JP2023002045A - 半導体記憶装置 - Google Patents

半導体記憶装置 Download PDF

Info

Publication number
JP2023002045A
JP2023002045A JP2021103042A JP2021103042A JP2023002045A JP 2023002045 A JP2023002045 A JP 2023002045A JP 2021103042 A JP2021103042 A JP 2021103042A JP 2021103042 A JP2021103042 A JP 2021103042A JP 2023002045 A JP2023002045 A JP 2023002045A
Authority
JP
Japan
Prior art keywords
region
semiconductor
layer
memory device
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021103042A
Other languages
English (en)
Inventor
弘康 佐藤
Hiroyasu Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kioxia Corp
Original Assignee
Kioxia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kioxia Corp filed Critical Kioxia Corp
Priority to JP2021103042A priority Critical patent/JP2023002045A/ja
Priority to TW111100402A priority patent/TWI811941B/zh
Priority to CN202210008957.5A priority patent/CN115513218A/zh
Priority to US17/685,835 priority patent/US20220406804A1/en
Publication of JP2023002045A publication Critical patent/JP2023002045A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40114Multistep manufacturing processes for data storage electrodes the electrodes comprising a conductor-insulator-conductor-insulator-semiconductor structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/20Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B41/23Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B41/27Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/10Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the top-view layout
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • H10B41/35Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region with a cell select transistor, e.g. NAND

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

【課題】好適に製造可能な半導体記憶装置を提供する。【解決手段】半導体記憶装置は、基板と、基板と交差する第1方向に交互に並ぶ複数の第1導電層及び複数の第1絶縁層と、第1方向に延伸し、複数の第1導電層及び複数の第1絶縁層に対向する第1半導体層と、複数の第1導電層及び第1半導体層の間に設けられた第1電荷蓄積層と、第1半導体層の第1方向の一端部に接続された第2半導体層とを備える。複数の第1絶縁層の少なくとも一部は第1の元素を含み、第1の元素は、リン(P)、ヒ素(As)、炭素(C)及びアルゴン(Ar)の少なくとも一つである。【選択図】図6

