JP2023017300A - 双ロール式連続鋳造装置および双ロール式連続鋳造方法 - Google Patents

双ロール式連続鋳造装置および双ロール式連続鋳造方法 Download PDF

Info

Publication number
JP2023017300A
JP2023017300A JP2021121466A JP2021121466A JP2023017300A JP 2023017300 A JP2023017300 A JP 2023017300A JP 2021121466 A JP2021121466 A JP 2021121466A JP 2021121466 A JP2021121466 A JP 2021121466A JP 2023017300 A JP2023017300 A JP 2023017300A
Authority
JP
Japan
Prior art keywords
casting
roll
rolls
twin
brush
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021121466A
Other languages
English (en)
Inventor
浩太 渡邉
Kota Watanabe
雅文 宮嵜
Masafumi Miyazaki
直嗣 吉田
Naotada Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2021121466A priority Critical patent/JP2023017300A/ja
Publication of JP2023017300A publication Critical patent/JP2023017300A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

Figure 2023017300000001
【課題】圧延時にエッジ部の耳割れが発生しにくい鋳片を製造する双ロール式連続鋳造装置および双ロール式連続鋳造方法を提供する。
【解決手段】一対の鋳造ロール11と、一対のサイド堰12と、により形成される溶融金属プール13内に溶融金属を供給する鋳造ノズル14と、を備える双ロール式連続鋳造装置1であって、鋳造ロール11の表面の付着物を除去するブラシロール21が、一対の鋳造ロール11a、11bにそれぞれ対向して設けられ、ブラシロール21は、鋳造ロール11の軸方向中央部に対向する中央部のブラシロール21cと、鋳造ロール11の両端のエッジ部に対向するエッジ部のブラシロール21eとからなり、中央部のブラシロール21cとエッジ部のブラシロール21eとは、異なる駆動機構を備えている。
【選択図】図4

