JP2023035628A - 診断装置 - Google Patents

診断装置 Download PDF

Info

Publication number
JP2023035628A
JP2023035628A JP2021142630A JP2021142630A JP2023035628A JP 2023035628 A JP2023035628 A JP 2023035628A JP 2021142630 A JP2021142630 A JP 2021142630A JP 2021142630 A JP2021142630 A JP 2021142630A JP 2023035628 A JP2023035628 A JP 2023035628A
Authority
JP
Japan
Prior art keywords
air
oxygen consumption
fuel ratio
catalyst
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021142630A
Other languages
English (en)
Inventor
敦史 金子
Atsushi Kaneko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Subaru Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Subaru Corp filed Critical Subaru Corp
Priority to JP2021142630A priority Critical patent/JP2023035628A/ja
Publication of JP2023035628A publication Critical patent/JP2023035628A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

【課題】触媒の劣化を精度良く診断する。【解決手段】診断装置は、エンジンへの燃料の供給を停止する燃料カットの後において、理論空燃比よりもリッチなリッチ雰囲気でエンジンへの燃料の供給を再開させる制御部と、エンジンへの燃料の供給の再開後における触媒の酸素消費量の総量である酸素消費量総量を算出する算出部と、算出部により算出された酸素消費量総量に基づいて、触媒の劣化を診断する診断部と、を備え、算出部は、触媒に流入する排気の空燃比を検出する空燃比センサにより検出される空燃比が理論空燃比よりもリッチになる前における酸素消費量である第1酸素消費量を燃料の噴射量に基づいて算出し、空燃比センサにより検出される空燃比が理論空燃比よりもリッチになった後における酸素消費量である第2酸素消費量を排気の空燃比に基づいて算出し、第1酸素消費量と第2酸素消費量との合計値を酸素消費量総量として算出する。【選択図】図4

