JP2023038286A - リチウム硫黄(Li-S)電池の電気化学的充放電のための方法及びその方法を使用するデバイス - Google Patents

リチウム硫黄(Li-S)電池の電気化学的充放電のための方法及びその方法を使用するデバイス Download PDF

Info

Publication number
JP2023038286A
JP2023038286A JP2023006461A JP2023006461A JP2023038286A JP 2023038286 A JP2023038286 A JP 2023038286A JP 2023006461 A JP2023006461 A JP 2023006461A JP 2023006461 A JP2023006461 A JP 2023006461A JP 2023038286 A JP2023038286 A JP 2023038286A
Authority
JP
Japan
Prior art keywords
current
battery
charging
discharging
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023006461A
Other languages
English (en)
Inventor
ザジーブ カリム
Zaghib Karim
キム チス
Chisu Kim
ジェルフィ アブデルバスト
Guerfi Abdelbast
チョ ミュンフン
Myunghun Cho
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hydro Quebec
Original Assignee
Hydro Quebec
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hydro Quebec filed Critical Hydro Quebec
Publication of JP2023038286A publication Critical patent/JP2023038286A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/044Activating, forming or electrochemical attack of the supporting material
    • H01M4/0445Forming after manufacture of the electrode, e.g. first charge, cycling
    • H01M4/0447Forming after manufacture of the electrode, e.g. first charge, cycling of complete cells or cells stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Power Engineering (AREA)
  • Hybrid Cells (AREA)

Abstract

【課題】Li-S電池またはセルの電気化学的充放電のための方法を提供すること【解決手段】本発明は、Li-S電池またはセルの電気化学的充放電のための方法であって、使用される電流のプロファイルを変動することによって、電池における活性物質の形態の制御を可能にし、それ故に、電池の容量及び寿命を改善する方法に関する。本発明は、本発明の充放電プロセスを含む、Li-S電池の生成方法にも関する。本発明に従うプロセスは、Li-S電池充放電デバイスを使用して実行することができる。本発明は、そのようなデバイスに関する。【選択図】図2

