CN114631139A - 利用虚拟麦克风进行动态封顶 - Google Patents

利用虚拟麦克风进行动态封顶 Download PDF

Info

Publication number
CN114631139A
CN114631139A CN202080071906.6A CN202080071906A CN114631139A CN 114631139 A CN114631139 A CN 114631139A CN 202080071906 A CN202080071906 A CN 202080071906A CN 114631139 A CN114631139 A CN 114631139A
Authority
CN
China
Prior art keywords
phased array
field
ultrasound phased
transducer
complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080071906.6A
Other languages
English (en)
Inventor
本杰明·约翰·奥利弗·朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chaofeiyue Co ltd
Original Assignee
Chaofeiyue Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chaofeiyue Co ltd filed Critical Chaofeiyue Co ltd
Publication of CN114631139A publication Critical patent/CN114631139A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/34Sound-focusing or directing, e.g. scanning using electrical steering of transducer arrays, e.g. beam steering
    • G10K11/341Circuits therefor
    • G10K11/346Circuits therefor using phase variation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/262Arrangements for orientation or scanning by relative movement of the head and the sensor by electronic orientation or focusing, e.g. with phased arrays
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/34Sound-focusing or directing, e.g. scanning using electrical steering of transducer arrays, e.g. beam steering
    • G10K11/341Circuits therefor
    • G10K11/348Circuits therefor using amplitude variation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R29/00Monitoring arrangements; Testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R29/00Monitoring arrangements; Testing arrangements
    • H04R29/004Monitoring arrangements; Testing arrangements for microphones
    • H04R29/005Microphone arrays
    • H04R29/006Microphone matching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/106Number of transducers one or more transducer arrays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2217/00Details of magnetostrictive, piezoelectric, or electrostrictive transducers covered by H04R15/00 or H04R17/00 but not provided for in any of their subgroups
    • H04R2217/03Parametric transducers where sound is generated or captured by the acoustic demodulation of amplitude modulated ultrasonic waves

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Signal Processing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

通过对每个换能器对兴趣点的贡献求和,可以进行估计来自超声相控阵的场强。由于在创建会聚球面波时已经计算了这种贡献,因此可以重复使用它来为系统添加虚拟麦克风。通过监控这个麦克风并使其沿着新的焦点移动,可以建立稳健的场估计和调整系统。

