JP2022535751A - 熱電素子 - Google Patents

熱電素子 Download PDF

Info

Publication number
JP2022535751A
JP2022535751A JP2021570455A JP2021570455A JP2022535751A JP 2022535751 A JP2022535751 A JP 2022535751A JP 2021570455 A JP2021570455 A JP 2021570455A JP 2021570455 A JP2021570455 A JP 2021570455A JP 2022535751 A JP2022535751 A JP 2022535751A
Authority
JP
Japan
Prior art keywords
substrate
insulating layer
thermoelectric
disposed
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021570455A
Other languages
English (en)
Inventor
チェ,マンヒュー
チョ,ヨンサン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Innotek Co Ltd
Original Assignee
LG Innotek Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Innotek Co Ltd filed Critical LG Innotek Co Ltd
Publication of JP2022535751A publication Critical patent/JP2022535751A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/854Thermoelectric active materials comprising inorganic compositions comprising only metals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

本発明の一実施例に係る熱電素子は、第1絶縁層、前記第1絶縁層上に配置された第1基板、前記第1基板上に配置された第2絶縁層、前記第2絶縁層上に配置された第1電極、前記第1電極上に配置されたP型熱電レッグおよびN型熱電レッグ、前記P型熱電レッグおよびN型熱電レッグ上に配置された第2電極、前記第2電極上に配置された第3絶縁層、そして、前記第3絶縁層上に配置された第2基板を含み、前記第1絶縁層は第1酸化アルミニウム層を含み、前記第1基板はアルミニウム基板であり、前記第2基板は銅基板であり、前記第1基板は低温部であり、前記第2基板は高温部である。