Description

本実施形態は、半導体記憶装置に関する。
第1方向に交互に並ぶ複数の第1導電層及び複数の第1絶縁層と、第1方向に延伸し、複数の第1導電層及び複数の第1絶縁層に対向する第1半導体層と、複数の第1導電層及び第1半導体層の間に設けられた第1電荷蓄積層と、を備える半導体記憶装置が知られている。
特開2015-176309号公報
好適に製造可能な半導体記憶装置を提供する。
一の実施形態に係る半導体記憶装置は、基板と、基板と交差する第1方向に交互に並ぶ複数の第1導電層及び複数の第1絶縁層と、第1方向に延伸し、複数の第1導電層及び複数の第1絶縁層に対向する第1半導体層と、複数の第1導電層及び第1半導体層の間に設けられた第1電荷蓄積層と、第1半導体層の第1方向の一端部に接続された第2半導体層とを備える。複数の第1絶縁層の少なくとも一部は第1の元素を含み、第1の元素は、リン(P)、ヒ素(As)、炭素(C)及びアルゴン(Ar)の少なくとも一つである。
第1実施形態に係る半導体記憶装置の一部の構成を示す模式的な回路図である。 同半導体記憶装置の一部の構成を示す模式的な平面図である。 同半導体記憶装置の一部の構成を示す模式的な斜視図である。 同半導体記憶装置の一部の構成を示す模式的な平面図である。 同半導体記憶装置の一部の構成を示す模式的な断面図である。 同半導体記憶装置の一部の構成を示す模式的な断面図である。 同半導体記憶装置の製造方法について説明するための模式的な断面図である。 同半導体記憶装置の製造方法について説明するための模式的な断面図である。 同半導体記憶装置の製造方法について説明するための模式的な断面図である。 同半導体記憶装置の製造方法について説明するための模式的な断面図である。 同半導体記憶装置の製造方法について説明するための模式的な断面図である。 同半導体記憶装置の製造方法について説明するための模式的な断面図である。 同半導体記憶装置の製造方法について説明するための模式的な断面図である。 同半導体記憶装置の製造方法について説明するための模式的な断面図である。 同半導体記憶装置の製造方法について説明するための模式的な断面図である。 同半導体記憶装置の製造方法について説明するための模式的な断面図である。 同半導体記憶装置の製造方法について説明するための模式的な断面図である。 同半導体記憶装置の製造方法について説明するための模式的な断面図である。 同半導体記憶装置の製造方法について説明するための模式的な断面図である。 同半導体記憶装置の製造方法について説明するための模式的な断面図である。 同半導体記憶装置の製造方法について説明するための模式的な断面図である。 同半導体記憶装置の製造方法について説明するための模式的な断面図である。 同半導体記憶装置の製造方法について説明するための模式的な断面図である。 同半導体記憶装置の製造方法について説明するための模式的な断面図である。 同半導体記憶装置の製造方法について説明するための模式的な断面図である。 同半導体記憶装置の製造方法について説明するための模式的な断面図である。 同半導体記憶装置の製造方法について説明するための模式的な断面図である。 同半導体記憶装置の製造方法について説明するための模式的な断面図である。 同半導体記憶装置の製造方法について説明するための模式的な断面図である。 比較例に係る半導体記憶装置の一部の構成を示す模式的な断面図である。 比較例に係る半導体記憶装置の製造方法について説明するための模式的な断面図である。 比較例に係る半導体記憶装置の製造方法について説明するための模式的な断面図である。 第2実施形態に係る半導体記憶装置の一部の構成を示す模式的な断面図である。 同半導体記憶装置の製造方法について説明するための模式的な断面図である。 同半導体記憶装置の製造方法について説明するための模式的な断面図である。 同半導体記憶装置の製造方法について説明するための模式的な断面図である。 同半導体記憶装置の製造方法について説明するための模式的な断面図である。 第3実施形態に係る半導体記憶装置の一部の構成を示す模式的な断面図である。 同半導体記憶装置の製造方法について説明するための模式的な断面図である。
次に、実施形態に係る半導体記憶装置を、図面を参照して詳細に説明する。尚、以下の実施形態はあくまでも一例であり、本発明を限定する意図で示されるものではない。また、以下の図面は模式的なものであり、説明の都合上、一部の構成等が省略される場合がある。また、複数の実施形態について共通する部分には同一の符号を付し、説明を省略する場合がある。
また、本明細書において「半導体記憶装置」と言った場合には、メモリダイを意味する事もあるし、メモリチップ、メモリカード、SSD(Solid State Drive)等の、コントローラダイを含むメモリシステムを意味する事もある。更に、スマートホン、タブレット端末、パーソナルコンピュータ等の、ホストコンピュータを含む構成を意味する事もある。
また、本明細書において、第1の構成が第2の構成及び第3の構成の「間に接続されている」と言った場合、第1の構成、第2の構成及び第3の構成が直列に接続され、且つ、第2の構成が第1の構成を介して第3の構成に接続されていることを意味する場合がある。
また、本明細書においては、基板の上面に対して平行な所定の方向をX方向、基板の上面に対して平行で、X方向と垂直な方向をY方向、基板の上面に対して垂直な方向をZ方向と呼ぶ。
また、本明細書においては、所定の面に沿った方向を第1方向、この所定の面に沿って第1方向と交差する方向を第2方向、この所定の面と交差する方向を第3方向と呼ぶことがある。これら第1方向、第2方向及び第3方向は、X方向、Y方向及びZ方向のいずれかと対応していても良いし、対応していなくても良い。
また、本明細書において、「上」や「下」等の表現は、基板を基準とする。例えば、上記Z方向に沿って基板から離れる向きを上と、Z方向に沿って基板に近付く向きを下と呼ぶ。また、ある構成について下面や下端と言う場合には、この構成の基板側の面や端部を意味する事とし、上面や上端と言う場合には、この構成の基板と反対側の面や端部を意味する事とする。また、X方向又はY方向と交差する面を側面等と呼ぶ。
また、本明細書において、構成、部材等について、所定方向の「幅」、「長さ」又は「厚み」等と言った場合には、SEM(Scanning electron microscopy)やTEM(Transmission electron microscopy)等によって観察された断面等における幅、長さ又は厚み等を意味することがある。
[第1実施形態]
図1は、第1実施形態に係る半導体記憶装置の一部の構成を示す模式的な回路図である。第1実施形態に係る半導体記憶装置は、メモリセルアレイMCAと、周辺回路PCと、を備える。
メモリセルアレイMCAは、複数のメモリブロックBLKを備える。これら複数のメモリブロックBLKは、それぞれ、複数のストリングユニットSUを備える。これら複数のストリングユニットSUは、それぞれ、複数のメモリストリングMSを備える。これら複数のメモリストリングMSの一端は、それぞれ、ビット線BLを介して周辺回路PCに接続される。また、これら複数のメモリストリングMSの他端は、それぞれ、共通のソース線SLを介して周辺回路PCに接続される。
メモリストリングMSは、ドレイン側選択トランジスタSTDと、複数のメモリセルMC(メモリトランジスタ)と、ソース側選択トランジスタSTSと、を備える。ドレイン側選択トランジスタSTD、複数のメモリセルMC、及び、ソース側選択トランジスタSTSは、ビット線BL及びソース線SLの間に直列に接続される。以下、ドレイン側選択トランジスタSTD、及び、ソース側選択トランジスタSTSを、単に選択トランジスタ(STD、STS)と呼ぶ事がある。
メモリセルMCは、電界効果型のトランジスタである。メモリセルMCは、半導体層、ゲート絶縁膜、及び、ゲート電極を備える。半導体層は、チャネル領域として機能する。ゲート絶縁膜は、電荷蓄積膜を含む。メモリセルMCのしきい値電圧は、電荷蓄積膜中の電荷量に応じて変化する。メモリセルMCは、1ビット又は複数ビットのデータを記憶する。尚、1のメモリストリングMSに対応する複数のメモリセルMCのゲート電極には、それぞれ、ワード線WLが接続される。これらワード線WLは、それぞれ、1のメモリブロックBLK中の全てのメモリストリングMSに共通に接続される。
選択トランジスタ(STD、STS)は、電界効果型のトランジスタである。選択トランジスタ(STD、STS)は、半導体層、ゲート絶縁膜、及び、ゲート電極を備える。半導体層はチャネル領域として機能する。選択トランジスタ(STD、STS)のゲート電極には、それぞれ、選択ゲート線(SGD、SGS)が接続される。1つのドレイン側選択ゲート線SGDは、1つのストリングユニットSU中の全てのメモリストリングMSに共通に接続される。1つのソース側選択ゲート線SGSは、1つのメモリブロックBLK中の全てのメモリストリングMSに共通に接続される。
