検査装置の操作画面の構成例を模式的に示す図である。 別の実施形態の超音波検査装置の機能ブロック図である。 本開示の例での処理の流れを示す図である。 第2実施形態における操作画面の構成例を模式的に示す図である。 第2実施形態における本実施例の処理の流れを示す図である。 第3実施形態における超音波検査装置の機能ブロック図である。 第3実施形態における処理の流れを示す図である。 第4実施形態において、送信プローブの焦点距離と受信プローブの焦点距離を等しくした場合の超音波ビームの伝播経路を模式的に示した図である。 第4実施形態において、送信プローブの焦点距離よりも、受信プローブの焦点距離を長くした場合の超音波ビームの伝播経路を模式的に示した図である。 送信プローブにおけるビーム入射面積及び受信プローブにおけるビーム入射面積の関係を説明する図である。 第5実施形態での超音波検査装置の構成を示す図である。 送信音軸、受信音軸及び偏心距離を説明する図であり、送信音軸及び受信音軸が鉛直方向に延びる場合である。 送信音軸、受信音軸及び偏心距離を説明する図であり、送信音軸及び受信音軸が傾斜して延びる場合である。 第6実施形態での超音波検査装置の構成を示す図である。 第6実施形態による効果が生じる理由を説明する図である。 第7実施形態での超音波検査装置の構成を示す図である。 制御装置のハードウェア構成を示す図である。 上記各実施形態の超音波検査方法を示すフローチャートである。
 以下、図面を参照しながら本開示を実施するための形態(実施形態と称する)を説明する。ただし、本開示は以下の実施形態に限られず、例えば異なる実施形態同士を組み合わせたり、本開示の効果を著しく損なわない範囲で任意に変形したりできる。また、同じ部材については同じ符号を付すものとし、重複する説明は省略する。更に、同じ機能を有するものは同じ名称を付すものとする。図示の内容は、あくまで模式的なものであり、図示の都合上、本開示の効果を著しく損なわない範囲で実際の構成から変更することがある。
(第1実施形態)
 図1は、第1実施形態の超音波検査装置Zの構成を示す図である。図1では、走査計測装置1は、断面模式図で示している。図1には、紙面左右方向としてのx軸、紙面直交方向としてのy軸、紙面上下方向としてのz軸を含む直交3軸の座標系が示される。
 超音波検査装置Zは、流体Fを介して被検査体Eに超音波ビームU(後記する)を入射することで被検査体Eの検査を行うものである。流体Fは例えば水等の液体W(後記する)、空気等の気体Gであり、被検査体Eは流体F中に存在する。第1実施形態では、流体Fとして空気(気体Gの一例)が使用される。従って、走査計測装置1の筐体101の内部は空気で満たされた空洞となっている。図1に示すように、超音波検査装置Zは、走査計測装置1と、制御装置2と、表示装置3とを備える。表示装置3は制御装置2に接続される。
 走査計測装置1は、被検査体Eへの超音波ビームUの走査及び計測を行うものであり、筐体101に固定された試料台102を備え、試料台102には被検査体Eが載置される。被検査体Eは、任意の材料で構成されている。被検査体Eは例えば固体材料であり、より具体的には例えば金属、ガラス、樹脂材料、あるいはCFRP(炭素繊維強化プラスチック、Carbon-Fiber Reinforced Plastics)等の複合材料等である。また、図1の例において、被検査体Eは内部に欠陥部Dを有している。欠陥部D(欠陥)は、空洞等である。欠陥部Dの例は、空洞、本来あるべき材料と異なる異物材等である。被検査体Eにおいて、欠陥部D以外の部分を健全部Nと称する。
 欠陥部Dと健全部Nとは、構成する材料が異なるため、両者の間では音響インピーダンスが異なり、超音波ビームUの伝搬特性が変化する。超音波検査装置Zは、この変化を観測して、欠陥部Dを検出する。
 走査計測装置1は、超音波ビームUを放出する送信プローブ110と、超音波ビームUを受信する受信プローブ121とを有する。送信プローブ110は、送信プローブ走査部103を介して筐体101に設置され、超音波ビームUを放出する。受信プローブ121は、被検査体Eに関して送信プローブ110の反対側に設置されて超音波ビームUを受信し、送信プローブ110と同軸に配置された(後記する偏心距離Lがゼロ)、受信プローブ140(同軸配置受信プローブ)である。従って、本開示では、送信プローブ110の送信音軸AX1(音軸)と受信プローブ140の受信音軸AX2(音軸)との間の偏心距離L(距離。図23A、図23B)がゼロである。これにより、送信プローブ110及び受信プローブ140を容易に設置できる。
 ここで、「送信プローブ110の反対側」とは、被検査体Eにより区切られる2つの空間のうち、送信プローブ110が位置する空間と反対側(z軸方向において反対側)の空間という意味であり、x、y座標が同一の反対側(つまり、xy平面に関して面対称の位置)に限定される意味ではない。
 本開示の例では、送信プローブ110の送信音軸AX1が、試料台102の載置面1021に対して垂直になるように、送信プローブ110が設置される。すなわち、送信音軸AX1が試料台102の被検査体Eの載置面1021の法線方向になるように送信プローブ110が設置される。このようにすると、板状の被検査体Eにおいては、被検査体Eの表面に垂直に送信音軸AX1が配置されるので、走査位置と欠陥部Dの位置との対応関係がわかりやすくなるという効果がある。
 但し、送信音軸AX1が試料台102の被検査体Eの載置面1021に対して垂直になるように送信プローブ110を設置することに本開示が限定されるわけではない。送信音軸AX1が試料台102の被検査体Eの載置面1021に対して垂直でない場合でも、本開示の効果はある。後者の場合、欠陥部Dの位置を正確に知るには、垂直方向からの送信音軸AX1の傾きに応じて、送信音軸AX1の経路を計算すればよい。
 ここで、送信プローブ110と受信プローブ121の位置関係について述べる。送信プローブ110の送信音軸AX1と受信プローブ121の受信音軸AX2との距離を、上記のように偏心距離Lと定義する。本開示では、上記のように、偏心距離Lがゼロに設定される。即ち、送信音軸AX1と受信音軸AX2とが同軸上になるような受信プローブ121が配置される。これを同軸配置と呼ぶ。なお、本開示では、偏心距離Lは0に限定されるものではない。
 本開示では、受信プローブ121の配置位置として、送信音軸AX1と受信音軸AX2とを同軸に配置したものを同軸配置と呼び、2つの音軸(送信音軸AX1及び受信音軸AX2)をずらしたもの(即ち、偏心させた配置)を偏心配置と呼ぶ。本開示は、受信プローブ121を同軸配置にした場合と、偏心配置にした場合とのいずれの場合でも効果を奏する。従って、本開示は、受信プローブ121の配置として、同軸配置及び偏心配置のいずれも含む。偏心配置の具体的な図示は、図22以降において行う。
 本開示において、特に、受信配置位置を指定する場合には、同軸配置された受信プローブ121を受信プローブ140(同軸配置受信プローブ)と記し、偏心配置された受信プローブ121を、受信プローブ120(偏心配置受信プローブ)と記すことにする。
 受信プローブ121と記した場合は、同軸配置か偏心配置かは特段に指定しない。
 音軸とは、超音波ビームUの中心軸と定義される。ここで、送信音軸AX1は、送信プローブ110が放出する超音波ビームUの伝搬経路の音軸と定義される。言い換えると、送信音軸AX1は、送信プローブ110が放出する超音波ビームUの伝搬経路の中心軸である。送信音軸AX1は、後記する図21Bに示すように、被検査体Eの界面による屈折を含めることとする。つまり、同図に示すように、送信プローブ110から放出された超音波ビームUが、被検査体Eの界面で屈折する場合は、その超音波ビームUの伝搬経路の中心(音軸)が送信音軸AX1となる。
 また、受信音軸AX2は、受信プローブ121が超音波ビームUを放出すると想定した場合の仮想超音波ビームの伝搬経路の音軸と定義される。言い換えると、受信音軸AX2は、受信プローブ121が超音波ビームUを放出すると想定した場合の仮想超音波ビームの中心軸である。
 具体例として、探触子面が平面状である非収束型の受信プローブの場合を述べる。この場合、受信音軸AX2の方向は探触子面の法線方向であり、探触子面の中心点を通る軸が受信音軸AX2になる。探触子面が長方形の場合は、その中心点は長方形の対角線の交点と定義する。
 走査計測装置1には、制御装置2が接続されている。制御装置2は、走査計測装置1の駆動を制御するものであり、送信プローブ走査部103及び受信プローブ走査部104に指示することで、送信プローブ110及び受信プローブ121の移動(走査)を制御する。送信プローブ走査部103及び受信プローブ走査部104が同期して、x軸及びy軸方向に移動することにより、送信プローブ110及び受信プローブ121は被検査体Eをx軸及びy軸方向に走査する。更に、制御装置2は、送信プローブ110から超音波ビームUを放出し、受信プローブ121から取得した信号に基づいて波形解析を行う。なお、送信プローブ110の走査方向であるx軸及びy軸方向の2つの軸が作る平面を走査面と呼ぶことにする。
 なお、本開示では、被検査体Eが試料台102を介して筐体101に固定された状態、つまり、被検査体Eは筐体101に対し固定された状態で、送信プローブ110と受信プローブ121とを走査する例が示される。これとは逆に、送信プローブ110と受信プローブ121とが筐体101に対して固定され、被検査体Eが移動することで、走査が行われる構成としてもよい。
 送信プローブ110と被検査体Eとの間、及び受信プローブ121と被検査体Eとの間には、図示の例では気体G(流体Fの一例。液体W(後記する)でもよい)が介在する。このため、送信プローブ110及び受信プローブ121を被検査体Eに非接触で検査できるため、xy面内方向の相対位置をスムーズかつ高速に変えることが可能である。即ち、送信プローブ110及び受信プローブ121と被検査体Eとの間に流体Fを介在させることにより、スムーズな走査が可能になる。
 送信プローブ110は、収束型の送信プローブ110である。一方で、受信プローブ121は、収束性が送信プローブ110よりも緩いプローブを用いる。本開示では、受信プローブ121には探触子面が平面である非収束型のプローブが使用される。このような、非収束型の受信プローブ121を用いることで、幅広い範囲について欠陥部Dの情報を収集することができる。
 図2は、送信プローブ110の構造を示す断面模式図である。図2では、簡略化のために、放出される超音波ビームUの外郭のみを図示しているが、実際には、探触子面114の全域にわたり、探触子面114の法線ベクトル方向に多数の超音波ビームUが放出される。
 送信プローブ110は、超音波ビームUを収束するように構成される。これにより、被検査体E中の微小な欠陥部Dを高精度に検出できる。微小な欠陥部Dを検出できる理由は後記する。送信プローブ110は、送信プローブ筐体115を備え、送信プローブ筐体115の内部に、バッキング112と、振動子111と、整合層113とを備える。振動子111には電極(図示せず)が取り付けられており、電極はリード線118により、コネクタ116に接続されている。さらに、コネクタ116はリード線117により電源装置(図示しない)及び制御装置2に接続される。