Description

本発明は、診断装置に関する。
近年、エンジンと接続される排気流路に設けられる三元触媒等の触媒の劣化を診断する技術が提案されている。例えば、特許文献1に開示されているように、触媒の酸素貯蔵能(OSC:Oxygen Storage Capacity)が低下しているか否かを判断することによって触媒の劣化を診断する方法がある。
特開2001-115879号公報
触媒のOSCに着目した劣化診断の方法として、燃料カットの後にリッチ雰囲気でエンジンへの燃料の供給を再開させ、燃料の供給の再開後における触媒の酸素消費量の総量である酸素消費量総量を算出し、算出された酸素消費量総量に基づいて触媒の劣化を診断する方法がある。この場合、算出された酸素消費量総量が想定値よりも小さい場合に、触媒が劣化していると診断される。
ここで、特許文献1に開示されている劣化診断等では、触媒に流入する排気の空燃比を検出する空燃比センサの検出結果に基づいて、酸素消費量の算出開始タイミングが決定される。具体的には、空燃比センサにより検出される空燃比がリーンからリッチに切り替わった時点が酸素消費量の算出開始タイミングとして決定され、その時点以降の各時点における単位時間あたりの酸素消費量の積算値が酸素消費量総量として算出される。ゆえに、空燃比センサの応答遅れが発生した場合、酸素消費量の算出開始タイミングが遅れてしまうので、算出される酸素消費量総量が小さくなり、劣化診断の診断精度が低下してしまう。
そこで、本発明は、触媒の劣化を精度良く診断することが可能な診断装置を提供することを目的としている。
上記課題を解決するために、本発明の一実施の形態に係る診断装置は、
エンジンと、前記エンジンと接続される排気流路と、前記排気流路に設けられる触媒と、前記触媒に流入する排気の空燃比を検出する空燃比センサと、を備える車両の診断装置であって、
前記エンジンへの燃料の供給を停止する燃料カットの後において、理論空燃比よりもリッチなリッチ雰囲気で前記エンジンへの前記燃料の供給を再開させる制御部と、
前記エンジンへの前記燃料の供給の再開後における前記触媒の酸素消費量の総量である酸素消費量総量を算出する算出部と、
前記算出部により算出された前記酸素消費量総量に基づいて、前記触媒の劣化を診断する診断部と、
を備え、
前記算出部は、
前記空燃比センサにより検出される前記空燃比が前記理論空燃比よりもリッチになる前における前記酸素消費量である第1酸素消費量を前記燃料の噴射量に基づいて算出し、
前記空燃比センサにより検出される前記空燃比が前記理論空燃比よりもリッチになった後における前記酸素消費量である第2酸素消費量を前記排気の前記空燃比に基づいて算出し、
前記第1酸素消費量と前記第2酸素消費量との合計値を前記酸素消費量総量として算出する。
本発明によれば、触媒の劣化を精度良く診断することが可能となる。
本発明の実施形態に係る吸排気システムの概略構成を示す模式図である。 本発明の実施形態に係る診断装置の機能構成の一例を示すブロック図である。 本発明の実施形態に係る診断装置が行う処理の全体的な流れの一例を示すフローチャートである。 本発明の実施形態に係る診断装置が行う処理のうち酸素消費量総量の算出処理の流れの一例を示すフローチャートである。 本発明の実施形態に係る劣化診断における各種状態量の推移の一例を示す図である。
以下に添付図面を参照しながら、本発明の実施形態について詳細に説明する。かかる実施形態に示す具体的な寸法、材料、数値等は、発明の理解を容易にするための例示に過ぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。
<吸排気システムの構成>
図1および図2を参照して、本発明の実施形態に係る吸排気システム1の構成について説明する。
図1は、吸排気システム1の概略構成を示す模式図である。吸排気システム1は、車両100に搭載される。図1に示されるように、吸排気システム1は、エンジン10と、吸気流路20と、排気流路30と、診断装置50とを備える。
エンジン10は、例えば、火花点火式の内燃機関である。エンジン10は、1つまたは複数の気筒11を有する。図1では、理解を容易にするために、エンジン10に設けられる複数の気筒11のうちの1つの気筒11のみが示されている。気筒11には、ピストン12が摺動自在に設けられている。気筒11の内部には、燃焼室13が形成される。燃焼室13は、気筒11の内面と、ピストン12の冠面とにより区画される。気筒11には、燃焼室13に臨む点火プラグ14が設けられている。また、気筒11には、燃焼室13に向けて燃料を噴射する燃料噴射弁15が設けられている。燃焼室13には、空気および燃料を含む混合気が形成される。当該混合気が、点火プラグ14により点火され、燃焼する。それにより、各気筒11内のピストン12が直線往復運動を行い、各ピストン12と接続されているクランクシャフトへ動力が伝達される。
なお、燃料噴射弁15は、燃焼室13内に燃料を直接噴射する形式のものに限定されない。例えば、燃料噴射弁15は、吸気流路20に設けられ、吸気流路20内に燃料を噴射してもよい。この場合、燃料は、吸気とともに、燃焼室13へ吸入される。
エンジン10の各燃焼室13は、吸気ポートを介して吸気流路20と連通しており、排気ポートを介して排気流路30と連通している。各気筒11には、吸気ポートを開閉可能な吸気バルブ16と、排気ポートを開閉可能な排気バルブ17が設けられている。吸気バルブ16および排気バルブ17が駆動されることにより、燃焼室13への吸気の供給、および、燃焼室13からの排気の排出が行われる。
吸気流路20は、エンジン10と接続され、エンジン10の燃焼室13に供給される空気が流通する流路である。吸気流路20の上流側の端部には、車両100の外部から外気が取り込まれる図示しない吸気口が設けられている。吸気流路20のうち吸気口より下流側には、エアフィルタ21が設けられている。エアフィルタ21は、吸気流路20を流通する空気に含まれる異物を除去する。吸気流路20のうちエアフィルタ21より下流側には、スロットルバルブ22が設けられる。スロットルバルブ22は、吸気流路20を通って、エンジン10に送られる吸気の流量を調整する。エンジン10に送られる吸気の流量は、スロットルバルブ22の開度に応じて変化する。
吸気流路20のうちスロットルバルブ22より下流側には、サージタンク23が設けられる。サージタンク23には、エンジン10に送られる吸気が一時的に溜められる。吸気流路20のうちサージタンク23より下流側には、図示しないインテークマニホールドが設けられる。インテークマニホールドは、エンジン10の各気筒11に向けて分岐し、各気筒11の吸気ポートと接続される。
吸気流路20では、吸気口から外気が取り込まれる。取り込まれた空気は、エアフィルタ21を通過した後、スロットルバルブ22およびサージタンク23を順に通過してエンジン10に送られる。
