JP2022552852A - 高速次世代c-phyのための小ループ遅延クロックおよびデータ復元ブロック - Google Patents

高速次世代c-phyのための小ループ遅延クロックおよびデータ復元ブロック Download PDF

Info

Publication number
JP2022552852A
JP2022552852A JP2022523216A JP2022523216A JP2022552852A JP 2022552852 A JP2022552852 A JP 2022552852A JP 2022523216 A JP2022523216 A JP 2022523216A JP 2022523216 A JP2022523216 A JP 2022523216A JP 2022552852 A JP2022552852 A JP 2022552852A
Authority
JP
Japan
Prior art keywords
signal
state
transition
clock
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022523216A
Other languages
English (en)
Other versions
JPWO2021080686A5 (ja
Inventor
ドゥアン、イン
ウ、ジン
チョウ、シ-ウェイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of JP2022552852A publication Critical patent/JP2022552852A/ja
Publication of JPWO2021080686A5 publication Critical patent/JPWO2021080686A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0016Arrangements for synchronising receiver with transmitter correction of synchronization errors
    • H04L7/0033Correction by delay
    • H04L7/0037Delay of clock signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/02Speed or phase control by the received code signals, the signals containing no special synchronisation information
    • H04L7/033Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal-generating means, e.g. using a phase-locked loop
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/42Bus transfer protocol, e.g. handshake; Synchronisation
    • G06F13/4265Bus transfer protocol, e.g. handshake; Synchronisation on a point to point bus
    • G06F13/4273Bus transfer protocol, e.g. handshake; Synchronisation on a point to point bus using a clocked protocol
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/42Bus transfer protocol, e.g. handshake; Synchronisation
    • G06F13/4282Bus transfer protocol, e.g. handshake; Synchronisation on a serial bus, e.g. I2C bus, SPI bus
    • G06F13/4291Bus transfer protocol, e.g. handshake; Synchronisation on a serial bus, e.g. I2C bus, SPI bus using a clocked protocol
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • H04L25/4917Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems using multilevel codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/02Speed or phase control by the received code signals, the signals containing no special synchronisation information
    • H04L7/027Speed or phase control by the received code signals, the signals containing no special synchronisation information extracting the synchronising or clock signal from the received signal spectrum, e.g. by using a resonant or bandpass circuit
    • H04L7/0276Self-sustaining, e.g. by tuned delay line and a feedback path to a logical gate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/14Channel dividing arrangements, i.e. in which a single bit stream is divided between several baseband channels and reassembled at the receiver

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dc Digital Transmission (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

マルチワイヤ、多相インターフェースを介した通信のための方法、装置、およびシステムが開示される。クロック復元方法は、遷移パルスを含む組合せ信号を生成すること、を含み、各遷移パルスが、3ワイヤバス中のワイヤのペアのシグナリング状態の差分を表す差分信号における遷移に応答して生成される。組合せ信号は、論理回路に与えられ、論理回路はそれの出力としてクロック信号を与えるように構成され、ここで、組合せ信号中のパルスは、クロック信号が第1の状態に駆動されることを引き起こす。論理回路は、第1の状態への遷移を遅延させ、追加される遅延なしに第1の状態からの遷移をパスすることによってクロック信号から導出されるリセット信号を受信する。クロック信号は、第1の状態へのクロック信号の遷移をパスした後に第1の状態から駆動される。【選択図】図16

