JP2023036092A - Ultrasonic probe and method for ultrasonic flaw detection - Google Patents

Ultrasonic probe and method for ultrasonic flaw detection Download PDF

Info

Publication number
JP2023036092A
JP2023036092A JP2021142877A JP2021142877A JP2023036092A JP 2023036092 A JP2023036092 A JP 2023036092A JP 2021142877 A JP2021142877 A JP 2021142877A JP 2021142877 A JP2021142877 A JP 2021142877A JP 2023036092 A JP2023036092 A JP 2023036092A
Authority
JP
Japan
Prior art keywords
wedge member
flaw detection
ultrasonic probe
ultrasonic
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021142877A
Other languages
Japanese (ja)
Other versions
JP7023406B1 (en
Inventor
勝也 竹川
Katsuya Takekawa
寛孝 門下
Hirotaka Kadoshita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Power Inspection Technologies Ltd
Original Assignee
Mitsubishi Heavy Industries Power Inspection Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Power Inspection Technologies Ltd filed Critical Mitsubishi Heavy Industries Power Inspection Technologies Ltd
Priority to JP2021142877A priority Critical patent/JP7023406B1/en
Application granted granted Critical
Publication of JP7023406B1 publication Critical patent/JP7023406B1/en
Publication of JP2023036092A publication Critical patent/JP2023036092A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

To suppress the size of an ultrasonic probe.SOLUTION: The ultrasonic probe according to at least one embodiment includes: a first wedge member; a second wedge member different from the first wedge member; an acoustic isolation board between the first wedge member and the second wedge member, the acoustic isolation board acoustically isolating the first wedge member and the second wedge member from each other; a transmission element in the upper surface of the first wedge, the transmission element including a plurality of piezoelectric elements; a reception element in the upper surface of the second wedge, the reception element including a plurality of piezoelectric elements; and a housing located across the acoustic isolation board and over the first and second wedge members, the housing covering the transmission element and the reception element.SELECTED DRAWING: Figure 2B

Description

本開示は、超音波探触子及び超音波探傷方法に関する。 The present disclosure relates to an ultrasonic probe and an ultrasonic flaw detection method.

被検体に対して超音波探傷を行うことで、被検体の内部を検査することが広く行われている。超音波探傷では、例えば被検体に送信した超音波の反射波に基づいて探傷画像を生成し、生成した探傷画像から被検体の内部のきずの有無やきずの位置を判断することができる(特許文献1参照)。 Inspecting the inside of a subject is widely performed by performing ultrasonic flaw detection on the subject. In ultrasonic flaw detection, for example, a flaw detection image is generated based on the reflected waves of ultrasonic waves transmitted to the subject, and the presence or absence of flaws inside the subject and the position of the flaw can be determined from the generated flaw detection image (Patent Reference 1).

特開2011-141124号公報JP 2011-141124 A

例えば、探傷対象物が比較的板厚の厚い板部材や管である場合、探触子を配置した探傷対象物の表面から板厚方向に沿って比較的遠い領域を縦波の超音波で探傷し、板厚に沿って該表面に比較的近い領域をクリーピング波で探傷することが考えられる。
この場合、従来の超音波探傷では、探触子を配置した探傷対象物の表面から板厚方向に沿って比較的遠い領域を縦波の超音波で探傷する場合と、板厚に沿って該表面に比較的近い領域をクリーピング波で探傷する場合とで、異なる探触子を用いて探傷することが一般的である。
そのため、従来の超音波探傷では、探触子を変更して超音波探傷を2回実施しなければならず、探触子を変更して探傷対象物に設置し直す作業が必要である。
For example, if the object to be tested is a relatively thick plate member or pipe, a longitudinal wave ultrasonic wave is used to detect an area relatively far along the plate thickness direction from the surface of the object to be tested where the probe is placed. Then, it is conceivable to inspect a region relatively close to the surface along the plate thickness with a creeping wave.
In this case, in the conventional ultrasonic flaw detection, a region relatively far from the surface of the object to be tested on which the probe is arranged along the direction of plate thickness is detected with ultrasonic waves of longitudinal waves, and the region along the thickness is detected. Different probes are generally used for flaw detection in areas relatively close to the surface using creeping waves.
Therefore, in the conventional ultrasonic flaw detection, it is necessary to change the probe and perform the ultrasonic flaw detection twice.

そこで、探触子を変更して探傷対象物に設置し直す作業を行わなくても済むように、探触子を配置した探傷対象物の表面から板厚方向に沿って比較的遠い領域と比較的近い領域とを1つの探触子で探傷可能な探触子が求められている。
しかし、このような探触子において、1つの探触子で超音波の送信と受信とを行うようにすると、クリーピング波を発生させようとする場合に、ウエッジ部材内に様々な雑エコーが発生してしまうため、ウエッジ部材を比較的大きくせざるを得なかった。そのため、探傷対象物の表面に他の部材等が近接して配置されている場合等では、該他の部材と探触子とが干渉して探傷対象物の表面に探触子を配置できず、超音波探傷を行うことができない。
Therefore, in order to eliminate the need to change the probe and re-install it on the test object, we compared the There is a demand for a probe that can detect flaws in a close target area with a single probe.
However, in such a probe, if one probe is used to transmit and receive ultrasonic waves, various noise echoes are generated in the wedge member when an attempt is made to generate a creeping wave. Therefore, the wedge member had to be relatively large. Therefore, when another member or the like is arranged close to the surface of the object to be tested, interference between the other member and the probe prevents the probe from being arranged on the surface of the object to be tested. , ultrasonic flaw detection cannot be performed.

本開示の少なくとも一実施形態は、上述の事情に鑑みて、超音波探触子の大きさを抑制することを目的とする。 At least one embodiment of the present disclosure aims at suppressing the size of the ultrasonic probe in view of the above circumstances.

(1)本開示の少なくとも一実施形態に係る超音波探触子は、
第1ウエッジ部材と、
前記第1ウエッジ部材とは異なる第2ウエッジ部材と、
前記第1ウエッジ部材と前記第2ウエッジ部材との間に配置されて、前記第1ウエッジ部材と前記第2ウエッジ部材とを音響的に隔てる音響隔離板と、
前記第1ウエッジの上面に配置される、複数の圧電素子を含む送信用素子と、
前記第2ウエッジの上面に配置される、複数の圧電素子を含む受信用素子と、
前記音響隔離板を跨ぎ、前記第1ウエッジ部材と前記第2ウエッジ部材とに亘って配置され、前記送信用素子と前記受信用素子とを覆う筐体と、
を備える。
(1) An ultrasonic probe according to at least one embodiment of the present disclosure,
a first wedge member;
a second wedge member different from the first wedge member;
an acoustic isolation plate disposed between the first wedge member and the second wedge member to acoustically separate the first wedge member and the second wedge member;
a transmission element including a plurality of piezoelectric elements disposed on the upper surface of the first wedge;
a receiving element including a plurality of piezoelectric elements disposed on the upper surface of the second wedge;
a housing straddling the acoustic isolation plate and arranged over the first wedge member and the second wedge member to cover the transmitting element and the receiving element;
Prepare.

(2)本開示の少なくとも一実施形態に係る超音波探傷方法は、
請求項1乃至11の何れか一項に記載の超音波探触子を用いて、探傷対象物における探傷領域を縦波の超音波で探傷するステップと、
該超音波探触子を用いて、前記探傷領域とは深さが少なくとも一部で異なる領域をクリーピング波で探傷するステップと、
を備える。
(2) An ultrasonic flaw detection method according to at least one embodiment of the present disclosure,
A step of using the ultrasonic probe according to any one of claims 1 to 11 to detect a flaw detection region of the flaw detection target with longitudinal ultrasonic waves;
using the ultrasonic probe to detect flaws with creeping waves in a region that is at least partially different in depth from the flaw detection region;
Prepare.

本開示の少なくとも一実施形態によれば、超音波探触子の大きさを抑制できる。 According to at least one embodiment of the present disclosure, the size of the ultrasound probe can be suppressed.

幾つかの実施形態に係る超音波探触子の外観の側面図である。1 is a side view of an appearance of an ultrasound probe according to some embodiments; FIG. 一実施形態に係る超音波探触子を側方から見たときの模式的な断面図である。1 is a schematic cross-sectional view of an ultrasonic probe according to an embodiment when viewed from the side; FIG. 図2AのIIb-IIb矢視断面を模式的に示した図である。FIG. 2B is a diagram schematically showing a cross section taken along line IIb-IIb of FIG. 2A. 他の実施形態に係る超音波探触子を側方から見たときの模式的な断面図である。FIG. 10 is a schematic cross-sectional view of an ultrasound probe according to another embodiment when viewed from the side; 図3AのIIIb-IIIb矢視断面を模式的に示した図である。FIG. 3B is a diagram schematically showing a cross section taken along the line IIIb-IIIb of FIG. 3A. 第1ウエッジ部材と第2ウエッジ部材と音響隔離板とについての分解図である。FIG. 4 is an exploded view of the first wedge member, the second wedge member and the acoustic isolator; 幾つかの実施形態に係る探触子を用いた超音波探傷検査の様子を模式的に示す図である。FIG. 10 is a diagram schematically showing a state of ultrasonic inspection using probes according to some embodiments; 幾つかの実施形態に係る探触子を用いた超音波探傷方法における処理手順を示すフローチャートである。4 is a flow chart showing a processing procedure in an ultrasonic flaw detection method using a probe according to some embodiments;

以下、添付図面を参照して本開示の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本開示の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
Several embodiments of the present disclosure will now be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, etc. of the components described as the embodiment or shown in the drawings are not meant to limit the scope of the present disclosure, but are merely illustrative examples. do not have.
For example, expressions denoting relative or absolute arrangements such as "in a direction", "along a direction", "parallel", "perpendicular", "center", "concentric" or "coaxial" are strictly not only represents such an arrangement, but also represents a state of relative displacement with a tolerance or an angle or distance to the extent that the same function can be obtained.
For example, expressions such as "identical", "equal", and "homogeneous", which express that things are in the same state, not only express the state of being strictly equal, but also have tolerances or differences to the extent that the same function can be obtained. It shall also represent the existing state.
For example, expressions that express shapes such as squares and cylinders do not only represent shapes such as squares and cylinders in a geometrically strict sense, but also include irregularities and chamfers to the extent that the same effect can be obtained. The shape including the part etc. shall also be represented.
On the other hand, the expressions "comprising", "comprising", "having", "including", or "having" one component are not exclusive expressions excluding the presence of other components.

