JP2022170466A - 荷電粒子ビームシステム - Google Patents

荷電粒子ビームシステム Download PDF

Info

Publication number
JP2022170466A
JP2022170466A JP2021076608A JP2021076608A JP2022170466A JP 2022170466 A JP2022170466 A JP 2022170466A JP 2021076608 A JP2021076608 A JP 2021076608A JP 2021076608 A JP2021076608 A JP 2021076608A JP 2022170466 A JP2022170466 A JP 2022170466A
Authority
JP
Japan
Prior art keywords
sample
electric field
voltage
charged particle
particle beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021076608A
Other languages
English (en)
Inventor
悠介 中村
Yusuke Nakamura
悠介 安部
Yusuke Abe
憲史 谷本
Norifumi Tanimoto
健良 大橋
Kenyoshi Ohashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Tech Corp filed Critical Hitachi High Tech Corp
Priority to JP2021076608A priority Critical patent/JP2022170466A/ja
Priority to KR1020220033245A priority patent/KR20220148087A/ko
Priority to US17/702,343 priority patent/US20220351938A1/en
Publication of JP2022170466A publication Critical patent/JP2022170466A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/10Lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/24Circuit arrangements not adapted to a particular application of the tube and not otherwise provided for
    • H01J37/241High voltage power supply or regulation circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/261Details
    • H01J37/265Controlling the tube; circuit arrangements adapted to a particular application not otherwise provided, e.g. bright-field-dark-field illumination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/004Charge control of objects or beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/10Lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/21Focus adjustment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/24475Scattered electron detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/2448Secondary particle detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2809Scanning microscopes characterised by the imaging problems involved
    • H01J2237/281Bottom of trenches or holes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

【課題】画像取得(計測(測長))のスループットの向上を維持しつつ、高品質な画像を取得する。【解決手段】荷電粒子線装置と、当該荷電粒子線装置を制御するコンピュータシステムと、を備える荷電粒子ビームシステムであって、荷電粒子線装置は、対物レンズ103と、試料台105と、対物レンズ103と試料台105との間に配置され、試料に照射する荷電粒子ビームの焦点を調整する反射電子検出器104と、を備え、コンピュータシステムは、反射電子検出器104に印加する電圧の変化に対応して、試料上の電界値を調整する、荷電粒子ビームシステムを提供する。【選択図】図2