 本開示において、送信プローブ110又は受信プローブ121の探触子面114とは、整合層113を備える場合は整合層113の表面と定義し、整合層113を備えない場合は振動子111の表面と定義する。即ち、探触子面114は、送信プローブ110の場合は、超音波ビームUを放出する面であり、受信プローブ121の場合は、超音波ビームUを受信する面である。
 ここで、比較例として、従来の超音波検査の手法を説明する。
 図3Aは、従来の超音波検査方法での超音波ビームUの伝搬経路を示す図であり、健全部Nへの入射時を示す図である。図3Bは、従来の超音波検査方法での超音波ビームUの伝搬経路を示す図であり、欠陥部Dへの入射時を示す図である。従来の超音波検査方法では、例えば特許文献1に記載されているように、送信音軸AX1と受信音軸AX2とが一致するように、送信プローブ110及び受信プローブ121としての受信プローブ140が配置される。
 図3Aに示すように、被検査体Eの健全部Nに超音波ビームUが入射された場合、超音波ビームUが被検査体Eを通過して受信プローブ140に到達する。従って、受信信号が大きくなる。一方、図3Bに示すように、欠陥部Dに超音波ビームUが入射された場合、欠陥部Dにより超音波ビームUの透過が阻止されるために受信信号が減少する。このように受信信号の減少により欠陥部Dを検出する。これは、特許文献1に示されている通りである。
 ここで、図3A及び図3Bに示すように、欠陥部Dにおいて超音波ビームUの透過が阻止されることによって受信信号が減少し、欠陥部Dを検出する方法を、ここででは「阻止法」と呼ぶことにする。
 従来技術の問題点は、欠陥サイズがビームサイズよりも小さくなると検出が困難になることである。この点を、図4を参照して説明する。
 図4は、被検査体E内での欠陥部Dと超音波ビームUとの相互作用を示す図であり、直達する超音波ビームU(以下、「直達波U3」という)を受信する様子を示す図である。直達波U3については後記する。ここでは、欠陥部Dの大きさが超音波ビームUの幅(以下、ビーム幅BWと称する)よりも小さい場合を考察する。ここでのビーム幅BWとは、欠陥部Dに到達した時の超音波ビームUの幅である。
 また、図4は、欠陥部D近傍の微小領域での超音波ビームUの形状を模式的に示しているので超音波ビームUを平行に描いてあるが、実際には収束させた超音波ビームUである。さらに、図4での受信プローブ121の位置は、わかりやすく説明するために概念的な位置を記入したものであり、受信プローブ121の位置と形状は正確にスケールされていない。即ち、欠陥部Dと超音波ビームUとの形状の拡大スケールで考えると、図4に示す位置よりも、図面上下方向で離れた位置に受信プローブ121は位置する。
 図4では、送信音軸AX1と受信音軸AX2とを一致させた阻止法の場合が示される。欠陥部Dがビーム幅BWよりも小さい場合、一部の超音波ビームUは阻止されるので受信信号は減少するが、ゼロにはならない。例えば、欠陥部Dの断面積がビーム幅BWで規定されるビーム断面積の5%の場合、受信信号は概ね5%の減少にとどまるので、欠陥部Dの検出が困難である。つまり、図4に示すような場合、欠陥部Dが存在する箇所では、受信信号が5%減少するにとどまる。このように、欠陥部Dがビーム幅BWよりも小さい場合、欠陥部Dと相互作用することなく、素通りするビームが多くなるので、欠陥の検出精度が低下する。
 図5は、欠陥部Dと相互作用した超音波ビームUである散乱波U1を模式的に示した図である。本明細書では、欠陥部Dと相互作用した超音波ビームUを散乱波U1と呼ぶ。従って、本明細書での「散乱波U1」とは、欠陥部Dと相互作用した超音波を指す。散乱波U1には、図5のように方向を変える波もある。また、散乱波U1には、欠陥部Dとの相互作用により波の位相又は周波数の少なくとも一方が変化するが、進行方向は変わらない波もある。欠陥部Dと相互作用することなく、通過する超音波を直達波U3と呼ぶ。直達波U3と区別して、散乱波U1のみを検出できれば、小さな欠陥部Dを検出し易くできる。本開示では、周波数の違いに着目することで、散乱波U1が効率的に検出される。
 図6は、超音波検査装置Zの機能ブロック図である。制御装置2は、走査計測装置1の駆動を制御するものである。制御装置2は、送信系統210と、受信系統220と、データ処理部201と、スキャンコントローラ204と、駆動部202と、位置計測部203と、信号処理部250とを備える。駆動部202は、例えば、送信プローブ110及び受信プローブ121を駆動させることで、被検査体Eに対する送信プローブ110及び受信プローブ121の相対的な位置を変更するものである。位置計測部203は、走査位置を計測するものである。スキャンコントローラ204は、駆動部202を通じて、送信プローブ110及び受信プローブ121を駆動させる。送信プローブ110及び受信プローブ121による走査位置は、位置計測部203を通じて、スキャンコントローラ204に入力される。
 受信系統220とデータ処理部201とを合わせて、信号処理部250と呼ぶ。信号処理部250は、受信プローブ121からの信号を増幅処理、周波数選択処理等により、有意な情報を抽出する信号処理を行う。
 送信系統210は、送信プローブ110への印加電圧を生成する系統である。送信系統210は、波形発生器211及び信号アンプ212を備える。波形発生器211でバースト波信号が発生する。そして、発生したバースト波信号は信号アンプ212で増幅される。信号アンプ212から出力された電圧は送信プローブ110に印加される。
 信号処理部250は、データ処理部201と、受信系統220とを備える。受信系統220は、受信プローブ121から出力される受信信号を検出する系統である。受信プローブ121から出力された信号は、信号アンプ222に入力されて増幅される。増幅された信号は、周波数変換部230に入力される。周波数変換部230は、信号処理部250に備えられ、受信プローブ121の受信信号を周波数成分に変換(信号処理)するものであり、本開示の例では、時間領域波形である受信信号を周波数成分に変換する。周波数成分は、夫々の周波数の成分の大きさ(スペクトル)である。周波数成分としては、例えば複素数で表現され実部と虚部との組合せで表す方法、振幅(絶対値)と位相とにより表す方法等が挙げられる。
 周波数変換部230での変換は、例えばフーリエ変換により実行できる。また、変換は、予め指定した周波数範囲(周波数パラメータ)の周波数成分のみの抽出とともに実行されてもよい。周波数変換部230で周波数成分に変換された信号は、データ処理部201に入力される。なお、周波数変換部230は、データ処理部201の内部に設けられてもよい。即ち、データ処理部の中で周波数成分に変換されてもよい。
(周波数成分データの蓄積)
 本開示の例では、周波数変換部230は、時間領域波形を周波数成分データに変換して位置情報と合わせて記憶部261に保存する。そして、画像化部262は、詳細は後記するが、変換された周波数成分のうち、周波数パラメータにより指定された周波数成分の部分を用いて、欠陥位置を示す画像273(図13)を生成する。即ち、画像化部262は、入力された周波数パラメータに基づき、信号特徴量を画像化する。即ち、被検査体Eを1回測定する場合に、周波数成分データへの変換は1回で済み、周波数成分データから信号特徴量の抽出は複数回行う。
 この構成は、以下の2つの点で好ましい。
 第1は、計算所要時間である。周波数変換部230での周波数成分データへの変換処理には時間がかかる。典型的には、上記のようにフーリエ変換が用いられるが、高速なアルゴリズムとして知られる高速フーリエ変換(FFT)を用いても、この変換の処理時間は長い。一方、信号特徴量の算出は、下記式(1)を用いて行われるが、この計算所要時間は短い。典型例として100行×100列の測定点に対しても、0.2秒以下で処理が終わる。
 このため、本開示の例によれば、詳細は後記するが、周波数パラメータを「更新」すると、瞬時に更新された画像273(図13)を得ることが可能である。このように、周波数成分データを記憶部261に保存することにより、欠陥検出性を向上させるのに好適な周波数集合を選択するのを短時間で行える。
 第2に、データ量の低減である。受信プローブ140の信号波形は、1測定位置に対して、時間領域波形では10万点程度あるのに対し、周波数成分データでは、20~100種類の周波数に対する複素数があればよい。即ち、被検査体Eに対するデータ量を1/1000程度に削減できる。このように記憶部261に保存するデータ量を大幅に削減できるという利点もある。
 データ処理部201は、スキャンコントローラ204から走査位置の情報も受け取る。このようにして、現在の2次元走査位置(x、y)における受信信号の周波数成分に関するデータ(以下、周波数成分データという)が得られる。データ処理部201は、走査位置(x、y)と、その位置での周波数成分データとを対応づけて記憶部261に保存する。なお、周波数成分データから決定される信号特徴量を、走査位置毎に決定することで、欠陥部Dに関する画像273が作成される。
 周波数成分データは、複数の周波数に対応する周波数成分である。典型的な例では、周波数成分データは、受信信号のフーリエ変換で得られる周波数スペクトルである。上記のように、周波数成分は振幅(絶対値)に加えて位相情報も含むことがより好ましい。これは、周波数成分を複素数として扱うことと同義である。後記のように、位相情報も含めることで、より高性能な信号特徴量を算出できる。
 制御装置2は、本開示の例ではデータ処理部201を構成する記憶部261に、データベース261aを備える。データベース261aは、被検査体Eにおける欠陥部Dの検出精度に影響を与える情報(以下、「被検査体Eに関する情報」という)と、周波数パラメータとを対応付けたものである。ここでいう情報は、例えば、被検査体Eの検査条件を含む。検査条件によっては、適正な周波数パラメータが異なり得る。ここでいう適正な周波数パラメータは、健全部Nの周波数スペクトルと欠陥部Dの周波数スペクトルとの差分を、欠陥部Dを検出可能な程度に大きくするための周波数パラメータである。周波数パラメータは、欠陥部Dの検出に好適な周波数集合{ωn}を示すものである。そこで、使用者が検査条件を入力部272(図13)に入力することで、画像273(図13)の作成に使用される周波数スペクトルの部分を指定できる。
 検査条件は、例えば、被検査体Eの材料、被検査体Eの厚さ、被検査体Eの構造(例えば単層構造又は多層構造の別)、受信プローブ121及び送信プローブ110に対する被検査体Eの位置(例えばz方向の位置)、流体Fの種類、の少なくとも1つを含む。これらは適正な周波数パラメータに影響を与え得る情報のため、これらの少なくとも1つを使用者が入力することで、適正な周波数パラメータを決定できる。