吸気流路20には、エアフローメータ24が設けられる。エアフローメータ24は、吸気流路20へ吸入され吸気流路20を流通する空気の流量である吸入空気量を検出する。エアフローメータ24は、例えば、エアフィルタ21とスロットルバルブ22との間に設けられる。
排気流路30は、エンジン10と接続され、エンジン10の燃焼室13から排出される排気が流通する流路である。排気流路30の下流側の端部には、車両100の外部へ排気が排出される図示しない排気口が設けられている。排気流路30には、図示しないエキゾーストマニホールドが設けられる。エキゾーストマニホールドは、エンジン10の各気筒11に向けて分岐し、各気筒11の排気ポートと接続される。
排気流路30のうちエキゾーストマニホールドより下流側には、触媒31が設けられる。触媒31は、三元触媒である。触媒31は、排気中の炭化水素(HC)および一酸化炭素(CO)を酸化させ、排気中のNOxを還元させることによって、これらの有害成分を無害な水蒸気(HO)、二酸化炭素(CO)および窒素(N)に浄化する。ただし、触媒31は、少なくとも三元触媒の機能を有していればよい。例えば、触媒31は、三元触媒の機能に加え、GPF(Gasoline Particulate Filter)の機能を有していてもよい。
排気流路30では、エンジン10から排出された排気は、触媒31を通過して、排気口から排出される。
排気流路30には、空燃比センサ32と、温度センサ33と、酸素センサ34とが設けられる。空燃比センサ32は、触媒31に流入する排気の空燃比を検出する。空燃比センサ32は、排気流路30のうち触媒31より上流側に設けられる。温度センサ33は、触媒31の温度を検出する。温度センサ33は、触媒31の近傍に設けられる。酸素センサ34は、触媒31から排出される排気中の酸素濃度を検出する。酸素センサ34は、排気流路30のうち触媒31より下流側に設けられる。
車両100には、アクセル開度センサ41および車速センサ42が設けられる。アクセル開度センサ41は、ドライバによるアクセル操作の操作量に相当するアクセル開度を検出する。車速センサ42は、車両100の車速を検出する。
診断装置50は、触媒31の劣化診断を行う。劣化診断は、触媒31の劣化を診断するための一連の処理を意味する。ここで、触媒31は、酸素貯蔵能(OSC)を有している。OSCは、触媒31に含まれるセリア(CeO)等の成分によって実現される。診断装置50は、触媒31のOSCに着目して、劣化診断を行う。診断装置50による劣化診断では、触媒31のOSCが想定よりも低下したことをもって、触媒31が劣化したと診断される。
理論空燃比よりもリッチなリッチ雰囲気では、触媒31による炭化水素(HC)および一酸化炭素(CO)の浄化効率が低下する。一方、理論空燃比よりもリーンなリーン雰囲気では、触媒31によるNOxの浄化効率が低下する。ゆえに、炭化水素(HC)および一酸化炭素(CO)の浄化効率と、NOxの浄化効率とを両立させるためには、触媒31に流入する排気の空燃比を理論空燃比近傍に制御する必要がある。上述したように、触媒31は、OSCを有している。ゆえに、酸素が不足するリッチ雰囲気では、触媒31から酸素が放出される。一方、酸素が過剰なリーン雰囲気では、触媒31により酸素が貯蔵される。それにより、触媒31に流入する排気の空燃比が理論空燃比近傍に制御される。
診断装置50は、1つまたは複数のプロセッサ51と、プロセッサ51に接続される1つまたは複数のメモリ52と、を有する。プロセッサ51は、例えば、CPU(Central Processing Unit)を含む。メモリ52は、例えば、ROM(Read Only Memory)およびRAM(Random Access Memory)などを含む。ROMは、CPUが使用するプログラムおよび演算パラメータ等を記憶する記憶素子である。RAMは、CPUにより実行される処理に用いられる変数およびパラメータ等のデータを一時記憶する記憶素子である。
診断装置50は、吸排気システム1に設けられる各装置(例えば、点火プラグ14、燃料噴射弁15、スロットルバルブ22、エアフローメータ24、空燃比センサ32、温度センサ33、酸素センサ34、アクセル開度センサ41および車速センサ42等)と通信を行う。診断装置50と各装置との通信は、例えば、CAN(Controller Area Network)通信を用いて実現される。
図2は、診断装置50の機能構成の一例を示すブロック図である。例えば、図2に示されるように、診断装置50は、取得部50aと、制御部50bと、算出部50cと、診断部50dとを有する。なお、取得部50a、制御部50b、算出部50cまたは診断部50dにより行われる以下で説明する処理を含む各種処理は、プロセッサ51によって実行され得る。詳細には、メモリ52に記憶されているプログラムをプロセッサ51が実行することにより、各種処理が実行される。
取得部50aは、制御部50bおよび算出部50cが行う処理において用いられる各種情報を取得し、制御部50bおよび算出部50cへ出力する。例えば、取得部50aは、エアフローメータ24、空燃比センサ32、温度センサ33、酸素センサ34、アクセル開度センサ41および車速センサ42から情報を取得する。
制御部50bは、吸排気システム1内の各装置の動作を制御する。例えば、制御部50bは、点火プラグ14による点火タイミングを制御する。また、例えば、制御部50bは、燃料噴射弁15による燃料噴射における燃料噴射タイミングおよび燃料噴射量を制御する。燃料噴射量は、エンジン10に供給される燃料の噴射量である。また、例えば、制御部50bは、スロットルバルブ22の開度を制御する。
ここで、制御部50bは、エンジン10への燃料の供給を停止する燃料カットを、車両100の走行状態に応じて実行する。例えば、制御部50bは、車両100が減速中であり、かつ、アクセル開度がゼロである場合に、燃料カットを実行する。そして、制御部50bは、燃料カットの後において、理論空燃比よりもリッチなリッチ雰囲気でエンジン10への燃料の供給を再開させる触媒中立化制御を実行する。触媒中立化制御は、燃料カット中に酸素貯蔵量が過多となった触媒31から酸素を放出させるための制御である。診断装置50による劣化診断は、エンジン10への燃料の供給の再開後に行われる。診断装置50による劣化診断は、算出部50cおよび診断部50dによって行われる。
算出部50cは、エンジン10への燃料の供給の再開後における触媒31の酸素消費量の総量である酸素消費量総量を算出する。算出部50cにより算出される酸素消費量総量は、触媒中立化制御により触媒31から放出された酸素の総量である。
診断部50dは、算出部50cにより算出された酸素消費量総量に基づいて、触媒31の劣化を診断する。ここで、算出部50cにより算出された酸素消費量総量は、燃料カット中に触媒31に貯蔵されていた酸素の総量に相当する。ゆえに、診断部50dは、算出された酸素消費量総量が想定値よりも小さい場合に、触媒31のOSCが想定よりも低下したと判断し、触媒31が劣化したと診断する。