周辺回路PCは、例えば、動作電圧を生成する電圧生成回路と、生成された動作電圧を選択されたビット線BL、ワード線WL、ソース線SL、選択ゲート線(SGD、SGS)等に転送する電圧転送回路と、ビット線BLに接続されたセンスアンプモジュールと、これらを制御するシーケンサと、を備える。
図2は、第1実施形態に係る半導体記憶装置の一部の構成を示す模式的な平面図である。本実施形態に係る半導体記憶装置は、半導体基板100を備える。半導体基板100は、例えば、ホウ素(B)等のP型の不純物を含むP型のシリコン(Si)からなる半導体基板である。図示の例において、半導体基板100にはX方向及びY方向に並ぶ4つのメモリセルアレイ領域RMCAが設けられる。また、各メモリセルアレイ領域RMCAには、Y方向に並ぶ複数のメモリブロックBLKが設けられている。
図3は、第1実施形態に係る半導体記憶装置の一部の構成を示す模式的な斜視図である。図4は、第1実施形態に係る半導体記憶装置の一部の構成を示す模式的な平面図である。図5は、図4に示す構造をB-B´線に沿って切断し、矢印の方向に沿って見た模式的な断面図である。
本実施形態に係る半導体記憶装置は、例えば図3に示す様に、半導体基板100上に設けられたトランジスタ層LTRと、トランジスタ層LTRの上方に設けられたメモリセルアレイ層LMCAと、を備える。
[トランジスタ層LTRの構造]
例えば図3に示す様に、半導体基板100の上面には、図示しない絶縁層を介して、配線層GCが設けられている。配線層GCは、半導体基板100の表面と対向する複数の電極gcを含む。また、半導体基板100の各領域及び配線層GCに含まれる複数の電極gcは、それぞれ、コンタクトCSに接続されている。
複数の電極gcは、それぞれ半導体基板100の表面と対向し、周辺回路PCを構成する複数のトランジスタTrのゲート電極、及び、複数のキャパシタの他方の電極等として機能する。
複数のコンタクトCSは、Z方向に延伸し、下端において半導体基板100又は電極gcの上面に接続されている。コンタクトCSと半導体基板100との接続部分には、N型の不純物又はP型の不純物を含む不純物領域が設けられている。コンタクトCSは、例えば、窒化チタン(TiN)等のバリア導電膜と、タングステン(W)等の金属膜と、を含む積層膜を含んでいても良い。
配線層D0,D1,D2は、それぞれ複数の配線を含み、それら複数の配線は、メモリセルアレイMCA中の構成及び周辺回路PC中の構成の少なくとも一方に電気的に接続される。これら複数の配線は、例えば、窒化チタン(TiN)等のバリア導電膜と、タングステン(W)等の金属膜と、を含む積層膜を含んでいても良い。
[メモリセルアレイ層LMCAの構造]
例えば図3及び図4に示す様に、メモリセルアレイ層LMCAには、Y方向に並ぶ複数のメモリブロックBLKが設けられる。
図4の例において、メモリブロックBLKは、Y方向の一方側(図4ではY方向正側)からY方向の他方側(図4ではY方向負側)にかけて設けられた5つのストリングユニットSUa~SUeを備える。これら複数のストリングユニットSUa~SUeは、それぞれ、図1を参照して説明したストリングユニットSUに対応する。Y方向において隣り合う2つのストリングユニットSUの間には、酸化シリコン(SiO)等のストリングユニット間絶縁層SHEが設けられる。Y方向において隣り合う2つのメモリブロックBLKの間には、ブロック間構造STが設けられる。
図3及び図5に示す様に、メモリセルアレイ層LMCAにおいて、メモリブロックBLKは、メモリセルアレイ層LMCA1と、メモリセルアレイ層LMCA1の上方に設けられたメモリセルアレイ層LMCA2と、を備える。メモリセルアレイ層LMCA1及びメモリセルアレイ層LMCA2は、Z方向に並ぶ複数の導電層110と、Z方向に延伸する複数の半導体層120と、複数の導電層110及び複数の半導体層120の間にそれぞれ設けられた複数のゲート絶縁膜130と、を備える。
導電層110は、X方向に延伸する略板状の導電層である。導電層110は、窒化チタン(TiN)等のバリア導電膜と、タングステン(W)等の金属膜と、を含む積層膜を含んでいても良い。また、導電層110は、例えば、リン(P)又はホウ素(B)等の不純物を含む多結晶シリコン等を含んでいても良い。複数の導電層110のX方向の端部には、それぞれコンタクトCC(図3)が設けられている。Z方向に並ぶ複数の導電層110の間には、酸化シリコン(SiO)等の絶縁層101が設けられている。
複数の導電層110の下方には、絶縁層101を介して、半導体層111、半導体層113、及び半導体層112が設けられている。半導体層111及び半導体層112と、半導体層120との間には、ゲート絶縁膜130の一部が設けられる。半導体層113は、半導体層120の下端部に接続されている。
半導体層113の上面は半導体層111に接続され、下面は半導体層112に接続されている。半導体層112の下面には、導電層114が設けられていても良い。半導体層111、半導体層113、半導体層112、及び導電層114は、ソース線SL(図1)として機能する。ソース線SLは、例えば、メモリセルアレイ領域RMCA(図2)に含まれる全てのメモリブロックBLKについて共通に設けられている。半導体層111、半導体層113、及び半導体層112は、例えば、リン(P)又はホウ素(B)等の不純物を含む多結晶シリコン等を含む。導電層114は、例えば、タングステン(W)等の金属、タングステンシリサイド等の導電層、又はその他の導電層を含んでいても良い。
複数の導電層110のうち、最下層に位置する導電層110は、ソース側選択ゲート線SGS(図1)及びこれに接続された複数のソース側選択トランジスタSTS(図1)のゲート電極として機能する。この導電層110は、メモリブロックBLK毎に電気的に独立している。
また、これよりも上方に位置する複数の導電層110は、ワード線WL(図1)及びこれに接続された複数のメモリセルMC(図1)のゲート電極として機能する。これら複数の導電層110は、それぞれ、メモリブロックBLK毎に電気的に独立している。
また、これよりも上方に位置する一又は複数の導電層110は、ドレイン側選択ゲート線SGD(図1)及びこれに接続された複数のドレイン側選択トランジスタSTD(図1)のゲート電極として機能する。これら複数の導電層110は、その他の導電層110よりもY方向の幅が小さい。また、Y方向において隣り合う2つの導電層110の間には、ストリングユニット間絶縁層SHEが設けられている。これら複数の導電層110は、それぞれ、ストリングユニットSU毎に電気的に独立している。
半導体層120は、例えば図3及び図4に示す様に、X方向及びY方向に所定のパターンで並ぶ。半導体層120は、1つのメモリストリングMS(図5)に含まれる複数のメモリセルMC及び選択トランジスタ(STD、STS)のチャネル領域として機能する。半導体層120は、例えば、多結晶シリコン(Si)等の半導体層である。半導体層120は、例えば図3に示す様に、略有底円筒状の形状を有し、中心部分には酸化シリコン等の絶縁層125が設けられている。
半導体層120は、図5に示す様に、メモリセルアレイ層LMCA1に含まれる半導体領域120と、メモリセルアレイ層LMCA2に含まれる半導体領域120と、を備える。また、半導体層120は、半導体領域120の上端及び半導体領域120の下端に接続された半導体領域120と、半導体領域120の下端に接続された不純物領域122と、半導体領域120の上端に接続された不純物領域121と、を備える。
半導体領域120は、Z方向に延伸する略円筒状の領域である。半導体領域120の外周面は、それぞれメモリセルアレイ層LMCA1に含まれる複数の導電層110によって囲まれており、これら複数の導電層110と対向している。尚、半導体領域120の下端部(例えば、メモリセルアレイ層LMCA1に含まれる複数の導電層110よりも下方に位置する部分)の径方向の幅は、半導体領域120の上端部(例えば、メモリセルアレイ層LMCA1に含まれる複数の導電層110よりも上方に位置する部分)の径方向の幅よりも小さい。
半導体領域120は、Z方向に延伸する略円筒状の領域である。半導体領域120の外周面は、それぞれメモリセルアレイ層LMCA2に含まれる複数の導電層110によって囲まれており、これら複数の導電層110と対向している。尚、半導体領域120の下端部(例えば、メモリセルアレイ層LMCA2に含まれる複数の導電層110よりも下方に位置する部分)の径方向の幅は、半導体領域120の上端部(例えば、メモリセルアレイ層LMCA2に含まれる複数の導電層110よりも上方に位置する部分)の径方向の幅よりも小さい。