 図7Aは、データベース261aの一例である。周波数パラメータは、本開示の例では、送信周波数f0(図10)に対する比率f/f0の集合である。図7Aに示す例では、被検査体Eに関する情報に対する好適な周波数パラメータが、ある範囲として表現される。ここでいう情報は、説明のための一例として、例えば被検査体Eの厚さ及び材料である。上記図1に示す超音波検査装置Zで測定を行い、好適な周波数パラメータが繰り返し登録、即ち更新されると、データベース261aに情報が蓄積されていく。
 図7Bは、図7Aに示すデータベース261aを立体的に示す図である。被検査体Eに関する情報は、複数の軸を持つ多次元情報である。即ち、被検査体Eに関する情報を各成分It[k](kは1以上の整数)に分けて表記すると、k=1、2、...が多次元情報の各軸に対応する。図7Bに示す例では、説明のための一例として、It[1]が被検査体Eの厚さ、It[2]が被検査体Eの材料である。
 図7Aでは、多次元情報である被検査体Eに関する情報を1つの軸として抽象化して示している。具体的に記すと、図7Bに示すように、被検査体Eに関する情報は複数の軸で構成される。従って、データベース261aは、本開示の例では、このように多次元情報である検査体情報を軸とするデータベースである。
 データベース261aは、表形式で表してもよい。即ち、多次元の被検査体Eに関する情報ごとに1つのレコード(行)として、好適な周波数パラメータを記した表を作成してもよい。また、データベース261aをコンピュータ等で処理する場合には、表形式のデータベースで表現してもよいし、多次元の被検査体Eに関する情報ごとに1つのレコードにしたデータベース形式で表現してもよい。
 図6に戻って、データ処理部201は、画像化部262を備える。画像化部262は、信号処理部250に備えられ、変換された周波数成分のうち、周波数パラメータにより指定された周波数成分の部分を用いて、欠陥部Dの位置(欠陥位置)を示す画像273(図13)を生成する。画像化部262は、具体的には、周波数変換部230により変換された周波数成分に対応する周波数スペクトルのうち、入力された周波数パラメータに対応する部分の周波数スペクトルにおいて、被検査体Eの欠陥部Dに起因する信号の変化(変化量)に基づき、画像273を作成する。このようにすることで、画像273を生成できる。
 ここでいう信号の変化(受信信号の変化)は、本開示の例では、信号特徴量である。従って、画像化部262は、まず、変換された周波数成分に対応する周波数スペクトルのうち、使用者によって入力された周波数パラメータの部分から、信号特徴量を算出する。信号特徴量は、上記のように信号の変化を表す例えば値であり、欠陥情報(例えば欠陥部Dの位置)を適切に含むように周波数成分データから算出した値である。信号特徴量の具体的な算出方法の例は後記する。このようにして得られた信号特徴量を走査位置(x、y)に対してプロットすることで、被検査体Eの内部に存在する欠陥部Dの2次元画像(欠陥画像)が生成する。
 データ処理部201(信号処理部250)は、表示装置3への表示を行う表示部263を備える。表示部263は、画像273を表示装置3に出力して表示する。表示装置3は、例えばモニタ、ディスプレイ等である。詳細は後記するが、表示部263は、表示装置3に、周波数変換部230により変換された周波数成分に対応する周波数スペクトル271(図13)を表示する。これとともに、表示部263は、表示装置3に、周波数パラメータの入力を受け付ける入力部272(図13)を表示する。入力は、例えば、超音波検査装置Zの使用者によって行われるが、別の装置(不図示)からの入力でもよい。本開示では、一例として、使用者が周波数パラメータを入力する場合を説明する。
 以上の手順を走査位置(x,y)を変えながら行うことで、所望の範囲が走査される。走査完了すると、走査位置(x,y)に対応した周波数成分データ及び信号特徴量がデータ処理部201内の記憶部261に保存される。本開示では、走査位置で信号を取得する毎に信号特徴量が算出される。ただし、測定中、周波数成分データが記憶部261に保存され、測定後に信号特徴量が纏めて算出されることで欠陥画像を生成してもよい。
(周波数成分データ)
 ここで、本発明者が見出した周波数成分データに関する知見を述べる。その知見に基づいて、信号特徴量の算出方法についても述べる。
 本開示では、受信信号をフーリエ変換等で周波数成分に分解した際、成分強度が最大になる周波数を最大成分周波数と呼ぶ。成分強度は、周波数成分を振幅及び位相で表現した場合の振幅であり、また、周波数成分を複素数で表した場合の絶対値である。最大強度周波数成分は最大成分周波数における周波数成分である。また、周波数成分毎の成分強度の分布を周波数スペクトルと呼ぶ。
 図8は、受信信号の周波数成分の分布(周波数スペクトル)を模式的に示した図である。図8において、横軸が周波数、縦軸は強度(成分強度)を示す。縦軸は、対数スケールで示してあり、幅広い強度範囲を模式的に示している。
 強度が最大になる周波数である最大成分周波数をfmとする。最大成分周波数fmは、送信プローブ110から送信したバースト波の基本周波数f0にほぼ等しい。信号の周波数成分は、最大成分周波数fmの前後に広がりを持ち、これを基本波帯W1と呼ぶ。
 最大成分周波数fmのN倍の周波数(N×fm)の成分は、高調波である。最大成分周波数fmの1/N倍の周波数(fm/N)の成分は、分調波である。ここで、Nは、N≧2の整数である。高調波、分調波もそれぞれ広がりをもつ。本開示の例では、高調波、分調波が周波数的な広がりを持つことを特に強調する場合に、それぞれ高調波帯、分調波帯と呼ぶ。従って、単に「高調波」と記した場合も、周波数的な広がりを持つ。高調波帯、分調波帯は、非線形現象で発生するものであり、被検査体Eに入力した超音波ビームUの音圧が極めて強い場合に発生する。
 本開示の例のように、送信プローブ110と被検査体Eとの間に気体Gを介した場合には、被検査体Eの内部に音圧が強い超音波ビームUを入れることは、一般的には困難なため、高調波帯又は分調波帯の少なくとも一方は観測されないことが多い。本開示の例での条件でも、高調波帯及び分調波帯は検出限界以下であった。
 図8に示すように、基本波帯W1は周波数的に広がりを持つ。基本波帯W1のうち、最大成分周波数fmの成分以外の周波数成分を「裾野成分W3」と呼ぶことにする。裾野成分W3には、基本波のサイドローブも含まれる。
 本開示の例では、信号処理部250は、最大成分周波数を含む基本波帯W1の周波数成分の中から、例えば使用者によって入力された周波数パラメータにより指定された周波数成分を取り出すことで、上記信号特徴量を算出する。適正な周波数パラメータを入力することで、後記のように、欠陥部Dの検出性能を向上できる。
 図9Aは、欠陥部Dをまたがるように送信プローブ110及び受信プローブ121を走査したときの信号強度情報の位置による変化を示したものである。図9Aでは、従来の信号処理方法、即ち、受信した時間領域波形のピーク間電圧(Peak-to-Peak)をプロットした結果を示している。健全部Nでの信号強度はv0である。一方で、欠陥部Dに対応する位置(x=0)で、信号強度がΔvだけ低下しており、欠陥部Dを検出できている。しかし、信号強度の変化率(Δv/v0)は小さい。ここで信号強度の変化率とは、欠陥部Dでの信号変化量Δvを健全部Nでの信号強度v0で割った値と定義する。
 図9Bは、適切な複数個の周波数を含む周波数成分データから信号特徴量を算出してプロットした結果である。欠陥部Dの場所での信号強度の変化率(Δv/v0)が大きくなり、欠陥部Dの検出性が改善したことがわかる。
 図9A及び図9Bの実験結果を取得した実験条件を説明する。
 図10は、送信プローブ110に印加するバースト波の電圧波形である。横軸は時間、縦軸は電圧である。基本周波数f0が0.82MHzの正弦波を10波印加した。この10波を波束と呼ぶ。なお、基本周波数f0の逆数を基本周期T0と呼ぶ。基本周期T0は、同図に示した通り、1波束を構成する波の周期である。波束は繰り返し周期Tr=5msで印加した。
 図11は、図10に示す条件での受信信号の周波数成分分布を示したものである。同図は、横軸が周波数で、縦軸がそれぞれの周波数での成分強度の実測データをプロットしている。成分強度が最大になる0.82MHzが最大成分周波数fm(図8)である。基本波帯W1(図8)は、0.74MHzから0.88MHzに拡がっており、このうち最大成分周波数fmを除いた成分が裾野成分W3(図8)である。本開示の例では、最大成分周波数fmは、送信プローブ110が送信する超音波の基本周波数f0(図10)と等しくなっている。このように、多くの場合、最大成分周波数fmは送信する超音波の基本周波数f0に概ね等しくなる。
 図12は、受信信号の周波数成分分布(周波数スペクトル)の実測データを、健全部N(実線)と欠陥部D(破線)とで比較した図である。最大成分周波数fm=0.82MHzでは、健全部Nと欠陥部Dとで成分強度(信号の大きさ)の違いは小さい。一方、最大成分周波数fm以外である裾野成分W3、特に低域帯については、健全部Nと欠陥部Dとの差が大きくなっている。差が大きいほど、欠陥部Dのスペクトルを健全部Nのスペクトルから区別し易くでき、欠陥部Dを検出できる。従って、図12に示す場合には、周波数パラメータを0.82MHz未満に指定することで、欠陥部Dの検出精度を向上できる。
 このように、信号処理部250は、最大成分周波数fm(図8)を含む基本波帯W1のうち、最大成分周波数fmの周波数成分を低減することで、信号の変化を表す信号特徴量を算出する。そして、このように周波数パラメータを設定して、信号特徴量を算出すると、欠陥部Dの検出精度をさらに向上でき、さらに好ましい効果を得ることができる。即ち、最大成分周波数fmの周波数成分による影響を低減できる。「低減」は、最大成分周波数fmの周波数成分の例えば除外であるが、低減の例は除外に限定されない。また、完全に除外することが好ましいものの、一部のみが除外されてもよい。低減は、例えば、受信信号が持つ周波数成分(元の周波数成分)に対して行うことができる。
 また、最大成分周波数fmの周波数成分を含まないように周波数パラメータを選択すると、さらに好ましい効果を得ることができる。すなわち、基本波帯W1の裾野成分W3から信号特徴量を算出すると、さらに好ましい効果を得ることができる。
 基本波帯W1の裾野成分W3が欠陥部Dに敏感に変化する理由は以下のように考えられる。
 欠陥部Dと相互作用しない直達波U3は、波の伝播方向、位相、周波数等が変化しない。従って、最大成分周波数fmの信号成分は、直達波U3が占める割合が多い。そのため、欠陥部Dと健全部Nとの変化が小さい。
 上記図5に示したように、欠陥部Dと相互作用する散乱波U1は、伝播方向を変える成分もあり、また、伝播方向は変わらないが位相又は周波数の少なくとも一方が変化する成分もある。従って、最大周波数fmからずれた成分である基本波帯W1の裾野成分W3には、欠陥部Dと相互作用した超音波ビームUである散乱波U1の成分が占める割合が増える。このため、欠陥部Dと健全部Nとの変化が大きくなる。このようにして、最大成分周波数fmの成分を低減して、かつ基本波帯W1の裾野成分W3を検出することで、欠陥部Dの検出性能を向上できる。