Description

本発明は熱電素子に関し、より詳細には熱電素子の基板および絶縁層に関する。
熱電現象は材料内部の電子(electron)と正孔(hole)の移動によって発生する現象であり、熱と電気の間の直接的なエネルギー変換を意味する。
熱電素子は熱電現象を利用する素子を総称し、P型熱電材料とN型熱電材料を金属電極の間に接合させてPN接合対を形成する構造を有する。
熱電素子は電気抵抗の温度変化を利用する素子、温度差によって起電力が発生する現象であるゼーベック効果を利用する素子、電流による吸熱または発熱が発生する現象であるペルティエ効果を利用する素子などに区分され得る。
熱電素子は家電製品、電子部品、通信用部品などに多様に適用されている。例えば、熱電素子は冷却用装置、温熱用装置、発電用装置などに適用され得る。これに伴い、熱電素子の熱電性能に対する要求はますます高まっている。
熱電素子は基板、電極および熱電レッグを含み、上部基板と下部基板の間に複数の熱電レッグが配置され、複数の熱電レッグと上部基板の間に複数の上部電極が配置され、複数の熱電レッグとおよび下部基板の間に複数の下部電極が配置される。
熱電素子の熱伝達性能を向上させるために、金属基板を使おうとする試みが増加している。
一般的に、熱電素子は予め設けられた金属基板上に樹脂層、電極、熱電レッグを順次積層する工程により製作され得る。金属基板が使われる場合、熱伝導の側面では有利な効果が得られるが、耐電圧が低いため長期間の使用時に信頼性が低くなる問題がある。
このような問題を解決するために、金属基板の表面を酸化処理して耐電圧を高めようとする試みがあるが、高温部側には基板上にヒートシンクが接合されなければならないが、酸化処理された金属基板とヒートシンク間の接合が難しい問題がある。
これに伴い、熱伝導性能だけでなく、耐電圧性能およびヒートシンクとの接合性能が全て改善された熱電素子が必要である。
発明の詳細な説明
本発明が達成しようとする技術的課題は、熱伝導性能、耐電圧性能およびヒートシンクとの接合性能が全て改善された熱電素子の基板および絶縁層構造を提供することである。
本発明の一実施例に係る熱電素子は、第1絶縁層、前記第1絶縁層上に配置された第1基板、前記第1基板上に配置された第2絶縁層、前記第2絶縁層上に配置された第1電極、前記第1電極上に配置されたP型熱電レッグおよびN型熱電レッグ、前記P型熱電レッグおよびN型熱電レッグ上に配置された第2電極、前記第2電極上に配置された第3絶縁層、そして、前記第3絶縁層上に配置された第2基板を含み、前記第1絶縁層は第1酸化アルミニウム層を含み、前記第1基板はアルミニウム基板であり、前記第2基板は銅基板であり、前記第1基板は低温部であり、前記第2基板は高温部である。
前記第2絶縁層および前記第3絶縁層はそれぞれエポキシ樹脂組成物およびシリコン樹脂組成物のうち少なくとも一つを含む樹脂層からなり得る。
前記第2絶縁層の厚さは前記第3絶縁層の厚さと同一であるか、前記第3絶縁層の厚さより小さくてもよい。
前記第2絶縁層は第2酸化アルミニウム層を含み、前記第3絶縁層はエポキシ樹脂組成物およびシリコン樹脂組成物のうち少なくとも一つを含む樹脂層からなり得る。
前記第2絶縁層は前記第2酸化アルミニウム層上に配置され、エポキシ樹脂組成物およびシリコン樹脂組成物のうち少なくとも一つを含む樹脂層をさらに含むことができる。
前記第2絶縁層に含まれた樹脂層の厚さは前記第2酸化アルミニウム層の厚さおよび前記第3絶縁層の厚さそれぞれより小さくてもよい。
前記第1酸化アルミニウム層および前記第2酸化アルミニウム層のうち少なくとも一つはアルミニウム基板をアノダイジングして形成され得る。
前記第1酸化アルミニウム層および前記第2酸化アルミニウム層のうち少なくとも一つは、前記アルミニウム基板の側面に沿って延びて互いに連結され得る。
前記第1絶縁層と前記第2絶縁層の厚さの和は80μm以上であり得る。
前記銅基板上に配置されたヒートシンクをさらに含むことができる。
前記銅基板と前記ヒートシンクの間には酸化層が配置されなくてもよい。
本発明の実施例によると、性能が優秀で、信頼性が高い熱電素子が得られる。特に、本発明の実施例によると、熱伝導性能だけでなく、耐電圧性能およびヒートシンクとの接合性能まで改善された熱電素子が得られる。
また、本発明の実施例によると、低温部と高温部間の要求される性能差を全て満足させる熱電素子が得られる。
本発明の実施例に係る熱電素子は小型で具現されるアプリケーションだけでなく、車両、船舶、製鉄所、焼却炉などのように大型で具現されるアプリケーションにおいても適用され得る。
熱電素子の断面図である。 熱電素子の斜視図である。
シーリング部材を含む熱電素子の斜視図である。
シーリング部材を含む熱電素子の分解斜視図である。
本発明の一実施例に係る熱電素子の断面図である。
本発明の他の実施例に係る熱電素子の断面図である。
本発明のさらに他の実施例に係る熱電素子の断面図である。
本発明のさらに他の実施例に係る断面図である。 本発明のさらに他の実施例に係る断面図である。
絶縁層の厚さによる耐電圧をシミュレーションした結果である。
比較例、実施例2および実施例3に係る構造で絶縁層の厚さによる熱抵抗の変化をシミュレーションした結果である。
以下、添付された図面を参照して本発明の好ましい実施例を詳細に説明する。
ただし、本発明の技術思想は説明される一部の実施例に限定されるものではなく、互いに異なる多様な形態で具現され得、本発明の技術思想範囲内であれば、実施例間にその構成要素の中の一つ以上を選択的に結合、置き換えて使うことができる。
また、本発明の実施例で使われる用語(技術および科学的用語を含む)は、明白に特に定義されて記述されない限り、本発明が属する技術分野で通常の知識を有する者に一般的に理解され得る意味で解釈され得、辞書に定義された用語のように一般的に使われる用語は、関連技術の文脈上の意味を考慮してその意味を解釈することができるであろう。
また、本発明の実施例で使われた用語は実施例を説明するためのものであり、本発明を制限しようとするものではない。
本明細書で、単数型は文面で特に言及しない限り複数型も含むことができ、「Aおよび(と)B、Cのうち少なくとも一つ(または一つ以上)」と記載される場合、A、B、Cで組み合わせできるすべての組み合わせのうち一つ以上を含むことができる。
また、本発明の実施例の構成要素の説明において、第1、第2、A、B、(a)、(b)等の用語を使うことができる。
このような用語はその構成要素を他の構成要素と区別するためのものに過ぎず、その用語によって該当構成要素の本質や順番または順序などに限定されない。
そして、或る構成要素が他の構成要素に「連結」、「結合」または「接続」されると記載された場合、その構成要素はその他の構成要素に直接的に連結、結合または接続される場合だけでなく、その構成要素とその他の構成要素の間にあるさらに他の構成要素によって「連結」、「結合」または「接続」される場合も含むことができる。
また、各構成要素の「上(うえ)または下(した)」に形成または配置されるものと記載される場合、上(うえ)または下(した)は二つの構成要素が互いに直接接触する場合だけでなく、一つ以上のさらに他の構成要素が二つの構成要素の間に形成または配置される場合も含む。また、「上(うえ)または下(した)」と表現される場合、一つの構成要素を基準として上側方向だけでなく下側方向の意味も含むことができる。
図1は熱電素子の断面図であり、図2は熱電素子の斜視図である。図3はシーリング部材を含む熱電素子の斜視図であり、図4はシーリング部材を含む熱電素子の分解斜視図である。
図1~図2を参照すると、熱電素子100は下部基板110、下部電極120、P型熱電レッグ130、N型熱電レッグ140、上部電極150および上部基板160を含む。