Description

優先権の主張
関連出願の相互参照
[0001]本出願は、それらの全体が以下に完全に記載されるかのように、およびすべての適用可能な目的のために、それらの内容全体が本明細書に組み込まれる、2020年8月25日に米国特許商標庁において出願された非仮特許出願第17/001,801号と、2019年10月25日に米国特許商標庁において出願された仮特許出願第62/925,916号との優先権および利益を主張する。
[0002]本開示は、一般に高速データ通信インターフェースに関し、より詳細には、マルチワイヤ、多相(multi-phase)データ通信リンクに結合された受信機におけるクロック生成に関する。
[0003]セルラーフォンなどのモバイルデバイスの製造業者は、異なる製造業者を含む様々な供給元からモバイルデバイスの部品を入手し得る。たとえば、セルラーフォン中のアプリケーションプロセッサは第1の製造業者から入手され得、イメージングデバイスまたはカメラは第2の製造業者から入手され得、ディスプレイは第3の製造業者から入手され得る。アプリケーションプロセッサ、イメージングデバイス、ディスプレイコントローラ、または他のタイプのデバイスは、規格ベースのまたはプロプライエタリな物理インターフェースを使用して相互接続され得る。一例では、イメージングデバイスは、モバイルインダストリプロセッサインターフェース(MIPI:Mobile Industry Processor Interface)アライアンスによって定義されたカメラシリアルインターフェース(CSI:Camera Serial Interface)を使用して接続され得る。別の例では、ディスプレイは、モバイルインダストリプロセッサインターフェース(MIPI)アライアンスによって指定されたディスプレイシリアルインターフェース(DSI:Display Serial Interface)規格に準拠するインターフェースを含み得る。
[0004]C-PHYインターフェースは、デバイス間で情報を送信するために3つ組の導体(conductors)を使用する、MIPIアライアンスによって定義された多相3ワイヤ(multiphase three-wire)インターフェースである。3つ組における各ワイヤは、シンボルの送信中に3つのシグナリング状態のうちの1つにあり得る。クロック情報が送信されるシンボルのシーケンスにおいて符号化され、受信機は連続するシンボル間の遷移からクロック信号を生成する。クロック情報を復元するクロックおよびデータ復元(CDR:clock and data recovery)回路の能力は、通信リンクの異なるワイヤ上で送信される信号の遷移に関係する最大時間変動によって制限され得る。C-PHY受信機中のCDR回路は、受信クロック信号中でパルスを生成する回路を制御するためのフィードバックループを採用し得る。フィードバックループは、パルス生成回路が、3つ組における導体がサンプリングエッジを与える前に安定したシグナリング状態を呈する前に発生し得る過渡事象(transients)によってトリガされる追加のパルスを生成しないことを保証するために使用され得る。最大シンボル送信レートはフィードバックループによって制限され得、一層高いシグナリング周波数において確実に機能することができる最適化されたクロック生成回路に対する継続的なニーズがある。
[0005]本明細書で開示される実施形態は、マルチワイヤおよび/または多相通信リンク上での改善された通信を可能にするシステム、方法および装置を提供する。通信リンクは、複数の集積回路(IC)デバイスを有するモバイル端末などの装置において展開され得る。
[0006]本開示の様々な態様では、クロック復元装置が、複数のパルス生成回路と、第1の論理回路と、第2の論理回路と、非対称遅延回路とを有する。各パルス生成回路は、3ワイヤバス中のワイヤのペアのシグナリング状態の差分を表す差分信号における遷移に応答して遷移パルスを生成するように構成される。第1の論理回路は、複数のパルス生成回路から受信された遷移パルスに対応するパルスを含む組合せ信号(combination signal)を与えるように構成される。第2の論理回路は、組合せ信号中のパルスに応答し、3ワイヤバスのシグナリング状態における遷移から情報を復号するために使用されるクロック信号を出力するように構成される。組合せ信号中のパルスは、クロック信号が第1の状態に駆動されることを引き起こす。非対称遅延回路は、クロック信号からリセット信号を生成するように構成される。リセット信号は、第1の状態への遷移を遅延させ、追加される遅延なしに第1の状態からの遷移をパスすることによって生成され得、クロック信号は、リセット信号が第1の状態に遷移したとき、第1の状態から駆動され得る。
[0007]いくつかの態様では、複数のパルス生成回路の各々は、関連する差分信号と、関連する差分信号の遅延したバージョンとを入力として受信するように構成された排他的ORゲートを含む。第1の論理回路は、各パルス生成回路の排他的ORゲートから受信された出力信号を組み合わせることによって組合せ信号を与えるように構成された論理ゲートを含み得る。複数のパルス生成回路の各々は、第2の論理回路について定義された最小クロックパルス持続時間に基づいて構成された持続時間をもつパルスを生成するように構成され得る。複数のパルス生成回路の各々において遅延回路によって生成されたパルスの持続時間は、構成可能であり得る。第1の状態への遷移に非対称遅延回路によって適用される遅延の持続時間は、構成可能であり得る。
[0008]一態様では、非対称遅延回路は、低論理状態から高論理状態への遷移を遅延させるように構成された立上りエッジ遅延回路である。立上りエッジ遅延回路は、追加される遅延なしに高論理状態から低論理状態への遷移をパスするように構成され得る。一態様では、ワイヤ状態デコーダが、クロック信号において与えられるタイミング情報に基づいて、3ワイヤバスのシグナリング状態における遷移からシンボルを復号するように構成される。
[0009]本開示の様々な態様では、クロック復元方法が、3ワイヤバス中のワイヤのペアのシグナリング状態の差分を表す差分信号における遷移に応答して生成された遷移パルスに対応するパルスを含む組合せ信号を生成することを含む。クロック復元方法は、論理回路に組合せ信号を与えること、をさらに含み、論理回路は、それの出力としてクロック信号を与えるように構成され、ここで、組合せ信号中のパルスは、クロック信号が第1の状態に駆動されることを引き起こす。クロック復元方法は、論理回路にリセット信号を与えること、をさらに含み、ここで、リセット信号は、第1の状態への遷移を遅延させ、追加される遅延なしに第1の状態からの遷移をパスすることによってクロック信号から導出される。クロック信号は、第1の状態へのクロック信号の遷移をパスした後に第1の状態から駆動される。
[0010]本開示の様々な態様では、プロセッサ可読記憶媒体が1つまたは複数の命令を有し、1つまたは複数の命令は、受信機中の処理回路の少なくとも1つのプロセッサによって実行されたとき、少なくとも1つのプロセッサに、3ワイヤバス中のワイヤのペアのシグナリング状態の差分を表す差分信号における遷移に応答して生成された遷移パルスに対応するパルスを含む組合せ信号を生成することを行わせる。命令は、少なくとも1つのプロセッサに、論理回路に組合せ信号を与えること、を行わせ、論理回路は、それの出力としてクロック信号を与えるように構成され、ここで、組合せ信号中のパルスは、クロック信号が第1の状態に駆動されることを引き起こす。命令は、少なくとも1つのプロセッサに、論理回路にリセット信号を与えること、を行わせ、ここで、リセット信号が、第1の状態への遷移を遅延させ、追加される遅延なしに第1の状態からの遷移をパスすることによってクロック信号から導出される。クロック信号は、第1の状態へのクロック信号の遷移をパスした後に第1の状態から駆動される。
[0011]本開示の様々な態様では、クロック復元装置が、3ワイヤバス中のワイヤのペアのシグナリング状態の差分を表す差分信号における遷移に応答して生成された遷移パルスに対応するパルスを含む組合せ信号を生成するための手段を含む。クロック復元装置は、論理回路に組合せ信号を与えるための手段、をさらに含み、論理回路は、それの出力としてクロック信号を与えるように構成され、ここで、組合せ信号中のパルスは、クロック信号が第1の状態に駆動されることを引き起こす。クロック復元装置は、論理回路にリセット信号を与えるための手段をさらに含み、ここで、リセット信号が、第1の状態への遷移を遅延させ、追加される遅延なしに第1の状態からの遷移をパスすることによってクロック信号から導出される。クロック信号は、第1の状態へのクロック信号の遷移をパスした後に第1の状態から駆動される。
[0012]C-PHYプロトコルを含み得る複数の利用可能な規格またはプロトコルのうちの1つに従って選択的に動作される、ICデバイス間のデータリンクを採用する装置を示す図。 [0013]複数の利用可能な規格のうちの1つに従って選択的に動作する、ICデバイス間のデータリンクを採用する装置のためのシステムアーキテクチャを示す図。 [0014]C-PHY3相送信機を示す図。 [0015]C-PHY3相符号化インターフェースにおけるシグナリングを示す図。 [0016]C-PHY3相受信機を示す図。 [0017]C-PHY3相符号化インターフェースにおける潜在的状態遷移を示す状態図。 [0018]C-PHYデコーダにおける遷移検出に対する信号立上り時間の影響の一例の図。 [0019]C-PHYデコーダにおける遷移検出を示す図。 [0020]C-PHYインターフェース上で送信された連続するシンボルのペア間で発生する信号遷移の一例を示す図。 [0021]アイパターンにおける遷移領域およびアイ領域(eye region)を示す図。 [0022]C-PHY3相インターフェースのために生成されたアイパターンの一例を示す図。 [0023]C-PHY3相インターフェースのためのCDR回路の一例を示す図。 [0024]図12のCDR回路に関連するタイミングを示す図。 [0025]C-PHY3相信号上で送信された信号間のスキューよりも短いループ時間を有するCDR回路に関連するタイミングを示す図。 [0026]C-PHY3相信号のシンボル間隔よりも長いループ時間を有するCDR回路に関連するタイミングを示す図。 [0027]本開示のいくつかの態様に従って提供されるCDR回路を示す図。 [0028]図16に示されたCDR回路に関連するタイミングを示す図。 [0029]本明細書で開示されるいくつかの態様に従って使用され得る立上りエッジ遅延回路の一例を示す図。 [0030]本明細書で開示されるいくつかの態様に従って適応され得る処理回路を採用する装置の一例を示すブロック図。 [0031]本明細書で開示されるいくつかの態様による、較正の第1の方法のフローチャート。 [0032]本明細書で開示されるいくつかの態様に従って適応された処理回路を採用する装置のためのハードウェア実装形態の第1の例を示す図。
[0033]添付の図面に関して以下に記載される発明を実施するための形態は、様々な構成を説明するものであり、本明細書で説明される概念が実施され得る構成のみを表すものではない。発明を実施するための形態は、様々な概念の完全な理解を与えるための具体的な詳細を含む。ただし、これらの概念はこれらの具体的な詳細なしに実施され得ることが当業者には明らかであろう。いくつかの事例では、そのような概念を不明瞭にしないように、よく知られている構造および構成要素がブロック図の形式で示される。
[0034]本出願で使用される「構成要素」、「モジュール」、「システム」などの用語は、限定はしないが、ハードウェア、ファームウェア、ハードウェアとソフトウェアの組合せ、ソフトウェア、または実行中のソフトウェアなど、コンピュータ関連エンティティを含むものとする。たとえば、構成要素は、限定はしないが、プロセッサ上で実行しているプロセス、プロセッサ、オブジェクト、実行ファイル、実行スレッド、プログラムおよび/またはコンピュータであり得る。例として、コンピューティングデバイス上で実行しているアプリケーションと、そのコンピューティングデバイスの両方が構成要素であり得る。1つまたは複数の構成要素がプロセスおよび/または実行スレッド内に存在することができ、1つの構成要素が1つのコンピュータ上に局所化され、および/または2つまたはそれ以上のコンピュータ間で分散され得る。さらに、これらの構成要素は、様々なデータ構造を記憶している様々なコンピュータ可読媒体から実行することができる。これらの構成要素は、信号を介して、ローカルシステム、分散システム内の別の構成要素と相互作用し、および/またはインターネットなどのネットワーク上で他のシステムと相互作用する1つの構成要素からのデータなど、1つまたは複数のデータパケットを有する信号に従うことなどによって、ローカルプロセスおよび/またはリモートプロセスを介して通信し得る。
[0035]その上、「または」という用語は、排他的な「または」ではなく、包括的な「または」を意味するものとする。すなわち、別段に規定されていない限り、または文脈から明らかでない限り、「XはAまたはBを採用する」という句は、自然包括的並べ替えのいずれかを意味するものとする。すなわち、「XはAまたはBを採用する」という句は、XがAを採用する場合、XがBを採用する場合、またはXがAとBの両方を採用する場合のいずれによっても満たされる。さらに、本出願と添付の特許請求の範囲とにおいて使用される冠詞「a」および「an」は、別段に規定されていない限り、または単数形を対象とすることが文脈から明らかでない限り、概して「1つまたは複数」を意味するものと解釈されるべきである。
概観
[0036]本発明のいくつかの態様は、電話、モバイルコンピューティングデバイス、アプライアンス、自動車エレクトロニクス、アビオニクスシステムなど、モバイル装置の副構成要素である電子デバイスを接続するために展開され得る、MIPIアライアンスによって指定されたC-PHYインターフェースに適用可能であり得る。モバイル装置の例は、モバイルコンピューティングデバイス、セルラーフォン、スマートフォン、セッション開始プロトコル(SIP)フォン、ラップトップ、ノートブック、ネットブック、スマートブック、携帯情報端末(PDA)、衛星無線、全地球測位システム(GPS)デバイス、スマートホームデバイス、インテリジェント照明、マルチメディアデバイス、ビデオデバイス、デジタルオーディオプレーヤ(たとえば、MP3プレーヤ)、カメラ、ゲーム機、エンターテインメントデバイス、車両構成要素、アビオニクスシステム、ウェアラブルコンピューティングデバイス(たとえば、スマートウォッチ、ヘルスまたはフィットネストラッカー、アイウェアなど)、アプライアンス、センサー、セキュリティデバイス、自動販売機、スマートメーター、ドローン、マルチコプター(multicopter)、または任意の他の同様に機能するデバイスを含む。
[0037]C-PHYインターフェースは、帯域幅制限されたチャネル上で高いスループットを与えることができる高速シリアルインターフェースである。C-PHYインターフェースは、ディスプレイとカメラとを含む周辺機器にアプリケーションプロセッサを接続するために展開され得る。C-PHYインターフェースは、3つ組またはワイヤの3つ組と呼ばれることがある3つのワイヤのセット上で送信されるシンボルにデータを符号化する。各シンボル送信間隔について、3相信号が3つ組のワイヤ上で異なる位相において送信され、ここで、各ワイヤ上の3相信号の位相は、シンボル送信間隔において送信されるシンボルによって定義される。各3つ組は、通信リンク上のレーンを与える。シンボル送信間隔が、単一のシンボルが3つ組のシグナリング状態を制御する時間間隔として定義され得る。各シンボル送信間隔において、3つ組の1つのワイヤは非駆動であり、残りの2つのワイヤは、2つの差動的に駆動されるワイヤのうちの一方が第1の電圧レベルを呈し、他方の差動的に駆動されるワイヤが第1の電圧レベルとは異なる第2の電圧レベルを呈するように、差動的に駆動される。非駆動ワイヤは、それが、第1の電圧レベルと第2の電圧レベルとの間の中間レベル電圧にあるかまたはその近くにある第3の電圧レベルを呈するように、浮動し、駆動され、および/または終端され得る。一例では、駆動電圧レベルは+Vおよび-Vであり得、非駆動電圧は0Vである。別の例では、駆動電圧レベルは+Vおよび0Vであり得、非駆動電圧は+1/2Vである。異なるシンボルは、シンボルの各連続的に送信されるペアにおいて送信され、ワイヤの異なるペアは、異なるシンボル間隔において差動的に駆動され得る。
[0038]C-PHY1.2仕様とC-PHY2.0仕様とを含む、C-PHYについてのより最近の実装形態および提案される仕様は、受信機においてクロック信号を復元するための従来のCDR回路の能力を超えることができるシンボル送信クロック信号の周波数を定義する。クロック情報を復元するクロック復元回路の能力は、通信リンクの異なるワイヤ上で送信される信号の遷移に関係する最大時間変動によって制限され得る。C-PHY受信機中のクロック復元回路は、一般に、受信クロック信号中のパルスの生成を制御するフィードバックループを採用する。フィードバックループは、パルス生成回路が、3つ組における導体がサンプリングエッジを与える前に安定したシグナリング状態を呈する前に発生し得る過渡事象(transients)によってトリガされる追加のパルスを生成しないことを保証するために使用され得る。最大シンボル送信レートはフィードバックループによって制限され得、C-PHY仕様の後の世代によって定義される一層高いシグナリング周波数において確実に機能することができる最適化されたクロック生成回路に対する継続的なニーズがある。
[0039]本明細書で開示されるいくつかの態様は、C-PHY受信機回路中にクロック復元回路を与え、ここで、C-PHY受信機回路のループ時間は、クロック復元回路が次世代C-PHYクロックレートにおいて動作することができるように最小限に抑えられる。一例では、クロック復元回路は、1つまたは複数の遷移パルスを含む組合せ信号を生成することと、論理回路に組合せ信号を与えることと、論理回路はそれの出力としてクロック信号を与えるように構成され、論理回路にリセット信号を与えることとを行い、リセット信号は、第1の状態への遷移を遅延させ、追加される遅延なしに第1の状態からの遷移をパスすることによってクロック信号から導出される。各遷移パルスは、3ワイヤバス中のワイヤのペアのシグナリング状態の差分を表す差分信号における遷移に応答して生成される。組合せ信号中のパルスは、クロック信号が第1の状態に駆動されることを引き起こし、クロック信号は、第1の状態へのクロック信号の遷移をパスした後に第1の状態から駆動される。
[0040]クロック復元回路は、第1の差分信号と第1の差分信号の遅延したバージョンとに対して排他的ORゲート機能を実施することによって第1の差分信号についての遷移パルスを生成し得る。クロック復元回路は、論理回路について定義された最小クロックパルス持続時間に基づく持続時間をもつ対応する遷移パルスを与えるように少なくとも1つのパルス生成回路を構成し得る。クロック復元回路は、3ワイヤバスの動作条件に基づいて少なくとも1つのパルス生成回路を較正し得る。クロック復元回路は、第1の状態への遷移に適用される遅延の持続時間を選択するように非対称遅延回路を構成し得る。非対称遅延回路は、低論理状態から高論理状態への遷移を遅延させるように構成された、および追加される遅延なしに高論理状態から低論理状態への遷移をパスするようにさらに構成された、立上りエッジ遅延回路を含み得る。クロック復元回路は、クロック信号において与えられるタイミング情報に基づいて3ワイヤバスのシグナリング状態における遷移からシンボルを復号するように構成されたワイヤ状態デコーダにクロック信号を与え得る。
C-PHYインターフェースを採用する装置の例
[0041]図1は、本明細書で開示されるいくつかの態様に従って適応され得る装置100の一例を示す。装置100は、1つまたは複数の通信リンクを実装するためにC-PHY3相プロトコルを採用し得る。装置100は、複数の回路またはデバイス104、106および/または108を有する処理回路102を含み得る。いくつかの例では、回路またはデバイス104、106および/または108は、1つまたは複数のASICにおいてまたはシステムオンチップ(SoC)において実装され得、ここで、SoCが、プロセッサ、コンピュータまたは他の電子システムの構成要素のすべてまたは実質的にすべてを実装する集積回路を含み得る。一例では、装置100は通信デバイスであり得、処理回路102は、第1の回路またはデバイス104と、1つまたは複数の周辺デバイス106と、装置が無線アクセスネットワーク、コアアクセスネットワーク、インターネットおよび/または別のネットワークとアンテナ124を通して通信することを可能にするトランシーバ108とにおいて与えられるプロセッサ112を含み得る。
[0042]第1の回路またはデバイス104は、1つまたは複数のプロセッサ112、1つまたは複数のモデム110、オンボードメモリ114、バスインターフェース回路116および/あるいは他の論理回路または機能を有し得る。処理回路102は、1つまたは複数のプロセッサ112が処理回路102上に与えられたオンボードメモリ114またはプロセッサ可読ストレージ122中に常駐するソフトウェアモジュールを実行することを可能にするアプリケーションプログラミングインターフェース(API)レイヤを与え得るオペレーティングシステムによって制御され得る。ソフトウェアモジュールは、オンボードメモリ114または他のプロセッサ可読ストレージ122に記憶された命令およびデータを含み得る。第1の回路またはデバイス104は、それのオンボードメモリ114、プロセッサ可読ストレージ122、および/または処理回路102の外部のストレージにアクセスし得る。オンボードメモリ114および/またはプロセッサ可読ストレージ122は、読取り専用メモリ(ROM)またはランダムアクセスメモリ(RAM)、電気的消去可能プログラマブルROM(EEPROM(登録商標))、フラッシュカード、あるいは処理システムおよびコンピューティングプラットフォームにおいて使用され得る任意のメモリデバイスを含み得る。処理回路102は、装置100および/または処理回路102を構成し、動作させるために使用される動作パラメータおよび他の情報を維持することができるローカルデータベースまたは他のパラメータストレージを含むか、実装するか、またはそれへのアクセスを有し得る。ローカルデータベースは、レジスタ、データベースモジュール、フラッシュメモリ、磁気媒体、EEPROM、ソフトまたはハードディスクなどを使用して実装され得る。処理回路102はまた、構成要素の中でも、アンテナ124、ディスプレイ126、スイッチまたはボタン128、130および/あるいは統合または外部キーパッド132などのオペレータ制御など、外部デバイスに動作可能に結合され得る。ユーザインターフェースモジュールが、専用通信リンクを通してまたは1つまたは複数の直列データ相互接続を通して、ディスプレイ126、外部キーパッド132などとともに動作するように構成され得る。
[0043]処理回路102は、いくつかの回路またはデバイス104、106、および/または108が通信することを可能にする1つまたは複数のバス118a、118b、120を与え得る。一例では、第1の回路またはデバイス104は、回路、カウンタ、タイマー、制御論理および他の構成可能な回路またはモジュールの組合せを含むバスインターフェース回路116を含み得る。一例では、バスインターフェース回路116は、通信仕様またはプロトコルに従って動作するように構成され得る。処理回路102は、装置100の動作を構成および管理する電力管理機能を含むか、または制御し得る。