 これらのように、受信信号の周波数成分を調べ、最大成分周波数fmよりも、裾野成分W3の方が健全部Nと欠陥部Dとの差が大きい、ことを発明者らは見出した。この知見に基づき、健全部Nと欠陥部Dとの差が大きい周波数成分(図1の例では、最大成分周波数fmよりも小さな周波数領域)を抽出して、信号特徴量を算出することにより、欠陥部Dの検出性を改善できることを見出した。
 従って、周波数スペクトルは、被検査体Eのうちの欠陥部Dを示す周波数スペクトル(第1周波数スペクトル)と、被検査体Eのうちの欠陥部D以外の部分である健全部Nを示す周波数スペクトル(第2周波数スペクトル)と、を含む。これらを含むことで、第1周波数スペクトルと第2周波数スペクトルとの差の大小を判断できる。なお、第1周波数スペクトルは、図12において破線のグラフである。第2周波数スペクトルは、図12において実線のグラフである。
 欠陥部D以外の健全部Nへの超音波放出(走査)により、例えば図12の実線で示す第2周波数スペクトルが得られる。一方で、欠陥部Dへの超音波放出(走査)により、例えば図12の破線で示す第1周波数スペクトルが得られる。従って、被検査体Eへの走査による、ある部分では第1周波数スペクトルが得られ、また、ある部分では第2周波数スペクトルが得られる。従って、走査により得られた全周波数スペクトルには、第1周波数スペクトル及び第2周波数スペクトルが含まれる。
 欠陥部Dに対応する第1周波数スペクトルと、健全部Nに対応する第2周波数スペクトルとを取得する方法を述べる。本開示の例では、欠陥部Dの位置が既知の標準試験体を用いて、欠陥部Dでの周波数スペクトルを取得して第1周波数スペクトルとし、健全部Nでの周波数スペクトルを取得して第2周波数スペクトルとした。
 第1周波数スペクトル及び第2周波数スペクトルを取得する方法は、標準試験体を用いる方法には限定されない。例えば、まず、被検査体Eを走査して各座標位置での受信信号を計測し、所定の周波数範囲の周波数成分を用いて欠陥画像を作成することで、欠陥部Dの位置を特定できる。その後、欠陥部Dと健全部Nでの周波数スペクトルを計測して、それぞれを第1周波数スペクトル及び第2周波数スペクトルとしてもよい。このように得られた第1周波数スペクトル及び第2周波数スペクトルに基づいて、画像化に用いる周波数範囲を適正に再設定することで、より高精度な欠陥画像を得ることが出来る。
 そして、上記画像化部262(図6)は、周波数スペクトルのうち入力された周波数パラメータに対応する部分の周波数スペクトルにおいて、第1周波数スペクトルと、第2周波数スペクトルとの差分に基づき、画像273(図13)を作成する。これにより、欠陥部Dの位置を適切に示す画像273を作成できる。
(信号特徴量の算出)
 本開示の例で用いた、周波数成分データから信号特徴量の算出方法を述べる。
 ここでは数式を見やすくするため、周波数fを角周波数ωで表す。角周波数ωは周波数fに2πを乗じたものである。複素数で表した周波数成分をH(ω)で表す。次式(1)に従ってh(t)を算出する。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 ここで、式(1)においてjは虚数単位であり、式(2)においてRe[ ]は複素数の実部を取り出す処理である。式(1)において、Σ記号の添え字ωは、積算する角周波数成分の周波数集合を示す。式(1)において、積算する角周波数成分は、使用者により入力された周波数集合{ω}について行う。この点が本開示の特徴の1つであり、後記のように、これにより欠陥部Dの画像をより明瞭に得ることができる。
 式(2)で得られるh(t)は、使用者により入力された周波数集合から合成した時間領域の信号波形である。このh(t)の最大値と最小値との差(Peak-to-Peak値)を本開示の例では信号特徴量とした。本開示の例においては、最大値と最小値との差(Peak-to-Peak値)をPP値と略記する。
 式(1)において、H(ω)及びexp(jωt)はいずれも複素数であり、複素数として計算している。即ち、周波数成分H(ω)の位相情報も考慮して信号特徴量を算出している。これにより、欠陥部Dの位置情報が正確に反映した信号特徴量が得られるので、より好ましい。
 式(1)において、積算に含める周波数の集合{ω}の選択が重要になる。選択は、例えば、使用者によって実行される。図12の周波数スペクトルからわかるように、基本波帯W1(図8)のうち、健全部Nと欠陥部Dとの差が大きい部分の周波数範囲を選択すると、欠陥部Dの画像をより明瞭に得ることが出来る。従って、使用者は、健全部Nと欠陥部Dとの差が大きい部分の周波数範囲(周波数パラメータ)を入力することが好ましい。ここでいう「大きい」は、例えば、使用者が2つの周波数スペクトルの違いを明瞭の認識できる程度の違い、又は、予め決定された所定の閾値以上等を採用できる。
 なお、信号特徴量は、欠陥部Dの位置情報を適切に含むように周波数成分データから算出した値であればよく、上記の算出方法に限定されるものではない。上記の例では、時間領域の信号波形h(t)のPP値を信号特徴量としたが、h(t)の絶対値を算出し、h(t)の面積を算出して信号特徴量としてもよい。ここで面積の算出手順は、h(t)を適切な時間間隔でサンプリングして、サンプリング点でのh(t)の総和を算出すればよい。また、h(t)の絶対値の代わりに、h(t)の2乗値を用いてもよい。更に、式(1)及び式(2)を用いる代わりに、周波数成分H(ω)の絶対値を、入力された周波数集合{ω}について合計した値を信号特徴量として用いてもよい。
(周波数の選択)
 図13は、本開示の例での超音波検査装置Zの操作画面270の構成例を模式的に示す図である。操作画面270は、表示部263(図6)によって、表示装置3(図6)に表示される。表示部263は、表示装置3に、上記のように、周波数変換部230(図6)により変換された周波数成分に対応する周波数スペクトル271と、使用者による周波数パラメータの入力を受け付ける入力部272と、を表示する。本開示の例では、表示部263は、超音波検査装置Zの操作画面270を表示装置3に表示するとともに、周波数スペクトル271及び入力部272を操作画面270に表示する。これにより、周波数スペクトル271を含む操作画面270を確認しながら、使用者が入力部272を操作できる。
 図13に示すでは、左側に被検査体Eの欠陥部Dの位置を示す画像273が表示される。右側の上部に周波数スペクトル271が表示される。ここでは、検査位置による複数箇所の周波数スペクトル271を表示できると比較ができるため好ましい。特に、周波数スペクトル271は、破線で示す上記第1周波数スペクトルと、実線で示す条第2周波数スペクトルとを含む。これにより、周波数スペクトル同士を使用者が比較でき、適切な周波数成分を使用者が入力できる。ただし、表示される周波数スペクトル271は、第1周波数スペクトル又は第2周波数スペクトルのうちの何れか一方のみでよい。使用者がある程度の経験を有することで、何れか一方のみの周波数パラメータに基づいて、好適な周波数パラメータを決定でき得る。
 入力部272は、使用者によって周波数パラメータが入力されるものである。本開示の例では、入力部272は、長さ及び位置を調整可能なスライドバーにより構成される周波数選択部である。使用者がスライドバーを例えばマウス、キーボード等を使用し、周波数スペクトルの周波数位置に対応した位置にスライドバーの長さ及び位置を調整することで、信号特徴量を抽出するための周波数範囲(周波数集合)を入力できる。ここで入力された周波数範囲が周波数パラメータである。
 使用者が周波数を選択(入力の一形態)して更新ボタン274を押すと、画像化部262(図6)は、新たに選択された周波数集合{ωn}を用いて、前記の方法により信号特徴量を走査位置毎に算出する。画像化部262は、信号特徴量を走査位置(x,y)に対してプロットすることで、被検査体Eの内部における欠陥部Dの2次元画像である画像273を生成する。表示部263は、画像273を表示装置3に表示する。使用者は、新たに算出された信号特徴量による画像273を視認し、必要であれば、再度入力部272を調整して、信号特徴量を更新する。
 このように信号特徴量を算出する周波数パラメータ(周波数集合{ωn})を設定することで、欠陥部Dを示す画像273の信号強度の変化率を大きくできる。これにより、欠陥部Dと健全部Nとを区別するコントラストを改善できる。また、信号強度の変化率が高くなるため、より小さな欠陥部Dを検出することが可能になり、検出性能が高くなる。
 表示部263は、被検査体Eに関する情報を受け付ける入力部275を表示装置3に表示する。ここでいう情報は、上記データベース261aにおいて説明した情報と同じである。図13には、一例として、被検査体Eの材料、及び、被検査体Eの形状(厚さ)を受け付ける入力部275が表示される。なお、入力部275は、表示装置3に表示される必要は無く、例えば設定ファイルの形で読み込んでもよい。この場合、入力部275は、データ処理部201(図6)の一部を構成する。
 適正な周波数パラメータは、上記のように、被検査体Eの材料、形状等により変わり得る。また、周波数パラメータの組合せの数は多数あるため、適正な周波数パラメータを決定することは容易ではない。そこで、本開示の例では、複数位置での周波数スペクトルを表示することで、使用者が周波数スペクトル同士を比較して、周波数パラメータを決定できるようになっている。これにより、決定された周波数パラメータに基づく画像273を視認することで、欠陥部Dのコントラスト(見えやすさ)を確認できる。この結果、欠陥部Dの画像273を得るのに適切な周波数集合を選択できる。従って、画像273のコントラスト向上等、欠陥部Dの検出性能を向上できる。
 本開示の例では、図13に示したように、周波数パラメータの入力はスライドバーを用いたが、入力はスライドバーに限定されず、入力できる方法であれば任意である。例えば、所望とする周波数の数値等をマウス、キーボード等を使用して入力してもよい。また、図12に示した操作画面270の構成例も一例であり、この配置に限定されないことは言うまでも無い。
 なお、図13に関する別の実施形態として、表示部263(図6)は、表示装置3に、入力部275(第1入力部)を表示するとともに、入力部272(第2入力部)を表示する。入力部275は、被検査体Eにおける欠陥部Dの検出精度に影響を与える情報(被検査体Eに関する情報)を受け付ける。入力部272は、周波数パラメータの入力を受け付ける。入力は、例えば使用者によって行われる。この実施形態では、一例として、データベース261aは、信号処理部250に備えられる。