なお、本実施形態に係る診断装置50が有する機能は複数の装置に分割されてもよく、複数の機能が1つの装置によって実現されてもよい。診断装置50が有する機能が複数の装置に分割される場合、当該複数の装置は、CAN等の通信バスを介して、互いに接続されてもよい。
上記のように、診断装置50では、算出部50cは、エンジン10への燃料の供給の再開後における触媒31の酸素消費量総量を算出する。診断部50dは、算出部50cにより算出された酸素消費量総量に基づいて、触媒31の劣化を診断する。ここで、本実施形態に係る診断装置50では、触媒31の酸素消費量総量の算出方法を工夫することによって、触媒31の劣化を精度良く診断することが実現される。
<診断装置の動作>
続いて、図3~図5を参照して、本発明の実施形態に係る診断装置50の動作について説明する。
図3は、診断装置50が行う処理の全体的な流れの一例を示すフローチャートである。図3に示される制御フローは、例えば、終了した後に、所定の時間間隔を空けて繰り返し開始される。
図3に示される制御フローが開始されると、まず、ステップS101において、診断装置50は、燃料カットが実行中であるか否かを判定する。燃料カットが実行中であると判定された場合(ステップS101でYES)、ステップS102に進む。一方、燃料カットが実行中ではないと判定された場合(ステップS101でNO)、図3に示される制御フローは終了する。
ステップS101でYESと判定された場合、ステップS102において、診断装置50は、燃料カットが終了したか否かを判定する。燃料カットが終了したと判定された場合(ステップS102でYES)、ステップS103に進む。一方、燃料カットが終了していないと判定された場合(ステップS102でNO)、ステップS102が繰り返される。
ステップS102でYESと判定された場合、ステップS103において、制御部50bは、触媒中立化制御を実行する。それにより、理論空燃比よりもリッチなリッチ雰囲気でエンジン10への燃料の供給が再開される。なお、制御部50bは、例えば、燃料噴射量およびスロットルバルブ22の開度を制御することによって、エンジン10の気筒11内に形成される混合気の空燃比を制御することができる。
次に、ステップS104において、診断装置50は、触媒31の劣化診断が未実施であるか否かを判定する。後述するステップS105~ステップS108が、劣化診断の処理に相当する。
例えば、診断装置50は、イグニッションスイッチがONになってからOFFになるまでの期間において、劣化診断を1回行う。診断装置50は、イグニッションスイッチが直近でONになった後において劣化診断がまだ行われていない場合、劣化診断が未実施であると判定する。一方、診断装置50は、イグニッションスイッチが直近でONになった後において劣化診断が既に行われている場合、劣化診断が実施済みであると判定する。
劣化診断が未実施であると判定された場合(ステップS104でYES)、ステップS105に進む。一方、劣化診断が実施済みであると判定された場合(ステップS104でNO)、図3に示される制御フローは終了する。なお、ステップS104でNOと判定された場合、ステップS104でYESと判定された場合における後述する処理と同様に、制御部50bは、触媒31より下流側における空燃比がリッチになったことを条件に、触媒中立化制御を終了する。
ステップS104でYESと判定された場合、ステップS105において、算出部50cは、触媒31の酸素消費量総量を算出する。以下、酸素消費量総量を算出する処理を算出処理とも呼ぶ。
図4は、診断装置50が行う処理のうち酸素消費量総量の算出処理の流れの一例を示すフローチャートである。図4に示される制御フローは、図3に示される制御フロー中のステップS105の処理の流れの一例に相当する。
図4に示される制御フローが開始されると、まず、ステップS201において、算出部50cは、燃料噴射量に基づいて、第1酸素消費量を算出する。第1酸素消費量は、空燃比センサ32により検出される空燃比が理論空燃比よりもリッチになる前における酸素消費量である。換言すると、第1酸素消費量は、空燃比センサ32により検出される空燃比が理論空燃比よりもリッチになる前において触媒31から放出された酸素の総量である。空燃比センサ32により検出される空燃比が理論空燃比よりもリッチになる前においても、リッチ雰囲気でエンジン10への燃料の供給が行われている触媒中立化制御の実行中には、触媒31から酸素が放出される。
後述するように、ステップS201は、空燃比センサ32により検出される空燃比である上流側空燃比がリッチになるまでの間、繰り返される。上流側空燃比は、触媒31より上流側の空燃比である。つまり、上流側空燃比は、触媒31に流入する排気の空燃比である。上流側空燃比は、空燃比センサ32の検出結果に基づいて取得される。
ステップS201では、算出部50cは、上流側空燃比がリッチになるまでの間の各時点における単位時間あたりの酸素消費量を積算し、各時点における単位時間あたりの酸素消費量の積算値を第1酸素消費量として算出する。
算出部50cは、燃料噴射量に基づいて、各時点における単位時間あたりの酸素消費量を算出する。燃料噴射量が大きいほど、触媒31が酸素を放出する反応が促進される。ゆえに、算出部50cは、例えば、燃料噴射量が大きいほど、各時点における単位時間あたりの酸素消費量として大きな値を算出する。このように、燃料噴射量に基づいて第1酸素消費量を算出することによって、第1酸素消費量を適切に算出することができる。燃料噴射量は、制御部50bにより決定される各種制御指令値に基づいて取得され得る。
ここで、第1酸素消費量をより精度良く算出する観点では、燃料噴射量に加えて吸入空気量に基づいて第1酸素消費量を算出することが好ましい。この場合、算出部50cは、第1酸素消費量の算出において、吸入空気量に基づいて、各時点における単位時間あたりの酸素消費量を算出する。吸入空気量が大きいほど、触媒31が酸素を放出する反応が促進される。ゆえに、算出部50cは、例えば、吸入空気量が大きいほど、各時点における単位時間あたりの酸素消費量として大きな値を算出する。吸入空気量は、エアフローメータ24の検出結果に基づいて取得される。
また、第1酸素消費量をより精度良く算出する観点では、燃料噴射量に加えて触媒31の温度に基づいて第1酸素消費量を算出することが好ましい。この場合、算出部50cは、第1酸素消費量の算出において、触媒31の温度に基づいて、各時点における単位時間あたりの酸素消費量を算出する。触媒31が酸素を放出する反応が促進される程度は、触媒31の温度に応じて変化する。触媒31の温度は、温度センサ33の検出結果に基づいて取得される。
次に、ステップS202において、算出部50cは、上流側空燃比がリッチになったか否かを判定する。上流側空燃比がリッチになったと判定された場合(ステップS202でYES)、ステップS203に進む。一方、上流側空燃比がリッチになっていないと判定された場合(ステップS202でNO)、ステップS201に戻る。