[0044]図2は、通信リンク220を通してデータおよび制御情報を交換することができる複数のICデバイス202および230を含む装置200のいくつかの態様を示す。通信リンク220は、互いに極めて近接して配置されるか、または装置200の異なる部分中に物理的に配置されるICデバイス202および230のペアを接続するために使用され得る。一例では、通信リンク220は、ICデバイス202および230を搬送するチップキャリア、基板または回路板上に与えられ得る。別の例では、第1のICデバイス202は折り畳み式携帯電話のキーパッドセクション中に配置され得、第2のICデバイス230は折り畳み式携帯電話のディスプレイセクション中に配置され得る。別の例では、通信リンク220の一部分は、ケーブルまたは光接続を含み得る。
[0045]通信リンク220は、複数のチャネル222、224および226を含み得る。1つまたは複数のチャネル226は、双方向であり得、半二重モードおよび/または全二重モードで動作し得る。1つまたは複数のチャネル222および224は単方向であり得る。通信リンク220は、非対称であり、一方向においてより高い帯域幅を与え得る。本明細書で説明される一例では、第1のチャネル222は順方向チャネル222と呼ばれることがあり、第2のチャネル224は逆方向チャネル224と呼ばれることがある。ICデバイス202と230の両方がチャネル222上で送信および受信するように構成される場合でも、第1のICデバイス202がホストシステムまたは送信機として指定され得、第2のICデバイス230がクライアントシステムまたは受信機として指定され得る。一例では、順方向チャネル222は、第1のICデバイス202から第2のICデバイス230にデータを通信するときにより高いデータレートにおいて動作し得、逆方向チャネル224は、第2のICデバイス230から第1のICデバイス202にデータを通信するときにより低いデータレートにおいて動作し得る。
[0046]ICデバイス202および230は各々、プロセッサ206、236、コントローラあるいは他の処理および/またはコンピューティング回路またはデバイスを含み得る。一例では、第1のICデバイス202は、ワイヤレストランシーバ204およびアンテナ214を通してワイヤレス通信を確立および維持することを含む、装置200のコア機能を実施し得、第2のICデバイス230は、ディスプレイコントローラ232を管理するまたは動作させるユーザインターフェースをサポートし得、カメラコントローラ234を使用してカメラまたはビデオ入力デバイスの動作を制御し得る。ICデバイス202および230のうちの1つまたは複数によってサポートされる他の特徴は、キーボードと、音声認識構成要素と、他の入力デバイスまたは出力デバイスとを含み得る。ディスプレイコントローラ232は、液晶ディスプレイ(LCD)パネル、タッチスクリーンディスプレイ、インジケータなどのディスプレイをサポートする回路およびソフトウェアドライバを含み得る。記憶媒体208および238は、それぞれのプロセッサ206および236、ならびに/またはICデバイス202および230の他の構成要素によって使用される命令およびデータを維持するように適応される一時的および/または非一時的ストレージデバイスを含み得る。各プロセッサ206、236と、それの対応する記憶媒体208および238と、他のモジュールおよび回路との間の通信は、1つまたは複数の内部バス212および242、ならびに/あるいは通信リンク220のチャネル222、224および/または226によって容易にされ得る。
[0047]逆方向チャネル224は順方向チャネル222と同じ様式で動作され得、順方向チャネル222と逆方向チャネル224とは、同等の速度または異なる速度において送信することが可能であり得、ここで、速度は、データ転送レート、シンボル送信レートおよび/またはクロッキングレートとして表され得る。順方向データレートと逆方向データレートとは、適用例に応じて、実質的に同じであり得るか、または数桁だけ異なり得る。いくつかの適用例では、単一の双方向チャネル226が、第1のICデバイス202と第2のICデバイス230との間の通信をサポートし得る。順方向チャネル222および/または逆方向チャネル224は、たとえば、順方向チャネル222と逆方向チャネル224とが同じ物理接続を共有し、半二重様式で動作するとき、双方向モードで動作するように構成可能であり得る。一例では、通信リンク220は、業界規格または他の規格に従って第1のICデバイス202と第2のICデバイス230との間で制御情報、コマンド情報および他の情報を通信するように動作され得る。
[0048]図2の通信リンク220は、C-PHYについてのMIPIアライアンス仕様に従って実装され得、(M個のワイヤとして示されている)複数の信号ワイヤを含むワイヤードバスを与え得る。M個のワイヤは、モバイルディスプレイデジタルインターフェース(MDDI)など、高速デジタルインターフェースにおいてN相符号化データを搬送するように構成され得る。M個のワイヤは、チャネル222、224および226のうちの1つまたは複数上のN相極性符号化(polarity encoding)を容易にし得る。物理レイヤドライバ210および240は、通信リンク220上での送信のためにN相極性符号化データを生成するように構成または適応され得る。N相極性符号化の使用は、高速データ転送を与え、より少数のドライバがN相極性符号化データリンクにおいてアクティブであるので、他のインターフェースの電力の半分またはそれ以下を消費することがある。
[0049]物理レイヤドライバ210および240は、一般に、N相極性符号化のために構成されたとき、通信リンク220上の遷移ごとに複数のビットを符号化することができる。一例では、3相符号化と極性符号化の組合せは、フレームバッファなしにワイドビデオグラフィックスアレイ(WVGA:wide video graphics array)80フレーム毎秒LCDドライバICをサポートするために使用され、ディスプレイリフレッシュのために810Mbpsにおいてピクセルデータを配信し得る。
[0050]図3は、図2に示された通信リンク220のいくつかの態様を実装するために使用され得る、3ワイヤ、3相極性エンコーダを示す図300である。3ワイヤ、3相符号化の例は、単に本発明のいくつかの態様の説明を簡略化する目的で選択される。3ワイヤ、3相エンコーダについて開示される原理および技法は、Mワイヤ、N相極性エンコーダの他の構成において適用され得る。
[0051]3ワイヤ、3相極性符号化方式において3つのワイヤの各々について定義されるシグナリング状態は、非駆動状態(undriven state)と、正駆動状態(positively driven state)と、負駆動状態(negatively driven state)とを含み得る。正駆動状態および負駆動状態は、信号ワイヤ318a、318bおよび/または318cのうちの2つの間の電圧差を与えることによって、ならびに/あるいは、終端抵抗器を通して接続された信号ワイヤ318a、318bおよび/または318cのうちの2つを通る電流を、電流が信号ワイヤ318a、318bおよび/または318cのうちの当該2つの信号ワイヤ中を異なる方向に流れるように、駆動することによって、得られ得る。非駆動状態は、信号ワイヤ318a、318bまたは318cのドライバの出力を高インピーダンスモードに入れることによって実現され得る。代替または追加として、駆動信号ワイヤ318a、318bおよび/または318c上に与えられた正の電圧レベルと負の電圧レベルとの間の実質的に中間にある電圧レベルを受動的にまたは能動的に「非駆動」信号ワイヤ318a、318bまたは318cに到達させることによって、信号ワイヤ318a、318bまたは318c上で非駆動状態が得られ得る。一般に、非駆動信号ワイヤ318a、318bまたは318cを通る有意な電流フローはない。3ワイヤ、3相極性符号化方式について定義されるシグナリング状態は、3つの電圧または電流状態(+1、-1、および0)を使用して示され得る。
[0052]3ワイヤ、3相極性エンコーダが、信号ワイヤ318a、318bおよび318cのシグナリング状態を制御するためにラインドライバ308を採用し得る。ラインドライバ308は、単位レベル電流モードまたは電圧モードドライバとして実装され得る。いくつかの実装形態では、各ラインドライバ308が、対応する信号ワイヤ318a、318bおよび318cの出力状態を決定する信号316a、316bおよび316cのセットを受信し得る。一例では、信号316a、316bおよび316cのセットの各々は、それぞれ、信号ワイヤ318a、318bおよび318cをより高いレベルまたはより低いレベルの電圧のほうへ駆動するプルアップ回路およびプルダウン回路を、高のとき、アクティブにする、プルアップ信号(PU信号)とプルダウン信号(PD信号)とを含む、2つまたはそれ以上の信号を含み得る。この例では、PU信号とPD信号の両方が低であるとき、信号ワイヤ318a、318bおよび318cは、中間レベル電圧に終端され得る。
[0053]Mワイヤ、N相極性符号化方式における各シンボル送信間隔について、少なくとも1つの信号ワイヤ318a、318bまたは318cは、中間レベル/非駆動(0)電圧または電流状態にあり、正駆動(+1電圧または電流状態)信号ワイヤ318a、318bまたは318cの数は、受信機に流れる電流の和が常に0であるように、負駆動(-1電圧または電流状態)信号ワイヤ318a、318bまたは318cの数に等しい。各シンボル送信間隔について、少なくとも1つの信号ワイヤ318a、318bまたは318cのシグナリング状態は、先行する送信間隔において送信されるワイヤ状態から変更される。
[0054]動作中、マッパ302が、16ビットデータ310を受信し、7つのシンボル312にマッピングし得る。3ワイヤ例では、7つのシンボルの各々は、1つのシンボル送信間隔について信号ワイヤ318a、318bおよび318cの状態を定義する。7つのシンボル312は、各信号ワイヤ318a、318bおよび318cについてシンボル314の時限シーケンスを与える並直列変換器304を使用して直列化され得る。シンボル314のシーケンスは、一般に、シンボルクロック(CLKSYM)と呼ばれることがある送信クロックを使用して時間指定される。一例では、シンボルクロックの期間は、シンボル送信間隔の持続時間を定義する。3ワイヤ、3相エンコーダ306が、一度に1つのシンボルずつ、マッパによって生成された7つのシンボル314のシーケンスを受信し、各シンボル送信間隔について各信号ワイヤ318a、318bおよび318cの状態を算出する。3ワイヤ、3相エンコーダ306は、現在の入力シンボル314と、信号ワイヤ318a、318bおよび318cの前の状態とに基づいて、信号ワイヤ318a、318bおよび318cの状態を選択する。
[0055]Mワイヤ、N相符号化の使用は、いくつかのビットが複数のシンボルにおいて符号化されることを可能にし、ここで、シンボルごとのビットは整数ではない。3ワイヤ通信リンクの例では、同時に駆動され得る、2つのワイヤの3つの利用可能な組合せと、駆動されるワイヤのペア上の極性の2つの可能な組合せとがあり、6つの可能な状態を生じる。各遷移は現在の状態から発生するので、6つの状態のうちの5つがあらゆる遷移において利用可能である。少なくとも1つのワイヤの状態は、各遷移において変化することを必要とされる。5つの状態の場合、シンボルごとにlog2(5)≒2.32ビットが符号化され得る。したがって、シンボルごとに2.32ビットを搬送する7つのシンボルは16.24ビットを符号化することができるので、マッパが16ビットワードを受け付け、それを7つのシンボルに変換し得る。言い換えれば、5つの状態を符号化する7つのシンボルの組合せは、57(78,125)個の順列を有する。したがって、7つのシンボルは、16ビットの216(65,536)個の順列を符号化するために使用され得る。
[0056]図4は、円形状態図450に基づく3相変調データ符号化方式を使用して符号化される信号についてのタイミングチャート400の一例を含む。情報がシグナリング状態のシーケンスにおいて符号化され得、ここで、たとえば、ワイヤまたはコネクタが、円形状態図450によって定義された3相状態S1、S2およびS3のうちの1つにある。各状態は、120°位相シフトだけ他の状態から分離され得る。一例では、データは、ワイヤまたはコネクタ上の位相状態の回転の方向において符号化され得る。信号における位相状態は、時計回り方向452および452’または反時計回り方向454および454’において回転し得る。たとえば時計回り方向452および452’では、位相状態は、S1からS2への遷移、S2からS3への遷移およびS3からS1への遷移のうちの1つまたは複数を含むシーケンスにおいて進み得る。反時計回り方向454および454’では、位相状態は、S3からS2への遷移、S2からS1への遷移およびS1からS3への遷移のうちの1つまたは複数を含むシーケンスにおいて進み得る。3つの信号ワイヤ318a、318bおよび318cは同じ信号の異なるバージョンを搬送し、ここで、それらのバージョンは互いに対して120°だけ位相シフトされ得る。各シグナリング状態は、ワイヤまたはコネクタ上の異なる電圧レベルおよび/あるいはワイヤまたはコネクタを通る電流フローの方向として表され得る。3ワイヤシステムにおけるシグナリング状態のシーケンスの各々の間、各信号ワイヤ318a、318bおよび318cは、他のワイヤとは異なるシグナリング状態にある。3つより多くの信号ワイヤ318a、318bおよび318cが3相符号化システムにおいて使用されるとき、2つまたはそれ以上の信号ワイヤ318a、318bおよび/または318cは、各シグナリング間隔において同じシグナリング状態にあり得るが、あらゆるシグナリング間隔において少なくとも1つの信号ワイヤ318a、318bおよび/または318c上に各状態が存在する。
[0057]情報が各位相遷移410において回転の方向において符号化され得、3相信号は各シグナリング状態について方向を変更し得る。回転の方向は、非駆動信号ワイヤ318a、318bおよび/または318cが、回転の方向にかかわらず、回転する3相信号においてあらゆるシグナリング状態において変化するので、どの信号ワイヤ318a、318bおよび/または318cが位相遷移の前および後に「0」状態にあるかを考慮することによって決定され得る。
[0058]符号化方式はまた、能動的に駆動される2つの信号ワイヤ318a、318bおよび/または318cの極性408において情報を符号化し得る。3ワイヤ実装形態における任意の時間において、信号ワイヤ318a、318b、318cのうちの厳密に2つが、反対方向の電流を用いて、および/または電圧差を用いて駆動される。一実装形態では、データが2ビット値412を使用して符号化され得、ここで、1ビットが位相遷移410の方向において符号化され、第2のビットが現在の状態についての極性408において符号化される。
[0059]タイミングチャート400は、位相回転方向と極性の両方を使用するデータ符号化を示す。曲線402、404および406は、複数の位相状態について、それぞれ3つの信号ワイヤ318a、318bおよび318c上で搬送される信号に関する。最初に、位相遷移410は時計回り方向であり、最上位ビットはバイナリ「1」に設定され、その後、位相遷移410の回転は、時間414において、最上位ビットのバイナリ「0」によって表されるように反時計回り方向に切り替わる。最下位ビットは、各状態における信号の極性408を反映する。
[0060]本明細書で開示されるいくつかの態様によれば、データの1ビットが、3ワイヤ、3相符号化システムにおける回転、または位相変化において符号化され得、追加のビットが、2つの駆動ワイヤの極性において符号化され得る。追加情報が、現在の状態から可能な状態のいずれかへの遷移を可能にすることによって、3ワイヤ、3相符号化システムの各遷移において符号化され得る。各位相についての3つの回転位相および2つの極性を仮定すれば、6つの状態が、3ワイヤ、3相符号化システムにおいて利用可能である。したがって、5つの状態が現在の状態から利用可能であり、シンボル(遷移)ごとに符号化されたlog2(5)≒2.32ビットがあり得、これは、マッパ302が16ビットワードを受け入れ、それを7つのシンボルにおいて符号化することを可能にする。
[0061]図5は、3ワイヤ、3相デコーダ500のいくつかの態様を示す図である。差動受信機502a、502b、502cおよびワイヤ状態デコーダ504は、互いに対する3つの伝送線路(たとえば、図3に示されている信号ワイヤ318a、318bおよび318c)の状態のデジタル表現522を与え、前のシンボル期間において送信された状態と比較した3つの伝送線路の状態の変化を検出するように構成される。デマッパ508によって処理されるべき7つのシンボル516のセットを得るために、7つの連続する状態が直並列変換器506によってアセンブルされる。デマッパ508は、出力データ520を与えるために先入れ先出し(FIFO)レジスタ510においてバッファされ得る16ビットのデータ518を生成する。
[0062]ワイヤ状態デコーダ504は、信号ワイヤ318a、318bおよび318c上で受信された位相符号化信号からシンボル514のシーケンスを抽出し得る。シンボル514は、本明細書で開示されるように位相回転と極性の組合せとして符号化される。ワイヤ状態デコーダは、信号ワイヤ318a、318bおよび318cからワイヤ状態を確実に取り込むために使用され得るクロック526を抽出するCDR回路524を含み得る。各シンボル境界において信号ワイヤ318a、318bおよび318cのうちの少なくとも1つ上で遷移が発生し、CDR回路524は、1つまたは複数の遷移の発生に基づいてクロック526を生成するように構成され得る。すべての信号ワイヤ318a、318bおよび318cが安定しているための時間を可能にし、それにより現在のワイヤ状態が復号目的で取り込まれることを保証するために、クロックのエッジが遅延され得る。
[0063]図6は、3つのワイヤの可能なシグナリング状態602、604、606、612、614、616を示す状態図600であり、各状態からの可能な遷移が示されている。3ワイヤ、3相通信リンクの例では、6つの状態および30個の状態遷移が利用可能である。状態図600における可能なシグナリング状態602、604、606、612、614および616は、図4の円形状態図450に示されている状態を含み、詳述する。状態要素628の標本に示されているように、状態図600における各シグナリング状態602、604、606、612、614および616は、それぞれA、BおよびCと標示されている、信号ワイヤ318a、318b、318cの電圧シグナリング状態を定義する。たとえば、シグナリング状態602(+x)では、ワイヤA=+1、ワイヤB=-1およびワイヤC=0であり、これは、差動受信機502a(A-B)=+2、差動受信機502b(B-C)=-1および差動受信機502c(C-A)=-1の出力を生じる。受信機における位相変化検出回路によって行われる遷移決定は、-2、-1、0、+1および+2電圧状態を含む、差動受信機502a、502b、502cによって生成された5つの可能なレベルに基づく。
[0064]状態図600における遷移は、セット{000、001、010、011、100}中の3ビットバイナリ値のうちの1つを有するフリップ(Flip)、回転(Rotate)、極性(Polarity)シンボル(たとえば、FRPシンボル626)によって表され得る。FRPシンボル626の回転(Rotation)ビット622は、次の状態への遷移に関連する位相回転の方向を示す。FRPシンボル626の極性ビット624は、次の状態への遷移が極性の変化を伴うとき、バイナリ1に設定される。FRPシンボル626のフリップビット620がバイナリ1に設定されたとき、回転値および極性値は無視され、および/またはゼロ化され得る。フリップは、極性の変化のみを伴う状態遷移を表す。したがって、3相信号の位相は、フリップが発生したとき、回転していると見なされず、極性ビットは、フリップが発生したとき、余分である。FRPシンボル626は、各遷移についてのワイヤ状態変化に対応する。状態図600は、正極性シグナリング状態602、604、606を含む内円608と、負極性シグナリング状態612、614、616を包含する外円618とに分離され得る。
3相インターフェースにおけるジッタ
[0065]3相送信機は、送信チャネル上に高、低および中レベルの電圧を与えるドライバを含む。これは、連続するシンボル間隔間のいくつかの変動する遷移を生じる。低から高および高から低への電圧遷移はフルスイング遷移(full-swing transition)と呼ばれることがあり、低から中および高から中への電圧遷移はハーフスイング遷移(half-swing transition)と呼ばれることがある。異なるタイプの遷移は、異なる立上りまたは立下り時間を有し得、受信機における異なるゼロ交差を生じ得る。これらの差分は「符号化ジッタ」を生じることがあり、これは、リンク信号完全性性能に影響を及ぼし得る。
[0066]図7は、C-PHY3相送信機の出力における遷移変動性のいくつかの態様を示すタイミング図700である。信号遷移時間における変動性は、3相シグナリングにおいて使用される異なる電圧および/または電流レベルの存在に起因し得る。タイミング図700は、単一の信号ワイヤ310a、310bまたは310cから受信された信号における遷移時間を示す。第1のシンボルSymn702が第1のシンボル間隔において送信され、第1のシンボル間隔は時点722において終了し、その後に、第2のシンボルSymn+1704が第2のシンボル間隔において送信される。第2のシンボル間隔は時点724において終了し得、その後に、第3のシンボルSymn+2706が第3のシンボル間隔において送信され、第3のシンボル間隔は時点726において終了し、その後に、第4のシンボルSymn+3708が第4のシンボル間隔において送信される。第1のシンボル702によって決定された状態から第2のシンボル704に対応する状態への遷移は、信号ワイヤ310a、310bまたは310c中の電圧がしきい値電圧718および/または720に達するのにかかる時間に起因する遅延712の後に検出可能であり得る。しきい値電圧は、信号ワイヤ310a、310bまたは310cの状態を決定するために使用され得る。第2のシンボル704によって決定された状態から第3のシンボル706のための状態への遷移は、信号ワイヤ310a、310bまたは310c中の電圧がしきい値電圧718および/または720のうちの1つに達するのにかかる時間に起因する遅延714の後に検出可能であり得る。第3のシンボル706によって決定された状態から第4のシンボル708のための状態への遷移は、信号ワイヤ310a、310bまたは310c中の電圧がしきい値電圧718および/または720に達するのにかかる時間に起因する遅延716の後に検出可能であり得る。遅延712、714および716は異なる持続時間を有し得、異なる持続時間は、デバイス製造プロセスおよび動作条件の変動に一部起因し得、変動は、3つの状態に関連する異なる電圧または電流レベル間の遷移への不均等な影響、および/あるいは異なる遷移の大きさをもたらし得る。これらの差分は、C-PHY3相受信機におけるジッタおよび他の問題の原因となり得る。