Description

本発明は、双ロール式連続鋳造装置および双ロール式連続鋳造方法に関する。
双ロール式連続鋳造方法は、溶湯を直接薄板状の鋳片に鋳造する方法である。この鋳造方法に用いられる双ロール式連続鋳造装置においては、回転する一対の鋳造ロール(双ロール)と、このロールの両端面に当接される一対のサイド堰によって形成される鋳型内に溶湯(例えば、溶鋼等の溶融金属)を供給し、鋳型内に所定の湯面レベルの溶融金属プールを形成する。この溶融金属プール内の溶湯を鋳造ロールの表面との接触部分において冷却して凝固シェルを形成および成長させ、この凝固シェルを一対の鋳造ロールの最接近部に形成されるロールギャップにおいて圧接および一体化することにより、帯状の鋳片が鋳造される。この場合、凝固シェルは、溶融金属が鋳造ロールに接触した点から凝固を開始し、成長を続けてロールキス点で所定の厚さの凝固シェルとなり、このシェルを圧下して一定の厚さの鋳片となる。
双ロール式連続鋳造方法において、溶融金属を双ロールとサイド堰とにより形成される鋳型内に注入すると、鋳造ロールの周面に結晶核が生成し、その一部が溶湯内の温度勾配に平行に成長する。その結果、凝固組織として柱状晶組織が形成される。
このような双ロール式連続鋳造を行う鋳造装置では、操業とともに、鋳造ロールの表面に金属酸化物等が付着する。この付着物が溶融金属に触れると鋳片の凝固むらが生じるので、これを防ぐために、従来、例えば特許文献1に開示されているように、鋳造ロールの表面の付着物を除去するブラシロールが設けられている。
また、特許文献2には、1本のブラシロールの摩耗速度に応じて押し込み量が一定になるように操業してブラシロールの寿命延長を図るブラシ押し込み方法が開示されている。
また、特許文献3には、螺旋状のブラシ片を植毛することにより、効果的に鋳造ロールの付着物を除去できるブラシロールが開示されている。
特開平8-057597号公報 特開2001-212654号公報 特開2010-120053号公報
双ロール鋳造で鋳造される鋳片は、全面にわたって厚み方向に方位のそろった柱状晶組織が得られ、これにより材料特性が向上することがある一方で、鋳片を圧延する際、エッジ部の全厚が柱状晶組織の場合は破断しやすいという特徴がある。そのため、圧延時にエッジ部がサイドガイドに接触すると耳割れが生じることがあり、歩留まりの低下につながる。
しかしながら、上記特許文献1~3の開示はいずれも、鋳造ロールの長手方向に沿って設けられた一本のブラシロールであり、鋳造ロールの付着物を長手方向に均一に除去するものである。つまり、鋳片の軸方向の凝固組織を変えることができるものではない。
本発明の目的は、圧延時にエッジ部の耳割れが発生しにくい鋳片を製造する双ロール式連続鋳造装置および双ロール式連続鋳造方法を提供することにある。
上記問題を解決するため、本発明は、互いに反対方向に回転する一対の鋳造ロールと、前記鋳造ロールの軸方向における両端面に摺接する一対のサイド堰と、一対の前記鋳造ロールと一対の前記サイド堰とにより形成される溶融金属プール内に溶融金属を供給する鋳造ノズルと、を備え、前記溶融金属プール内の溶融金属から帯状の鋳片を鋳造する双ロール式連続鋳造装置であって、前記鋳造ロールの表面の付着物を除去するブラシロールが、一対の前記鋳造ロールにそれぞれ対向して設けられ、前記ブラシロールは、前記鋳造ロールの軸方向中央部に対向する中央部のブラシロールと、前記鋳造ロールの両端のエッジ部に対向するエッジ部のブラシロールとからなり、前記中央部のブラシロールと前記エッジ部のブラシロールとは、異なる駆動機構を備えていることを特徴としている。
前記中央部のブラシロールと前記エッジ部のブラシロールとは、軸方向に重なる部分を有していてもよい。
また、本発明は、前記双ロール式連続鋳造装置を用いた双ロール式連続鋳造方法であって、前記エッジ部のブラシロールは、前記鋳造ロールが稼働開始した後、前記鋳造ロールへの接触開始時間を遅延させることを特徴としている。
前記鋳造ロールが稼働開始してから、前記エッジ部のブラシロールの前記鋳造ロールへの接触を開始するまでの時間Tは、
50≦T<T100
を満たすことが好ましい。
ただし、
50=(50×d×R×π)/(100×A×z×V)
100=(100×d×R×π)/(100×A×z×V)
A:係数
d:凝固シェル厚(mm)
R:鋳造ロールの直径(mm)
z:溶鋼中のMn濃度(mass%)
V:鋳造速度(mm/s)
前記係数は、A=0.012としてもよい。
本発明によれば、鋳造ロールに対向して、軸方向中央部とエッジ部とに分割されたブラシロールを設けることで、鋳造ロールの中央部とエッジ部との付着物を調整し、エッジ部に等軸晶組織を形成して、耳割れを防ぐことができる。