図1は、幾つかの実施形態に係る超音波探触子の外観の側面図である。
図2Aは、一実施形態に係る超音波探触子を側方から見たときの模式的な断面図である。
図2Bは、図2AのIIb-IIb矢視断面を模式的に示した図である。
図3Aは、他の実施形態に係る超音波探触子を側方から見たときの模式的な断面図である。
図3Bは、図3AのIIIb-IIIb矢視断面を模式的に示した図である。
図4は、第1ウエッジ部材と第2ウエッジ部材と音響隔離板とについての分解図である。
FIG. 1 is a side view of the appearance of an ultrasound probe according to some embodiments.
FIG. 2A is a schematic cross-sectional view of the ultrasonic probe according to one embodiment when viewed from the side.
FIG. 2B is a diagram schematically showing a cross section taken along line IIb-IIb of FIG. 2A.
FIG. 3A is a schematic cross-sectional view of an ultrasound probe according to another embodiment when viewed from the side.
FIG. 3B is a diagram schematically showing a cross section taken along line IIIb-IIIb of FIG. 3A.
FIG. 4 is an exploded view of the first wedge member, the second wedge member and the acoustic isolator.

図2Aに示した超音波探触子1A、及び、図3Aに示した超音波探触子1Bは、超音波の送信用の素子(送信用素子15)と受信用の素子(受信用素子16)とを備える超音波探触子である。なお、以下の説明では、図2Aに示した超音波探触子1Aと図3Aに示した超音波探触子1Bとを区別せずに説明する場合、符号のアルファベットを省略して、超音波探触子1、又は単に、探触子1と称することもある。 The ultrasonic probe 1A shown in FIG. 2A and the ultrasonic probe 1B shown in FIG. ) is an ultrasonic probe. In the following description, when the ultrasonic probe 1A shown in FIG. 2A and the ultrasonic probe 1B shown in FIG. It may also be called probe 1 or simply probe 1 .

幾つかの実施形態に係る探触子1は、第1ウエッジ部材11と、第1ウエッジ部材11とは異なる第2ウエッジ部材12と、第1ウエッジ部材11と第2ウエッジ部材12との間に配置されて、第1ウエッジ部材11と第2ウエッジ部材12とを音響的に隔てる音響隔離板13とを備えている。
幾つかの実施形態に係る探触子1は、第1ウエッジ部材11の上面11uに配置される、複数の圧電素子を含む送信用素子15と、第2ウエッジ部材12の上面12uに配置される、複数の圧電素子を含む受信用素子16とを備えている。
幾つかの実施形態に係る探触子1は、音響隔離板13を跨ぎ、第1ウエッジ部材11と第2ウエッジ部材12とに亘って配置され、送信用素子15と受信用素子16とを覆う筐体20を備えている。
The probe 1 according to some embodiments includes a first wedge member 11, a second wedge member 12 different from the first wedge member 11, and between the first wedge member 11 and the second wedge member 12 An acoustic isolator 13 is disposed to acoustically separate the first wedge member 11 and the second wedge member 12 .
The probe 1 according to some embodiments includes a transmitting element 15 including a plurality of piezoelectric elements arranged on the upper surface 11u of the first wedge member 11, and arranged on the upper surface 12u of the second wedge member 12. , and a receiving element 16 including a plurality of piezoelectric elements.
The probe 1 according to some embodiments straddles the acoustic isolation plate 13, is arranged over the first wedge member 11 and the second wedge member 12, and covers the transmitting element 15 and the receiving element 16. A housing 20 is provided.

第1ウエッジ部材11の上面11u及び第2ウエッジ部材12の上面12uは、図2A及び図3Aのように音響隔離板13の厚さ方向(以下、第1方向Dr1と呼ぶ)から見たときに、音響隔離板13の延在方向であって第1ウエッジ部材11の下面11d及び第2ウエッジ部材12の下面12dの延在方向に沿う方向(以下、第2方向Dr2と呼ぶ)の内の一方側から他方側に向かうにつれて第1ウエッジ部材11の下面11d及び第2ウエッジ部材12の下面12dに近づくように第1ウエッジ部材11の下面11d及び第2ウエッジ部材12の下面12dに対して傾斜している。 The upper surface 11u of the first wedge member 11 and the upper surface 12u of the second wedge member 12, when viewed from the thickness direction of the acoustic isolation plate 13 (hereinafter referred to as the first direction Dr1) as shown in FIGS. , the extending direction of the acoustic isolation plate 13 and along the extending direction of the lower surface 11d of the first wedge member 11 and the lower surface 12d of the second wedge member 12 (hereinafter referred to as the second direction Dr2). It is inclined with respect to the lower surface 11d of the first wedge member 11 and the lower surface 12d of the second wedge member 12 so as to approach the lower surface 11d of the first wedge member 11 and the lower surface 12d of the second wedge member 12 as it goes from one side to the other side. ing.

なお、第2方向Dr2の内の上記一方側を前方とし、上記他方側を後方とする。
第1方向Dr1と第2方向Dr2とは直交している。第1方向Dr1及び第2方向Dr2の双方に対して直交する方向を第3方向Dr3とする。
第1方向Dr1は、図1、図2A及び図3Aにおいて紙面に直交する方向であり、図2B及び図3Bにおいて図示左右方向である。
第2方向Dr2は、図1、図2A及び図3Aにおいて図示左右方向であり、図2B及び図3Bにおいて紙面に直交する方向である。
第3方向Dr3は、図1、図2A、図2B、図3A及び図3Bにおいて図示上下方向である。
In addition, let the said one side of 2nd direction Dr2 be the front, and let the said other side be the rear.
The first direction Dr1 and the second direction Dr2 are orthogonal. A direction perpendicular to both the first direction Dr1 and the second direction Dr2 is defined as a third direction Dr3.
The first direction Dr1 is a direction orthogonal to the paper surface in FIGS. 1, 2A, and 3A, and is the horizontal direction in FIGS. 2B and 3B.
The second direction Dr2 is the left-right direction in FIGS. 1, 2A, and 3A, and the direction orthogonal to the paper surface in FIGS. 2B and 3B.
The third direction Dr3 is the vertical direction in FIGS. 1, 2A, 2B, 3A and 3B.

例えば、超音波探触子を配置した探傷対象物Taの表面Tasから板厚方向Drtに沿って比較的遠い領域と比較的近い領域とを1つの超音波探触子で探傷可能な超音波探触子において、一つのウエッジ部材に送信用素子と受信用素子とを配置すると、クリーピング波を発生させようとする場合に、ウエッジ部材内に様々な雑エコーが発生してしまう。そのため、該超音波探触子では、ウエッジ部材を比較的大きくせざるを得なかった。
ウエッジ部材が大きくなると、ウエッジ部材における超音波の減衰量も大きくなってしまうという課題もある。
For example, an ultrasonic probe that can detect a relatively distant region and a relatively near region along the plate thickness direction Drt from the surface Tas of the test object Ta on which the ultrasonic probe is arranged with one ultrasonic probe In the contactor, if the transmitting element and the receiving element are arranged on one wedge member, various noise echoes are generated in the wedge member when a creeping wave is generated. Therefore, in the ultrasonic probe, the wedge member had to be relatively large.
When the size of the wedge member increases, there is also the problem that the amount of attenuation of ultrasonic waves in the wedge member also increases.

幾つかの実施形態に係る探触子1によれば、第1ウエッジ部材11と第2ウエッジ部材12との間に音響隔離板13を配置し、第1ウエッジ部材11に送信用素子15を配置し、第2ウエッジ部材12に受信用素子16を配置することで、受信用素子16において上述した雑エコーの影響を効率的に抑制できる。これにより、一つのウエッジ部材に送信用素子と受信用素子とを配置した場合と比べて、該一つのウエッジ部材の容積よりも第1ウエッジ部材11の容積と第2ウエッジ部材12の容積との合計容積を小さくすることができる。 According to the probe 1 according to some embodiments, the acoustic isolation plate 13 is arranged between the first wedge member 11 and the second wedge member 12, and the transmitting element 15 is arranged on the first wedge member 11. However, by arranging the receiving element 16 on the second wedge member 12, the influence of the above-described noise echo in the receiving element 16 can be efficiently suppressed. As a result, the volume of the first wedge member 11 and the volume of the second wedge member 12 are larger than the volume of the one wedge member compared to the case where the transmitting element and the receiving element are arranged in one wedge member. Total volume can be reduced.

また、幾つかの実施形態に係る探触子1によれば、送信用素子15と受信用素子16とを覆う筐体20が音響隔離板13を跨いで第1ウエッジ部材11と第2ウエッジ部材12とに亘って配置されるので、筐体20の大きさを比較的小さくすることができる。
したがって、幾つかの実施形態に係る探触子1によれば、縦波での探傷とクリーピング波での探傷とを1つの超音波探触子1で実施可能となり、探傷対象物Taにおいて、表面Tasから比較的遠い領域から、表面に比較的近い領域まで、1つの超音波探触子1で探傷可能となる。幾つかの実施形態に係る探触子1によれば、第1ウエッジ部材11及び第2ウエッジ部材12の大きさを抑制でき、超音波探触子1を小型化できるので、狭隘部における探傷が可能となる。
Further, according to the probe 1 according to some embodiments, the housing 20 covering the transmitting element 15 and the receiving element 16 straddles the acoustic isolation plate 13 and is arranged between the first wedge member 11 and the second wedge member. 12, the size of the housing 20 can be made relatively small.
Therefore, according to the probe 1 according to some embodiments, it is possible to perform flaw detection with longitudinal waves and flaw detection with creeping waves with one ultrasonic probe 1, and in the flaw detection target Ta, A single ultrasonic probe 1 can detect flaws from a region relatively far from the surface Tas to a region relatively close to the surface. According to the probe 1 according to some embodiments, the size of the first wedge member 11 and the second wedge member 12 can be suppressed, and the size of the ultrasonic probe 1 can be reduced. It becomes possible.

幾つかの実施形態に係る探触子1では、図2Bに示した超音波探触子1Aのように、送信用素子15と受信用素子16とを含む単一の基板17を備えていてもよい。
すなわち、図2Bに示した超音波探触子1Aでは、単一の基板17には、送信用素子15としての複数の素子(振動子)と、受信用素子16としての複数の素子(振動子)とが形成されている。例えば、図2Bに示した基板17では、一つのピエゾ素子複合体(基板17)に送信用素子15と受信用素子16が配置されている。図2Bに示した超音波探触子1Aでは、音響隔離板13を介して、送信用素子15と受信用素子16とが異なるウエッジに接するように配置されている。
図2Bに示した超音波探触子1Aによれば、送信用素子15と受信用素子16とを異なる基板に設けた場合と比べて、該異なる1つの基板の合計容積よりも基板17の容積を小さくし易くなる。
The probe 1 according to some embodiments may include a single substrate 17 including the transmitting element 15 and the receiving element 16, like the ultrasonic probe 1A shown in FIG. 2B. good.
That is, in the ultrasonic probe 1A shown in FIG. 2B, a single substrate 17 includes a plurality of elements (vibrators) as the transmitting elements 15 and a plurality of elements (vibrators) as the receiving elements 16. ) are formed. For example, in the substrate 17 shown in FIG. 2B, the transmitting element 15 and the receiving element 16 are arranged on one piezoelectric element composite (substrate 17). In the ultrasonic probe 1A shown in FIG. 2B, the transmitting element 15 and the receiving element 16 are arranged so as to contact different wedges with the acoustic isolation plate 13 interposed therebetween.
According to the ultrasonic probe 1A shown in FIG. 2B, compared to the case where the transmitting element 15 and the receiving element 16 are provided on different substrates, the volume of the substrate 17 is larger than the total volume of the different substrates. becomes easier to reduce.