ステップS202でYESと判定された場合、ステップS203において、算出部50cは、上流側空燃比に基づいて、第2酸素消費量を算出する。第2酸素消費量は、空燃比センサ32により検出される空燃比が理論空燃比よりもリッチになった後における酸素消費量である。換言すると、第2酸素消費量は、空燃比センサ32により検出される空燃比が理論空燃比よりもリッチになった後において触媒31から放出された酸素の総量である。
後述するように、ステップS203は、下流側空燃比がリッチになるまでの間、繰り返される。下流側空燃比は、触媒31より下流側の空燃比である。つまり、下流側空燃比は、触媒31から排出される排気の空燃比である。下流側空燃比がリッチになったか否かは、酸素センサ34の検出結果に基づいて判定される。
ステップS203では、算出部50cは、下流側空燃比がリッチになるまでの間の各時点における単位時間あたりの酸素消費量を積算し、各時点における単位時間あたりの酸素消費量の積算値を第2酸素消費量として算出する。
算出部50cは、上流側空燃比に基づいて、各時点における単位時間あたりの酸素消費量を算出する。上流側空燃比が小さいほど、触媒31に流入する排気中の燃料の割合が大きいので、触媒31が酸素を放出する反応が促進される。ゆえに、算出部50cは、例えば、上流側空燃比が小さいほど、各時点における単位時間あたりの酸素消費量として大きな値を算出する。このように、上流側空燃比に基づいて第2酸素消費量を算出することによって、第2酸素消費量を適切に算出することができる。
ここで、第2酸素消費量をより精度良く算出する観点では、上流側空燃比に加えて吸入空気量に基づいて第2酸素消費量を算出することが好ましい。この場合、算出部50cは、第2酸素消費量の算出において、吸入空気量に基づいて、各時点における単位時間あたりの酸素消費量を算出する。吸入空気量が大きいほど、触媒31が酸素を放出する反応が促進される。ゆえに、算出部50cは、例えば、吸入空気量が大きいほど、各時点における単位時間あたりの酸素消費量として大きな値を算出する。
また、第2酸素消費量をより精度良く算出する観点では、上流側空燃比に加えて触媒31の温度に基づいて第2酸素消費量を算出することが好ましい。この場合、算出部50cは、第2酸素消費量の算出において、触媒31の温度に基づいて、各時点における単位時間あたりの酸素消費量を算出する。触媒31が酸素を放出する反応が促進される程度は、触媒31の温度に応じて変化する。
次に、ステップS204において、算出部50cは、下流側空燃比がリッチになったか否かを判定する。算出部50cは、上述したように、下流側空燃比がリッチになったか否かを、酸素センサ34の検出結果に基づいて判定することができる。下流側空燃比がリッチになったと判定された場合(ステップS204でYES)、ステップS205に進む。一方、下流側空燃比がリッチになっていないと判定された場合(ステップS204でNO)、ステップS203に戻る。
ステップS204でYESと判定された場合、ステップS205において、算出部50cは、第1酸素消費量と第2酸素消費量との合計値を触媒31の酸素消費量総量として算出し、図4に示される制御フローは終了する。以下、図3に戻り、説明を続ける。
ステップS105の次に、ステップS106において、診断部50dは、算出部50cにより算出された酸素消費量総量が閾値より小さいか否かを判定する。閾値は、触媒31が劣化していない正常時において想定される酸素消費量総量、または、そのような酸素消費量総量よりも小さな値に設定される。
算出部50cにより算出された酸素消費量総量が閾値より小さいと判定された場合(ステップS106でYES)、ステップS107に進み、診断部50dは、触媒31が劣化していると診断する。この場合、触媒31が劣化している旨がドライバに対して通知される。例えば、制御部50bは、劣化診断の結果を通知するために設けられている車両100内のランプを点灯させる。それにより、ドライバは、触媒31が劣化している旨を認識することができる。
一方、算出部50cにより算出された酸素消費量総量が閾値以上であると判定された場合(ステップS106でNO)、ステップS108に進み、診断部50dは、触媒31が劣化しておらず正常であると診断する。この場合、例えば、劣化診断の結果を通知するために設けられている車両100内のランプは点灯しない。
ステップS107またはステップS108の次に、ステップS109において、制御部50bは、触媒中立化制御を終了し、図3に示される制御フローは終了する。
図5は、本実施形態に係る劣化診断における各種状態量の推移の一例を示す図である。図5では、各種状態量として、燃料カットフラグ、上流側空燃比、第2酸素消費量積算値、第1酸素消費量積算値および下流側空燃比リッチフラグの各々の推移が示されている。なお、図5では、空燃比センサ32が正常である場合が実線によって示されており、空燃比センサ32の応答遅れが生じている場合が破線によって示されている。
燃料カットフラグは、燃料カットが実行されている場合に1となり、燃料カットが実行されていない場合に0となる。下流側空燃比リッチフラグは、下流側空燃比がリッチになっていることを示す検出結果が酸素センサ34から出力されている場合に1となり、下流側空燃比がリッチになっていることを示す検出結果が酸素センサ34から出力されていない場合に0となる。燃料カットフラグおよび下流側空燃比リッチフラグは、例えば、診断装置50の記憶素子に記憶されており、診断装置50により書き換えられる。
第1酸素消費量積算値は、第1酸素消費量の算出処理における各時点での酸素消費量の積算値である。第2酸素消費量積算値は、第2酸素消費量の算出処理における各時点での酸素消費量の積算値である。図5では、上流側空燃比は、λ値により示されている。ゆえに、図5中の上流側空燃比が1.0である場合、上流側空燃比は理論空燃比となる。
図5に示される例では、時点T1以前において、燃料カットが実行されている。ゆえに、時点T1以前において、上流側空燃比はリーンとなっている。また、時点T1以前において、下流側空燃比もリーンとなっている。時点T1において、燃料カットが終了し、触媒中立化制御が実行される。それにより、理論空燃比よりもリッチなリッチ雰囲気でエンジン10への燃料の供給が再開される。図5の例では、時点T1以降において、触媒31の劣化診断が行われる。
空燃比センサ32が正常である実線の例では、時点T1の後の時点T2において、空燃比センサ32により検出される空燃比である上流側空燃比がリーンからリッチに切り替わる。ゆえに、時点T1から時点T2までの間、第1酸素消費量の算出処理が行われる。よって、時点T1から時点T2までの間の各時点における単位時間あたりの酸素消費量の積算値が第1酸素消費量として算出される。
そして、時点T2の後の時点T4において、下流側空燃比がリーンからリッチに切り替わる。ゆえに、時点T2から時点T4までの間、第2酸素消費量の算出処理が行われる。よって、時点T2から時点T4までの間の各時点における単位時間あたりの酸素消費量の積算値が第2酸素消費量として算出される。なお、時点T2から時点T4までの間の期間中には、触媒31の作用によって排気中のリッチ成分が除去されるので、下流側空燃比はリーンとなっている。その後、第1酸素消費量と第2酸素消費量との合計値が触媒31の酸素消費量総量として算出され、触媒31の劣化が診断される。