下部電極120は下部基板110とP型熱電レッグ130およびN型熱電レッグ140の下部底面間に配置され、上部電極150は上部基板160とP型熱電レッグ130およびN型熱電レッグ140の上部底面間に配置される。これに伴い、複数のP型熱電レッグ130および複数のN型熱電レッグ140は下部電極120および上部電極150によって電気的に連結される。下部電極120と上部電極150の間に配置され、電気的に連結される一対のP型熱電レッグ130およびN型熱電レッグ140は単位セルを形成することができる。
例えば、口出し線181、182を通じて下部電極120および上部電極150に電圧を印加すると、ペルティエ効果によってP型熱電レッグ130からN型熱電レッグ140に電流が流れる基板は熱を吸収して冷却部として作用し、N型熱電レッグ140からP型熱電レッグ130に電流が流れる基板は加熱されて発熱部として作用することができる。または下部電極120および上部電極150巻に温度差を加えると、ゼーベック効果によってP型熱電レッグ130およびN型熱電レッグ140内の電荷が移動し、電気が発生することもある。
ここで、P型熱電レッグ130およびN型熱電レッグ140はビズマス(Bi)およびテルル(Te)を主原料で含むビスマステルライド(Bi-Te)系熱電レッグであり得る。P型熱電レッグ130はアンチモン(Sb)、ニッケル(Ni)、アルミニウム(Al)、銅(Cu)、銀(Ag)、鉛(Pb)、ホウ素(B)、ガリウム(Ga)、テルル(Te)、ビズマス(Bi)およびインジウム(In)のうち少なくとも一つを含むビスマステルライド(Bi-Te)系熱電レッグであり得る。例えば、P型熱電レッグ130は全体重量100wt%に対し主原料物質であるBi-Sb-Teを99~99.999wt%で含み、ニッケル(Ni)、アルミニウム(Al)、銅(Cu)、銀(Ag)、鉛(Pb)、ホウ素(B)、ガリウム(Ga)およびインジウム(In)のうち少なくとも一つを0.001~1wt%で含むことができる。N型熱電レッグ140はセレン(Se)、ニッケル(Ni)、アルミニウム(Al)、銅(Cu)、銀(Ag)、鉛(Pb)、ホウ素(B)、ガリウム(Ga)、テルル(Te)、ビズマス(Bi)およびインジウム(In)のうち少なくとも一つを含むビスマステルライド(Bi-Te)系熱電レッグであり得る。例えば、N型熱電レッグ140は全体重量100wt%に対し主原料物質であるBi-Se-Teを99~99.999wt%で含み、ニッケル(Ni)、アルミニウム(Al)、銅(Cu)、銀(Ag)、鉛(Pb)、ホウ素(B)、ガリウム(Ga)およびインジウム(In)のうち少なくとも一つを0.001~1wt%で含むことができる。
P型熱電レッグ130およびN型熱電レッグ140はバルク型または積層型で形成され得る。一般的にバルク型P型熱電レッグ130またはバルク型N型熱電レッグ140は熱電素材を熱処理してインゴット(ingot)を製造し、インゴットを粉砕して篩分けして熱電レッグ用粉末を獲得した後、これを焼結して、焼結体をカッティングする過程を通じて得られ得る。この時、P型熱電レッグ130およびN型熱電レッグ140は多結晶熱電レッグであり得る。多結晶熱電レッグのために、熱電レッグ用粉末を焼結する時、100MPa~200MPaで圧縮することができる。例えば、P型熱電レッグ130の焼結時に熱電レッグ用粉末を100~150MPa、好ましくは110~140MPa、さらに好ましくは120~130MPaで焼結することができる。そして、N型熱電レッグ130の焼結時に熱電レッグ用粉末を150~200MPa、好ましくは160~195MPa、さらに好ましくは170~190MPaで焼結することができる。このように、P型熱電レッグ130およびN型熱電レッグ140は多結晶熱電レッグである場合、P型熱電レッグ130およびN型熱電レッグ140の強度が高くなり得る。積層型P型熱電レッグ130または積層型N型熱電レッグ140はシート状の基材上に熱電素材を含むペーストを塗布して単位部材を形成した後、単位部材を積層しカッティングする過程を通じて得られ得る。
この時、一対のP型熱電レッグ130およびN型熱電レッグ140は同じ形状および体積を有するか、互いに異なる形状および体積を有することができる。例えば、P型熱電レッグ130とN型熱電レッグ140の電気伝導特性が異なるため、N型熱電レッグ140の高さまたは断面積をP型熱電レッグ130の高さまたは断面積と異なるように形成してもよい。
この時、P型熱電レッグ130またはN型熱電レッグ140は円筒状、多角柱状、楕円状柱状などを有することができる。
またはP型熱電レッグ130またはN型熱電レッグ140は積層型構造を有してもよい。例えば、P型熱電レッグまたはN型熱電レッグはシート状の基材に半導体物質が塗布された複数の構造物を積層した後、これを切断する方法で形成され得る。これによって、材料の損失を防止し、電気伝導特性を向上させることができる。各構造物は開口パターンを有する伝導性層をさらに含むことができ、これに伴い、構造物間の接着力を高め、熱伝導度を低くし、電気伝導度を高めることができる。
またはP型熱電レッグ130またはN型熱電レッグ140は、一つの熱電レッグ内で断面積が異なるように形成されてもよい。例えば、一つの熱電レッグ内で電極に向かうように配置される両端部の断面積が両端部間の断面積より大きく形成されてもよい。これによると、両端部間の温度差を大きく形成することができるため、熱電効率が高くなり得る。
本発明の一実施例に係る熱電素子の性能は熱電性能指数(figureofmerit、ZT)で示すことができる。熱電性能指数(ZT)は数学式1のように示すことができる。
数式1
Figure 2022535751000002
ここで、αはゼーベック係数[V/K]であり、σは電気伝導度[S/m]であり、ασはパワー因子(PowerFactor、[W/mK])である。そして、Tは温度であり、kは熱伝導度[W/mK]である。kはa・cp・ρで表すことができ、aは熱拡散度[cm/S]であり、cpは比熱[J/gK]であり、ρは密度[g/cm]である。
熱電素子の熱電性能指数を得るために、zメーターを利用してZ値(V/K)を測定し、測定したZ値を利用して熱電性能指数(ZT)を計算することができる。
ここで、下部基板110とP型熱電レッグ130およびN型熱電レッグ140の間に配置される下部電極120、そして、上部基板160とP型熱電レッグ130およびN型熱電レッグ140の間に配置される上部電極150は、銅(Cu)、銀(Ag)、アルミニウム(Al)およびニッケル(Ni)のうち少なくとも一つを含み、0.01mm~0.3mmの厚さを有することができる。下部電極120または上部電極150の厚さが0.01mm未満の場合、電極として機能が低下することになって電気伝導性能が低くなり得、0.3mmを超過する場合、抵抗の増加によって伝導効率が低くなり得る。
そして、互いに対向する下部基板110と上部基板160は金属基板であり得、その厚さは0.1mm~1.5mmであり得る。金属基板の厚さが0.1mm未満であるか、1.5mmを超過する場合、放熱特性または熱伝導率が過度に高くなり得るため、熱電素子の信頼性が低下し得る。また、下部基板110と上部基板160が金属基板である場合、下部基板110と下部電極120の間および上部基板160と上部電極150の間にはそれぞれ絶縁層170がさらに形成され得る。絶縁層170は5~20W/Kの熱伝導度を有する素材を含むことができる。
この時、下部基板110と上部基板160の大きさは異なるように形成されてもよい。例えば、下部基板110と上部基板160のうち一つの体積、厚さまたは面積は、他の一つの体積、厚さまたは面積より大きく形成され得る。これに伴い、熱電素子の吸熱性能または放熱性能を高めることができる。好ましくは、下部基板110の体積、厚さまたは面積は上部基板160の体積、厚さまたは面積のうち少なくとも一つより大きく形成され得る。この時、下部基板110はゼーベック効果のために高温領域に配置される場合、ペルティエ効果のために発熱領域に適用される場合、または後述する熱電モジュールの外部環境から保護のためのシーリング部材が下部基板110上に配置される場合に、上部基板160より体積、厚さまたは面積のうち少なくとも一つをより大きくすることができる。この時、下部基板110の面積は上部基板160の面積対比1.2~5倍の範囲で形成することができる。下部基板110の面積が上部基板160に比べて1.2倍未満に形成される場合、熱伝達効率の向上に及ぼす影響は高くなく、5倍を超過する場合にはかえって熱伝達効率が顕著に低下して、熱電モジュールの基本形状を維持することが困難であり得る。