Description

利用虚拟麦克风进行动态封顶
相关申请的交叉引用
本申请要求于2019年10月13日提交的美国临时专利申请号62/914,502的优先权,该专利申请通过引用整体并入本文。
于2018年4月23日提交的在先申请美国申请号15/960,113通过引用整体并入本文。
于2017年5月18日提交的在先申请美国申请号62/507,822通过引用整体并入本文。
技术领域
本公开总体上涉及向超声相控阵(ultrasound phased array)系统添加虚拟麦克风。
背景技术
本公开的目标是产生合理地匹配在类似位置的静止或缓慢移动的麦克风的测量的对来自超声相控阵的声压的估计。
存在详细说明了计算场中瞬时压力或强度或其他度量的方式的方法。在此,一系列算法有效地使用计算资源来计算时间平均度量。这些对于确定和调整热点和高于期望的压力是有用的。
发明内容
经由处理器通过对每个换能器对兴趣点的贡献求和,可以进行估计来自超声相控阵的场强。当创建会聚球面波时,已经计算了这个贡献。这种计算可以重复用于向系统添加虚拟麦克风。通过监控这个麦克风并使其沿着新的焦点移动,可以建立稳健的场估计和调整系统。
附图说明
附图与下面的详细描述一起被结合在说明书中并形成说明书的一部分,用于进一步说明包括要求保护的发明的构思的实施例,并解释这些实施例的各种原理和优点,在附图中,相同的附图标记在各个视图中指代相同或功能相似的元件。
图1示出了双mic布置的流程图。
图2示出了N-mic、N-平均值布置的流程图。
本领域技术人员将会理解,附图中的元件是为了简单和清楚而示出的,并且不一定是按比例绘制的。例如,图中元件中的一些的尺寸可能相对于其他元件被放大,以帮助提高对本发明的实施例的理解。
在附图中,设备和方法部件在适当情况下以常规符号表示,仅示出了与理解本发明的实施例相关的那些具体细节,以便不会利用受益于本文中的描述的本领域普通技术人员容易明白的细节来模糊本公开。
具体实施方式
I.虚拟麦克风
这些换能器的n大小的阵列在相对于阵列的中心在点x处的压力输出可以写为:
Ptot(x)=∑nXnPn(x-yn), (1)
其中yn是每个换能器相对于阵列的中心的偏移,Pn是在相对于换能器的给定向量下给出复压力输出的函数/模型,并且Xn表示每个换能器的复激活系数。压力函数中包括下标n,以允许阵列内潜在的不同换能器。激活系数可以引起相移、幅度变化或两者,并且操纵这些系数可以控制声场。在实际系统中,这被解释为驱动每个换能器的幅度和相位。
来自用于触觉的阵列的重要场是会聚在焦点上的球面波前的场。如果我们从每个换能器在相对于阵列的中心的点x处合成压力值列表,An=Pn(x-yn),则平凡激活解(trivial activation solution)是:
Figure BDA0003594153940000031
其中b是焦点处的所期望的复压力。如果我们将An=A声明为行向量并且将Xn=X声明为列向量,则写等式1的另一方式是:
A·X=b。
计算行向量A是构建这个场解的一部分。当移动焦点时,系统产生新的A=A′、新的X=X′,并且系统继续制造新的焦点位置。在此的关键是认识到A·X′(旧的行向量乘以当前激活向量)的重要性。这个乘法的输出是以新的激活系数进行的旧的焦点位置处的压力的估计。利用一个额外的向量乘法,系统可以估计由它正在再现的当前场产生的空间中的特定点(在这种情况下是更旧的焦点位置)处的压力。通过存储旧的A并在每次激活系数被更新时执行A·X′,我们在需要最少的额外计算的情况下具有在先前的焦点位置处的场估计(虚拟麦克风或简称为“mic”)。
可以创建无限的虚拟麦克风——在先前的焦点位置处或使用An=Pn(x-yn)查询与过去的场无关的新的x。然而,每次其压力将被更新时,每个新的麦克风需要点积(dotproduct)逐向量相乘。因此,调查场中的每个点在计算上是不高效的。对于空中触觉应用,靠近焦点是最有用的。触觉曲线只有在他们沿着之前已经访问过的点被重复多次时才产生感觉——这给出了关于可能的高压力点在哪里的指导。
考虑到这一点,在本公开的一种布置中,在阵列聚焦到新的位置时,我们更新虚拟麦克风的位置。在这种情况下,我们通过以当前计算的A′覆写所存储的A,将mic“移动”到当前焦点位置。任何移动平均值(下面解释)被保留,并继续新的位置和相关联的行向量。何时移动的决策可能涉及阈值压力、外部标志或任何其他信号。一个示例是时间步骤的简单递减计数,在此被认为是Δn。如果场以一致的频率重复位置,则包括随机分量(而不是在每次移动后的固定值)防止锁定到某个位置。如果Δn是固定值,则Δn的整数倍的循环导致移动的mic被锁定到几个点上,从而可能会错过重复曲线的高压力区域。为了补救这一点,Δn可以由固定的最小值-n(nfixed)和附加的随机长度(nrandom)构成。通过使nrandom等于或大于nfixed,移动mic可以对任意长度的曲线进行同等采样。
II.移动平均值
移动平均值是使输入平滑化的计算。这对于消除随机噪声至关重要,而且对于开发用于正弦信号的度量也很有用。例如,在声学中,计算单色波中包含的能量通过对一个周期的过程内的瞬时压力平方进行平均化来实现。对于由多个频率构成的复杂信号,单个重复周期较长或者不存在。计算瞬时压力平方会过高估计声场中的能量。为了对此进行补偿,我们可以使用移动平均值来包含相邻值,并开发与声波中的能量相关的度量。
计算移动平均值的一种方法叫做“方框滤波(box filter)”。这是通过对信号中的一系列点进行平均化来实现的。随着新的点被获取,旧的点被遗忘,并计算新的平均值。看待这个问题的另一方法是利用卷积。卷积采用核(kernel)或一系列权重,并将这些权重乘以输入信号,其中核中的每个点乘以基于相对于其在核阵列中的位置同等地延迟的输入,并且然后执行求和作为其输出。例如,“方框滤波”移动平均核简单地是一系列等于1/n的等值变量,其中n是核的大小。
计算移动平均值的另一方法是递归实施方式,由此将平均值的上一计算的值与新的数据一起用于计算后续点。一种相对容易实施的特定递归计算是指数加权滚动平均值(rolling average)。这个方法通过以下进行描述,
Avgn=(1-α)Avgn-1+αx, (2)
其中Avgn是当前的滚动平均值,Avgn-1来自上一迭代的所计算的平均值,x是新的输入,并且α是常数。常数α确定了以采样速率为单位的指数加权。
声学中经常使用的特殊度量是以分贝(re 20 microPascals)表示的声压级(sound-pressure-level,SPL)。这通过压力平方的指数加权移动平均值的平方根(滚动均方根(RMS)值)来计算。根据应用和工程规范,用于精确计算的时间常数从几毫秒变化到几秒。
通过保持压力平方值(均方)的滚动平均值并在需要分贝值时求根,可以使用虚拟麦克风跟踪这个度量。如果期望的话,这个值可以用于调整(衰减)阵列输出。可替选地,可以跟踪压力平方单位,并将其用作调整值。由于平方根是单值函数,因此所得到的SPL值将是正确有界的。
使用离散时间步骤计算P平方(平方压力输出)的指数加权平均值
Figure BDA0003594153940000051
可以利用递归算法实现,
Figure BDA0003594153940000052
其中,
Figure BDA0003594153940000053
是来自前一时间步骤的输出,P2是当前时间步骤的压力的平方,并且α是0到1之间的常数。常数α表示以时间步骤为单位的指数时间常数。例如,以40kHz运行的1秒积分常数将由
Figure BDA0003594153940000054
给出。这将把过去1秒的点相对于当前点通过1/e平均化。过去2秒的点将被(1/e)2加权,以此类推。
在具有基于声强的模拟的能量度量的情况下,可以采用相同的方法。能量度量的计算涉及回到的A·X′的初始计算。对于单个源,介质的向量粒子速度的每个分量可以通过将压力乘以波前法向向量除以声阻抗的相关分量来计算。由于每个元件被模拟为球面波源,波前法向向量简单地为:
Figure BDA0003594153940000055
由于An为Pn(x-yn),对于每个元素,忽略除以空气的恒定声阻抗的介质的向量粒子速度可以计算为
Figure BDA0003594153940000056
如果这些法线方向保留在A旁边,它们可以合并到行向量中作为An,x、An,y和An,z。由于这些也是线性量,因此可以将这些求和并将其重构为An,x·X′、An,y·X′和An,z·X′。声强向量(再次忽略涉及声阻抗的常数项)(其幅值描述了声波在某个点的总能量)可以写为:
Figure BDA0003594153940000061
这提供了波的总能量的测量结果,其可以用来代替压力。由于能量具有与P平方成比例的单位,因此等式2的I的滚动平均值表示真实的能量度量。这与P平方相反,对于SPL其需要平方根来给出均方根(RMS)值。
对于具有较低采样速率的情况(或者当mic平均值不是每个周期更新时),需要调节α以表示新的值。如果需要的话,这可以实时完成,其中在每次平均值被更新时对α进行调节。
III.双Mic布置
存在具有自交叉(或来自其他点/栅瓣(grating lobe)的交叉)的一类曲线,其中以上呈现的移动mic布置可能将路径中的最高压力点错误表示多达6dB。为了弥补这一点,我们可以将这个问题分成两个分离的虚拟mic——一个总是像上面那样移动,并且另一个锁定到给定点直到移动的mic找到更高压力的位置。以这样的方式,移动的mic(在此称为“搜索(seek)”mic)对路径进行采样,直到已经找到热点,此时锁定的mic(在此称为“调整(regulation)”mic)移动到该点。只要该点是场中的“最热”点,它将停留在那里,并正确地估计人们可以测量的最大压力。只有当路径改变(并停止对“热点”有贡献)时,搜索mic才能够将调整mic拉到新的位置。
搜索mic能够快速检测热点,因为它将使用更大的α作为其滚动平均值。在功能上,这产生了这样的情况,其中相对于小α,其滚动平均值更多地朝向最近的过去加权。当焦点的运动变慢、或者阵列焦点在短时段后回到虚拟mic附近时,就出现热点。随着α越大,相比于调整αmic,搜索mic更快地接近真实(长期)P平方值的速度,并且在热点处看到尖峰。当大αP平方超过调整mic的调整αP平方一定幅度时,启动调整mic移动。然后,调整mic的P平方被设置为搜索mic的P平方,从而基本上为另外的移动设置了新的(更高的)标杆。如果调整mic确实位于热点上,那么它的小αP平方将继续增加,并超出搜索mic的大αP平方,直到系统改变路径。如果移动没有将调整mic放在热点上,那么其P平方将衰减,直到它再次被移动。
在这个系统中,我们还需要两个滚动平均值。第一个是小αP平方,其在移动调整mic时不会被调节。这是必要的,因为在没有它的情况下,我们就没有表示将由静止mic测量的压力的估计。被大α搜索mic P平方覆写的调整αP平方变化得更快,并且仅用作移动决策的比较。通过保持不被覆写的第二调整αP平方,系统具有利用其指示调整的压力的估计。
使用搜索mic位置(其压力估计的输出)计算所需的上一P平方,但使用小α调整mic时间常数对其进行平均化。这有效地给出了仅使用单个移动虚拟麦克风实现的移动mic P平方平均值。对于某一类曲线,这个值表示了比调整mic P平方更好的路径压力估计。
转向图1,示出了用于双mic布置的决策树的图1300。新的时间步骤开始1302,随后是计算新的阵列参数1303。这些参数然后被提供给向量1317(行向量A1316和列向量X1315)。提供行向量A1316以利用A覆写A_seek,并利用固定的最小值-n(nfixed)加上附加的随机长度(nrandom)1311重置移动计数器。列向量X1315被提供给A向量组1320(A_seek 1321和A_reg 1322)。
还提供计算新的阵列参数1303来估计新的麦克风压力1304,这些新的麦克风压力被提供给A向量组1320。A_seek 1321被提供给由搜索平均快速(seek avg fast)1324和搜索平均缓慢(seek avg slow)1325组成的平均(avg)组1323。A_reg 1322被提供给由用于移动的调整(reg)平均(avg)1326和非移动调整平均(reg avg unmoving)1327组成的调整组1328。比较搜索平均缓慢1325和非移动调整平均1327,并取最大值用于调整1329。
A_seek 1321被发送以利用A_seek覆写A_reg,并利用搜索平均快速1312覆写用于移动的调整平均,然后将其发送到A_reg 1322。
搜索平均快速1324被发送以利用A_seek覆写A_reg,并利用搜索平均快速1312覆写用于移动的调整平均,并且然后将其发送到用于移动的调整平均1326。
将来自搜索平均快速1324和用于移动的调整平均1326的值进行比较,以确定哪一个更大(具有余量)1313;结果被发送以利用搜索平均快速覆写用于移动的调整平均1312,并且然后被发送到用于移动的调整平均1326。
估计新的麦克风压力1304的值被提供来更新移动平均值1305,该移动平均值被提供给:1)平均组1323;以及用于调整mic的移动决策1306,并且然后提供给用于搜索mic的移动决策1307。
计数器从上一步骤1308开始移动,并且然后递减1309。如果计数器小于或等于零1310,则发送指令以利用A覆写A_seek,并利用固定的最小值-n(nfixed)加上附加的随机长度(nrandom)重置移动计数器1311。
来自上一时间步骤的滚动平均值1314被提供给平均组1323和调整组1328。
在系统的一些实施方式中,存在搜索麦克风可能正在计算平均值的时间,但是由于传播延迟,调整mic可能在几个时间步骤内不能移动到该位置。在这种情况下,一种解决方案是当调整mic不能移动到该位置时,停止将搜索mic平均到移动平均值中。这为那些特定的点引入了“盲点”(特别是在它们定期发生的情况下)。然而,由于搜索mic的移动是利用随机因子调节的,所以即使是规则的“盲点”也应该分布在任何规则的曲线上,而不表示测量中的漏洞。过度缺乏测量表示用于寻找热点的劣化性能,并且应该被最小化。
IV.N-Mic布置
为了找到热点,搜索mic仍然需要随机降落在该点。对于某些设计参数(可能的峰值压力、调整压力、Δn等),这可能需要相当大量的时间。对于给定的焦点,可以通过添加更多的搜索mic来减少这个时间。每个保持其自己的P平方值并移动计数器。在每个时间步骤,调整mic会将其P平方与所有搜索mic进行比较,如果其中他们中的任何一个最佳,则移动。随着更多的点被同时检查,热点将被更快地找到。
理想情况下,每个搜索mic在不同的物理位置进行测量。实际上,这是很难保证的,因为mic的物理位置并没有存储,并且即使其被存储了,与其他mic进行比较也需要计算。一种解决方案是简单地保证没有两个mic在同一时间步骤移动。如果两个移动计数器同时到期,移动一个mic并给另一mic的移动计数器添加某个值。这最小可以是1,或者基于系统中其他mic的数量的其他值(可能地随机值)。
除了mic之外,系统可以包括每个麦克风的任意数量的平均值(具有不同的α)。例如,这可以用来切换到不同的时间常数,以便进行实时调整。有些可以被覆写用于移动,而有些被保留。就可能的波动而言,这产生了更灵活的系统。例如,短时α对热点更快地进行反应,但在其随机落在另一焦点的虚假交叉点上的情况下,也可以随机达到峰值。通过包括不同时间常数的几个平均值,这可以给设计者忽略快速响应值的可能性。额外的平均值也可以具有不同的度量,P平方和I是示例。例如,移动决策可能涉及多个度量。
转向图2,示出了N-mic、N-平均值布置的流程图1400的可能性。
新的时间步骤开始1401,随后是计算新的阵列参数1402。这些参数然后被提供给向量1408(行向量A1409和列向量X1407)。提供行向量A1409以用覆写A_seek,并以固定的最小值-n(nfixed)加上附加的随机长度(nrandom)重置移动计数器1421。列向量X1315被提供给A向量组1412(一个或多个A_seek和A_reg)。
来自上一时间步骤的滚动平均值1410被发送到搜索平均组1414和调整平均组1413。
还提供计算新的阵列参数1402来估计新的麦克风压力1403,这些新的麦克风压力被提供给A向量组1412。来自A向量组1412的数据被发送到搜索平均组1414。来自搜索平均组1414和调整平均组1413的数据被发送以便为调整取适当的值1416。
来自搜索平均组1414的数据被发送以覆写适当的平均值(如果指定的话),并且利用触发移动的A_seek覆写A_reg 1417。来自A向量组1412的数据也被发送以覆写适当的平均值(如果指定的话),并且利用触发移动的A_seek覆写A_reg 1417。这然后被发送到A向量组1412和调整平均组1413。
此外,将来自搜索平均组1414和调整平均组1413的数据进行比较1415,并且发送具有余量的较大值,以覆写适当的平均值(如果指定的话),并且利用触发移动的A_seek覆写A_reg 1417。
提供估计新的麦克风压力的值1403以利用每个mic的多个平均值来更新移动平均值1404,其被提供给:1)搜索平均组1414;以及2)用于调整mic 1405的移动决策,并且然后提供给用于每个mic 1406的移动决策。
从上一步骤1418开始,对于每次搜索,计数器被移动,并且然后递减1419。如果计数器小于或等于零1420,则发送指令以利用A覆写A_seek,并且利用固定的最小值n(n_fixed)加上附加的随机长度(n_random)重置移动计数器1421。此外,如果多于一个mic<=0,则向除了1外的所有计数器添加指定值1422。
V.复用
相控阵能够复用球面波以产生多个同时的焦点。对于这种类型的布置,每个焦点可以具有它自己的、独立的虚拟麦克风中的一个或多个。在这种情况下,每个点的行向量将从mic-存储的角度分离地考虑。
对于调整,一种选项是使用最高滚动压力平均值的输出作为全局调整最大值。可替选地,可以分离地调整每个焦点。另一选项是让每个焦点具有其自己的搜索mic,但只使用一个调整mic。在这种情况下,调整mic将移动到最高搜索mic的位置。在这种情况下,焦点将全部被调整到全局最大值,因为调整mic不知道哪些焦点对其平均值有贡献。
VI.控制
虚拟麦克风测量的一个用途是衰减阵列的输出,以满足用户指定的最大SPL水平。在一种布置中,阵列可以简单地检查麦克风中的一个(诸如调整麦克风)并调节输出,使得下一周期被足够地衰减以校正滚动平均值。这可以通过求解(2)得到所期望的Avgn的x,并且然后将该值用于输出来实现。不幸的是,这可能导致压力场方面的急剧变化,并可能导致不期望的可听声音。
将所测量的压力反馈回到输出的一种更平滑的方法是基于压力目标除以最高虚拟麦克风压力来设置压力目标,并让值1表示压力目标。以这样的方式,当所测量的压力远低于压力目标时,输出可以自由超过它。当压力等于压力目标时,它维持输出。当其过高时,输出被衰减。这种调整方法产生更平滑的结果,因为虚拟麦克风压力被其自身的滚动平均值自然地平滑化。
另一方法是使用标准比例积分微分(proportion-integral-differential,PID)控制器。PID是在所有控制系统中使用了几十年的标准实时控制方案。它简单、灵活、且计算高效。在这种情况下,我们可以使用简单的PD(无积分项)控制器,以基于上文呈现的虚拟麦克风方案返回的P平方值来调节封顶值(capping value)。我们不需要积分项,因为滚动平均值实现了类似积分的效果,而没有饱和的不利影响。可以调节PID中的系数,以平衡响应速度与过冲和可听度。正确实施的PID控制器以受控的速率接近极限值,并且不会过度响铃,从而限制不希望的音频。
实际上,PID控制器应该使用较高者:调整mic P平方(没有被覆写)或使用小α时间常数的搜索mic P平方。
VII.附加公开内容
1.将移动平均计算与场估计相结合。
2.在具有这种关系的布置中使用2个虚拟麦克风可以表示在快速变化的声场中寻找热点的在计算方面最高效的方式。
3.一种超声相控阵,包括
具有已知相对位置和取向的多个换能器;
表示到换能器的驱动信号的幅值和相位的复激活系数;
兴趣点;
计算兴趣点处的换能器复场(complex field);
将换能器复场乘以激活系数,以返回该点的场的估计;
将这个场估计并入滚动平均值;
从属权利要求:
1.使用新生成的激活系数并乘以旧的换能器复场以获得新的估计。
2.使用这个新的估计以获得滚动平均值。
VIII.结论
虽然前面的描述公开了特定的值,但是任何其他特定的值可以用来实现类似的结果。进一步,可以选择和组合前述实施例的各种特征,以产生改进的触觉系统的多种变化。
在前述说明书中,已经描述了具体实施例。然而,本领域的普通技术人员理解,在不脱离权利要求中阐述的本发明的范围的情况下,可以进行各种修改和变化。因此,说明书和附图以说明性而不是限制性的意义来看待,并且所有这些修改旨在包括在本教导的范围内。
而且,在本文档中,诸如第一和第二、顶部和顶部等关系术语可以用于将一个实体或动作与另一实体或动作区分开来,而不必要求或暗示这些实体或动作之间的任何实际的这种关系或顺序。术语、“包含(comprises或comprising)”、“具有(has或having)”、“包括(includes或including)”、“含有(contains或containing)”或其任何其他变体旨在覆盖非排他性包含,使得包含、具有、包括、含有一系列元素的过程、方法、物品或装置不仅包括那些元素,还可以包括未明确列出的或这些过程、方法、物品或装置固有的其他元素。以“包含……”,“具有……”,“包括……”、“含有……”在没有更多限制的情况下不排除在包含、具有、包括、含有该元素的过程、方法、物品或装置中存在附加的相同元素。术语“一”和“一个”被定义为一个或多个,除非在本文中另外明确说明。术语“大体上”、“基本上”、“近似”、“大约”或其任何其他形式被定义为如本领域普通技术人员所理解的那样接近。如本文所用的术语“耦合”被定义为连接,尽管不一定是直接连接,也不一定是机械连接。以某种方式“配置”的设备或结构至少以该方式配置,但也可以以未列出的方式配置。
提供本公开的摘要是为了允许读者快速确定技术公开的本质。在具有这样的理解的情况下提交的,即其将不用于解释或限制权利要求的范围或含义。此外,在前面的详细描述中,出于简化本公开的目的,在各种实施例中将各种特征分组在一起。该公开方法不应被解释为反映了要求保护的实施例需要比每个权利要求中明确陈述的更多的特征的意图。相反,如以下权利要求所反映的那样,发明主题在于少于单个公开实施方式的全部特征。因此,以下权利要求由此被结合到详细描述中,其中每个权利要求作为分离要求保护的主题独立存在。

