JP2022551944A - 仮想マイクロフォンによる動的キャッピング - Google Patents
仮想マイクロフォンによる動的キャッピング Download PDFInfo
- Publication number
- JP2022551944A JP2022551944A JP2022522036A JP2022522036A JP2022551944A JP 2022551944 A JP2022551944 A JP 2022551944A JP 2022522036 A JP2022522036 A JP 2022522036A JP 2022522036 A JP2022522036 A JP 2022522036A JP 2022551944 A JP2022551944 A JP 2022551944A
- Authority
- JP
- Japan
- Prior art keywords
- phased array
- field
- microphone
- weighted average
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002604 ultrasonography Methods 0.000 claims abstract description 13
- 230000004913 activation Effects 0.000 claims description 15
- 238000003491 array Methods 0.000 claims description 2
- 239000013598 vector Substances 0.000 description 34
- 238000005096 rolling process Methods 0.000 description 16
- 238000000034 method Methods 0.000 description 15
- 238000005259 measurement Methods 0.000 description 12
- 238000004364 calculation method Methods 0.000 description 7
- 238000012935 Averaging Methods 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000001960 triggered effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000004422 calculation algorithm Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000003066 decision tree Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/18—Methods or devices for transmitting, conducting or directing sound
- G10K11/26—Sound-focusing or directing, e.g. scanning
- G10K11/34—Sound-focusing or directing, e.g. scanning using electrical steering of transducer arrays, e.g. beam steering
- G10K11/341—Circuits therefor
- G10K11/346—Circuits therefor using phase variation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
- G01N29/26—Arrangements for orientation or scanning by relative movement of the head and the sensor
- G01N29/262—Arrangements for orientation or scanning by relative movement of the head and the sensor by electronic orientation or focusing, e.g. with phased arrays
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/18—Methods or devices for transmitting, conducting or directing sound
- G10K11/26—Sound-focusing or directing, e.g. scanning
- G10K11/34—Sound-focusing or directing, e.g. scanning using electrical steering of transducer arrays, e.g. beam steering
- G10K11/341—Circuits therefor
- G10K11/348—Circuits therefor using amplitude variation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R29/00—Monitoring arrangements; Testing arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R29/00—Monitoring arrangements; Testing arrangements
- H04R29/004—Monitoring arrangements; Testing arrangements for microphones
- H04R29/005—Microphone arrays
- H04R29/006—Microphone matching
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/10—Number of transducers
- G01N2291/106—Number of transducers one or more transducer arrays
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R2217/00—Details of magnetostrictive, piezoelectric, or electrostrictive transducers covered by H04R15/00 or H04R17/00 but not provided for in any of their subgroups
- H04R2217/03—Parametric transducers where sound is generated or captured by the acoustic demodulation of amplitude modulated ultrasonic waves
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Otolaryngology (AREA)
- Signal Processing (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Circuit For Audible Band Transducer (AREA)
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
- Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)
- Transducers For Ultrasonic Waves (AREA)
Abstract
超音波フェーズドアレイからのフィールド強度の推定は、対象ポイントへの各トランスデューサの寄与を総計することによって行うことができる。この寄与は、収束する球面波を生成するときに既に計算されているので、これを再利用して、仮想マイクロフォンをシステムに追加することができる。このマイクロフォンを監察し、新しいフォーカスポイントと共に移動させることによって、フィールドの推定および調整のための堅牢なシステムを確立することができる。【選択図】図1
Description
本出願は、2019年10月13日に出願された米国特許仮出願第62/914,502号に基づく優先権を主張するものであり、その全体が参照により組み込まれる。
2018年4月23日に出願された先願の米国特許出願第15/960,113号は、その全体が参照により組み込まれる。
2017年5月18日に出願された先願の米国特許出願第62/507,822号は、その全体が参照により組み込まれる。
本発明は、全般に、超音波フェーズドアレイシステムへの仮想マイクロフォンの追加に関する。
本発明の目的は、同様の位置で静止するか、または低速移動するマイクロフォンの測定値に適度に一致する音圧の推定値を、超音波フェーズドアレイから生成することである。
フィールドにおける瞬間的な圧力もしくは強度、またはそれ以外の計測値を算出する手順を詳しく示した方法が存在する。このとき、一連のアルゴリズムが、演算資源を効率的に使用して、時間平均計測値を算出する。これらは、ホットスポットおよび所望の圧力よりも高い圧力を決定し調整するのに有用である。
超音波フェーズドアレイからのフィールドの強さの推定は、対象ポイントへの各トランスデューサの寄与を総計することにより、プロセッサを介して行うことができる。この寄与は、収束する球面波を生成するときに既に計算されている。この計算を再利用して、仮想マイクロフォンをシステムに追加することができる。このマイクロフォンを監察し、新しいフォーカスポイントと共に移動させることによって、フィールドの推定および調整のための堅牢なシステムを確立することができる。
添付の図面は、個々の図を通して、同様の参照番号が、同一または機能的に同様の要素を指し示し、以下の詳細な説明と共に本明細書に組み込まれ、その一部を形成するものであって、特許請求の範囲に記載の発明を含む技術思想の実施形態を更に例示し、それら実施形態の様々な原理および利点を説明する役割を果たす。
当業者は、図中の要素が、単純性と明瞭性を目的として例示されており、必ずしも一定の縮尺で描写されていないことを理解するであろう。例えば、図中のいくつかの要素の寸法は、本発明の実施形態の理解の向上のために、他の要素よりも誇張されている場合がある。
装置および方法の構成要素は、適切であれば一般的な記号によって図中に示されているが、本明細書の説明から恩恵を受ける当業者に容易に明らかとなるような詳細部分によって本開示が不明瞭なものとならないように、本発明の実施形態を理解する上で適切な特定の詳細部分のみを示している。
I.仮想マイクロフォン
アレイの中心を基準とした、ポイントxにおける、これらトランスデューサのnサイズアレイの圧力出力は、以下のように記述することができる。
式中、ynは、アレイの中心に対する各トランスデューサのオフセット、Pnは、トランスデューサに対する所定のベクトルでの複素圧力出力を与える関数/モデルであって、Xnは、各トランスデューサについての複素活性化係数を表す。下付き文字nは、アレイ内の潜在的に異なるトランスデューサに対応するように、圧力関数に含まれる。活性化係数は、位相シフト、振幅変化、またはこれらの両方を生じさせ、当該係数を操作することにより、音場を制御する。実際のシステムにおいて、これは、各トランスデューサを駆動する振幅および位相に解釈される。
式中、ynは、アレイの中心に対する各トランスデューサのオフセット、Pnは、トランスデューサに対する所定のベクトルでの複素圧力出力を与える関数/モデルであって、Xnは、各トランスデューサについての複素活性化係数を表す。下付き文字nは、アレイ内の潜在的に異なるトランスデューサに対応するように、圧力関数に含まれる。活性化係数は、位相シフト、振幅変化、またはこれらの両方を生じさせ、当該係数を操作することにより、音場を制御する。実際のシステムにおいて、これは、各トランスデューサを駆動する振幅および位相に解釈される。
ハプティックのためのアレイからの主要なフィールドは、フォーカスポイントに収束する球面波の波面のフィールドである。アレイの中心を基準として、ポイントxにおける各トランスデューサからの圧力値のリストを作成すると、An=Pn(x-yn)であり、自明の活性化の解は、
であり、式中、bは、フォーカスポイントにおける所望の複素圧力である。An=Aを行ベクトル、Xn=Xを列ベクトルとすると、式(1)を記述する別の方法は、以下のとおりである。
であり、式中、bは、フォーカスポイントにおける所望の複素圧力である。An=Aを行ベクトル、Xn=Xを列ベクトルとすると、式(1)を記述する別の方法は、以下のとおりである。
行ベクトルAの演算は、このフィールドの解の構築の一部である。フォーカスポイントが移動すると、システムは新たなA=A’および新たなX=X’を生成し、システムは、新たなフォーカスポイントの位置の作成に移行する。ここで重要なのは、古い行ベクトルに現在の活性化ベクトルを乗じたA・X’の重要性を認識することである。この乗算結果は、新しい活性化係数を用いた、旧フォーカス位置での圧力の推定値である。1つの追加のベクトル乗算を用い、システムは、レンダリングしている現在のフィールドによって生成された空間内の特定のポイント(この場合、古い方のフォーカス位置)における圧力を推定することができる。古いAを記憶し、活性化係数が更新されるたびに、A・X’を実行することによって、必要とされる追加の演算を最小限に抑えながら、以前のフォーカス位置におけるフィールド推定値(仮想マイクロフォン、即ち略して「マイク」)を得る。
以前のフォーカス位置で、即ちAn=Pn(x-yn)を用いて、過去のフィールドとは無関係の新たなxを問い合わせることにより、無制限の仮想マイクロフォンを作成することができる。但し、新たなマイクロフォンは、いずれも、その圧力が更新されるたびに、ベクトル毎の内積ベクトル乗算を必要とする。従って、フィールド内の全てのポイントを吟味するのは、演算上効率的ではない。空中ハプティックの用途の場合、フォーカスポイントの近くにあることが最も有用である。ハプティック曲線は、それらが何度も繰り返されるときに感覚を生成するだけであり、これは、可能な高圧ポイントが、以前に訪れたポイントに沿って、どこにあるかについてのガイドを提供する。
これを念頭に置いて、本開示の一構成では、アレイが新しい位置にフォーカスを合わせるときに、仮想マイクロフォンの位置が更新される。この場合、記憶されているAを、新たに計算されたA’で上書きすることにより、現在のフォーカス位置にマイクを「移動」させる。移動平均(以下に説明する)は、いずれも保有され、新しいロケーションおよび関連する行ベクトルで継続する。移動時期の決定には、閾値の圧力、外部フラグ、またはその他のなんらかの信号を含めることができる。一例は、タイムステップの単純なカウントダウンであり、この場合、Δnと考える。移動の毎に固定値とするのではなく、ランダム成分を含むことにより、一定の頻度でフィールドが位置を繰り返している場合に、位置が動かなくなるのが防止される。Δnが固定値である場合、Δnの整数倍となるループにより、移動するマイクが、数点のみに固定され、繰り返される曲線の高圧領域が失われる可能性がある。これを改善するために、Δnは、固定の最小n(nfixed)と、付加されるランダムな長さ(nrandom)とで構成することができる。nrandomをnfixed以上にすることにより、移動するマイクは、任意の長さの曲線を、均等にサンプリングすることができる。
II.移動平均
移動平均は、入力を平滑化する計算である。これはランダムノイズを均一にするために不可欠であるが、正弦波信号の計測量を生成する上でも有用である。音響学では、例えば、単一周波数の波に含まれるエネルギの計算は、1周期にわたって、瞬時圧力の2乗を平均することによって達成される。多くの周波数で構成される複雑な信号の場合、単一の繰り返し周期は、長いか、または存在しない。瞬時圧力の2乗を計算すると、音場のエネルギが過大評価されることになる。これを補正するために、移動平均を使用して隣接する値を含め、音波のエネルギに関連する計測値を生成することができる。
移動平均を計算する1つの方法は、「ボックスフィルタ」と呼ばれる。これは、信号内の一連のポイントを平均化することによって実行される。新しいポイントを取得すると、古いポイントは記憶から消され、新たな平均が計算される。これに着目するもう1つの方法は、畳み込みを用いるものである。畳み込みは、カーネルまたは一連の重みを得て、それらの重みを入力信号に乗算するもので、カーネル内の各ポイントに、カーネルアレイ内のその位置に対して等しく遅延した入力ベースの値を乗算した後、出力として総和を求める。例えば、「ボックスフィルタ」移動平均カーネルは、nをカーネルのサイズとすると、単純に1/nに等しい一連の等価変数である。