半導体領域120は、それぞれメモリセルアレイ層LMCA1に含まれる複数の導電層110よりも上方に設けられ、メモリセルアレイ層LMCA2に含まれる複数の導電層110よりも下方に設けられている。尚、半導体領域120の径方向の幅は、上記の半導体領域120,120の径方向の幅よりも大きい。
不純物領域122は、半導体層111に対向する領域122_Aと、半導体層112に対向する領域122_Cと、これら2つの領域の間に設けられ、外周面において上記半導体層113に接続された領域122_Bと、を備える。即ち、領域122_Cは、半導体層120の下端に設けられている。また、半導体領域120及び領域122_Cの間には、領域122_Bが設けられている。不純物領域122は、例えば、リン(P)等のN型の不純物又はホウ素(B)等のP型の不純物を含む。
不純物領域121は、例えば、リン(P)等のN型の不純物を含む。不純物領域121は、コンタクトCh及びコンタクトVy(図3)を介してビット線BLに接続される。
ゲート絶縁膜130は、半導体層120の外周面を覆う略有底円筒状の形状を有する。ゲート絶縁膜130は、例えば、半導体層120及び導電層110の間に積層されたトンネル絶縁膜、電荷蓄積膜及びブロック絶縁膜を備える。トンネル絶縁膜及びブロック絶縁膜は、例えば、酸化シリコン(SiO)等の絶縁膜である。電荷蓄積膜は、例えば、窒化シリコン(Si)等の電荷を蓄積可能な膜である。トンネル絶縁膜、電荷蓄積膜、及び、ブロック絶縁膜は略円筒状の形状を有し、半導体層120の外周面に沿ってZ方向に延伸する。
尚、ゲート絶縁膜130は、例えば、N型又はP型の不純物を含む多結晶シリコン等のフローティングゲートを備えていても良い。
ブロック間構造STは、Z方向及びX方向に延伸し、複数の絶縁層101、複数の導電層110、半導体層111、及び半導体層113をY方向に分断し、半導体層112に達する構造体である。ブロック間構造STは、例えば図5に示す様に、酸化シリコン(SiO)等の絶縁層170、及びタングステン等の導電層LIを含んでいても良い。導電層LIの下端は、半導体層112に接続されている。
[メモリセルアレイ層LMCA中の各構成に含まれる不純物]
図6は、図5に示すメモリセルアレイ層LMCA1における領域RLMH、及びメモリセルアレイ層LMCA2における領域RUMHを拡大して示す模式的な断面図である。
図6に示す様に、メモリセルアレイ層LMCA1において、導電層110の半導体領域120への対向面は、絶縁層101の半導体領域120への対向面に対して、幅DL1だけ後退して設けられる。また、メモリセルアレイ層LMCA2において、導電層110の半導体領域120への対向面は、絶縁層101の半導体領域120への対向面に対して、幅DU1だけ後退して設けられる。幅DL1と、幅DU1は、同程度である。
また、メモリセルアレイ層LMCA1において、絶縁層101は、領域101_C1及び領域101_C2を含む。領域101_C2は、領域101_C1と半導体領域120との間の位置に設けられる。即ち、領域101_C2は領域101_C1よりも半導体領域120に近い位置に設けられる。領域101_C2は、リン(P)、ヒ素(As)、炭素(C)、及びアルゴン(Ar)のうち、少なくとも一つの元素を含む領域である。領域101_C2におけるこれら元素の含有濃度は、領域101_C1におけるこれら元素の含有濃度よりも大きい。
また、メモリセルアレイ層LMCA2において、絶縁層101は、領域101_C3を含む。領域101_C3は、Z方向において領域101_C2と並ぶ位置に設けられる。領域101_C3における、リン(P)、ヒ素(As)、炭素(C)、及びアルゴン(Ar)のうち、少なくとも一つの元素の含有濃度は、領域101_C2におけるこれら元素の含有濃度よりも小さい。
また、例えば図5に示す様に、半導体層111は、領域111_C1及び領域111_C2を含む。領域111_C2は、領域111_C1と不純物領域122との間の位置に設けられる。即ち、領域111_C2は領域111_C1よりも不純物領域122に近い位置に設けられる。領域111_C2は、リン(P)、ヒ素(As)、炭素(C)、及びアルゴン(Ar)のうち、少なくとも一つの元素を含む領域である。領域111_C2におけるこれら元素の含有濃度は、領域111_C1におけるこれら元素の含有濃度よりも大きい。
また、例えば図5に示す様に、半導体層112は、領域112_C1及び領域112_C2を含む。領域112_C2は、領域112_C1と不純物領域122との間の位置に設けられる。即ち、領域112_C2は領域112_C1よりも不純物領域122に近い位置に設けられる。領域112_C2は、リン(P)、ヒ素(As)、炭素(C)、及びアルゴン(Ar)のうち、少なくとも一つの元素を含む領域である。領域112_C2におけるこれら元素の含有濃度は、領域112_C1におけるこれら元素の含有濃度よりも大きい。
尚、各領域におけるリン(P)、ヒ素(As)、炭素(C)、及びアルゴン(Ar)等の含有濃度は、EDS(Energy Dispersive X-ray Spectrometer)等によって測定可能である。
[製造方法]
次に、図7~図29を参照して、第1実施形態に係る半導体記憶装置の製造方法について説明する。図7~図9、図11、図13~図18、及び図20~図29は、同製造方法について説明するための模式的な断面図であり、図5に対応する断面を示している。図10及び図12は、同製造方法について説明するための模式的な断面図であり、それぞれ図9及び図11に示す領域RLMH及び領域RSLを拡大した図である。図19は、同製造方法について説明するための模式的な断面図であり、図18に示す領域RUMH及び領域RLMHを拡大した図である。
第1実施形態に係る半導体記憶装置の製造に際しては、まず、半導体基板100に、周辺回路PC(図1)を形成する。また、周辺回路PCの上方に、絶縁層101を形成する。
次に、例えば図7に示す様に、絶縁層101上に、導電層114、半導体層112、酸化シリコン等の犠牲層113A、窒化シリコン等の犠牲層113B、酸化シリコン等の犠牲層113C、及び半導体層111を形成する。また、複数の絶縁層101及び複数の犠牲層110Aを交互に形成し、酸化シリコン等の絶縁層151を形成する。この工程は、例えば、CVD(Chemical Vapor Deposition)等の方法によって行われる。
次に、例えば図8に示す様に半導体領域120に対応する位置に、複数の開口MHaを形成する。開口MHaは、Z方向に延伸し、絶縁層151、複数の犠牲層110A及び複数の絶縁層101、半導体層111、犠牲層113C、犠牲層113B、及び犠牲層113Aを貫通し、半導体層112を露出させる。この工程は、例えば、RIE等の方法によって行う。
次に、例えば図9及び図10に示す様に、開口MHaを介して、半導体層111,112の内部に、リン(P)、ヒ素(As)、炭素(C)、及びアルゴン(Ar)等の不純物を含む領域111_C及び領域112_Cを形成する。この工程は、例えば、イオン注入等によって行う。このイオン注入工程においては、リン(P)、ヒ素(As)、炭素(C)、及びアルゴン(Ar)等の不純物をドーパントとして用いる。
尚、この工程においては、図10に示す様に、絶縁層101内の開口MHaに近い領域101_C2、及び犠牲層110A内の開口MHaに近い領域110A_C2へも、リン(P)、ヒ素(As)、炭素(C)、及びアルゴン(Ar)等の不純物が注入される。同様に、犠牲層113A、犠牲層113B、及び犠牲層113C内の開口MHaに近いそれぞれの領域113A_C、領域113B_C、及び領域113C_Cへも、リン(P)、ヒ素(As)、炭素(C)、及びアルゴン(Ar)等の不純物が注入される。この工程においては、開口MHaが、下部に近づくにつれ開口幅が狭くなるような形状を有するため、ほぼ基板に垂直な角度でイオン注入を行った場合においても、領域101_C2等の、開口MHaの側壁に近い領域へ、同時に不純物が注入される。また、開口MHaの側壁から遠い、領域101_C1等へは、不純物がほとんど注入されない。
次に、例えば図11及び図12に示す様に、半導体層111及び半導体層112のうち開口MHaに露出した部分(領域111_C及び領域112_C)に、それぞれ酸化シリコン等の絶縁層111_D及び絶縁層112_Dを形成する。この工程は、例えば、熱酸化等によって行う。尚、領域111_C及び領域112_Cは、図9及び図10を参照して説明したイオン注入工程により、結晶欠陥が多く発生している領域である。この様な領域111_C及び領域112_Cの酸化反応は、結晶欠陥が多く発生していない領域における酸化反応と比較して、高速に進行する。