 周波数スペクトル271は、表示されることが好ましいものの、表示されなくてもよい。表示されない場合、例えば、画像化部262は、データベース261a(図6)の中から、入力部275を通じ、受け付けた被検査体Eに関する情報に対応する周波数パラメータを初期の周波数パラメータとして決定する。該当する周波数パラメータが無い場合には、その情報に最も近い情報に対応する周波数パラメータが決定される。画像化部262は、決定した周波数パラメータに基づき、画像273(図13)を作成する。データベース261aの情報を利用することで、欠陥部Dの検出精度を向上できる。
 図14は、別の実施形態の超音波検査装置Zの機能ブロック図である。信号処理部250は更新部291(周波数パラメータ更新部)を備える。更新部291は、周波数パラメータを自動的に更新する。更新部291でのより具体的な処理の一例を示す。画像化部262は、欠陥部D及び健全部Nの2点の受信信号について、周波数パラメータを変更しながら上記信号特徴量を算出する。そして、更新部291は、欠陥部D及び健全部Nの信号特徴量の差が最大になるような周波数パラメータを探索し、決定する。このようにして更新部291で更新された周波数パラメータを用いて、画像化部262は、画像273を作成する。また、このように更新された周波数パラメータがデータベース261aに登録され、データベース261aが更新される。
 なお、決定された周波数パラメータは、表示装置3に表示されてもよい。また、周波数パラメータを更新部291で自動的に更新するかわりに、使用者が、画像273を見ながら、入力部272を通じて、周波数パラメータを指定してもよい。このようにしても、欠陥部Dの検出精度をさらに向上できる。
 なお、上記図13に示す周波数スペクトル271の周波数分解能等は、被検査体Eの欠陥検査時の周波数変換の分解能と異なっていてもよい。例えば、欠陥検査時の周波数変換部230の周波数分解能と比べて、図13に示す周波数スペクトル271の周波数分解能をより高く測定して表示してもよい。具体的には、欠陥部D及び健全部Nの代表的な2点について、周波数変換部230での周波数分解能を高めた条件に設定して、周波数スペクトルを再測定してもよい。また、周波数スペクトル271を測定する周波数範囲を欠陥検査時の条件よりも拡げてもよい。このようにすると、より詳細な周波数スペクトル情報に基づいて、周波数パラメータを設定することができる。
 図15は、本開示の例での処理の流れを示す図である。本開示の処理は、大きく分けて計測ステップS1と画像化ステップS2とを含む。計測ステップS1では、周波数変換部230(図6)は、各走査位置(x,y)において、超音波ビームUの受信信号を周波数変換する(ステップS11)。これにより、周波数変換部230(図6)は、周波数成分データを取得する(ステップS12)。
 画像化ステップS2では、画像化部262(図6)は、ステップS12で取得した周波数成分データを用いて、初期の周波数パラメータとして予め設定された周波数集合{ω}を用いて、画像273(図13)を画像化する(ステップS21)。画像化された画像273は、表示装置3(図13)に操作画面270(図6)として表示される。表示部263(図6)は、周波数スペクトル271(図13)を表示装置3(図13)に操作画面270(図6)として表示する(ステップS22)。
 使用者は、操作画面270に表示された周波数スペクトル271を参照しながら、周波数パラメータを入力する(ステップS23)。入力は、欠陥部Dを適切に示す画像273を生成するような適切な範囲を選択して行うことが好ましい。具体的には、欠陥部Dの周波数スペクトルと、健全部Nの周波数スペクトルとの差分ができるだけ大きい周波数成分を選択することが好ましい。画像化部262は、新たに設定された周波数パラメータ、具体的には周波数集合{ω}を用いて、各走査位置(x,y)の信号特徴量を新たに計算する。画像化部262は、再計算された信号特徴量を用いて、画像273を更新する(ステップS24)。これとともに、表示部263は、更新した画像を操作画面270(図6)に表示する(ステップS24)。
 図16は、第2実施形態における操作画面270の構成例を模式的に示す図である。第2実施形態では、第1実施形態において、更に、周波数パラメータの学習が行われる。
 本開示の例では、表示部263(図6)は、更に、登録ボタン276を備える。上記のように、適正な周波数パラメータは、例えば検査条件等の情報によって異なり得るため、適正な周波数パラメータを入力することは容易ではない。換言すれば、被検査体Eの例えば測定条件等の情報が決まれば、適正な周波数パラメータはある程度予測できる。そこで、本開示の例では、使用者により適正な周波数パラメータが入力された後、使用者により登録ボタン276が押下されると、制御装置2は、被検査体Eに関する情報(検査条件等)と、入力された周波数パラメータとを対応付けて、データベース261a(図6)を更新する。これにより、検査回数が増えるごとにデータベース261aに記録されたデータが増え、そのデータに基づいて画像化し易くできる。このため、使用者による周波数スペクトルの確認及び入力の手間を省略できる。
 図17は、第2実施形態における本実施例の処理の流れを示す図である。第2実施形態では、計測ステップS1及び画像化ステップS2に加えて、更に学習ステップS3が含まれる。学習ステップS3では、被検査体Eに関する情報及び周波数パラメータ(適切な周波数集合{ωn})をデータベース261a(図6)に登録することで、被検査体Eに関する情報に関連付けた周波数パラメータが学習される。即ち、使用者によって登録ボタン276(図16)が押下されると(ステップS31)、制御装置2(図6。具体的には画像化部262)は、被検査体Eに関する情報と、入力された周波数パラメータとを対応付けて、データベース261aを更新する(ステップS32)。そして、新しい測定を行う際の初期の周波数パラメータは、この学習されたデータベース261aに基づいて設定される(ステップS25)。このようにすることで、初期の周波数パラメータによる画像化でも、性能の良い画像273を得ることができる。
 初期パラメータで画像化した結果は、周波数パラメータをさらに好適な周波数集合{ωn}に更新することで、より欠陥検出性に優れた周波数パラメータに更新できる。その結果を登録することで、データベース261aがさらに更新される。
 本開示の特徴は、従来は超音波検査装置Zの使用者が測定の経験により蓄積されていたノウハウを、データベース261aとして超音波検査装置Zに蓄積可能であることである。測定のノウハウが超音波検査装置Zに蓄積されるため、測定の回数(経験)を増やすほど、初期の周波数パラメータでの画像化結果での欠陥検出性能を向上できる。また、測定ノウハウが超音波検査装置Z自体に蓄積されるため、使用者が変わっても、測定ノウハウを自動的に活用できる。
 図18は、第3実施形態における超音波検査装置Zの機能ブロック図である。第3実施形態では、データベース261aは、超音波検査装置Zから離れた位置に備えられた例えばサーバ281に格納される。超音波検査装置Z(特に制御装置2)は、ネットワーク280に接続可能である。そして、超音波検査装置Z(特に制御装置2)は、ネットワーク280を介してデータベース261aに接続される。このようにすることで、超音波検査装置Zの設置場所によらずデータベース261aを利用できる。特に、1つのデータベース261aに対して複数の超音波検査装置Zを接続するようにすることで、データベース261aの更新回数を増やすことができ、データベース261aに記録された情報の精度を向上できる。
 図19は、第3実施形態における処理の流れを示す図である。第2実施形態における流れ(図17)と大きな流れは同じであるが、ステップS321では、遠隔地のサーバ281に格納されたデータベース261a(図18。即ちオンライン接続されたデータベース261a)を更新する。
 なお、制御装置2(図6)がデータベース261a(図6)をローカルとして備えるとともに、更に、制御装置2がネットワーク280を介して遠隔地のデータベース261aにオンラインで接続されるようにしてもよい。これにより、ローカルのデータベース261aの内容をオンライン接続により接続され、オンライン上のデータベース261aを更新できる。
(第4実施形態。受信プローブ121の焦点距離)
 第4実施形態では、受信プローブ121の焦点距離R2は、送信プローブ110の焦点距離R1よりも長いと、さらに好ましい。このようにすると、後記の通り、散乱波U1の成分をより多く検出できるようになるためである。前記の通り、散乱波U1は、欠陥部Dと相互作用した超音波ビームUであるから、散乱波U1の成分の割合が増えるほど、欠陥部Dを検出し易くできる。
 受信プローブ121の焦点距離を長くすると散乱波の成分を多く検出できる理由を図20A及び図20Bを用いて述べる。
 図20Aは、第4実施形態において、送信プローブ110の焦点距離R1と受信プローブ121の焦点距離R2を等しくした場合の超音波ビームUの伝播経路を模式的に示した図である。コーンC3は、図20Bにおいて説明する。図20Aに示す例では、送信プローブ110から送信された超音波ビームUの収束点と、受信プローブ121から仮想的に放出される仮想ビームの収束点が同じである。従って、欠陥部Dにおいて伝播方向が変化しない超音波ビームUを効率的に受信できる。一方、欠陥部Dで伝播方向が変化した超音波ビームUは、検出が困難になる。
 図20Bは、第4実施形態において、送信プローブ110の焦点距離R1よりも、受信プローブ121の焦点距離R2を長くした場合の超音波ビームUの伝播経路を模式的に示した図である。受信プローブ121から仮想的に放出される仮想ビームのコーン(形状)C3の範囲内の超音波ビームUを受信プローブ121は検出可能である。そのため、欠陥部Dで伝播方向が少し変化した散乱波U1であっても、コーンC3の範囲に入っていれば検出できる。このように、受信プローブ121の焦点距離R2を送信プローブ110の焦点距離R1よりも長くすることにより、検出可能な散乱波U1を増加できる。前記の通り、散乱波U1は欠陥部Dと相互作用した波であるから、これにより欠陥部Dの検出性能をさらに向上できる。
 収束性の大小関係は、被検査体Eの表面におけるビーム入射面積T1、T2の大小関係でも定義される。ビーム入射面積T1、T2について説明する。
 図21は、送信プローブ110におけるビーム入射面積T1及び受信プローブ121におけるビーム入射面積T2の関係を説明する図である。送信プローブ110の被検査体Eでのビーム入射面積T1は、送信プローブ110から放出された超音波ビームUの被検査体E表面での交差面積である。また、受信プローブ121のビーム入射面積T2は、受信プローブ121から超音波ビームUが放出された場合を想定した仮想的な超音波ビームU2と被検査体E表面での交差面積である。
 なお、図21において、超音波ビームUの経路は、被検査体Eがない場合における経路を示したものである。被検査体Eがある場合は、被検査体E表面で超音波ビームUが屈折するため、超音波ビームUは破線で示した経路とは異なる経路を伝搬する。ここで、図21に示すように、受信プローブ121の被検査体Eでのビーム入射面積T2は、送信プローブ110の被検査体Eでのビーム入射面積T1よりも大きい。このようにすることで、受信プローブ121の収束性を、送信プローブ110の収束性よりも緩くできる。