移動平均を計算するもう1つの方法は、再帰的な実行であり、これにより、最後に計算された平均の値が、新しいデータと共に、後続のポイントの計算に使用される。実行が比較的容易な1つの具体的な再帰計算は、指数加重ローリング平均である。この方法は、次のように記述される。
式中、Avgnは現在のローリング平均、Avgn-1は以前の反復から計算された平均、xは新たな入力、αは定数である。定数αは、サンプリングレートの単位で指数加重を決定する。
式中、Avgnは現在のローリング平均、Avgn-1は以前の反復から計算された平均、xは新たな入力、αは定数である。定数αは、サンプリングレートの単位で指数加重を決定する。
音響学でしばしば使用される特定の測定は、音圧レベル(SPL)として知られており、デシベル(20マイクロパスカルを基準)で表される。これは、圧力の2乗の指数加重移動平均値の平方根(ローリング2乗平均平方根(RMS)値)により算出される。厳密な計算に使用される時定数は、用途および設計仕様に応じて数ミリ秒から数秒まで変化する。
この測定は、圧力の2乗値のローリング平均(平均2乗)を保持し、デシベル値が必要なときに累乗根を得ることにより、仮想マイクを使用して追跡することができる。この値は、必要に応じてアレイ出力を調整(減衰)するために使用することができる。これに代えて、圧力の2乗の群を追跡し、調整値として使用することができる。平方根は、一価関数であるので、得られるSPL値が正しく制限される。
離散タイムステップを用いたP2乗(圧力出力の2乗)
の指数加重平均の計算は、再帰的アルゴリズムを使用して達成することができる。
式中、
は前のタイムステップからの出力、P2は現在のタイムステップにおける圧力の2乗、αは0と1との間の定数である。定数αは、タイムステップの単位で指数時定数を表す。例えば、40kHzで動作する1秒の積分定数は、α=1/40000によって表されることになる。これは、現在のポイントに対して1/eだけ過去の1秒間のポイントを平均することになる。過去2秒間のポイントは、(1/e)2などで重み付けされる。
の指数加重平均の計算は、再帰的アルゴリズムを使用して達成することができる。
式中、
は前のタイムステップからの出力、P2は現在のタイムステップにおける圧力の2乗、αは0と1との間の定数である。定数αは、タイムステップの単位で指数時定数を表す。例えば、40kHzで動作する1秒の積分定数は、α=1/40000によって表されることになる。これは、現在のポイントに対して1/eだけ過去の1秒間のポイントを平均することになる。過去2秒間のポイントは、(1/e)2などで重み付けされる。
同様のアプローチを、音響強度のシミュレーションに基づく、エネルギ計測にも適用することができる。エネルギ計測の計算には、A・X’の初期演算に戻ることが含まれる。媒体のベクトル粒子速度の各成分は、音響インピーダンスによって割った波面法線ベクトルの関連成分と圧力との乗算により、単一のソースについて計算してもよい。各要素が球面波源としてモデル化されているので、波面法線ベクトルは、単純に以下のようになる。
AnはPn(x-yn)であるので、空気の一定の音響インピーダンスによる除算を無視した媒体のベクトル粒子速度は、要素毎に、
と計算してもよい。これらの法線方向がAに沿って保持される場合、それらは、An,x、An,y、およびAn,zとして行ベクトルに組み込まれてもよい。これらも線形量であるので、これらを合計し、An,x・X’、An,y・X’、およびAn,z・X’として再構築してもよい。音響強度ベクトル(ここでも、音響インピーダンスを含む定数項を無視する)は、その大きさによって、あるポイントにおける音波の総エネルギを表すが、次のように記述することができる。
AnはPn(x-yn)であるので、空気の一定の音響インピーダンスによる除算を無視した媒体のベクトル粒子速度は、要素毎に、
と計算してもよい。これらの法線方向がAに沿って保持される場合、それらは、An,x、An,y、およびAn,zとして行ベクトルに組み込まれてもよい。これらも線形量であるので、これらを合計し、An,x・X’、An,y・X’、およびAn,z・X’として再構築してもよい。音響強度ベクトル(ここでも、音響インピーダンスを含む定数項を無視する)は、その大きさによって、あるポイントにおける音波の総エネルギを表すが、次のように記述することができる。
これにより、圧力の代わりに使用し得る波の総エネルギの計測値が得られる。エネルギの単位は、P2乗に比例するので、式(2)によるIのローリング平均は、真のエネルギ計測値を表す。これは、SPLについて、2乗平均平方根(RMS)値を得るのに平方根を必要とするP2乗とは対照的である。
サンプルレートが低い状況(または、マイクの平均がサイクル毎に更新されない場合)では、新しい値を表すようにαを調整する必要がある。これは、必要に応じ、平均が更新されるたびに調整されるように、その場で行うことが可能である。
III.2つのマイクの構成
自己交差(または、他のポイント/グレーティングローブからの交差)を伴う曲線の部類が存在し、この場合、上述した移動マイクの構成が、パス内における最高圧力ポイントを、6dBほど誤って表す可能性がある。これを修正するために、課題を2つの別個の仮想マイクに分割し、一方は、上述のように常に移動するものとし、他方は、より高い圧力位置を移動マイクが見つけるまで、所定のポイントに固定するものとすることができる。このようにして、以下では「探索」マイクと称する移動マイクは、ホットスポットが見つかるまで、パスをサンプリングし、ホットスポットが見つかった時点で、以下では「調整」マイクと称する固定マイクが、そのホットスポットのポイントに移動する。そのポイントが、フィールドにおいて「最もホット」である限り、調整マイクは、そのポイントに留まることになり、測定し得る最大圧力を正しく推定する。パスが変化した場合(および「ホットスポット」への寄与が停止した場合)にのみ、探索マイクは、調整マイクを新しい位置に引き寄せることができる。
探索マイクは、そのローリング平均に、より大きなアルファを使用するので、ホットスポットを迅速に検出することができる。機能的には、これにより、そのローリング平均が、小さなアルファに比べ、最近の過去の方に、より重み付けされる状況が作り出される。ホットスポットは、フォーカスポイントの動きが遅くなったとき、または短期間後にアレイのフォーカスが仮想マイクの近くに戻ったときに発生する。アルファが大きいほど、探索マイクは、調整アルファマイクよりも迅速に真の(長期的な)P2乗値に近づき、ホットスポットでスパイクが生じる。調整マイクの移動は、大きなαのP2乗値が、調整マイクの調整αのP2乗値をある程度超えたときに開始される。次に、調整マイクのP2乗は、探索マイクのP2乗に設定され、基本的に、更なる移動のために、新しい(より高い)バーが設定される。調整マイクが、実際にホットスポットに配置されると、システムがパスを変更するまで、その小さなアルファのP2乗は増加し続け、探索マイクの大きなアルファのP2乗の範囲から外れることになる。移動によって調節マイクがホットスポットに配置されかなかった場合、そのP2乗は、再び移動するまで減衰することになる。
このシステムでは、更に2つのローリング平均が必要となる。1つ目は、調整マイクを移動したときに調整されない小さなアルファのP2乗である。これがなければ、固定のマイクによって測定されるはずの圧力を表す推定値が得られないので、これは必要なものである。探索マイクの大きなアルファのP2乗によって上書きされる調整アルファのP2乗は、はるかに迅速に変化し、移動の決定のための比較としてのみ機能する。上書きされない第2の調整アルファのP2乗を保持することによって、システムは、調整の指示に用いる圧力の推定値を得る。
必要とされる残りのP2乗は、探索マイクの位置(その圧力推定値の出力)を使用して計算されるが、小さいアルファの調整マイクの時定数を使用して平均化される。これにより、単一の移動仮想マイクのみを使用して達成される移動マイクのP2乗平均が効率的に得られる。特定の部類の曲線についての、この値は、調整マイクのP2乗よりも良好なパス圧力の推定値を表す。
図1を参照すると、2つのマイクの構成に関するデシジョンツリーの図1300が示されている。新たなタイムステップが、1302で開始され、新たなアレイパラメータを計算する1303が後に続く。次に、これらのパラメータは、ベクトル1317(行ベクトル1318および列ベクトル1315)に供給される。行ベクトルA(1318)は、A_SeekをAで上書きし、固定の最小n(nfixed)+追加のランダム長(nrandom)で移動カウンタをリセットするために1311に供給される。列ベクトルX(1315)は、Aベクトルの集合1320(A_Seek1321およびA_Reg1322)に供給される。
また、新たなアレイパラメータの計算(1303)の結果は、新たなマイクロフォン圧力の推定のために1304にも供給され、推定値は、Aベクトルの集合1320に供給される。A_Seek1321は、Seek avg fast1324およびSeek avg slow1325からなるavgの集合1323に供給される。A_Reg1322は、移動についてのReg avg1326、および固定についてのReg avg1327からなるregの集合1328に供給される。Seek avg slow1325と固定についてのReg avg1327とが比較され、大きい方の値が、調整のために採用される(1329)。
A_Seek1321は、A_RegをA_Seekで上書きし、移動についてのReg avgをSeek avg fastで上書きするために1312に送られ、その後、A_Reg1322に送られる。
Seek avg fast1324は、A_regをA_Seekで上書きし、移動についてのReg avgをSeek avg fastで上書きするために1312に送られ、その後、移動についてのReg avg1326に送られる。
Seek avg fast1324からの値と、移動についてのReg avg1326からの値とが比較されて、どちらが大きいか(余裕幅あり)が判定され(1313)、その結果は、移動についてのReg avgをSeek avg fastで上書きするために1312に送られ、その後、移動についてのReg avg1326に送られる。
新たなマイクロフォン圧力の推定値(1304)は、移動平均を更新するために1305に供給され、更新された移動平均は、1)avgの集合1323に供給され、また、2)調整マイクについての移動判定1306に供給され、その後、探索マイクについての移動判定1307に供給される。
カウンタは、前回のタイムステップから移行され(1308)、デクリメントされる(1309)。カウンタが、ゼロ以下の場合(1310)、A_SeekをAで上書きし、移動カウンタを固定の最小n(nfixed)+追加のランダム長(nrandom)でリセットする指令が1311に送られる。
前回のタイムステップからのローリング平均1314が、Seek avgの集合1323およびReg avgの集合1328に供給される。
システムのいくつかの実装形態では、探索マイクロフォンが平均を計算している可能性がある一方、伝搬遅延に起因して、調整マイクは、数回のタイムステップの間、その位置に移動することができない可能性があるような時間が存在する。そのような場合、1つの解決策は、調整マイクがその位置に移動できないときに、探索マイクの移動平均への平均化を停止することである。これにより、それらの特定のポイントに対して(特に、それらが定期的に生じる場合)、「死角」が導入される。但し、探索マイクの移動は、ランダムな因子で調整されるので、規則的な「死角」であっても、なんらかの通常の曲線全体に分散されるはずであり、測定における欠陥には相当しない。過度の測定不足は、ホットスポットを見つけるための性能の低下を意味し、最小限に抑えるべきである。
IV.N個のマイクの構成
ホットスポットを見つけるには、探索マイクは、やはり、そのポイントにランダムに到達する必要がある。一部の設計パラメータ(可能なピーク圧力、調整圧力、Δnなど)の場合、これには、かなりの時間がかかる場合がある。この時間は、所定のフォーカスポイントに対し、より多くの探索マイクを追加することによって短縮することができる。それぞれが、それ自体のP2乗値および移動カウンタを保持する。各タイムステップにおいて、調整マイクは、そのP2乗を全ての探索マイクと比較し、それらのうちのいずれかが最適であれば移動する。より多くのポイントを同時にチェックすることで、より迅速にホットスポットを見つけることができる。
全ての探索マイクが異なる物理的位置で計測しているのが理想的である。実際には、マイクの物理的位置は記憶されておらず、たとえ記憶されていたとしても、他の全てのマイクとの比較には演算を必要とするので、これを保証することは困難である。1つの解決策は、2つのマイクが同じタイムステップで移動されないことを単に保持することである。2つの移動カウンタが同時に失効した場合、一方のマイクを移動し、他方の移動カウンタに何らかの値を加算する。これは、システム内の他のマイクの数に基づいて、最小で1、または他の(おそらくランダムな)値とすることができる。
マイクに加え、システムは、マイクロフォン毎に任意の数の平均(異なるアルファを有する)を含んでいてもよい。これは、例えば、その場での調整のために異なる時定数に切り替えるのに使用することができる。一部は移動のために上書きされ、それ以外のものは保持される。これにより、起こり得る変動に関して、より柔軟なシステムが得られる。例えば、短時間のアルファは、ホットスポットに対し、より迅速に反応するが、別のフォーカスポイントの疑似交差にランダムに到達する場合には、ランダムにピークに到達することもある。異なる時定数のいくつかの平均を含めることによって、設計者に、より速く応答する値を無視する可能性を与えることができるようになる。追加の平均は、例えば、異なる測定量、P2乗、およびIであってもよい。移動の決定には、例えば、複数の測定量が含まれていてもよい。
図2を参照すると、N個のマイク、およびN個の平均の構成のフローチャート1400の実現可能なものが示されている。
新たなタイムステップが、1401で開始され、新たなアレイパラメータを計算する1402が後に続く。次に、これらのパラメータは、ベクトル1408(行ベクトル1409および列ベクトル1407)に供給される。行ベクトルA(1409)は、A_seekをAで上書きし、固定の最小n(nfixed)+追加のランダム長(nrandom)で移動カウンタをリセットするために1421に供給される。列ベクトルX(1315)は、Aベクトルの集合1412(1つまたは複数のA_SeekおよびA_Reg)に供給される。
前回のタイムステップ1410からのローリング平均1410が、Seek avgの集合1414およびReg avgの集合1413に送られる。
また、新しいアレイパラメータの計算(1402)の結果は、新たなマイクロフォン圧力の推定のために1403にも供給され、推定値は、Aベクトルの集合1412に供給される。Aベクトルの集合1412からのデータは、Seek avgの集合1414に送られる。Seek avgの集合1414およびReg avgの集合1413からのデータは、調整のための適切な値を採用するために1416に送られる。
Seek avgの集合1414からのデータは、指定された場合に適切な平均を上書きし、移動をトリガしたA_SeekでA_Regを上書きするために1417に送られる。また、Aベクトルの集合1412からのデータも、指定された場合に適切な平均を上書きし、移動をトリガしたA_SeekでA_Regを上書きするために1417に送られる。その後、これは、Aベクトルの集合1412およびReg avgの集合1413に送られる。
更に、Seek avgの集合1414からのデータと、Reg avgの集合1413からのデータとが比較され(1415)、余裕幅を伴って大きい方の値が、指定された場合に適切な平均を上書きし、移動をトリガしたA_Seekで、A_Regを上書きするために1417に送られる。
新たなマイクロフォン圧力の推定値(1403)は、マイク毎の多くの平均を用いて移動平均を更新するために1404に供給され、これは、1)Seek avgの集合1414に供給され、また、2)調整マイクについての移動判定1405に供給され、その後、各マイクについての移動判定1406に供給される。
カウンタは、前回のタイムステップから各探索毎に移行され(1418)、デクリメントされる(1419)。カウンタがゼロ以下の場合(1420)、A_seekをAで上書きし、移動カウンタを固定の最小値n(n_fixed)+追加のランダム長(n_random)でリセットする指令が1421に送られる。更に、複数のマイクが≦0である場合、1つを除く全てのカウンタに、特定の値を加算する(1422)。