ここで、空燃比センサ32の応答遅れが生じる場合がある。空燃比センサ32の応答遅れは、空燃比センサ32の特性の経時的な変化、空燃比センサ32の取付精度等の種々の要因によって生じ得る。空燃比センサ32の応答遅れが生じている破線の例では、時点T2よりも後の時点T3において、空燃比センサ32により検出される空燃比である上流側空燃比がリーンからリッチに切り替わる。ゆえに、時点T1から時点T3までの間、第1酸素消費量の算出処理が行われる。よって、時点T1から時点T3までの間の各時点における単位時間あたりの酸素消費量の積算値が第1酸素消費量として算出される。
そして、実線の例と同様に、時点T4において、下流側空燃比がリーンからリッチに切り替わる。ゆえに、時点T3から時点T4までの間、第2酸素消費量の算出処理が行われる。よって、時点T3から時点T4までの間の各時点における単位時間あたりの酸素消費量の積算値が第2酸素消費量として算出される。その後、第1酸素消費量と第2酸素消費量との合計値が触媒31の酸素消費量総量として算出され、触媒31の劣化が診断される。
ここで、本実施形態と異なり、空燃比センサ32により検出される上流側空燃比がリーンからリッチに切り替わった時点を酸素消費量の算出開始タイミングとして決定し、その時点以降の各時点における単位時間あたりの酸素消費量の積算値を触媒31の酸素消費量総量として算出することが考えられる。この場合には、本実施形態における第2酸素消費量が想定値よりも小さい場合に、触媒31が劣化していると診断される。しかしながら、図5に示されるように、空燃比センサ32の応答遅れが生じている破線の例では、空燃比センサ32が正常である実線の例と比較して、第2酸素消費量の算出開始タイミングが遅れてしまうので、算出される第2酸素消費量が小さくなる。ゆえに、劣化診断の診断精度が低下してしまう。
一方、本実施形態では、上流側空燃比がリッチになる前における酸素消費量である第1酸素消費量と、上流側空燃比がリッチになった後における酸素消費量である第2酸素消費量とがそれぞれ算出され、第1酸素消費量と第2酸素消費量との合計値が触媒31の酸素消費量総量として算出される。ここで、第1酸素消費量の算出処理では、空燃比センサ32により検出される上流側空燃比を利用できないものの、燃料噴射量に基づいて第1酸素消費量を算出することによって、第1酸素消費量を適切に算出することができる。また、第2酸素消費量の算出処理では、上流側空燃比に基づいて第2酸素消費量を算出することによって、第2酸素消費量を適切に算出することができる。ゆえに、空燃比センサ32の応答遅れが生じているか否かによらず、触媒31の酸素消費量総量を適切に算出することができる。よって、触媒31の劣化を精度良く診断することができる。
<診断装置の効果>
続いて、本発明の実施形態に係る診断装置50の効果について説明する。
本実施形態に係る診断装置50では、算出部50cは、空燃比センサ32により検出される空燃比である上流側空燃比が理論空燃比よりもリッチになる前における酸素消費量である第1酸素消費量を燃料噴射量に基づいて算出する。また、算出部50cは、空燃比センサ32により検出される空燃比である上流側空燃比が理論空燃比よりもリッチになった後における酸素消費量である第2酸素消費量を上流側空燃比に基づいて算出する。算出部50cは、第1酸素消費量と第2酸素消費量との合計値を触媒31の酸素消費量総量として算出する。それにより、空燃比センサ32の応答遅れが生じているか否かによらず、触媒31の酸素消費量総量を適切に算出することができる。そして、診断部50dは、算出部50cによって算出された触媒31の酸素消費量総量に基づいて、触媒31の劣化を診断する。よって、触媒31の劣化を精度良く診断することができる。
また、本実施形態に係る診断装置50では、算出部50cは、燃料噴射量に加えて、エンジン10と接続される吸気流路20に吸入される空気の流量である吸入空気量に基づいて、第1酸素消費量を算出することが好ましい。それにより、第1酸素消費量を吸入空気量に応じて精度良く算出することができる。ゆえに、第1酸素消費量をより精度良く算出することができる。よって、触媒31の酸素消費量総量をより精度良く算出することができるので、触媒31の劣化をより精度良く診断することができる。
また、本実施形態に係る診断装置50では、算出部50cは、燃料噴射量に加えて、触媒31の温度に基づいて、第1酸素消費量を算出することが好ましい。それにより、第1酸素消費量を触媒31の温度に応じて精度良く算出することができる。ゆえに、第1酸素消費量をより精度良く算出することができる。よって、触媒31の酸素消費量総量をより精度良く算出することができるので、触媒31の劣化をより精度良く診断することができる。
また、本実施形態に係る診断装置50では、算出部50cは、上流側空燃比に加えて、エンジン10と接続される吸気流路20に吸入される空気の流量である吸入空気量に基づいて、第2酸素消費量を算出することが好ましい。それにより、第2酸素消費量を吸入空気量に応じて精度良く算出することができる。ゆえに、第2酸素消費量をより精度良く算出することができる。よって、触媒31の酸素消費量総量をより精度良く算出することができるので、触媒31の劣化をより精度良く診断することができる。
また、本実施形態に係る診断装置50では、算出部50cは、上流側空燃比に加えて、触媒31の温度に基づいて、第2酸素消費量を算出することが好ましい。それにより、第2酸素消費量を触媒31の温度に応じて精度良く算出することができる。ゆえに、第2酸素消費量をより精度良く算出することができる。よって、触媒31の酸素消費量総量をより精度良く算出することができるので、触媒31の劣化をより精度良く診断することができる。
以上、添付図面を参照しつつ本発明の好適な実施形態について説明したが、本発明は上述した実施形態に限定されないことは勿論であり、特許請求の範囲に記載された範疇における各種の変更例または修正例についても、本発明の技術的範囲に属することは言うまでもない。
例えば、本明細書においてフローチャートを用いて説明した処理は、必ずしもフローチャートに示された順序で実行されなくてもよい。また、追加的な処理ステップが採用されてもよく、一部の処理ステップが省略されてもよい。
1 吸排気システム
10 エンジン
20 吸気流路
21 エアフィルタ
22 スロットルバルブ
23 サージタンク
24 エアフローメータ
30 排気流路
31 触媒
32 空燃比センサ
33 温度センサ
34 酸素センサ
41 アクセル開度センサ
42 車速センサ
50 診断装置
50a 取得部
50b 制御部
50c 算出部
50d 診断部
51 プロセッサ
52 メモリ
100 車両