 さらに、受信プローブ121の焦点距離R2は、送信プローブ110の焦点距離R1よりも長い。このようにしても、受信プローブ121の収束性を、送信プローブ110の収束性よりも緩くできる。このとき、被検査体Eから送信プローブ110及び受信プローブ121までの距離は例えば何れも同じであるが、同じでなくてもよい。
 このように、本開示の例では、受信プローブ121の収束性を送信プローブ110の収束性よりも緩くしている。即ち、受信プローブ121の焦点距離R2は、送信プローブ110の焦点距離R1よりも長く設定されている。この結果、受信プローブ121のビーム入射面積T2が広くなるため、広い範囲の散乱波U1を検出できる。これにより、散乱波U1の伝搬経路が多少変化しても、受信プローブ121で散乱波U1を検出可能になる。その結果、広い範囲の欠陥部Dを検出できる。
 また、受信プローブ121の焦点P1は、送信プローブ110の焦点P2よりも、送信プローブ110の側(図示の例では上方)に存在する。このように焦点P1,P2をずらすことで、受信プローブ121で散乱波U1を受信し易くでき、散乱波U1を検出し易くできる。
 なお、送信プローブ110の焦点距離R1よりも受信プローブ121の焦点距離R2を長くする構成として、受信プローブ121として、非収束型のプローブ(不図示)が用いられてもよい。非収束型のプローブでは焦点距離R2が無限大なので、送信プローブ110の焦点距離R1よりも長くなる。即ち、非収束型の受信プローブ121でも、受信プローブ121の収束性は送信プローブ110の収束性よりも緩くなる。
(第5実施形態)
 図22は、第5実施形態での超音波検査装置Zの構成を示す図である。第5実施形態では、送信プローブ110の送信音軸AX1と受信プローブ121の受信音軸AX2とがずらして配置される。即ち、第2実施形態での受信プローブ121は、送信プローブ110の送信音軸AX1とは異なる位置に配置された受信音軸AX2を有する受信プローブ120(偏心配置受信プローブ)である。従って、送信プローブ110の送信音軸AX1(音軸)と受信プローブ120の受信音軸AX(音軸)との間の偏心距離L(距離)がゼロより大きい。
 このような配置にすることで、散乱波U1のうち空間的な方向が変わった波を検出できる。受信信号の周波数スペクトル(図12)に基づく周波数的な散乱波U1の抽出原理と、偏心配置による空間的な散乱波U1の抽出原理とを組み合わせることで、欠陥部Dの検出性をさらに向上できる。
 第5実施形態では、送信プローブ110に対して、図22のx軸方向に偏心距離Lだけ受信プローブ120がずらされて配置されているが、図22のy軸方向にずらされた状態で受信プローブ120が配置されてもよい。又は、x軸方向にL1、y軸方向にL2(即ち、送信プローブ110のxy平面での位置を原点とすると、(L1、L2)の位置)に受信プローブ120が配置されてもよい。
 図23Aは、送信音軸AX1、受信音軸AX2及び偏心距離Lを説明する図であり、送信音軸AX1及び受信音軸AX2が鉛直方向に延びる場合である。図23Bは、送信音軸AX1、受信音軸AX2及び偏心距離Lを説明する図であり、送信音軸AX1及び受信音軸AX2が傾斜して延びる場合である。図23A及び図23Bには、参考として、破線で受信プローブ140(同軸配置受信プローブ)も図示される。
 受信音軸AX2の方向が探触子面114(図2)の法線方向である。その理由は、その受信プローブ121から放射する仮想的な超音波ビームUが探触子面114の法線方向に出射するからである。超音波ビームUを受信する場合も、探触子面114の法線方向で入射する超音波ビームUを感度よく受信できる。
 偏心距離Lとは、送信音軸AX1と、受信音軸AX2とのずれの距離で定義される。従って、図23Bに示すように、送信プローブ110から放出された超音波ビームUが屈折する場合、偏心距離Lは、屈折している送信音軸AX1と、受信音軸AX2とのずれの距離で定義される。第5実施形態の超音波検査装置Zは、このように定義される偏心距離Lが、ゼロより大きな距離となるよう、偏心距離Lを調整する偏心距離調整部105(図22)によって送信プローブ110及び受信プローブ120が調整される。
 図23Aでは、送信プローブ110を被検査体Eの表面における法線方向に配置した場合が示される。図23A及び図23Bにおいて、送信音軸AX1を実線の矢印で示している。また、受信音軸AX2を一点鎖線の矢印で示している。なお、図23A及び図23Bにおいて、破線で示す受信プローブ121の位置が偏心距離Lがゼロの位置であり、送信音軸AX1と受信音軸AX2とが一致する受信プローブ121は同軸配置受信プローブとしての受信プローブ140である。また、実線で示す受信プローブ121はゼロより大きな偏心距離Lの位置に配置されている受信プローブ120(偏心配置受信プローブ)である。送信音軸AX1が水平面(図22のxy平面)に対して垂直になるように送信プローブ110が設置される場合、超音波ビームUの伝搬経路は屈折しない。つまり、送信音軸AX1は屈折しない。これは、送信プローブ110の送信音軸AX1が試料台102の載置面1021に対して垂直になるように、送信プローブ110を設置した場合に対応する。
 図23Bでは、送信プローブ110を被検査体Eの表面における法線方向から角度αだけ傾けて配置した場合が示される。図23Bでも図23Aと同様、送信音軸AX1を実線の矢印で示し、受信音軸AX2を一点鎖線の矢印で示している。図23Bに示す例の場合、前記したように、被検査体Eと流体Fとの界面で、超音波ビームUの伝搬経路が屈折角βで屈折する。そのため、送信音軸AX1は、図23Bの実線矢印で示すように折れ曲がる(屈折する)。この場合、破線で示した受信プローブ140の位置は、送信音軸AX1上に位置するため偏心距離Lがゼロの位置である。そして、前記したように、超音波ビームUが屈折する場合であっても、受信プローブ120は、送信音軸AX1と受信音軸AX2との距離がLになるように、配置される。なお、図22に示す例では、送信プローブ110を被検査体Eの表面における法線方向に設置しているので、偏心距離Lは、図23Aに示すようなものとなる。
 偏心距離Lは、被検査体Eの健全部Nでの受信信号よりも、欠陥部Dでの信号強度の方が大きくなるような位置に設定するとさらに好ましい。
(第6実施形態)
 図24は、第6実施形態での超音波検査装置Zの構成を示す図である。第6実施形態では、走査計測装置1は、受信プローブ120の傾きを調整する設置角度調整部106を備える。これにより、受信信号の強度を増大でき、信号のSN比(Signal to Noise比、信号雑音比)を大きくできる。設置角度調整部106は、例えば、いずれも図示しないが、アクチュエータ、モータ等により構成される。
 ここで、送信音軸AX1と受信音軸AX2とが為す角度θを受信プローブ設置角度と定義する。図24の場合、送信プローブ110は鉛直方向に設置されているので送信音軸AX1は鉛直方向であるため、受信プローブ設置角度である角度θは、送信音軸AX1(即ち鉛直方向)と受信プローブ120の探触子面の法線との為す角度である。そして、設置角度調整部106により、角度θを送信音軸AX1が存在する側に傾け、角度θをゼロより大きな値に設定する。即ち、受信プローブ120が傾斜配置される。具体的には、受信プローブ120は、0°<θ<90°を満たすように傾斜配置され、角度θは例えば10°であるがこれに限られない。
 また、受信プローブ120を傾斜配置する場合の偏心距離Lは以下のように定義される。受信音軸AX2と、受信プローブ120の探触子面との交点C2を定義する。また、送信音軸AX1と、送信プローブ110の探触子面との交点C1を定義する。交点C1の位置をxy平面に投影した座標位置(x4、y4)(図示せず)と、交点C2の位置をxy平面に投影した座標位置(x5、y5)(図示せず)との距離を偏心距離Lと定義する。
 このように受信プローブ120を傾斜配置して、本発明者が実際に欠陥部Dの検出を行ったところ、受信信号の信号強度がθ=0の場合と比較して3倍に増加した。
 図25は、第6実施形態による効果が生じる理由を説明する図である。散乱波U1は送信音軸AX1から外れた方向に伝搬する。従って、図25に示すように、散乱波U1は被検査体Eの外側に到達した際、被検査体E表面の法線ベクトルとは非ゼロの角度α2をもって被検査体Eと外部との界面に入射する。そして、被検査体Eの表面から出る散乱波U1の角度は被検査体E表面の法線方向に対して非ゼロの出射角である角度β2を有する。散乱波U1は、受信プローブ120の探触子面の法線ベクトルを散乱波U1の進行方向と一致させたときに、最も効率よく受信できる。つまり、受信プローブ120を傾斜配置することで受信信号強度を増大できる。
 なお、被検査体Eから出射する超音波ビームUの角度β2と、送信音軸AX1と受信音軸AX2との為す角度θとが一致すると、最も受信効果が高くなる。しかしながら、角度β2と角度θとが完全に一致しない場合であっても、受信信号増大の効果が得られるので、図25に示しているように、角度β2と角度θとが完全に一致しなくてもよい。
(第7実施形態)
 図26は、第7実施形態の超音波検査装置Zの構成を示す図である。第7実施形態では、流体Fは液体Wであり、図示の例では水である。超音波検査装置Zは、流体Fである液体Wを介して被検査体Eに超音波ビームUを入射することで被検査体Eの検査を行うものである。被検査体Eは、液体Wの液面L0の下に配置され、液体Wに浸かっている。
 なお、流体Fは上記のように気体G(図1)でもよく、本実施形態のように液体W(図26)でもよい。ただし、流体Fとして空気等の気体Gを用いた場合、以下の理由により、さらに好ましい効果を与える。
 液体W中と比較して、気体G中では超音波の減衰量が大きい。超音波の気体G中での減衰量は周波数の2乗に比例することが知られている。このため、気体G中で超音波を伝搬させるには1MHz程度が上限となる。液体W中の場合は、5MHz~数10MHzの超音波でも伝搬するので、気体G中で使用可能な周波数は、液体W中のそれより小さいことになる。
 一般に、超音波ビームUの周波数が低くなると、超音波ビームUの収束が困難になる。そのため、気体G中を伝搬させる1MHzの超音波ビームUは、液体W中の超音波ビームUと比べて収束可能なビーム径が大きくなる。一方、上記図4に示したように、従来法である阻止モードでは、ビームサイズよりも小さな欠陥部Dを検出することが困難である。しかし、本開示によれば、上記図5に示したように、散乱波成分の割合を増やして検出するため、ビームサイズよりも小さな欠陥部Dを検出することが可能である。
 流体Fとして気体Gを用いた場合、超音波ビームUのビームサイズを小さくすることがより困難であるため、本開示の効果を一層大きな効果を得ることになる。このように、本開示は、流体Fとして気体Gを用いた場合に、より好ましい効果を得ることができる。