V.多重化
フェーズドアレイは、球面波を多重化して、複数の同時のフォーカスポイントを生成することができる。このタイプの構成では、各フォーカスポイントに、独自の独立した仮想マイクロフォンを1つまたは複数有することができる。この場合、各ポイントの行ベクトルは、マイクストレージの観点から別々に考慮される。
調整についての、1つの選択肢は、最大のローリング圧力平均の出力を、全体的な調整最大値として使用することである。これに代えて、各フォーカスポイントを別々に調整してもよい。更に別の選択肢は、全てのフォーカスポイントに、それぞれ独自の探索マイクを保有させ、1つの調整マイクのみを使用することである。この場合、調整マイクは、最も高い探索マイクの位置に移動することになる。この場合、調整マイクは、どのフォーカスポイントがその平均に寄与しているかについて認識していないので、フォーカスポイントは全て、全体的な最大値に規制されることになる。
VI.制御
仮想マイクロフォンによる測定の1つの用途は、ユーザ指定の最大SPLレベルを満たすようにアレイの出力を減衰させることである。一構成では、アレイがマイクロフォンの1つ(調整マイクロフォンなど)に対して単にチェックを行い、ローリング平均を補正する上で、次のサイクルが十分に減衰されるように、出力を調整することができる。これは、所望のAvgnのxについて式(2)を解き、次にその値を出力に使用することによって行われる。これは、残念ながら、圧力フィールドの急激な変化に至る可能性があり、望ましくない可聴音が生じる可能性がある。
測定した圧力を出力にフィードバックするための、より円滑な方法の1つは、目的とする圧力を仮想マイクロフォンの最高圧力で除した値に基づく圧力目標を設定し、1の値が、目的とする圧力を表すようにすることである。このようにすることで、測定した圧力が、目的とする圧力をはるかに下回る場合、出力は自由にそれを超えることが可能となる。圧力が、目的とする圧力に等しくなると、出力が維持される。圧力が高すぎる場合、出力は減衰する。このような調整方法は、仮想マイクロフォンの圧力が、それ自体のローリング平均によって自然に平滑化されるので、より円滑な結果が得られる。
更に別の方法は、一般的な比例積分微分(PID)制御器を使用するものである。PIDは、何十年もの間、あらゆる制御システムにわたって使用される標準的なリアルタイム制御方式である。それは、単純で、柔軟性があり、演算効率が高い。このため、単純なPD(積分項なし)コントローラを使用し、上述の仮想マイクロフォン方式によって返されるP2乗値に基づいてキャッピング値を調整することができる。ローリング平均は、ワインドアップのマイナス面なしで積分的な効果を果たすので、積分項を必要としない。PIDにおける係数は、応答速度とオーバーシュートおよび可聴性とのバランスをとるように調整することができる。適切に構築されたPIDコントローラは、制御された速度で制限値に近づき、過度に音を発せず、それによって不要な音響を制限する。
実際には、PIDコントローラが、調整マイクのP2乗(上書きされていない)、および小さいアルファ時定数を使用する探索マイクのP2乗のいずれか高い方を使用すべきである。
VII.更なる開示
1.移動平均の計算とフィールド推定とを結合すること。
2.この関係を有するこの配置において、2つの仮想マイクロフォンの使用は、急速に変化する音場においてホットスポットを見つけるための最も演算効率の高い方法といえるものである。
3.既知の相対的位置および向きを有した複数のトランスデューサと、
トランスデューサへの駆動信号の大きさおよび位相を表す複素活性化係数と、
対象ポイントと、
前記対象ポイントにおけるトランスデューサ複素フィールドの演算と、
前記トランスデューサ複素フィールドに前記活性化係数を乗じて、そのポイントにおけるフィールドの推定値を返すことと、
当該フィールドの推定値をローリング平均に組み込むことと
から構成される超音波フェーズドアレイ。
トランスデューサへの駆動信号の大きさおよび位相を表す複素活性化係数と、
対象ポイントと、
前記対象ポイントにおけるトランスデューサ複素フィールドの演算と、
前記トランスデューサ複素フィールドに前記活性化係数を乗じて、そのポイントにおけるフィールドの推定値を返すことと、
当該フィールドの推定値をローリング平均に組み込むことと
から構成される超音波フェーズドアレイ。
従属請求項
1.新たに生成した活性化係数を用い、新たな推定値を求めるために、古いトランスデューサ複素フィールドを乗じる。
2.当該新たな推定値をローリング平均に使用する。
1.新たに生成した活性化係数を用い、新たな推定値を求めるために、古いトランスデューサ複素フィールドを乗じる。
2.当該新たな推定値をローリング平均に使用する。
VIII.結び
前述の説明では具体的な値を開示しているが、同様の結果を達成するために、別の任意の具体的な値を使用してもよい。更に、前述の実施形態の様々な特徴は、改善されたハプティックシステムの多くの変形を生成するように、選択し、組み合わせてもよい。
前述の説明では、具体的な実施形態が記載されている。しかし、当業者であれば、特許請求の範囲に記載された本発明の範囲から逸脱することなく、種々の変更および変形を行うことが可能であると理解しうるものである。従って、本明細書および図面は、限定的な意味ではなく、例示的な意味で認識されるべきであり、そのような修正は、いずれも本教示の範囲内に含まれることが意図される。
更に、本明細書において、第1および第2、上および下などの関係を示す用語は、一方の要素または動作を、他方の要素または動作から区別するのみのために使用される場合があり、そのような要素または動作間の、そのような実際の関係または順序を必ずしも必要とするものではなく、また暗示するものでもない。用語「備える」、「備えている」、「有する」、「有している」、「含む」、「含んでいる」、「包含する」、「包含している」、またはそれらのなんらかの変形は、非排他的な包含に適用されることを意図するものであり、列挙された要素を備える、有する、含む、包含するプロセス、方法、物品、または装置は、それらの要素のみを含むものではなく、明示的に列挙されない別の要素、またはそのようなプロセス、方法、物品、もしくは装置に固有の別の要素を含んでいてもよい。「~を備える」、「~を有する」、「~を含む」、「~を包含する」によって記載される要素は、更なる制約なしに、その要素を備える、有する、含む、包含するプロセス、方法、物品、または装置における、更なる同一要素の存在を排除しない。用語「a」および「an」は、本明細書で特に明記しない限り、1つまたは複数として定義される。用語「実質的に」、「本質的に」、「ほぼ」、「約」、またはそれらのなんらかの変形は、当業者によって理解される程度に近似するものとして定義される。本明細書で使用する「結合した」という用語は、必ずしも直接的ではなく、必ずしも機械的ではないが、接続されているものとして定義される。特定の方法で「構成」されたデバイスまたは構造は、少なくともそのようにして構成されるが、列挙されていない方法で構成してもよい。
開示の要約は、これを読む者が、技術的開示の特質を迅速に確認できるようにするために提供される。要約書は、特許請求の範囲を解釈または限定するために使用されるものではないとの理解の上で提出される。更に、前述の詳細な説明では、本開示を合理化する目的で、様々な特徴が種々の実施形態において一緒にまとめられている。このような開示方法は、記載された実施形態が、それぞれの請求項に明示的に列挙されたものよりも多くの特徴を必要とするという意図を反映するものとして解釈されるべきではない。むしろ、請求項に示すように、発明の主題は、開示する単一の実施形態の全ての特徴より少ない特徴にある。従って、特許請求の範囲は、本明細書によって詳細な説明に組み込まれ、請求項のそれぞれは、それ自体が別個に特許請求される主題として成り立っている。
Claims (18)
- 既知の相対的位置および向きを有した複数のトランスデューサと、
前記複数のトランスデューサのうちの少なくとも1つへの駆動信号の大きさおよび位相を表す少なくとも1つの複素活性化係数と、
対象ポイントと、
プロセッサであって、
1)前記対象ポイントにおける前記複数のトランスデューサのうちの少なくとも1つからのトランスデューサ複素フィールドを演算し、
2)前記トランスデューサ複素フィールドに活性化係数を乗じて、前記対象ポイントにおけるフィールド推定値を返し、
3)前記フィールド推定値を加重平均に組み込む
プロセッサと
を備える超音波フェーズドアレイ。 - 前記フィールド推定値は、2乗した大きさを使用して計算される、請求項1に記載の超音波フェーズドアレイ。
- 前記フィールド推定値は、大きさを使用して計算される、請求項1に記載の超音波フェーズドアレイ。
- 前記フィールド推定値は、関数によって作用を受け、その後に関数出力が加重平均に組み込まれる、請求項1に記載の超音波フェーズドアレイ。
- 前記トランスデューサ複素フィールドの複数のバージョンが前記プロセッサに記憶され、前記トランスデューサ複素フィールドの前記複数のバージョンのうちの少なくとも2つが、複数の対象ポイントを同時に推定するために、前記少なくとも1つの複素活性化係数と共に使用される、請求項1に記載の超音波フェーズドアレイ。
- 前記複数の対象ポイントは、複数の仮想マイクロフォンの位置を含む、請求項5に記載の超音波フェーズドアレイ。
- 前記複数の仮想マイクロフォンの各々は、独自の加重平均を取得する、請求項6に記載の超音波フェーズドアレイ。
- 前記加重平均の少なくとも1つは、その他の前記加重平均とは異なる関数を使用して計算される、請求項7に記載の超音波フェーズドアレイ。
- 前記複数の対象ポイントのうちの少なくとも1つは、少なくとも1つの前記加重平均が目的とする値を超えたときに変更される、請求項6に記載の超音波フェーズドアレイ。
- 前記トランスデューサ複素フィールドは、前記トランスデューサ複素フィールドの以前に計算されたバージョンを含む、請求項1に記載の超音波フェーズドアレイ。
- 使用する前記トランスデューサ複素フィールドの前記以前に計算されたバージョンは、少なくとも1つの仮想マイクロフォンからの加重平均の出力に基づいて選択される、請求項10に記載の超音波フェーズドアレイ。
- 前記加重平均は、以前のフィールド推定値の平均を含む、請求項1に記載の超音波フェーズドアレイ。
- 前記加重平均は、目的とする圧力を仮想マイクロフォンの最高圧力で除した値を含む、請求項1に記載の超音波フェーズドアレイ。
- 前記加重平均が目的とする圧力を超える場合、前記少なくとも1つの複素活性化係数は、その実数成分および虚数成分のうちの少なくとも一方が変更される、請求項1に記載の超音波フェーズドアレイ。
- 前記複素活性化係数は、比例微分コントローラを使用して変更される、請求項14に記載の超音波フェーズドアレイ。
- 前記比例微分コントローラは、仮想マイクロフォンの少なくとも1つによって再調整された2乗圧力出力値と前記加重平均とに基づいて、前記少なくとも1つの複素活性化係数の値を調整する、請求項15に記載の超音波フェーズドアレイ。
- 前記比例微分コントローラの係数は、望ましくない音響を制限する制御された速度に調整される、請求項15に記載の超音波フェーズドアレイ。
- 前記比例微分コントローラは、1)調整仮想マイクロフォンの2乗圧力出力と、2)探索仮想マイクロフォンの2乗圧力出力とのうちの大きい方を使用する、請求項15に記載の超音波フェーズドアレイ。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201962914502P | 2019-10-13 | 2019-10-13 | |
US62/914,502 | 2019-10-13 | ||
PCT/GB2020/052546 WO2021074604A1 (en) | 2019-10-13 | 2020-10-13 | Dynamic capping with virtual microphones |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022551944A true JP2022551944A (ja) | 2022-12-14 |
JPWO2021074604A5 JPWO2021074604A5 (ja) | 2023-10-18 |
Family
ID=75384148
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022522036A Pending JP2022551944A (ja) | 2019-10-13 | 2020-10-13 | 仮想マイクロフォンによる動的キャッピング |
Country Status (9)
Country | Link |
---|---|
US (2) | US11553295B2 (ja) |
EP (1) | EP4042413A1 (ja) |
JP (1) | JP2022551944A (ja) |
KR (1) | KR20220080737A (ja) |
CN (1) | CN114631139A (ja) |
AU (1) | AU2020368678A1 (ja) |
CA (1) | CA3154040A1 (ja) |
IL (1) | IL292114A (ja) |
WO (1) | WO2021074604A1 (ja) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2513884B (en) | 2013-05-08 | 2015-06-17 | Univ Bristol | Method and apparatus for producing an acoustic field |
GB2530036A (en) | 2014-09-09 | 2016-03-16 | Ultrahaptics Ltd | Method and apparatus for modulating haptic feedback |
CA2976319C (en) | 2015-02-20 | 2023-06-27 | Ultrahaptics Ip Limited | Algorithm improvements in a haptic system |
ES2896875T3 (es) | 2015-02-20 | 2022-02-28 | Ultrahaptics Ip Ltd | Percepciones en un sistema háptico |
US10818162B2 (en) | 2015-07-16 | 2020-10-27 | Ultrahaptics Ip Ltd | Calibration techniques in haptic systems |
US10268275B2 (en) | 2016-08-03 | 2019-04-23 | Ultrahaptics Ip Ltd | Three-dimensional perceptions in haptic systems |
US10943578B2 (en) | 2016-12-13 | 2021-03-09 | Ultrahaptics Ip Ltd | Driving techniques for phased-array systems |
US11531395B2 (en) | 2017-11-26 | 2022-12-20 | Ultrahaptics Ip Ltd | Haptic effects from focused acoustic fields |
US11704983B2 (en) | 2017-12-22 | 2023-07-18 | Ultrahaptics Ip Ltd | Minimizing unwanted responses in haptic systems |
KR20210002703A (ko) | 2018-05-02 | 2021-01-08 | 울트라햅틱스 아이피 엘티디 | 개선된 음향 전송 효율을 위한 차단 플레이트 구조체 |
US11098951B2 (en) | 2018-09-09 | 2021-08-24 | Ultrahaptics Ip Ltd | Ultrasonic-assisted liquid manipulation |
EP3906462A2 (en) | 2019-01-04 | 2021-11-10 | Ultrahaptics IP Ltd | Mid-air haptic textures |
US11842517B2 (en) | 2019-04-12 | 2023-12-12 | Ultrahaptics Ip Ltd | Using iterative 3D-model fitting for domain adaptation of a hand-pose-estimation neural network |