Description

本開示は、荷電粒子ビームシステムに関する。
荷電粒子線装置では、特殊な金属に高電圧を印加し、荷電粒子(電子やイオン)を発生させる。この金属をチップまたはエミッタ、荷電粒子が電子の場合、この発生装置を電子銃という。発生した荷電粒子を曲げたり、ビーム径や焦点を変えたりするために、偏向器やコンデンサレンズといった光学系を配置する。荷電粒子ビームを走査しながら試料に照射することで、試料から荷電粒子を発生させる。試料から発生する荷電粒子には、電子線の場合、二次電子や反射電子(後方散乱電子)がある。対して、試料に照射する電子を一次電子という。二次電子や反射電子(後方散乱電子)をET検出器のような放射線検出器で検出する。検出信号を信号処理装置で増幅後、ADC(Analog to Digital Converter)を用いてデジタル信号に変換し、画像として出力する。
反射電子像は、試料の組成や凹凸情報を得るのに適している。近年、半導体分野では、微細化に加えて高アスペクト化が進んでおり、例えば、3D NANDデバイスの深孔構造や深溝構造を計測するニーズが高まっている。高加速SEMの反射電子像では、このような高アスペクト構造を計測することが可能であることが、知られている。反射電子を効果的に検出するためには、試料表面で散乱し高角に飛び出す高エネルギーな弾性散乱電子と試料深部で発生し低角に飛び出す比較的低エネルギーの非弾性散乱電子を取り込む必要がある。そのため、反射電子検出器は、試料の直上に配置されることが望ましい。普通、一次電子と二次電子を通過させるための開口(穴)を有し、形状はアニュラー型であることが多い。さらに、極高角のほとんどエネルギーを失わずに試料から発生した反射電子を検出するために、カラム内部の対物レンズの上方に反射電子検出器を配置することもある。
二次電子像は、試料表面で発生した電子を元に生成された画像であるため、試料表面付近の状態に敏感である。このため、絶縁体のような導電性のない試料の場合、二次電子像は帯電(チャージアップ)の影響を受けやすい。帯電が起こった場合の影響は大きく分けて二種類あることが知られている。一つは、一次電子ビームが帯電によって偏向を受けるほど顕著な場合で、比較的高い加速電圧を使用した場合に観察される。もう一つは、絶縁体を低加速で観察した場合に起こるもので、異常なコントラストが生じる場合である。試料が帯電すると、表面付近にマイナス電荷が溜まるため、画像が部分的に明るくなったり、暗くなったりする。明るくなるのは、マイナス電荷により反発して加速された二次電子の影響であり、暗くなるのは、マイナス電荷で軌道を曲げられ、検出器に入射しない二次電子が生じるためである。
試料によって、帯電をほぼゼロの状態に留めて置きたい場合もあれば、負電位や正電位に敢えて帯電させたい場合もある。いずれの場合も、意図しない帯電が発生すること自体も問題であるが、その帯電状態を制御できないことが最も問題になる。
特許文献1に述べられている通り、試料上電界を調整することで、二次電子の軌道、エネルギー、イールド(流出する電荷量)や試料に戻る二次電子の量(流入する電荷量)を変化させ、帯電状態を制御する方法がある。特許文献1では「検査試料側に帯電制御電極」を設置し、「試料の帯電状態に応じて、帯電制御電極」に「一定の電圧を与えることにより、検査前に形成した試料表面の帯電状態」の変化を抑制している。
また、特許文献2では、対物レンズと試料の間に「制御電極を付加」し、それに対して「制御電圧電源」により電圧を印加し、「試料表面の電界を任意に制御する」構成が示されている。
さらに、特許文献3では、「磁気静電対物レンズ」と「試料ステージ」の間に「プロキシ電極」を配置し、「減速電界型装置または減速電界型レンズの一部として、1次ビームを減速させるために使用」したり、「2次粒子に対する抽出場強度を制御」したりする装置が示されている。
特許文献2で帯電制御の原理について述べられている通り、静電電極と試料の間に制御電極を配置した場合、制御電極と試料台が同電位であれば、試料上電界はゼロになり、制御電極と静電電極が同電位であれば、試料上電界は制御電極がない場合とほぼ変わらない。よって、その中間値に制御電極電位を設定することで、その間の任意の試料上電界を作ることが可能である。
一方、高い倍率で試料の構造や材質を明瞭に観察するためには、一次電子の焦点が適切に調整されている必要がある。普通、磁場レンズである対物レンズが一次電子ビームの焦点調整に用いられる。対物レンズの方式には、アウトレンズ方式、インレンズ方式、セミインレンズ(シュノーケルレンズ)方式などがある。この静電レンズを用いて一次電子の焦点を調整することも可能である。低加速SEMでは、カラム内のブースターに正電圧を印加、あるいは試料台に負電圧を印加し(リターディング)、減速光学系を作ることで、静電レンズの効果が得られる。対物レンズと比較して、静電レンズは調整可能範囲に劣るものの、高速に応答させることができる。今日の半導体計測装置や半導体検査装置では、単位時間あたりの計測・検査数であるスループットと呼ばれる指標が重要視されており、対物レンズと静電レンズを併用することで、スループットを向上させることができる。
この点、特許文献4によると、対物レンズがセミインレンズ方式の場合、静電ポテンシャルと磁束密度分布が重なる場合に静電電極の焦点補正感度が向上する。磁束密度のピーク(最大点)は対物レンズ先端から数mmの場所(対物レンズ主面付近)に位置するので、静電電極は対物レンズの直下に置く必要がある。つまり、対物レンズと試料の間の、高々5mm程度の空間に静電電極を配置する必要が生じる。しかしながら、ここには、最低でも2mmの厚みを持つ反射電子検出器が配置され、空間的な余裕がない。このため、反射電子検出器に電圧を印加し、静電電極としての役割を付与し、スループット向上に寄与することとしている。
特開2013-33739号公報 特開2000-133194号公報 特開2017-37843号公報 国際公開番号WO2020/008492A1
特許文献4では、対物レンズ主面位置に配置された静電電極(反射電子検出器104)には、一般的に、0V~+1000V程度の電圧が印加され、試料台には、-100V~0V程度の電圧が印加される。この場合、静電電極と試料は非常に近い距離に存在するので、試料上電界の変動が激しくなる(試料上電界(電場)に乱れが生じる)。このため、このような系では、試料の帯電状態が大きく変わりうる。画像コントラストが帯電に敏感な場合(例えば、二次電子像等)、測長性能・測長再現性に悪影響を及ぼしてしまう可能性がある。従って、試料上電界(電場)の変動(乱れ)を補正する必要がある。なお、対物レンズ上方あるいは内部に静電電極(ブースター)を配置する場合、試料上電界の変動は小さい。従って、この課題は、セミインレンズ方式で静電焦点補正を行う場合に特有の課題である。
本開示は、このような状況に鑑みて、画像取得(計測(測長))のスループットの向上を維持しつつ、高品質な画像を取得する技術を提案する。
上記課題を解決するために、本開示による実施形態は、荷電粒子線装置と、当該荷電粒子線装置を制御するコンピュータシステムと、を備える荷電粒子ビームシステムであって、荷電粒子線装置は、対物レンズと、試料台と、対物レンズと試料台との間に配置され、試料に照射する荷電粒子ビームの焦点を調整する反射電子検出器と、を備え、コンピュータシステムは、反射電子検出器に印加する電圧の変化に対応して、試料上の電界値を調整する、荷電粒子ビームシステムを提供する。
本開示に関連する更なる特徴は、本明細書の記述、添付図面から明らかになるものである。また、本開示の態様は、要素及び多様な要素の組み合わせ及び以降の詳細な記述と添付される特許請求の範囲の様態により達成され実現される。
本明細書の記述は典型的な例示に過ぎず、本開示の特許請求の範囲又は適用例を如何なる意味においても限定するものではない。
本開示による半導体計測システム(荷電粒子ビームシステムとも言う)10の全体概略構成例を示す図である。 第1の実施形態による、二次電子および反射電子の検出を実現する構成例を示す図である。 静電電極(反射電子検出器104)および試料台105の各位置に対応する、系の静電ポテンシャル(軸上電位)を示す図である。 第2の実施形態による、二次電子および反射電子の検出を実現する構成例を示す図である。 静電電極(反射電子検出器104)、帯電制御電極106、および試料台105の各位置に対応する、系の静電ポテンシャル(軸上電位)を示す図である。 帯電制御電極106の構成例を示す図である。 様々な帯電制御電極106の厚みtに対する、内径rと軸上電場Eの関係を示す。 帯電制御電極106の厚みt/帯電制御電極106の内径rと軸上電場Eの関係を示す図である。 半導体検出器110を対物レンズ103と試料台105の間に配置した構成例を示す図である。 反射電子検出器104としての半導体検出器110に逆バイアス電圧を印加する構成例を示す図である。 第1および第2の実施形態に適用できる、電圧値設定GUIの構成例を示す図である。 第1および第2の実施形態に適用できる、試料上電界値設定GUIの構成例を示す図である。