Claims (18)

1.一种超声相控阵,包括:
多个换能器,其具有已知相对位置和取向;
至少一个复激活系数,其表示到所述多个换能器中的至少一个换能器的驱动信号的幅值和相位;
兴趣点;
处理器,其用于:
1)从所述兴趣点处的所述多个换能器中的至少一个换能器计算换能器复场;
2)将所述换能器复场乘以激活系数,以返回所述兴趣点处的场估计;以及
3)将所述场估计合并到加权平均值中。
2.根据权利要求1所述的超声相控阵,其中使用平方幅值来计算所述场估计。
3.根据权利要求1所述的超声相控阵,其中使用幅值来计算所述场估计。
4.根据权利要求1所述的超声相控阵,其中在将函数输出合并到加权平均值中之前,由函数进行所述场估计。
5.根据权利要求1所述的超声相控阵,其中所述换能器复场的多个版本存储在所述处理器中,使得所述换能器复场的多个版本中的至少两个版本与至少一个复数激活系数一起使用,以同时估计多个兴趣点。
6.根据权利要求5所述的超声相控阵,其中多个兴趣点包括多个虚拟麦克风位置。
7.根据权利要求6所述的超声相控阵,其中所述多个虚拟麦克风中的每个虚拟麦克风捕获其自己的加权平均值。
8.根据权利要求7所述的超声相控阵,其中加权平均值中的至少一个加权平均值是使用与所述加权平均值中的其他加权平均值不同的函数计算的。
9.根据权利要求6所述的超声相控阵,其中当至少一个加权平均值超过目标时,所述多个兴趣点中的至少一个兴趣点被改变。
10.根据权利要求1所述的超声相控阵,其中所述换能器复场包括所述换能器复场的先前计算的版本。
11.根据权利要求10所述的超声相控阵,其中基于来自至少一个虚拟麦克风的加权平均值的输出来选择要使用的所述换能器复场的所述先前计算的版本。
12.根据权利要求1所述的超声相控阵,其中所述加权平均值包括先前场估计的平均值。
13.根据权利要求1所述的超声相控阵,其中所述加权平均值包括压力目标除以最高虚拟麦克风压力。
14.根据权利要求1所述的超声相控阵,其中如果所述加权平均值超过压力目标,则所述至少一个复激活系数使其实部和虚部中的至少一个被改变。
15.根据权利要求14所述的超声相控阵,其中使用比例微分控制器来改变所述激活系数。
16.根据权利要求15所述的超声相控阵,其中所述比例微分控制器基于由虚拟麦克风和所述加权平均值中的至少一个返回的平方压力输出值来调节所述至少一个复激活系数值。
17.根据权利要求15所述的超声相控阵,其中所述比例微分控制器的系数被调节到限制不希望的音频的受控速率。
18.根据权利要求15所述的超声相控阵,其中所述比例微分控制器使用以下中的较大者:1)调整虚拟麦克风平方压力输出;或者2)搜索虚拟麦克风平方压力输出。
CN202080071906.6A 2019-10-13 2020-10-13 利用虚拟麦克风进行动态封顶 Pending CN114631139A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962914502P 2019-10-13 2019-10-13
US62/914,502 2019-10-13
PCT/GB2020/052546 WO2021074604A1 (en) 2019-10-13 2020-10-13 Dynamic capping with virtual microphones