幾つかの実施形態に係る探触子1では、図3Bに示した超音波探触子1Bのように、送信用素子15を含む第1基板18と、受信用素子16を含み、第1基板18とは異なる第2基板19と、を備えていてもよい。
すなわち、図3Bに示した超音波探触子1Bでは、第1基板18には、送信用素子15としての複数の素子(振動子)が形成され、第2基板19には、受信用素子16としての複数の素子(振動子)が形成されている。例えば、図3Bに示した第1基板18及び第2基板19では、1つのピエゾ素子複合体(第1基板18)に送信用素子15が配置され、他のピエゾ素子複合体(第2基板19)に受信用素子16が配置されている。図3Bに示した超音波探触子1Bでは、送信用素子15が第1ウエッジ部材11にのみ接するように配置され、受信用素子16が第2ウエッジ部材12にのみ接するように配置されている。
図3Bに示した超音波探触子1Bによれば、例えば、第1ウエッジ部材11の上面11uと第2ウエッジ部材12の上面12uとが異なる平面上に存在していても、第1基板18と第2基板19とをそれぞれの上面11u、12uに配置できる。
In the probe 1 according to some embodiments, like the ultrasonic probe 1B shown in FIG. 3B, the first substrate 18 including the transmitting element 15 and the receiving element 16 are included. and a second substrate 19 different from 18 .
That is, in the ultrasonic probe 1B shown in FIG. 3B, a plurality of elements (vibrators) as the transmitting elements 15 are formed on the first substrate 18, and the receiving elements 16 are formed on the second substrate 19. A plurality of elements (oscillators) are formed as. For example, in the first substrate 18 and the second substrate 19 shown in FIG. 3B, the transmission element 15 is arranged on one piezo element composite (first substrate 18), and the other piezo element composite (second substrate 19 ) is arranged with the receiving element 16 . In the ultrasonic probe 1B shown in FIG. 3B, the transmitting element 15 is arranged so as to be in contact only with the first wedge member 11, and the receiving element 16 is arranged so as to be in contact only with the second wedge member 12. .
According to the ultrasonic probe 1B shown in FIG. 3B, for example, even if the upper surface 11u of the first wedge member 11 and the upper surface 12u of the second wedge member 12 exist on different planes, the first substrate 18 and a second substrate 19 can be placed on the respective upper surfaces 11u, 12u.

すなわち、幾つかの実施形態に係る探触子1では、探傷対象物Taが円柱や円管等のように表面Tasが円周面である場合に、第1ウエッジ部材11の下面11d、及び、第2ウエッジ部材12の下面12dを表面Tasに合わせて円周面を有するようにしてもよい。この場合に、図3Bに示した超音波探触子1Bでは、第1ウエッジ部材11の上面11u、及び、第2ウエッジ部材12の上面12uを下面11d、12dの円周面に倣うように傾斜させてもよい。この場合には、第1ウエッジ部材11の上面11uと第2ウエッジ部材12の上面12uとが異なる平面上に存在することとなる。 That is, in the probe 1 according to some embodiments, when the surface Tas of the test object Ta is a circumferential surface such as a cylinder or a circular pipe, the lower surface 11d of the first wedge member 11 and the The lower surface 12d of the second wedge member 12 may have a circumferential surface aligned with the surface Tas. In this case, in the ultrasonic probe 1B shown in FIG. 3B, the upper surface 11u of the first wedge member 11 and the upper surface 12u of the second wedge member 12 are inclined so as to follow the circumferential surfaces of the lower surfaces 11d and 12d. You may let In this case, the upper surface 11u of the first wedge member 11 and the upper surface 12u of the second wedge member 12 exist on different planes.

上述したように、探傷対象物Taの表面Tasが円周面である場合、探傷対象物Taによって該円周面の曲率半径が異なる場合が想定される。具体的には、探傷対象物Taが円管等である場合に、管径の異なる探傷対象物Taの探傷を行う必要が生じる。
そこで、該円周面の曲率半径に合わせて下面11d、12dの曲率半径が異なる複数の第1ウエッジ部材11及び第2ウエッジ部材12を用意しておき、探傷対象物Taの管径に合わせて第1ウエッジ部材11及び第2ウエッジ部材12を交換するようにしてもよい。
As described above, when the surface Tas of the test object Ta is a circumferential surface, it is assumed that the radius of curvature of the circumferential surface differs depending on the test object Ta. Specifically, when the flaw detection target Ta is a circular pipe or the like, it is necessary to perform flaw detection on the flaw detection target Ta having different pipe diameters.
Therefore, a plurality of first wedge members 11 and second wedge members 12 having different radii of curvature of the lower surfaces 11d and 12d are prepared in accordance with the radius of curvature of the circumferential surface. The first wedge member 11 and the second wedge member 12 may be exchanged.

下面11d、12dの曲率半径が異なる複数の第1ウエッジ部材11及び第2ウエッジ部材12において、上面11u、12uを下面11d、12dの曲率半径に応じて傾斜させてもよい。この場合、下面11d、12dの曲率半径が変われば、上面11u、12uを傾斜させる角度も変わることとなる。 In a plurality of first wedge members 11 and second wedge members 12 having lower surfaces 11d and 12d with different curvature radii, the upper surfaces 11u and 12u may be inclined according to the curvature radii of the lower surfaces 11d and 12d. In this case, if the radii of curvature of the lower surfaces 11d and 12d change, the angles at which the upper surfaces 11u and 12u are inclined also change.

そこで、図3Aに示した超音波探触子1Bでは、第1基板18は、筐体20に揺動可能に支持されているとよい。第2基板19は、筐体20に第1基板18とは独立して揺動可能に支持されているとよい。
具体的には、例えば図3A及び図3Bに示すように、第1基板18を第1保持部材31で保持し、第2基板19を第2保持部材32で保持する。そして、例えば図3Aに示すように、第1保持部材31が上面11uの延在方向に平行な軸線AX周りに揺動可能に筐体20に軸支され、第2保持部材32が上面12uの延在方向に平行な軸線AX周りに揺動可能に筐体20に軸支されているとよい。
これにより、第1ウエッジ部材11の上面11uと第2ウエッジ部材12の上面12uとのなす角度が変わっても、各基板18、19を各上面11u、12uに配置し易くなる。
Therefore, in the ultrasound probe 1B shown in FIG. 3A, the first substrate 18 is preferably supported by the housing 20 so as to be swingable. The second substrate 19 is preferably supported by the housing 20 so as to be swingable independently of the first substrate 18 .
Specifically, for example, as shown in FIGS. 3A and 3B, the first substrate 18 is held by the first holding member 31 and the second substrate 19 is held by the second holding member 32 . For example, as shown in FIG. 3A, the first holding member 31 is pivotally supported by the housing 20 so as to be swingable about an axis AX parallel to the extending direction of the upper surface 11u, and the second holding member 32 is attached to the upper surface 12u. It is preferably pivotally supported by the housing 20 so as to be swingable about an axis AX parallel to the extending direction.
As a result, even if the angle between the upper surface 11u of the first wedge member 11 and the upper surface 12u of the second wedge member 12 changes, the substrates 18 and 19 can be easily arranged on the upper surfaces 11u and 12u.

なお、幾つかの実施形態に係る探触子1では、各ウエッジ部材11、12の下面11d、12dは、上述したように曲面であってもよいが、平面であってもよい。 In addition, in the probe 1 according to some embodiments, the lower surfaces 11d and 12d of the wedge members 11 and 12 may be curved surfaces as described above, but may be flat surfaces.

また、幾つかの実施形態に係る探触子1では、筐体20は、第1ウエッジ部材11及び第2ウエッジ部材12に対して、不図示のボルト等の締結部材によって着脱可能に取り付けられていてもよい。
また、例えば図3Aに示す超音波探触子1Bでは、第1保持部材31及び第2保持部材32がそれぞれ第1ウエッジ部材11及び第2ウエッジ部材12に対して、不図示のボルト等の締結部材によって着脱可能に取り付けられ、第1保持部材31及び第2保持部材32を介して筐体20が第1ウエッジ部材11及び第2ウエッジ部材12に固定されるようにしてもよい。
Further, in the probe 1 according to some embodiments, the housing 20 is detachably attached to the first wedge member 11 and the second wedge member 12 by fastening members such as bolts (not shown). may
Further, for example, in the ultrasonic probe 1B shown in FIG. 3A, the first holding member 31 and the second holding member 32 are respectively fastened to the first wedge member 11 and the second wedge member 12 by bolts (not shown). The housing 20 may be fixed to the first wedge member 11 and the second wedge member 12 via the first holding member 31 and the second holding member 32 .

(ケーブルについて)
幾つかの実施形態に係る探触子1は、送信用素子15及び受信用素子16とに接続される信号線sが束ねられたケーブル35を備えているとよい。なお、図3では、信号線sの記載を省略している。
幾つかの実施形態に係る探触子1では、ケーブル35は、第1方向Dr1から見たときに、筐体20から後方に向かって突出しているものとする。第1方向Dr1から見たときに、筐体20からのケーブル35の突出方向Drcと、第2方向Dr2との角度差は、15度以内であるとよい。なお、図1、図2A及び図3Aでは、筐体20からのケーブル35の突出方向Drcと、第2方向Dr2との角度差は0度、すなわち、第1方向Dr1から見たときに、筐体20からのケーブル35の突出方向Drcは第2方向Dr2と平行である場合を表している。
(About cable)
The probe 1 according to some embodiments may include a cable 35 in which signal lines s connected to the transmitting element 15 and the receiving element 16 are bundled. Note that the signal line s is omitted in FIG.
In the probe 1 according to some embodiments, the cable 35 protrudes rearward from the housing 20 when viewed from the first direction Dr1. When viewed from the first direction Dr1, the angle difference between the projecting direction Drc of the cable 35 from the housing 20 and the second direction Dr2 is preferably within 15 degrees. 1, 2A, and 3A, the angle difference between the projection direction Drc of the cable 35 from the housing 20 and the second direction Dr2 is 0 degrees. The projecting direction Drc of the cable 35 from the body 20 is parallel to the second direction Dr2.