Description

本発明は、一般的に、カソードが硫黄系材料からなり、アノードがリチウム系材料からなる(Li-S)電気化学セル及び電池に関する。より具体的には、本発明は、プロセスを実行するための、Li-S電池及びデバイスの充放電プロセスに関する。さらに、本発明は、本発明に従う充放電プロセスを具体化する、Li-S電池を製造するためのプロセスに関する。
Li-S電池などの高エネルギー密度電池は、携帯用電子デバイスの使用が増大するにつれてますます需要が増えている。Li-S電池内の化学反応は、固相と可溶性中間体との間の相変化に伴い起こる変換反応に基づく。その一方で従来の電池では、化学反応は、境界明確な固体媒体内部で起こるインターカレーション反応に基づく。それ故に、Li-S電池におけるカソードは、重大な形態変化及び体積変化を受ける。これは、長期サイクルをもつLi-S電池の製造が所望される場合に、基本的な課題のうちの一つとなる。Li-S電池における簡素化した反応スキームは、次の通りである。
Figure 2023038286000002
各ステップにおける化学反応は、次の通りである。
(I)S(固体)+2Li+2e→Li(可溶性);0.25電子/S(209mAh/g)
(II)Li(可溶性)+2Li+2e→2Li(可溶性);0.25電子/S(209mAh/g)
(III)Li(可溶性)+2Li+2e→2Li(固体);0.5電子/S(418mAh/g)
(IV)Li(固体)+2Li+2e→2LiS(固体);1電子/S(836mAh/g)
前に概説した化学反応における固体生成物は、電子導電率及びリチウムイオン導電率の両方において高抵抗を示す。従って、これらの固体生成物の形態の制御は、Li-S電池の可逆性の決定において重要因子となる(Jianming Zhengらの「Controlled Nucleation and Growth Process of Li/LiS in Lithium-Sulfur Batteries」,Journal of Electrochemical Society2013,160(11),A1992-A1996)。さまざまな制御方策が、当業界において公知となっている。
Li-S電池内の固体生成物の形態制御のために開発された一つの方策は、導電性マトリックス(通常、炭素系材料)内部に活性硫黄を閉じ込めることからなる。そのような導電性マトリックスは、例えば、メソポーラス炭素(X.Ji,L.F.Nazar,J.Mat.Chem.20(2010)9821-9826)、カーボンナノチューブ(CNTs)(G.Zheng,Q.Zhang,J.J.Cha,Y.Yang,W.Li,Z.W.Seh,Y.Cui,NanoLett.(2013)13,1265-1270)、またはグラフェン層(L.Ji,M.Rao,H.Zheng,L.Zhang
,Y.Li,W.Duan,J.Guo,E.J.Cairns,Y.Zhang,J.Am.Chem.Soc.133(2011)18522-18525)であっても良い。
導電性マトリックス内部の硫黄の閉じ込めに基づく前述のさまざまな手法は、高エネルギー電池Li-Sが有望であることを裏付ける興味深い結果をもたらした。しかしながら、これらの電池に関連するなおも多くの欠点がある。第一に、硫黄の閉じ込めは、常に完全ではないし、永久的でもない。特定の数のサイクル後、可溶性硫黄は、マトリックス外部及び電解質内部に拡散する。第二に、セルの体積エネルギー密度が、複合炭素の超低密度の故に、従来のLi-ion電池に劣る。第三に、閉じ込めプロセスは、大規模には経済的に採算が合わず、商業化が困難である。
Li-S電池内の固体生成物の形態制御のための他の方策は、セルに使用される電解質の性質に基づく。そのような手法は、例えば、U.S.7,019,494、U.S.7,646、U.S.2006-0208701、及びU.S.2005-0156575に開示されている。
さらに、Li-S電池の充電及び/または放電に基づく他の方策が試まれてきた。そのようなプロセスは、例えば、Yu-Sheng Suらの「A Strategic Approach to Recharging Lithium-Sulphur Batteries for Long Cycle Life」、2013年12月18日に公開されたNature Communications、U.S.8,647,769に開示されている。
U.S.7,019,494 U.S.7,646,171 U.S.2006-0208701 U.S.2005-0156575 U.S.8,647,769
X.Ji,L.F.Nazar,J.Mat.Chem.20(2010)9821-9826 G.Zheng,Q.Zhang,J.J.Cha,Y.Yang,W.Li,Z.W.Seh,Y.Cui,NanoLett.(2013)13,1265-1270 L.Ji,M.Rao,H.Zheng,L.Zhang,Y.Li,W.Duan,J.Guo,E.J.Cairns,Y.Zhang,J.Am.Chem.Soc.133(2011)18522-18525
Li-S電池の性能及び特性を改善するための方策を開発する要求がなおもある。
本記述は、その内容全体が参照により本明細書に組み込まれる多くの文献を参照する。
本発明者らは、Li-S電池における活性物質の形態制御を可能にし、それ故に、電池
の容量及びライフサイクルが改善された充放電プロセスを開発した。本発明に従うプロセスは、制御プロセスにおけるツールとして使用される。
より具体的には、本発明者らは、充放電プロセス中の、電池の容量及びライフサイクルの改善を可能にするのに使用される電流のプロファイルにおける変動を発見した。
本発明に従うプロセスは、Li-S電池充放電デバイスを使用して実行することができる。本発明は、そのようなデバイスに関する。