Publications (1)

Publication Number Publication Date
CN114631139A true CN114631139A (zh) 2022-06-14

Family

ID=75384148

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080071906.6A Pending CN114631139A (zh) 2019-10-13 2020-10-13 利用虚拟麦克风进行动态封顶

Country Status (9)

Country Link
US (2) US11553295B2 (zh)
EP (1) EP4042413A1 (zh)
JP (1) JP2022551944A (zh)
KR (1) KR20220080737A (zh)
CN (1) CN114631139A (zh)
AU (1) AU2020368678A1 (zh)
CA (1) CA3154040A1 (zh)
IL (1) IL292114A (zh)
WO (1) WO2021074604A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2513884B (en) 2013-05-08 2015-06-17 Univ Bristol Method and apparatus for producing an acoustic field
GB2530036A (en) 2014-09-09 2016-03-16 Ultrahaptics Ltd Method and apparatus for modulating haptic feedback
MX2017010252A (es) 2015-02-20 2018-03-07 Ultrahaptics Ip Ltd Mejoras de algoritmos en un sistema haptico.
ES2731673T3 (es) 2015-02-20 2019-11-18 Ultrahaptics Ip Ltd Procedimiento para producir un campo acústico en un sistema háptico
US10818162B2 (en) 2015-07-16 2020-10-27 Ultrahaptics Ip Ltd Calibration techniques in haptic systems
US10268275B2 (en) 2016-08-03 2019-04-23 Ultrahaptics Ip Ltd Three-dimensional perceptions in haptic systems
US10943578B2 (en) 2016-12-13 2021-03-09 Ultrahaptics Ip Ltd Driving techniques for phased-array systems
US11531395B2 (en) 2017-11-26 2022-12-20 Ultrahaptics Ip Ltd Haptic effects from focused acoustic fields
EP3729418A1 (en) 2017-12-22 2020-10-28 Ultrahaptics Ip Ltd Minimizing unwanted responses in haptic systems
SG11202010752VA (en) 2018-05-02 2020-11-27 Ultrahaptics Ip Ltd Blocking plate structure for improved acoustic transmission efficiency
US11098951B2 (en) 2018-09-09 2021-08-24 Ultrahaptics Ip Ltd Ultrasonic-assisted liquid manipulation
EP3906462A2 (en) 2019-01-04 2021-11-10 Ultrahaptics IP Ltd Mid-air haptic textures
US11842517B2 (en) 2019-04-12 2023-12-12 Ultrahaptics Ip Ltd Using iterative 3D-model fitting for domain adaptation of a hand-pose-estimation neural network
US11374586B2 (en) 2019-10-13 2022-06-28 Ultraleap Limited Reducing harmonic distortion by dithering
US11715453B2 (en) 2019-12-25 2023-08-01 Ultraleap Limited Acoustic transducer structures
US11816267B2 (en) 2020-06-23 2023-11-14 Ultraleap Limited Features of airborne ultrasonic fields
US11886639B2 (en) 2020-09-17 2024-01-30 Ultraleap Limited Ultrahapticons