本実施形態は、荷電粒子ビームの焦点を調整する対物レンズと電極を有し、検出信号を元に輝度画像を出力する荷電粒子ビームシステムに関し、焦点調整に伴って発生する試料上電界の変動を補正することにより、画像取得(計測(測長))のスループットの向上を維持しつつ、高品質な画像を取得する技術について提案する。
(A)第1の実施形態
第1の実施形態は、帯電制御電極を設けずに試料上の電界(電場)の乱れを補正(除去)する技術を提案する。
<半導体計測システムの構成例>
図1は、本開示による半導体計測システム(荷電粒子ビームシステムとも言う)10の全体概略構成例を示す図である。半導体計測システム10は、荷電粒子線装置100と、制御システム(コンピュータシステムとも言う)220と、を備えている。
荷電粒子線装置100は、電子銃201と、アライナー202および206と、コンデンサレンズ204および207と、走査偏向器208および209と、対物レンズ103と、反射電子検出器104と、試料は試料台105と、を備えている。なお、後述の第2の実施形態の場合、荷電粒子線装置100は、さらに、帯電制御電極106を備えている。
制御システム(コンピュータシステム)220は、検出器制御部120と、対物レンズ制御部121と、静電電極電圧制御部122と、試料台電圧制御部123と、電子光学制御部221と、偏向制御部231を含む走査制御部230と、画像処理部130と、制御部135と、GUI(Graphical User Interface)140と、を備えている。
荷電粒子線装置100において、電子銃201は、一次電子ビームを放出する。放出された一次電子ビームは、アライナー202および206、コンデンサレンズ204および207、走査偏向器208および209、対物レンズ103、反射電子検出器104を通過して収束・走査されて半導体ウェーハ等の試料に照射される。ここで、対物レンズ103は、電磁レンズとしている。
アライナー202および206、コンデンサレンズ204および207、走査偏向器208および209、対物レンズ103、反射電子検出器104は、それぞれ、電子光学制御部221、走査制御部230の偏向制御部231、対物レンズ制御部121、および静電電極電圧制御部122により制御される。一次電子ビームの照射に起因して試料から放出された信号電子は、二次電子検出器107によって検出され、検出器制御部120にて処理される。一次電子ビームは、走査偏向器208および209によって偏向され、試料の表面上を走査する。画像処理部130は、検出器制御部120の出力信号を走査偏向器208および209に印加する偏向制御部231の制御信号に同期させて画像を生成し、GUI140にSEM画像として出力したり、画像処理部130に画像データとして記憶させたりすることを可能としている。
試料は、試料台105に保持される。ステージ(図示せず)は、ステージ制御部(図示せず)により移動することができる。これにより、試料の視野を移動して表面上の所望の箇所を一次電子ビームで照射してSEM画像を取得することができる。なお、一次電子ビームの視野移動は、ステージのみではなく、視野移動用の偏向器(図示せず)を用いて、一次電子ビームを偏向することによっても実現することができる。
制御システム220は、一般的なコンピュータ(プロセッサ、メモリなどの記憶デバイス、マウスやキーボードなどの入力デバイス、ディスプレイなどの出力デバイス、通信デバイスなどを含む)によって実現することができる。制御システム220のプロセッサがメモリに格納されている各処理部(検出器制御部120と、対物レンズ制御部121と、静電電極電圧制御部122と、試料台電圧制御部123と、電子光学制御部221と、偏向制御部231を含む走査制御部230と、画像処理部130と、制御部135)に対応する各種プログラムを当該メモリから読み出し、プロセッサの内部メモリに当該プログラムを展開することによって各処理部を実現する。図1では、制御システム220のプロセッサ内部に実現された各処理部の構成のみが示されているが、制御システム220としては、他の構成(記憶デバイス、入力デバイス、出力デバイス、通信デバイスなど)も備えている。
<二次電子および反射電子を検出する構成>
図2は、第1の実施形態による、二次電子および反射電子の検出を実現する構成例を示す図である。
対物レンズ制御部121は、対物レンズ103のコイルの電流を変化させて、一次電子ビームの収束する高さ方向の位置(以下、焦点位置、または焦点高さと称する)を所望の焦点状態に調整する。あるいは、静電電極電圧制御部122は、静電電極(反射電子検出器104)の電圧を変化させて、一次電子ビームの焦点位置(焦点高さ)を所望の焦点状態に調整する。ここで言う、所望の焦点状態とは、通常、焦点位置と試料表面の高さが一致した状態であるが、分解能が最小になる状態の場合もあるし、ユーザが任意に設定した状態の場合もある。
<静電電極および試料台の位置に対応する静電ポテンシャル>
図3は、静電電極(反射電子検出器104)および試料台105の各位置に対応する、系の静電ポテンシャル(軸上電位)を示す図である。ここでは、静電電極(反射電子検出器104)の上端の高さをz、下端の高さをz、試料台105の上端の高さをz、下端の高さをzとする。静電電極(反射電子検出器104)電位Vを、一次電子ビームの焦点が所望の焦点状態になるように設定すると同時に、試料上電界Eがあらかじめ設定された値になるように、試料台105電位Vを設定することにより、帯電制御が可能になる。第1の実施形態では、試料上電界Eは、静電電極(反射電子検出器104)電位Vと試料台105電位Vの作る電界の重ね合わせであるから、電位VとVの関数として、電界Eは一意に決まる。
図3において、実線は静電電極(反射電子検出器104)に電圧印加しない状態を表す。実線の直線は、試料表面における電位の傾き、すなわち、試料上電界E(試料表面zにおける電界値)を表す。図3において、点線は静電電極(反射電子検出器104)に電圧を印加し、一次電子ビームの焦点を調整し、試料台105に電圧印加し、帯電を制御した状態を表す。点線の直線は、焦点調整および帯電制御後の試料表面における電位の傾き、すなわち、焦点調整および帯電制御後の試料上電界Eを表す。
一次電子ビームの焦点を調整するために、静電電極に印加される電圧VがΔVだけ大きくなったと仮定する。このとき、試料上電界Eが焦点調整前と同じであるためには、試料台105の電圧VもαΔVだけ大きくする必要がある。例えば、静電電極に100Vの電圧を印加したとき、試料台105にも同様に100V分の印加電圧を変化させる。つまり、試料台105に-40Vの電圧が印加されている場合には、+60Vに印加電圧を変化させることになる。このように、静電電極の電圧Vを変化させる前後で試料上電界(電場)が同一になるように試料台電圧を設定する。なお、上記αは、他の外乱がある場合を考慮した比例係数であり、0~1の範囲の値を取る。通常は、α~1が最適値である。外乱がある場合、この外乱の影響を除去するために、位置zにおける静電ポテンシャル(軸上電位)の傾き(試料上電界E)が、静電電極の印加電圧を変化させる前後で一定になるように、最小二乗法などを用いて試料台105の印加電圧の変化量を決定してもよい。
(B)第2の実施形態
第2の実施形態は、試料上電界の乱れを制御するために、帯電制御電極を設けた構成について提案する。
<二次電子および反射電子を検出する構成>
図4は、第2の実施形態による、二次電子および反射電子の検出を実現する構成例を示す図である。
試料台105電位Vが別の要因(減速電界(リターディング)等)で制限される場合、第1の実施形態で示す方法を使うことができない。リターディング法による試料観察を行う場合、試料台105には一定の電圧(固定値)を印加するため、試料台105に印加する電圧値を変化させることができないからである。そこで、このような場合には、図4に示すように、静電電極(反射電子検出器104)と試料台105の間に帯電制御電極106を配置し、静電電極電位に応じて、試料上電界Eが一定になるように、帯電制御電極106電位を設定する。これにより、試料帯電状態を一定に保つことができるようになる。ここで、静電電極(反射電子検出器104)の電圧をV、帯電制御電極106の電圧をVcc、試料台105の電圧をVとする。第2の実施形態では、試料上電界Eは、静電電極(反射電子検出器104)電位V、帯電制御電極106電位Vcc、試料台105電位Vの作る電界の重ね合わせであるから、電位V、Vcc、V関数として、電界Eは一意に決まる。