US11374586B2 (en) | 2019-10-13 | 2022-06-28 | Ultraleap Limited | Reducing harmonic distortion by dithering |
US11715453B2 (en) | 2019-12-25 | 2023-08-01 | Ultraleap Limited | Acoustic transducer structures |
US11816267B2 (en) | 2020-06-23 | 2023-11-14 | Ultraleap Limited | Features of airborne ultrasonic fields |
WO2022058738A1 (en) | 2020-09-17 | 2022-03-24 | Ultraleap Limited | Ultrahapticons |
Family Cites Families (275)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4218921A (en) | 1979-07-13 | 1980-08-26 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Method and apparatus for shaping and enhancing acoustical levitation forces |
CA1175359A (en) | 1981-01-30 | 1984-10-02 | John G. Martner | Arrayed ink jet apparatus |
FR2551611B1 (fr) | 1983-08-31 | 1986-10-24 | Labo Electronique Physique | Nouvelle structure de transducteur ultrasonore et appareil d'examen de milieux par echographie ultrasonore comprenant une telle structure |
EP0309003B1 (en) | 1984-02-15 | 1994-12-07 | Trw Inc. | Surface acoustic wave spectrum analyzer |
JPS62258597A (ja) | 1986-04-25 | 1987-11-11 | Yokogawa Medical Syst Ltd | 超音波トランスデユ−サ |
US5226000A (en) | 1988-11-08 | 1993-07-06 | Wadia Digital Corporation | Method and system for time domain interpolation of digital audio signals |
EP0528910A4 (en) | 1990-05-14 | 1993-12-22 | Commonwealth Scientific And Industrial Research Organization | A coupling device |
DE59100463D1 (de) | 1991-02-07 | 1993-11-11 | Siemens Ag | Verfahren zur Herstellung von Ultraschallwandlern. |
US5243344A (en) | 1991-05-30 | 1993-09-07 | Koulopoulos Michael A | Digital-to-analog converter--preamplifier apparatus |
JP3243821B2 (ja) | 1992-02-27 | 2002-01-07 | ヤマハ株式会社 | 電子楽器 |
US5426388A (en) | 1994-02-15 | 1995-06-20 | The Babcock & Wilcox Company | Remote tone burst electromagnetic acoustic transducer pulser |
US5477736A (en) | 1994-03-14 | 1995-12-26 | General Electric Company | Ultrasonic transducer with lens having electrorheological fluid therein for dynamically focusing and steering ultrasound energy |
US5511296A (en) | 1994-04-08 | 1996-04-30 | Hewlett Packard Company | Method for making integrated matching layer for ultrasonic transducers |
US5583405A (en) | 1994-08-11 | 1996-12-10 | Nabco Limited | Automatic door opening and closing system |
AU6162596A (en) | 1995-06-05 | 1996-12-24 | Christian Constantinov | Ultrasonic sound system and method for producing virtual sou nd |
US7225404B1 (en) | 1996-04-04 | 2007-05-29 | Massachusetts Institute Of Technology | Method and apparatus for determining forces to be applied to a user through a haptic interface |
US5859915A (en) | 1997-04-30 | 1999-01-12 | American Technology Corporation | Lighted enhanced bullhorn |
US6193936B1 (en) | 1998-11-09 | 2001-02-27 | Nanogram Corporation | Reactant delivery apparatuses |
US6029518A (en) | 1997-09-17 | 2000-02-29 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Manipulation of liquids using phased array generation of acoustic radiation pressure |
US6647359B1 (en) | 1999-07-16 | 2003-11-11 | Interval Research Corporation | System and method for synthesizing music by scanning real or simulated vibrating object |
US6307302B1 (en) | 1999-07-23 | 2001-10-23 | Measurement Specialities, Inc. | Ultrasonic transducer having impedance matching layer |
ATE376892T1 (de) | 1999-09-29 | 2007-11-15 | 1 Ltd | Verfahren und vorrichtung zur ausrichtung von schall mit einer gruppe von emissionswandlern |
US6771294B1 (en) | 1999-12-29 | 2004-08-03 | Petri Pulli | User interface |
US6925187B2 (en) | 2000-03-28 | 2005-08-02 | American Technology Corporation | Horn array emitter |
US6503204B1 (en) | 2000-03-31 | 2003-01-07 | Acuson Corporation | Two-dimensional ultrasonic transducer array having transducer elements in a non-rectangular or hexagonal grid for medical diagnostic ultrasonic imaging and ultrasound imaging system using same |
US7284027B2 (en) | 2000-05-15 | 2007-10-16 | Qsigma, Inc. | Method and apparatus for high speed calculation of non-linear functions and networks using non-linear function calculations for digital signal processing |
DE10026077B4 (de) | 2000-05-25 | 2007-03-22 | Siemens Ag | Strahlformungsverfahren |
DE10051133A1 (de) | 2000-10-16 | 2002-05-02 | Siemens Ag | Strahlformungsverfahren |
US6768921B2 (en) | 2000-12-28 | 2004-07-27 | Z-Tech (Canada) Inc. | Electrical impedance method and apparatus for detecting and diagnosing diseases |
US7463249B2 (en) | 2001-01-18 | 2008-12-09 | Illinois Tool Works Inc. | Acoustic wave touch actuated switch with feedback |
US7058147B2 (en) | 2001-02-28 | 2006-06-06 | At&T Corp. | Efficient reduced complexity windowed optimal time domain equalizer for discrete multitone-based DSL modems |
AU2002320088A1 (en) | 2001-06-13 | 2002-12-23 | Marc G. Apple | Brachytherapy device and method |
US6436051B1 (en) | 2001-07-20 | 2002-08-20 | Ge Medical Systems Global Technology Company, Llc | Electrical connection system for ultrasonic receiver array |
US6758094B2 (en) | 2001-07-31 | 2004-07-06 | Koninklijke Philips Electronics, N.V. | Ultrasonic transducer wafer having variable acoustic impedance |
WO2003019125A1 (en) | 2001-08-31 | 2003-03-06 | Nanyang Techonological University | Steering of directional sound beams |
US7623114B2 (en) | 2001-10-09 | 2009-11-24 | Immersion Corporation | Haptic feedback sensations based on audio output from computer devices |
WO2003050511A1 (en) | 2001-12-13 | 2003-06-19 | The University Of Wyoming Research Corporation Doing Business As Western Research Institute | Volatile organic compound sensor system |
US7109789B2 (en) | 2002-01-18 | 2006-09-19 | American Technology Corporation | Modulator—amplifier |
US6800987B2 (en) | 2002-01-22 | 2004-10-05 | Measurement Specialties, Inc. | Protective housing for ultrasonic transducer apparatus |
US20030182647A1 (en) | 2002-03-19 | 2003-09-25 | Radeskog Mattias Dan | Automatic interactive component placement for electronics-CAD software through the use of force simulations |
US20040052387A1 (en) | 2002-07-02 | 2004-03-18 | American Technology Corporation. | Piezoelectric film emitter configuration |
US7720229B2 (en) | 2002-11-08 | 2010-05-18 | University Of Maryland | Method for measurement of head related transfer functions |
JP4192672B2 (ja) | 2003-05-16 | 2008-12-10 | 株式会社日本自動車部品総合研究所 | 超音波センサ |
WO2005010623A2 (en) | 2003-07-24 | 2005-02-03 | Zebra Imaging, Inc. | Enhanced environment visualization using holographic stereograms |
WO2005017965A2 (en) | 2003-08-06 | 2005-02-24 | Measurement Specialities, Inc. | Ultrasonic air transducer arrays using polymer piezoelectric films and impedance matching structures for ultrasonic polymer transducer arrays |
DE10342263A1 (de) | 2003-09-11 | 2005-04-28 | Infineon Technologies Ag | Optoelektronisches Bauelement und optoelektronische Anordnung mit einem optoelektronischen Bauelement |
EP1698086A2 (en) | 2003-12-27 | 2006-09-06 | Electronics and Telecommunications Research Institute | A mimo-ofdm system using eigenbeamforming method |
US20050212760A1 (en) | 2004-03-23 | 2005-09-29 | Marvit David L | Gesture based user interface supporting preexisting symbols |
CN1997999B (zh) | 2004-03-29 | 2010-09-08 | 彼德·T·杰尔曼 | 用于确定材料弹性的系统和方法 |
AU2005243022B2 (en) | 2004-05-17 | 2009-06-11 | Qualcomm Incorporated | Acoustic robust synchronization signaling for acoustic positioning system |
US7689639B2 (en) | 2004-06-04 | 2010-03-30 | Telefonaktiebolaget Lm Ericsson (Publ) | Complex logarithmic ALU |