双ロール式連続鋳造装置の構成の一例を概略的に示す斜視図である。 図1の双ロール式連続鋳造装置の溶融金属プールの湯面側から見た平面図である。 図1の双ロール式連続鋳造装置の正面図である。 本発明の実施の形態にかかるブラシロールの配置例を示す側面図である。 図4の正面図である。 鋳片の凝固組織の違いを説明する図であり、(a)は鋳造ロールと鋳片の正面図、(b)は鋳造ロールに酸化物が付着していない場合の(a)のギャップ部の拡大断面図、(c)は鋳造ロールに酸化物が付着した場合の(a)のギャップ部の拡大断面図である。 鋳型浸漬実験における浸漬回数とMn付着物厚との関係をMn量毎に示したグラフである。 鋳型浸漬実験におけるMn付着物厚とシェル厚の減少値との関係を示したグラフである。
以下、本発明の実施の形態を、図を参照して説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する要素においては、同一の符号を付することにより重複説明を省略する。
まず、図1~図3を参照しながら、一般的な双ロール式連続鋳造装置の構成について説明する。図1は、双ロール式連続鋳造装置の構成の一例を概略的に示す斜視図である。図2は、図1の双ロール式連続鋳造装置の構成を示す溶融金属プールの湯面側から見た概略平面図であり、図3は、図1の双ロール式連続鋳造装置の構成を示す概略正面図である。
図1~図3に示すように、双ロール式連続鋳造装置1は、一対の鋳造ロール11(11a、11b)と、一対のサイド堰12(12a、12b)と、鋳造ノズル14と、を主に備え、これら一対の鋳造ロール11と一対のサイド堰12とにより形成された溶融金属プール13内の溶湯から帯状の鋳片(金属ストリップ)Stを鋳造する。
一対の鋳造ロール11a、11bは互いに反対方向に(鋳造ロール11a、11bのそれぞれが溶融金属プール13に向かうように)回転し、双ロール式連続鋳造装置1は、レードル又はタンディッシュ等から供給されて鋳造ノズル14から溶融金属プール13に注入された溶融金属を連続鋳造する。双ロール式連続鋳造装置1においては、回転する一対の鋳造ロール11間に溶融金属が注入され、各鋳造ロール11a、11bの表面からの抜熱により、各鋳造ロール11a、11bの表面に凝固シェルが形成される。2枚の凝固シェルは、一対の鋳造ロール11a、11b間のギャップ(ロール隙)Gにおける間隔が最も小さい点で圧着され、1枚の帯状の鋳片Stになる。
鋳造ロール11は、溶湯との接触による加熱に伴う熱変形が少ないこと、加熱・冷却の繰り返しで疲労破壊しないこと、溶融金属を凝固させるための熱的条件が安定していることが要求される。こうした条件を満足させるために、鋳造ロール11は、例えば、ステンレス鋼-銅合金-ニッケルめっきの3層構造とし、内部に冷却水路を設けることが好ましい。
また、鋳造ノズル14は、溶湯と接触することから、使用に耐え得る十分な強度、耐熱性等を有する耐火物で構成されていることが好ましい。この耐火物の材質としては、CaO・ZrO、Al、MgO、CaO、SiO、ZrO、SiC、C(グラファイト)、BN等の単成分から作製された耐火物であってもよく、あるいは、上記の成分の複合成分から作製された耐火物であってもよい。
このような双ロール式連続鋳造装置1で鋳造される鋳片Stは、前述した通り、全面にわたって厚み方向に方位のそろった柱状晶組織が得られ、これにより材料特性が向上することがある一方で、鋳片Stの圧延時にエッジ部がサイドガイドに接触すると、耳割れが生じることがある。耳割れは、柱状晶組織の結晶粒界で生じることから、耳割れを防ぐためには、エッジ部を少なくとも厚み方向で半分以上は等軸晶組織にする必要がある。エッジ部のみに等軸晶組織を生成するためには、エッジ部の伝熱を抑制すればよいと考えられる。
双ロール鋳造においては、Mnを主体とする酸化物が鋳造ロール11の表面に形成される。酸化物を除去しないまま鋳造すると伝熱が抑制され、鋳片Stの板厚が小さくなることが知られている。そのため、従来、鋳造ロール11に形成された酸化物を除去するためのブラシロールが、鋳造ロール11に対向して設けられている。本実施形態では、鋳造ロール11の軸方向中央部と両端のエッジ部とでブラシロールを3つに分割することとした。そして、エッジ部のブラシロールを中央部のブラシロールに対して回転開始時間を遅らせることにより、鋳造ロール11のエッジ部に酸化物を堆積させて等軸晶組織をつくり込む方法を考案した。
以下、本発明の実施形態にかかるブラシロールの配置例を、図4および図5を参照して説明する。図4は、鋳造ロール11に対するブラシロール21の配置例を示す側面図であり、図5は正面図である。
図4、図5に示すように、ブラシロール21は、鋳造ロール11の軸方向中央部に対向する中央部のブラシロール21cと、両端のエッジ部に対向するエッジ部のブラシロール21eとに分割され、それぞれの鋳造ロール11a、11bに対向して3つずつ設置されている。3つのブラシロール21e、21c、21eは、図4に示すように鋳造ロール11の軸方向に一部分が重なるように設置されることが好ましく、そのため、図5に示すように、正面から見た高さ位置をずらして配置されている。中央部のブラシロール21cとエッジ部のブラシロール21eとは、異なる駆動機構を備えている。なお、本発明において、エッジ部とは、鋳造ロール11の軸方向両端から100mm以内を意味し、数十mm程度でもよい。