図5は、静電電極(反射電子検出器104)、帯電制御電極106、および試料台105の各位置に対応する、系の静電ポテンシャル(軸上電位)を示す図である。図5において、実線(V=0V)は静電電極(反射電子検出器104)に電圧印加しない状態を表す。実線の直線は、試料表面における電位の傾き、すなわち、試料上電界Eを表す。図5において、点線(V=100V)は静電電極(反射電子検出器104)に電圧印加し、一次電子ビームの焦点を調整した状態を表す。点線の直線は、焦点調整後の試料表面における電位の傾き、すなわち、焦点調整後の試料上電界Eを表す。さらに、図5において、破線(V=100V、Vcc=-32V)は静電電極(反射電子検出器104)に電圧印加し、一次電子ビームの焦点を調整(例えば、視野移動に伴い焦点調整を行った)し、帯電制御電極106に電圧印加し、試料表面における帯電を制御した状態を表す。破線の直線は、焦点調整および帯電制御後の試料表面における電位の傾き、すなわち、焦点調整および帯電制御後の試料上電界Eを表している。点線では、試料台105における電界(電場)が静電電極に電圧を印加しない場合(実線)と比べて大きくなっていることが分かる。これを補正するために、帯電制御電極106に電圧Vccを印加する。この時のグラフが破線で示されており、補正後の点線の傾きが視野移動前の実線の傾きとほぼ同一になっていることが分かる。
帯電制御電極106に印加する電圧Vccを求めるには、次のように考える。つまり、静電電極の上端の高さをz、下端の高さをz、帯電制御電極106の上端の高さをz、下端の高さをz、試料台105の上端の高さをz、下端の高さをzとする。このとき、静電ポテンシャルをV(z)とすると、V=V(z)=V(z)、Vcc=V(z)=V(z)、V=V(z)=V(z)が成り立つ。これを3次関数(A+B+Cx+D)でフィッティングを行う。電界は静電ポテンシャルの微分で与えられるので、式(1)のように表すことができる。
Figure 2022170466000002
よって、試料上電界E=E(z)は、式(2)で与えられる。
Figure 2022170466000003
静電電極電位VがΔV変化した時、試料上電界Eが焦点調整前と同じであるため、帯電制御電極106電位VccがΔVcc変化すると仮定する。このとき、V+ΔV=V(z)、V+ΔV=V(z)、Vcc+ΔVcc=V(z)、Vcc+ΔVcc=V(z)、V=V(z)、V=V(z)が成り立つ。同様に、3次関数(A+B+Cx+D)でフィッティングを行うと、試料上電界E=E(z)は、式(3)で与えられる。
Figure 2022170466000004
そして、試料上電界Eが焦点調整前後で同じであるという仮定から、式(4)が成り立つ。
Figure 2022170466000005
実際のアルゴリズムでは、ΔVccを細かいステップで変えながら、この計算プロセスを複数回繰り返し、-3A -2B-Cと-3A -2B-Cの差が最小になるΔVccを探索することになる。本実施形態では、解の探索法は最小二乗法であるが、他の計算方法を用いることもできる。また、3次関数の場合を説明したが、これはより高次の多項式関数でも良い。
<帯電制御電極106の構成例>
図6は、帯電制御電極106の構成例を示す図である。上述のように、帯電制御電極106は、試料の直上、かつ静電電極の直下に配置される。図6に示すように、帯電制御電極106は、一次電子および二次電子を通過させるために十分大きい第一の開口301を有している。本実施形態では、アニュラー型の検出器を用いることができるので、この開口は円であるが、開口が正方形でも、同様の効果が得られる。
第一の開口301の内径rは、静電ポテンシャルが光軸上まで染み出す程度に十分小さい必要がある。そうでなければ、帯電制御の効果がないからである。一方で、一次電子ビームの収差に影響しない程度に、また、二次電子の検出効率に影響しない程度に第一の開口301の内径rは十分大きい必要がある。帯電制御電極106は、加工上、厚みtが0.1mm以上であることが望ましい。また、帯電制御電極106の厚みは、反射電子検出器104と試料台105の距離よりも薄い必要があるため、厚みtが2~3mm以下の必要がある。
シミュレーションから、帯電制御電極106の厚みtと内径rの間には、最適な関係があり、0.01≦t/r≦1である必要がある。図7に、様々な帯電制御電極106の厚みtに対する、内径rと軸上電場Eの関係を示す。内径rを大きくすると、軸上電場Eが飽和することがわかる(内径r=3mmのとき参照)。これは、二次電子は開口中心を通過するので、帯電制御電極106と光軸の距離が大きくなると、帯電制御の効果がないことを示している。
図8は、帯電制御電極106の厚みt/帯電制御電極106の内径rと軸上電場Eの関係を示す図である。図8から分かるように、帯電制御電極106が試料に近づき過ぎると、逆に、帯電制御の効果が得られない。理想的には、曲線の極小点(t/r~1付近)で最も高い効果が得られる。このことから、t/r≦1が導かれる。ただし、厚みが非常に薄い場合(t<0.1)、t~r<0.1では問題がある。なぜなら、r>0.5でないと、一次電子ビームと干渉してしまうからである。従って、最大効果は得られないが、その30%程度以上の効果が得られる場合を可とすれば、0.01≦t/rが導かれる。
反射電子検出器104の直下に帯電制御電極106を配置するが、図6に示すように、帯電制御電極106は、反射電子を通過させるための第二の開口302を有する。第二の開口302は、反射電子の検出効率に影響しない程度に大きい必要がある。なぜなら、帯電制御電極106には正(負)電圧が印加されるため、反射電子を加速(減速)させてしまうと明るさが過大に、あるいは過少に評価されてしまうためである。これは、シンチレータの発光特性(単結晶の場合、光量は入射電子の加速電圧に比例)を考えれば理解される。また、第二の開口302はメッシュ形状であり、格子形状でも、ハニカム形状でも良いが、それに制限されるものではない。シミュレーションから、反射電子の検出効率に影響しないためには、メッシュの径が2mm以上の必要がある。格子形状またはハニカム形状の場合は、その長径、すなわち、最も距離が遠い点と点の間隔が2mm以上の必要がある。また、試料台105と帯電制御電極106の距離をL、低角反射電子の出射角、すなわち反射電子と試料面が成す角をθ、第2の開口部(全体)の外径をRとすると、低角反射電子を取りこぼさないためには、R>L×tan(90°-θ)の関係を満たす必要がある。θ=30°程度までの低角反射電子を取りこぼさないためには、図6のように第二の開口部の外径Rが2mm以上必要となる。
(C)第1および第2の実施形態の双方に適用可能な構成
<半導体検出器の利用>
第1および第2の実施形態では、対物レンズ103と試料台105の間に設けられる反射電子検出器104として例えばET(Everhart Thornley)検出器を用いることができるが、反射電子検出器104として半導体検出器110を用いてもよい。図9は、半導体検出器110を対物レンズ103と試料台105の間に配置した構成例を示す図である。
半導体検出器110は、例えば、シンチレータ、ライトガイド、半導体素子(pn型、pnp型、npn型、SiPM、SDD等)で構成されているため、静電電圧を直接印加することが困難である。このため、導電材ハウジング108およびシンチレータ面導電材コーティング109を追加し、静電焦点補正を行うようにする。このような場合も、第1および第2の実施形態において、反射電子検出器104として半導体検出器110を用い、静電電極を導電材ハウジング108およびシンチレータ面導電材コーティングで置き換えることにより、帯電制御が可能になる。ここでは、反射電子検出器104を半導体検出器110で置き換え、半導体検出器110を収容する導電材ハウジング108およびシンチレータ面導電材コーティングで静電電極を置き換えている。このため、第1の実施形態において半導体検出器110を用いる場合には、導電材ハウジング108およびシンチレータ面導電材コーティングに印加電圧を変化させたら、試料台105への印加電圧もそれに合わせて変化させることになる。また、第2の実施形態において半導体検出器110を用いる場合、導電材ハウジング108およびシンチレータ面導電材コーティングに印加電圧を変化させたら、帯電制御電極106への印加電圧もそれに合わせて変化させることになる(上述のようにカーブフィッティングで最適印加電圧を求める)。
<反射電子検出器104に電圧を印加する場合>