また、下部基板110と上部基板160のうち少なくとも一つの表面には放熱パターン、例えば凹凸パターンが形成されてもよい。これに伴い、熱電素子の放熱性能を高めることができる。凹凸パターンがP型熱電レッグ130またはN型熱電レッグ140と接触する面に形成される場合、熱電レッグと基板間の接合特性も向上し得る。熱電素子100は下部基板110、下部電極120、P型熱電レッグ130、N型熱電レッグ140、上部電極150および上部基板160を含む。
図3~図4に図示された通り、下部基板110と上部基板160の間にはシーリング部材190がさらに配置されてもよい。シーリング部材は下部基板110と上部基板160の間で下部電極120、P型熱電レッグ130、N型熱電レッグ140および上部電極150の側面に配置され得る。これに伴い、下部電極120、P型熱電レッグ130、N型熱電レッグ140および上部電極150は、外部の湿気、熱、汚染などからシーリングされ得る。ここで、シーリング部材190は、複数の下部電極120の最外郭、複数のP型熱電レッグ130および複数のN型熱電レッグ140の最外郭および複数の上部電極150の最外郭の側面から所定距離離隔して配置されるシーリングケース192、シーリングケース192と下部基板110の間に配置されるシーリング材194およびシーリングケース192と上部基板160の間に配置されるシーリング材196を含むことができる。このように、シーリングケース192はシーリング材194、196を媒介として下部基板110および上部基板160と接触することができる。これに伴い、シーリングケース192が下部基板110および上部基板160と直接接触する場合、シーリングケース192を通じて熱伝導が起きることになり、その結果、下部基板110と上部基板160間の温度差が低くなる問題を防止することができる。ここで、シーリング材194、196はエポキシ樹脂およびシリコン樹脂のうち少なくとも一つを含むか、エポキシ樹脂およびシリコン樹脂のうち少なくとも一つが両面に塗布されたテープを含むことができる。シーリング材194、194はシーリングケース192と下部基板110の間およびシーリングケース192と上部基板160の間を気密する役割をし、下部電極120、P型熱電レッグ130、N型熱電レッグ140および上部電極150のシーリング効果を高めることができ、仕上げ材、仕上げ層、防水材、防水層などと混用され得る。ここで、シーリングケース192と下部基板110の間をシーリングするシーリング材194は下部基板110の上面に配置され、シーリングケース192と上部基板160の間をシーリングするシーリング材196は上部基板160の側面に配置され得る。このために、下部基板110の面積は上部基板160の面積より大きくてもよい。一方、シーリングケース192には電極に連結された口出し線180、182を引き出すためのガイド溝Gが形成され得る。このために、シーリングケース192はプラスチックなどからなる射出成形物であり得、シーリングカバーと混用され得る。ただし、シーリング部材に関する以上の説明は例示に過ぎず、シーリング部材は多様な形態に変形され得る。図示されてはいないが、シーリング部材を囲むように断熱材がさらに含まれてもよい。またはシーリング部材は断熱成分を含んでもよい。
一方、P型熱電レッグ130およびN型熱電レッグ140は図1(a)または図1(b)で図示する構造を有することができる。図1(a)を参照すると、熱電レッグ130、140は熱電素材層132、142、熱電素材層132、142の一面上に積層される第1メッキ層134-1、144-1、および熱電素材層132、142の一面と対向して配置される他面に積層される第2メッキ層134-2、144-2を含むことができる。または図1(b)を参照すると、熱電レッグ130、140は熱電素材層132、142、熱電素材層132、142の一面上に積層される第1メッキ層134-1、144-1、熱電素材層132、142の一面と対向して配置される他面に積層される第2メッキ層134-2、144-2、熱電素材層132、142と第1メッキ層134-1、144-1の間および熱電素材層132、142と第2メッキ層134-2、144-2の間にそれぞれ配置される第1バッファー層136-1、146-1および第2バッファー層136-2、146-2を含むことができる。または熱電レッグ130、140は第1メッキ層134-1、144-1および第2メッキ層134-2、144-2それぞれ煮込んで下部基板110および上部基板160それぞれ間に積層される金属層をさらに含んでもよい。
ここで、熱電素材層132、142は半導体材料であるビズマス(Bi)およびテルル(Te)を含むことができる。熱電素材層132、142は前述したP型熱電レッグ130またはN型熱電レッグ140と同じ素材または形状を有することができる。熱電素材層132、142が多結晶である場合、熱電素材層132、142、第1バッファー層136-1、146-1および第1メッキ層134-1、144-1の接合力および熱電素材層132、142、第2バッファー層136-2、146-2および第2メッキ層134-2、144-2間の接合力が高くなり得る。これに伴い、振動が発生するアプリケーション、例えば車両などに熱電素子100が適用されても第1メッキ層134-1、144-1および第2メッキ層134-2、144-2がP型熱電レッグ130またはN型熱電レッグ140から離脱して炭化する問題を防止することができ、熱電素子100の耐久性および信頼性を高めることができる。
そして、金属層は銅(Cu)、銅合金、アルミニウム(Al)およびアルミニウム合金から選択され得、0.1~0.5mm、好ましくは0.2~0.3mmの厚さを有することができる。
次に、第1メッキ層134-1、144-1および第2メッキ層134-2、144-2は、それぞれNi、Sn、Ti、Fe、Sb、CrおよびMoのうち少なくとも一つを含むことができ、1~20μm、好ましくは1~10μmの厚さを有することができる。第1メッキ層134-1、144-1および第2メッキ層134-2、144-2は、熱電素材層132、142内の半導体材料であるBiまたはTeと金属層間の反応を防止するため、熱電素子の性能低下を防止できるだけでなく、金属層の酸化を防止することができる。
この時、熱電素材層132、142と第1メッキ層134-1、144-1の間および熱電素材層132、142と第2メッキ層134-2、144-2の間には、第1バッファー層136-1、146-1および第2バッファー層136-2、146-2が配置され得る。この時、第1バッファー層136-1、146-1および第2バッファー層136-2、146-2はTeを含むことができる。例えば、第1バッファー層136-1、146-1および第2バッファー層136-2、146-2はNi-Te、Sn-Te、Ti-Te、Fe-Te、Sb-Te、Cr-TeおよびMo-Teのうち少なくとも一つを含むことができる。本発明の実施例によると、熱電素材層132、142と第1メッキ層134-1、144-1および第2メッキ層134-2、144-2の間にTeを含む第1バッファー層136-1、146-1および第2バッファー層136-2、146-2が配置されると、熱電素材層132、142内のTeが第1メッキ層134-1、144-1および第2メッキ層134-2、144-2に拡散すること防止することができる。これに伴い、Biリッチ領域によって熱電素材層内の電気抵抗が増加する問題を防止することができる。