[0067]図8は、C-PHYインターフェース800において受信機中で与えられ得るCDR回路のいくつかの態様を示す。差動受信機802a、802bおよび802cが、3つ組における信号ワイヤ310a、310bおよび310cの各異なるペアのシグナリング状態を比較することによって差分信号810a、810b、810cのセットを生成するように構成される。図示の例では、第1の差動受信機802aは、A信号ワイヤ310aおよびB信号ワイヤ310bのシグナリング状態の差分を表すAB差分信号810aを与え、第2の差動受信機802bは、B信号ワイヤ310bおよびC信号ワイヤ310cのシグナリング状態の差分を表すBC差分信号810bを与え、第3の差動受信機802cは、C信号ワイヤ310cおよびA信号ワイヤ310aのシグナリング状態の差分を表すCA差分信号810cを与える。したがって、遷移検出回路804が、差動受信機802a、802bおよび802cのうちの少なくとも1つの出力が各シンボル間隔の末尾において変化するので、位相変化の発生を検出するように構成され得る。
[0068]シンボルのいくつかの連続的に送信されたペア間の遷移は、単一の差動受信機802a、802bまたは802cによって検出可能であり得、他の遷移は、差動受信機802a、802bおよび802cのうちの2つまたはそれ以上によって検出され得る。一例では、2つのワイヤの状態、または相対状態は、遷移の後に、不変であり得、対応する差動受信機802a、802bまたは802cの出力も、位相遷移の後に、不変であり得る。したがって、クロック生成回路806は、位相遷移がいつ発生したかを決定するためにすべての差動受信機802a、802bおよび802cの出力を監視するために、遷移検出回路804および/または他の論理を含むか、あるいはそれと協働し得る。クロック生成回路は、検出された位相遷移に基づいて受信クロック信号808を生成し得る。
[0069]3つ組における3つのワイヤのシグナリング状態の変化が異なる時間において検出され得、これは、差分信号810a、810b、810cが異なる時間において安定状態を呈することを生じることがある。差分信号810a、810b、810cの状態は、各信号ワイヤ310a、310bおよび/または310cのシグナリング状態がシンボル送信間隔についてそれの定義された状態に遷移した後に安定性が到達される前に、切り替わり得る。そのような変動性の結果は、図8のタイミング図820に示されている。
[0070]シグナリング状態変化検出のタイミングは、発生したシグナリング状態変化のタイプに従って変動し得る。マーカー822、824および826は、遷移検出回路804に与えられた差分信号810a、810b、810cにおける遷移の発生を表す。マーカー822、824および826は、説明の明快のために、タイミング図820において異なる高さを割り当てられているにすぎず、マーカー822、824および826の相対的な高さは、クロック生成またはデータ復号のために使用される電圧または電流レベル、極性あるいは重み付け値との特定の関係を示すものではない。タイミング図820は、3つの信号ワイヤ310a、310bおよび310c上の位相および極性における、送信されるシンボルに関連する遷移のタイミングの影響を示す。タイミング図820では、いくつかのシンボル間の遷移は、シンボルがその間に確実に取り込まれ得る可変取込みウィンドウ830a、830b、830c、830d、830e、830fおよび/または830g(まとめてシンボル取込みウィンドウ830)を生じ得る。検出された状態変化の数と、それらの相対的タイミングとが、クロック信号808上のジッタを生じることがある。
[0071]C-PHY通信リンクのスループットは、信号遷移時間における持続時間および変動性によって影響を及ぼされ得る。たとえば、検出回路における変動性は、製造プロセス許容差と、電圧源および電流源および動作温度の変動および安定性とによって、ならびに信号ワイヤ310a、310bおよび310cの電気的特性によって引き起こされ得る。検出回路における変動性は、チャネル帯域幅を制限し得る。
[0072]図9は、いくつかの連続するシンボル間の第1のシグナリング状態から第2のシグナリング状態への遷移のいくつかの例を表すタイミング図900および920を含む。タイミング図900および920に示されているシグナリング状態遷移は説明の目的で選択され、他の遷移および遷移の組合せがMIPIアライアンスC-PHYインターフェースにおいて発生することがある。タイミング図900および920は、複数の受信機出力遷移が、3つ組のワイヤ上の信号レベル間の立上りおよび立下り時間の差分により各シンボル間隔境界において発生し得る、3ワイヤ、3相通信リンクの一例に関する。図8も参照すると、第1のタイミング図900は、遷移の前および後の3つ組の信号ワイヤ310a、310bおよび310c(A、BおよびC)のシグナリング状態を示し、第2のタイミング図920は、信号ワイヤ310aと310bと310cとの間の差分を表す差分信号810a、810b、810cを与える差動受信機802a、802bおよび802cの出力を示す。多くの事例では、差動受信機802a、802bおよび802cのセットは、2つの信号ワイヤ310a、310bおよび310cのための異なる組合せを比較することによって遷移を取り込むように構成され得る。一例では、これらの差動受信機802a、802bおよび802cは、それらのそれぞれの入力電圧の(たとえば減算による)差分を決定することによって出力を生成するように構成され得る。
[0073]タイミング図900および920に示されている例の各々では、-z状態616(図6参照)を表す初期シンボルが、異なるシンボルに遷移する。タイミング図902、904および906に示されているように、信号Aは、最初は+1状態にあり、信号Bは0状態にあり、信号Cは-1状態にある。したがって、差動受信機出力についてのタイミング図922、932、938に示されているように、差動受信機802a、802bは+1差分924を最初に測定し、差動受信機802cは-2差分926を測定する。
[0074]タイミング図902、922に対応する第1の例では、-z状態616を表すシンボルから-xシグナリング状態612(図6参照)を表すシンボルへの遷移が発生し、ここにおいて、信号Aは-1状態に遷移し、信号Bは+1状態に遷移し、信号Cは0状態に遷移し、差動受信機802aは+1差分924から-2差分930に遷移し、差動受信機802bは+1差分924、928にとどまり、差動受信機802cは-2差分926から+1差分928に遷移する。
[0075]タイミング図904、932に対応する第2の例では、-z状態616を表すシンボルから+zシグナリング状態606を表すシンボルへの遷移が発生し、ここにおいて、信号Aは-1状態に遷移し、信号Bは0状態にとどまり、信号Cは+1状態に遷移し、2つの差動受信機802aおよび802bは+1差分924から-1差分936に遷移し、差動受信機802cは-2差分926から+2差分934に遷移する。
[0076]タイミング図906、938に対応する第3の例では、-z状態616を表すシンボルから+xシグナリング状態602を表すシンボルへの遷移が発生し、ここにおいて、信号Aは+1状態にとどまり、信号Bは-1状態に遷移し、信号Cは0状態に遷移し、差動受信機802aは+1差分924から+2差分940に遷移し、差動受信機802bは+1差分924から-1差分942に遷移し、差動受信機802cは-2差分926から-1差分942に遷移する。
[0077]これらの例は、0、1、2、3、4および5レベルにわたる差分値における遷移を示す。一般的な差動またはシングルエンド直列送信機のために使用されるプリエンファシス技法は、2レベル遷移のために開発されており、MIPIアライアンスC-PHY3相信号上で使用される場合、いくつかの悪影響をもたらし得る。特に、遷移中に信号を過励振するプリエンファシス回路は、1つまたは2つのレベルにわたる遷移中にオーバーシュートを引き起こし得、エッジ敏感回路において誤ったトリガが発生することを引き起こし得る。
[0078]図10は、単一のシンボル間隔1002を含む複数のシンボル間隔の重ね合わせとして生成されるバイナリアイパターン1000を示す。信号遷移領域1004は、可変信号立上り時間が確実な復号を妨げる、2つのシンボル間の境界における不確実性の時間期間を表す。状態情報は、シンボルが安定し、確実に受信および復号され得る時間期間を表す、「アイ開口(eye opening)」内のアイマスク(eye mask)1006によって定義される領域中で確実に決定され得る。アイマスク1006は、ゼロ交差が発生しない領域をマスクオフし、アイマスクは、第1の信号ゼロ交差に続く、シンボル間隔境界における後続のゼロ交差の影響による複数のクロッキングを防ぐためにデコーダによって使用される。
[0079]信号の周期的サンプリングおよび表示の概念は、受信データ中に現れる頻繁な遷移を使用して受信データタイミング信号を再生成するクロックデータ復元回路を使用するシステムの設計、適応および構成中に有用である。シリアライザ/デシリアライザ(SERDES)技術に基づく通信システムは、バイナリアイパターン1000のアイ開口に基づいてデータを確実に復元する能力を判定するための基礎としてバイナリアイパターン1000が利用され得るシステムの一例である。
[0080]3ワイヤ、3相エンコーダなど、MワイヤN相符号化システムは、あらゆるシンボル境界において少なくとも1つの遷移を有する信号を符号化し得、受信機は、それらの保証された遷移を使用してクロックを復元し得る。受信機は、シンボル境界における最初の信号遷移の直前に、信頼できるデータを必要とし得、また、同じシンボル境界に相関される複数の遷移の発生を確実にマスキングすることが可能でなければならない。Mワイヤ(たとえば3つ組のワイヤ)上で搬送される信号間の立上りおよび立下り時間のわずかな差分により、ならびに受信された信号ペア(たとえば図8の差動受信機802a、802bおよび802cのA-B、B-C、およびC-A出力)の組合せ間の信号伝搬時間のわずかな差分により、複数の受信機遷移が発生し得る。
[0081]図11は、C-PHY3相信号のために生成されたマルチレベルアイパターン1100の一例を示す。マルチレベルアイパターン1100は、複数のシンボル間隔1102の重ね合わせから生成され得る。マルチレベルアイパターン1100は、固定の、および/またはシンボルに依存しないトリガ1110を使用して生成され得る。マルチレベルアイパターン1100は、差動受信機802a、802b、802cおよびN相受信機回路(図8参照)によって測定される複数の電圧レベルに起因し得る、増加された数の電圧レベル1120、1122、1124、1126、1128を含む。本例では、マルチレベルアイパターン1100は、差動受信機802a、802b、および802cに与えられた3ワイヤ、3相符号化信号における可能な遷移に対応し得る。3つの電圧レベルは、差動受信機802a、802b、および802cに、正極性と負極性の両方について強い電圧レベル1126、1128と弱い電圧レベル1122、1124とを生成させ得る。一般に、1つの信号ワイヤ310a、310bおよび310cのみがシンボルにおいて非駆動であり、差動受信機802a、802b、および802cは0状態(ここでは、0ボルト)出力を生成しない。強いレベルおよび弱いレベルに関連する電圧は、0ボルトレベルに対して均等に離間している必要がない。たとえば、弱い電圧レベル1122、1124は、非駆動信号ワイヤ310a、310bおよび310cによって到達される電圧レベルを含み得る電圧の比較を表す。マルチレベルアイパターン1100は、データが受信デバイスにおいて取り込まれたとき、信号のすべての3つのペアが同時であるものと見なされるので、差動受信機802a、802b、および802cによって生成された波形を重ね得る。差動受信機802a、802b、および802cによって生成された波形は、信号の3つのペア(A-B、B-C、およびC-A)の比較を表す差分信号810a、810b、810cを表す。
[0082]C-PHY3相デコーダにおいて使用されるドライバ、受信機および他のデバイスは、3つのワイヤから受信された信号間の相対遅延をもたらすことがある異なる切替え特性を呈し得る。3つ組の信号ワイヤ310a、310b、310cの3つの信号間の立上りおよび立下り時間のわずかな差分による、ならびに信号ワイヤ310a、310b、310cから受信された信号のペアの組合せ間の信号伝搬時間のわずかな差分による、複数の受信機出力遷移が、各シンボル間隔境界1108および/または1114において観測され得る。マルチレベルアイパターン1100は、立上りおよび立下り時間の差異を、各シンボル間隔境界1108および1114の近くの遷移の相対遅延として取り込み得る。立上りおよび立下り時間の差異は、3相ドライバの異なる特性によるものであり得る。立上りおよび立下り時間の差分はまた、所与のシンボルについてのシンボル間隔1102の持続時間の効果的な短縮または延長を生じ得る。
[0083]信号遷移領域1104は、可変信号立上り時間が確実な復号を妨げる、不確実性の時間、または期間を表す。状態情報は、シンボルが安定し、確実に受信および復号され得る時間期間を表す「アイ開口」1106において確実に決定され得る。一例では、アイ開口1106は、信号遷移領域1104の末尾1112において開始し、シンボル間隔1102のシンボル間隔境界1114において終了すると決定され得る。図11に示されている例では、アイ開口1106は、信号遷移領域1104の末尾1112において開始し、信号ワイヤ310a、310b、310cのシグナリング状態ならびに/または3つの差動受信機802a、802bおよび802cの出力が変化して次のシンボルを反映し始めた時間1116において終了すると決定され得る。
[0084]N相符号化のために構成された通信リンク220の最大速度は、受信された信号に対応するアイ開口1106と比較した信号遷移領域1104の持続時間によって制限され得る。シンボル間隔1102のための最小期間は、たとえば、図5に示されているデコーダ500中のCDR回路524に関連する厳しい設計マージンによって制約され得る。異なるシグナリング状態遷移は、2つまたはそれ以上の信号ワイヤ310a、310bおよび/または310cに対応する信号遷移時間の異なる変動に関連し得、それにより、受信デバイス中の差動受信機802a、802bおよび802cの出力を、差動受信機802a、802bおよび802cの入力が変化し始めるシンボル間隔境界1108に対して異なる時間および/またはレートにおいて変化させる。信号遷移時間の間の差分は、2つまたはそれ以上の差分信号810a、810b、810cにおけるシグナリング遷移間のタイミングスキューを生じ得る。CDR回路は、差分信号810aと810bと810cとの間のタイミングスキューに適応するために、遅延回路および他の回路を含み得る。
[0085]図12は、3ワイヤ、3相インターフェースのためのCDR回路1200の一例を与える。図示されたCDR回路1200は、多くの異なるタイプのクロック復元回路に共通であるいくつかの特徴および機能要素を含む。CDR回路1200は、たとえば図8の差動受信機802a、802bおよび802cによって生成された差分信号810a、810b、810cから導出され得る差分信号1202、1204、1206を受信する。CDR回路1200では、各差分信号1202、1204、1206は、D型フリップフロップのペア1210a、1210b、1210cをクロック制御して、出力信号1230a~1230fを生成する。出力信号1230a~1230fは、対応する差分信号1202、1204、1206上で遷移が検出されたとき、パルスを搬送する。D型フリップフロップ上のクロック入力に与えられる立上りエッジが、D型フリップフロップを通して論理1をクロック制御する。インバータ1208a、1208b、1208cは、D型フリップフロップの各対応するペア1210a、1210b、1210cにおけるD型フリップフロップのうちの一方に差分信号1202、1204、1206の反転バージョンを与えるために使用され得る。したがって、D型フリップフロップの各ペア1210a、1210b、1210cは、対応する差分信号1202、1204、1206において検出された立上りエッジおよび立下りエッジに応答してパルスを生成する。
[0086]たとえば、AB差分信号1202は、D型フリップフロップの第1のペア1210aの第1のD型フリップフロップ1232に与えられ、インバータ1208aは、D型フリップフロップの第1のペア1210aの第2のD型フリップフロップ1234にAB差分信号1202の反転バージョンを与える。D型フリップフロップは、最初はリセット状態にある。AB差分信号1202上の立上りエッジが第1のD型フリップフロップ1232を通して論理1をクロック制御し、第1のフリップフロップ(r_AB)1230aの出力を論理1状態に遷移させる。AB差分信号1202上の立下りエッジが第2のD型フリップフロップ1234を通して論理1をクロック制御し、第2のフリップフロップ(f_AB)1230bの出力を論理1状態に遷移させる。
[0087]出力信号1230a~1230fはORゲート1212などの論理に与えられ、論理は、受信機クロック(RxCLK)信号1222として働き得る出力信号を生成する。RxCLK信号1222は、差分信号1202、1204、1206のいずれかのシグナリング状態において遷移が発生したとき、論理1状態に遷移する。RxCLK信号1222はプログラマブル遅延回路1214に与えられ、プログラマブル遅延回路1214は、D型フリップフロップのペア1210a、1210b、1210c中のD型フリップフロップをリセットするリセット信号(rb信号1228)を駆動する。図示の例では、D型フリップフロップ1210a、1210b、1210cが低信号(low signal)によってリセットされるとき、インバータ1216が含まれ得る。D型フリップフロップ1210a、1210b、1210cがリセットされたとき、ORゲート1212の出力は論理0状態に戻り、RxCLK信号1222上のパルスは終了される。この論理0状態がプログラマブル遅延回路1214およびインバータ1216を通って伝搬するとき、D型フリップフロップ1210a、1210b、1210c上のリセット条件は解放される。D型フリップフロップ1210a、1210b、1210cがリセット条件にある間、差分信号1202、1204、1206上の遷移は無視される。
[0088]プログラマブル遅延回路1214は、一般に、差分信号1202、1204、1206上の最初の遷移の発生と最後の遷移の発生との間のタイミングスキューの差分を超える持続時間を有する遅延を生成するように構成される。プログラマブル遅延回路1214は、RxCLK信号1222上のパルスの持続時間(すなわち、パルス幅)を構成する。プログラマブル遅延回路1214は、セット信号1226がプロセッサあるいは他の制御および/または構成論理によってアサートされたとき、構成され得る。
[0089]RxCLK信号1222はまた、差分信号1202、1204、1206のシグナリング状態を取り込む3つのフリップフロップ1220のセットに与えられ得、RxCLK信号1222上で発生する各パルスについて安定した出力シンボル1224を与える。遅延または整合論理1218が、差分信号1202、1204、1206のセットのタイミングを調整し得る。たとえば、遅延または整合論理1218は、差分信号1202、1204、1206が安定しているとき、フリップフロップ1220が差分信号1202、1204、1206のシグナリング状態を取り込むことを保証するように、RxCLK信号1222上のパルスに対して差分信号1202、1204、1206のタイミングを調整するために使用され得る。遅延または整合論理1218は、プログラマブル遅延回路1214のために構成された遅延に基づいて差分信号1202、1204、1206におけるエッジを遅延させ得る。
[0090]プログラマブル遅延回路1214は、差分信号1202、1204、1206における遷移時間の可能な大きい変動に適応するように、CDR回路1200中に構成され得る。一例では、プログラマブル遅延回路1214は、一般に、差分信号1202、1204、1206上の最初の遷移の発生と最後の遷移の発生との間のタイミングスキューの持続時間を超える最小遅延期間を与えるように構成される。プログラマブル遅延回路1214によって与えられる遅延時間は、CDR回路1200の遅延ループにおける論理ゲートの数を考慮するために計算され、論理ゲートおよび/またはプログラマブル遅延回路1214の動作に影響を及ぼすことがある製造プロセス、回路電源電圧、および温度(PVT)条件の予想されるまたは観測されたばらつきを考慮する最小遅延時間に制約される。CDR回路1200の信頼できる動作では、プログラマブル遅延回路1214によって与えられる最大遅延時間は、シンボル間隔よりも大きくならないことがある。より速いデータレートにおいて、CDR回路1200の遅延ループによって与えられるタイミングスキューおよび遅延時間は、シンボル間隔1102の部分として増加する。アイ開口1106はシンボル間隔1102と比較して小さくなることがあり、アイ開口1106はより高い周波数において閉じることがある。最大シンボル送信レートは、プログラマブル遅延回路1214によって与えられる遅延時間が、アイ開口1106によって占有されるシンボル間隔1102の割合を、シンボルの確実な取込みをサポートすることができるしきい値サイズを下回って低減するとき、制限され得る。
[0091]図13は、CDR回路1200の動作のいくつかの態様を示すタイミング図1300である。図は、プログラマブル遅延回路1214が構成された後の動作に関し、セット信号1226は非アクティブである。CDR回路1200はエッジ検出器として動作する。C-PHY3相符号化は、単位間隔(UI:unit interval)1302ごとに単一のシグナリング状態遷移を与える。3つ組の各ワイヤの状態、および/または3つ組の送信特性の差分は、遷移が2つまたはそれ以上のワイヤ上で異なる時間において現れることを引き起こし得る。差分信号1202、1204、1206における遷移の発生の時間の最大差分は、スキュー時間(tskew)1304と呼ばれることがある。CDR回路1200に関連する他の遅延は、D型フリップフロップのペア1210a、1210b、1210cを通じた伝搬遅延(tck2q)1314と、ORゲート1212を通してパスされる立上りエッジに関連する伝搬遅延(tOR_0)1306と、ORゲート1212を通してパスされる立下りエッジに関連する伝搬遅延(tOR_1)1308と、プログラマブル遅延回路1214とドライバおよび/またはインバータ1216とによってもたらされる遅延を組み合わせるプログラマブル遅延(tpgm)1310と、D型フリップフロップのペア1210a、1210b、1210cによるrb信号1228の受信時間とフリップフロップ出力がクリアされる時間との間の遅延に対応するリセット遅延(trst)1312とを含む。
[0092]ループ遅延(tloop1320)が次のように定義され得る。
Figure 2022552852000002
loop1320とUI1302との間の関係が、CDR回路1200の動作の信頼性を決定し得る。この関係は、UI1302への直接的影響を有する、送信のために使用されるクロック周波数と、プログラマブル遅延回路1214の動作における変動性とによって影響を及ぼされる。
[0093]いくつかのデバイスでは、図12中のプログラマブル遅延回路1214の動作は、PVT条件の変動を含む、動作条件の変動に悩まされ得る。構成された値についてプログラマブル遅延回路1214によって与えられる遅延時間は、デバイスごとに、および/またはデバイス内の回路ごとに、著しく変動し得る。従来のシステムでは、CDR回路1200の公称動作条件は、概して、ワーストケースのPVT影響下でさえ、信号遷移領域1104の末尾1112の後におよび次のシンボルへの遷移領域の始まりより前にクロックエッジが発生することを保証するために、すべてのPVT条件下でアイ開口1106の中間におけるどこかにクロックエッジを生成するように、設計によって設定される。送信周波数が増加し、差分信号1202、1204、1206のタイミングスキューがUI1302と比較して大きいとき、アイ開口1106内のクロックエッジを保証するCDR回路1200を設計する際に困難が生じることがある。たとえば、一般的な遅延回路は、すべてのPVT条件にわたって2倍に(by factor of 2)変化する遅延値を生成し得る。