また、図12に示す様に、領域RLMHにおける犠牲層110Aの開口MHaに露出した部分も一部酸化され、酸化シリコン等の絶縁層110A_Dが形成される。尚、上述の通り、絶縁層111_D及び絶縁層112_Dを形成する酸化反応は、比較的高速に進行する。従って、酸化工程完了に要する時間は比較的短いため、絶縁層110A_Dは比較的薄く形成される。
次に、例えば図13に示す様に、開口MHaの内部にアモルファスシリコン等の犠牲層120A´を形成し、また、犠牲層120A´の上面が絶縁層151の上下面の間となる位置まで除去する。この工程は、例えば、CVD及びRIE等によって行う。
次に、例えば図14に示す様に、開口MHa上端の開口部を広げた後、アモルファスシリコン等を成膜し、犠牲層120A´´を形成する。この工程は、例えば、ウェットエッチング及びCVD等によって行う。
次に、例えば図15に示す様に、犠牲層120A´´の上面位置を、絶縁層151の上面位置と同じ位置まで除去し、犠牲層120Aを形成する。この工程は、例えば、RIE等によって行う。
次に、例えば図16に示す様に、絶縁層151上に、複数の犠牲層110A及び複数の絶縁層101を交互に形成する。この工程は、例えば、CVD等の方法によって行う。
次に、例えば図17に示す様に、半導体領域120に対応する位置に、複数の開口MHbを形成する。開口MHbは、Z方向に延伸し、複数の犠牲層110A及び複数の絶縁層101を貫通し、犠牲層120Aを露出させる。この工程は、例えば、RIE等の方法によって行う。
次に、例えば図18に示す様に、犠牲層120Aを除去し、開口MHcを形成する。この工程は、例えば、ウェットエッチング等の方法によって行う。尚、半導体層111及び半導体層112は、犠牲層120Aが含む元素と同じ元素であるシリコン(Si)等を含む。しかしながら、半導体層111及び半導体層112に関しては、絶縁層111_D及び絶縁層112_Dがエッチングストッパとなり保護されている。よって、この工程において半導体層111及び半導体層112はエッチングされない。
次に、例えば図19に示す様に、開口MHcにおいて、犠牲層110Aの一部を除去する。これにより、犠牲層110AのX方向及びY方向における開口幅が、絶縁層101の開口幅に対して所定量広がる。この工程は、例えば、リン酸等を用いたウェットエッチング等によって行う。
尚、この工程において、領域RLMHにおいては、窒化シリコン等からなる犠牲層110Aがエッチングされる前に、酸化シリコン等の絶縁層110A_D(図12)がエッチングされる。この工程はリン酸等を用いるため、酸化シリコン等のエッチングには比較的長時間を要することがあるが、前述した様に、本実施形態における絶縁層110A_Dの厚みは比較的小さいため、このエッチングは比較的短時間の間に行われる。従って、この工程において、領域RUMHの犠牲層110Aが後退する幅DU1と、領域RLMHの犠牲層110Aが後退する幅DL1とは、同程度である。
次に、例えば図20に示す様に、最上層の絶縁層101の上面及び開口MHcの内周面に、ゲート絶縁膜130、半導体層120及び絶縁層125を形成し、メモリホールMHを形成する。半導体層120の形成に際しては、例えば、CVD等による成膜が行われ、メモリホールMHの内部に、アモルファスシリコン膜が形成される。また、例えば、アニール処理等によって、このアモルファスシリコン膜の結晶構造を改質する。
次に、例えば図21に示す様に、絶縁層125、半導体層120の一部を、半導体層120等の上面が最上層の絶縁層101の上下面の間となる位置まで除去する。この工程は、例えば、RIE等の方法によって行う。
次に、例えば図22に示す様に、メモリホールMHの上端近傍に、半導体層121Aを形成する。半導体層121Aは、例えば、リン(P)等のN型の不純物を含むアモルファスシリコンを含む。この工程は、例えば、CVD等の方法によって行う。
次に、例えば図23に示す様に、メモリホールMHの上端近傍に、半導体層120の不純物領域121を形成する。この工程では、例えば、RIE等の方法によって半導体層121Aの一部を除去して最上層に位置する絶縁層101を露出させる。
次に、例えば図24に示す様に、トレンチSTA´を形成する。トレンチSTA´は、Z方向及びX方向に延伸し、複数の絶縁層101及び犠牲層110AをY方向に分断し、半導体層111を露出させる。この工程は、例えば、RIE等の方法によって行う。また、CVD等の方法によってこのトレンチSTA´の内部に酸化シリコン等の絶縁層161、及びアモルファスシリコン等の半導体層162を形成する。
次に、例えば図25に示す様に、トレンチSTAを形成する。トレンチSTAは、トレンチSTA´の底面から、更に、半導体層162、絶縁層161、半導体層111、及び犠牲層113C,113B,113AをY方向に分断し、半導体層112を露出させることによって形成される。この工程は、例えば、RIE等によって行う。また、トレンチSTAのY方向の側面の半導体層162、及び底面に露出する半導体層112の一部を酸化し、それぞれ酸化シリコン等の絶縁層163、及び絶縁層164を形成する。この工程は、例えば、熱酸化等によって行う。
次に、例えば図26に示す様に、トレンチSTAを介して、犠牲層113Bを除去し、続いて犠牲層113A,113C、及びゲート絶縁膜130の一部を除去して空洞CAV1を形成し、半導体層120の一部を露出させる。この工程は、例えば、ウェットエッチング等の方法によって行う。
次に、例えば図27に示す様に、トレンチSTAを介して、空洞CAV1があった場所に半導体層113を形成する。この工程は、例えば、エピタキシャル成長等の方法によって行う。また、トレンチSTAのY方向側面における半導体層162及び絶縁層161を除去する。この工程は、例えば、ウェットエッチング等の方法によって行う。
次に、例えば図28に示す様に、トレンチSTAを介して犠牲層110Aを除去し、複数の空洞CAV2を形成する。これにより、Z方向に配設された複数の絶縁層101と、この絶縁層101を支持するメモリホールMH内の構造(半導体層120、ゲート絶縁膜130及び絶縁層125)と、を含む中空構造が形成される。この工程は、例えば、ウェットエッチング等の方法によって行う。
次に、例えば図29に示す様に、空洞CAV2内に導電層110を形成する。この工程は、例えば、CVD等の方法によって行う。
次に、トレンチSTA内にブロック間構造STを形成し、不純物領域121に接続するコンタクトCh、及びストリングユニット間絶縁層SHE等を形成し、図5を参照して説明した構造を形成する。
[比較例]
次に、図30~図32を参照して、比較例に係る半導体記憶装置について説明する。図30は、比較例に係る半導体記憶装置について説明するための模式的な断面図である。図31及び図32は、比較例に係る半導体記憶装置の製造方法について説明するための模式的な断面図である。
比較例に係る半導体記憶装置の製造に際しては、図9及び図10を参照して説明した、開口MHaへのイオン注入工程を行わない。よって、比較例に係る半導体記憶装置は、第1実施形態に係る半導体記憶装置(図5)と異なり、半導体層111及び半導体層112において、領域111_C及び領域112_Cを含まない(図30)。
また、比較例に係る半導体記憶装置の製造に際しては、図11及び図12と対応する酸化工程において、図31に示す様に、半導体層111及び半導体層112の開口MHaに露出した部分に、それぞれ酸化シリコン等の絶縁層111_Dx及び絶縁層112_Dxを形成する。これら絶縁層111_Dx及び絶縁層112_Dxの形成に際しては、半導体層111及び半導体層112が領域111_C及び領域112_Cの様な結晶欠陥が多く発生している領域を含まないため、酸化反応の進行は比較的低速である。よって、図18を参照して説明した工程と対応する工程において、エッチングストッパとして必要な厚さの絶縁層111_Dx,112_Dxを形成するために、比較的長い時間を要する。
ここで、図31の領域RLMHに示す様に、絶縁層111_Dx及び絶縁層112_Dxを形成する工程においては、犠牲層110Aの開口MHaに露出した部分も一部酸化され、酸化シリコン等の絶縁層110A_Dxが形成される。前述した様に、比較例に係る半導体記憶装置の製造に際しては、図11及び図12と対応する酸化工程に比較的長い時間を要するため、絶縁層110A_Dxの厚さは、第1実施形態に係る半導体記憶装置の絶縁層110A_D(図12)と比較し、厚く形成されてしまう。