さらに、本発明に従うプロセスは、Li-S電池のための製造プロセス、特に、電池の形成及び/または熟成期において具現することができる。本発明は、そのような製造プロセスに関する。
それ故に、本発明は、その態様に従う下記事項を提供する。
(1)パルス電流の使用を含む、Li-S電池またはセルの充放電のためのプロセス。
(2)充電ステップ、放電ステップまたは前記充電ステップ及び放電ステップ両方におけるパルス電流の使用を含む、Li-S電池またはセルの充放電のためのプロセス。
(3)前記充電ステップのみにおけるパルス電流の使用を含む、Li-S電池またはセルの充放電のためのプロセス。
(4)前記放電ステップのみにおけるパルス電流の使用を含む、Li-S電池またはセルの充放電のためのプロセス。
(5)パルス電流と定電流との組み合わせの使用を含む、Li-S電池またはセルの充放電のためのプロセス。
(6)充電ステップ、放電ステップまたは前記充電ステップ及び放電ステップ両方における、パルス電流と定電流との組み合わせの使用を含む、Li-S電池またはセルの充放電のためのプロセス。
(7)前記充電ステップのみにおけるパルス電流と定電流との組み合わせの使用を含む、Li-S電池またはセルの充放電のためのプロセス。
(8)前記放電ステップのみにおけるパルス電流と定電流との組み合わせの使用を含む、Li-S電池またはセルの充放電のためのプロセス。
(9)Li-S電池またはセルの充放電のためのデバイスであって、パルス電流を提供するように適応した前記デバイス。
(10)Li-S電池またはセルの充放電のためのデバイスであって、パルス電流、定電流またはパルス電流と定電流との組み合わせを提供するように適応した前記デバイス。
(11)Li-S電池またはセルの充放電のためのデバイスであって、パルス電流及び定電流を断続的に提供するように適応した前記デバイス。
(12)前記電池の形成及び/または熟成のステップを含み、前記ステップは、パルス電流を使用する、Li-S電池を製造するためのプロセス。
(13)前記電池の形成及び/または熟成のステップを含み、前記ステップは、パルス電流と定電流との組み合わせを使用する、Li-S電池を製造するためのプロセス。
(14)第一の期間に定電流を印加し、それに続く第二の期間に前記電流方向を反転して前記パルス電流を取得するところの、項目(1)~(8)のいずれか1つに記載のプロセス、項目(10)若しくは(11)に従うデバイス、または項目(12)若しくは(13)に従うプロセス。
(15)第一の期間に定電流を印加し、それに続く期間に中断して前記パルス電流を取得するところの、項目(1)~(8)のいずれか1つに記載のプロセス、項目(10)若しくは(11)に従うデバイス、または項目(12)若しくは(13)に従うプロセス。
(16)約0.1秒~約10時間続く第一の期間に定電流を印加し、それに続く約0.1秒~約10時間続く第二の期間に前記電流方向を反転して前記パルス電流を取得するところの、項目(1)~(8)のいずれか1つに記載のプロセス、項目(10)若しくは(
11)に従うデバイス、または項目(12)若しくは(13)に従うプロセス。
(17)約0.1秒~約10時間続く第一の期間に定電流を印加し、それに続く約0.1秒~約10時間続く期間に中断して前記パルス電流を取得するところの、項目(1)~(8)のいずれか1つに記載のプロセス、項目(10)若しくは(11)に従うデバイス、または項目(12)若しくは(13)に従うプロセス。
本発明の他の目的、利点及び特徴は、添付図面を参照した単なる実施例として与えられる、その具体的な実施形態の以下の非制限的な記述を読むことによってより明らかとなる。
比較実施例1の電池と対比した実施例2の電池の放電を例証する。 比較実施例1の電池と対比した実施例3の電池の放電を例証する。 比較実施例1の電池と対比した実施例4の電池の放電を例証する。 比較実施例1の電池と対比した実施例5の電池の放電を例証する。 比較実施例1の電池と対比した実施例6の電池の放電を例証する。 図6aは、実施例8(比較実施例2)の電池の放電を例証する。図6bは、比較実施例2の電池と対比した実施例9の電池の放電を例証する。
本明細書に使用されるような「パルス電流」という用語は、限られた期間における電流の印加、それに続く限られた期間における電流方向の反転または限られた期間における中断を意味する。
本明細書に使用されるような「定電流」という用語は、重複する時間に関して制限のない、制限された電圧またはエネルギーの蓄積によって制御される電流の印加を意味する。
本明細書に使用されるような「ハイブリッド電流」という用語は、同一の充電ステップまたは放電ステップ期間における、パルス電流と定電流との組み合わせの使用を意味する。
本明細書に使用されるような「充電」という用語は、正極の酸化及び負極の還元期間における、正極から負極への電流束(正電流)を生成する電気化学反応を意味する。
本明細書に使用されるような「放電」という用語は、正極の還元及び負極の酸化期間における、負極から正極への電流束(負電流)を生成する電気化学反応を意味する。
本明細書に使用されるような「充放電」という用語は、電池の充電及び/または放電を意味する。
本明細書に使用されるような「充電デバイス」という用語は、電池を充電するための電流を生成する電子デバイスを意味する。
本発明者らは、Li-S電池における活性物質の形態制御を可能にする充放電プロセスを開発した。本発明に従うプロセスによって、電池の容量及びライフサイクルの改良が可能になる。プロセスは、Li-S電池における活性物質の形態制御のためのツールとして使用される。より具体的には、充放電プロセス中の、電池の容量及びライフサイクルの改善を可能にするのに使用される電流のプロファイルにおける変動を発見した。
実際には、電気化学セルにおける反応速度(酸化または還元)を電流が示す限り、反応