幾つかの実施形態に係る探触子1では、第1方向Dr1から見たときに、筐体20からのケーブル35の突出方向Drcが第2方向Dr2に比較的近づくこととなる。これにより、探傷対象物Taの表面Tasに他の部材等が近接して配置されている場合等であっても、該他の部材とケーブル35とが干渉し難くなり、狭隘部における探傷が可能となる。また、探傷対象物Taの表面Tasとケーブル35とが干渉し難くなるので、筐体20からケーブル35が突出する位置を探傷対象物Taの表面Tasに近づけ易くなる。これにより、筐体20の高さ、すなわち、探傷対象物Taの表面Tasからの距離を抑制できるので、上記他の部材とケーブル35とがさらに干渉し難くなる。 In the probe 1 according to some embodiments, the projecting direction Drc of the cable 35 from the housing 20 relatively approaches the second direction Dr2 when viewed from the first direction Dr1. As a result, even when another member or the like is arranged close to the surface Tas of the flaw detection target Ta, interference between the other member and the cable 35 becomes difficult, and flaw detection in a narrow space is possible. becomes. Further, since the surface Tas of the test object Ta and the cable 35 are less likely to interfere with each other, the position where the cable 35 protrudes from the housing 20 can be easily brought closer to the surface Tas of the test object Ta. As a result, the height of the housing 20, that is, the distance from the surface Tas of the flaw detection target Ta can be suppressed, so interference between the other member and the cable 35 is further reduced.

例えば、探傷対象物Taが円柱や円管であって、円柱や円管が径方向に間隔を空けて複数配置されていて、隣り合う円柱や円管同士の間隔が比較的小さい場合を考える。このような場合であっても、幾つかの実施形態に係る探触子1によれば、ケーブル35が隣の円管に干渉し難くなるので、探触子1を円柱や円管の周方向に沿って移動させながら探傷できる。また、幾つかの実施形態に係る探触子1によれば、上述したように筐体20の高さを抑制できるので、筐体20が隣の円柱や円管に干渉し難くなり、探触子1を円柱や円管の周方向に沿って移動させながら探傷できる。 For example, consider a case where the flaw detection object Ta is a cylinder or a circular pipe, a plurality of cylinders or circular pipes are arranged at intervals in the radial direction, and the distance between adjacent cylinders or circular pipes is relatively small. Even in such a case, according to the probe 1 according to some embodiments, the cable 35 is less likely to interfere with the adjacent circular pipe. Flaw detection can be performed while moving along the In addition, according to the probe 1 according to some embodiments, the height of the housing 20 can be suppressed as described above, so that the housing 20 is less likely to interfere with adjacent cylinders and circular pipes. Flaw detection can be performed while moving the element 1 along the circumferential direction of a cylinder or a circular pipe.

図5は、幾つかの実施形態に係る探触子1を用いた超音波探傷検査の様子を模式的に示す図である。
なお、例えば、探傷対象物Taが円柱や円管である場合、幾つかの実施形態に係る探触子1の第2方向を探傷対象物Taである円柱や円管の軸線AXc方向と一致させ、第1方向Dr1を探傷対象物Taである円柱や円管の周方向を向くように探触子1を探傷対象物Taに配置するとよい。そして、探触子1を該周方向に沿って移動させながら探傷するとよい。
なお、図5に示す例では、探傷対象物Taが円管51である場合に、円管51の円周方向の溶接部52の近傍に生じるきずの有無を検査する場合についての一例を表している。
FIG. 5 is a diagram schematically showing the state of ultrasonic inspection using the probe 1 according to some embodiments.
For example, when the test object Ta is a cylinder or a circular pipe, the second direction of the probe 1 according to some embodiments is made to coincide with the direction of the axis AXc of the cylinder or pipe that is the test object Ta. , the probe 1 may be placed on the test object Ta so that the first direction Dr1 faces the circumferential direction of the cylinder or circular tube that is the test object Ta. Then, it is preferable to perform flaw detection while moving the probe 1 along the circumferential direction.
In the example shown in FIG. 5, when the flaw detection target Ta is a circular pipe 51, an example of inspecting for the presence or absence of flaws generated in the vicinity of the welded portion 52 in the circumferential direction of the circular pipe 51 is shown. there is

図5に示す例では、例えば探触子1は、溶接部52を挟んで円管51の軸線AXc方向に離間した2カ所に配置される。そして、2つの探触子1を円管51の周方向に移動させながら超音波探傷を行う。
図5において、超音波探傷装置55は、セクタ走査と呼ばれる電子走査の走査面が、円管51の軸線AXc方向及び円管51の板厚方向に沿って延在する平面に沿うように超音波を走査する。
図5に示す例では、探触子1は、探触子1の移動装置56に取り付けられている。移動装置56は、手動、又はモータ等の駆動力によって円管51の周方向に探触子1を移動可能に構成されている。なお、図5に示す移動装置56は、2つの探触子1同士の周方向の位置がずれないように、且つ、軸線AXc方向の離間距離が変化しないように探触子1を移動可能に構成されている。
In the example shown in FIG. 5, for example, the probes 1 are arranged at two locations separated from each other in the direction of the axis AXc of the circular tube 51 with the welded portion 52 interposed therebetween. Then, ultrasonic flaw detection is performed while moving the two probes 1 in the circumferential direction of the circular pipe 51 .
In FIG. 5 , the ultrasonic flaw detector 55 is configured so that the scanning plane of electronic scanning called sector scanning is along a plane extending along the axis AXc direction of the circular tube 51 and the plate thickness direction of the circular tube 51 . to scan.
In the example shown in FIG. 5 , the probe 1 is attached to a moving device 56 of the probe 1 . The moving device 56 is configured to be able to move the probe 1 in the circumferential direction of the circular tube 51 manually or by a driving force such as a motor. Note that the moving device 56 shown in FIG. 5 can move the probes 1 so that the positions of the two probes 1 in the circumferential direction do not deviate from each other and the separation distance in the direction of the axis AXc does not change. It is configured.

(各ウエッジ部材11、12の寸法について)
図2A及び図3Aに示すように、幾つかの実施形態に係る探触子1では、第1ウエッジ部材11の上面11uと下面11dとの距離、すなわち、第3方向に沿った距離であって、下面11dと、上面11uの内、下面11dから最も離れている上面11uの位置との距離h1は、第1方向Dr1から見たときに、第2方向Dr2の第1ウエッジ部材11の寸法L1よりも小さいとよい。
同様に、第2ウエッジ部材12の上面12uと下面12dとの距離、すなわち、第3方向に沿った距離であって、下面12dと、上面12uの内、下面12dから最も離れている上面12uの位置との距離h2は、第1方向Dr1から見たときに、第2方向Dr2の第2ウエッジ部材12の寸法L2よりも小さいとよい。
これにより、各ウエッジ部材11、12の高さ、すなわち、探傷対象物Taの表面Tasからの距離が抑制され、狭隘部における探傷が可能となる。
(Regarding the dimensions of each wedge member 11, 12)
As shown in FIGS. 2A and 3A, in the probe 1 according to some embodiments, the distance between the upper surface 11u and the lower surface 11d of the first wedge member 11, that is, the distance along the third direction , the distance h1 between the lower surface 11d and the position of the upper surface 11u farthest from the lower surface 11d among the upper surfaces 11u is the dimension L1 of the first wedge member 11 in the second direction Dr2 when viewed from the first direction Dr1. should be smaller than
Similarly, the distance between the upper surface 12u and the lower surface 12d of the second wedge member 12, that is, the distance along the third direction, is the distance between the lower surface 12d and the upper surface 12u farthest from the lower surface 12d among the upper surfaces 12u. The distance h2 to the position is preferably smaller than the dimension L2 of the second wedge member 12 in the second direction Dr2 when viewed from the first direction Dr1.
As a result, the height of each wedge member 11, 12, that is, the distance from the surface Tas of the test object Ta is suppressed, and flaw detection in a narrow space becomes possible.

図2B及び図3Bに示すように、幾つかの実施形態に係る探触子1では、第1ウエッジ部材11の上面11uと下面11dとの距離(すなわち距離h1)、及び、第2ウエッジ部材12の上面12uと下面12dとの距離(すなわち距離h2)は、第1方向Dr1に沿った第1ウエッジ部材11の寸法W1と第2ウエッジ部材12の寸法W2との合計(W1+W2)よりも小さいとよい。
これにより、各ウエッジ部材11、12の高さ、すなわち、探傷対象物Taの表面Tasからの距離が抑制され、狭隘部における探傷が可能となる。
As shown in FIGS. 2B and 3B, in the probe 1 according to some embodiments, the distance between the upper surface 11u and the lower surface 11d of the first wedge member 11 (that is, the distance h1) and the second wedge member 12 is smaller than the sum (W1+W2) of the dimension W1 of the first wedge member 11 and the dimension W2 of the second wedge member 12 along the first direction Dr1. good.
As a result, the height of each wedge member 11, 12, that is, the distance from the surface Tas of the test object Ta is suppressed, and flaw detection in a narrow space becomes possible.

図2B及び図3Bに示すように、幾つかの実施形態に係る探触子1では、第1ウエッジ部材11の上面11uと下面11dとの距離(すなわち距離h1)は、第1方向Dr1に沿った第1ウエッジ部材11の寸法W1よりも小さいとよい。同様に、第2ウエッジ部材12の上面12uと下面12dとの距離(すなわち距離h2)は、第1方向Dr1に沿った第2ウエッジ部材12の寸法W2よりも小さいとよい。
これにより、各ウエッジ部材11、12の高さ、すなわち、探傷対象物Taの表面Tasからの距離がさらに抑制され、狭隘部における探傷が可能となる。
As shown in FIGS. 2B and 3B, in the probe 1 according to some embodiments, the distance (that is, the distance h1) between the upper surface 11u and the lower surface 11d of the first wedge member 11 is along the first direction Dr1 It is preferably smaller than the dimension W1 of the first wedge member 11 . Similarly, the distance (i.e., distance h2) between upper surface 12u and lower surface 12d of second wedge member 12 is preferably smaller than dimension W2 of second wedge member 12 along first direction Dr1.
As a result, the height of each wedge member 11, 12, that is, the distance from the surface Tas of the test object Ta is further suppressed, and flaw detection in a narrow space becomes possible.