Family Cites Families (275)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4218921A (en) 1979-07-13 1980-08-26 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method and apparatus for shaping and enhancing acoustical levitation forces
CA1175359A (en) 1981-01-30 1984-10-02 John G. Martner Arrayed ink jet apparatus
FR2551611B1 (fr) 1983-08-31 1986-10-24 Labo Electronique Physique Nouvelle structure de transducteur ultrasonore et appareil d'examen de milieux par echographie ultrasonore comprenant une telle structure
EP0309003B1 (en) 1984-02-15 1994-12-07 Trw Inc. Surface acoustic wave spectrum analyzer
JPS62258597A (ja) 1986-04-25 1987-11-11 Yokogawa Medical Syst Ltd 超音波トランスデユ−サ
US5226000A (en) 1988-11-08 1993-07-06 Wadia Digital Corporation Method and system for time domain interpolation of digital audio signals
WO1991018486A1 (en) 1990-05-14 1991-11-28 Commonwealth Scientific And Industrial Research Organisation A coupling device
EP0498015B1 (de) 1991-02-07 1993-10-06 Siemens Aktiengesellschaft Verfahren zur Herstellung von Ultraschallwandlern
US5243344A (en) 1991-05-30 1993-09-07 Koulopoulos Michael A Digital-to-analog converter--preamplifier apparatus
JP3243821B2 (ja) 1992-02-27 2002-01-07 ヤマハ株式会社 電子楽器
US5426388A (en) 1994-02-15 1995-06-20 The Babcock & Wilcox Company Remote tone burst electromagnetic acoustic transducer pulser
US5477736A (en) 1994-03-14 1995-12-26 General Electric Company Ultrasonic transducer with lens having electrorheological fluid therein for dynamically focusing and steering ultrasound energy
US5511296A (en) 1994-04-08 1996-04-30 Hewlett Packard Company Method for making integrated matching layer for ultrasonic transducers
US5583405A (en) 1994-08-11 1996-12-10 Nabco Limited Automatic door opening and closing system
EP0857378A1 (en) 1995-06-05 1998-08-12 Christian Constantinov Ultrasonic sound system and method for producing virtual sound
US7225404B1 (en) 1996-04-04 2007-05-29 Massachusetts Institute Of Technology Method and apparatus for determining forces to be applied to a user through a haptic interface
US5859915A (en) 1997-04-30 1999-01-12 American Technology Corporation Lighted enhanced bullhorn
US6193936B1 (en) 1998-11-09 2001-02-27 Nanogram Corporation Reactant delivery apparatuses
US6029518A (en) 1997-09-17 2000-02-29 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Manipulation of liquids using phased array generation of acoustic radiation pressure
US6647359B1 (en) 1999-07-16 2003-11-11 Interval Research Corporation System and method for synthesizing music by scanning real or simulated vibrating object
US6307302B1 (en) 1999-07-23 2001-10-23 Measurement Specialities, Inc. Ultrasonic transducer having impedance matching layer
CN100358393C (zh) 1999-09-29 2007-12-26 1...有限公司 定向声音的方法和设备
US6771294B1 (en) 1999-12-29 2004-08-03 Petri Pulli User interface
US6925187B2 (en) 2000-03-28 2005-08-02 American Technology Corporation Horn array emitter
US6503204B1 (en) 2000-03-31 2003-01-07 Acuson Corporation Two-dimensional ultrasonic transducer array having transducer elements in a non-rectangular or hexagonal grid for medical diagnostic ultrasonic imaging and ultrasound imaging system using same
US7284027B2 (en) 2000-05-15 2007-10-16 Qsigma, Inc. Method and apparatus for high speed calculation of non-linear functions and networks using non-linear function calculations for digital signal processing
DE10026077B4 (de) 2000-05-25 2007-03-22 Siemens Ag Strahlformungsverfahren
DE10051133A1 (de) 2000-10-16 2002-05-02 Siemens Ag Strahlformungsverfahren
US6768921B2 (en) 2000-12-28 2004-07-27 Z-Tech (Canada) Inc. Electrical impedance method and apparatus for detecting and diagnosing diseases
US7463249B2 (en) 2001-01-18 2008-12-09 Illinois Tool Works Inc. Acoustic wave touch actuated switch with feedback
US7058147B2 (en) 2001-02-28 2006-06-06 At&T Corp. Efficient reduced complexity windowed optimal time domain equalizer for discrete multitone-based DSL modems
WO2002100480A2 (en) 2001-06-13 2002-12-19 Apple Marc G Brachytherapy device and method
US6436051B1 (en) 2001-07-20 2002-08-20 Ge Medical Systems Global Technology Company, Llc Electrical connection system for ultrasonic receiver array
US6758094B2 (en) 2001-07-31 2004-07-06 Koninklijke Philips Electronics, N.V. Ultrasonic transducer wafer having variable acoustic impedance
WO2003019125A1 (en) 2001-08-31 2003-03-06 Nanyang Techonological University Steering of directional sound beams
US7623114B2 (en) 2001-10-09 2009-11-24 Immersion Corporation Haptic feedback sensations based on audio output from computer devices
AU2002357857A1 (en) 2001-12-13 2003-06-23 The University Of Wyoming Research Corporation Doing Business As Western Research Institute Volatile organic compound sensor system
US7109789B2 (en) 2002-01-18 2006-09-19 American Technology Corporation Modulator—amplifier
US6800987B2 (en) 2002-01-22 2004-10-05 Measurement Specialties, Inc. Protective housing for ultrasonic transducer apparatus
US20030182647A1 (en) 2002-03-19 2003-09-25 Radeskog Mattias Dan Automatic interactive component placement for electronics-CAD software through the use of force simulations
US20040052387A1 (en) 2002-07-02 2004-03-18 American Technology Corporation. Piezoelectric film emitter configuration
US7720229B2 (en) 2002-11-08 2010-05-18 University Of Maryland Method for measurement of head related transfer functions
JP4192672B2 (ja) 2003-05-16 2008-12-10 株式会社日本自動車部品総合研究所 超音波センサ
WO2005010623A2 (en) 2003-07-24 2005-02-03 Zebra Imaging, Inc. Enhanced environment visualization using holographic stereograms
WO2005017965A2 (en) 2003-08-06 2005-02-24 Measurement Specialities, Inc. Ultrasonic air transducer arrays using polymer piezoelectric films and impedance matching structures for ultrasonic polymer transducer arrays
DE10342263A1 (de) 2003-09-11 2005-04-28 Infineon Technologies Ag Optoelektronisches Bauelement und optoelektronische Anordnung mit einem optoelektronischen Bauelement
US7872963B2 (en) 2003-12-27 2011-01-18 Electronics And Telecommunications Research Institute MIMO-OFDM system using eigenbeamforming method
US20050212760A1 (en) 2004-03-23 2005-09-29 Marvit David L Gesture based user interface supporting preexisting symbols
CN1997999B (zh) 2004-03-29 2010-09-08 彼德·T·杰尔曼 用于确定材料弹性的系统和方法
WO2005111653A2 (en) 2004-05-17 2005-11-24 Epos Technologies Limited Acoustic robust synchronization signaling for acoustic positioning system
US7689639B2 (en) 2004-06-04 2010-03-30 Telefonaktiebolaget Lm Ericsson (Publ) Complex logarithmic ALU
WO2006044868A1 (en) 2004-10-20 2006-04-27 Nervonix, Inc. An active electrode, bio-impedance based, tissue discrimination system and methods and use
US7138620B2 (en) 2004-10-29 2006-11-21 Silicon Light Machines Corporation Two-dimensional motion sensor
US20060090955A1 (en) 2004-11-04 2006-05-04 George Cardas Microphone diaphragms defined by logarithmic curves and microphones for use therewith
US7692661B2 (en) 2005-01-26 2010-04-06 Pixar Method of creating and evaluating bandlimited noise for computer graphics
US20090116660A1 (en) 2005-02-09 2009-05-07 American Technology Corporation In-Band Parametric Sound Generation System
US7345600B1 (en) 2005-03-09 2008-03-18 Texas Instruments Incorporated Asynchronous sampling rate converter
GB0508194D0 (en) 2005-04-22 2005-06-01 The Technology Partnership Plc Pump
WO2015006467A1 (en) 2013-07-09 2015-01-15 Coactive Drive Corporation Synchronized array of vibration actuators in an integrated module
US9459632B2 (en) 2005-06-27 2016-10-04 Coactive Drive Corporation Synchronized array of vibration actuators in a network topology
US7233722B2 (en) 2005-08-15 2007-06-19 General Display, Ltd. System and method for fiber optics based direct view giant screen flat panel display
WO2007034344A2 (en) 2005-09-20 2007-03-29 Koninklijke Philips Electronics N.V. Band- pass transducer system with long port
EP1775989B1 (en) 2005-10-12 2008-12-10 Yamaha Corporation Speaker array and microphone array
US20070094317A1 (en) 2005-10-25 2007-04-26 Broadcom Corporation Method and system for B-spline interpolation of a one-dimensional signal using a fractional interpolation ratio
KR101011423B1 (ko) 2006-05-01 2011-01-28 아이덴트 테크놀로지 에이지 입력 장치
JP2009539537A (ja) 2006-06-14 2009-11-19 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 経皮ドラッグデリバリー(drugdelivery)装置及びそのような装置の作動方法
US7425874B2 (en) 2006-06-30 2008-09-16 Texas Instruments Incorporated All-digital phase-locked loop for a digital pulse-width modulator
US20100030076A1 (en) 2006-08-01 2010-02-04 Kobi Vortman Systems and Methods for Simultaneously Treating Multiple Target Sites
JP2008074075A (ja) 2006-09-25 2008-04-03 Canon Inc 画像形成装置及びその制御方法
EP1911530B1 (de) 2006-10-09 2009-07-22 Baumer Electric AG Ultraschallwandler mit akustischer Impedanzanpassung
WO2008064230A2 (en) * 2006-11-20 2008-05-29 Personics Holdings Inc. Methods and devices for hearing damage notification and intervention ii
KR100889726B1 (ko) 2007-02-02 2009-03-24 한국전자통신연구원 촉각 자극 장치 및 이를 응용한 장치
FR2912817B1 (fr) 2007-02-21 2009-05-22 Super Sonic Imagine Sa Procede d'optimisation de la focalisation d'ondes au travers d'un element introducteur d'aberations.
DE102007018266A1 (de) 2007-04-10 2008-10-16 Seereal Technologies S.A. Holographisches Projektionssystem mit einer optischen Wellennachführung und Mitteln zum Korrigieren der holographischen Rekonstruktion
US8269168B1 (en) 2007-04-30 2012-09-18 Physical Logic Ag Meta materials integration, detection and spectral analysis
US9100748B2 (en) 2007-05-04 2015-08-04 Bose Corporation System and method for directionally radiating sound
US9317110B2 (en) 2007-05-29 2016-04-19 Cfph, Llc Game with hand motion control
EP2096309A4 (en) 2007-10-16 2013-02-27 Murata Manufacturing Co PIEZOELECTRIC MICRO FAN
FR2923612B1 (fr) 2007-11-12 2011-05-06 Super Sonic Imagine Dispositif d'insonification comprenant un reseau tridimensionnel d'emetteurs disposes en spirale apte a generer un faisceau d'ondes focalisees de grande intensite
FI20075879A0 (fi) 2007-12-05 2007-12-05 Valtion Teknillinen Laite paineen, äänenpaineen vaihtelun, magneettikentän, kiihtyvyyden, tärinän ja kaasun koostumuksen mittaamiseksi
BRPI0822076A8 (pt) 2007-12-13 2016-03-22 Koninklijke Philips Electonics N V Sistema de formação de imagem, e, método para ajustar a posição de um transdutor com respeito a uma estrutura anatômica
GB0804739D0 (en) 2008-03-14 2008-04-16 The Technology Partnership Plc Pump
US20090251421A1 (en) 2008-04-08 2009-10-08 Sony Ericsson Mobile Communications Ab Method and apparatus for tactile perception of digital images