US7865236B2 (en) | 2004-10-20 | 2011-01-04 | Nervonix, Inc. | Active electrode, bio-impedance based, tissue discrimination system and methods of use |
US7138620B2 (en) | 2004-10-29 | 2006-11-21 | Silicon Light Machines Corporation | Two-dimensional motion sensor |
US20060090955A1 (en) | 2004-11-04 | 2006-05-04 | George Cardas | Microphone diaphragms defined by logarithmic curves and microphones for use therewith |
US7692661B2 (en) | 2005-01-26 | 2010-04-06 | Pixar | Method of creating and evaluating bandlimited noise for computer graphics |
WO2006086743A2 (en) | 2005-02-09 | 2006-08-17 | American Technology Corporation | In-band parametric sound generation system |
US7345600B1 (en) | 2005-03-09 | 2008-03-18 | Texas Instruments Incorporated | Asynchronous sampling rate converter |
GB0508194D0 (en) | 2005-04-22 | 2005-06-01 | The Technology Partnership Plc | Pump |
US9459632B2 (en) | 2005-06-27 | 2016-10-04 | Coactive Drive Corporation | Synchronized array of vibration actuators in a network topology |
WO2015006467A1 (en) | 2013-07-09 | 2015-01-15 | Coactive Drive Corporation | Synchronized array of vibration actuators in an integrated module |
US7233722B2 (en) | 2005-08-15 | 2007-06-19 | General Display, Ltd. | System and method for fiber optics based direct view giant screen flat panel display |
US20080226088A1 (en) | 2005-09-20 | 2008-09-18 | Koninklijke Philips Electronics, N.V. | Audio Transducer System |
DE602006004136D1 (de) | 2005-10-12 | 2009-01-22 | Yamaha Corp | Lautsprecher- und Mikrofonanordnung |
US20070094317A1 (en) | 2005-10-25 | 2007-04-26 | Broadcom Corporation | Method and system for B-spline interpolation of a one-dimensional signal using a fractional interpolation ratio |
US9250705B2 (en) | 2006-05-01 | 2016-02-02 | Microchip Technology Germany Gmbh | Capacitive input device with haptic feedback |
CN101466432A (zh) | 2006-06-14 | 2009-06-24 | 皇家飞利浦电子股份有限公司 | 用于经皮给药的设备和操作这种设备的方法 |
US7425874B2 (en) | 2006-06-30 | 2008-09-16 | Texas Instruments Incorporated | All-digital phase-locked loop for a digital pulse-width modulator |
US20100030076A1 (en) | 2006-08-01 | 2010-02-04 | Kobi Vortman | Systems and Methods for Simultaneously Treating Multiple Target Sites |
JP2008074075A (ja) | 2006-09-25 | 2008-04-03 | Canon Inc | 画像形成装置及びその制御方法 |
EP1911530B1 (de) | 2006-10-09 | 2009-07-22 | Baumer Electric AG | Ultraschallwandler mit akustischer Impedanzanpassung |
WO2008064230A2 (en) * | 2006-11-20 | 2008-05-29 | Personics Holdings Inc. | Methods and devices for hearing damage notification and intervention ii |
KR100889726B1 (ko) | 2007-02-02 | 2009-03-24 | 한국전자통신연구원 | 촉각 자극 장치 및 이를 응용한 장치 |
FR2912817B1 (fr) | 2007-02-21 | 2009-05-22 | Super Sonic Imagine Sa | Procede d'optimisation de la focalisation d'ondes au travers d'un element introducteur d'aberations. |
DE102007018266A1 (de) | 2007-04-10 | 2008-10-16 | Seereal Technologies S.A. | Holographisches Projektionssystem mit einer optischen Wellennachführung und Mitteln zum Korrigieren der holographischen Rekonstruktion |
US8269168B1 (en) | 2007-04-30 | 2012-09-18 | Physical Logic Ag | Meta materials integration, detection and spectral analysis |
US9100748B2 (en) | 2007-05-04 | 2015-08-04 | Bose Corporation | System and method for directionally radiating sound |
US9317110B2 (en) | 2007-05-29 | 2016-04-19 | Cfph, Llc | Game with hand motion control |
EP2096309A4 (en) | 2007-10-16 | 2013-02-27 | Murata Manufacturing Co | PIEZOELECTRIC MICRO FAN |
FR2923612B1 (fr) | 2007-11-12 | 2011-05-06 | Super Sonic Imagine | Dispositif d'insonification comprenant un reseau tridimensionnel d'emetteurs disposes en spirale apte a generer un faisceau d'ondes focalisees de grande intensite |
FI20075879A0 (fi) | 2007-12-05 | 2007-12-05 | Valtion Teknillinen | Laite paineen, äänenpaineen vaihtelun, magneettikentän, kiihtyvyyden, tärinän ja kaasun koostumuksen mittaamiseksi |
CN101896123A (zh) | 2007-12-13 | 2010-11-24 | 皇家飞利浦电子股份有限公司 | 具有使用响应于所采集图像数据的反馈的微调及定位控制的机器人超声系统 |
GB0804739D0 (en) | 2008-03-14 | 2008-04-16 | The Technology Partnership Plc | Pump |
US20090251421A1 (en) | 2008-04-08 | 2009-10-08 | Sony Ericsson Mobile Communications Ab | Method and apparatus for tactile perception of digital images |
US8369973B2 (en) | 2008-06-19 | 2013-02-05 | Texas Instruments Incorporated | Efficient asynchronous sample rate conversion |
US20100013613A1 (en) | 2008-07-08 | 2010-01-21 | Jonathan Samuel Weston | Haptic feedback projection system |
EP2297556B1 (en) | 2008-07-08 | 2011-11-30 | Brüel & Kjaer Sound & Vibration Measurement A/S | Method for reconstructing an acoustic field |
US8162840B2 (en) | 2008-07-16 | 2012-04-24 | Syneron Medical Ltd | High power ultrasound transducer |
GB2464117B (en) | 2008-10-03 | 2015-01-28 | Hiwave Technologies Uk Ltd | Touch sensitive device |
JP2010109579A (ja) | 2008-10-29 | 2010-05-13 | Nippon Telegr & Teleph Corp <Ntt> | 音響出力素子アレイ及び音響出力方法 |
US8199953B2 (en) | 2008-10-30 | 2012-06-12 | Avago Technologies Wireless Ip (Singapore) Pte. Ltd. | Multi-aperture acoustic horn |
US9569001B2 (en) | 2009-02-03 | 2017-02-14 | Massachusetts Institute Of Technology | Wearable gestural interface |
US10564721B2 (en) | 2009-03-12 | 2020-02-18 | Immersion Corporation | Systems and methods for using multiple actuators to realize textures |
WO2010125797A1 (ja) | 2009-04-28 | 2010-11-04 | パナソニック株式会社 | 補聴装置、及び補聴方法 |
US8009022B2 (en) | 2009-05-29 | 2011-08-30 | Microsoft Corporation | Systems and methods for immersive interaction with virtual objects |
MX2011012975A (es) | 2009-06-03 | 2012-04-02 | The Technology Partnership Plc | Bomba de disco de fluido. |
US7920078B2 (en) | 2009-06-19 | 2011-04-05 | Conexant Systems, Inc. | Systems and methods for variable rate conversion |
EP2271129A1 (en) | 2009-07-02 | 2011-01-05 | Nxp B.V. | Transducer with resonant cavity |
KR20110005587A (ko) | 2009-07-10 | 2011-01-18 | 삼성전자주식회사 | 휴대 단말의 진동 발생 방법 및 장치 |
US20110010958A1 (en) | 2009-07-16 | 2011-01-20 | Wayne Clark | Quiet hair dryer |
US9177543B2 (en) | 2009-08-26 | 2015-11-03 | Insightec Ltd. | Asymmetric ultrasound phased-array transducer for dynamic beam steering to ablate tissues in MRI |
GB0916707D0 (en) | 2009-09-23 | 2009-11-04 | Elliptic Laboratories As | Acoustic motion determination |
US8027224B2 (en) | 2009-11-11 | 2011-09-27 | Brown David A | Broadband underwater acoustic transducer |
US9084045B2 (en) | 2009-12-11 | 2015-07-14 | Sorama Holding B.V. | Acoustic transducer assembly |
RU2563061C2 (ru) | 2009-12-28 | 2015-09-20 | Конинклейке Филипс Электроникс Н.В. | Оптимизация преобразователя сфокусированного ультразвука высокой интенсивности |
KR20110093379A (ko) | 2010-02-12 | 2011-08-18 | 주식회사 팬택 | 채널상태정보 피드백 장치와 그 방법, 기지국, 그 기지국의 전송방법 |
US20110199342A1 (en) | 2010-02-16 | 2011-08-18 | Harry Vartanian | Apparatus and method for providing elevated, indented or texturized sensations to an object near a display device or input detection using ultrasound |
JP5457874B2 (ja) | 2010-02-19 | 2014-04-02 | 日本電信電話株式会社 | 局所再生装置とその方法と、プログラム |
US9357280B2 (en) | 2010-04-20 | 2016-05-31 | Nokia Technologies Oy | Apparatus having an acoustic display |
WO2011138783A1 (en) | 2010-05-05 | 2011-11-10 | Technion Research & Development Foundation Ltd. | Method and system of manipulating bilayer membranes |
US8519982B2 (en) | 2010-06-21 | 2013-08-27 | Sony Corporation | Active acoustic touch location for electronic devices |
NZ587483A (en) | 2010-08-20 | 2012-12-21 | Ind Res Ltd | Holophonic speaker system with filters that are pre-configured based on acoustic transfer functions |