[0094]図14は、不十分な遅延を与えるプログラマブル遅延回路1214(図12参照)の影響を示すタイミング図1400である。この例では、tloop1406が、観測されたtskew1404に対して短すぎ、1つのUI1402中で複数のクロックパルス1408、1410が生成される。すなわち、ループ遅延tloop1406はtskew1404に対して十分に大きくなく、差分信号1202、1204、1206上で後に発生する遷移はマスキングされない。図示された例では、差分信号1206のうちの1つにおける第2の遷移1414が、差分信号1202の別の1つにおける第1の発生する遷移1412に応答してパルス1408が生成された後に検出され得る。この例では、復元されたクロック周波数は、3相インターフェース上でシンボルを送信するために使用されるクロック周波数の2倍であり得る。
[0095]図15は、長すぎる遅延を与えるプログラマブル遅延回路1214の影響を示すタイミング図1500である。この例では、観測されたスキューの持続時間tskew1504があり、tloop1506がUI1502よりも大きい。CDR回路1200は、第1のUI1502中の第1の発生する遷移1514に応答してクロックパルス1508を生成し得るが、rb信号1228は、遷移1516、1518が第2のUI1512中で発生したとき、アクティブであり得る。図示される例では、第2のUI1512中の遷移1516、1518はマスキングされ、第2のUI1512に対応する予想されるパルス1510は抑制される。この例では、復元されたクロック周波数は、3相インターフェース上でシンボルを送信するために使用されるクロック周波数の1/2であり得る。
[0096]図14および図15の例によって示されているように、CDR回路1200は、以下の制約を受け得る。
Figure 2022552852000003
経験的証拠は、tloop1320、1406、1506がPVTに極めて敏感であることを示唆する。CDR回路1200についてのtloop1320は、次のように言い換えられ得る。
Figure 2022552852000004
ループ時間は、PVT変動に敏感である多数の遅延により、より高いシンボルレートにおける信頼性の影響を受けやすく、二重のtpgm遅延と、6入力ORゲート1212に関連する大きい遅延とが、CDR回路1200によって復元可能なクロック信号の最大周波数を制限することがある。PVTの潜在的変動の範囲に適応するために、プログラマブル遅延回路1214によって与えられる遅延を増加させることは、CDR回路1200によって復元可能なクロック信号の最大周波数をさらに制限するように働く。
[0097]C-PHY1.2仕様とC-PHY2.0仕様とを含む、C-PHYについてのより最近の実装形態および提案される仕様は、受信機においてクロック信号を復元するための従来のCDR回路の能力を超えることができるシンボル送信クロック信号の周波数を定義する。シンボル送信クロック信号は、シンボル送信のレートを制御するために使用され、UI1302の持続時間を決定する。UI1302の持続時間は、シンボル送信クロック信号の周波数が増加されたとき、低減される。CDR回路1200中のループ遅延によってもたらされる制約は、CDR回路1200によってサポートされ得るUI1302の最小持続時間を制限し、これは、CDR回路1200によってサポートされ得るシンボル送信クロック信号の最大周波数を制限する。高度デバイス技術を使用してでさえ、CDR回路1200中のループ遅延は、いくつかのPVT条件下で300ピコ秒を超えることがあり、これは、従来のC-PHY適用例を毎秒2.5ギガシンボルの最大シンボル送信レートに制限することがある。いくつかの実装形態では、CDR回路1200中のループ遅延によってもたらされるUI1302の持続時間に関する制約は、従来のCDR回路1200を、C-PHY仕様の後の世代に準拠するべきであるC-PHYインターフェースにおける使用について無効にすることがある。
[0098]本明細書で開示されるいくつかの態様に従って実装されるクロック復元回路は、後の世代のC-PHY仕様によって定義されるより高いクロック周波数をサポートすることができる。図16は、より高いシンボル送信クロック周波数をサポートするように本開示のいくつかの態様に従って構成され得るクロック復元回路1640の一例を与える。クロック復元回路1640は、ループ遅延を最小限に抑えるかまたは低減し、クロック復元回路1640が少なくとも8GHzの周波数において受信クロック信号1646を生成することを可能にする最適化されたフィードバックループを使用する。遅延ループは、あるタイプのエッジを遅延させ、最小遅延をもつ他のタイプのエッジをパスする非対称遅延回路を使用して実装され得る。図示の例では、遅延ループは、数個の論理ゲートと、立上りエッジのみに応答するPVT鈍感遅延ブロック(PVT insensitive delay block)とを使用して実装される。図示されたクロック復元回路1640は、ループタイミングを最適化し、超高速シンボル送信レートをサポートするように構成され得る。パルス生成およびマージ回路1600が、差分信号1602、1604、1606において検出された遷移を表す遷移パルスを生成およびマージする。図17は、パルス生成およびマージ回路1600とクロック復元回路1640とに関連するタイミングを示すタイミング図1700である。
[0099]パルス生成およびマージ回路1600は、3つ組のワイヤA、BおよびCのワイヤのペアのシグナリング状態の差分を表す差分信号1602、1604、1606を受信する。差分信号1602、1604、1606は、図8に示されている差分信号810a、810b、810cを生成する差動受信機802a、802bおよび802cなど、差動受信機または比較器から受信され得る。パルス生成およびマージ回路1600は、差分信号1602、1604、1606において発生する遷移に応答して持続時間制限付き遷移パルス(limited-duration transition pulse)1704、1706、1708を生成するために、3つの排他的ORゲート1608、1610、1612ならびに対応する遅延回路1616、1618および1620を使用する。図示されたタイミング図1700の例では、AB差分信号1602、BC差分信号1604およびCA差分信号1606における遷移は、図示されたシンボル境界1710a、1710b、1710c、1710dの各々において発生する。差分信号1602、1604、1606における遷移は異なる時間において発生することがあり、したがって、第1の発生する遷移と最後の発生する遷移との間でスキュー1702が観測され得る。図示の例では、第1の図示されたシンボル境界1710aにおいて、第1の発生する遷移はAB差分信号1602上で観測され、最後の発生する遷移はCA差分信号1606上で観測される。遷移間の関係は、各シンボル境界1710a、1710b、1710c、1710dにおいて異なり得る。動作中、遷移が、各シンボル境界1710a、1710b、1710c、1710dにおいて少なくとも1つの差分信号1602、1604、1606上で発生し、1つまたは複数のシンボル境界1710a、1710b、1710c、1710dにおいて3つよりも少ない差分信号1602、1604、1606上で発生することがある。
[0100]第1の排他的ORゲート1608が、AB差分信号1602と、AB遅延回路1616によって与えられるAB差分信号1602の遅延したバージョンとを受信し、AB遅延回路1616によってもたらされる遅延の持続時間によって制御される持続時間を有する遷移パルス1704を含むAB_p信号1622を与える。第2の排他的ORゲート1610が、BC差分信号1604と、BC遅延回路1618によって与えられるBC差分信号1604の遅延したバージョンとを受信し、BC遅延回路1618によってもたらされる遅延の持続時間によって制御される持続時間を有する遷移パルス1706を含むBC_p信号1624を与える。第3の排他的ORゲート1612が、CA差分信号1606と、CA遅延回路1620によって与えられるCA差分信号1606の遅延したバージョンとを受信し、CA遅延回路1620によってもたらされる遅延の持続時間によって制御される持続時間を有する遷移パルス1708を含むCA_p信号1626を与える。AB_p信号1622とBC_p信号1624とCA_p信号1626とはORゲート1614に与えられ、ORゲート1614は、AB_p信号1622、BC_p信号1624およびCA_p信号1626における遷移パルス1704、1706、1708から導出された、および/またはそれらに対応するパルス1714を含む、本明細書では組合せ信号と呼ばれることがあるeg_pulse信号1630を与える。いくつかの事例では、遷移パルス1704、1706、1708のうちの2つまたはそれ以上は、時間的に重なり、組合せ信号のパルス1714においてマージされ得る。
[0101]eg_pulse信号1630は、クロック復元回路1640中の遅延フリップフロップ(DFF1642)をクロック制御する。いくつかの実装形態では、異なるタイプのフリップフロップ、ラッチ、レジスタまたは他の順序論理回路が、DFF1642の代替としての使用のために構成され得る。eg_pulse信号1630における各立上りエッジは、D入力からの論理1をDFF1642の出力(Q)までクロック制御する。DFF1642の出力は、受信クロック信号1646(Rclk_q)を与える。遅延回路1616、1618および1620は、予想されるまたは観測されたPVT条件下でDFF1642をクロック制御するのに十分な持続時間を有する遷移パルス1704、1706、1708を与えるように構成され得る。たとえば、遷移パルス1704、1706、1708の持続時間は、クロックパルスについての最小持続時間に基づいて構成され得る。受信クロック信号1646は、受信クロック信号1646がリセット状態にある(すなわち、論理0状態に設定される)初期状態から高に遷移する。受信クロック信号1646は、eg_pulse信号1630における第1の立上りエッジに応答して、ならびにORゲート1614およびDFF1642の累積遷移時間に対応し得るゲート伝搬遅延(clk_q1716)によって引き起こされる遅延の後に、高に遷移する。受信クロック信号1646は、eg_pulse信号1630における第1の立上りエッジに応答して高に遷移し、eg_pulse信号1630における追加のエッジは、DFF1642がリセットされるまで影響を有しない。
[0102]DFF1642は、立上りエッジ遅延回路1644の出力(Rclk_rst信号1648)が高に遷移したとき、リセットされる。立上りエッジ遅延回路1644は、Rclk_rst信号1648が立ち下がることを引き起こす前に遅延なしでまたは最小遅延で、それの入力において立下りエッジをパスし、Rclk_rst信号1648が立ち上がることを引き起こす前に、それの入力において立上りエッジを遅延させるように構成される。図示の例では、立上りエッジ遅延回路1644は、それの入力として受信クロック信号1646を受信し、選択された遅延持続時間(rise_dly1718)だけ受信クロック信号1646における立上りエッジを遅延させる。受信クロック信号1646における立下りエッジは、DFF1642、および/または立上りエッジ遅延回路1644中の1つまたは複数の論理ゲートに関連する遷移時間に起因し得る持続時間(fall_dly1720)だけ遅延される。立上りエッジ遅延回路1644は、非対称遅延回路の一例である。たとえば立下りエッジ遅延回路を含む、他のタイプの非対称遅延回路が様々な実装形態において使用され得ることを諒解されたい。
[0103]Rclk_rst信号1648が立ち上がった後に、DFF1642の出力はリセットされ、受信クロック信号1646は、ゲート遷移時間に起因し得る遅延(rst_dly1722)の後に論理0に戻る。受信クロック信号1646における立下りエッジはfall_dly1720の持続時間だけ遅延され、クロック復元回路1640はそれの初期状態に戻される。いくつかの実装形態では、受信クロック信号1646は、差分信号1602、1604、1606を取り込み、および/または差分信号1602、1604、1606からデータを復号するために使用され得る。いくつかの実装形態では、受信クロック信号1646をバッファし、および/または遅延させ、クロック復元回路1640の出力としてクロック信号(RxCLK信号1650)を与えるために、ドライバ回路1652が与えられる。RxCLK信号1650は、差分信号1602、1604、1606を取り込み、および/または差分信号1602、1604、1606からデータを復号するために使用され得る。
[0104]一例では、データ復元回路1660が、RxCLK信号1650を受信する1つまたは複数のラッチ、レジスタまたはフリップフロップ1664を含み得る。ラッチ、レジスタまたはフリップフロップ1664は、差分信号1602、1604、1606のシグナリング状態を取り込み、RxCLK信号1650上で発生する各パルスについて安定した出力シンボル1670を与えるように構成され得る。遅延または整合論理1662が、差分信号1602、1604、1606のタイミングを調整し得る。たとえば、遅延または整合論理1662は、差分信号1602、1604、1606が安定しているとき、ラッチ、レジスタまたはフリップフロップ1664が差分信号1602、1604、1606のシグナリング状態を取り込むことを保証するように、RxCLK信号1650上のパルスに対して差分信号1602、1604、1606のタイミングを調整するために使用され得る。遅延または整合論理1662は、差分信号1602、1604、1606におけるエッジの相対遅延または前進を与え得る。
[0105]クロック復元回路1640の最大動作周波数と、対応する最小UI1712とは、クロック復元回路1640ならびにパルス生成およびマージ回路1600に関連するタイミング制約によって決定され得る。パルス生成およびマージ回路1600におけるタイミング遅延は、クロック復元回路1640のタイミングループの外部にある。タイミング制約は、次のように述べられ得る。
Figure 2022552852000005
clk_q1716、rst_dly1722およびfall_dly1720パラメータは、少数のゲーティング切替え遅延として定量化可能であり、rise_dly1718持続時間は、clk_q1716に起因する小さいゲーティング切替え遅延を伴う予想されるPVT条件下でスキュー時間に基づいて選択され得る。
[0106]本明細書で開示されるいくつかの態様によれば、立上りエッジ遅延回路1644ならびに遅延回路1616、1618および1620は、製造、システム構成および/またはシステム初期化中に構成され得る。いくつかの実装形態では、立上りエッジ遅延回路1644ならびに/または遅延回路1616、1618および1620の各々は、プログラマブルであり、たとえば、C-PHYバスを介して送信される初期ライン同期シグナリングを使用して、バス動作中に動的に再構成および/または較正され得る。遅延回路1616、1618および1620は、測定された、観測されたおよび/または予想される動作条件に基づいて較正され得る。コントローラまたはプロセッサが、rise_dly1718の持続時間、ならびに/またはPVT条件について遅延回路1616、1618および1620によって与えられる遅延を最適化することによって、所望のまたは必要とされるシンボル送信レートを得ることができる。
[0107]図18は、本明細書で開示されるいくつかの態様による、追加される遅延なしに立下りエッジをパスしながら、構成されたまたは構成可能な遅延持続時間だけ立上りエッジを遅延させるために使用され得る立上りエッジ遅延回路1800の一例を示す。追加される遅延なしに立下りエッジをパスしながら立上りエッジを遅延させるために、他のタイプの回路が採用され得る。図示された立上りエッジ遅延回路1800は、単位遅延要素1804のセットを使用して実装され得、ここで、異なる遅延経路1806が、選択可能な遅延持続時間を得るために連結された異なる数の単位遅延要素1804を含む。いくつかの事例では、異なる遅延経路1806は、単一のマルチタップ遅延経路を使用して与えられ得る。立上りエッジ遅延回路1800の入力1802において受信された信号は、選択回路1808の制御下で1つまたは複数の遅延経路1806を通してルーティングされ、選択回路1808は、選択回路1808の出力1812を駆動するための遅延経路1806のうちの1つによって出力された信号を選択する。一例では、選択回路1808はマルチプレクサを使用して実装される。別の例では、選択回路1808は、入力1802において受信された信号を遅延経路1806に向けるスイッチのセットを使用して実装されるか、または遅延経路1806のうちの1つを横断した信号を使用して選択回路1808の出力1812を駆動する。立上りエッジ遅延回路1800は、選択回路1808に選択信号1814を与えることによって構成され得、ここで、選択信号1814は、遅延経路1806のうちのどれが選択回路1808の出力1812を駆動するかを決定する。
[0108]選択回路1808の出力1812は、ANDゲート1810を使用して立上りエッジ遅延回路1800の入力1802によってゲートされる。ANDゲート1810は、立上りエッジ遅延回路1800の出力1816を駆動する。立上りエッジ遅延回路1800の入力1802における低論理レベルが、立上りエッジ遅延回路1800の出力1816を強制的に低論理レベルにする。入力1802が低論理レベルから高論理レベルに遷移したとき、立上りエッジ遅延回路1800の入力1802における立上りエッジが発生する。入力1802が高論理レベルにあるとき、立上りエッジ遅延回路1800の出力1816は、選択回路1808の出力1812によって制御される。選択回路1808の出力1812は、最初は低論理状態にあり、立上りエッジ遅延回路1800の入力1802における立上りエッジの遅延したバージョンが、選択された遅延経路1806を出て、選択回路1808の出力1812が高に遷移することを引き起こすまで、低のままである。入力1802が高論理レベルから低論理レベルに遷移したとき、入力1802における立下りエッジが発生する。ANDゲート1810の入力に結合されている、立上りエッジ遅延回路1800の入力1802における低論理レベルは、強制的に立上りエッジ遅延回路1800の出力1816を低論理レベルに戻す。
[0109]立上りエッジ遅延回路1800の他の実装形態が企図される。いくつかの実装形態では、ANDゲート1810は、単位遅延要素1804の各々がリセット可能遅延要素として実装されるとき、省略され得る。いくつかの実装形態では、立上りエッジ遅延回路1800中の各遅延要素は、立上りエッジ遅延回路1800の入力1802上の低論理レベルによってリセットされ得、したがって、立下りエッジは、(1つまたは複数の論理ゲートの切替え時間に起因する小さい遅延を伴って)遅延経路1806を通して直ちに伝搬され、立上りエッジは、各遅延経路1806中の遅延要素ごとに伝搬される。別の例では、選択回路1808のタイプは、追加のまたは最小の遅延を得るように構成され得る。
処理回路および方法の例
[0110]図19は、本明細書で開示される1つまたは複数の機能を実施するように構成され得る、処理回路1902を採用する装置1900のためのハードウェア実装形態の一例を示す。本開示の様々な態様によれば、本明細書で開示される要素、または要素の任意の部分、または要素の任意の組合せが、処理回路1902を使用して実装され得る。処理回路1902は、本明細書で開示されるクロック復元技法をサポートするいくつかのデバイス、回路、および/または論理を含み得る。
[0111]処理回路1902は、ハードウェアおよびソフトウェアモジュールの何らかの組合せによって制御される1つまたは複数のプロセッサ1904を含み得る。プロセッサ1904の例は、マイクロプロセッサ、マイクロコントローラ、デジタル信号プロセッサ(DSP)、フィールドプログラマブルゲートアレイ(FPGA)、プログラマブル論理デバイス(PLD)、状態機械、シーケンサ、ゲート論理、個別ハードウェア回路、および本開示全体にわたって説明される様々な機能を実施するように構成された他の好適なハードウェアを含む。1つまたは複数のプロセッサ1904は、特定の機能を実施し、ソフトウェアモジュール1916のうちの1つによって構成されるか、拡張されるか、または制御され得る、専用プロセッサを含み得る。1つまたは複数のプロセッサ1904は、初期化中にロードされるソフトウェアモジュール1916の組合せを通して構成され、動作中に1つまたは複数のソフトウェアモジュール1916をロードまたはアンロードすることによってさらに構成され得る。
[0112]図示の例では、処理回路1902は、バス1910によって概略的に表されるバスアーキテクチャを用いて実装され得る。バス1910は、処理回路1902の特定の適用例および全体的な設計制約に応じて、任意の数の相互接続バスおよびブリッジを含み得る。一例では、バス1910は、1つまたは複数のプロセッサ1904とプロセッサ可読記憶媒体1906とを含む様々な回路を互いにリンクする。プロセッサ可読記憶媒体1906は、メモリデバイスと大容量ストレージデバイスとを含み得、本明細書ではコンピュータ可読媒体および/またはプロセッサ可読媒体と呼ばれることがある。バス1910は、タイミングソース、タイマー、周辺機器、電圧調節器、および電力管理回路など、様々な他の回路をもリンクし得る。バスインターフェース1908は、バス1910と1つまたは複数のトランシーバ1912との間のインターフェースを与え得る。トランシーバ1912は、処理回路によってサポートされる各ネットワーキング技術のために与えられ得る。いくつかの事例では、複数のネットワーキング技術は、トランシーバ1912中で見つけられる回路または処理モジュールの一部または全部を共有し得る。各トランシーバ1912は、伝送媒体を介して様々な他の装置と通信するための手段を与える。装置1900の性質に応じて、ユーザインターフェース1918(たとえば、キーパッド、ディスプレイ、スピーカー、マイクロフォン、ジョイスティック)も与えられ得、直接またはバスインターフェース1908を通してバス1910に通信可能に結合され得る。
[0113]プロセッサ1904は、バス1910を管理することと、プロセッサ可読記憶媒体1906を含み得るコンピュータ可読媒体に記憶されたソフトウェアの実行を含み得る一般的な処理とを担当し得る。この点において、プロセッサ1904を含む処理回路1902は、本明細書で開示される方法、機能および技法のいずれかを実装するために使用され得る。プロセッサ可読記憶媒体1906は、ソフトウェアを実行するとき、プロセッサ1904によって操作されるデータを記憶するために使用され得、ソフトウェアは、本明細書で開示される方法のいずれか1つを実装するように構成され得る。