以上において、下部基板110、下部電極120、上部電極150および上部基板160という用語を使っているが、これは理解の容易および説明の便宜のために任意に上部および下部と指称したものに過ぎず、下部基板110および下部電極120が上部に配置され、上部電極150および上部基板160が下部に配置されるように位置が逆転されてもよい。
図5は本発明の一実施例に係る熱電素子の断面図であり、図6は本発明の他の実施例に係る熱電素子の断面図であり、図7は本発明のさらに他の実施例に係る熱電素子の断面図であり、図8は本発明のさらに他の実施例に係る断面図であり、図9は本発明のさらに他の実施例に係る断面図である。図1~図4で説明した内容と同じ内容に対しては重複した説明を省略する。
図5~図7を参照すると、本発明の実施例に係る熱電素子300は、第1絶縁層310、第1絶縁層310上に配置された第1基板320、第1基板320上に配置された第2絶縁層330、第2絶縁層330上に配置された複数の第1電極340、複数の第1電極340上に配置された複数のP型熱電レッグ350および複数のN型熱電レッグ355、複数のP型熱電レッグ350および複数のN型熱電レッグ355上に配置された複数の第2電極360、複数の第2電極360上に配置された第3絶縁層370および第3絶縁層370上に配置された第2基板380を含む。図示された通り、第2基板380上にはヒートシンク390がさらに配置されてもよい。図示されてはいないが、第1基板320と第2基板380の間にはシーリング部材がさらに配置され得る。
ここで、第1電極340、P型熱電レッグ350、N型熱電レッグ360、第2電極370は、それぞれ図1~図2で説明した上部電極150、P型熱電レッグ130、N型熱電レッグ140および下部電極120に対応し得、図1~図2で説明した内容が同一または類似するように適用され得る。
一般的に、熱電素子300の低温部側に配置された電極に電源が連結されるので、高温部側に比べて低温部側にさらに高い耐電圧性能が要求され得る。ここで、(+)端子と(-)端子が第1電極340に連結されて第1絶縁層310、第1基板320および第2絶縁層330を貫通して下へ引き出されるものとして図示されているが、これに制限されるものではなく、(+)端子と(-)端子が第1電極340に連結された後、第1絶縁層310、第1基板320および第2絶縁層330上で側面に引き出されてもよい。
これに反し、熱電素子300の駆動時に熱電素子300の高温部側は高温、例えば約180℃以上に露出され得、電極、絶縁層および基板の互いに異なる熱膨張係数によって電極、絶縁層および基板間の剥離が問題となり得る。これに伴い、熱電素子300の高温部側は低温部側に比べてさらに高い熱伝導性能が要求され得る。特に、熱電素子300の高温部側の基板上にヒートシンクがさらに配置された場合、基板とヒートシンク間の接合力も熱電素子300の耐久性および信頼性に大きい影響を及ぼし得る。
以下、第1基板320が熱電素子300の低温部側に配置され、第2基板380が熱電素子300の高温部側に配置されることを仮定して説明する。
本発明の実施例によると、第1基板320はアルミニウム基板であり、第2基板380は銅基板からなる。銅基板はアルミニウム基板に熱伝導度および電気伝導度が高い。これに伴い、第1基板320がアルミニウム基板からなり、第2基板380が銅基板からなる場合、低温部側の高い耐電圧性能および高温部側の高い放熱性能を全て満足させることができる。
そして、第1基板320は第1絶縁層310上に配置され、第1基板320上には第2絶縁層330が配置される。このように、第1基板320の両面に全て絶縁層が配置された場合、第1基板320側の耐電圧性能はさらに高くなり得る。
この時、第1絶縁層310は酸化アルミニウム層であり得る。第1絶縁層310が酸化アルミニウム層である場合、第1基板320側の熱抵抗を高くしないながらも、耐電圧性能を高めることができる。この時、第1絶縁層310の厚さは20~100μm、好ましくは30~80μm、さらに好ましくは35~60μmであり得る。第1絶縁層310の厚さがこのような数値範囲を満足する場合、高い熱伝導性能および耐電圧性能を同時に満足させることができる。
この時、第1基板320側の絶縁層の厚さの総和、すなわち第1絶縁層310の厚さと第2絶縁層330の厚さの和は80μm以上、好ましくは80~480μmであり得る。一般的に、絶縁層の厚さが厚くなるほど耐電圧性能は高くなり得る。しかし、絶縁層の厚さが厚くなるほど熱抵抗も大きくなる問題がある。しかし、本発明の実施例では第1基板320側の絶縁層を第1基板320の両面に分けて配置し、特に第1基板320の下に酸化アルミニウム層を配置することによって、高い熱伝導性能および耐電圧性能を同時に満足させることが可能である。
一方、図3に図示された通り、第2絶縁層330および第3絶縁層370は、それぞれエポキシ樹脂および無機充填材を含むエポキシ樹脂組成物およびPDMS(polydimethylsiloxane)を含むシリコン樹脂組成物のうち少なくとも一つを含む樹脂層からなり得る。これに伴い、第2絶縁層330は第1基板320と第1電極340間の絶縁性、接合力および熱伝導性能を向上させることができ、第3絶縁層370は第2電極360と第2基板380間の絶縁性、接合力および熱伝導性能を向上させることができる。
ここで、無機充填材は樹脂層の68~88vol%で含まれ得る。無機充填材が68vol%未満で含まれると熱伝導効果が低い可能性があり、無機充填材が88vol%を超過して含まれると樹脂層は容易に壊れ得る。
そして、エポキシ樹脂はエポキシ化合物および硬化剤を含むことができる。この時、エポキシ化合物10体積比に対して、硬化剤1~10体積比で含まれ得る。ここで、エポキシ化合物は結晶性エポキシ化合物、非結晶性エポキシ化合物およびシリコンエポキシ化合物のうち少なくとも一つを含むことができる。無機充填材は酸化アルミニウムおよび窒化物を含むことができ、窒化物は無機充填材の55~95wt%で含まれ得、さらに好ましくは60~80wt%であり得る。窒化物がこのような数値範囲で含まれる場合、熱伝導度および接合強度を高めることができる。ここで、窒化物は、窒化ホウ素および窒化アルミニウムのうち少なくとも一つを含むことができる。
この時、窒化ホウ素凝集体の粒子の大きさD50は250~350μmであり、酸化アルミニウムの粒子の大きさD50は10~30μmであり得る。窒化ホウ素凝集体の粒子の大きさD50と酸化アルミニウムの粒子の大きさD50がこのような数値範囲を満足する場合、窒化ホウ素凝集体と酸化アルミニウムが樹脂層内に均一に分散され得、これに伴い樹脂層全体としても均一な熱伝導効果および接着性能を有することができる。
この時、樹脂層からなる第2絶縁層330は、第1基板320と第1電極340の間の絶縁性能および接着性能を維持する限度内でできる限り薄く配置されるのが熱伝導性能の側面で有利である。本発明の実施例によると、酸化アルミニウム層からなる第1絶縁層310が第1基板320を挟んで第2絶縁層330と共に配置されているため、樹脂層からなる第2絶縁層330の厚さが同一の素材からなる第3絶縁層370の厚さと同一であるか、第3絶縁層370の厚さより小さくても低温部側が十分な耐電圧性能を有することが可能である。これに伴い、樹脂層からなる第2絶縁層330の厚さは第3絶縁層370の厚さと同一であるか、第3絶縁層370の厚さより小さくてもよい。
特に、第3絶縁層370の厚さは第2絶縁層330の厚さより厚く形成されてもよい。前述した通り、熱電素子300の駆動時に高温部側の温度は約180℃以上に上がり得、本発明の実施例により第3絶縁層370が軟性を有する樹脂層からなる場合、第3絶縁層370は第2電極360と第2基板380間の熱衝撃を緩和する役割をすることができる。