 図27は、制御装置2のハードウェア構成を示す図である。前記した各構成、機能、ブロック図を構成する各部等は、それらの一部又はすべてを、例えば集積回路で設計すること等によりハードウェアで実現してもよい。また、図27に示すように、前記した各構成、機能等は、CPU252等のプロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。制御装置2は、例えば、メモリ251、CPU252、記憶装置253(SSD,HDD等)、通信装置254及びI/F255を備える。各機能を実現するプログラム、テーブル、ファイル等の情報は、HDDに格納すること以外に、メモリ、SSD(Solid State Drive)等の記録装置、又は、IC(Integrated Circuit)カード、SD(Secure Digital)カード、DVD(Digital Versatile Disc)等の記録媒体に格納することができる。
 図28は、上記各実施形態の超音波検査方法を示すフローチャートである。本開示の超音波検査方法は上記の超音波検査装置Zの制御装置2により実行でき、一例として適宜、図1及び図6を参照して説明する。本開示の超音波検査方法は、気体G(図1。流体Fの一例)を介して被検査体E(図1)に超音波ビームUを入射することにより被検査体Eの検査を行うものである。なお、この超音波検査方法を流体Fとして気体Gを用いた実施形態について説明するが、この超音波検査方法は、流体Fとして液体W(図24)を用いた実施形態についても有効であることはいうまでもない。
 本開示の超音波検査方法は、ステップS101,S102,S103,S104,S105,S111,S112,S120,S121,S122,S123を含む。まず、制御装置2の指令により、送信プローブ110が、送信プローブ110から超音波ビームUを放出するステップS101(放出ステップ)を行う。続いて、受信プローブ121が、超音波ビームUを受信するステップS102(受信ステップ)を行う。
 その後、周波数変換部230は、ステップS102で受信した超音波ビームUの信号(例えば波形信号)を周波数成分に変換するステップS103(変換ステップ)を行う。周波数成分データはデータ処理部201に送信され、データ処理部201は、周波数成分データから信号特徴量を算出するステップS104(信号特徴量算出ステップ)を行う。具体的には、データ処理部201は、あらかじめ設定した周波数集合の周波数成分を位相を考慮して積算して、信号特徴量を算出する。
 この次に、ステップS105(形状表示ステップ)が行われる。送信プローブ110及び受信プローブ121の走査位置情報は、位置計測部203からスキャンコントローラ204に送信される。データ処理部201は、スキャンコントローラ204から取得した送信プローブ110の走査位置情報に対して、それぞれの走査位置での信号強度データをプロットする。このようにして、信号強度データから決定される周波数スペクトル及び信号特徴量から、画像化が実行される。これがステップS105(形状表示ステップ)である。
 なお、ここでは走査位置情報が1次元(1方向)の場合であり、走査位置情報がx、yの2次元の場合については、信号強度データをプロットすることで、図13に示すように欠陥部Dが2次元の画像273として示され、それが表示装置3に表示される。
 データ処理部201は、走査が完了したか否かを判定する(ステップS111)。走査が完了している場合(Yes)、制御装置2は測定処理を終了する(ステップS120)。走査が完了していない場合(No)、データ処理部201は駆動部202に指令を出力することによって、次の走査位置まで送信プローブ110及び受信プローブ121を移動させ(ステップS112)、ステップS101に処理を戻す。以上で、表示装置3には、初回の画像273(図13)が表示される。
 次に、入力部272(図13)は、周波数成分のうち、周波数パラメータの入力を受け付ける(ステップS121、入力ステップ)。入力は、例えば使用者により行われる。画像化部262(図6)は、入力された周波数パラメータを用いて、信号特徴量を決定する(ステップS122、画像化ステップ)。画像化部262は、決定された信号特徴量に基づき、欠陥部Dの位置(欠陥位置)を示す画像273(図13)を生成する(ステップS122、画像化ステップ)。作成された画像273は、表示装置3に表示される。使用者が検査終了を選択すると(ステップS123のYes)、一連の制御が終了する。一方で、使用者が検査終了を選択しなければ(ステップS123のNo)、再度、入力部272は、周波数パラメータの入力を受け付けるため、ステップS121以降が行われる。
 以上の超音波検査装置Z及び超音波検査方法によれば、欠陥部Dの検出性能、例えば微小欠陥を検出する性能を向上できる。
 以上の各実施形態では、欠陥部Dは空洞である例を記載しているが、欠陥部Dとして被検査体Eの材質とは異なる材質が混入している異物であってもよい。この場合も、異なる材料が接する界面で音響インピーダンスの差(Gap)があるため、散乱波U1が発生するので、上記各実施形態の構成が有効である。上記各実施形態に係る超音波検査装置Zは、超音波欠陥映像装置を前提としているが、非接触インライン内部欠陥検査装置に適用されてもよい。
 本開示は前記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、前記した実施形態は本開示を分かりやすく説明するために詳細に説明したものであり、必ずしも説明したすべての構成を有するものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 また、各実施形態において、制御線及び情報線は説明上必要と考えられるものを示しており、製品上必ずしもすべての制御線及び情報線を示しているとは限らない。実際には、ほとんどすべての構成が相互に接続されていると考えてよい。
1 走査計測装置
102 試料台
1021 載置面
110 送信プローブ
120 受信プローブ
121 受信プローブ
140 受信プローブ
2 制御装置
201 データ処理部
202 駆動部
203 位置計測部
204 スキャンコントローラ
210 送信系統
211 波形発生器
212 信号アンプ
220 受信系統
222 信号アンプ
230 周波数変換部
250 信号処理部
261 記憶部
261a データベース
262 画像化部
263 表示部
270 操作画面
271 周波数スペクトル
272 入力部
273 画像
274 更新ボタン
275 入力部
276 登録ボタン
280 ネットワーク
281 サーバ
291 更新部
3 表示装置
Z 超音波検査装置

Claims (20)

  1.  流体を介して被検査体に超音波ビームを入射することにより前記被検査体の検査を行う超音波検査装置であって、
     前記被検査体への前記超音波ビームの走査及び計測を行う走査計測装置と、前記走査計測装置の駆動を制御する制御装置とを備え、
     前記走査計測装置は、
     前記超音波ビームを放出する送信プローブと、前記超音波ビームを受信する受信プローブとを備え、
     前記制御装置は信号処理部を備え、
     前記信号処理部は、
      前記受信プローブの受信信号を周波数成分に変換する周波数変換部と、
      変換された前記周波数成分のうち、周波数パラメータにより指定された周波数成分の部分を用いて、欠陥位置を示す画像を生成する画像化部と、
      表示装置への表示を行う表示部と、
     を備え、
     前記表示部は、前記表示装置に、前記周波数変換部により変換された前記周波数成分に対応する周波数スペクトルを表示するとともに、前記周波数パラメータの入力を受け付ける入力部を表示する
     超音波検査装置。
  2.  前記表示部は、前記超音波検査装置の操作画面を前記表示装置に表示するとともに、前記周波数スペクトル及び前記入力部を、前記操作画面に表示することを特徴とする請求項1に記載の超音波検査装置。
  3.  前記受信プローブの焦点距離は、前記送信プローブの焦点距離よりも長いことを特徴とする請求項1に記載の超音波検査装置。
  4.  前記受信プローブのビーム入射面積は、前記送信プローブのビーム入射面積よりも大きいことを特徴とする請求項1に記載の超音波検査装置。
  5.  前記流体は気体であることを特徴とする請求項1に記載の超音波検査装置。
  6.  前記制御装置は、前記被検査体における欠陥部の検出精度に影響を与える情報と、前記周波数パラメータとを対応付けたデータベースを備えることを特徴とする請求項1に記載の超音波検査装置。
  7.  前記超音波検査装置は、ネットワークに接続可能であり、
     前記制御装置は、前記ネットワークを介して、前記被検査体における欠陥部の検出精度に影響を与える情報と、前記周波数パラメータとを対応付けたデータベースに接続されること特徴とする請求項1に記載の超音波検査装置。
  8.  前記制御装置は、前記情報と、入力された前記周波数パラメータとを対応付けて、前記データベースを更新することを特徴とする請求項6に記載の超音波検査装置。
  9.  前記情報は、前記被検査体の検査条件を含むことを特徴とする請求項6に記載の超音波検査装置。
  10.  前記検査条件は、前記被検査体の材料、前記被検査体の厚さ、前記被検査体の構造、前記受信プローブ及び前記送信プローブに対する前記被検査体の位置、前記流体の種類、の少なくとも1つを含むことを特徴とする請求項9に記載の超音波検査装置。
  11.  前記信号処理部は、最大成分周波数を含む基本波帯の周波数成分の中から、前記周波数パラメータにより指定された周波数成分を取り出すことで、信号の変化を表す信号特徴量を算出することを特徴とする請求項1に記載の超音波検査装置。
  12.  前記信号処理部は、最大成分周波数を含む基本波帯のうち、前記最大成分周波数の周波数成分を低減することで、信号の変化を表す信号特徴量を算出することを特徴とする請求項1に記載の超音波検査装置。
  13.  前記周波数スペクトルは、前記被検査体のうちの欠陥部を示す第1周波数スペクトルと、前記被検査体のうちの欠陥部以外の部分である健全部を示す第2周波数スペクトルと、を含むことを特徴とする請求項1に記載の超音波検査装置。
  14.  前記画像化部は、前記周波数スペクトルのうち入力された前記周波数パラメータに対応する部分の前記周波数スペクトルにおいて、前記第1周波数スペクトルと、前記第2周波数スペクトルとの差分に基づき、前記画像を作成することを特徴とする請求項13に記載の超音波検査装置。
  15.  前記送信プローブの音軸と前記受信プローブの音軸との間の距離がゼロより大きいことを特徴とする請求項1に記載の超音波検査装置。
  16.  前記送信プローブの音軸と前記受信プローブの音軸との間の距離がゼロであることを特徴とする請求項1に記載の超音波検査装置。
  17.  前記送信プローブの送信音軸が、前記被検査体を載置する試料台の載置面に対して垂直になるように、前記送信プローブが設置されたことを特徴とする請求項1に記載の超音波検査装置。