[0114]処理回路1902中の1つまたは複数のプロセッサ1904はソフトウェアを実行し得る。ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語などの名称にかかわらず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行ファイル、実行スレッド、プロシージャ、関数、アルゴリズムなどを意味すると広く解釈されたい。ソフトウェアは、プロセッサ可読記憶媒体1906中または別の外部プロセッサ可読媒体中にコンピュータ可読形式で常駐し得る。プロセッサ可読記憶媒体1906は、非一時的コンピュータ可読記憶媒体および/または一時的プロセッサ可読記憶媒体を含み得る。非一時的プロセッサ可読記憶媒体は、例として、磁気ストレージデバイス(たとえば、ハードディスク、フロッピー(登録商標)ディスク、磁気ストリップ)、光ディスク(たとえば、コンパクトディスク(CD)またはデジタル多用途ディスク(DVD))、スマートカード、フラッシュメモリデバイス(たとえば、「フラッシュドライブ」、カード、スティック、またはキードライブ)、ランダムアクセスメモリ(RAM)、ROM、PROM、消去可能PROM(EPROM)、EEPROM、レジスタ、リムーバブルディスク、ならびにコンピュータによってアクセスされ、読み取られ得るソフトウェアおよび/または命令を記憶するための任意の他の好適な媒体を含む。プロセッサ可読記憶媒体1906はまた、例として、搬送波、伝送線路、ならびにコンピュータによってアクセスされ、読み取られ得るソフトウェアおよび/または命令を送信するための任意の他の好適な媒体を含み得る。プロセッサ可読記憶媒体1906は、プロセッサ1904中の処理回路1902中に存在するか、処理回路1902の外部にあるか、または処理回路1902を含む複数のエンティティにわたって分散され得る。プロセッサ可読記憶媒体1906は、コンピュータプログラム製品において具現され得る。例として、コンピュータプログラム製品は、パッケージング材料中にコンピュータ可読媒体を含み得る。特定の適用例および全体的なシステムに課される全体的な設計制約に応じて、本開示全体にわたって提示される記載の機能をどのようにしたら最も良く実装することができるかを、当業者は認識されよう。
[0115]プロセッサ可読記憶媒体1906は、本明細書ではソフトウェアモジュール1916と呼ばれることがある、ロード可能なコードセグメント、モジュール、アプリケーション、プログラムなどの中で維持および/または編成されたソフトウェアを維持し得る。ソフトウェアモジュール1916の各々は、処理回路1902上にインストールまたはロードされ、1つまたは複数のプロセッサ1904によって実行されたとき、1つまたは複数のプロセッサ1904の動作を制御するランタイムイメージ1914に寄与する、命令およびデータを含み得る。実行されたとき、いくつかの命令は、処理回路1902に、本明細書で説明されるいくつかの方法、アルゴリズムおよびプロセスによる機能を実施させ得る。
[0116]ソフトウェアモジュール1916のうちのいくつかは、処理回路1902の初期化中にロードされ得、これらのソフトウェアモジュール1916は、本明細書で開示される様々な機能の性能を可能にするように処理回路1902を構成し得る。たとえば、いくつかのソフトウェアモジュール1916は、プロセッサ1904の内部デバイスおよび/または論理回路1922を構成し得、トランシーバ1912、バスインターフェース1908、ユーザインターフェース1918、タイマー、数学的コプロセッサなど、外部デバイスへのアクセスを管理し得る。ソフトウェアモジュール1916は、割込みハンドラおよびデバイスドライバと対話し、処理回路1902によって与えられる様々なリソースへのアクセスを制御する、制御プログラムおよび/またはオペレーティングシステムを含み得る。リソースは、メモリ、処理時間、トランシーバ1912、ユーザインターフェース1918へのアクセスなどを含み得る。
[0117]処理回路1902の1つまたは複数のプロセッサ1904は多機能であり得、それにより、ソフトウェアモジュール1916のうちのいくつかが異なる機能または同じ機能の異なるインスタンスを実施するようにロードされ、構成される。1つまたは複数のプロセッサ1904は、たとえば、ユーザインターフェー1918、トランシーバ1912、およびデバイスドライバからの入力に応答して開始されるバックグラウンドタスクを管理するようにさらに適応され得る。複数の機能の性能をサポートするために、1つまたは複数のプロセッサ1904は、マルチタスキング環境を与えるように構成され得、それにより、複数の機能の各々が、必要または所望に応じて、1つまたは複数のプロセッサ1904によってサービスされるタスクのセットとして実装される。一例では、マルチタスキング環境は、異なるタスク間にプロセッサ1904の制御を受け渡す時分割プログラム1920を使用して実装され得、それにより、各タスクは、未処理の動作の完了時におよび/または割込みなどの入力に応答して、1つまたは複数のプロセッサ1904の制御を時分割プログラム1920に戻す。タスクが1つまたは複数のプロセッサ1904の制御を有するとき、処理回路は、制御タスクに関連する機能によって対処される目的のために効果的に専用化される。時分割プログラム1920は、オペレーティングシステム、ラウンドロビンベースで制御を転送するメインループ、機能の優先度付けに従って1つまたは複数のプロセッサ1904の制御を割り振る機能、および/または処理機能に1つまたは複数のプロセッサ1904の制御を与えることによって外部イベントに応答する割込み駆動型メインループを含み得る。
[0118]装置1900は、本開示のいくつかの態様に従って適応され、構成され、および/または動作され得る。第1の実装形態では、得られたクロック復元装置は、複数のパルス生成回路1628(図16参照)、ここで、各パルス生成回路が、3ワイヤバス中のワイヤのペアのシグナリング状態の差分を表す差分信号における遷移に応答して遷移パルスを生成するように構成される、を含み得る。第1の実装形態では、クロック復元装置は、複数のパルス生成回路1628から受信された遷移パルスに対応するパルスを含む組合せ信号を与えるように構成された第1の論理回路と、組合せ信号中のパルスに応答する、および3ワイヤバスのシグナリング状態における遷移から情報を復号するために使用されるクロック信号を出力するように構成された、第2の論理回路と、ここで、組合せ信号中のパルスは、クロック信号が第1の状態に駆動されることを引き起こす、を含み得る。第2の論理回路は、(遅延フリップフロップなどの)フリップフロップ、ラッチ、レジスタまたは他の順序論理回路を使用して実装され得る。第1の実装形態では、クロック復元装置は、クロック信号からリセット信号を生成するように構成された非対称遅延回路、ここで、リセット信号が、第1の状態への遷移を遅延させ、追加される遅延なしに第1の状態からの遷移をパスすることによって生成され、ここで、クロック信号は、第1の状態へのクロック信号の遷移が非対称遅延回路によってパスされた後に第1の状態から駆動される、を含み得る。
[0119]第2の実装形態では、第1の実装形態のクロック復元装置の複数のパルス生成回路1628の各々は、関連する差分信号と、関連する差分信号の遅延したバージョンとを入力として受信するように構成された排他的ORゲートを含む。第3の実装形態では、第2の実装形態の第1の論理回路は、各パルス生成回路中の排他的ORゲートから受信された出力信号を組み合わせることによって組合せ信号を与えるように構成された論理ゲートを含む。第4の実装形態では、第2の実装形態または第3の実装形態の複数のパルス生成回路1628の各々は、第2の論理回路について定義された最小クロックパルス持続時間に基づいて構成された持続時間をもつ遷移パルスを生成するように構成される。第5の実装形態では、第2の実装形態、第3の実装形態または第4の実装形態の複数のパルス生成回路1628の各々によって生成されたパルスの持続時間は、構成可能である。
[0120]第6の実装形態では、第1の状態への遷移に、第1の実装形態、第2の実装形態、第3の実装形態、第4の実装形態または第5の実装形態の非対称遅延回路によって適用される遅延の持続時間は、構成可能である。第7の実装形態では、第1の実装形態、第2の実装形態、第3の実装形態、第4の実装形態、第5の実装形態または第6の実装形態の非対称遅延回路は、低論理状態から高論理状態への遷移を遅延させるように構成された、および追加される遅延なしに高論理状態から低論理状態への遷移をパスするようにさらに構成された、立上りエッジ遅延回路を含む。第8の実装形態では、第1の実装形態、第2の実装形態、第3の実装形態、第4の実装形態、第5の実装形態、第6の実装形態または第7の実装形態のクロック復元装置は、クロック信号において与えられるタイミング情報に基づいて3ワイヤバスのシグナリング状態における遷移からシンボルを復号するように構成されたワイヤ状態デコーダを含む。
[0121]処理回路1902は、本明細書で開示される方法の少なくともある部分を実施するように構成され得る。第1の例では、クロック復元方法は、3ワイヤバス中のワイヤのペアのシグナリング状態の差分を表す差分信号における遷移に応答して生成された遷移パルスに対応するパルスを含む組合せ信号を生成することと、それの出力としてクロック信号を与えるように構成された論理回路に組合せ信号を与えることと、ここで、組合せ信号中のパルスは、クロック信号が第1の状態に駆動されることを引き起こす、論理回路にリセット信号を与えることと、ここで、リセット信号が、第1の状態への遷移を遅延させ、追加される遅延なしに第1の状態からの遷移をパスすることによってクロック信号から導出され、ここで、クロック信号は、第1の状態へのクロック信号の遷移が非対称遅延回路によってパスされた後に第1の状態から駆動される、を含む。論理回路は、(遅延フリップフロップなどの)フリップフロップ、ラッチ、レジスタまたは他の順序論理回路を使用して実装され得る。
[0122]第2の例では、第1の例のクロック復元方法は、第1の差分信号と第1の差分信号の遅延したバージョンとに対して排他的ORゲート機能を実施することによって第1の差分信号についての遷移パルスを生成することを含む。第3の例では、第1の例または第2の例のクロック復元方法は、論理回路について定義された最小クロックパルス持続時間に基づく持続時間をもつ対応する遷移パルスを与えるように少なくとも1つのパルス生成回路を構成することを含む。第4の例では、第1の例、第2の例または第3の例のクロック復元方法は、3ワイヤバスの動作条件に基づいて少なくとも1つのパルス生成回路を較正することを含む。第5の例では、第1の例、第2の例、第3の例または第4の例のクロック復元方法は、第1の状態への遷移に適用される遅延の持続時間を選択するように非対称遅延回路を構成することを含む。第6の例では、第1の例、第2の例、第3の例、第4の例または第5の例の非対称遅延回路は、低論理状態から高論理状態への遷移を遅延させるように構成され、追加される遅延なしに高論理状態から低論理状態への遷移をパスするようにさらに構成される立上りエッジ遅延回路を含む。第7の例では、第1の例、第2の例、第3の例、第4の例、第5の例または第6の例のクロック復元方法は、クロック信号において与えられるタイミング情報に基づいて3ワイヤバスのシグナリング状態における遷移からシンボルを復号するように構成されたワイヤ状態デコーダにクロック信号を与えることを含む。
[0123]図20は、3ワイヤC-PHYインターフェースに結合された受信デバイスにおいて実装され得るクロック復元方法のフローチャート2000である。ブロック2002において、受信デバイスは、3ワイヤバス中のワイヤのペアのシグナリング状態の差分を表す差分信号における遷移に応答して生成された遷移パルスに対応するパルスを含む組合せ信号を生成し得る。ブロック2004において、受信デバイスは、論理回路に組合せ信号を与え得、論理回路は、それの出力としてクロック信号を与えるように構成される。論理回路は、(遅延フリップフロップなどの)フリップフロップ、ラッチ、レジスタまたは他の順序論理回路を使用して実装され得る。組合せ信号中のパルスは、クロック信号が第1の状態に駆動されることを引き起こす。ブロック2006において、受信デバイスは、論理回路にリセット信号を与え得る。リセット信号は、第1の状態への遷移を遅延させ、追加される遅延なしに第1の状態からの遷移をパスすることによってクロック信号から導出される。クロック信号は、第1の状態へのクロック信号の遷移をパスした後の第1の状態から駆動される。
[0124]受信デバイスは、第1の差分信号と第1の差分信号の遅延したバージョンとに対して排他的ORゲート機能を実施することによって第1の差分信号についての遷移パルスを生成し得る。受信デバイスは、論理回路について定義された最小クロックパルス持続時間に基づく持続時間をもつ対応する遷移パルスを与えるように少なくとも1つのパルス生成回路を構成し得る。受信デバイスは、3ワイヤバスの動作条件に基づいて少なくとも1つのパルス生成回路を較正し得る。受信デバイスは、第1の状態への遷移に適用される遅延の所望の持続時間を与えるように非対称遅延回路を構成し得る。一例では、非対称遅延回路は、低論理状態から高論理状態への遷移を遅延させるように構成された立上りエッジ遅延回路として実装される。立上りエッジ遅延回路は、追加される遅延なしに高論理状態から低論理状態への遷移をパスするようにさらに構成され得る。
[0125]様々な実装形態では、クロック信号は、クロック信号において与えられるタイミング情報に基づいて3ワイヤバスのシグナリング状態における遷移からシンボルを復号するように構成されたワイヤ状態デコーダに与えられ得る。
[0126]図21は、処理回路2102を採用する装置2100のためのハードウェア実装形態の一例を示す図である。処理回路2102は、一般に、マイクロプロセッサ、マイクロコントローラ、デジタル信号プロセッサ、シーケンサおよび状態機械のうちの1つまたは複数を含み得る少なくとも1つのプロセッサ2116を有する。処理回路2102は、バス2120によって概略的に表されるバスアーキテクチャを用いて実装され得る。バス2120は、処理回路2102の特定の適用例および全体的な設計制約に応じて、任意の数の相互接続バスおよびブリッジを含み得る。バス2120は、プロセッサ2116、モジュールまたは回路2104、2106および2108、コネクタまたはワイヤ2114の異なるペア間のシグナリング状態の差分を表す差分信号2122を生成する差分受信機回路2112、ならびにプロセッサ可読記憶媒体2118によって表される、1つまたは複数のプロセッサおよび/またはハードウェアモジュールを含む様々な回路を互いにリンクする。バス2120はまた、タイミングソース、周辺機器、電圧調節器、および電力管理回路など、様々な他の回路をリンクし得、これらの回路は当技術分野においてよく知られており、したがって、これ以上説明されない。
[0127]プロセッサ2116は、プロセッサ可読記憶媒体2118に記憶されたソフトウェアの実行を含む一般的な処理を担当する。ソフトウェアは、プロセッサ2116によって実行されたとき、処理回路2102に、特定の装置のための上記で説明された様々な機能を実施させる。プロセッサ可読記憶媒体2118はまた、C-PHYバスとして構成され得るコネクタまたはワイヤ2114を介して送信されたシンボルから復号されたデータを含む、ソフトウェアを実行するときにプロセッサ2116によって操作されるデータを記憶するために使用され得る。処理回路2102は、モジュール2104、2106および2108のうちの少なくとも1つをさらに含む。モジュール2104、2106および2108は、プロセッサ可読記憶媒体2118中に常駐する/記憶された、プロセッサ2116中で動作するソフトウェアモジュールであるか、プロセッサ2116に結合された1つまたは複数のハードウェアモジュールであるか、またはそれらの何らかの組合せであり得る。モジュール2104、2106および/または2108は、マイクロコントローラ命令、状態機械構成パラメータ、またはそれらの何らかの組合せを含み得る。
[0128]一構成では、装置2100は、C-PHYインターフェースプロトコルに従うデータ通信のために構成され得る。装置2100は、差分信号2122のシグナリング状態における遷移に応答して遷移パルスを生成するように構成されたモジュールおよび/または回路2108と、3ワイヤバスのシグナリング状態における遷移からシンボルを復号するために使用可能なクロック信号を生成するように構成されたモジュールおよび/または回路2106と、遷移パルスおよび/または受信クロックを生成する際に使用される遅延持続時間を構成するための構成モジュールおよび/または回路2104とを含み得る。
[0129]一例では、装置2100は、複数のパルス生成回路1628(図16参照)と、1つまたは複数の組合せ論理回路と、クロック復元回路とを有する。パルス生成回路1628の各々は、3ワイヤバス中のワイヤのペアのシグナリング状態の差分を表す差分信号2122における遷移に応答して遷移パルスを生成するように構成される。1つの組合せ論理回路は、複数のパルス生成回路1628から受信された遷移パルスに対応するパルスを含む組合せ信号を与えるように構成される。一例では、3つの差分信号2122が、任意の差分信号2122中の遷移パルスの高論理レベルが組合せ信号における高論理レベルを引き起こすように論理ORゲートを使用して組み合わせられ、ここで、組合せ信号の状態は、3つの差分信号2122が低論理レベルにあるとき、低論理レベルに戻る。クロック復元回路は、(遅延フリップフロップなどの)フリップフロップ、ラッチ、レジスタまたは他の順序論理回路を使用して実装され得る。クロック復元回路は、組合せ信号中のパルスに応答し得、3ワイヤバスのシグナリング状態における遷移から情報を復号するために使用されるクロック信号を出力するように構成される。組合せ信号中のパルスは、クロック信号が第1の状態に駆動されることを引き起こす。クロック復元回路は、クロック信号からリセット信号を生成するように構成された非対称遅延回路を含み得る。リセット信号は、第1の状態への遷移を遅延させ、追加される遅延なしに第1の状態からの遷移をパスすることによって生成される。クロック信号は、第1の状態へのクロック信号の遷移が非対称遅延回路によってパスされた後に第1の状態から駆動される。
[0130]各パルス生成回路は、関連する差分信号と、関連する差分信号の遅延したバージョンとを入力として受信するように構成された排他的ORゲートを含む。組合せ論理回路は、各パルス生成回路の排他的ORゲートから受信された出力信号を組み合わせることによって組合せ信号を与えるように構成された論理ゲートを含み得る。各パルス生成回路は、クロック復元回路について定義された最小クロックパルス持続時間に基づいて構成された持続時間をもつパルスを生成するように構成される。複数のパルス生成回路1628の各々において遅延回路1616、1618、1620によって生成されたパルスの持続時間は、構成可能であり得る。第1の状態への遷移に非対称遅延回路によって適用される遅延の持続時間は、構成可能であり得る。
[0131]一例では、非対称遅延回路は、低論理状態から高論理状態への遷移を遅延させるように構成された、および追加される遅延なしに高論理状態から低論理状態への遷移をパスするようにさらに構成された、立上りエッジ遅延回路として実装される。一例では、装置2100は、クロック信号において与えられるタイミング情報に基づいて3ワイヤバスのシグナリング状態における遷移からシンボルを復号するように構成されたワイヤ状態デコーダを含む。
[0132]プロセッサ可読記憶媒体2118は、非一時的記憶媒体であり得、命令および/またはコードを記憶し得、命令および/またはコードは、プロセッサ2116によって実行されたとき、処理回路2102に、1つまたは複数の遷移パルスを含む組合せ信号を生成すること、ここで、各遷移パルスが、3ワイヤバス中のワイヤのペアのシグナリング状態の差分を表す差分信号2122における遷移に応答して生成される、を行わせる。命令および/またはコードは、処理回路2102に、論理回路に組合せ信号を与えること、論理回路は、それの出力としてクロック信号を与えるように構成され、ここで、組合せ信号中のパルスは、クロック信号が第1の状態に駆動されることを引き起こす、を行わせる。論理回路は、(遅延フリップフロップなどの)フリップフロップ、ラッチ、レジスタまたは他の順序論理回路を使用して実装され得る。命令および/またはコードは、処理回路2102に、論理回路にリセット信号を与えること、ここで、リセット信号が、第1の状態への遷移を遅延させ、追加される遅延なしに第1の状態からの遷移をパスすることによってクロック信号から導出される、を行わせる。クロック信号は、第1の状態へのクロック信号の遷移をパスした後に第1の状態から駆動される。
[0133]命令および/またはコードは、処理回路2102に、第1の差分信号と第1の差分信号の遅延したバージョンとに対して排他的ORゲート機能を実施することによって第1の差分信号についての遷移パルスを生成することを行わせ得る。命令および/またはコードは、処理回路2102に、論理回路について定義された最小クロックパルス持続時間に基づく持続時間をもつ対応する遷移パルスを与えるように少なくとも1つのパルス生成回路を構成することを行わせ得る。命令および/またはコードは、処理回路2102に、3ワイヤバスの動作条件に基づいて少なくとも1つのパルス生成回路を較正することを行わせ得る。命令および/またはコードは、処理回路2102に、第1の状態への遷移に適用される遅延の所望の持続時間を与えるように非対称遅延回路を構成することを行わせ得る。非対称遅延回路は、低論理状態から高論理状態への遷移を遅延させるように構成された、および追加される遅延なしに高論理状態から低論理状態への遷移をパスするようにさらに構成された、立上りエッジ遅延回路を使用して実装され得る。命令および/またはコードは、処理回路2102に、クロック信号において与えられるタイミング情報に基づいて3ワイヤバスのシグナリング状態における遷移からシンボルを復号するように構成されたワイヤ状態デコーダにクロック信号を与えることを行わせ得る。
[0134]開示されるプロセスにおけるステップの特定の順序または階層は、例示的な手法の一例であることを理解されたい。設計選好に基づいて、プロセス中のステップの特定の順序または階層は再構成され得ることを理解されたい。さらに、いくつかのステップは組み合わせられるかまたは省略され得る。添付の方法クレームは、様々なステップの要素を例示的な順序で提示したものであり、提示された特定の順序または階層に限定されるものではない。
以上の説明は、当業者が本明細書で説明された様々な態様を実施できるようにするために与えられた。これらの態様への様々な修正は当業者には容易に明らかであり、本明細書で定義された一般原理は他の態様に適用され得る。したがって、特許請求の範囲は、本明細書に示された態様に限定されるものではなく、クレーム文言に矛盾しない最大の範囲を与えられるべきであり、ここにおいて、単数形の要素への言及は、そのように明記されていない限り、「唯一無二の」を意味するものではなく、「1つまたは複数の」を意味するものである。別段に明記されていない限り、「いくつか(some)」という用語は1つまたは複数を指す。当業者に知られている、または後に知られることになる、本開示全体にわたって説明される様々な態様の要素のすべての構造的および機能的等価物は、参照により本明細書に明確に組み込まれ、特許請求の範囲に包含されるものである。その上、本明細書で開示されるいかなることも、そのような開示が特許請求の範囲に明示的に記載されているか否かにかかわらず、公に供するものではない。いかなるクレーム要素も、その要素が「のための手段」という語句を使用して明確に具陳されていない限り、ミーンズプラスファンクションとして解釈されるべきではない。