一方、図6を参照すると、第2絶縁層330は第2酸化アルミニウム層を含み、第3絶縁層370はそれぞれエポキシ樹脂および無機充填材を含むエポキシ樹脂組成物およびPDMS(polydimethylsiloxane)を含むシリコン樹脂組成物のうち少なくとも一つを含む樹脂層からなり得る。前述した通り、低温部側では耐電圧性能がさらに重要であり、高温部側では接合性能がさらに重要である。これに伴い、第2絶縁層330が第2酸化アルミニウム層からなる場合、樹脂層からなる場合に比べてさらに高い耐電圧性能を有することができる。また、第3絶縁層370が樹脂層からなる場合、第2電極360および第2基板380間の接合性能が保障され得る。
または図7を参照すると、第2絶縁層330は第1基板320上に配置された第2酸化アルミニウム層334を含むものの、第2酸化アルミニウム層334上に配置された樹脂層332をさらに含んでもよい。この時、第2絶縁層330に含まれた樹脂層332は第2酸化アルミニウム層334および第1電極340間の接合力を高めることができる。すなわち、第2絶縁層330に含まれた樹脂層332は第2酸化アルミニウム層334および第1電極340間の接合力を提供する程度でのみ形成されれば良いので、第2絶縁層330に含まれた樹脂層332の厚さは第2酸化アルミニウム層334の厚さおよび第3絶縁層370の厚さそれぞれより小さくてもよい。
このように、本発明の実施例によると、熱電素子の低温部と高温部間の特性差に合うように基板および絶縁層の構造を変形した熱電素子が得られる。
この時、第1酸化アルミニウム層312および第2酸化アルミニウム層334のうち少なくとも一つは、第1基板320のアルミニウム基板をアノダイジング(anodizing)して形成され得る。または第1酸化アルミニウム層312および第2酸化アルミニウム層334のうち少なくとも一つは、ディッピング(dipping)工程またはスプレー(spray)工程によって形成されてもよい。
一方、図8~図9に図示した通り、第1酸化アルミニウム層312および第2酸化アルミニウム層334のうち少なくとも一つは、第1基板320のアルミニウム基板に沿って延びる延長部340を形成してアルミニウム基板の側面で互いに連結されてもよい。これによると、アルミニウム基板の全面に酸化アルミニウム層が形成され得、低温部側の耐電圧性能をさらに高めることが可能である。
一方、前述した通り、高温部側にはヒートシンクがさらに配置され得る。高温部側の第2基板380とヒートシンク390は一体に形成されてもよいが、別途の第2基板380とヒートシンク390が互いに接合されてもよい。この時、第2基板380上に酸化金属層が形成される場合、第2基板380とヒートシンク390間の接合が困難であり得る。これに伴い、第2基板380とヒートシンク390間の接合強度を高めるために、第2基板380とヒートシンク390の間には酸化金属層が形成されないことがある。すなわち、第2基板380が銅基板である場合、銅基板の表面には酸化銅層が形成されないことがある。このために、銅基板を予め表面処理して銅基板の酸化を防止することができる。例えば、銅に比べて容易に酸化しない性質を有するニッケルのような金属層で銅基板をメッキする場合、銅基板に酸化金属層が形成されることを防止することができる。
このように、本発明の実施例によると、熱電素子の低温部と高温部間の特性差を反映して低温部側の基板および絶縁層構造と高温部側の基板および絶縁層構造を異なるようにした熱電素子が得られる。
表1および図10は、絶縁層の厚さによる耐電圧をシミュレーションした結果である。アルミニウム基板上にアノダイジング処理して絶縁層を形成し、絶縁層の厚さにより耐電圧を測定した。
Figure 2022535751000003
表1および図10を参照すると、絶縁層の厚さが厚いほど耐電圧性能が高くなることが分かる。特に、絶縁層の厚さが80μm以上である場合、3.6kV以上の耐電圧性能が得られることが分かる。
表2は比較例および実施例に係る熱電素子の熱抵抗を測定した結果である。
比較例では銅基板上に樹脂層からなる絶縁層を配置したし、実施例1では酸化アルミニウム層上にアルミニウム基板を配置した後に樹脂層からなる絶縁層をさらに配置したし、実施例2ではアルミニウム基板の両面に酸化アルミニウム層を形成したし、実施例3ではアルミニウム基板の両面に酸化アルミニウム層を形成した後に樹脂層からなる絶縁層をさらに配置した。
Figure 2022535751000004
表2を参照すると、比較例で絶縁層の総厚さが40μmであり、実施例1~3の絶縁層の総厚さに比べて小さいにも関わらず、実施例1~3に比べてさらに高い熱抵抗を有することが分かる。また、アルミニウム基板の片面にのみ酸化アルミニウム層が配置された実施例1に比べて、アルミニウム基板の両面に酸化アルミニウム層が配置された実施例2および3で顕著に低い熱抵抗が得られることが分かる。また、酸化アルミニウム層上に樹脂層がさらに配置された実施例3の場合、実施例2と比較して熱抵抗は類似しているが、アルミニウム基板と電極間の接合性能はさらに高いこともある。
一方、図11は比較例、実施例2および実施例3に係る構造で絶縁層の厚さによる熱抵抗の変化をシミュレーションした結果である。
図11を参照すると、比較例および実施例3に係る構造で樹脂層の厚さを増加させるにつれて熱抵抗が急激に大きくなることが分かる。これに反し、実施例2に係る構造で酸化アルミニウム層の厚さを480μmまで増加させても樹脂層の厚さが40μmである時の熱抵抗の水準が得られることが分かる。
本発明の実施例に係る熱電素子は発電用装置、冷却用装置、温熱用装置などに作用され得る。具体的には、本発明の実施例に係る熱電素子は主に光通信モジュール、センサ、医療機器、測定機器、航空宇宙産業、冷蔵庫、チラー(chiller)、自動車通風シート、カップホルダー、洗濯機、乾燥機、ワインセラー、浄水器、センサ用電源供給装置、サーモパイル(thermopile)等に適用され得る。
ここで、本発明の実施例に係る熱電素子が医療機器に適用される例として、PCR(PolymeraseChainReaction)機器がある。PCR機器はDNAを増幅してDNAの塩基序列を決定するための装備であり、精密な温度制御が要求され、熱循環(thermalcycle)が必要な機器である。このために、ペルティエ基盤の熱電素子が適用され得る。
本発明の実施例に係る熱電素子が医療機器に適用される他の例として、光検出器がある。ここで、光検出器は赤外線/紫外線検出器、CCD(ChargeCoupledDevice)センサ、X-ray検出器、TTRS(ThermoelectricThermalReferenceSource)等がある。光検出器の冷却(cooling)のためにペルティエ基盤の熱電素子が適用され得る。これに伴い、光検出器の内部の温度上昇による波長の変化、出力の低下および解像力の低下などを防止することができる。
本発明の実施例に係る熱電素子が医療機器に適用されるさらに他の例として、免疫分析(immunoassay)分野、インビトロ診断(InvitroDiagnostics)分野、温度制御および冷却システム(generaltemperaturecontrolandcoolingsystems)、物理治療分野、液状チラーシステム、血液/プラズマ温度制御分野などがある。これに伴い、精密な温度制御が可能である。
本発明の実施例に係る熱電素子が医療機器に適用されるさらに他の例として、人工心臓がある。これに伴い、人工心臓に電源を供給することができる。
本発明の実施例に係る熱電素子が航空宇宙産業に適用される例として、星追跡システム、熱イメージングカメラ、赤外線/紫外線検出器、CCDセンサ、ハッブル宇宙望遠鏡、TTRSなどがある。これに伴い、イメージセンサの温度を維持することができる。
本発明の実施例に係る熱電素子が航空宇宙産業に適用される他の例として、冷却装置、ヒーター、発電装置などがある。
この他にも本発明の実施例に係る熱電素子はその他の産業分野に発電、冷却および温熱のために適用され得る。
前記では本発明の好ましい実施例を参照して説明したが、該当技術分野の熟練した当業者は、下記の特許請求の範囲に記載された本発明の思想および領域から逸脱しない範囲内で本発明を多様に修正および変更できることが理解され得るであろう。