また、比較例に係る半導体記憶装置の製造に際しては、図19と対応する工程に際して、メモリセルアレイ層LMCA1において、犠牲層110Aのエッチングの前に絶縁層110A_Dx(図31)がエッチングされる。この際、絶縁層110A_Dxの厚みは比較的厚いため、絶縁層110A_Dxの除去には、比較的長時間を要してしまう。そのため、その間にメモリセルアレイ層LMCA2において、犠牲層110Aのエッチングがより進行してしまう。よって、この工程においては、図32に示す様に、メモリセルアレイ層LMCA2の犠牲層110Aが後退する幅DUxが、メモリセルアレイ層LMCA1の犠牲層110Aが後退する幅DLxよりも、大きくなる。
この様な場合、メモリセルアレイ層LMCA1とメモリセルアレイ層LMCA2との間で、最終構造としてのメモリセルMCの構造が大きく異なり、メモリセルMCの特性が大きくばらついてしまうことがあった。
[第1実施形態の効果]
図9及び図10を参照して説明した様に、開口MHaへのイオン注入工程を行い、領域111_C及び領域112_Cを形成することによって、図11及び12を参照して説明した酸化工程を比較的高速に行うことができる。そのため、この工程で同時に形成されるメモリセルアレイ層LMCA1における犠牲層110A側壁部の絶縁層110A_Dの厚さを比較的薄く抑えることができる。
これにより、図19を参照して説明した犠牲層110Aのエッチング工程において、メモリセルアレイ層LMCA1とメモリセルアレイ層LMCA2との間で、犠牲層110Aの後退量を同程度とすることができる。これにより、均一な特性のメモリセルMCを好適に製造することが可能となる。
[第2実施形態]
次に、図33を参照して、第2実施形態に係る半導体記憶装置について説明する。図33は、第2実施形態に係る半導体記憶装置について説明するための模式的な断面図である。
第2実施形態に係る半導体記憶装置は、基本的には第1実施形態に係る半導体記憶装置と同様に構成されている。ただし、第2実施形態に係る半導体記憶装置は、半導体層111の上層及び下層に、半導体層111_2A及び半導体層111_2Bを備え、半導体層112の上層に、半導体層112_2Aを備える。半導体層111_2A,111_2B,112_2Aは、例えば、リン(P)、ヒ素(As)、炭素(C)、及びアルゴン(Ar)のうち、少なくとも一つの元素を含む。半導体層111_2A,111_2B,112_2A中のこれら元素の含有濃度は、半導体層111,112における領域111_C,112_C以外の領域におけるこれら元素の含有濃度よりも大きい。
[製造方法]
次に、図34~図37を参照して、第2実施形態に係る半導体記憶装置の製造方法について説明する。図34及び図35は、同製造方法について説明するための模式的な断面図であり、図33に対応する断面を示している。図36及び図37は、同製造方法について説明するための模式的な断面図であり、図35に示す領域RSLを拡大した図である。
第2実施形態に係る半導体記憶装置は、基本的には第1実施形態に係る半導体記憶装置と同様に製造される。
しかしながら、第2実施形態に係る半導体記憶装置の製造では、図7に対応する工程において、図34に示す様に、半導体層112の上層に半導体層112_2Aを形成し、半導体層111の上層及び下層に半導体層111_2A及び半導体層111_2Bを形成する。
また、図9及び図10に対応するイオン注入工程において、図35及び図36に示す様に、開口MHaの内部に、リン(P)、ヒ素(As)、炭素(C)、及びアルゴン(Ar)等の不純物を含む領域111_C及び領域112_Cを形成する。この工程により、半導体層111の上面、下面、及び開口MHa側の側面は、例えば、リン(P)、ヒ素(As)、炭素(C)、及びアルゴン(Ar)のうち、少なくとも一つの元素を含む領域である半導体層111_2A,111_2B、及び領域111_Cにより囲まれる。また、半導体層112の上面及び開口MHa側の側面も、同様の領域である半導体層112_2A及び領域112_Cにより囲まれる。
また、図11及び図12に対応する酸化工程において、図37に示す様に、半導体層111及び半導体層112のうち開口MHaに露出した部分(領域111_C及び領域112_C)に、それぞれ酸化シリコン等の絶縁層111_2D及び絶縁層112_2Dを形成する。
尚、前述した様に、結晶欠陥を多く含む領域111_C及び領域112_Cにおいては、比較的高速に酸化が進む。更に、半導体層111_2A,111_2B,112_2Aの様な、不純物濃度が高い領域においても、比較的高速に酸化が進む。よって、半導体層111_2A,111_2B,112_2Aに近い位置においては、開口MHaから比較的離れた領域まで酸化が進行する。
[第2実施形態の効果]
図33に示す領域RCORのような、半導体層の「角部」に相当する位置は、酸化工程において、シリコンが酸化シリコンとなる際の体積膨張に応じて発生する応力により、酸化速度が比較的低いことが知られている。よって、「角部」を保護するのに必要な厚さを有する絶縁層111_2D,112_2Dを形成するために、長い酸化工程の時間が必要となる場合がある。
そこで、本実施形態においては、半導体層の「角部」を囲む位置に対して、イオン注入によって形成した領域111_C,112_Cに加えて、高濃度不純物層である半導体層111_2A,111_2B,112_2Aを設ける。高濃度の不純物を含む半導体層では、結晶欠陥を多く含む等の理由により、イオン注入工程により形成した領域111_C,112_Cと同様に、酸化速度が増加する。よって、「角部」を領域111_C,112_C及び半導体層111_2A,111_2B,112_2Aで囲むことにより、酸化反応が比較的遅い「角部」においても、所定の厚さを有する絶縁層111_2D,112_2Dを比較的高速に形成することができる。
これにより、第1実施形態と同様に、酸化工程で同時に形成されるメモリセルアレイ層LMCA1における犠牲層110A側壁部の絶縁層110A_Dの厚さを比較的薄く抑えることができる。よって、図19を参照して説明した犠牲層110Aを後退させるエッチング工程において、メモリセルアレイ層LMCA1とメモリセルアレイ層LMCA2との間で、後退量を同程度とすることができ、均一な特性のメモリセルMCを好適に製造することが可能となる。
[第3実施形態]
次に、図38を参照して、第3実施形態に係る半導体記憶装置について説明する。図38は、第3実施形態に係る半導体記憶装置について説明するための模式的な断面図である。
第3実施形態に係る半導体記憶装置は、基本的には第2実施形態に係る半導体記憶装置と同様に構成されている。ただし、第3実施形態に係る半導体記憶装置は、半導体層111_2Aの下層に拡散抑制層111_3Aを備え、半導体層111_2Bの上層に拡散抑制層111_3Bを備え、半導体層112_2Aの下層に拡散抑制層112_3Aを備える。拡散抑制層111_3A,111_3B,112_3Aは、例えば、炭素(C)からなる層、又は炭素を高濃度に含む半導体層等である。拡散抑制層111_3A,111_3B,112_3Aの炭素の濃度は、半導体層111,112における炭素の濃度よりも大きい。
[製造方法]
次に、図39を参照して、第3実施形態に係る半導体記憶装置の製造方法について説明する。図39は、同製造方法について説明するための模式的な断面図であり、図38に対応する断面を示している。
第3実施形態に係る半導体記憶装置は、基本的には第2実施形態に係る半導体記憶装置と同様に製造される。しかしながら、第3実施形態に係る半導体記憶装置の製造では、図34に対応する工程において、図39に示す様に、半導体層112_2Aの下層に拡散抑制層112_3Aを形成し、半導体層111_2Bの上層に拡散抑制層111_3Bを形成し、半導体層111_2Aの下層に拡散抑制層111_3Aを形成する。
[第3実施形態の効果]
半導体層111_2A,111_2B,112_2Aが、例えば、リン(P)、ヒ素(As)、炭素(C)、及びアルゴン(Ar)のうち、少なくとも一つの元素を高濃度に含む場合、それら元素は、製造工程中の各種熱工程等により、半導体層111,112へ拡散してしまい、第2実施形態において説明した様な酸化速度向上の効果が低下してしまう恐れがある。
そこで、本実施形態の様に拡散抑制層111_3A,111_3B,112_3Aを、半導体層111_2A,111_2B,112_2Aの上面又は下面に設けることで、半導体層111_2A,111_2B,112_2Aから半導体層111,112への不純物の拡散を抑制することができる。
[その他]
本発明のいくつかの実施形態を説明したが、これらの実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことが出来る。これら実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
MCA…メモリセルアレイ、BLK…メモリブロック、SU…ストリングユニット、110…導電層、120…半導体層、130…ゲート絶縁膜。