Claims (29)

  1. クロック復元装置であって、
    複数のパルス生成回路と、ここにおいて、各パルス生成回路は、3ワイヤバス中のワイヤのペアのシグナリング状態の差分を表す差分信号における遷移に応答して遷移パルスを生成するように構成され、
    前記複数のパルス生成回路から受信された遷移パルスに対応するパルスを含む組合せ信号を与えるように構成された第1の論理回路と、
    前記組合せ信号中のパルスに応答する、および前記3ワイヤバスから情報を復号するために使用されるクロック信号を出力するように構成された、第2の論理回路と、ここにおいて、前記組合せ信号中の前記パルスは、前記クロック信号が第1の状態に駆動されることを引き起こし、
    前記クロック信号からリセット信号を生成するように構成された非対称遅延回路と、ここにおいて、前記リセット信号は、前記第1の状態への遷移を遅延させ、追加される遅延なしに前記第1の状態からの遷移をパスすることによって生成され、前記クロック信号は、前記第1の状態への前記クロック信号の遷移が前記非対称遅延回路によってパスされた後に前記第1の状態から駆動され、
    を備える、クロック復元装置。
  2. 前記複数のパルス生成回路の各々は、
    関連する差分信号と、前記関連する差分信号の遅延したバージョンとを入力として受信するように構成された排他的ORゲート、
    を備える、請求項1に記載のクロック復元装置。
  3. 前記第1の論理回路は、
    各パルス生成回路中の前記排他的ORゲートから受信される出力信号を組み合わせることによって前記組合せ信号を与えるように構成された論理ゲート、
    を備える、請求項2に記載のクロック復元装置。
  4. 前記複数のパルス生成回路の各々は、前記第2の論理回路について定義された最小クロックパルス持続時間に基づいて構成された持続時間をもつ遷移パルスを生成するように構成された、請求項2に記載のクロック復元装置。
  5. 前記複数のパルス生成回路の各々によって生成されるパルスの持続時間は構成可能である、請求項2に記載のクロック復元装置。
  6. 前記第1の状態への遷移に前記非対称遅延回路によって適用される遅延の持続時間は、構成可能である、請求項1に記載のクロック復元装置。
  7. 前記非対称遅延回路は、低論理状態から高論理状態への遷移を遅延させるように構成された、および追加される遅延なしに前記高論理状態から前記低論理状態への遷移をパスするようにさらに構成された、立上りエッジ遅延回路を備える、請求項1に記載のクロック復元装置。
  8. 前記クロック信号において与えられるタイミング情報に基づいて、前記3ワイヤバスのシグナリング状態における遷移からシンボルを復号するように構成されたワイヤ状態デコーダ、
    をさらに備える、請求項1に記載のクロック復元装置。
  9. クロック復元方法であって、
    3ワイヤバス中のワイヤのペアのシグナリング状態の差分を表す差分信号における遷移に応答して生成された遷移パルスに対応するパルスを含む組合せ信号を生成することと、
    出力としてクロック信号を与えるように構成された論理回路に、前記組合せ信号を与えることと、ここにおいて、前記組合せ信号中のパルスは、前記クロック信号が第1の状態に駆動されることを引き起こし、
    前記論理回路にリセット信号を与えることと、ここにおいて、前記リセット信号は、前記第1の状態への遷移を遅延させ、追加される遅延なしに前記第1の状態からの遷移をパスすることによって前記クロック信号から導出され、前記クロック信号は、前記第1の状態への前記クロック信号の遷移をパスした後に前記第1の状態から駆動され、
    を備える、クロック復元方法。
  10. 第1の差分信号と前記第1の差分信号の遅延したバージョンとに対して排他的ORゲート機能を実施することによって、前記第1の差分信号についての遷移パルスを生成すること、
    をさらに備える、請求項9に記載のクロック復元方法。
  11. 前記論理回路について定義された最小クロックパルス持続時間に基づく持続時間をもつ対応する遷移パルスを与えるように少なくとも1つのパルス生成回路を構成すること、
    をさらに備える、請求項9に記載のクロック復元方法。
  12. 前記3ワイヤバスの動作条件に基づいて、少なくとも1つのパルス生成回路を較正すること、
    をさらに備える、請求項9に記載のクロック復元方法。
  13. 前記第1の状態への遷移に適用される遅延の持続時間を選択するように非対称遅延回路を構成すること、
    をさらに備える、請求項9に記載のクロック復元方法。
  14. 前記非対称遅延回路は、低論理状態から高論理状態への遷移を遅延させるように構成された、および追加される遅延なしに前記高論理状態から前記低論理状態への遷移をパスするようにさらに構成された、立上りエッジ遅延回路を備える、請求項13に記載のクロック復元方法。
  15. 前記クロック信号において与えられるタイミング情報に基づいて、前記3ワイヤバスのシグナリング状態における遷移からシンボルを復号するように構成されたワイヤ状態デコーダに前記クロック信号を与えること、
    をさらに備える、請求項9に記載のクロック復元方法。
  16. 1つまたは複数の命令を有する非一時的プロセッサ可読記憶媒体であって、前記命令は、受信機中の処理回路の少なくとも1つのプロセッサによって実行されたとき、前記少なくとも1つのプロセッサに、
    3ワイヤバス中のワイヤのペアのシグナリング状態の差分を表す差分信号における遷移に応答して生成された遷移パルスに対応するパルスを含む組合せ信号を生成することと、
    論理回路に前記組合せ信号を与えることと、前記論理回路は、その出力としてクロック信号を与えるように構成され、ここにおいて、前記組合せ信号中のパルスは、前記クロック信号が第1の状態に駆動されることを引き起こし、
    前記論理回路にリセット信号を与えることと、ここにおいて、前記リセット信号は、前記第1の状態への遷移を遅延させ、追加される遅延なしに前記第1の状態からの遷移をパスすることによって前記クロック信号から導出され、前記クロック信号は、前記第1の状態への前記クロック信号の遷移をパスした後に前記第1の状態から駆動され、
    を行わせる、非一時的プロセッサ可読記憶媒体。
  17. 前記少なくとも1つのプロセッサに、
    第1の差分信号と前記第1の差分信号の遅延したバージョンとに対して排他的ORゲート機能を実施することによって、前記第1の差分信号についての遷移パルスを生成すること、
    を行わせる命令をさらに備える、請求項16に記載の記憶媒体。
  18. 前記少なくとも1つのプロセッサに、
    前記論理回路について定義された最小クロックパルス持続時間に基づく持続時間をもつ対応する遷移パルスを与えるように少なくとも1つのパルス生成回路を構成すること、
    を行わせる命令をさらに備える、請求項16に記載の記憶媒体。
  19. 前記少なくとも1つのプロセッサに、
    前記3ワイヤバスの動作条件に基づいて、少なくとも1つのパルス生成回路を較正すること、
    を行わせる命令をさらに備える、請求項16に記載の記憶媒体。
  20. 前記少なくとも1つのプロセッサに、
    前記第1の状態への遷移に適用される遅延の持続時間を選択するように非対称遅延回路を構成すること、
    を行わせる命令をさらに備える、請求項16に記載の記憶媒体。
  21. 前記非対称遅延回路は、低論理状態から高論理状態への遷移を遅延させるように構成された、および追加される遅延なしに前記高論理状態から前記低論理状態への遷移をパスするようにさらに構成された、立上りエッジ遅延回路を備える、請求項20に記載の記憶媒体。
  22. 前記少なくとも1つのプロセッサに、
    前記クロック信号において与えられるタイミング情報に基づいて、前記3ワイヤバスのシグナリング状態における遷移からシンボルを復号するように構成されたワイヤ状態デコーダに前記クロック信号を与えること、
    を行わせる命令をさらに備える、請求項16に記載の記憶媒体。
  23. クロック復元装置であって、
    3ワイヤバス中のワイヤのペアのシグナリング状態の差分を表す差分信号における遷移に応答して生成された遷移パルスに対応するパルスを含む組合せ信号を生成するための手段と、
    前記組合せ信号中のパルスに応答する論理回路を含む、クロック信号を与えるための手段と、ここにおいて、前記組合せ信号中の前記パルスは、前記クロック信号が第1の状態に駆動されることを引き起こし、
    前記論理回路にリセット信号を与えるための手段と、ここにおいて、前記リセット信号は、前記第1の状態への遷移を遅延させ、追加される遅延なしに前記第1の状態からの遷移をパスすることによって前記クロック信号から導出され、前記クロック信号は、前記第1の状態への前記クロック信号の遷移をパスした後に前記第1の状態から駆動され、
    を備える、クロック復元装置。
  24. 前記1つまたは複数の遷移パルスを生成するための手段をさらに備え、各遷移パルスは、対応する差分信号と前記対応する差分信号の遅延したバージョンとを使用して生成される、請求項23に記載のクロック復元装置。
  25. 少なくとも1つのパルス生成回路は、前記論理回路について定義された最小クロックパルス持続時間に基づく持続時間をもつ対応する遷移パルスを与えるように構成された、請求項23に記載のクロック復元装置。
  26. 1つまたは複数のパルス生成回路は前記3ワイヤバスの動作条件に基づいて較正される、請求項23に記載のクロック復元装置。
  27. 前記リセット信号を与えるための前記手段は、前記第1の状態への遷移に適用される遅延の持続時間を選択するように構成可能である、請求項23に記載のクロック復元装置。
  28. 前記リセット信号を与えるための前記手段は、低論理状態から高論理状態への遷移を遅延させるように構成された、および追加される遅延なしに前記高論理状態から前記低論理状態への遷移をパスするようにさらに構成された、立上りエッジ遅延回路を備える、請求項27に記載のクロック復元装置。
  29. 前記クロック信号は、前記クロック信号において与えられるタイミング情報に基づいて、前記3ワイヤバスのシグナリング状態における遷移からシンボルを復号するように構成されたワイヤ状態デコーダに与えられる、請求項23に記載のクロック復元装置。
JP2022523216A 2019-10-25 2020-08-26 高速次世代c-phyのための小ループ遅延クロックおよびデータ復元ブロック Pending JP2022552852A (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201962925916P 2019-10-25 2019-10-25
US62/925,916 2019-10-25
US17/001,801 US11095425B2 (en) 2019-10-25 2020-08-25 Small loop delay clock and data recovery block for high-speed next generation C-PHY
US17/001,801 2020-08-25
PCT/US2020/047919 WO2021080686A1 (en) 2019-10-25 2020-08-26 Small loop delay clock and data recovery block for high-speed next generation c-phy