Claims (10)

  1. 第1絶縁層、
    前記第1絶縁層上に配置された第1基板、
    前記第1基板上に配置された第2絶縁層、
    前記第2絶縁層上に配置された第1電極、
    前記第1電極上に配置されたP型熱電レッグおよびN型熱電レッグ、
    前記P型熱電レッグおよびN型熱電レッグ上に配置された第2電極、
    前記第2電極上に配置された第3絶縁層、そして、
    前記第3絶縁層上に配置された第2基板を含み、
    前記第1絶縁層は第1酸化アルミニウム層を含み、
    前記第1基板はアルミニウム基板であり、
    前記第2基板は銅基板であり、
    前記第1基板は低温部であり、前記第2基板は高温部である、熱電素子。
  2. 前記第2絶縁層および前記第3絶縁層はそれぞれエポキシ樹脂組成物およびシリコン樹脂組成物のうち少なくとも一つを含む樹脂層からなる、請求項1に記載の熱電素子。
  3. 前記第2絶縁層の厚さは前記第3絶縁層の厚さと同一であるか、前記第3絶縁層の厚さより小さい、請求項2に記載の熱電素子。
  4. 前記第2絶縁層は第2酸化アルミニウム層を含み、前記第3絶縁層はエポキシ樹脂組成物およびシリコン樹脂組成物のうち少なくとも一つを含む樹脂層からなる、請求項1に記載の熱電素子。
  5. 前記第2絶縁層は前記第2酸化アルミニウム層上に配置され、エポキシ樹脂組成物およびシリコン樹脂組成物のうち少なくとも一つを含む樹脂層をさらに含む、請求項4に記載の熱電素子。
  6. 前記第2絶縁層に含まれた樹脂層の厚さは前記第2酸化アルミニウム層の厚さおよび前記第3絶縁層の厚さそれぞれより小さい、請求項5に記載の熱電素子。
  7. 前記第1酸化アルミニウム層および前記第2酸化アルミニウム層のうち少なくとも一つはアルミニウム基板をアノダイジングして形成された、請求項5に記載の熱電素子。
  8. 前記第1酸化アルミニウム層および前記第2酸化アルミニウム層のうち少なくとも一つは、前記アルミニウム基板の側面に沿って延びて連結される、請求項5に記載の熱電素子。
  9. 前記第1絶縁層と前記第2絶縁層の厚さの和は80μm以上である、請求項1に記載の熱電素子。
  10. 前記銅基板上に配置されたヒートシンクをさらに含む、請求項1に記載の熱電素子。
JP2021570455A 2019-06-05 2020-05-28 熱電素子 Pending JP2022535751A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020190066648A KR102618305B1 (ko) 2019-06-05 2019-06-05 열전소자
KR10-2019-0066648 2019-06-05
PCT/KR2020/006946 WO2020246749A1 (ko) 2019-06-05 2020-05-28 열전소자