JP5343946B2 (ja) | 2010-08-25 | 2013-11-13 | 株式会社デンソー | 触覚提示装置 |
US8607922B1 (en) | 2010-09-10 | 2013-12-17 | Harman International Industries, Inc. | High frequency horn having a tuned resonant cavity |
US8782109B2 (en) | 2010-09-10 | 2014-07-15 | Texas Instruments Incorporated | Asynchronous sample rate conversion using a polynomial interpolator with minimax stopband attenuation |
US8422721B2 (en) | 2010-09-14 | 2013-04-16 | Frank Rizzello | Sound reproduction systems and method for arranging transducers therein |
KR101221513B1 (ko) | 2010-12-13 | 2013-01-21 | 가천대학교 산학협력단 | 시각 장애인에게 시각 정보를 촉각 정보로 전달하는 그래픽 햅틱전자보드 및 방법 |
DE102011017250B4 (de) | 2011-01-07 | 2022-12-01 | Maxim Integrated Products, Inc. | Berührungs-Feedbacksystem, haptisches Feedbacksystem und Verfahren zum Bereitstellen eines haptischen Feedbacks |
US9076429B2 (en) | 2011-01-31 | 2015-07-07 | Wayne State University | Acoustic metamaterials |
GB201101870D0 (en) | 2011-02-03 | 2011-03-23 | The Technology Partnership Plc | Pump |
CN103501922B (zh) | 2011-03-22 | 2016-08-17 | 皇家飞利浦有限公司 | 具有至衬底的受抑声耦合的超声波cmut |
JP5367001B2 (ja) | 2011-03-24 | 2013-12-11 | ツインバード工業株式会社 | ドライヤー |
US10061387B2 (en) | 2011-03-31 | 2018-08-28 | Nokia Technologies Oy | Method and apparatus for providing user interfaces |
US20120249461A1 (en) | 2011-04-01 | 2012-10-04 | Analog Devices, Inc. | Dedicated user interface controller for feedback responses |
US10152116B2 (en) | 2011-04-26 | 2018-12-11 | The Regents Of The University Of California | Systems and devices for recording and reproducing senses |
US8833510B2 (en) | 2011-05-05 | 2014-09-16 | Massachusetts Institute Of Technology | Phononic metamaterials for vibration isolation and focusing of elastic waves |
US9421291B2 (en) | 2011-05-12 | 2016-08-23 | Fifth Third Bank | Hand dryer with sanitizing ionization assembly |
US20120299853A1 (en) | 2011-05-26 | 2012-11-29 | Sumit Dagar | Haptic interface |
KR101290763B1 (ko) | 2011-06-08 | 2013-07-29 | 가천대학교 산학협력단 | 햅틱전자보드 기반의 시각 장애인용 학습정보 제공 시스템 및 방법 |
JP5594435B2 (ja) | 2011-08-03 | 2014-09-24 | 株式会社村田製作所 | 超音波トランスデューサ |
US9417754B2 (en) | 2011-08-05 | 2016-08-16 | P4tents1, LLC | User interface system, method, and computer program product |
WO2013042021A1 (en) | 2011-09-22 | 2013-03-28 | Koninklijke Philips Electronics N.V. | Ultrasound measurement assembly for multidirectional measurement |
US20130100008A1 (en) | 2011-10-19 | 2013-04-25 | Stefan J. Marti | Haptic Response Module |
US9143879B2 (en) | 2011-10-19 | 2015-09-22 | James Keith McElveen | Directional audio array apparatus and system |
CN108866101A (zh) | 2011-10-28 | 2018-11-23 | 瑞泽恩制药公司 | 人源化il-6和il-6受体 |
KR101355532B1 (ko) | 2011-11-21 | 2014-01-24 | 알피니언메디칼시스템 주식회사 | 고강도 집속 초음파용 트랜스듀서 |
KR20140110020A (ko) | 2011-12-29 | 2014-09-16 | 마이티 캐스트, 인코포레이티드 | 컴퓨팅 디바이스와 통신할 수 있는 대화형 베이스 및 토큰 |
US9513053B2 (en) | 2013-03-14 | 2016-12-06 | Revive Electronics, LLC | Methods and apparatuses for drying electronic devices |
US8711118B2 (en) | 2012-02-15 | 2014-04-29 | Immersion Corporation | Interactivity model for shared feedback on mobile devices |
US20120223880A1 (en) | 2012-02-15 | 2012-09-06 | Immersion Corporation | Method and apparatus for producing a dynamic haptic effect |
KR102046102B1 (ko) | 2012-03-16 | 2019-12-02 | 삼성전자주식회사 | 메타물질의 코일 기반 인공원자, 이를 포함하는 메타물질 및 소자 |
US8570296B2 (en) | 2012-05-16 | 2013-10-29 | Immersion Corporation | System and method for display of multiple data channels on a single haptic display |
GB201208853D0 (en) | 2012-05-18 | 2012-07-04 | Hiwave Technologies Uk Ltd | Panel for use in vibratory panel device |
RU2624399C2 (ru) | 2012-05-31 | 2017-07-03 | Конинклейке Филипс Н.В. | Модуль ультразвукового преобразователя и способ возбуждения головки ультразвукового преобразователя |
US9394507B2 (en) | 2012-06-08 | 2016-07-19 | Alm Holding Company | Biodiesel emulsion for cleaning bituminous coated equipment |
EP2702935A1 (de) | 2012-08-29 | 2014-03-05 | Agfa HealthCare N.V. | System und Verfahren zur optischen Kohärenztomographie sowie Positionierelement |
US9552673B2 (en) | 2012-10-17 | 2017-01-24 | Microsoft Technology Licensing, Llc | Grasping virtual objects in augmented reality |
IL223086A (en) | 2012-11-18 | 2017-09-28 | Noveto Systems Ltd | System and method for creating sonic fields |
US8947387B2 (en) | 2012-12-13 | 2015-02-03 | Immersion Corporation | System and method for identifying users and selecting a haptic response |
US9459697B2 (en) | 2013-01-15 | 2016-10-04 | Leap Motion, Inc. | Dynamic, free-space user interactions for machine control |
US9202313B2 (en) | 2013-01-21 | 2015-12-01 | Microsoft Technology Licensing, Llc | Virtual interaction with image projection |
US9323397B2 (en) | 2013-03-11 | 2016-04-26 | The Regents Of The University Of California | In-air ultrasonic rangefinding and angle estimation |
US9208664B1 (en) | 2013-03-11 | 2015-12-08 | Amazon Technologies, Inc. | Adjusting structural characteristics of a device |
ES2731556T3 (es) | 2013-03-13 | 2019-11-15 | Bae Systems Plc | Un metamaterial |
US9886941B2 (en) | 2013-03-15 | 2018-02-06 | Elwha Llc | Portable electronic device directed audio targeted user system and method |
US20140269207A1 (en) | 2013-03-15 | 2014-09-18 | Elwha Llc | Portable Electronic Device Directed Audio Targeted User System and Method |
US20170238807A9 (en) | 2013-03-15 | 2017-08-24 | LX Medical, Inc. | Tissue imaging and image guidance in luminal anatomic structures and body cavities |
US9647464B2 (en) | 2013-03-15 | 2017-05-09 | Fujifilm Sonosite, Inc. | Low noise power sources for portable electronic systems |
GB2513884B (en) | 2013-05-08 | 2015-06-17 | Univ Bristol | Method and apparatus for producing an acoustic field |
CN105324651B (zh) | 2013-06-12 | 2017-07-28 | 阿特拉斯·科普柯工业技术公司 | 由动力工具执行的以超声波测量紧固件的伸长的方法以及动力工具 |
US9804675B2 (en) | 2013-06-27 | 2017-10-31 | Elwha Llc | Tactile feedback generated by non-linear interaction of surface acoustic waves |
US8884927B1 (en) | 2013-06-27 | 2014-11-11 | Elwha Llc | Tactile feedback generated by phase conjugation of ultrasound surface acoustic waves |
US20150006645A1 (en) | 2013-06-28 | 2015-01-01 | Jerry Oh | Social sharing of video clips |
WO2014209405A1 (en) | 2013-06-29 | 2014-12-31 | Intel Corporation | System and method for adaptive haptic effects |
GB2516820A (en) | 2013-07-01 | 2015-02-11 | Nokia Corp | An apparatus |
US9952042B2 (en) | 2013-07-12 | 2018-04-24 | Magic Leap, Inc. | Method and system for identifying a user location |
KR101484230B1 (ko) | 2013-07-24 | 2015-01-16 | 현대자동차 주식회사 | 차량용 터치 디스플레이 장치 및 그 구동 방법 |
JP2015035657A (ja) | 2013-08-07 | 2015-02-19 | 株式会社豊田中央研究所 | 報知装置及び入力装置 |
US9576084B2 (en) | 2013-08-27 | 2017-02-21 | Halliburton Energy Services, Inc. | Generating a smooth grid for simulating fluid flow in a well system environment |
US9576445B2 (en) | 2013-09-06 | 2017-02-21 | Immersion Corp. | Systems and methods for generating haptic effects associated with an envelope in audio signals |
US20150078136A1 (en) | 2013-09-13 | 2015-03-19 | Mitsubishi Heavy Industries, Ltd. | Conformable Transducer With Self Position Sensing |
CN105556591B (zh) | 2013-09-19 | 2020-08-14 | 香港科技大学 | 薄膜型声学超材料的主动控制 |
KR101550601B1 (ko) | 2013-09-25 | 2015-09-07 | 현대자동차 주식회사 | 촉감 피드백을 제공하는 곡면 터치 디스플레이 장치 및 그 방법 |
EP2863654B1 (en) | 2013-10-17 | 2018-08-01 | Oticon A/s | A method for reproducing an acoustical sound field |