本発明に適用されるブラシロール21は、例えば上記各特許文献に記載されたような従来用いられているものでよい。また、中央部のブラシロール21cとエッジ部のブラシロール21eとは、材質や径が同じものでよい。また、図5に示す正面方向の位置において、ブラシロール21cと21eとの配置が入れ替わっても構わない。本実施形態において、中央部のブラシロール21cは、双ロール式連続鋳造装置1の操業時は常時回転して鋳造ロール11に形成された酸化物を除去し、エッジ部のブラシロール21eは、タイマーにより回転開始時間、即ち鋳造ロール11への接触開始時間を遅延させる。
図6は、鋳造ロール11に酸化物が付着していない場合と酸化物が付着した場合の、鋳造される鋳片Stの凝固組織の違いを説明する図である。図6(b)、(c)は、図6(a)に示す一対の鋳造ロール11a、11b間のギャップG部を拡大した断面図であり、(b)は酸化物が付着していない場合、(c)は酸化物が付着した場合を示す。図6(b)に示すように、鋳造ロール11a、11bに酸化物が付着していない場合には、全厚にわたって凝固組織として柱状晶組織が形成される。一方、図6(c)に示すように、鋳造ロール11a、11bの表面に酸化物31が付着すると、鋳型からの抜熱が抑制されるため等軸晶組織が形成される。本発明は、エッジ部のブラシロール21eの回転開始時間を遅延させることにより、鋳造ロール11のエッジ部に図6(c)に示すように酸化物31を付着させた状態とし、等軸晶組織を形成させるものである。
次に、エッジ部のブラシロール21eの回転開始遅延時間の求め方について説明する。
本発明者らは、鋳造ロール11の表面に付着するMnを主体とする酸化物(付着物)の量が、溶鋼中のMn量と鋳造ロール回転数から、下記式(1)により計算できることを見出した。
y=a×z×x ・・・(1)
ただし、
y:鋳造ロール表面のMnを主体とする酸化物(付着物)厚(μm)
a:係数
z:溶鋼中のMn濃度(mass%)
x:鋳造ロールの回転数(回)
また、凝固シェルの減少厚は、下記式(2)のように、鋳造ロール表面の付着物の厚さに比例することを知見した。
D=b×y ・・・(2)
ただし、
b:係数
D:凝固シェルの減少厚(mm)
また、等軸晶率は、下記式(3)で定義する。
E=D/d×100 ・・・(3)
ただし、
E:等軸晶率(%)
d:鋳片厚(mm)
式(3)のDを式(2)、式(2)のyを式(1)で表し、係数a×b=Aで表すと、下記式(4)が得られる。
E=A×z×x/d×100 ・・・(4)
一方、鋳造ロールのx回転目の時間T(s)は、鋳造速度、鋳造ロールの直径を用いて下記式(5)で表される。
T=R×π×x/V ・・・(5)
ただし、
R:鋳造ロールの直径(mm)
V:鋳造速度(mm/s)
式(5)を
x=(T×V)/(R×π)
に変形し、式(4)に代入すると、式(6)が得られる。
E=(100×A×z)×T×V/(d×R×π) ・・・(6)
式(6)を変形すると、
T=(E×d×R×π)/(100×A×z×V)
となり、例えばエッジ部の等軸晶率を50%とするための時間T50(s)、等軸晶率を100%とするための時間T100(s)は、Eにそれぞれ50%、100%を代入した下記式(7)、式(8)で求めることができる。
50=(50×d×R×π)/(100×A×z×V) ・・・(7)
100=(100×d×R×π)/(100×A×z×V) ・・・(8)
鋳片Stのエッジ部の等軸晶率が50%以上になると、耳割れが急激に低減することが、実験的に知られている。一方、定義に従えば、等軸晶率が100%とは、凝固シェルの減少厚が鋳片厚と等しくなる。等軸晶帯は高温のため、等軸晶率100%の場合には鋳片自重に耐え切れずエッジ部に割れが発生する。このエッジ部の割れが進展し、鋳片破断することで鋳造が停止してしまう。したがって、耳割れを抑制するためには、エッジ部の等軸晶率が50%以上100%未満となるように、エッジ部のブラシロールの回転開始時間を調整すればよいと考えられる。つまり、エッジ部のブラシロール21eのタイマーを、時間Tが式(7)、式(8)で求められるT50以上、T100未満の間、すなわち下記式(9)を満たすように設定して回転開始時間を遅延させることにより、耳割れを防ぐことができる。
50≦T<T100 ・・・(9)
なお、上記式(1)の、Mn付着物厚と、溶鋼中のMn濃度およびロールの回転数との関係から得られる係数a、式(2)の、シェル厚の減少厚とMn付着物厚との関係から得られる係数bの具体的な数値は、例えば、双ロールプロセスを模擬した下記鋳型浸漬実験により決定することができる。