Claims (7)

  1. 基板と、
    前記基板と交差する第1方向に交互に並ぶ複数の第1導電層及び複数の第1絶縁層と、
    前記第1方向に延伸し、前記複数の第1導電層及び複数の第1絶縁層に対向する第1半導体層と、
    前記複数の第1導電層及び前記第1半導体層の間に設けられた第1電荷蓄積層と、
    前記第1半導体層の前記第1方向の一端部に接続された第2半導体層と
    を備え、
    前記複数の第1絶縁層の少なくとも一部は第1の元素を含み、
    前記第1の元素は、リン(P)、ヒ素(As)、炭素(C)及びアルゴン(Ar)の少なくとも一つである
    半導体記憶装置。
  2. 前記複数の第1絶縁層のうちの一つを第2絶縁層とした場合、
    前記第2絶縁層は、
    第1領域と、
    前記第1領域と前記第1半導体層との間に設けられた第2領域と
    を備え、
    前記第2領域における前記第1の元素の濃度は、前記第1領域における前記第1の元素の濃度よりも大きい
    請求項1記載の半導体記憶装置。
  3. 前記第1方向に前記複数の第1導電層及び複数の第1絶縁層と離間して、前記第1方向に交互に並ぶ複数の第2導電層及び複数の第3絶縁層と、
    前記第1方向に延伸し、前記複数の第2導電層及び複数の第3絶縁層に対向し、前記第1半導体層に接続された第3半導体層と、
    前記複数の第2導電層及び前記第3半導体層の間に設けられた第2電荷蓄積層と
    を備え、
    前記複数の第3絶縁層のうちの一つを第4絶縁層とした場合、前記第4絶縁層は、前記第1方向において前記第2領域と並ぶ第3領域を備え、
    前記第3領域の前記第1の元素の濃度は、前記第2領域の前記第1の元素の濃度よりも小さい
    請求項2記載の半導体記憶装置。
  4. 基板と、
    前記基板と交差する第1方向に交互に並ぶ複数の第1導電層及び複数の第1絶縁層と、
    前記第1方向に延伸し、前記複数の第1導電層及び複数の第1絶縁層に対向する第1半導体層と、
    前記複数の第1導電層及び前記第1半導体層の間に設けられた電荷蓄積層と、
    前記第1半導体層の前記第1方向の一端部に接続された第2半導体層と
    を備え、
    前記第2半導体層は第1の元素を含み、
    前記第1の元素は、リン(P)、ヒ素(As)、炭素(C)及びアルゴン(Ar)の少なくとも一つであり、
    前記第2半導体層は、
    第4領域と、
    前記第4領域と前記第1半導体層との間に設けられた第5領域と
    を備え、
    前記第5領域における前記第1の元素の濃度は、前記第4領域における前記第1の元素の濃度よりも大きい
    半導体記憶装置。
  5. 前記第2半導体層は、
    第6領域と、
    前記第6領域と、前記基板との間に設けられた第7領域と
    を備え、
    前記第6領域における前記第1の元素の濃度は、前記第7領域における前記第1の元素の濃度よりも大きい
    請求項4記載の半導体記憶装置。
  6. 前記第6領域及び前記第7領域の間に設けられた第8領域を備え、
    を備え、
    前記第8領域における炭素(C)の濃度は、前記第6領域及び前記第7領域における炭素(C)の濃度よりも大きい
    請求項5記載の半導体記憶装置。
  7. 前記第1半導体層は、
    前記複数の第1導電層及び複数の第1絶縁層に対向する第9領域と、
    前記第1方向における一端に設けられた第10領域と、
    前記第9領域及び前記第10領域の間に設けられ、前記第2半導体層に接続された第11領域と
    を含む
    請求項1~6のいずれか1項記載の半導体記憶装置。
JP2021103042A 2021-06-22 2021-06-22 半導体記憶装置 Pending JP2023002045A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021103042A JP2023002045A (ja) 2021-06-22 2021-06-22 半導体記憶装置
TW111100402A TWI811941B (zh) 2021-06-22 2022-01-05 半導體記憶裝置
CN202210008957.5A CN115513218A (zh) 2021-06-22 2022-01-06 半导体存储装置
US17/685,835 US20220406804A1 (en) 2021-06-22 2022-03-03 Semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021103042A JP2023002045A (ja) 2021-06-22 2021-06-22 半導体記憶装置