EP2868277B1 (en) | 2013-11-04 | 2017-03-01 | Surgivisio | Method for reconstructing a 3d image from 2d x-ray images |
GB201322103D0 (en) | 2013-12-13 | 2014-01-29 | The Technology Partnership Plc | Fluid pump |
US9366588B2 (en) | 2013-12-16 | 2016-06-14 | Lifescan, Inc. | Devices, systems and methods to determine area sensor |
US9612658B2 (en) | 2014-01-07 | 2017-04-04 | Ultrahaptics Ip Ltd | Method and apparatus for providing tactile sensations |
JP6311197B2 (ja) | 2014-02-13 | 2018-04-18 | 本田技研工業株式会社 | 音響処理装置、及び音響処理方法 |
US9945818B2 (en) | 2014-02-23 | 2018-04-17 | Qualcomm Incorporated | Ultrasonic authenticating button |
US10203762B2 (en) | 2014-03-11 | 2019-02-12 | Magic Leap, Inc. | Methods and systems for creating virtual and augmented reality |
US9649558B2 (en) | 2014-03-14 | 2017-05-16 | Sony Interactive Entertainment Inc. | Gaming device with rotatably placed cameras |
KR101464327B1 (ko) | 2014-03-27 | 2014-11-25 | 연세대학교 산학협력단 | 3차원 에어터치 피드백 장치, 시스템 및 방법 |
KR20150118813A (ko) | 2014-04-15 | 2015-10-23 | 삼성전자주식회사 | 햅틱 정보 운용 방법 및 이를 지원하는 전자 장치 |
WO2016022187A2 (en) | 2014-05-12 | 2016-02-11 | Chirp Microsystems | Time of flight range finding with an adaptive transmit pulse and adaptive receiver processing |
US10579207B2 (en) | 2014-05-14 | 2020-03-03 | Purdue Research Foundation | Manipulating virtual environment using non-instrumented physical object |
EP3143474B1 (en) | 2014-05-15 | 2020-10-07 | Federal Express Corporation | Wearable devices for courier processing and methods of use thereof |
CN103984414B (zh) | 2014-05-16 | 2018-12-25 | 北京智谷睿拓技术服务有限公司 | 产生触感反馈的方法和设备 |
CN110822822B (zh) | 2014-06-09 | 2021-08-24 | 泰尔茂比司特公司 | 冻干法 |
WO2015194510A1 (ja) | 2014-06-17 | 2015-12-23 | 国立大学法人名古屋工業大学 | 静音化した超音波集束装置 |
KR101687017B1 (ko) | 2014-06-25 | 2016-12-16 | 한국과학기술원 | 머리 착용형 컬러 깊이 카메라를 활용한 손 위치 추정 장치 및 방법, 이를 이용한 맨 손 상호작용 시스템 |
FR3023036A1 (fr) | 2014-06-27 | 2016-01-01 | Orange | Re-echantillonnage par interpolation d'un signal audio pour un codage / decodage a bas retard |
WO2016007920A1 (en) | 2014-07-11 | 2016-01-14 | New York University | Three dimensional tactile feedback system |
KR101659050B1 (ko) | 2014-07-14 | 2016-09-23 | 한국기계연구원 | 메타물질을 이용한 공기접합 초음파 탐촉자 |
US9600083B2 (en) | 2014-07-15 | 2017-03-21 | Immersion Corporation | Systems and methods to generate haptic feedback for skin-mediated interactions |
JP2016035646A (ja) | 2014-08-01 | 2016-03-17 | 株式会社デンソー | 触覚装置、および、それを有する触覚ディスプレイ |
US9525944B2 (en) | 2014-08-05 | 2016-12-20 | The Boeing Company | Apparatus and method for an active and programmable acoustic metamaterial |
GB2530036A (en) | 2014-09-09 | 2016-03-16 | Ultrahaptics Ltd | Method and apparatus for modulating haptic feedback |
EP3216231B1 (en) | 2014-11-07 | 2019-08-21 | Chirp Microsystems, Inc. | Package waveguide for acoustic sensor with electronic delay compensation |
CA2875033C (en) | 2014-12-17 | 2022-07-26 | Fayez Idris | Contactless tactile feedback on gaming terminal with 3d display |
US10427034B2 (en) | 2014-12-17 | 2019-10-01 | Igt Canada Solutions Ulc | Contactless tactile feedback on gaming terminal with 3D display |
NL2014025B1 (en) | 2014-12-19 | 2016-10-12 | Umc Utrecht Holding Bv | High intensity focused ultrasound apparatus. |
US9779713B2 (en) | 2014-12-24 | 2017-10-03 | United Technologies Corporation | Acoustic metamaterial gate |
GB2539368A (en) | 2015-02-09 | 2016-12-21 | Univ Erasmus Med Ct Rotterdam | Intravascular photoacoustic imaging |
ES2896875T3 (es) | 2015-02-20 | 2022-02-28 | Ultrahaptics Ip Ltd | Percepciones en un sistema háptico |
CA2976319C (en) | 2015-02-20 | 2023-06-27 | Ultrahaptics Ip Limited | Algorithm improvements in a haptic system |
US9911232B2 (en) | 2015-02-27 | 2018-03-06 | Microsoft Technology Licensing, Llc | Molding and anchoring physically constrained virtual environments to real-world environments |
WO2016162058A1 (en) | 2015-04-08 | 2016-10-13 | Huawei Technologies Co., Ltd. | Apparatus and method for driving an array of loudspeakers |
CN108883335A (zh) | 2015-04-14 | 2018-11-23 | 约翰·詹姆斯·丹尼尔斯 | 用于人与机器或人与人的可穿戴式的电子多感官接口 |
AU2016100399B4 (en) | 2015-04-17 | 2017-02-02 | Apple Inc. | Contracting and elongating materials for providing input and output for an electronic device |
US9919069B2 (en) | 2015-05-24 | 2018-03-20 | LivOnyx Inc. | Systems and methods for sanitizing surfaces |
US10210858B2 (en) | 2015-06-30 | 2019-02-19 | Pixie Dust Technologies, Inc. | System and method for manipulating objects in a computational acoustic-potential field |
US10818162B2 (en) | 2015-07-16 | 2020-10-27 | Ultrahaptics Ip Ltd | Calibration techniques in haptic systems |
US9865072B2 (en) | 2015-07-23 | 2018-01-09 | Disney Enterprises, Inc. | Real-time high-quality facial performance capture |
US10313012B2 (en) | 2015-08-03 | 2019-06-04 | Phase Sensitive Innovations, Inc. | Distributed array for direction and frequency finding |
US10416306B2 (en) | 2015-08-17 | 2019-09-17 | Texas Instruments Incorporated | Methods and apparatus to measure and analyze vibration signatures |
US11106273B2 (en) | 2015-10-30 | 2021-08-31 | Ostendo Technologies, Inc. | System and methods for on-body gestural interfaces and projection displays |
US10318008B2 (en) | 2015-12-15 | 2019-06-11 | Purdue Research Foundation | Method and system for hand pose detection |
US20170181725A1 (en) | 2015-12-25 | 2017-06-29 | General Electric Company | Joint ultrasound imaging system and method |
US11189140B2 (en) | 2016-01-05 | 2021-11-30 | Ultrahaptics Ip Ltd | Calibration and detection techniques in haptic systems |
US9818294B2 (en) | 2016-01-06 | 2017-11-14 | Honda Motor Co., Ltd. | System for indicating vehicle presence and method thereof |
EP3207817A1 (en) | 2016-02-17 | 2017-08-23 | Koninklijke Philips N.V. | Ultrasound hair drying and styling |
US10091344B2 (en) | 2016-03-28 | 2018-10-02 | International Business Machines Corporation | Displaying virtual target window on mobile device based on user intent |
US10877559B2 (en) | 2016-03-29 | 2020-12-29 | Intel Corporation | System to provide tactile feedback during non-contact interaction |
US9936324B2 (en) | 2016-04-04 | 2018-04-03 | Pixie Dust Technologies, Inc. | System and method for generating spatial sound using ultrasound |
US10228758B2 (en) | 2016-05-20 | 2019-03-12 | Disney Enterprises, Inc. | System for providing multi-directional and multi-person walking in virtual reality environments |
US10140776B2 (en) | 2016-06-13 | 2018-11-27 | Microsoft Technology Licensing, Llc | Altering properties of rendered objects via control points |
US10531212B2 (en) | 2016-06-17 | 2020-01-07 | Ultrahaptics Ip Ltd. | Acoustic transducers in haptic systems |
US10268275B2 (en) | 2016-08-03 | 2019-04-23 | Ultrahaptics Ip Ltd | Three-dimensional perceptions in haptic systems |
US10755538B2 (en) | 2016-08-09 | 2020-08-25 | Ultrahaptics ilP LTD | Metamaterials and acoustic lenses in haptic systems |
CN109715065A (zh) | 2016-08-15 | 2019-05-03 | 乔治亚技术研究公司 | 电子设备及其控制方法 |
US10394317B2 (en) | 2016-09-15 | 2019-08-27 | International Business Machines Corporation | Interaction with holographic image notification |
US10945080B2 (en) | 2016-11-18 | 2021-03-09 | Stages Llc | Audio analysis and processing system |
US10373452B2 (en) | 2016-11-29 | 2019-08-06 | Immersion Corporation | Targeted haptic projection |
US10943578B2 (en) * | 2016-12-13 | 2021-03-09 | Ultrahaptics Ip Ltd | Driving techniques for phased-array systems |
US10497358B2 (en) | 2016-12-23 | 2019-12-03 | Ultrahaptics Ip Ltd | Transducer driver |