第1および第2の実施形態、さらに反射電子検出器104として半導体検出器110を用いる形態では、静電電極(反射電子検出器104)あるいは導電材ハウジングおよびシンチレータ面導電材コーティングに電圧を印加し、静電焦点補正を行うことを前提としている。しかし、その他にも、反射電子検出器104に電圧を印加する場合がある。図10は、反射電子検出器104としての半導体検出器110に逆バイアス電圧を印加する構成例を示す図である。
図10に示すように、対物レンズ103と試料台105の間に設置すべき反射電子検出器104として半導体検出器110(pn型、SiPM等)を用いる場合、一般的に、応答性とS/N向上を目的とし、PN接合に逆バイアス電圧が印加される。逆バイアス電圧の大きさは、高々10V~100V程度であるが、逆バイアス電位とGNDとの間で接続を切り替えて使用されることがある。というのは、アニュラー型半導体素子の内径が十分に大きくない場合、逆バイアス電圧は一次電子のエネルギーや軌道(チルト)、収差に影響するため、S/Nを犠牲にしても、GND接続とすることがある。この切り替えにより、試料上電界が変動すると考えられる。そこで、上述の第1あるいは第2の実施形態の動作により、試料上の帯電を制御することができ、試料上の電界の変動を補正することができる。
<GUIの構成例>
(i)電圧値設定GUIの構成例
図11は、第1および第2の実施形態に適用できる、電圧値設定GUIの構成例を示す図である。
計測時にABCC機能をONにする場合(画像コントラスト自動調整1101および画像明るさ調整1102を選択する場合)、コントラスト1103およびブライトネス1104の値の自動調整表示がなされ、これらが自動で調整される。ABCC機能がONのときには、試料台105や帯電制御電極106を変化させてもユーザが見やすいような明るさやコントラストに自動的に調整されてしまう。従って、試料が帯電(チャージアップ)しても画像上で変化を認識することができない。
そこで、ABCC機能をOFFにし(画像コントラスト自動調整1101および画像明るさ調整1102のチェックを外す)、帯電制御機能をON(静電AF1105および帯電制御1106にチェックを入れる)にする。すると、試料台(帯電制御電極)電圧値調整表示1107に切り替わるようになっている。GUI(図11)において、0-65535は16ビットのDACを表しており、16ビットの分解能で電圧値を設定できるように構成されている。第1の実施形態では0のときに試料台105の電圧が最小になり、65535のときに試料台105の電圧が最大になる。第2の実施形態では0のときに帯電制御電極106の電圧が最小になり、65535のときに帯電制御電極106の電圧が最大になる。このようなGUIを導入することにより、ユーザは、画像明るさ・コントラスト自動調整機能が作動しない状態で、画像を見ながら、適当な電圧値を設定することができるようになる。具体的には、試料台(帯電制御電極)電圧値調整表示1107において設定電圧値を調整すると二次電子の戻りが調整され、試料台105の帯電量が制御される。試料台105の帯電量を制御することにより、得られる画像の明暗が変化するので、ユーザは所望の明るさの画像を選択することが可能となる。
(ii)試料上電場(電界)値設定GUIの構成例
図12は、第1および第2の実施形態に適用できる、試料上電界値設定GUIの構成例を示す図である。
ABCC機能をOFFにし(画像コントラスト自動調整1101および画像明るさ調整1102のチェックを外す)、帯電制御機能をON(静電AF1105および帯電制御1106にチェックを入れる)にする。すると、コントラスト1103およびブライトネス1104の値自動調整の表示は、試料上電場(電界)調整表示1201に切り替わる。図12において、0-65535は16ビットのADCを表しており、16ビットの分解能で電場(電界)値を設定できるように構成されている。第1および第2の実施形態において、電場値0に設定すると、試料上電界は最小(ゼロ)となる。一方、電場値65535に設定すると、試料上電界が最大になる。このようにGUIを構成することにより、ユーザは、画像明るさ・コントラスト自動調整機能が作動しない状態で、画像を見ながら、適当な試料上電界を設定することができる。
<焦点補正動作について>
(i)通常の(従来例による)焦点補正動作
通常(帯電制御フローのない場合)の対物レンズ103と静電電極を併用した焦点補正の典型的な手順を説明する。まず、ステージを用いて、視野を観察したいサンプル位置に移動させる。この時、観察位置が変わるため、サンプル高さも大きく変わることになる。焦点補正量も大きくなるので、粗調整に適した対物レンズ103による焦点調整が行われる。粗調整の後は、静電焦点補正が実行される。一旦粗調整が完了すると、以後の微調整には高速な静電焦点補正を用いる方が、スループットの向上に寄与するからである。
また、加速切り替えやイメージシフトによる視野移動を行った場合も、大きく焦点は変わらない。このため、通常、静電焦点補正が粗調整に優先して行われる。ただし、それほど焦点が変わらないとは言え、静電電極の電圧値に換算すると、100V程度印加電圧が変わり得る。これにより、試料上電界は、10V/mm程度変動することもある。これは、二次電子像のような帯電に影響されやすい画像の像質を変化させるのに十分な変動である。よって、通常の焦点補正動作を実行しただけでは良好な画像を得ることは困難である。
(ii)本開示による焦点補正動作
これに対して、本開示による帯電制御方式のフローでは、対物レンズ103による粗調整と静電焦点補正による微調整が完了した段階で、ユーザは画質を見ながら、GUI(図11あるいは図12参照)で適当な帯電状態パラメータを設定する。図11の場合、この帯電状態パラメータは電圧値である。図12の場合、この帯電状態パラメータは試料上電界(電場)である。いずれの場合も、試料台105または帯電制御電極106と静電電極(反射電子検出器104)の電圧を制御システム(コンピュータシステム)220が図示しないメモリ(記憶デバイス)に記憶し、試料上電界を計算してそれをメモリに記憶する。制御システム220は、加速切り替えやイメージシフトによる視野移動に伴って静電電極で焦点補正を行うと、試料上電界がメモリに記憶された計算値に一致するよう、試料台105または帯電制御電極106の電位を設定する。
(D)まとめ
(i)本実施形態では、荷電粒子ビームシステムを構成する制御システム(コンピュータシステム)は、荷電粒子線装置における、試料に照射する荷電粒子ビームの焦点を調整する反射電子検出器に印加する電圧の変化(焦点調整時の印加電圧の変化)に対応して、試料上の電界値を調整する。このように、試料上の電界値が調整されるので、取得される試料画像も所望の明るさになるように調整することができる(画質の向上)。本実施形態では、この試料上の電界値の調整の態様として、第1の実施形態による方法と、第2の実施形態による方法が提案されている。
(ii)第1の実施形態では、制御システムは、試料台に印加する電圧を制御することにより、試料上の電界値を調整する。より具体的には、反射電子検出器は、対物レンズの主面の位置に配置される。このとき、制御システムは、焦点を所望の焦点状態に調整するように反射電子検出器に印加する電圧を制御し、試料上の電界をあらかじめ設定された値に調整するように、試料台に印加する電圧を制御する。このように、非常に簡易な方法で画質およびスループットの向上を実現することができる。
(iii)第2の実施形態では、荷電粒子線装置には、反射電子検出器と試料台との間に帯電制御電極が配置される。そして、制御システムは、反射電子検出器に印加する電圧の変化に対応して、帯電制御電極に印加する電圧を制御することにより、試料上の電界値を調整する。より具体的には、反射電子検出器は、対物レンズの主面の位置に配置される。このとき、制御システムは、焦点を所望の焦点状態に調整するように反射電子検出器に印加する電圧を制御し、これに対応して試料上の電界をあらかじめ設定された値に調整するように、帯電制御電極に印加する電圧を制御する。リターディング電圧など、固定電圧を試料台に印加する場合には、第1の実施形態の方法を採用することはできないが、第2の実施形態のように帯電制御電極を設置し、これにより試料上の電界値を調整することで、リターディング電圧印加に影響を及ぼすことなく、画質の向上を実現することができるようになる。
(iv)第1および第2の実施形態に共通に適用可能な構成として、反射電子検出器を、半導体型で静電焦点補正のための電圧印加が可能な構造を有する検出器とすることができる。また、反射電子検出器を半導体型としたとき、制御システムは、反射電子検出器に含まれる検出器素子に印加する逆バイアス電圧を降伏電圧またはGNDの間で切り替え動作を行い、GNDに切り替えたときには、試料上の電界をあらかじめ設定された値に調整するように、試料台あるいは帯電制御電極に印加する電圧を制御するようにしてもよい。