Publications (1)

Publication Number Publication Date
JP2022535751A true JP2022535751A (ja) 2022-08-10

Family

ID=73652982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021570455A Pending JP2022535751A (ja) 2019-06-05 2020-05-28 熱電素子

Country Status (6)

Country Link
US (1) US20220320406A1 (ja)
EP (1) EP3982431A4 (ja)
JP (1) JP2022535751A (ja)
KR (1) KR102618305B1 (ja)
CN (1) CN113924664A (ja)
WO (1) WO2020246749A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022169072A1 (ko) * 2021-02-08 2022-08-11 한국재료연구원 전기도금법으로 형성된 접합층 및 확산방지 구조를 포함하는 소자 및 이의 제조방법
KR102666359B1 (ko) * 2023-11-23 2024-05-14 주식회사 새로닉스 산화막이 형성된 내전압 특성을 가지는 열전소자 기판

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10144967A (ja) * 1996-11-06 1998-05-29 Nhk Spring Co Ltd 冷却用熱電素子モジュール
JP2002280621A (ja) * 2001-01-15 2002-09-27 Furukawa Electric Co Ltd:The レーザーモジュール、ペルチェモジュールおよびペルチェモジュール一体型ヒートスプレッダー
CN100397671C (zh) * 2003-10-29 2008-06-25 京瓷株式会社 热电换能模块
JP4524383B2 (ja) * 2005-03-10 2010-08-18 独立行政法人産業技術総合研究所 電極を一体化した熱電素子及びその作製方法
KR20080089926A (ko) * 2007-04-03 2008-10-08 한국전기연구원 알루미늄 산화피막이 형성된 알루미늄 금속판 또는합금판을 이용한 열전모듈
JP2009188088A (ja) * 2008-02-05 2009-08-20 Yamaha Corp 熱電装置
JP4980455B2 (ja) * 2010-02-08 2012-07-18 富士フイルム株式会社 絶縁層付金属基板の製造方法、半導体装置の製造方法、太陽電池の製造方法、電子回路の製造方法、および発光素子の製造方法
WO2011118341A1 (ja) * 2010-03-25 2011-09-29 京セラ株式会社 熱電素子及び熱電モジュール
EP2381498A1 (en) * 2010-04-20 2011-10-26 Mondragon Componentes, S. Coop. Method for manufacturing a thermoelectric module, and thermoelectric module
JP2012049534A (ja) * 2010-08-27 2012-03-08 Samsung Electro-Mechanics Co Ltd 熱電モジュール及びその製造方法
IL212261A0 (en) * 2011-04-11 2011-07-31 Lamos Inc Anodized aluminum substrate
KR20130009443A (ko) * 2011-07-15 2013-01-23 삼성전기주식회사 열전 모듈
KR20130035016A (ko) * 2011-09-29 2013-04-08 삼성전기주식회사 열전 모듈
KR102070390B1 (ko) * 2013-08-20 2020-01-28 엘지이노텍 주식회사 열전모듈 및 이를 포함하는 열전환장치
KR20160116776A (ko) * 2015-03-31 2016-10-10 엘지이노텍 주식회사 제습장치
US20160372650A1 (en) * 2015-06-17 2016-12-22 Sheetak Inc. Thermoelectric device for high temperature applications
KR101981629B1 (ko) * 2018-01-23 2019-05-24 엘지이노텍 주식회사 열전소자 및 그의 제조 방법

Also Published As

Publication number Publication date
US20220320406A1 (en) 2022-10-06
CN113924664A (zh) 2022-01-11
EP3982431A4 (en) 2023-07-05
KR102618305B1 (ko) 2023-12-28
EP3982431A1 (en) 2022-04-13
KR20200140015A (ko) 2020-12-15
WO2020246749A1 (ko) 2020-12-10

Similar Documents

Publication Publication Date Title
KR102606657B1 (ko) 열전 소자
KR102164983B1 (ko) 열전소자
JP7387612B2 (ja) 熱電装置
JP7506676B2 (ja) 熱電素子
JP2022535751A (ja) 熱電素子
KR102706182B1 (ko) 열전소자
US20220320405A1 (en) Thermoelectric device
US11723275B2 (en) Thermoelectric module
KR102390171B1 (ko) 열전소자
KR102220946B1 (ko) 열전소자
JP2022518541A (ja) 熱電素子
KR102368960B1 (ko) 열전소자 및 이를 포함하는 열전변환장치
KR20210062987A (ko) 열전소자
KR20210028494A (ko) 열전모듈
KR102575215B1 (ko) 열전소자
US11980098B2 (en) Thermoelectric module
KR20210029521A (ko) 발전 장치
JP2022547108A (ja) 熱電モジュール
KR20210028492A (ko) 열전모듈
KR20210029522A (ko) 열전 장치 및 이를 포함하는 열전 시스템
KR20200091573A (ko) 열전 소자

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240813