Publications (1)

Publication Number Publication Date
JP2023002045A true JP2023002045A (ja) 2023-01-10

Family

ID=84490684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021103042A Pending JP2023002045A (ja) 2021-06-22 2021-06-22 半導体記憶装置

Country Status (4)

Country Link
US (1) US20220406804A1 (ja)
JP (1) JP2023002045A (ja)
CN (1) CN115513218A (ja)
TW (1) TWI811941B (ja)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102416099B1 (ko) * 2018-03-28 2022-07-01 에스케이하이닉스 주식회사 반도체 메모리 소자, 이의 구동 방법 및 이의 제조 방법
TWI671878B (zh) * 2018-09-28 2019-09-11 旺宏電子股份有限公司 垂直通道結構與記憶元件
US10741579B2 (en) * 2018-12-11 2020-08-11 Sandisk Technologies Llc Three-dimensional memory device including different height memory stack structures and methods of making the same
US11018154B2 (en) * 2019-08-19 2021-05-25 Macronix International Co., Ltd. Memory device and method for fabricating the same
US11152388B2 (en) * 2019-10-15 2021-10-19 Micron Technology, Inc. Memory arrays and methods used in forming a memory array comprising strings of memory cells

Also Published As

Publication number Publication date
US20220406804A1 (en) 2022-12-22
TW202301563A (zh) 2023-01-01
CN115513218A (zh) 2022-12-23
TWI811941B (zh) 2023-08-11

Similar Documents

Publication Publication Date Title
KR100921287B1 (ko) 불휘발성 반도체 메모리 및 그 제조 방법
KR100542512B1 (ko) 반도체 장치 및 그 제조 방법
JP2009164485A (ja) 不揮発性半導体記憶装置
JP2009272513A (ja) 不揮発性半導体記憶装置
US11094709B2 (en) Method of manufacturing semiconductor device
CN110931065A (zh) 半导体存储装置
JP2012244008A (ja) 半導体装置およびその製造方法
US11956950B2 (en) Memory arrays comprising strings of memory cells and methods used in forming a memory array comprising strings of memory cells
US20140284682A1 (en) Nonvolatile semiconductor storage device
US20220077173A1 (en) Semiconductor memory device
JP2020038949A (ja) 半導体記憶装置
US11251193B2 (en) Semiconductor memory device
CN113380810A (zh) 半导体存储装置
JP2023002045A (ja) 半導体記憶装置
US6277693B1 (en) Self-aligned process for forming source line of ETOX flash memory
JP2010135561A (ja) 不揮発性半導体記憶装置
JP2009076635A (ja) 半導体装置およびその製造方法
JP2023124107A (ja) 半導体記憶装置及びその製造方法
US20230065666A1 (en) Semiconductor memory device
CN217334080U (zh) 半导体存储装置
US20230090305A1 (en) Semiconductor storage device
CN112447756B (zh) 半导体存储装置及其制造方法
TWI837590B (zh) 半導體記憶裝置
US20210296359A1 (en) Three-dimensional semiconductor memory devices
US20230389313A1 (en) Memory Circuitry And Method Used In Forming Memory Circuitry