また、第1および第2の実施形態において、制御システムは、ディスプレイ(図示せず)の画面上に、試料台あるいは帯電制御電極に印加する電圧値を設定するためのGUIを出力し、GUI上で設定された電圧値(オペレータが指定可能)に応じて、試料上の電界を調整するようにしてもよい。変形例として、第1および第2の実施形態において、制御システムは、ディスプレイの画面上に、試料上の電界値を設定するためのGUIを出力し、GUI上で設定された電界値(オペレータが指定可能)に応じて、試料台あるいは帯電制御電極に印加する電圧値を制御し、試料上の電界を調整するようにしてもよい。
さらに、第1および第2の実施形態において、制御システムは、反射電子検出器の印加電圧に対応する試料上の電界値の情報を保持(図示しないメモリに保持)し、反射電子検出器の印加電圧が変化したときに当該印加電圧に対応する試料上の電界値の情報を上記メモリから取得し、試料上の電界が取得した電界値になるように試料台あるいは帯電制御電極に印加する電圧を設定するようにしてもよい。これによりパラメータ設定が単純となり、容易に画質およびスループット向上を実現することが可能となる。
なお、第2の実施形態において、帯電制御電極は、厚みが反射電子検出器と試料台との距離より小さく、第一の開口と、メッシュ形状の第二の開口と、を有するように構成することができる。また、試料台と帯電制御電極との距離をL、反射電子と試料面がなす角度をθ、第二の開口部の外径をRとすると、R>L×tan(90°-θ)の関係を満たすように帯電制御電極を構成するようにできる。
(v)本開示の実施形態の機能は、ソフトウェアのプログラムコードによっても実現できる。この場合、プログラムコードを記録した記憶媒体をシステム或は装置に提供し、そのシステム或は装置のコンピュータ(又はCPUやMPU)が記憶媒体に格納されたプログラムコードを読み出す。この場合、記憶媒体から読み出されたプログラムコード自体が前述した実施形態の機能を実現することになり、そのプログラムコード自体、及びそれを記憶した記憶媒体は本開示を構成することになる。このようなプログラムコードを供給するための記憶媒体としては、例えば、フレキシブルディスク、CD-ROM、DVD-ROM、ハードディスク、光ディスク、光磁気ディスク、CD-R、磁気テープ、不揮発性のメモリカード、ROMなどが用いられる。
また、プログラムコードの指示に基づき、コンピュータシステム上で稼動しているOS(オペレーティングシステム)などが実際の処理の一部又は全部を行い、その処理によって前述した実施の形態の機能が実現されるようにしてもよい。さらに、記憶媒体から読み出されたプログラムコードが、コンピュータシステム上のメモリに書きこまれた後、そのプログラムコードの指示に基づき、コンピュータのCPUなどが実際の処理の一部又は全部を行い、その処理によって前述した実施の形態の機能が実現されるようにしてもよい。
さらに、実施の形態の機能を実現するソフトウェアのプログラムコードを、ネットワークを介して配信することにより、それをシステム又は装置のハードディスクやメモリ等の記憶手段又はCD-RW、CD-R等の記憶媒体に格納し、使用時にそのシステム又は装置のコンピュータ(又はCPUやMPU)が当該記憶手段や当該記憶媒体に格納されたプログラムコードを読み出して実行するようにしても良い。
なお、ここで述べたプロセス及び技術は本質的に如何なる特定の装置に関連することはなく、コンポーネントの如何なる相応しい組み合わせによってでも実装できる。更に、汎用目的の多様なタイプのデバイスがここで記述した教授に従って使用可能である。ここで述べた機能を実行するのに、専用の装置を構築してもよい。また、本実施形態に開示されている複数の構成要素を適宜組み合わせるようにしてもよい。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。本開示では、具体例に即して説明しているが、これらは、すべての観点において限定のためではなく説明のためである。本分野にスキルのある者には、本開示を実施するのに相応しいハードウェア、ソフトウェア、及びファームウエアの多数の組み合わせがあることが解るであろう。例えば、記述したソフトウェアは、アセンブラ、C/C++、perl、Shell、PHP、Java(登録商標)等の広範囲のプログラム又はスクリプト言語で実装できる。
さらに、上述の実施形態において、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。全ての構成が相互に接続されていても良い。
加えて、本技術分野の通常の知識を有する者には、本開示のその他の実装がここに開示された本開示の明細書及び実施形態の考察から明らかになる。記述された実施形態の多様な態様及び/又はコンポーネントは、単独又は如何なる組み合わせでも使用することが出来る。明細書と具体例は典型的なものに過ぎず、本開示の範囲と精神は後続する特許請求範囲で示される。
10 半導体計測システム(荷電粒子ビームシステム)
100 荷電粒子線装置
101 チャンバ
102 ブースター
103 対物レンズ
104 反射電子検出器
105 試料台
106 帯電制御電極
107 二次電子検出器
108 導電材ハウジング
109 シンチレータ面導電材コーティング
201 電子銃
202 第一アライナー
203 非点補正器
204 第一コンデンサレンズ
205 対物可動絞り
206 第二アライナー
207 第二コンデンサレンズ
208 第一走査偏向器(走査偏向コイル)
209 第二走査偏向器(走査偏向コイル)
120 検出器制御部
121 対物レンズ制御部
122 静電電極電圧制御部
123 試料台電圧制御部
124 帯電制御電極制御部
130 画像処理部
135 制御部
140 GUI
220 制御システム(コンピュータシステム)
221 電子光学制御部
230 走査制御部
231 偏向制御部
301 第一の開口
302 第二の開口
荷電粒子線装置100は、電子銃201と、アライナー202および206と、コンデンサレンズ204および207と、走査偏向器208および209と、対物レンズ103と、反射電子検出器104と、試料台105と、を備えている。なお、後述の第2の実施形態の場合、荷電粒子線装置100は、さらに、帯電制御電極106を備えている。
図5は、静電電極(反射電子検出器104)、帯電制御電極106、および試料台105の各位置に対応する、系の静電ポテンシャル(軸上電位)を示す図である。図5において、実線(V=0V)は静電電極(反射電子検出器104)に電圧印加しない状態を表す。実線の直線は、試料表面における電位の傾き、すなわち、試料上電界Eを表す。図5において、点線(V=100V)は静電電極(反射電子検出器104)に電圧印加し、一次電子ビームの焦点を調整した状態を表す。点線の直線は、焦点調整後の試料表面における電位の傾き、すなわち、焦点調整後の試料上電界Eを表す。さらに、図5において、破線(V=100V、Vcc=-32V)は静電電極(反射電子検出器104)に電圧印加し、一次電子ビームの焦点を調整(例えば、視野移動に伴い焦点調整を行った)し、帯電制御電極106に電圧印加し、試料表面における帯電を制御した状態を表す。破線の直線は、焦点調整および帯電制御後の試料表面における電位の傾き、すなわち、焦点調整および帯電制御後の試料上電界Eを表している。点線では、試料台105における電界(電場)が静電電極に電圧を印加しない場合(実線)と比べて大きくなっていることが分かる。これを補正するために、帯電制御電極106に電圧Vccを印加する。この時のグラフが破線で示されており、補正後の線の傾きが視野移動前の実線の傾きとほぼ同一になっていることが分かる。
ABCC機能をOFFにし(画像コントラスト自動調整1101および画像明るさ調整1102のチェックを外す)、帯電制御機能をON(静電AF1105および帯電制御1106にチェックを入れる)にする。すると、コントラスト1103およびブライトネス1104の値自動調整の表示は、試料上電場(電界)調整表示1201に切り替わる。図12において、0-65535は16ビットのDACを表しており、16ビットの分解能で電場(電界)値を設定できるように構成されている。第1および第2の実施形態において、電場値0に設定すると、試料上電界は最小(ゼロ)となる。一方、電場値65535に設定すると、試料上電界が最大になる。このようにGUIを構成することにより、ユーザは、画像明るさ・コントラスト自動調整機能が作動しない状態で、画像を見ながら、適当な試料上電界を設定することができる。