DE112018000311T5 (de) | 2017-01-04 | 2019-09-19 | Nvidia Corporation | Stereoskopisches Rendering unter Verwendung von Raymarching und ein Broadcaster für eine virtuelle Ansicht für solches Rendering |
US10289909B2 (en) | 2017-03-06 | 2019-05-14 | Xerox Corporation | Conditional adaptation network for image classification |
US20180304310A1 (en) | 2017-04-24 | 2018-10-25 | Ultrahaptics Ip Ltd | Interference Reduction Techniques in Haptic Systems |
EP3616033B1 (en) | 2017-04-24 | 2024-05-29 | Ultrahaptics IP Ltd | Algorithm enhancements for haptic-based phased-array systems |
US20190197840A1 (en) | 2017-04-24 | 2019-06-27 | Ultrahaptics Ip Ltd | Grouping and Optimization of Phased Ultrasonic Transducers for Multi-Field Solutions |
US10469973B2 (en) | 2017-04-28 | 2019-11-05 | Bose Corporation | Speaker array systems |
EP3409380A1 (en) | 2017-05-31 | 2018-12-05 | Nxp B.V. | Acoustic processor |
US10168782B1 (en) | 2017-06-05 | 2019-01-01 | Rockwell Collins, Inc. | Ultrasonic haptic feedback control system and method |
CN107340871A (zh) | 2017-07-25 | 2017-11-10 | 深识全球创新科技(北京)有限公司 | 集成手势识别与超声波触觉反馈的装置及其方法和用途 |
US11048329B1 (en) | 2017-07-27 | 2021-06-29 | Emerge Now Inc. | Mid-air ultrasonic haptic interface for immersive computing environments |
US10327974B2 (en) | 2017-08-02 | 2019-06-25 | Immersion Corporation | Haptic implants |
US10512839B2 (en) | 2017-09-28 | 2019-12-24 | Igt | Interacting with three-dimensional game elements using gaze detection |
US11531395B2 (en) | 2017-11-26 | 2022-12-20 | Ultrahaptics Ip Ltd | Haptic effects from focused acoustic fields |
WO2019113380A1 (en) | 2017-12-06 | 2019-06-13 | Invensense, Inc. | Three dimensional object-localization and tracking using ultrasonic pulses with synchronized inertial position determination |
WO2019122912A1 (en) | 2017-12-22 | 2019-06-27 | Ultrahaptics Limited | Tracking in haptic systems |
KR20200099574A (ko) | 2017-12-22 | 2020-08-24 | 울트라햅틱스 아이피 엘티디 | 공중 햅틱 시스템들과의 인간 상호작용들 |
US11704983B2 (en) * | 2017-12-22 | 2023-07-18 | Ultrahaptics Ip Ltd | Minimizing unwanted responses in haptic systems |
US11175739B2 (en) * | 2018-01-26 | 2021-11-16 | Immersion Corporation | Method and device for performing actuator control based on an actuator model |
US20190310710A1 (en) | 2018-04-04 | 2019-10-10 | Ultrahaptics Limited | Dynamic Haptic Feedback Systems |
KR20210002703A (ko) | 2018-05-02 | 2021-01-08 | 울트라햅틱스 아이피 엘티디 | 개선된 음향 전송 효율을 위한 차단 플레이트 구조체 |
JP2021523629A (ja) | 2018-05-11 | 2021-09-02 | ナノセミ, インク.Nanosemi, Inc. | 非線形システム用デジタル補償器 |
CN109101111B (zh) | 2018-08-24 | 2021-01-29 | 吉林大学 | 融合静电力、空气压膜和机械振动的触觉再现方法与装置 |
JP7014100B2 (ja) | 2018-08-27 | 2022-02-01 | 日本電信電話株式会社 | 拡張装置、拡張方法及び拡張プログラム |
US11098951B2 (en) | 2018-09-09 | 2021-08-24 | Ultrahaptics Ip Ltd | Ultrasonic-assisted liquid manipulation |
US20200082804A1 (en) | 2018-09-09 | 2020-03-12 | Ultrahaptics Ip Ltd | Event Triggering in Phased-Array Systems |
US11378997B2 (en) | 2018-10-12 | 2022-07-05 | Ultrahaptics Ip Ltd | Variable phase and frequency pulse-width modulation technique |
KR20200075344A (ko) | 2018-12-18 | 2020-06-26 | 삼성전자주식회사 | 검출기, 객체 검출 방법, 학습기 및 도메인 변환을 위한 학습 방법 |
KR102230421B1 (ko) | 2018-12-28 | 2021-03-22 | 한국과학기술원 | 가상 모델 제어 방법 및 장치 |
EP3906462A2 (en) | 2019-01-04 | 2021-11-10 | Ultrahaptics IP Ltd | Mid-air haptic textures |
US11475246B2 (en) | 2019-04-02 | 2022-10-18 | Synthesis Ai, Inc. | System and method for generating training data for computer vision systems based on image segmentation |
US11842517B2 (en) | 2019-04-12 | 2023-12-12 | Ultrahaptics Ip Ltd | Using iterative 3D-model fitting for domain adaptation of a hand-pose-estimation neural network |
US11374586B2 (en) | 2019-10-13 | 2022-06-28 | Ultraleap Limited | Reducing harmonic distortion by dithering |
EP4042270A1 (en) | 2019-10-13 | 2022-08-17 | Ultraleap Limited | Hardware algorithm for complex-valued exponentiation and logarithm using simplified sub-steps |
US11169610B2 (en) | 2019-11-08 | 2021-11-09 | Ultraleap Limited | Tracking techniques in haptic systems |
US11715453B2 (en) | 2019-12-25 | 2023-08-01 | Ultraleap Limited | Acoustic transducer structures |
US20210303758A1 (en) | 2020-03-31 | 2021-09-30 | Ultraleap Limited | Accelerated Hardware Using Dual Quaternions |
US11816267B2 (en) | 2020-06-23 | 2023-11-14 | Ultraleap Limited | Features of airborne ultrasonic fields |
WO2022058738A1 (en) | 2020-09-17 | 2022-03-24 | Ultraleap Limited | Ultrahapticons |
US20220155949A1 (en) | 2020-11-16 | 2022-05-19 | Ultraleap Limited | Intent Driven Dynamic Gesture Recognition System |
US20220252550A1 (en) | 2021-01-26 | 2022-08-11 | Ultraleap Limited | Ultrasound Acoustic Field Manipulation Techniques |
-
2020
- 2020-10-13 AU AU2020368678A patent/AU2020368678A1/en not_active Abandoned
- 2020-10-13 KR KR1020227015968A patent/KR20220080737A/ko unknown
- 2020-10-13 EP EP20793111.4A patent/EP4042413A1/en active Pending
- 2020-10-13 WO PCT/GB2020/052546 patent/WO2021074604A1/en active Application Filing
- 2020-10-13 CA CA3154040A patent/CA3154040A1/en active Pending
- 2020-10-13 JP JP2022522036A patent/JP2022551944A/ja active Pending
- 2020-10-13 US US17/068,834 patent/US11553295B2/en active Active
- 2020-10-13 CN CN202080071906.6A patent/CN114631139A/zh active Pending
-
2022
- 2022-04-10 IL IL292114A patent/IL292114A/en unknown
-
2023
- 2023-01-11 US US18/153,257 patent/US20230168228A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
AU2020368678A1 (en) | 2022-05-19 |
US11553295B2 (en) | 2023-01-10 |
KR20220080737A (ko) | 2022-06-14 |
WO2021074604A1 (en) | 2021-04-22 |
CN114631139A (zh) | 2022-06-14 |
CA3154040A1 (en) | 2021-04-22 |
IL292114A (en) | 2022-06-01 |
EP4042413A1 (en) | 2022-08-17 |
US20210112353A1 (en) | 2021-04-15 |
US20230168228A1 (en) | 2023-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2022551944A (ja) | 仮想マイクロフォンによる動的キャッピング | |
US20240233719A1 (en) | Audio recognition method, method, apparatus for positioning target audio, and device | |
US10902838B2 (en) | Multi-speaker method and apparatus for leakage cancellation | |
US8238569B2 (en) | Method, medium, and apparatus for extracting target sound from mixed sound | |
JP4247037B2 (ja) | 音声信号処理方法と装置及びプログラム | |
US9042573B2 (en) | Processing signals | |
JP7041156B2 (ja) | ビームフォーミングを使用するオーディオキャプチャのための方法及び装置 | |
US10726857B2 (en) | Signal processing for speech dereverberation | |
JP2010281816A (ja) | 音源方向推定装置及び音源方向推定方法 | |
JP2017503388A5 (ja) | ||
KR20110026256A (ko) | 지향성 음향 생성 장치 및 방법 | |
CN112485761B (zh) | 一种基于双麦克风的声源定位方法 | |
JP7083724B2 (ja) | 残響抑制装置及び補聴器 | |
JPWO2021074604A5 (ja) | ||
GB2577905A (en) | Processing audio signals | |
US11432100B2 (en) | Method for the spatialized sound reproduction of a sound field that is audible in a position of a moving listener and system implementing such a method | |
JP5627440B2 (ja) | 音響装置及びその制御方法、プログラム | |
JP2022552781A (ja) | 組織弾性検出方法及び装置 | |
JP5698166B2 (ja) | 音源距離推定装置、直間比推定装置、雑音除去装置、それらの方法、及びプログラム | |
JP5434120B2 (ja) | インパルス応答加工装置、残響付与装置およびプログラム | |
JP6171558B2 (ja) | 音響処理装置 | |
Thomas et al. | Eigenvalue equalization filtered-x (EE-FXLMS) algorithm applied to the active minimization of tractor noise in a mock cabin | |
JP5239670B2 (ja) | 音場支援装置、音場支援方法およびプログラム | |
EP2222093A2 (en) | An acoustic field correction method and an acoustic field correction device | |
JP2019054340A (ja) | 信号処理装置およびその制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231010 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20231010 |