  18.  流体を介して被検査体に超音波ビームを入射することにより前記被検査体の検査を行う超音波検査装置であって、
     前記被検査体への前記超音波ビームの走査及び計測を行う走査計測装置と、前記走査計測装置の駆動を制御する制御装置とを備え、
     前記走査計測装置は、
     前記超音波ビームを放出する送信プローブと、前記超音波ビームを受信する受信プローブとを備え、
     前記制御装置は信号処理部を備え、
     前記信号処理部は、
      前記受信プローブの受信信号を周波数成分に変換する周波数変換部と、
      変換された前記周波数成分のうち、周波数パラメータにより指定された周波数成分の部分を用いて、欠陥位置を示す画像を生成する画像化部と、
      前記被検査体における欠陥部の検出精度に影響を与える情報と前記周波数パラメータとを対応付けたデータベースと、
       表示装置への表示を行う表示部と、
     を備え、
     前記表示部は、前記表示装置に、前記被検査体における欠陥部の検出精度に影響を与える情報を受け付ける第1入力部を表示する
     超音波検査装置。
  19.  前記超音波検査装置は、ネットワークに接続可能であり、
     前記制御装置は、前記ネットワークを介して、前記被検査体における欠陥部の検出精度に影響を与える情報と、前記周波数パラメータとを対応付けたデータベースに接続されること特徴とする請求項18に記載の超音波検査装置。
  20.  流体を介して被検査体に超音波ビームを入射することにより前記被検査体の検査を行う超音波検査方法であって、
     送信プローブから超音波ビームを放出する放出ステップと、
     前記超音波ビームを受信する受信ステップと、
     前記受信ステップで受信した前記超音波ビームの信号を周波数成分に変換する変換ステップと、
     前記周波数成分のうち、周波数パラメータの入力を受け付ける入力ステップと、
     入力された周波数パラメータを用いて、欠陥位置を示す画像を生成する画像化ステップとを含む
     ことを特徴とする超音波検査方法。
PCT/JP2023/027361 2022-07-28 2023-07-26 超音波検査装置及び超音波検査方法 WO2024024832A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022120824A JP7355899B1 (ja) 2022-07-28 2022-07-28 超音波検査装置及び超音波検査方法
JP2022-120824 2022-07-28

Publications (1)

Publication Number Publication Date
WO2024024832A1 true WO2024024832A1 (ja) 2024-02-01

Family

ID=88198330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/027361 WO2024024832A1 (ja) 2022-07-28 2023-07-26 超音波検査装置及び超音波検査方法

Country Status (2)

Country Link
JP (1) JP7355899B1 (ja)
WO (1) WO2024024832A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024120595A (ja) * 2023-02-24 2024-09-05 株式会社日立パワーソリューションズ 超音波検査装置及び超音波検査方法
JP2024143210A (ja) * 2023-03-30 2024-10-11 株式会社日立パワーソリューションズ 超音波検査装置及び超音波検査方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6491056A (en) * 1987-10-01 1989-04-10 Hitachi Construction Machinery Ultrasonic measurement system
JP2005099045A (ja) * 2004-12-06 2005-04-14 Jfe Steel Kk Cスキャン超音波探傷方法および装置
JP2007057511A (ja) * 2005-08-26 2007-03-08 Toyohashi Univ Of Technology 音速測定方法、及び音速測定装置
JP2009145324A (ja) * 2007-10-10 2009-07-02 Sonoscan Inc プロフィロメータ機能付きの走査型超音波顕微鏡
US20140074410A1 (en) * 2011-02-18 2014-03-13 Rolls-Royce Corporation Detection and measurement of defect size and shape using ultrasonic fourier-transformed waveforms
JP6641054B1 (ja) * 2019-04-26 2020-02-05 株式会社日立パワーソリューションズ プローブの可動範囲設定装置及び可動範囲設定方法
JP2022000609A (ja) * 2020-06-19 2022-01-04 株式会社日立パワーソリューションズ 超音波検査装置及び超音波検査方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6491056A (en) * 1987-10-01 1989-04-10 Hitachi Construction Machinery Ultrasonic measurement system
JP2005099045A (ja) * 2004-12-06 2005-04-14 Jfe Steel Kk Cスキャン超音波探傷方法および装置
JP2007057511A (ja) * 2005-08-26 2007-03-08 Toyohashi Univ Of Technology 音速測定方法、及び音速測定装置
JP2009145324A (ja) * 2007-10-10 2009-07-02 Sonoscan Inc プロフィロメータ機能付きの走査型超音波顕微鏡
US20140074410A1 (en) * 2011-02-18 2014-03-13 Rolls-Royce Corporation Detection and measurement of defect size and shape using ultrasonic fourier-transformed waveforms
JP6641054B1 (ja) * 2019-04-26 2020-02-05 株式会社日立パワーソリューションズ プローブの可動範囲設定装置及び可動範囲設定方法
JP2022000609A (ja) * 2020-06-19 2022-01-04 株式会社日立パワーソリューションズ 超音波検査装置及び超音波検査方法

Also Published As

Publication number Publication date
JP7355899B1 (ja) 2023-10-03
JP2024017882A (ja) 2024-02-08
TW202419867A (zh) 2024-05-16

Similar Documents

Publication Publication Date Title
WO2024024832A1 (ja) 超音波検査装置及び超音波検査方法
US10444202B2 (en) Nondestructive inspection using continuous ultrasonic wave generation
US8770028B2 (en) Method for the nondestructive recording of a rotational movement of a specimen, device therefor as well as probe unit
JP7264770B2 (ja) 超音波検査システム及び超音波検査方法
US9329155B2 (en) Method and device for determining an orientation of a defect present within a mechanical component
WO2023058292A1 (ja) 超音波検査装置及び超音波検査方法
JP7463202B2 (ja) 超音波検査装置及び超音波検査方法
KR100762502B1 (ko) 표면 결함의 깊이를 측정하기 위한 레이저-초음파 검사장치 및 방법
JP7428616B2 (ja) 超音波検査装置及び超音波検査方法
Liu et al. Damage detection of offshore platforms using acoustic emission analysis
JP2018189550A (ja) 超音波映像装置及び超音波映像生成方法
JP2010127689A (ja) 超音波探傷装置、断面画像生成方法および断面画像生成プログラム
WO2024176635A1 (ja) 超音波検査装置及び超音波検査方法
WO2024202397A1 (ja) 超音波検査装置及び超音波検査方法
JP5957297B2 (ja) 欠損探索装置、スキャン装置、および欠損探索方法
JP2012083130A (ja) 超音波検査方法及び超音波検査装置
JP5853445B2 (ja) 検査装置及び検査方法
JP5083859B2 (ja) 画像再構成装置
Jiang et al. Quantitative Detection of Internal Flaws of Action Rod Based on Ultrasonic Technology
JP7372209B2 (ja) 超音波検査装置
Ivanov et al. System for monitoring the acoustic radiation of discharge processes at an electric substation to diagnose the technical state of insulators
KR20230073651A (ko) 이방성 및 비균질성을 가지는 용접부에 대한 초음파 검사 계획 생성 장치
Harb Damage imaging in metallic and composite structures using scanning air-coupled and laser ultrasound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846562

Country of ref document: EP

Kind code of ref document: A1