Claims (16)

  1. 荷電粒子線装置と、当該荷電粒子線装置を制御するコンピュータシステムと、を備える荷電粒子ビームシステムであって、
    前記荷電粒子線装置は、対物レンズと、試料台と、前記対物レンズと前記試料台との間に配置され、試料に照射する荷電粒子ビームの焦点を調整する反射電子検出器と、を備え、
    前記コンピュータシステムは、前記反射電子検出器に印加する電圧の変化に対応して、試料上の電界値を調整する、荷電粒子ビームシステム。
  2. 請求項1において、
    前記コンピュータシステムは、前記試料台に印加する電圧を制御することにより、前記試料上の電界値を調整する、荷電粒子ビームシステム。
  3. 請求項2において、
    前記反射電子検出器は、前記対物レンズの主面の位置に配置され、
    前記コンピュータシステムは、前記焦点を所望の焦点状態に調整するように前記反射電子検出器に印加する電圧を制御し、前記試料上の電界をあらかじめ設定された値に調整するように、前記試料台に印加する電圧を制御する、荷電粒子ビームシステム。
  4. 請求項1において、
    前記荷電粒子線装置は、さらに、前記反射電子検出器と前記試料台との間に配置された帯電制御電極を備え、
    前記コンピュータシステムは、前記反射電子検出器に印加する電圧の変化に対応して、前記帯電制御電極に印加する電圧を制御することにより、前記試料上の電界値を調整する、荷電粒子ビームシステム。
  5. 請求項4において、
    前記反射電子検出器は、前記対物レンズの主面の位置に配置され、
    前記コンピュータシステムは、前記焦点を所望の焦点状態に調整するように前記反射電子検出器に印加する電圧を制御し、前記試料上の電界をあらかじめ設定された値に調整するように、前記帯電制御電極に印加する電圧を制御する、荷電粒子ビームシステム。
  6. 請求項1において、
    前記反射電子検出器は半導体型であり、静電焦点補正のための電圧印加が可能な構造を有する検出器である、荷電粒子ビームシステム。
  7. 請求項1において、
    前記反射電子検出器は半導体型であり、
    前記コンピュータシステムは、前記反射電子検出器に含まれる検出器素子に印加する逆バイアス電圧を降伏電圧またはGNDの間で切り替え、前記試料上の電界をあらかじめ設定された値に調整するように、前記試料台に印加する電圧を制御する、荷電粒子ビームシステム。
  8. 請求項4において、
    前記反射電子検出器は半導体型であり、
    前記コンピュータシステムは、前記反射電子検出器に印加する逆バイアス電圧を降伏電圧またはGNDの間で切り替え、前記試料上の電界をあらかじめ設定された値に調整するように、前記帯電制御電極に印加する電圧を連動して制御する、荷電粒子ビームシステム。
  9. 請求項2において、
    前記コンピュータシステムは、前記試料台に印加する電圧値を設定するためのGUIを出力し、前記GUI上で設定された電圧値に応じて、前記試料上の電界を調整する、荷電粒子ビームシステム。
  10. 請求項4において、
    前記コンピュータシステムは、前記帯電制御電極に印加する電圧値を設定するためのGUIを出力し、前記GUI上で設定された電圧値に応じて、前記試料上の電界を調整する、荷電粒子ビームシステム。
  11. 請求項2において、
    前記コンピュータシステムは、前記試料上の電界値を設定するためのGUIを出力し、前記GUI上で設定された電界値に応じて、前記試料台に印加する電圧値を制御し、前記試料上の電界を調整する、荷電粒子ビームシステム。
  12. 請求項4において、
    前記コンピュータシステムは、前記試料上の電界値を設定するためのGUIを出力し、前記GUI上で設定された電界値に応じて、前記帯電制御電極の印加電圧を制御し、前記試料上の電界を調整する、荷電粒子ビームシステム。
  13. 請求項2において、
    前記コンピュータシステムは、前記反射電子検出器の印加電圧に対応する前記試料上の電界値の情報を保持し、前記反射電子検出器の印加電圧が変化したときに当該印加電圧に対応する前記試料上の電界値の情報を取得し、前記試料上の電界が前記取得した電界値になるように前記試料台に印加する電圧を設定する、荷電粒子ビームシステム。
  14. 請求項4において、
    前記コンピュータシステムは、前記反射電子検出器の印加電圧に対応する前記試料上の電界値の情報を保持し、前記反射電子検出器の印加電圧が変化したときに当該印加電圧に対応する前記試料上の電界値の情報を取得し、前記試料上の電界が前記取得した電界値になるように前記帯電制御電極に印加する電圧を設定する、荷電粒子ビームシステム。
  15. 請求項4において、
    前記帯電制御電極は、厚みが前記反射電子検出器と前記試料台との距離より小さく、第一の開口と、メッシュ形状の第二の開口と、を有し、
    前記試料台と前記帯電制御電極との距離をL、反射電子と試料面がなす角度をθ、前記帯電制御電極の開口部全体の外径をRとすると、R>L×tan(90°-θ)の関係を満たす、荷電粒子ビームシステム。
  16. 請求項4において、
    前記帯電制御電極は、一次電子ビームおよび前記試料からの二次電子が通過する開口を有し、
    前記帯電制御電極の厚みをt、前記開口の内径をrとすると、当該厚みtおよび内径rは、0.01≦t/r≦1の関係を満たす、荷電粒子ビームシステム。