Claims (5)

  1. エンジンと、前記エンジンと接続される排気流路と、前記排気流路に設けられる触媒と、前記触媒に流入する排気の空燃比を検出する空燃比センサと、を備える車両の診断装置であって、
    前記エンジンへの燃料の供給を停止する燃料カットの後において、理論空燃比よりもリッチなリッチ雰囲気で前記エンジンへの前記燃料の供給を再開させる制御部と、
    前記エンジンへの前記燃料の供給の再開後における前記触媒の酸素消費量の総量である酸素消費量総量を算出する算出部と、
    前記算出部により算出された前記酸素消費量総量に基づいて、前記触媒の劣化を診断する診断部と、
    を備え、
    前記算出部は、
    前記空燃比センサにより検出される前記空燃比が前記理論空燃比よりもリッチになる前における前記酸素消費量である第1酸素消費量を前記燃料の噴射量に基づいて算出し、
    前記空燃比センサにより検出される前記空燃比が前記理論空燃比よりもリッチになった後における前記酸素消費量である第2酸素消費量を前記排気の前記空燃比に基づいて算出し、
    前記第1酸素消費量と前記第2酸素消費量との合計値を前記酸素消費量総量として算出する、
    診断装置。
  2. 前記算出部は、前記燃料の前記噴射量に加えて、前記エンジンと接続される吸気流路に吸入される空気の流量である吸入空気量に基づいて、前記第1酸素消費量を算出する、
    請求項1に記載の診断装置。
  3. 前記算出部は、前記燃料の前記噴射量に加えて、前記触媒の温度に基づいて、前記第1酸素消費量を算出する、
    請求項1または2に記載の診断装置。
  4. 前記算出部は、前記排気の前記空燃比に加えて、前記エンジンと接続される吸気流路に吸入される空気の流量である吸入空気量に基づいて、前記第2酸素消費量を算出する、
    請求項1~3のいずれか一項に記載の診断装置。
  5. 前記算出部は、前記排気の前記空燃比に加えて、前記触媒の温度に基づいて、前記第2酸素消費量を算出する、
    請求項1~4のいずれか一項に記載の診断装置。
JP2021142630A 2021-09-01 2021-09-01 診断装置 Pending JP2023035628A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021142630A JP2023035628A (ja) 2021-09-01 2021-09-01 診断装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021142630A JP2023035628A (ja) 2021-09-01 2021-09-01 診断装置