200kg大気溶解炉を用いて、0.05%C-0.6%Si-1%,3%,5%Mn-0.01%P-0.0015%Sの鋼を溶製し、150mm×80mm×20mmtの銅製の鋳型を1秒間浸漬した。鋳型表面は、双ロールのロール表面を模擬してNiメッキを施し、ショットにより粗さを付与した。実験前に鋳型を希塩酸で酸洗し、この鋳型を溶解炉に繰り返し浸漬し、浸漬ごとに凝固シェルは除去した。各浸漬後の鋳型について、常温まで鋳型を放冷した後、速やかに希塩酸を含ませたガーゼで鋳型表面をふき取り、このガーゼを温間抽出しICP分析して、鋳型表面に付着したMn付着物の量を求め、密度から厚さに変換してMn付着物厚y(μm)を求めた。この実験により得られた浸漬回数とMn付着物厚yとの関係を図7に示す。なお、浸漬回数は、双ロール式連続鋳造装置1のブラシロール21の回転数xと同義である。
また、5%Mn鋼で合計6回浸漬を行い、Mn付着物厚yと凝固シェルの減少厚Dとの関係を調べた。凝固シェル厚は、凝固シェルの幅中央を原点として±30mm幅の範囲を5mmピッチでマイクロメータにより測定し、片側シェル厚を求めた。なお、浸漬実験では片側シェルのため、得られた実験値の2倍をシェル厚として求めた。1回目浸漬のシェル厚の差分をシェル厚の減少値として求めた。この実験により得られたMn付着物厚yとシェル厚の減少厚Dとの関係を図8に示す。
図7に示すように、Mn付着物厚y(μm)は、溶鋼中のMn濃度(%)および浸漬回数(ロールの回転数x)に線形比例した。この傾きから、式(1)の係数a=0.03とし、式(1)を式(1’)とすることができる。
y=0.03×z×x ・・・(1’)
また、図8に示すように、Mn付着物厚(μm)とシェル厚の減少厚D(mm)との関係は、傾き0.4で線形比例した。したがって、式(2)の係数b=0.4とし、式(2)を式(2’)とすることができる。
D=0.4×y ・・・(2’)
以上のように、係数a、bは、実験により求めることができる。あるいは、係数bは伝熱計算等のシミュレーションによって求めてもよい。係数をそれぞれa=0.03、b=0.4とするとA=0.012となり、T50(s)、T100(s)は、式(7’)、式(8’)で求められる。
50=(50×d×R×π)/(1.2×z×V) ・・・(7’)
100=(100×d×R×π)/(1.2×z×V) ・・・(8’)
以上、本発明の好適な実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到しうることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
幅600mm、直径600mmの一対の鋳造ロール11a、11bを有する双ロール式連続鋳造装置1を用いて、5tonの0.05%C-0.6%Si-5%Mn-0.010%P-0.0015%S-0.03%Al鋼の鋳造を行った。幅500mm、直径80mmのブラシロール21cを鋳造ロール11の軸方向中央部に対向させて配置し、幅60mm、直径80mmのブラシロール21eを鋳造ロール11の両エッジ部に対向させて配置した。ブラシロール21の回転数は1000rpmとし、鋳造速度を70m/min、鋳造鋳片厚1.4mmとして鋳造を行った。鋳片は鋳造末期からサンプリングした。凝固組織を観察し、幅中心から±20mmの範囲の等軸晶率を幅中心の等軸晶率、エッジから50mmの範囲の等軸晶率をエッジ部の等軸晶率と定義した。
なお、等軸晶率の測定方法は以下の通りである。鋳片を切断し、断面を埋込研磨しピクリン酸エッチングを施した。その後、光学顕微鏡を用いて柱状晶厚を測定し、鋳片厚から柱状晶厚を引くことで等軸晶厚を求めた。さらに等軸晶厚を鋳片厚で割り100倍することで等軸晶の割合を求めた。それぞれのサンプルについてこの作業を10mmピッチで行い、値を求め、平均することで等軸晶率を求めた。
中央部のブラシロール21cを鋳造ロール11に接触させ、鋳造ロール11と同時に回転させて鋳造を開始し、エッジ部のブラシロール21eの鋳造ロール11への接触開始時を鋳造開始時から時間T遅らせる鋳造を行い、エッジから50mmの範囲の等軸晶率および耳割れの有無を評価した。結果を表1に示す。なお、係数をa=0.03、b=0.4として式(7’)、式(8’)で算出したT50およびT100はそれぞれ18.8s、37.7sである。表1に示すように、エッジ部のブラシロール21eの回転開始を遅延させる時間TをT50≦T<T100とすると、エッジ部の等軸晶率が50%以上となり、耳割れを防ぐことができた。一方、遅延時間が短すぎると十分にエッジ部の等軸晶率を増やすことができず、耳割れが発生した。また、遅延時間が遅すぎると鋳片破断し、途中で鋳造が停止して鋳片が得られなかった。
Figure 2023017300000002
本発明は、溶融金属を直接薄板状の鋳片(ストリップ)に鋳造するストリップキャスティング技術に有用である。
1 双ロール式連続鋳造装置
11、11a、11b 鋳造ロール
12、12a、12b サイド堰
13 溶融金属プール
14 鋳造ノズル
21、21c、21e ブラシロール
St 鋳片