Publications (2)

Publication Number Publication Date
JP2022552852A true JP2022552852A (ja) 2022-12-20
JPWO2021080686A5 JPWO2021080686A5 (ja) 2023-08-03

Family

ID=75586326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022523216A Pending JP2022552852A (ja) 2019-10-25 2020-08-26 高速次世代c-phyのための小ループ遅延クロックおよびデータ復元ブロック

Country Status (8)

Country Link
US (2) US11095425B2 (ja)
EP (1) EP4049402B1 (ja)
JP (1) JP2022552852A (ja)
KR (1) KR20220087445A (ja)
CN (2) CN114616793B (ja)
BR (1) BR112022007282A2 (ja)
TW (1) TWI746133B (ja)
WO (1) WO2021080686A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11095425B2 (en) 2019-10-25 2021-08-17 Qualcomm Incorporated Small loop delay clock and data recovery block for high-speed next generation C-PHY
TWI804338B (zh) * 2022-06-02 2023-06-01 國立中山大學 電壓及溫度變異偵測器

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7099400B2 (en) 2003-01-22 2006-08-29 Agere Systems Inc. Multi-level pulse amplitude modulation receiver
US20060181320A1 (en) 2005-02-11 2006-08-17 International Business Machines Corporation Circuit for optimizing the duty cycle of a received clock transmitted over a transmission line
US8064535B2 (en) * 2007-03-02 2011-11-22 Qualcomm Incorporated Three phase and polarity encoded serial interface
US9337997B2 (en) * 2013-03-07 2016-05-10 Qualcomm Incorporated Transcoding method for multi-wire signaling that embeds clock information in transition of signal state
US9374216B2 (en) * 2013-03-20 2016-06-21 Qualcomm Incorporated Multi-wire open-drain link with data symbol transition based clocking
US9313058B2 (en) * 2013-03-07 2016-04-12 Qualcomm Incorporated Compact and fast N-factorial single data rate clock and data recovery circuits
US9137008B2 (en) * 2013-07-23 2015-09-15 Qualcomm Incorporated Three phase clock recovery delay calibration
US9246666B2 (en) * 2014-03-27 2016-01-26 Intel Corporation Skew tolerant clock recovery architecture
US9485080B1 (en) * 2015-09-01 2016-11-01 Qualcomm Incorporated Multiphase clock data recovery circuit calibration
US9496879B1 (en) * 2015-09-01 2016-11-15 Qualcomm Incorporated Multiphase clock data recovery for a 3-phase interface
US10128964B2 (en) * 2016-03-10 2018-11-13 Qualcomm Incorporated Multiphase preamble data sequences for receiver calibration and mode data signaling
US10742390B2 (en) * 2016-07-13 2020-08-11 Novatek Microelectronics Corp. Method of improving clock recovery and related device
US10419246B2 (en) * 2016-08-31 2019-09-17 Qualcomm Incorporated C-PHY training pattern for adaptive equalization, adaptive edge tracking and delay calibration
US9735950B1 (en) 2016-10-18 2017-08-15 Omnivision Technologies, Inc. Burst mode clock data recovery circuit for MIPI C-PHY receivers
US10033519B2 (en) * 2016-11-10 2018-07-24 Qualcomm Incorporated C-PHY half-rate clock and data recovery adaptive edge tracking
KR20180061560A (ko) 2016-11-29 2018-06-08 삼성전자주식회사 통신 환경에 의존하여 지연을 조절하는 전자 회로
US10437744B2 (en) * 2017-12-18 2019-10-08 Intel Corporation Reconfigurable camera serial interface
US10298381B1 (en) 2018-04-30 2019-05-21 Qualcomm Incorporated Multiphase clock data recovery with adaptive tracking for a multi-wire, multi-phase interface
US10333690B1 (en) * 2018-05-04 2019-06-25 Qualcomm Incorporated Calibration pattern and duty-cycle distortion correction for clock data recovery in a multi-wire, multi-phase interface
US10454725B1 (en) * 2018-09-27 2019-10-22 Qualcomm Incorporated C-PHY receiver equalization
US11095425B2 (en) 2019-10-25 2021-08-17 Qualcomm Incorporated Small loop delay clock and data recovery block for high-speed next generation C-PHY

Also Published As

Publication number Publication date
US20210126765A1 (en) 2021-04-29
US11411711B2 (en) 2022-08-09
US20210336760A1 (en) 2021-10-28
EP4049402B1 (en) 2023-11-22
BR112022007282A2 (pt) 2022-07-05
TW202127796A (zh) 2021-07-16
US11095425B2 (en) 2021-08-17
CN117914461A (zh) 2024-04-19
TWI746133B (zh) 2021-11-11
CN114616793A (zh) 2022-06-10
CN114616793B (zh) 2024-01-30
KR20220087445A (ko) 2022-06-24
WO2021080686A1 (en) 2021-04-29
EP4049402A1 (en) 2022-08-31
EP4049402C0 (en) 2023-11-22

Similar Documents

Publication Publication Date Title
JP7258199B2 (ja) 多相クロックデータ復元回路較正
KR102522742B1 (ko) 3-페이즈 인터페이스에 대한 멀티페이즈 클록 데이터 복구
EP3326340B1 (en) Time based equalization for a c-phy 3-phase transmitter
CN109644020B (zh) 用于自适应均衡、自适应边沿跟踪以及延迟校准的c-phy训练码型
US11411711B2 (en) Small loop delay clock and data recovery block for high-speed next generation C-PHY
TWI822732B (zh) 獨立配對的3相眼圖取樣電路
KR102420905B1 (ko) 차세대 c-phy 인터페이스들을 위한 개방-루프, 초고속, 하프-레이트 클록 및 데이터 복구
WO2021236330A1 (en) Unit interval jitter improvement in a c-phy interface

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20230104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230726

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230726