JP2021076608A 2021-04-28 2021-04-28 荷電粒子ビームシステム Pending JP2022170466A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021076608A JP2022170466A (ja) 2021-04-28 2021-04-28 荷電粒子ビームシステム
KR1020220033245A KR20220148087A (ko) 2021-04-28 2022-03-17 하전 입자 빔 시스템
US17/702,343 US20220351938A1 (en) 2021-04-28 2022-03-23 Charged Particle Beam System

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021076608A JP2022170466A (ja) 2021-04-28 2021-04-28 荷電粒子ビームシステム

Publications (1)

Publication Number Publication Date
JP2022170466A true JP2022170466A (ja) 2022-11-10

Family

ID=83807771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021076608A Pending JP2022170466A (ja) 2021-04-28 2021-04-28 荷電粒子ビームシステム

Country Status (3)

Country Link
US (1) US20220351938A1 (ja)
JP (1) JP2022170466A (ja)
KR (1) KR20220148087A (ja)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5486769A (en) * 1994-08-15 1996-01-23 National University Of Singapore Method and apparatus for measuring quantitative voltage contrast
JP4236742B2 (ja) 1998-10-29 2009-03-11 株式会社日立製作所 走査形電子顕微鏡
JP5548244B2 (ja) 2012-09-07 2014-07-16 株式会社日立ハイテクノロジーズ 検査計測装置および検査計測方法
US9601303B2 (en) * 2015-08-12 2017-03-21 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Charged particle beam device and method for inspecting and/or imaging a sample
JP2019204618A (ja) * 2018-05-22 2019-11-28 株式会社日立ハイテクノロジーズ 走査型電子顕微鏡
WO2020008492A1 (ja) 2018-07-02 2020-01-09 株式会社日立ハイテクノロジーズ 走査電子顕微鏡
JP7149906B2 (ja) * 2019-08-07 2022-10-07 株式会社日立ハイテク 走査電子顕微鏡及びパタン計測方法

Also Published As

Publication number Publication date
KR20220148087A (ko) 2022-11-04
US20220351938A1 (en) 2022-11-03

Similar Documents

Publication Publication Date Title
US10522327B2 (en) Method of operating a charged particle beam specimen inspection system
JP6242745B2 (ja) 荷電粒子線装置及び当該装置を用いる検査方法
US6259094B1 (en) Electron beam inspection method and apparatus
JP4679978B2 (ja) 荷電粒子ビーム応用装置
JP3934461B2 (ja) 電子顕微鏡のチャージアップ防止方法および電子顕微鏡
US7067807B2 (en) Charged particle beam column and method of its operation
US7821187B1 (en) Immersion gun equipped electron beam column
JP2007265931A (ja) 検査装置及び検査方法
JP2023520336A (ja) 複数の検出器を備えた荷電粒子ビーム装置及び撮像方法
JP2007207688A (ja) ミラー電子顕微鏡およびミラー電子顕微鏡を用いた検査装置
JP6845900B2 (ja) 荷電粒子ビーム装置、荷電粒子ビーム装置のためのマルチビームブランカ、および荷電粒子ビーム装置を動作させるための方法
US6897442B2 (en) Objective lens arrangement for use in a charged particle beam column
JP2017199606A (ja) 荷電粒子線装置
US10658152B1 (en) Method for controlling a particle beam device and particle beam device for carrying out the method
JPWO2018154638A1 (ja) 荷電粒子線装置
JP5767818B2 (ja) 粒子ビーム装置および粒子ビーム装置の動作方法
US8507857B2 (en) Charged particle beam inspection apparatus and inspection method using charged particle beam
JP2009170150A (ja) 検査計測装置および検査計測方法
US6653632B2 (en) Scanning-type instrument utilizing charged-particle beam and method of controlling same
JP6950088B2 (ja) 荷電粒子線装置及び荷電粒子線装置の検出器位置調整方法
JP2022170466A (ja) 荷電粒子ビームシステム
WO2019207707A1 (ja) 荷電粒子線装置
JP6419849B2 (ja) 荷電粒子線装置
JP5548244B2 (ja) 検査計測装置および検査計測方法
WO2022009297A1 (ja) 荷電粒子線装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220511