Claims (5)

  1. 互いに反対方向に回転する一対の鋳造ロールと、前記鋳造ロールの軸方向における両端面に摺接する一対のサイド堰と、一対の前記鋳造ロールと一対の前記サイド堰とにより形成される溶融金属プール内に溶融金属を供給する鋳造ノズルと、を備え、前記溶融金属プール内の溶融金属から帯状の鋳片を鋳造する双ロール式連続鋳造装置であって、
    前記鋳造ロールの表面の付着物を除去するブラシロールが、一対の前記鋳造ロールにそれぞれ対向して設けられ、
    前記ブラシロールは、前記鋳造ロールの軸方向中央部に対向する中央部のブラシロールと、前記鋳造ロールの両端のエッジ部に対向するエッジ部のブラシロールとからなり、前記中央部のブラシロールと前記エッジ部のブラシロールとは、異なる駆動機構を備えていることを特徴とする、双ロール式連続鋳造装置。
  2. 前記中央部のブラシロールと前記エッジ部のブラシロールとは、軸方向に重なる部分を有していることを特徴とする、請求項1に記載の双ロール式連続鋳造装置。
  3. 請求項1または2のいずれか一項に記載の双ロール式連続鋳造装置を用いた双ロール式連続鋳造方法であって、
    前記エッジ部のブラシロールは、前記鋳造ロールが稼働開始した後、前記鋳造ロールへの接触開始時間を遅延させることを特徴とする、双ロール式連続鋳造方法。
  4. 前記鋳造ロールが稼働開始してから、前記エッジ部のブラシロールの前記鋳造ロールへの接触を開始するまでの時間Tは、
    50≦T<T100
    を満たすことを特徴とする、請求項3に記載の双ロール式連続鋳造方法。
    ただし、
    50=(50×d×R×π)/(100×A×z×V)
    100=(100×d×R×π)/(100×A×z×V)
    A:係数
    d:凝固シェル厚(mm)
    R:鋳造ロールの直径(mm)
    z:溶鋼中のMn濃度(mass%)
    V:鋳造速度(mm/s)
  5. 前記係数は、A=0.012とすることを特徴とする、請求項4に記載の双ロール式連続鋳造方法。
JP2021121466A 2021-07-26 2021-07-26 双ロール式連続鋳造装置および双ロール式連続鋳造方法 Pending JP2023017300A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021121466A JP2023017300A (ja) 2021-07-26 2021-07-26 双ロール式連続鋳造装置および双ロール式連続鋳造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021121466A JP2023017300A (ja) 2021-07-26 2021-07-26 双ロール式連続鋳造装置および双ロール式連続鋳造方法