US8369973B2 (en) 2008-06-19 2013-02-05 Texas Instruments Incorporated Efficient asynchronous sample rate conversion
US20100013613A1 (en) 2008-07-08 2010-01-21 Jonathan Samuel Weston Haptic feedback projection system
US8731851B2 (en) 2008-07-08 2014-05-20 Bruel & Kjaer Sound & Vibration Measurement A/S Method for reconstructing an acoustic field
US8162840B2 (en) 2008-07-16 2012-04-24 Syneron Medical Ltd High power ultrasound transducer
GB2464117B (en) 2008-10-03 2015-01-28 Hiwave Technologies Uk Ltd Touch sensitive device
JP2010109579A (ja) 2008-10-29 2010-05-13 Nippon Telegr & Teleph Corp <Ntt> 音響出力素子アレイ及び音響出力方法
US8199953B2 (en) 2008-10-30 2012-06-12 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Multi-aperture acoustic horn
US9569001B2 (en) 2009-02-03 2017-02-14 Massachusetts Institute Of Technology Wearable gestural interface
US10564721B2 (en) 2009-03-12 2020-02-18 Immersion Corporation Systems and methods for using multiple actuators to realize textures
JP5388379B2 (ja) 2009-04-28 2014-01-15 パナソニック株式会社 補聴装置、及び補聴方法
US8009022B2 (en) 2009-05-29 2011-08-30 Microsoft Corporation Systems and methods for immersive interaction with virtual objects
WO2010139916A1 (en) 2009-06-03 2010-12-09 The Technology Partnership Plc Fluid disc pump
US7920078B2 (en) 2009-06-19 2011-04-05 Conexant Systems, Inc. Systems and methods for variable rate conversion
EP2271129A1 (en) 2009-07-02 2011-01-05 Nxp B.V. Transducer with resonant cavity
KR20110005587A (ko) 2009-07-10 2011-01-18 삼성전자주식회사 휴대 단말의 진동 발생 방법 및 장치
US20110010958A1 (en) 2009-07-16 2011-01-20 Wayne Clark Quiet hair dryer
WO2011024074A2 (en) 2009-08-26 2011-03-03 Insightec Ltd. Asymmetric phased-array ultrasound transducer
GB0916707D0 (en) 2009-09-23 2009-11-04 Elliptic Laboratories As Acoustic motion determination
US8027224B2 (en) 2009-11-11 2011-09-27 Brown David A Broadband underwater acoustic transducer
WO2011069964A1 (en) 2009-12-11 2011-06-16 Sorama Holding B.V. Acoustic transducer assembly
CN102711914B (zh) 2009-12-28 2016-10-19 皇家飞利浦电子股份有限公司 高强度聚焦超声换能器的优化
KR20110093379A (ko) 2010-02-12 2011-08-18 주식회사 팬택 채널상태정보 피드백 장치와 그 방법, 기지국, 그 기지국의 전송방법
US20110199342A1 (en) 2010-02-16 2011-08-18 Harry Vartanian Apparatus and method for providing elevated, indented or texturized sensations to an object near a display device or input detection using ultrasound
JP5457874B2 (ja) 2010-02-19 2014-04-02 日本電信電話株式会社 局所再生装置とその方法と、プログラム
CN102859998B (zh) 2010-04-20 2016-09-28 诺基亚技术有限公司 一种装置和相关方法
US20130079621A1 (en) 2010-05-05 2013-03-28 Technion Research & Development Foundation Ltd. Method and system of operating a multi focused acoustic wave source
US8519982B2 (en) 2010-06-21 2013-08-27 Sony Corporation Active acoustic touch location for electronic devices
NZ587483A (en) 2010-08-20 2012-12-21 Ind Res Ltd Holophonic speaker system with filters that are pre-configured based on acoustic transfer functions
JP5343946B2 (ja) 2010-08-25 2013-11-13 株式会社デンソー 触覚提示装置
US8607922B1 (en) 2010-09-10 2013-12-17 Harman International Industries, Inc. High frequency horn having a tuned resonant cavity
US8782109B2 (en) 2010-09-10 2014-07-15 Texas Instruments Incorporated Asynchronous sample rate conversion using a polynomial interpolator with minimax stopband attenuation
US8422721B2 (en) 2010-09-14 2013-04-16 Frank Rizzello Sound reproduction systems and method for arranging transducers therein
KR101221513B1 (ko) 2010-12-13 2013-01-21 가천대학교 산학협력단 시각 장애인에게 시각 정보를 촉각 정보로 전달하는 그래픽 햅틱전자보드 및 방법
DE102011017250B4 (de) 2011-01-07 2022-12-01 Maxim Integrated Products, Inc. Berührungs-Feedbacksystem, haptisches Feedbacksystem und Verfahren zum Bereitstellen eines haptischen Feedbacks
WO2012106327A1 (en) 2011-01-31 2012-08-09 Wayne State University Acoustic metamaterials
GB201101870D0 (en) 2011-02-03 2011-03-23 The Technology Partnership Plc Pump
EP2688686B1 (en) 2011-03-22 2022-08-17 Koninklijke Philips N.V. Ultrasonic cmut with suppressed acoustic coupling to the substrate
JP5367001B2 (ja) 2011-03-24 2013-12-11 ツインバード工業株式会社 ドライヤー
US10061387B2 (en) 2011-03-31 2018-08-28 Nokia Technologies Oy Method and apparatus for providing user interfaces
US20120249461A1 (en) 2011-04-01 2012-10-04 Analog Devices, Inc. Dedicated user interface controller for feedback responses
WO2012149225A2 (en) 2011-04-26 2012-11-01 The Regents Of The University Of California Systems and devices for recording and reproducing senses
US8833510B2 (en) 2011-05-05 2014-09-16 Massachusetts Institute Of Technology Phononic metamaterials for vibration isolation and focusing of elastic waves
US9421291B2 (en) 2011-05-12 2016-08-23 Fifth Third Bank Hand dryer with sanitizing ionization assembly
US20120299853A1 (en) 2011-05-26 2012-11-29 Sumit Dagar Haptic interface
KR101290763B1 (ko) 2011-06-08 2013-07-29 가천대학교 산학협력단 햅틱전자보드 기반의 시각 장애인용 학습정보 제공 시스템 및 방법
CN103703794B (zh) 2011-08-03 2017-03-22 株式会社村田制作所 超声波换能器
US9417754B2 (en) 2011-08-05 2016-08-16 P4tents1, LLC User interface system, method, and computer program product
JP2014531589A (ja) 2011-09-22 2014-11-27 コーニンクレッカ フィリップス エヌ ヴェ 多方向測定のための超音波測定アセンブリ
US20130100008A1 (en) 2011-10-19 2013-04-25 Stefan J. Marti Haptic Response Module
US9143879B2 (en) 2011-10-19 2015-09-22 James Keith McElveen Directional audio array apparatus and system
SG10201600965YA (en) 2011-10-28 2016-03-30 Regeneron Pharma Humanized il-6 and il-6 receptor
KR101355532B1 (ko) 2011-11-21 2014-01-24 알피니언메디칼시스템 주식회사 고강도 집속 초음파용 트랜스듀서
WO2013097036A1 (en) 2011-12-29 2013-07-04 Mighty Cast, Inc. Interactive base and token capable of communicating with computing device
US20120223880A1 (en) 2012-02-15 2012-09-06 Immersion Corporation Method and apparatus for producing a dynamic haptic effect
US8711118B2 (en) 2012-02-15 2014-04-29 Immersion Corporation Interactivity model for shared feedback on mobile devices
KR102046102B1 (ko) 2012-03-16 2019-12-02 삼성전자주식회사 메타물질의 코일 기반 인공원자, 이를 포함하는 메타물질 및 소자
US8570296B2 (en) 2012-05-16 2013-10-29 Immersion Corporation System and method for display of multiple data channels on a single haptic display
GB201208853D0 (en) 2012-05-18 2012-07-04 Hiwave Technologies Uk Ltd Panel for use in vibratory panel device
US20150148672A1 (en) 2012-05-31 2015-05-28 Koninklijke Philips N.V. Ultrasound tranducer assembly and method for driving an ultrasound transducer head
US9394507B2 (en) 2012-06-08 2016-07-19 Alm Holding Company Biodiesel emulsion for cleaning bituminous coated equipment
EP2702935A1 (de) 2012-08-29 2014-03-05 Agfa HealthCare N.V. System und Verfahren zur optischen Kohärenztomographie sowie Positionierelement
US9552673B2 (en) 2012-10-17 2017-01-24 Microsoft Technology Licensing, Llc Grasping virtual objects in augmented reality
IL223086A (en) 2012-11-18 2017-09-28 Noveto Systems Ltd System and method for creating sonic fields
US8947387B2 (en) 2012-12-13 2015-02-03 Immersion Corporation System and method for identifying users and selecting a haptic response
US9459697B2 (en) 2013-01-15 2016-10-04 Leap Motion, Inc. Dynamic, free-space user interactions for machine control
US9202313B2 (en) 2013-01-21 2015-12-01 Microsoft Technology Licensing, Llc Virtual interaction with image projection
US9323397B2 (en) 2013-03-11 2016-04-26 The Regents Of The University Of California In-air ultrasonic rangefinding and angle estimation
US9208664B1 (en) 2013-03-11 2015-12-08 Amazon Technologies, Inc. Adjusting structural characteristics of a device
AU2014229806B2 (en) 2013-03-13 2019-01-17 Bae Systems Plc A metamaterial
WO2014153007A1 (en) 2013-03-14 2014-09-25 Revive Electronics, LLC Methods and apparatuses for drying electronic devices
US9647464B2 (en) 2013-03-15 2017-05-09 Fujifilm Sonosite, Inc. Low noise power sources for portable electronic systems
US20170238807A9 (en) 2013-03-15 2017-08-24 LX Medical, Inc. Tissue imaging and image guidance in luminal anatomic structures and body cavities
US9886941B2 (en) 2013-03-15 2018-02-06 Elwha Llc Portable electronic device directed audio targeted user system and method
US20140269207A1 (en) 2013-03-15 2014-09-18 Elwha Llc Portable Electronic Device Directed Audio Targeted User System and Method
GB2513884B (en) 2013-05-08 2015-06-17 Univ Bristol Method and apparatus for producing an acoustic field
US9625334B2 (en) 2013-06-12 2017-04-18 Atlas Copco Industrial Technique Ab Method of measuring elongation of a fastener with ultrasound, performed by a power tool, and a power tool
US8884927B1 (en) 2013-06-27 2014-11-11 Elwha Llc Tactile feedback generated by phase conjugation of ultrasound surface acoustic waves
US9804675B2 (en) 2013-06-27 2017-10-31 Elwha Llc Tactile feedback generated by non-linear interaction of surface acoustic waves
US20150006645A1 (en) 2013-06-28 2015-01-01 Jerry Oh Social sharing of video clips
WO2014209405A1 (en) 2013-06-29 2014-12-31 Intel Corporation System and method for adaptive haptic effects
GB2516820A (en) 2013-07-01 2015-02-11 Nokia Corp An apparatus
US10533850B2 (en) 2013-07-12 2020-01-14 Magic Leap, Inc. Method and system for inserting recognized object data into a virtual world
KR101484230B1 (ko) 2013-07-24 2015-01-16 현대자동차 주식회사 차량용 터치 디스플레이 장치 및 그 구동 방법
JP2015035657A (ja) 2013-08-07 2015-02-19 株式会社豊田中央研究所 報知装置及び入力装置
US9576084B2 (en) 2013-08-27 2017-02-21 Halliburton Energy Services, Inc. Generating a smooth grid for simulating fluid flow in a well system environment
US9576445B2 (en) 2013-09-06 2017-02-21 Immersion Corp. Systems and methods for generating haptic effects associated with an envelope in audio signals
US20150078136A1 (en) 2013-09-13 2015-03-19 Mitsubishi Heavy Industries, Ltd. Conformable Transducer With Self Position Sensing
CN105556591B (zh) 2013-09-19 2020-08-14 香港科技大学 薄膜型声学超材料的主动控制
KR101550601B1 (ko) 2013-09-25 2015-09-07 현대자동차 주식회사 촉감 피드백을 제공하는 곡면 터치 디스플레이 장치 및 그 방법
EP2863654B1 (en) 2013-10-17 2018-08-01 Oticon A/s A method for reproducing an acoustical sound field
EP3175791B1 (en) 2013-11-04 2021-09-08 Ecential Robotics Method for reconstructing a 3d image from 2d x-ray images
GB201322103D0 (en) 2013-12-13 2014-01-29 The Technology Partnership Plc Fluid pump
US9366588B2 (en) 2013-12-16 2016-06-14 Lifescan, Inc. Devices, systems and methods to determine area sensor
US9612658B2 (en) 2014-01-07 2017-04-04 Ultrahaptics Ip Ltd Method and apparatus for providing tactile sensations
JP6311197B2 (ja) 2014-02-13 2018-04-18 本田技研工業株式会社 音響処理装置、及び音響処理方法
US9945818B2 (en) 2014-02-23 2018-04-17 Qualcomm Incorporated Ultrasonic authenticating button
US10203762B2 (en) 2014-03-11 2019-02-12 Magic Leap, Inc. Methods and systems for creating virtual and augmented reality