速度論を、電流のプロファイルをプログラムすることによって直接に制御し得る。
従来の再充電可能リチウム電池では、通常、反応が定速で起こるよう電池を充電するように電流が印加される。本発明は、パルス電流を使用するプロセスを提供する。このプロセスは、Li-S電池における活性硫黄の使用を促進する。パルス電流は、Li-S電池において反応が起こるにつれて徐々に緩和及びリバランシングを供与し、形成される固体生成物(S、Li、LiS)の形態は、より抵抗性が小さくなる。実際には、緩和またはリバランシングによって、固体生成物と電解質における可溶性種との間の相互作用時間を増大することができる。
本発明は、充電状態(SOC)の程度に応じてパルセーションのさまざまな振幅を組み合わせることによって充電時間を短縮できるという別の利点を示す。通常、高電流状態下で起こる望ましくない不可逆反応を防止するために、充電速度を制限することが必須である。パルス電流の印加によって、充電電流のより許容可能な限度がもたらされる。
本発明の実施形態において、プロセスは、硫黄系カソード材料を使用する任意のタイプの電池に適用することができる。別の実施形態では、硫黄は、硫黄元素、有機硫黄、炭素硫黄成分または任意の他の類似の成分であっても良い。
本発明の実施形態において、プロセスは、高容量カソード(>1mg_硫黄/cm)及び/または粘性電解質(>10mPa・s)をもつセルにも適用して良い。
本発明に従うプロセスは、Li-S電池の充放電に使用される充電デバイスに実行して良い。本発明は、そのようなデバイスに関する。
さらに、本発明に従うプロセスは、Li-S電池のための製造プロセスにおいて実行し得る。特に、本発明に従うプロセスは、形成及び/または熟成ステップにおいて実行し得る。
本発明は、下記の実施例によってさらに例証される。本発明は、これらの実施例によって限定されない。
実施例1:(比較実施例1)
a)正極薄膜の調製
ポリエチレンオキサイドホモポリマー(PEO)(MM:5.000.000)を、アセトニトリルとトルエンとの混合液(体積比:8:2)中に、10%分子量濃度において溶解する。硫黄粉末(3g)、ケッチェンブラック(1g)、PEO溶液(4.49g)を、懸濁液を取得するために、自転公転撹拌機(Thinky Mixer ARE-250)を使用して共に混合する。例えば、約10000cPである、コーティングに適切な粘性に到達させるために、追加的な溶媒を混合液(アセトニトリル+トルエン、体積比:8:2)に追加する。そのように取得した懸濁液を使用して、炭素で覆われているアルミ箔におけるコーティングを形成する。コーティングの形成は、200μmギャップをもつ「ドクターブレード」を使用して実行する。硫黄の容量は、溶媒の蒸発後、約2mg/cmである。
b)セルアセンブリ
コインサイズを有するCR2032セルを、アノードとしてセパレータCelgard3501及びリチウムホイル(Hoshen、200μm)を使用して、ヘリウムガスで満たされたグローブボックス内部で組み立てる。次に、ジメトキシエタン(DME)と1
,3-ジオキソラン(DOX)との混合液(体積比:1:1)におけるリチウムビス-(トリフルオロメチルスルホニル)イミド(LiTFSI)溶液の0.12mlを、セルに注入して液体電解質を形成する。
c)形成
そのように構成したセルを、12時間25℃に保持し、その後、0.1Cの定電流を使用した充放電プロセスを、3回、25℃において1.6V~2.8Vにおいて行う。比較実施例1の電池の放電容量を、図1~図5に例証する。比較実施例1において取得した容量は、909mAhである。
実施例2
連続電流の代わりにパルス電流を形成期(充電ステップ及び放電ステップ期間)に印加する。このパルス電流は、0.1C電流を60秒間印加し、それに続いて20秒間電流方向を反転するものとして特徴付けられる。これを図1に例証する。このパルス電流の印加は、カットオフ電圧に達するまで繰り返される。他の実験条件は、実施例1と同一である。実施例2の電池の放電容量を、比較実施例1と比較して図1に例証する。実施例2では、容量が1034mAhに達する。これは、比較実施例1において取得した容量よりも14%高い。
実施例3
連続電流の代わりにパルス電流を形成期(充電ステップ及び放電ステップ期間)に印加する。このパルス電流は、0.1C電流を60秒間印加し、それに続いて0.5C電流を4秒間反対方向に流すものとして特徴付けられる。これを図2に例証する。このパルス電流の印加は、カットオフ電圧に達するまで繰り返される。他の実験条件は、実施例1と同一である。実施例3の電池の放電容量を、比較実施例1と比較して図2に例証する。実施例3では、容量が1036mAhに達する。これは、比較実施例1において取得した容量よりも14%高い。
実施例4
0.1C電流を60秒間印加し、それに続いて放電ステップ期間のみに0.5C電流を4秒間反対方向に流し、充電ステップ期間には定電流を印加するものとして特徴付けられたパルス電流を印加する。他の実験条件は、実施例1と同一である。実施例4の電池の放電容量を、比較実施例1と比較して図3に例証する。実施例4では、容量が1048mAhに達する。これは、比較実施例1において取得した容量よりも15%高い。
実施例5
0.1C電流を60秒間印加し、それに続いて充電ステップ期間のみに0.1C電流を20秒間反対方向に流し、放電ステップ期間には定電流を印加するものとして特徴付けられたパルス電流を印加する。他の実験条件は、実施例1と同一である。実施例5の電池の放電容量を、比較実施例1と比較して図4に例証する。実施例5では、容量が1008mAhに達する。これは、比較実施例1において取得した容量よりも11%高い。
実施例6
パルス電流を、放電ステップの30%のみの期間に印加する。この実施例では、パルス電流と定電流との組み合わせ、すなわち、「ハイブリッド電流」を印加することを理解すべきである。他の実験条件は、実施例4と同一である。実施例6の電池の放電容量を、比較実施例1と比較して図5に例証する。実施例6では、容量が951mAhに達する。これは、比較実施例1において取得した容量よりも5%高い。
実施例7(比較実施例2)
N-プロピル-N-メチルピロリジニウムビス(トリフルオロメタンスルホニル)イミド(PY13TFSI)と、DMEと、DOXとの混合液(体積比:2:1:1)中のリチウムビス-(トリフルオロメチルスルホニル)イミド(LiTFSI)0.5Mを、セルに注入して液体電解質を形成する。他の実験条件は、実施例1と同一である。実施例7(比較実施例2)の電池の放電容量を、比較実施例1と比較して図6aに例証する。比較実施例2において取得した容量は、288mAhである。
実施例8
連続電流の代わりにパルス電流を形成期に印加する。このパルス電流は、0.1C電流を1時間印加し、それに続いて2時間中断するものとして特徴付けられる。このパルス電流の印加に続く中断は、カットオフ電圧に達するまで繰り返される。他の実験条件は、実施例7と同一である。実施例8の電池の放電容量を、実施例7(比較実施例2)と比較して図6bに例証する。実施例8では、容量が458mAhに達する。これは、比較実施例2において取得した容量よりも59%高い。
実施例9
連続電流の代わりにパルス電流を形成期に印加する。このパルス電流は、0.1C電流を6時間印加し、それに続いて6時間中断するものとして特徴付けられる。このパルス電流の印加に続く中断は、カットオフ電圧に達するまで繰り返される。他の条件は、実施例7と同一である。実施例9の電池の放電容量を、実施例7(比較実施例2)と比較して図6cに例証する。実施例9では、容量が816mAhに達する。これは、比較実施例2において取得した容量よりも183%高い。
以下の表1は、実施例1~9におけるさまざまな実験条件を示す。
Figure 2023038286000003
本発明の実施形態において、セルにおける電解質は、前述の実施例に記述するように液状である。電解質は、実施例7~9に記述するようにイオン液体であっても良い。当業者に理解されるように、他のタイプの電解質も使用することができる。
本発明の実施形態では、電流の振幅に関して制限はない。
特許請求の範囲の範囲は、実施例に説明される好ましい実施形態によって限定されるべきではなく、全体としての記述と一致する広範な解釈として与えられるべきである。
本発明の好ましい実施形態では、例えば、以下が提供される。
(項1)
パルス電流の使用を含む、Li-S電池またはセルの充放電のためのプロセス。
(項2)
充電ステップ、放電ステップまたは前記充電ステップ及び放電ステップ両方におけるパルス電流の使用を含む、Li-S電池またはセルの充放電のためのプロセス。
(項3)
前記充電ステップのみにおけるパルス電流の使用を含む、Li-S電池またはセルの充放電のためのプロセス。
(項4)
前記放電ステップのみにおけるパルス電流の使用を含む、Li-S電池またはセルの充放電のためのプロセス。
(項5)
パルス電流と定電流との組み合わせの使用を含む、Li-S電池またはセルの充放電のためのプロセス。
(項6)
充電ステップ、放電ステップまたは前記充電ステップ及び放電ステップ両方における、パルス電流と定電流との組み合わせの使用を含む、Li-S電池またはセルの充放電のためのプロセス。
(項7)
前記充電ステップのみにおけるパルス電流と定電流との組み合わせの使用を含む、Li-S電池またはセルの充放電のためのプロセス。
(項8)
前記放電ステップのみにおけるパルス電流と定電流との組み合わせの使用を含む、Li-S電池またはセルの充放電のためのプロセス。
(項9)
Li-S電池またはセルの充放電のためのデバイスであって、パルス電流を提供するように適応した前記デバイス。
(項10)
Li-S電池またはセルの充放電のためのデバイスであって、パルス電流、定電流またはパルス電流と定電流との組み合わせを提供するように適応した前記デバイス。
(項11)
Li-S電池またはセルの充放電のためのデバイスであって、パルス電流及び定電流を断続的に提供するように適応した前記デバイス。
(項12)
前記電池の形成及び/または熟成のステップであって、パルス電流を使用する前記ステップを含む、Li-S電池を製造するためのプロセス.
(項13)
前記電池の形成及び/または熟成のステップであって、パルス電流と定電流との組み合わせを使用する前記ステップを含む、Li-S電池を製造するためのプロセス。
(項14)
第一の期間に定電流を印加し、それに続く第二の期間に前記電流方向を反転して前記パルス電流を取得するところの、上記項1~8のいずれか1つに記載のプロセス、上記項10若しくは11に従うデバイス、または上記項12若しくは13に従うプロセス。
(項15)
第一の期間に定電流を印加し、それに続く期間に中断して前記パルス電流を取得するところの、上記項1~8のいずれか1つに記載のプロセス、上記項10若しくは11に従うデバイス、または上記項12若しくは13に従うプロセス。
(項16)
約0.1秒~約10時間続く第一の期間に定電流を印加し、それに続く約0.1秒~約10時間続く第二の期間に前記電流方向を反転して前記パルス電流を取得するところの、上記項1~8のいずれか1つに記載のプロセス、上記項10若しくは11に従うデバイス、または上記項12若しくは13に従うプロセス。
(項17)
約0.1秒~約10時間続く第一の期間に定電流を印加し、それに続く約0.1秒~約10時間続く期間に中断して前記パルス電流を取得するところの、上記項1~8のいずれか1つに記載のプロセス、上記項10若しくは11に従うデバイス、または上記項12若しくは13に従うプロセス。

Claims (1)

  1. 高エネルギー密度
JP2023006461A 2014-04-15 2023-01-19 リチウム硫黄(Li-S)電池の電気化学的充放電のための方法及びその方法を使用するデバイス Pending JP2023038286A (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201461979823P 2014-04-15 2014-04-15
US61/979,823 2014-04-15
JP2019061066A JP2019110759A (ja) 2014-04-15 2019-03-27 リチウム硫黄(Li−S)電池の電気化学的充放電のための方法及びその方法を使用するデバイス
JP2021069622A JP2021106497A (ja) 2014-04-15 2021-04-16 リチウム硫黄(Li−S)電池の電気化学的充放電のための方法及びその方法を使用するデバイス

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021069622A Division JP2021106497A (ja) 2014-04-15 2021-04-16 リチウム硫黄(Li−S)電池の電気化学的充放電のための方法及びその方法を使用するデバイス

Publications (1)

Publication Number Publication Date
JP2023038286A true JP2023038286A (ja) 2023-03-16

Family

ID=54323312

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2016561306A Pending JP2017514435A (ja) 2014-04-15 2015-04-14 リチウム硫黄(Li−S)電池の電気化学的充放電のための方法及びその方法を使用するデバイス
JP2019061066A Withdrawn JP2019110759A (ja) 2014-04-15 2019-03-27 リチウム硫黄(Li−S)電池の電気化学的充放電のための方法及びその方法を使用するデバイス
JP2021069622A Pending JP2021106497A (ja) 2014-04-15 2021-04-16 リチウム硫黄(Li−S)電池の電気化学的充放電のための方法及びその方法を使用するデバイス
JP2023006461A Pending JP2023038286A (ja) 2014-04-15 2023-01-19 リチウム硫黄(Li-S)電池の電気化学的充放電のための方法及びその方法を使用するデバイス

Family Applications Before (3)

Application Number Title Priority Date Filing Date
JP2016561306A Pending JP2017514435A (ja) 2014-04-15 2015-04-14 リチウム硫黄(Li−S)電池の電気化学的充放電のための方法及びその方法を使用するデバイス
JP2019061066A Withdrawn JP2019110759A (ja) 2014-04-15 2019-03-27 リチウム硫黄(Li−S)電池の電気化学的充放電のための方法及びその方法を使用するデバイス
JP2021069622A Pending JP2021106497A (ja) 2014-04-15 2021-04-16 リチウム硫黄(Li−S)電池の電気化学的充放電のための方法及びその方法を使用するデバイス

Country Status (10)

Country Link
US (1) US10536019B2 (ja)
EP (1) EP3132490B1 (ja)
JP (4) JP2017514435A (ja)
KR (1) KR102383024B1 (ja)
CN (1) CN106233525B (ja)
CA (1) CA2943419C (ja)
ES (1) ES2954116T3 (ja)
HU (1) HUE063639T2 (ja)
PL (1) PL3132490T3 (ja)
WO (1) WO2015157859A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111261960B (zh) * 2017-04-17 2021-01-29 青岛九环新越新能源科技股份有限公司 在硫基或硒基电池正极表面构建稳定固态界面的方法
CN107369854B (zh) * 2017-05-23 2019-10-08 天能电池(芜湖)有限公司 一种快速电池脉冲化成充电方法
KR102229455B1 (ko) * 2017-07-26 2021-03-18 주식회사 엘지화학 리튬-황 전지의 수명 개선 방법
KR102543242B1 (ko) 2017-11-24 2023-06-14 주식회사 엘지에너지솔루션 리튬-황 전지의 수명특성 개선방법 및 그 방법을 적용하여 제조된 리튬-황 전지
CN109616705A (zh) * 2018-11-26 2019-04-12 上海大学 提高锂离子电池容量的方法
US20210044130A1 (en) * 2019-07-01 2021-02-11 Nextech Batteries, Inc. Pulse current method of enhancing the functionality of a battery
CN112259814A (zh) * 2020-09-24 2021-01-22 东莞东阳光科研发有限公司 一种提升锂硫电池容量保持率的方法
CN112928351A (zh) * 2021-02-10 2021-06-08 中国科学院金属研究所 一种锂硫电池的脉冲充电技术
CN113241482A (zh) * 2021-02-10 2021-08-10 中国科学院金属研究所 一种锂硫电池的充电技术

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5291116A (en) 1992-01-27 1994-03-01 Batonex, Inc. Apparatus for charging alkaline zinc-manganese dioxide cells
AU4730593A (en) * 1992-09-23 1994-03-31 Batonex, Inc. Battery charger
US6376123B1 (en) 1994-11-23 2002-04-23 Polyplus Battery Company Rechargeable positive electrodes
JP2001178011A (ja) 1999-12-10 2001-06-29 Toshiba Battery Co Ltd 二次電池装置
US6329789B1 (en) * 1999-12-21 2001-12-11 Moltech Corporation Methods of charging lithium-sulfur batteries
JP4924963B2 (ja) * 2001-03-27 2012-04-25 独立行政法人物質・材料研究機構 チオリン酸リチウム鉄化合物、その製造方法及び該化合物を用いたリチウム電池
KR100472513B1 (ko) * 2002-11-16 2005-03-11 삼성에스디아이 주식회사 리튬 설퍼 전지용 유기 전해액 및 이를 채용한 리튬 설퍼전지
JP4710212B2 (ja) * 2002-11-19 2011-06-29 日本電気株式会社 リチウムイオン二次電池システムおよびリチウムイオン二次電池の運転方法
US7221125B2 (en) * 2003-11-06 2007-05-22 Y. Ding System and method for charging a battery
US7646171B2 (en) 2004-01-06 2010-01-12 Sion Power Corporation Methods of charging lithium sulfur cells
US7019494B2 (en) 2004-01-06 2006-03-28 Moltech Corporation Methods of charging lithium sulfur cells
US7688075B2 (en) * 2005-04-20 2010-03-30 Sion Power Corporation Lithium sulfur rechargeable battery fuel gauge systems and methods
EP1941568A1 (en) 2005-09-26 2008-07-09 Oxis Energy Limited Lithium-sulphur battery with high specific energy
US7981550B2 (en) 2007-03-19 2011-07-19 The Gillette Company Lithium cell
JP2010040198A (ja) 2008-07-31 2010-02-18 Idemitsu Kosan Co Ltd 二次電池充放電装置、電気機器、二次電池充放電方法及び二次電池充放電プログラム
CN201319516Y (zh) * 2008-11-26 2009-09-30 广州西格美信电子科技有限公司 用于移动设备的自适应外挂电池
US8791669B2 (en) * 2010-06-24 2014-07-29 Qnovo Inc. Method and circuitry to calculate the state of charge of a battery/cell
US9142994B2 (en) * 2012-09-25 2015-09-22 Qnovo, Inc. Method and circuitry to adaptively charge a battery/cell
JP5778926B2 (ja) 2010-12-27 2015-09-16 株式会社アルバック 全固体リチウム二次電池の製造方法及び全固体リチウム二次電池の検査方法
CN102354773B (zh) 2011-09-19 2014-01-08 北京电子工程总体研究所 锂-亚硫酰氯电池供电控制电路
US20130193904A1 (en) * 2011-10-03 2013-08-01 earthCell, Inc. Charging unit useful to transform a high plurality of Energy Storage Devices
US10403885B2 (en) * 2011-10-17 2019-09-03 Albemarle Germany Gmbh Active material for batteries
JP6018947B2 (ja) * 2012-02-21 2016-11-02 日本碍子株式会社 固体電解質セラミックス材料のイオン伝導率を回復させる方法
DE102012018622A1 (de) * 2012-09-14 2014-03-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Li-S-Batterie mit hoher Zyklenstabilität und Verfahren zu deren Betreiben
US10193366B2 (en) * 2015-01-12 2019-01-29 Potential Difference, Inc. Rapid battery charging

Also Published As

Publication number Publication date
JP2019110759A (ja) 2019-07-04
JP2021106497A (ja) 2021-07-26
CA2943419C (fr) 2023-03-07
KR102383024B1 (ko) 2022-04-05
WO2015157859A1 (fr) 2015-10-22
ES2954116T3 (es) 2023-11-20
CN106233525B (zh) 2020-09-11
JP2017514435A (ja) 2017-06-01
EP3132490A1 (fr) 2017-02-22
EP3132490B1 (fr) 2023-06-07
CA2943419A1 (fr) 2015-10-22
KR20160145091A (ko) 2016-12-19
US10536019B2 (en) 2020-01-14
HUE063639T2 (hu) 2024-01-28
CN106233525A (zh) 2016-12-14
US20170040806A1 (en) 2017-02-09
EP3132490A4 (fr) 2017-11-22
PL3132490T3 (pl) 2023-12-18

Similar Documents

Publication Publication Date Title
JP2023038286A (ja) リチウム硫黄(Li-S)電池の電気化学的充放電のための方法及びその方法を使用するデバイス
Lochala et al. Research progress toward the practical applications of lithium–sulfur batteries
Louli et al. Optimizing cycling conditions for anode-free lithium metal cells
US11355739B2 (en) Passivation of lithium metal by two-dimensional materials for rechargeable batteries
Zhang Eliminating pre-lithiation step for making high energy density hybrid Li-ion capacitor
US10727472B2 (en) Cathode, cathode-containing lithium ion battery in the state prior to the first charging process, method for forming a lithium ion battery, and lithium ion battery after formation
Li et al. The tunable electrochemical performances of carbon fluorides/manganese dioxide hybrid cathodes by their arrangements
Zhao et al. Lithium/sulfur secondary batteries: a review
Park et al. Trimethylsilyl azide (C 3 H 9 N 3 Si): a highly efficient additive for tailoring fluoroethylene carbonate (FEC) based electrolytes for Li-metal batteries
Piper et al. Optimized silicon electrode architecture, interface, and microgeometry for next-generation lithium-ion batteries
Hong et al. Effect of ethylene glycol bis (propionitrile) ether (EGBE) on the performance and interfacial chemistry of lithium-rich layered oxide cathode
Leveau et al. Cycling strategies for optimizing silicon nanowires performance as negative electrode for lithium battery
Qin et al. Tributyl borate as a novel electrolyte additive to improve high voltage stability of lithium cobalt oxide in carbonate-based electrolyte
Tu et al. Terthiophene as electrolyte additive for stabilizing lithium nickel manganese oxide cathode for high energy density lithium-ion batteries
Yang et al. A significant enhancement of cycling stability at fast charging rate through incorporation of Li3N into LiF-based SEI in SiOx anode for Li-ion batteries
Applestone et al. Symmetric cell evaluation of the effects of electrolyte additives on Cu2Sb–Al2O3–C nanocomposite anodes
Zhang et al. In situ constructing lithiophilic and Ion/Electron Dual-Regulated current collector for highly stable lithium metal batteries
Heist et al. Self-contained fragmentation and interfacial stability in crude micron-silicon anodes
Kim et al. Incorporation of embedded protective layers to circumvent the low LiNO3 solubility problem and enhance Li metal anode cycling performance
US10170756B2 (en) Li2S batteries having high capacity, high loading, and high coulombic efficiency
JP6731152B2 (ja) 非水電解液二次電池の製造方法
CN113692628A (zh) 锂离子电容器的预锂化方法
US20190181430A1 (en) Lithium-ion battery, and the method for producing the same
JP2019091532A (ja) リチウムイオン二次電池
Kim et al. A porous lithium metal anode with an artificial solid electrolyte interface fabricated by a facile process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240322