Publications (1)

Publication Number Publication Date
JP2023017300A true JP2023017300A (ja) 2023-02-07

Family

ID=85157637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021121466A Pending JP2023017300A (ja) 2021-07-26 2021-07-26 双ロール式連続鋳造装置および双ロール式連続鋳造方法

Country Status (1)

Country Link
JP (1) JP2023017300A (ja)

Similar Documents

Publication Publication Date Title
JP5775879B2 (ja) マルテンサイト系ステンレス鋼およびその製造方法
RU2677560C2 (ru) Кристаллизатор машины непрерывной разливки и способ непрерывной разливки стали
JP7284403B2 (ja) 双ロール式連続鋳造装置および双ロール式連続鋳造方法
JP7243405B2 (ja) 冷却ロール、双ロール式連続鋳造装置、薄肉鋳片の鋳造方法、及び、冷却ロールの製造方法
JP6003851B2 (ja) 連続鋳造用鋳型及び鋼の連続鋳造方法
JPS61253149A (ja) 金属薄板の連続鋳造による製造装置
EP3488947B1 (en) Continuous steel casting method
JP2023017300A (ja) 双ロール式連続鋳造装置および双ロール式連続鋳造方法
CN109689247B (zh) 钢的连续铸造方法
CN109475930B (zh) 连续铸造用铸模及钢的连续铸造方法
JP5942712B2 (ja) スカム堰、薄肉鋳片の製造方法、薄肉鋳片の製造装置
JP2003039139A (ja) 双ドラム連鋳機のスカム堰
JPH0433537B2 (ja)
JPH1058093A (ja) 鋼の連続鋳造方法
JP4055522B2 (ja) 連続鋳造用鋳型のモールド銅板およびその製造方法
JP4407371B2 (ja) 鋼の連続鋳造方法
JP2004141890A (ja) 鋼の連続鋳造方法
JP2024035081A (ja) 連続鋳造用鋳型
JPH0413053B2 (ja)
JP2991220B2 (ja) FeNi合金の双ロール式薄板連続鋳造方法
JP2968428B2 (ja) ベルト式連続鋳造法による薄鋳片の製造方法
JP3908902B2 (ja) 薄肉鋳片連続鋳造用冷却ドラム及び薄肉鋳片の連続鋳造方法
JP2024004032A (ja) 連続鋳造方法
JP3117409B2 (ja) ベルト式薄スラブキャスタ
JPH09164454A (ja) 薄板連続鋳造装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240318