US9649558B2 (en) 2014-03-14 2017-05-16 Sony Interactive Entertainment Inc. Gaming device with rotatably placed cameras
KR101464327B1 (ko) 2014-03-27 2014-11-25 연세대학교 산학협력단 3차원 에어터치 피드백 장치, 시스템 및 방법
KR20150118813A (ko) 2014-04-15 2015-10-23 삼성전자주식회사 햅틱 정보 운용 방법 및 이를 지원하는 전자 장치
US20150323667A1 (en) 2014-05-12 2015-11-12 Chirp Microsystems Time of flight range finding with an adaptive transmit pulse and adaptive receiver processing
US10579207B2 (en) 2014-05-14 2020-03-03 Purdue Research Foundation Manipulating virtual environment using non-instrumented physical object
ES2826476T3 (es) 2014-05-15 2021-05-18 Federal Express Corp Dispositivos portátiles para el procesamiento de mensajería y métodos de uso de los mismos
CN103984414B (zh) 2014-05-16 2018-12-25 北京智谷睿拓技术服务有限公司 产生触感反馈的方法和设备
JP6659591B2 (ja) 2014-06-09 2020-03-04 テルモ ビーシーティー、インコーポレーテッド 凍結乾燥
US10569300B2 (en) 2014-06-17 2020-02-25 Pixie Dust Technologies, Inc. Low-noise ultrasonic wave focusing apparatus
KR101687017B1 (ko) 2014-06-25 2016-12-16 한국과학기술원 머리 착용형 컬러 깊이 카메라를 활용한 손 위치 추정 장치 및 방법, 이를 이용한 맨 손 상호작용 시스템
FR3023036A1 (fr) 2014-06-27 2016-01-01 Orange Re-echantillonnage par interpolation d'un signal audio pour un codage / decodage a bas retard
WO2016007920A1 (en) 2014-07-11 2016-01-14 New York University Three dimensional tactile feedback system
KR101659050B1 (ko) 2014-07-14 2016-09-23 한국기계연구원 메타물질을 이용한 공기접합 초음파 탐촉자
US9600083B2 (en) 2014-07-15 2017-03-21 Immersion Corporation Systems and methods to generate haptic feedback for skin-mediated interactions
JP2016035646A (ja) 2014-08-01 2016-03-17 株式会社デンソー 触覚装置、および、それを有する触覚ディスプレイ
US9525944B2 (en) 2014-08-05 2016-12-20 The Boeing Company Apparatus and method for an active and programmable acoustic metamaterial
GB2530036A (en) 2014-09-09 2016-03-16 Ultrahaptics Ltd Method and apparatus for modulating haptic feedback
EP3216231B1 (en) 2014-11-07 2019-08-21 Chirp Microsystems, Inc. Package waveguide for acoustic sensor with electronic delay compensation
US10427034B2 (en) 2014-12-17 2019-10-01 Igt Canada Solutions Ulc Contactless tactile feedback on gaming terminal with 3D display
US10195525B2 (en) 2014-12-17 2019-02-05 Igt Canada Solutions Ulc Contactless tactile feedback on gaming terminal with 3D display
NL2014025B1 (en) 2014-12-19 2016-10-12 Umc Utrecht Holding Bv High intensity focused ultrasound apparatus.
US9779713B2 (en) 2014-12-24 2017-10-03 United Technologies Corporation Acoustic metamaterial gate
GB2539368A (en) 2015-02-09 2016-12-21 Univ Erasmus Med Ct Rotterdam Intravascular photoacoustic imaging
ES2731673T3 (es) 2015-02-20 2019-11-18 Ultrahaptics Ip Ltd Procedimiento para producir un campo acústico en un sistema háptico
MX2017010252A (es) 2015-02-20 2018-03-07 Ultrahaptics Ip Ltd Mejoras de algoritmos en un sistema haptico.
US9911232B2 (en) 2015-02-27 2018-03-06 Microsoft Technology Licensing, Llc Molding and anchoring physically constrained virtual environments to real-world environments
CN107251579B (zh) 2015-04-08 2019-11-26 华为技术有限公司 驱动扬声器阵列的装置和方法
CN108883335A (zh) 2015-04-14 2018-11-23 约翰·詹姆斯·丹尼尔斯 用于人与机器或人与人的可穿戴式的电子多感官接口
AU2016100399B4 (en) 2015-04-17 2017-02-02 Apple Inc. Contracting and elongating materials for providing input and output for an electronic device
BR112017025129A2 (pt) 2015-05-24 2019-11-12 Livonyx Inc sistemas e métodos para higienizar superfícies
US10210858B2 (en) 2015-06-30 2019-02-19 Pixie Dust Technologies, Inc. System and method for manipulating objects in a computational acoustic-potential field
US10818162B2 (en) 2015-07-16 2020-10-27 Ultrahaptics Ip Ltd Calibration techniques in haptic systems
US9865072B2 (en) 2015-07-23 2018-01-09 Disney Enterprises, Inc. Real-time high-quality facial performance capture
US10313012B2 (en) 2015-08-03 2019-06-04 Phase Sensitive Innovations, Inc. Distributed array for direction and frequency finding
US10416306B2 (en) 2015-08-17 2019-09-17 Texas Instruments Incorporated Methods and apparatus to measure and analyze vibration signatures
US11106273B2 (en) 2015-10-30 2021-08-31 Ostendo Technologies, Inc. System and methods for on-body gestural interfaces and projection displays
US10318008B2 (en) 2015-12-15 2019-06-11 Purdue Research Foundation Method and system for hand pose detection
US20170181725A1 (en) 2015-12-25 2017-06-29 General Electric Company Joint ultrasound imaging system and method
US11189140B2 (en) 2016-01-05 2021-11-30 Ultrahaptics Ip Ltd Calibration and detection techniques in haptic systems
US9818294B2 (en) 2016-01-06 2017-11-14 Honda Motor Co., Ltd. System for indicating vehicle presence and method thereof
EP3207817A1 (en) 2016-02-17 2017-08-23 Koninklijke Philips N.V. Ultrasound hair drying and styling
US10091344B2 (en) 2016-03-28 2018-10-02 International Business Machines Corporation Displaying virtual target window on mobile device based on user intent
US10877559B2 (en) 2016-03-29 2020-12-29 Intel Corporation System to provide tactile feedback during non-contact interaction
US9936324B2 (en) 2016-04-04 2018-04-03 Pixie Dust Technologies, Inc. System and method for generating spatial sound using ultrasound
US10228758B2 (en) 2016-05-20 2019-03-12 Disney Enterprises, Inc. System for providing multi-directional and multi-person walking in virtual reality environments
US10140776B2 (en) 2016-06-13 2018-11-27 Microsoft Technology Licensing, Llc Altering properties of rendered objects via control points
US10531212B2 (en) 2016-06-17 2020-01-07 Ultrahaptics Ip Ltd. Acoustic transducers in haptic systems
US10268275B2 (en) 2016-08-03 2019-04-23 Ultrahaptics Ip Ltd Three-dimensional perceptions in haptic systems
US10755538B2 (en) 2016-08-09 2020-08-25 Ultrahaptics ilP LTD Metamaterials and acoustic lenses in haptic systems
CN109715065A (zh) 2016-08-15 2019-05-03 乔治亚技术研究公司 电子设备及其控制方法
US10394317B2 (en) 2016-09-15 2019-08-27 International Business Machines Corporation Interaction with holographic image notification
US10945080B2 (en) 2016-11-18 2021-03-09 Stages Llc Audio analysis and processing system
US10373452B2 (en) 2016-11-29 2019-08-06 Immersion Corporation Targeted haptic projection
US10943578B2 (en) * 2016-12-13 2021-03-09 Ultrahaptics Ip Ltd Driving techniques for phased-array systems
US10497358B2 (en) 2016-12-23 2019-12-03 Ultrahaptics Ip Ltd Transducer driver
CN110178370A (zh) 2017-01-04 2019-08-27 辉达公司 使用用于立体渲染的光线步进和虚拟视图广播器进行这种渲染
US10289909B2 (en) 2017-03-06 2019-05-14 Xerox Corporation Conditional adaptation network for image classification
US20180310111A1 (en) 2017-04-24 2018-10-25 Ultrahaptics Ip Ltd Algorithm Enhancements for Haptic-Based Phased-Array Systems
US20180304310A1 (en) 2017-04-24 2018-10-25 Ultrahaptics Ip Ltd Interference Reduction Techniques in Haptic Systems
US20190197840A1 (en) 2017-04-24 2019-06-27 Ultrahaptics Ip Ltd Grouping and Optimization of Phased Ultrasonic Transducers for Multi-Field Solutions
US10469973B2 (en) 2017-04-28 2019-11-05 Bose Corporation Speaker array systems
EP3409380A1 (en) 2017-05-31 2018-12-05 Nxp B.V. Acoustic processor
US10168782B1 (en) 2017-06-05 2019-01-01 Rockwell Collins, Inc. Ultrasonic haptic feedback control system and method
CN107340871A (zh) 2017-07-25 2017-11-10 深识全球创新科技(北京)有限公司 集成手势识别与超声波触觉反馈的装置及其方法和用途
US11048329B1 (en) 2017-07-27 2021-06-29 Emerge Now Inc. Mid-air ultrasonic haptic interface for immersive computing environments
US10327974B2 (en) 2017-08-02 2019-06-25 Immersion Corporation Haptic implants
US10512839B2 (en) 2017-09-28 2019-12-24 Igt Interacting with three-dimensional game elements using gaze detection
US11531395B2 (en) 2017-11-26 2022-12-20 Ultrahaptics Ip Ltd Haptic effects from focused acoustic fields
WO2019113380A1 (en) 2017-12-06 2019-06-13 Invensense, Inc. Three dimensional object-localization and tracking using ultrasonic pulses with synchronized inertial position determination
US20190196591A1 (en) 2017-12-22 2019-06-27 Ultrahaptics Ip Ltd Human Interactions with Mid-Air Haptic Systems
WO2019122912A1 (en) 2017-12-22 2019-06-27 Ultrahaptics Limited Tracking in haptic systems
EP3729418A1 (en) * 2017-12-22 2020-10-28 Ultrahaptics Ip Ltd Minimizing unwanted responses in haptic systems
US11175739B2 (en) * 2018-01-26 2021-11-16 Immersion Corporation Method and device for performing actuator control based on an actuator model
US20190310710A1 (en) 2018-04-04 2019-10-10 Ultrahaptics Limited Dynamic Haptic Feedback Systems
SG11202010752VA (en) 2018-05-02 2020-11-27 Ultrahaptics Ip Ltd Blocking plate structure for improved acoustic transmission efficiency
CN112385142B (zh) 2018-05-11 2024-04-05 纳诺塞米有限公司 用于非线性系统的数字补偿器
CN109101111B (zh) 2018-08-24 2021-01-29 吉林大学 融合静电力、空气压膜和机械振动的触觉再现方法与装置
JP7014100B2 (ja) 2018-08-27 2022-02-01 日本電信電話株式会社 拡張装置、拡張方法及び拡張プログラム
WO2020049322A1 (en) 2018-09-09 2020-03-12 Ultrahaptics Ip Limited Event triggering in phased-array systems
US11098951B2 (en) 2018-09-09 2021-08-24 Ultrahaptics Ip Ltd Ultrasonic-assisted liquid manipulation
US11378997B2 (en) 2018-10-12 2022-07-05 Ultrahaptics Ip Ltd Variable phase and frequency pulse-width modulation technique
KR20200075344A (ko) 2018-12-18 2020-06-26 삼성전자주식회사 검출기, 객체 검출 방법, 학습기 및 도메인 변환을 위한 학습 방법
KR102230421B1 (ko) 2018-12-28 2021-03-22 한국과학기술원 가상 모델 제어 방법 및 장치
EP3906462A2 (en) 2019-01-04 2021-11-10 Ultrahaptics IP Ltd Mid-air haptic textures
US11455496B2 (en) 2019-04-02 2022-09-27 Synthesis Ai, Inc. System and method for domain adaptation using synthetic data
US11842517B2 (en) 2019-04-12 2023-12-12 Ultrahaptics Ip Ltd Using iterative 3D-model fitting for domain adaptation of a hand-pose-estimation neural network
US20210109712A1 (en) 2019-10-13 2021-04-15 Ultraleap Limited Hardware Algorithm for Complex-Valued Exponentiation and Logarithm Using Simplified Sub-Steps
US11374586B2 (en) 2019-10-13 2022-06-28 Ultraleap Limited Reducing harmonic distortion by dithering
US11169610B2 (en) 2019-11-08 2021-11-09 Ultraleap Limited Tracking techniques in haptic systems
US11715453B2 (en) 2019-12-25 2023-08-01 Ultraleap Limited Acoustic transducer structures
US20210303758A1 (en) 2020-03-31 2021-09-30 Ultraleap Limited Accelerated Hardware Using Dual Quaternions
US11816267B2 (en) 2020-06-23 2023-11-14 Ultraleap Limited Features of airborne ultrasonic fields
US11886639B2 (en) 2020-09-17 2024-01-30 Ultraleap Limited Ultrahapticons
US20220155949A1 (en) 2020-11-16 2022-05-19 Ultraleap Limited Intent Driven Dynamic Gesture Recognition System
US20220252550A1 (en) 2021-01-26 2022-08-11 Ultraleap Limited Ultrasound Acoustic Field Manipulation Techniques