Publications (1)

Publication Number Publication Date
JP2023035628A true JP2023035628A (ja) 2023-03-13

Family

ID=85504248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021142630A Pending JP2023035628A (ja) 2021-09-01 2021-09-01 診断装置

Country Status (1)

Country Link
JP (1) JP2023035628A (ja)

Similar Documents

Publication Publication Date Title
US6629408B1 (en) Exhaust emission control system for internal combustion engine
US6263668B1 (en) Engine exhaust gas control system having NOx catalyst
US6244046B1 (en) Engine exhaust purification system and method having NOx occluding and reducing catalyst
US9021789B2 (en) Degradation diagnostic apparatus for NOx catalyst
JP6123822B2 (ja) 排気浄化装置の劣化診断装置
US11492952B2 (en) Catalyst degradation detection apparatus
JP2018178762A (ja) 内燃機関の排気浄化装置
JP4186259B2 (ja) 内燃機関の排ガス浄化装置
JP4688941B2 (ja) 触媒の劣化判定装置
JP4765866B2 (ja) 内燃機関の制御装置
US6835357B2 (en) Exhaust emission control system for internal combustion engine
CN113847127B (zh) 排气净化催化剂的劣化诊断装置
JP2023035628A (ja) 診断装置
JP2021124034A (ja) 空燃比検出装置の異常検出装置
JP2005240682A (ja) 内燃機関の排気浄化装置
JP4924924B2 (ja) 内燃機関の触媒劣化検出装置
JP2002155784A (ja) 内燃機関の排気浄化装置
JP2004060518A (ja) 内燃機関の排気浄化装置
JP7204426B2 (ja) 内燃機関の燃料噴射制御装置
CN113027579B (zh) 催化剂劣化检测装置
JP2010242674A (ja) 触媒の劣化判定装置
JP4211514B2 (ja) 内燃機関の排気浄化装置
JP2007285156A (ja) 内燃機関の排気浄化装置
JP2023116239A (ja) 内燃機関の排気浄化装置
JP2005155401A (ja) 内燃機関の空燃比制御装置