図2B及び図3Bに示すように、幾つかの実施形態に係る探触子1では、第1方向Dr1に沿った筐体20の寸法Wcは、第1方向Dr1に沿った第1ウエッジ部材11の寸法W1と第2ウエッジ部材12の寸法W2との合計(W1+W2)よりも小さいとよい。
例えば、探傷対象物Taが円柱や円管等のように表面Tasが円周面である場合に、筐体20の寸法Wcが大きくなるほど、第1方向Dr1における筐体20の端部と探傷対象物Taの表面Tasとの距離が大きくなる傾向にある。そのため、円柱や円管が径方向に間隔を空けて複数配置されていて、隣り合う円柱や円管同士の間隔が比較的小さい場合、第1方向Dr1における筐体20の端部と探傷対象物Taの表面Tasとの距離は、出来るだけ小さい方がよい。
幾つかの実施形態に係る探触子1によれば、上述したように第1方向Dr1に沿った筐体20の寸法Wcを寸法W1と寸法W2との合計(W1+W2)よりも小さくすることで、第1方向Dr1における筐体20の端部と探傷対象物Taの表面Tasとの距離を抑制できる。これにより、狭隘部における探傷が可能となる。
As shown in FIGS. 2B and 3B, in the probe 1 according to some embodiments, the dimension Wc of the housing 20 along the first direction Dr1 is equal to the dimension Wc of the first wedge member 11 along the first direction Dr1. and the dimension W2 of the second wedge member 12 (W1+W2).
For example, when the surface Tas of the test object Ta is a circular cylinder, a circular pipe, or the like, the larger the dimension Wc of the housing 20, the greater the distance between the end of the housing 20 in the first direction Dr1 and the test object. The distance between the object Ta and the surface Tas tends to increase. Therefore, when a plurality of cylinders or circular tubes are arranged at intervals in the radial direction and the intervals between the adjacent cylinders or circular tubes are relatively small, the end portion of the housing 20 and the flaw detection target in the first direction Dr1 The distance between Ta and the surface Tas should be as small as possible.
According to the probe 1 according to some embodiments, by making the dimension Wc of the housing 20 along the first direction Dr1 smaller than the sum (W1+W2) of the dimension W1 and the dimension W2 as described above, , the distance between the end of the housing 20 and the surface Tas of the test object Ta in the first direction Dr1 can be suppressed. This enables flaw detection in a narrow space.

なお、筐体20の上面20uは、第2方向Dr2に沿って見たときに、第1方向Dr1と平行であってもよく、図2B及び図3Bに示すように、第2方向Dr2に沿って見たときに、曲率半径の中心が第3方向Dr3に沿って上面20uよりも図示下方に位置するような湾曲面であってもよい。 Note that the upper surface 20u of the housing 20 may be parallel to the first direction Dr1 when viewed along the second direction Dr2. The curved surface may be such that the center of the radius of curvature is located below the upper surface 20u in the figure along the third direction Dr3 when viewed from above.

(超音波の走査範囲について)
幾つかの実施形態に係る探触子1では、第1ウエッジ部材11及び送信用素子15は、探傷対象物Ta内を伝搬する縦波の超音波を第1屈折角度θ1以上第2屈折角度θ2以下の範囲内で走査可能であり、且つ、屈折角度の範囲が第2屈折角度θ2以上第3屈折角度θ3未満の範囲と少なくとも一部で重複するクリーピング波を出力可能である。
なお、第1屈折角度θ1は、30度であるとよく、第2屈折角度θ2は、84度であるとよく、第3屈折角度θ3は、89度であるとよい。
これにより、探傷対象物Taにおいて、表面Tasから比較的遠い領域から、表面Tasに比較的近い領域まで、1つの超音波探触子1で探傷可能となる。
(Regarding the scanning range of ultrasonic waves)
In the probe 1 according to some embodiments, the first wedge member 11 and the transmitting element 15 transmit longitudinal ultrasonic waves propagating in the test object Ta at a first refraction angle θ1 or more and a second refraction angle θ2. It is possible to scan within the following range and to output a creeping wave whose refraction angle range at least partially overlaps with the range of the second refraction angle θ2 to less than the third refraction angle θ3.
The first refraction angle θ1 is preferably 30 degrees, the second refraction angle θ2 is preferably 84 degrees, and the third refraction angle θ3 is preferably 89 degrees.
As a result, a single ultrasonic probe 1 can detect flaws in the flaw detection target Ta from a region relatively far from the surface Tas to a region relatively close to the surface Tas.

(探傷について)
幾つかの実施形態に係る探触子1を用いた超音波探傷方法について説明する。
図6は、幾つかの実施形態に係る探触子1を用いた超音波探傷方法における処理手順を示すフローチャートである。
一実施形態に係る超音波探傷方法は、幾つかの実施形態に係る探触子1を用いて、探傷対象物Taにおける探傷領域を縦波の超音波で探傷するステップS1と、幾つかの実施形態に係る探触子1を用いて、上記探傷領域とは深さが少なくとも一部で異なる領域をクリーピング波で探傷するステップS2と、を備える。
なお、一実施形態に係る超音波探傷方法では、上記ステップS1及び上記ステップS2の何れを先に実施してもよい。
(About flaw detection)
An ultrasonic flaw detection method using the probe 1 according to some embodiments will be described.
FIG. 6 is a flow chart showing a processing procedure in an ultrasonic flaw detection method using the probe 1 according to some embodiments.
An ultrasonic flaw detection method according to one embodiment includes a step S1 of detecting a flaw detection region in a flaw detection target Ta with ultrasonic waves of longitudinal waves using the probe 1 according to some embodiments, and several implementations. and step S2 of performing flaw detection with creeping waves on a region at least partially different in depth from the flaw detection region using the probe 1 according to the embodiment.
In the ultrasonic flaw detection method according to one embodiment, either step S1 or step S2 may be performed first.

以下、図5を参照しながら一実施形態に係る超音波探傷方法について説明する。
縦波の超音波で探傷するステップS1では、超音波探傷装置55は、探傷対象物Taにおける探傷領域を縦波の超音波で探傷するように2つの探触子1を制御する。縦波の超音波で探傷するステップS1による探傷は、手動、又はモータ等の駆動力によって円管51の周方向に探触子1を1周移動するまで実施される。
縦波の超音波で探傷するステップS1において得られた探傷データは、超音波探傷装置55の不図示の記憶装置に格納される。
Hereinafter, an ultrasonic flaw detection method according to an embodiment will be described with reference to FIG.
In step S1 of performing flaw detection with longitudinal ultrasonic waves, the ultrasonic flaw detector 55 controls the two probes 1 so as to detect flaw detection regions in the flaw detection target Ta with longitudinal ultrasonic waves. The flaw detection in step S1 for flaw detection with longitudinal ultrasonic waves is performed until the probe 1 is moved once in the circumferential direction of the circular tube 51 manually or by a driving force such as a motor.
The flaw detection data obtained in step S<b>1 for flaw detection using longitudinal ultrasonic waves is stored in a storage device (not shown) of the ultrasonic flaw detector 55 .

クリーピング波で探傷するステップS2では、超音波探傷装置55は、探傷対象物Taにおける探傷領域をクリーピング波で探傷するように2つの探触子1を制御する。クリーピング波で探傷するステップS2による探傷は、手動、又はモータ等の駆動力によって円管51の周方向に探触子1を1周移動するまで実施される。
クリーピング波で探傷するステップS2において得られた探傷データは、超音波探傷装置55の不図示の記憶装置に格納される。
In step S2 of performing flaw detection with creeping waves, the ultrasonic flaw detector 55 controls the two probes 1 so as to detect flaws in the flaw detection region of the flaw detection target Ta with creeping waves. The flaw detection in step S2 for flaw detection with creeping waves is performed until the probe 1 is moved once in the circumferential direction of the circular tube 51 manually or by a driving force such as a motor.
The flaw detection data obtained in step S2 of flaw detection with creeping waves is stored in a storage device (not shown) of the ultrasonic flaw detector 55. FIG.

一実施形態に係る超音波探傷方法によれば、縦波での探傷とクリーピング波での探傷とを探触子1を交換することなく実施可能となり、探傷対象物Taにおいて、表面Tasから比較的遠い領域から、表面に比較的近い領域まで、探触子1を交換することなく探傷可能となる。一実施形態に係る超音波探傷方法によれば、縦波での探傷とクリーピング波での探傷とで探触子1の交換作業を省略でき、効率的に検査できる。 According to the ultrasonic flaw detection method according to one embodiment, flaw detection with longitudinal waves and flaw detection with creeping waves can be performed without exchanging the probe 1, and in the flaw detection target Ta, comparison is made from the surface Ta It is possible to detect flaws without exchanging the probe 1 from an area far from the target to an area relatively close to the surface. According to the ultrasonic flaw detection method according to the embodiment, it is possible to omit the replacement work of the probe 1 between the flaw detection using the longitudinal wave and the flaw detection using the creeping wave, and the inspection can be performed efficiently.

本開示は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。 The present disclosure is not limited to the above-described embodiments, and includes modifications of the above-described embodiments and modes in which these modes are combined as appropriate.

上記各実施形態に記載の内容は、例えば以下のように把握される。
(1)本開示の少なくとも一実施形態に係る超音波探触子1は、第1ウエッジ部材11と、第1ウエッジ部材11とは異なる第2ウエッジ部材12と、第1ウエッジ部材11と第2ウエッジ部材12との間に配置されて、第1ウエッジ部材11と第2ウエッジ部材12とを音響的に隔てる音響隔離板13と、第1ウエッジ部材11の上面11uに配置される、複数の圧電素子を含む送信用素子15と、第2ウエッジ部材12の上面12uに配置される、複数の圧電素子を含む受信用素子16と、音響隔離板13を跨ぎ、第1ウエッジ部材11と第2ウエッジ部材12とに亘って配置され、送信用素子15と受信用素子16とを覆う筐体20と、を備える。
The contents described in each of the above embodiments are understood as follows, for example.
(1) The ultrasonic probe 1 according to at least one embodiment of the present disclosure includes a first wedge member 11, a second wedge member 12 different from the first wedge member 11, the first wedge member 11 and the second an acoustic isolation plate 13 disposed between the wedge member 12 to acoustically separate the first wedge member 11 and the second wedge member 12; a transmitting element 15 including elements; a receiving element 16 including a plurality of piezoelectric elements disposed on the upper surface 12u of the second wedge member 12; and a housing 20 arranged over the member 12 and covering the transmitting element 15 and the receiving element 16 .

上記(1)の構成によれば、第1ウエッジ部材11と第2ウエッジ部材12との間に音響隔離板13を配置し、第1ウエッジ部材11に送信用素子15を配置し、第2ウエッジ部材12に受信用素子16を配置することで、受信用素子16において上述した雑エコーの影響を効率的に抑制できる。これにより、一つのウエッジ部材に送信用素子と受信用素子とを配置した場合と比べて、該一つのウエッジ部材の容積よりも第1ウエッジ部材11の容積と第2ウエッジ部材12の容積との合計容積を小さくすることができる。
また、上記(1)の構成によれば、送信用素子15と受信用素子16とを覆う筐体20が音響隔離板13を跨いで第1ウエッジ部材11と第2ウエッジ部材12とに亘って配置されるので、筐体20の大きさを比較的小さくすることができる。
したがって、上記(1)の構成によれば、縦波での探傷とクリーピング波での探傷とを1つの超音波探触子1で実施可能となり、探傷対象物Taにおいて、表面Tasから比較的遠い領域から、表面Tasに比較的近い領域まで、1つの超音波探触子1で探傷可能となる。上記(1)の構成によれば、第1ウエッジ部材11及び第2ウエッジ部材12の大きさを抑制でき、超音波探触子1を小型化できるので、狭隘部における探傷が可能となる。
According to the configuration (1) above, the acoustic isolation plate 13 is arranged between the first wedge member 11 and the second wedge member 12, the transmitting element 15 is arranged on the first wedge member 11, and the second wedge is arranged. By arranging the receiving element 16 on the member 12, the influence of the noise echo described above in the receiving element 16 can be efficiently suppressed. As a result, the volume of the first wedge member 11 and the volume of the second wedge member 12 are larger than the volume of the one wedge member compared to the case where the transmitting element and the receiving element are arranged in one wedge member. Total volume can be reduced.
Further, according to the above configuration (1), the housing 20 covering the transmitting element 15 and the receiving element 16 straddles the acoustic isolation plate 13 and extends over the first wedge member 11 and the second wedge member 12. Since they are arranged, the size of the housing 20 can be made relatively small.
Therefore, according to the above configuration (1), it is possible to perform flaw detection with longitudinal waves and flaw detection with creeping waves with one ultrasonic probe 1, and in the flaw detection target Ta, relatively from the surface Tas A single ultrasonic probe 1 can detect flaws from a distant area to an area relatively close to the surface Tas. According to the configuration (1) above, the size of the first wedge member 11 and the second wedge member 12 can be suppressed, and the ultrasonic probe 1 can be miniaturized, so flaw detection in a narrow space is possible.

(2)幾つかの実施形態では、上記(1)の構成において、第1ウエッジ部材11及び送信用素子15は、探傷対象物Ta内を伝搬する縦波の超音波を第1屈折角度θ1以上第2屈折角度θ2以下の範囲内で走査可能であり、且つ、屈折角度の範囲が第2屈折角度θ2以上第3屈折角度θ3未満の範囲と少なくとも一部で重複するクリーピング波を出力可能であるとよい。 (2) In some embodiments, in the configuration of (1) above, the first wedge member 11 and the transmitting element 15 transmit longitudinal ultrasonic waves propagating in the test object Ta at a first refraction angle of θ1 or more. Scanning is possible within a range of the second refraction angle θ2 or less, and a creeping wave that overlaps at least a part of the refraction angle range of the second refraction angle θ2 or more and less than the third refraction angle θ3 can be output. Good to have.

上記(2)の構成によれば、探傷対象物Taにおいて、表面Tasから比較的遠い領域から、表面に比較的近い領域まで、1つの超音波探触子1で探傷可能となる。 According to the configuration (2) above, in the flaw detection target Ta, flaw detection is possible with one ultrasonic probe 1 from a region relatively far from the surface Tas to a region relatively close to the surface.

(3)幾つかの実施形態では、上記(2)の構成において、第1屈折角度θ1は、30度であってもよく、第2屈折角度θ2は、84度であってもよく、第3屈折角度θ3は、89度であってもよい。 (3) In some embodiments, in the configuration of (2) above, the first refraction angle θ1 may be 30 degrees, the second refraction angle θ2 may be 84 degrees, and the third refraction angle θ2 may be 84 degrees. The refraction angle θ3 may be 89 degrees.

上記(3)の構成によれば、探傷対象物Taにおいて、表面Tasから比較的遠い領域から、表面Tasに比較的近い領域まで、1つの超音波探触子1で探傷可能となる。 According to the configuration (3) above, in the flaw detection target Ta, flaw detection is possible with one ultrasonic probe 1 from a region relatively far from the surface Tas to a region relatively close to the surface Tas.

(4)幾つかの実施形態では、上記(1)乃至(3)の何れかの構成において、送信用素子15と受信用素子16とを含む単一の基板17を備えていてもよい。 (4) In some embodiments, in any one of the above configurations (1) to (3), a single substrate 17 including the transmitting element 15 and the receiving element 16 may be provided.

上記(4)の構成によれば、送信用素子15と受信用素子16とを異なる基板に設けた場合と比べて、該異なる1つの基板の合計容積よりも基板17の容積を小さくし易くなる。 According to the configuration (4) above, compared to the case where the transmitting element 15 and the receiving element 16 are provided on different substrates, it becomes easier to make the volume of the substrate 17 smaller than the total volume of the different substrates. .

(5)幾つかの実施形態では、上記(1)乃至(3)の何れかの構成において、送信用素子15を含む第1基板18と、受信用素子16を含み、第1基板18とは異なる第2基板19と、を備えていてもよい。 (5) In some embodiments, in any one of the configurations (1) to (3) above, the first substrate 18 including the transmitting element 15 and the receiving element 16 are included, and the first substrate 18 is A different second substrate 19 may be provided.

上記(5)の構成によれば、例えば、第1ウエッジ部材11の上面11uと第2ウエッジ部材12の上面12uとが異なる平面上に存在していても、第1基板18と第2基板19とをそれぞれの上面11u、12uに配置できる。 According to the above configuration (5), for example, even if the upper surface 11u of the first wedge member 11 and the upper surface 12u of the second wedge member 12 are present on different planes, the first substrate 18 and the second substrate 19 are separated from each other. can be placed on the respective upper surfaces 11u, 12u.

(6)幾つかの実施形態では、上記(5)の構成において、第1基板18は、筐体20に揺動可能に支持されているとよい。第2基板19は、筐体20に第1基板18とは独立して揺動可能に支持されているとよい。 (6) In some embodiments, in the configuration of (5) above, the first substrate 18 may be swingably supported by the housing 20 . The second substrate 19 is preferably supported by the housing 20 so as to be swingable independently of the first substrate 18 .

例えば探傷対象物Taが円管51の場合、管径に応じて下面11d、12dの形状や第1ウエッジ部材11の上面11uと第2ウエッジ部材12の上面12uとのなす角度が異なる、他の第1ウエッジ部材11及び第2ウエッジ部材12に変更することがある。この場合に、上記(6)の構成によれば、第1ウエッジ部材11の上面11uと第2ウエッジ部材12の上面12uとのなす角度が変わっても、各基板18、19を各上面に配置し易い。 For example, when the flaw detection target Ta is a circular pipe 51, the shape of the lower surfaces 11d and 12d and the angle formed by the upper surface 11u of the first wedge member 11 and the upper surface 12u of the second wedge member 12 are different depending on the diameter of the pipe. The first wedge member 11 and the second wedge member 12 may be changed. In this case, according to the configuration (6) above, even if the angle between the upper surface 11u of the first wedge member 11 and the upper surface 12u of the second wedge member 12 changes, the substrates 18 and 19 are arranged on the respective upper surfaces. easy to do

(7)幾つかの実施形態では、上記(1)乃至(6)の何れかの構成において、送信用素子15及び受信用素子16とに接続される信号線sが束ねられたケーブル35を備えているとよい。第1ウエッジ部材11の上面11u及び第2ウエッジ部材12の上面12uは、音響隔離板13の厚さ方向(第1方向Dr1)から見たときに、音響隔離板13の延在方向であって第1ウエッジ部材11の下面11d及び第2ウエッジ部材12の下面12dの延在方向に沿う方向(第2方向Dr2)の内の一方側から他方側に向かうにつれて第1ウエッジ部材11の下面11d及び第2ウエッジ部材12の下面12dに近づくように第1ウエッジ部材11の下面11d及び第2ウエッジ部材12の下面12dに対して傾斜しているものとする。ケーブル35は、上記厚さ方向(第1方向Dr1)から見たときに、筐体20から上記他方側に向かって突出しているものとする。上記厚さ方向(第1方向Dr1)から見たときに、筐体20からのケーブル35の突出方向Drcと、音響隔離板13の延在方向であって第1ウエッジ部材の下面及び第2ウエッジ部材の下面の延在方向に沿う方向(第2方向Dr2)との角度差は、15度以内であるとよい。 (7) In some embodiments, in any one of the above configurations (1) to (6), a cable 35 in which signal lines s connected to the transmitting element 15 and the receiving element 16 are bundled is provided. I hope you are. The upper surface 11u of the first wedge member 11 and the upper surface 12u of the second wedge member 12 are in the extending direction of the acoustic isolator 13 when viewed from the thickness direction (first direction Dr1) of the acoustic isolator 13. The lower surface 11d of the first wedge member 11 and the lower surface 12d of the second wedge member 12 extend from one side to the other in the extending direction (the second direction Dr2). The lower surface 11 d of the first wedge member 11 and the lower surface 12 d of the second wedge member 12 are inclined so as to approach the lower surface 12 d of the second wedge member 12 . It is assumed that the cable 35 protrudes from the housing 20 toward the other side when viewed from the thickness direction (first direction Dr1). When viewed from the thickness direction (first direction Dr1), the projecting direction Drc of the cable 35 from the housing 20, the extending direction of the acoustic isolation plate 13 and the lower surface of the first wedge member and the second wedge The angle difference with the direction (second direction Dr2) along the extending direction of the lower surface of the member is preferably within 15 degrees.

上記(7)の構成によれば、上記厚さ方向(第1方向Dr1)から見たときに、筐体20からのケーブル35の突出方向Drcが音響隔離板13の延在方向であって第1ウエッジ部材11の下面11d及び第2ウエッジ部材12の下面12dの延在方向(第2方向Dr2)に比較的近づくこととなる。これにより、探傷対象物Taの表面Tasに他の部材等が近接して配置されている場合等であっても、該他の部材とケーブル35とが干渉し難くなり、狭隘部における探傷が可能となる。また、探傷対象物Taの表面Tasとケーブル35とが干渉し難くなるので、筐体20からケーブル35が突出する位置を探傷対象物Taの表面Tasに近づけ易くなる。これにより、筐体20の高さ、すなわち、探傷対象物Taの表面Tasからの距離を抑制できるので、上記他の部材とケーブル35とがさらに干渉し難くなる。 According to the above configuration (7), when viewed from the thickness direction (first direction Dr1), the projecting direction Drc of the cable 35 from the housing 20 is the extending direction of the acoustic isolation plate 13 and is the first direction. It is relatively close to the extending direction (second direction Dr2) of the lower surface 11d of the first wedge member 11 and the lower surface 12d of the second wedge member 12. As shown in FIG. As a result, even when another member or the like is arranged close to the surface Tas of the flaw detection target Ta, interference between the other member and the cable 35 becomes difficult, and flaw detection in a narrow space is possible. becomes. Further, since the surface Tas of the test object Ta and the cable 35 are less likely to interfere with each other, the position where the cable 35 protrudes from the housing 20 can be easily brought closer to the surface Tas of the test object Ta. As a result, the height of the housing 20, that is, the distance from the surface Tas of the flaw detection target Ta can be suppressed, so that the other member and the cable 35 are less likely to interfere with each other.

(8)幾つかの実施形態では、上記(1)乃至(7)の何れかの構成において、第1ウエッジ部材11の上面11uと下面11dとの距離(距離h1)は、音響隔離板13の厚さ方向(第1方向Dr1)から見たときに、音響隔離板13の延在方向であって第1ウエッジ部材11の下面11dの延在方向に沿う方向(第2方向Dr2)の第1ウエッジ部材11の寸法L1よりも小さいとよい。第2ウエッジ部材12の上面12uと下面12dとの距離(距離h2)は、上記厚さ方向(第1方向Dr1)から見たときに、音響隔離板13の延在方向であって第2ウエッジ部材12の下面12dの延在方向に沿う方向(第2方向Dr2)の第2ウエッジ部材12の寸法L2よりも小さいとよい。 (8) In some embodiments, in any one of the above configurations (1) to (7), the distance (distance h1) between the upper surface 11u and the lower surface 11d of the first wedge member 11 is When viewed from the thickness direction (first direction Dr1), the first direction (second direction Dr2) in the extending direction of the acoustic isolation plate 13 and along the extending direction of the lower surface 11d of the first wedge member 11 (second direction Dr2) It is preferably smaller than the dimension L1 of the wedge member 11 . The distance (distance h2) between the upper surface 12u and the lower surface 12d of the second wedge member 12 is the extending direction of the acoustic isolation plate 13 when viewed from the thickness direction (first direction Dr1) and is the second wedge It is preferably smaller than the dimension L2 of the second wedge member 12 in the direction along the extending direction of the lower surface 12d of the member 12 (second direction Dr2).

上記(8)の構成によれば、各ウエッジ部材11、12の高さ、すなわち、探傷対象物Taの表面Tasからの距離が抑制され、狭隘部における探傷が可能となる。 According to the configuration (8) above, the height of each wedge member 11, 12, that is, the distance from the surface Tas of the test object Ta is suppressed, and flaw detection in a narrow space becomes possible.

(9)幾つかの実施形態では、上記(1)乃至(8)の何れかの構成において、第1ウエッジ部材11の上面11uと下面11dとの距離(距離h1)、及び、第2ウエッジ部材12の上面12uと下面12dとの距離(距離h2)は、音響隔離板13の厚さ方向(第1方向Dr1)に沿った第1ウエッジ部材11の寸法W1と第2ウエッジ部材12の寸法W2との合計(W1+W2)よりも小さいとよい。 (9) In some embodiments, in any one of the configurations (1) to (8) above, the distance (distance h1) between the upper surface 11u and the lower surface 11d of the first wedge member 11 and the second wedge member The distance (distance h2) between the upper surface 12u and the lower surface 12d of the acoustic isolator 12 is the dimension W1 of the first wedge member 11 and the dimension W2 of the second wedge member 12 along the thickness direction (first direction Dr1) of the acoustic isolation plate 13. and the sum (W1+W2).

上記(9)の構成によれば、各ウエッジ部材11、12の高さ、すなわち、探傷対象物Taの表面Tasからの距離が抑制され、狭隘部における探傷が可能となる。 According to the configuration (9) above, the height of each wedge member 11, 12, that is, the distance from the surface Tas of the test object Ta is suppressed, and flaw detection in a narrow space is possible.

(10)幾つかの実施形態では、上記(9)の構成において、第1ウエッジ部材11の上面11uと下面11dとの距離(距離h1)は、音響隔離板13の厚さ方向(第1方向Dr1)に沿った第1ウエッジ部材11の寸法W1よりも小さいとよい。第2ウエッジ部材12の上面12uと下面12dとの距離(距離h2)は、音響隔離板13の厚さ方向(第1方向Dr1)に沿った第2ウエッジ部材12の寸法W2よりも小さいとよい。 (10) In some embodiments, in the configuration of (9) above, the distance (distance h1) between the upper surface 11u and the lower surface 11d of the first wedge member 11 is the thickness direction (first direction) of the acoustic isolation plate 13. It is preferably smaller than the dimension W1 of the first wedge member 11 along Dr1). The distance (distance h2) between the upper surface 12u and the lower surface 12d of the second wedge member 12 is preferably smaller than the dimension W2 of the second wedge member 12 along the thickness direction (first direction Dr1) of the acoustic isolation plate 13. .

上記(10)の構成によれば、各ウエッジ部材11、12の高さ、すなわち、探傷対象物Taの表面Tasからの距離がさらに抑制され、狭隘部における探傷が可能となる。 According to the configuration (10) above, the height of each wedge member 11, 12, that is, the distance from the surface Tas of the test object Ta is further reduced, and flaw detection in a narrow space becomes possible.

(11)幾つかの実施形態では、上記(1)乃至(10)の何れかの構成において、音響隔離板13の厚さ方向(第1方向Dr1)に沿った筐体20の寸法Wcは、音響隔離板13の厚さ方向(第1方向Dr1)に沿った第1ウエッジ部材11の寸法W1と第2ウエッジ部材12の寸法W2との合計(W1+W2)よりも小さいとよい。 (11) In some embodiments, in any one of the above configurations (1) to (10), the dimension Wc of the housing 20 along the thickness direction (first direction Dr1) of the acoustic isolation plate 13 is It is preferably smaller than the sum (W1+W2) of the dimension W1 of the first wedge member 11 and the dimension W2 of the second wedge member 12 along the thickness direction (first direction Dr1) of the acoustic isolation plate 13 .

上記(11)の構成によれば、筐体20の高さ、すなわち、第1方向Dr1における筐体20の端部と探傷対象物Taの表面Tasとの距離が抑制されるので、狭隘部における探傷が可能となる。 According to the configuration (11) above, the height of the housing 20, that is, the distance between the end of the housing 20 and the surface Tas of the flaw detection target Ta in the first direction Dr1 is suppressed. Flaw detection becomes possible.

(12)本開示の少なくとも一実施形態に係る超音波探傷方法は、上記(1)乃至(11)の何れかの構成の超音波探触子1を用いて、探傷対象物Taにおける探傷領域を縦波の超音波で探傷するステップS1と、該超音波探触子1を用いて、上記探傷領域とは深さが少なくとも一部で異なる領域をクリーピング波で探傷するステップS2と、を備える。 (12) An ultrasonic flaw detection method according to at least one embodiment of the present disclosure uses the ultrasonic probe 1 having any one of the above configurations (1) to (11) to detect a flaw detection region in the flaw detection target Ta. Step S1 of performing flaw detection with longitudinal wave ultrasonic waves, and Step S2 of performing flaw detection with creeping waves on a region at least partially different in depth from the above-described flaw detection region using the ultrasonic probe 1. .

上記(12)の方法によれば、縦波での探傷とクリーピング波での探傷とを探触子1を交換することなく実施可能となり、探傷対象物Taにおいて、表面Tasから比較的遠い領域から、表面に比較的近い領域まで、探触子1を交換することなく探傷可能となる。上記(12)の方法によれば、縦波での探傷とクリーピング波での探傷とで探触子1の交換作業を省略でき、効率的に検査できる。 According to the method (12) above, it is possible to perform flaw detection with longitudinal waves and flaw detection with creeping waves without exchanging the probe 1, and in the flaw detection target Ta, a region relatively far from the surface Ta , it becomes possible to detect flaws up to a region relatively close to the surface without exchanging the probe 1 . According to the above method (12), it is possible to omit the replacement work of the probe 1 between the flaw detection with the longitudinal wave and the flaw detection with the creeping wave, and the inspection can be performed efficiently.

1、1A、1B 超音波探触子
11 第1ウエッジ部材
12 第2ウエッジ部材
13 音響隔離板
15 送信用素子
16 受信用素子
17 基板
18 第1基板
19 第2基板
20 筐体
31 第1保持部材
32 第2保持部材
35 ケーブル
1, 1A, 1B Ultrasonic probe 11 First wedge member 12 Second wedge member 13 Acoustic isolation plate 15 Transmitting element 16 Receiving element 17 Substrate 18 First substrate 19 Second substrate 20 Case 31 First holding member 32 second holding member 35 cable

Claims (12)

第1ウエッジ部材と、
前記第1ウエッジ部材とは異なる第2ウエッジ部材と、
前記第1ウエッジ部材と前記第2ウエッジ部材との間に配置されて、前記第1ウエッジ部材と前記第2ウエッジ部材とを音響的に隔てる音響隔離板と、
前記第1ウエッジ部材の上面に配置される、複数の圧電素子を含む送信用素子と、
前記第2ウエッジ部材の上面に配置される、複数の圧電素子を含む受信用素子と、
前記音響隔離板を跨ぎ、前記第1ウエッジ部材と前記第2ウエッジ部材とに亘って配置され、前記送信用素子と前記受信用素子とを覆う筐体と、
を備える
超音波探触子。
a first wedge member;
a second wedge member different from the first wedge member;
an acoustic isolation plate disposed between the first wedge member and the second wedge member to acoustically separate the first wedge member and the second wedge member;
a transmitting element including a plurality of piezoelectric elements disposed on the upper surface of the first wedge member;
a receiving element including a plurality of piezoelectric elements arranged on the upper surface of the second wedge member;
a housing straddling the acoustic isolation plate and arranged over the first wedge member and the second wedge member to cover the transmitting element and the receiving element;
An ultrasonic probe comprising a
前記第1ウエッジ部材及び前記送信用素子は、探傷対象物内を伝搬する縦波の超音波を第1屈折角度θ1以上第2屈折角度θ2以下の範囲内で走査可能であり、且つ、屈折角度の範囲が前記第2屈折角度θ2以上第3屈折角度θ3未満の範囲と少なくとも一部で重複するクリーピング波を出力可能である、
請求項1に記載の超音波探触子。
The first wedge member and the transmitting element are capable of scanning longitudinal ultrasonic waves propagating in the flaw detection object within a range of a first refraction angle θ1 or more and a second refraction angle θ2 or less, and can output a creeping wave whose range at least partially overlaps with the range of the second refraction angle θ2 or more and less than the third refraction angle θ3.
The ultrasonic probe according to claim 1.
前記第1屈折角度θ1は、30度であり、
前記第2屈折角度θ2は、84度であり、
前記第3屈折角度θ3は、89度である、
請求項2に記載の超音波探触子。
The first refraction angle θ1 is 30 degrees,
The second refraction angle θ2 is 84 degrees,
The third refraction angle θ3 is 89 degrees,
The ultrasonic probe according to claim 2.
前記送信用素子と前記受信用素子とを含む単一の基板を備える、
請求項1乃至3の何れか一項に記載の超音波探触子。
a single substrate including the transmitting element and the receiving element;
The ultrasonic probe according to any one of claims 1 to 3.
前記送信用素子を含む第1基板と、
前記受信用素子を含み、前記第1基板とは異なる第2基板と、
を備える、
請求項1乃至3の何れか一項に記載の超音波探触子。
a first substrate including the transmitting element;
a second substrate that includes the receiving element and is different from the first substrate;
comprising
The ultrasonic probe according to any one of claims 1 to 3.
前記第1基板は、前記筐体に揺動可能に支持され、
前記第2基板は、前記筐体に前記第1基板とは独立して揺動可能に支持されている、
請求項5に記載の超音波探触子。
the first substrate is swingably supported by the housing;
The second substrate is supported by the housing so as to be swingable independently of the first substrate.
The ultrasonic probe according to claim 5.
前記送信用素子及び前記受信用素子とに接続される信号線が束ねられたケーブルを備え、
前記第1ウエッジ部材の上面及び前記第2ウエッジ部材の上面は、前記音響隔離板の厚さ方向から見たときに、前記音響隔離板の延在方向であって前記第1ウエッジ部材の下面及び前記第2ウエッジ部材の下面の延在方向に沿う方向の内の一方側から他方側に向かうにつれて前記第1ウエッジ部材の下面及び前記第2ウエッジ部材の下面に近づくように前記第1ウエッジ部材の下面及び前記第2ウエッジ部材の下面に対して傾斜しており、
前記ケーブルは、前記厚さ方向から見たときに、前記筐体から前記他方側に向かって突出しており、
前記厚さ方向から見たときに、前記筐体からの前記ケーブルの突出方向と、前記音響隔離板の延在方向であって前記第1ウエッジ部材の下面及び前記第2ウエッジ部材の下面の延在方向に沿う方向との角度差は、15度以内である、
請求項1乃至6の何れか一項に記載の超音波探触子。
A cable in which signal lines connected to the transmitting element and the receiving element are bundled,
When viewed from the thickness direction of the acoustic isolator, the upper surface of the first wedge member and the upper surface of the second wedge member are in the extension direction of the acoustic isolator and the lower surface of the first wedge member and the upper surface of the second wedge member. The first wedge member is arranged so as to approach the lower surface of the first wedge member and the lower surface of the second wedge member from one side to the other in the extending direction of the lower surface of the second wedge member. inclined with respect to the lower surface and the lower surface of the second wedge member,
the cable protrudes from the housing toward the other side when viewed from the thickness direction;
When viewed from the thickness direction, the projection direction of the cable from the housing and the extension direction of the acoustic isolator, which is the extension of the lower surface of the first wedge member and the extension of the lower surface of the second wedge member. The angle difference with the direction along the existing direction is within 15 degrees,
The ultrasonic probe according to any one of claims 1 to 6.
前記第1ウエッジ部材の前記上面と下面との距離は、前記音響隔離板の厚さ方向から見たときに、前記音響隔離板の延在方向であって前記第1ウエッジ部材の前記下面の延在方向に沿う方向の前記第1ウエッジ部材の寸法よりも小さく、
前記第2ウエッジ部材の前記上面と下面との距離は、前記厚さ方向から見たときに、前記音響隔離板の延在方向であって前記第2ウエッジ部材の前記下面の延在方向に沿う方向の前記第2ウエッジ部材の寸法よりも小さい、
請求項1乃至7の何れか一項に記載の超音波探触子。
The distance between the top surface and the bottom surface of the first wedge member is the extension direction of the acoustic isolation plate and the extension of the bottom surface of the first wedge member when viewed from the thickness direction of the acoustic isolation plate. smaller than the dimension of the first wedge member in the direction along the existing direction,
The distance between the upper surface and the lower surface of the second wedge member is along the extending direction of the acoustic isolation plate and the extending direction of the lower surface of the second wedge member when viewed from the thickness direction. less than the dimension of the second wedge member in a direction;
The ultrasonic probe according to any one of claims 1 to 7.
前記第1ウエッジ部材の前記上面と下面との距離、及び、前記第2ウエッジ部材の前記上面と下面との距離は、前記音響隔離板の厚さ方向に沿った前記第1ウエッジ部材の寸法と前記第2ウエッジ部材の寸法との合計よりも小さい、
請求項1乃至8の何れか一項に記載の超音波探触子。
The distance between the top surface and the bottom surface of the first wedge member and the distance between the top surface and the bottom surface of the second wedge member are the dimension of the first wedge member along the thickness direction of the acoustic isolator. less than the sum of the dimensions of the second wedge member;
The ultrasonic probe according to any one of claims 1 to 8.
前記第1ウエッジ部材の前記上面と下面との距離は、前記音響隔離板の厚さ方向に沿った前記第1ウエッジ部材の寸法よりも小さく、
前記第2ウエッジ部材の前記上面と下面との距離は、前記音響隔離板の厚さ方向に沿った前記第2ウエッジ部材の寸法よりも小さい、
請求項9に記載の超音波探触子。
the distance between the upper surface and the lower surface of the first wedge member is smaller than the dimension of the first wedge member along the thickness direction of the acoustic isolator;
the distance between the top surface and the bottom surface of the second wedge member is less than the dimension of the second wedge member along the thickness direction of the acoustic isolator;
The ultrasonic probe according to claim 9.
前記音響隔離板の厚さ方向に沿った前記筐体の寸法は、前記音響隔離板の厚さ方向に沿った前記第1ウエッジ部材の寸法と前記第2ウエッジ部材の寸法との合計よりも小さい、
請求項1乃至10の何れか一項に記載の超音波探触子。
The dimension of the housing along the thickness direction of the acoustic isolator is smaller than the sum of the dimension of the first wedge member and the dimension of the second wedge member along the thickness direction of the acoustic isolator. ,
The ultrasonic probe according to any one of claims 1 to 10.
請求項1乃至11の何れか一項に記載の超音波探触子を用いて、探傷対象物における探傷領域を縦波の超音波で探傷するステップと、
該超音波探触子を用いて、前記探傷領域とは深さが少なくとも一部で異なる領域をクリーピング波で探傷するステップと、
を備える
超音波探傷方法。
A step of using the ultrasonic probe according to any one of claims 1 to 11 to detect a flaw detection region of the flaw detection target with longitudinal ultrasonic waves;
using the ultrasonic probe to detect flaws with creeping waves in a region that is at least partially different in depth from the flaw detection region;
An ultrasonic flaw detection method comprising:
JP2021142877A 2021-09-02 2021-09-02 Ultrasonic probe and ultrasonic flaw detection method Active JP7023406B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021142877A JP7023406B1 (en) 2021-09-02 2021-09-02 Ultrasonic probe and ultrasonic flaw detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021142877A JP7023406B1 (en) 2021-09-02 2021-09-02 Ultrasonic probe and ultrasonic flaw detection method

Publications (2)

Publication Number Publication Date
JP7023406B1 JP7023406B1 (en) 2022-02-21
JP2023036092A true JP2023036092A (en) 2023-03-14

Family

ID=81076721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021142877A Active JP7023406B1 (en) 2021-09-02 2021-09-02 Ultrasonic probe and ultrasonic flaw detection method

Country Status (1)

Country Link
JP (1) JP7023406B1 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521011Y2 (en) * 1985-09-06 1993-05-31
JP2661580B2 (en) * 1995-03-02 1997-10-08 三菱電機株式会社 Ultrasonic longitudinal wave bevel probe
US6957583B2 (en) * 2002-10-31 2005-10-25 Hitachi, Ltd. Ultrasonic array sensor, ultrasonic inspection instrument and ultrasonic inspection method
JP5402046B2 (en) * 2008-02-20 2014-01-29 Jfeスチール株式会社 Ultrasonic measuring device and ultrasonic measuring method
JP2009244210A (en) * 2008-03-31 2009-10-22 Mitsubishi Heavy Ind Ltd Ultrasonic flaw detection method and ultrasonic flaw detector
JP5252502B2 (en) * 2009-05-28 2013-07-31 株式会社日立パワーソリューションズ Ultrasonic flaw detection apparatus and method
JP6973713B2 (en) * 2016-09-06 2021-12-01 国立大学法人東北大学 Scratch detector
WO2018135244A1 (en) * 2017-01-19 2018-07-26 株式会社神戸製鋼所 Ultrasonic probe
US11035829B2 (en) * 2017-10-27 2021-06-15 Olympus America Inc. Dual ultrasonic probe with variable roof angle
JP7074488B2 (en) * 2018-02-01 2022-05-24 株式会社神戸製鋼所 Ultrasonic probe

Also Published As

Publication number Publication date
JP7023406B1 (en) 2022-02-21

Similar Documents

Publication Publication Date Title
US7874212B2 (en) Ultrasonic probe, ultrasonic flaw detection method, and ultrasonic flaw detection apparatus
KR101878273B1 (en) Ultrasonic probe
JP4838697B2 (en) Ultrasonic flaw detector and ultrasonic flaw detection wedge
EP2425205B1 (en) Apparatus and method for measuring material thickness
JP4770386B2 (en) Ultrasonic probe of ultrasonic flaw detector
JP2011149888A (en) Compound-type ultrasonic probe, and ultrasonic flaw detection method by tofd method using the probe
JP5574731B2 (en) Ultrasonic flaw detection test method
JP2007114075A5 (en)
JP5567471B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus
EP3543689A1 (en) Ultrasonic probe
JP7023406B1 (en) Ultrasonic probe and ultrasonic flaw detection method
US20140352438A1 (en) Device for ultrasonic inspection
JP2014178302A (en) Ultrasonic probe
JP6764886B2 (en) How to install the probe and how to drive the transmitting probe
CN110687205A (en) Ultrasonic longitudinal wave reflection method and diffraction time difference method combined detection method and TOFD probe applied to method
JP6460136B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
JP5567472B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus
JP5250248B2 (en) Defect end detection method and defect end detection device
WO2019150953A1 (en) Ultrasonic probe
WO2018147036A1 (en) Ultrasound probe
JP2010281843A (en) Ultrasonic probe of ultrasonic flaw detector
JPS63186143A (en) Ultrasonic wave probe
JP7277391B2 (en) Ultrasonic inspection device and ultrasonic inspection method
JP4835341B2 (en) Ultrasonic flaw detection method
JPH095304A (en) Ultrasonic flaw detection method in welded part between straight pipe and elbow

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210902

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220208

R150 Certificate of patent or registration of utility model

Ref document number: 7023406

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150