Also Published As

Publication number Publication date
US11553295B2 (en) 2023-01-10
US20230168228A1 (en) 2023-06-01
EP4042413A1 (en) 2022-08-17
AU2020368678A1 (en) 2022-05-19
IL292114A (en) 2022-06-01
CA3154040A1 (en) 2021-04-22
US20210112353A1 (en) 2021-04-15
KR20220080737A (ko) 2022-06-14
WO2021074604A1 (en) 2021-04-22
JP2022551944A (ja) 2022-12-14

Similar Documents

Publication Publication Date Title
CN114631139A (zh) 利用虚拟麦克风进行动态封顶
US8238569B2 (en) Method, medium, and apparatus for extracting target sound from mixed sound
RU2640742C1 (ru) Извлечение реверберирующего звука с использованием микрофонных массивов
US7626889B2 (en) Sensor array post-filter for tracking spatial distributions of signals and noise
US8229129B2 (en) Method, medium, and apparatus for extracting target sound from mixed sound
KR101925887B1 (ko) 상관된 소스들의 블라인드 측위를 위한 시스템들 및 방법들
JP4829278B2 (ja) 室内インパルス応答モデリング方法および装置
JP6002690B2 (ja) オーディオ入力信号処理システム
US20090136052A1 (en) Active Noise Cancellation Using a Predictive Approach
KR100856246B1 (ko) 실제 잡음 환경의 특성을 반영한 빔포밍 장치 및 방법
US10726857B2 (en) Signal processing for speech dereverberation
Xiang et al. Investigation of acoustically coupled enclosures using a diffusion-equation model
Worthmann et al. Adaptive frequency-difference matched field processing for high frequency source localization in a noisy shallow ocean
JP2846125B2 (ja) 超音波測定信号の適応的最適化方法
Kuster Reliability of estimating the room volume from a single room impulse response
JPWO2021074604A5 (zh)
JP5698166B2 (ja) 音源距離推定装置、直間比推定装置、雑音除去装置、それらの方法、及びプログラム
Herzog et al. Distance estimation in the spherical harmonic domain using the spherical wave model
US11830471B1 (en) Surface augmented ray-based acoustic modeling
Giri et al. Empirical Bayes based relative impulse response estimation
CN112687256A (zh) 降噪系统、方法以及车辆
Zhou et al. Design of a robust MVDR beamforming method with Low-Latency by reconstructing covariance matrix for speech enhancement
JP7375904B2 (ja) フィルタ係数最適化装置、潜在変数最適化装置、フィルタ係数最適化方法、潜在変数最適化方法、プログラム
KR102624195B1 (ko) 음성의 명시적 공간 필터링을 위한 지도 학습 방법 및 시스템
JP2022130917A (ja) 応答算出装置および応答算出方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination