JP2022150860A - Surface-coated cutting tool - Google Patents

Surface-coated cutting tool Download PDF

Info

Publication number
JP2022150860A
JP2022150860A JP2021053649A JP2021053649A JP2022150860A JP 2022150860 A JP2022150860 A JP 2022150860A JP 2021053649 A JP2021053649 A JP 2021053649A JP 2021053649 A JP2021053649 A JP 2021053649A JP 2022150860 A JP2022150860 A JP 2022150860A
Authority
JP
Japan
Prior art keywords
tool
average
coating layer
coated cutting
cutting tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021053649A
Other languages
Japanese (ja)
Inventor
浩峻 唐
Haojun Tang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2021053649A priority Critical patent/JP2022150860A/en
Publication of JP2022150860A publication Critical patent/JP2022150860A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

To provide a surface-coated cutting tool which exhibits excellent crack resistance and wear resistance over a long-term use even if the surface-coated cutting tool is used for material such as a Ti-based alloy having high adhesibility to a surface coated cutting tool.SOLUTION: A surface-coated cutting tool is provided which has a tool substrate and a coating layer on a surface of the tool substrate, the coating layer has an average layer thickness of 0.5 to 5.0 μm, and when an average composition thereof is represented by the following composition formula: Ti1-xCrxBy, x satisfies 0.05 to 0.50, y satisfies 1.5 to 3.0. A columnar crystal grain of hexagonal crystal structure has an area ratio of 40% or more in a longitudinal section of the coating layer, and the columnar crystal grain of the hexagonal crystal structure has an average width W of 0.02 to 0.10 μm, and an average aspect ratio A of 2.0 to 5.0, and an average value θ of an angle between the columnar crystal grain and a perpendicular line of a surface of the tool substrate is 5 to 30 degrees.SELECTED DRAWING: Figure 1

Description

この発明は、表面被覆切削工具(以下、被覆工具ということがある)に関する。 The present invention relates to a surface-coated cutting tool (hereinafter sometimes referred to as a coated tool).

従来、超硬合金等を工具基体とし、この工具基体の表面に被覆層を蒸着法により形成した被覆工具が知られている。この被覆工具は耐摩耗性を有しているが、この耐摩耗性をさらに向上させるべく、種々の提案がなされ、金属硼化物を含む被覆層に関する提案もなされている。 Conventionally, there has been known a coated tool having a tool substrate made of cemented carbide or the like and having a coating layer formed on the surface of the tool substrate by a vapor deposition method. Although this coated tool has wear resistance, various proposals have been made in order to further improve this wear resistance, and proposals have also been made regarding coating layers containing metal borides.

例えば、特許文献1には、工具基体表面に中間皮膜を介した皮膜は、Al、Si、Cr、W、Ti、Nb、Zrから選択される1種以上の元素の硼化物であって、六方晶の結晶構造であり、前記中間皮膜は、AlxMyからなる窒化物又は炭窒化物(x+y=100、40≦x≦95、5≦y≦60、MはTi、Cr、V、Nbから選択される1種以上)であり、前記工具基体側が立方晶の結晶構造、前記皮膜側が六方晶の結晶構造である被覆工具が記載され、該被覆工具は耐摩耗性に優れるとされている。 For example, in Patent Document 1, the coating on the surface of the tool substrate via an intermediate coating is a boride of one or more elements selected from Al, Si, Cr, W, Ti, Nb, and Zr, and has a hexagonal The intermediate film is a nitride or carbonitride made of AlxMy (x + y = 100, 40 ≤ x ≤ 95, 5 ≤ y ≤ 60, M is selected from Ti, Cr, V, Nb and one or more of them), a coated tool having a cubic crystal structure on the tool substrate side and a hexagonal crystal structure on the coating side is described, and the coated tool is said to be excellent in wear resistance.

また、例えば、特許文献2には、少なくとも50GPaの硬度であるTiB層を有する被覆層を有する工具が記載され、該被覆層は高硬度であるとされている。 Also, for example, Patent Document 2 describes a tool having a coating layer having a TiB 2 layer with a hardness of at least 50 GPa, said coating layer being said to have a high hardness.

特開2012-228735号公報JP 2012-228735 A 特許第6561048号公報Japanese Patent No. 6561048

本発明は、前記事情や提案を鑑みてなされたものであって、例えば、Ti基合金のような表面被覆切削工具との溶着性の高い材料を切削加工に供した場合であっても、優れた耐クラック性、耐摩耗性を長期間の使用にわたって発揮する表面被覆切削工具を提供することを目的とする。 The present invention has been made in view of the above circumstances and proposals. It is an object of the present invention to provide a surface-coated cutting tool that exhibits crack resistance and wear resistance over a long period of use.

本発明の実施形態に係る表面被覆切削工具は、
(a)工具基体と該工具基体の表面に被覆層を有し、
(b)前記被覆層は、0.5~5.0μmの平均層厚を有し、その平均組成を組成式:Ti1-xCrで表したとき、xは0.05~0.50、yは1.5~3.0を満足し、
(c)前記被覆層の縦断面において、六方晶構造の柱状晶粒が40%以上の面積割合を有し、
(d)前記六方晶構造の柱状結晶粒は、その平均幅Wが0.02~0.10μmであり、平均アスペクト比Aが2.0~5.0であって、前記工具基体の表面の垂線とのなす角度の平均値θが5~30度である。
A surface-coated cutting tool according to an embodiment of the present invention is
(a) having a tool substrate and a coating layer on the surface of the tool substrate;
(b) The coating layer has an average layer thickness of 0.5 to 5.0 μm, and the average composition is represented by the composition formula: Ti 1-x Cr x B y , where x is 0.05 to 0. .50, y satisfies 1.5 to 3.0,
(c) columnar crystal grains having a hexagonal crystal structure occupy an area ratio of 40% or more in the vertical cross section of the coating layer;
(d) The columnar crystal grains of the hexagonal crystal structure have an average width W of 0.02 to 0.10 μm and an average aspect ratio A of 2.0 to 5.0, and The average value θ of the angles formed with the perpendicular is 5 to 30 degrees.

前記によれば、Ti基合金のような表面被覆切削工具との溶着性の高い材料を切削加工に供した場合であっても、優れた耐クラック性、耐摩耗性を長期間の使用にわたって発揮する。 According to the above, even when a material with high adhesion to a surface-coated cutting tool such as a Ti-based alloy is used for cutting, excellent crack resistance and wear resistance are exhibited over a long period of use. do.

六方晶構造の柱状結晶粒(i)において、工具基体の表面に平行な最大投影長さ(Ti)と、工具基体の表面の垂線に平行な最大投影長さ(Vi)の説明図である。Fig. 3 is an explanatory diagram of the maximum projected length (Ti) parallel to the surface of the tool base and the maximum projected length (Vi) parallel to the normal to the surface of the tool base in columnar crystal grains (i) having a hexagonal structure. 六方晶構造の柱状結晶粒(i)が工具基体の表面の垂線となす角度(θi)、結晶粒の長さ(Hi)の説明図である。FIG. 4 is an explanatory diagram of the angle (θi) formed by a columnar crystal grain (i) having a hexagonal crystal structure and the normal to the surface of the tool base, and the length (Hi) of the crystal grain. 六方晶構造の柱状結晶粒(i)において、結晶粒の幅(Wi)の説明図である。FIG. 4 is an explanatory diagram of the grain width (Wi) in columnar grains (i) having a hexagonal crystal structure.

本発明者は、TiとCrの複合硼化物(以下、「TiCrB」ということがある)について鋭意検討した。その結果、Ti硼化物(TiB)にTi基合金に対する反応性が比較的に低いCrを添加したTiCrBは、TiBの六方晶の結晶構造を維持し、その耐摩耗性を損なうことなく、耐溶着性を向上させることができるとの知見を得た。また、TiCrBは六方晶の柱状結晶組織を有することにより、被覆層破壊時の破壊サイズを小さくすることができるため、大規模な破壊が抑制され、Ti基合金の切削加工に対し優れた性能を発現することも知見した。 The inventor of the present invention has extensively studied a composite boride of Ti and Cr (hereinafter sometimes referred to as "TiCrB"). As a result, TiCrB, which is Ti boride (TiB 2 ) with the addition of Cr, which has relatively low reactivity to Ti-based alloys, maintains the hexagonal crystal structure of TiB 2 and does not impair its wear resistance. The inventors have found that the welding resistance can be improved. In addition, since TiCrB has a hexagonal columnar crystal structure, it is possible to reduce the size of the fracture when the coating layer breaks, so large-scale fracture is suppressed and excellent performance is achieved in cutting Ti-based alloys. It was also found to be expressed.

以下、本発明の実施形態に係る表面被覆切削工具について、説明する。なお、本明細書および特許請求の範囲において数値範囲を「A~B」(A、Bはともに数値である)と表現するとき、その範囲は上限(B)および下限(A)の数値を含んでおり、上限(B)と下限(A)の単位は同じである。また、数値は公差を含む。 A surface-coated cutting tool according to an embodiment of the present invention will be described below. In the present specification and claims, when a numerical range is expressed as "A to B" (both A and B are numerical values), the range includes the numerical values of the upper limit (B) and the lower limit (A). , and the units of the upper limit (B) and the lower limit (A) are the same. Also, the numerical values include tolerances.

また、本明細書および特許請求の範囲において、工具基体の表面とは、次のものをいう。
すなわち、工具基体がインサートのような平面の表面を有するときは、縦断面(インサートでは、工具基体の表面の凹凸を無視して工具基体の表面を平面と考えたときの工具基体に垂直な断面。軸物工具では軸に対して垂直な断面)においてエネルギー分散型X線分析法(EDS:Energy dispersive X-ray spectroscopy)を用いた元素マッピングを実施し、得られた元素マップに対して公知の画像処理を行うことで被覆層(後述する下部層が存在すれば、被覆層の代わりに下部層を用いる)と工具基体の界面を定め、こうして得られた被覆層と工具基体との界面の粗さ曲線について、平均線を算術的に求め、これを工具基体の表面とする。そして、この平均線に対して、垂直な方向を工具基体に垂直な方向(層厚方向)とする。
In addition, in the present specification and claims, the surface of the tool base refers to the following.
That is, when the tool base has a flat surface like an insert, the longitudinal section (in the case of an insert, a cross section perpendicular to the tool base when the surface of the tool base is considered to be a plane while ignoring the unevenness of the surface of the tool base) Elemental mapping using energy dispersive X-ray spectroscopy (EDS) is performed in a cross section perpendicular to the shaft for a shaft tool), and a known image for the obtained elemental map The treatment defines the interface between the coating layer (if there is a lower layer described below, the lower layer is used in place of the coating layer) and the tool substrate, and the roughness of the interface between the coating layer and the tool substrate thus obtained is determined. Arithmetically determine the mean line for the curve and use this as the surface of the tool base. The direction perpendicular to the average line is defined as the direction perpendicular to the tool substrate (layer thickness direction).

また、工具基体がドリル、エンドミルのように曲面の表面を有する場合であっても、被覆層の層厚に対して工具径が十分に大きければ、測定領域における被覆層と工具基体との間の界面は略平面となることから、同様の手法により工具基体の表面を決定することができる。 Also, even if the tool base has a curved surface such as a drill or an end mill, if the tool diameter is sufficiently large relative to the thickness of the coating layer, the distance between the coating layer and the tool base in the measurement area will increase. Since the interface is substantially planar, the surface of the tool substrate can be determined in a similar manner.

すなわち、例えばドリル、エンドミルであれば、軸方向に垂直な断面の被覆層の縦断面においてEDSを用いた元素マッピングを実施し、得られた元素マップに対して公知の画像処理を行うことで被覆層と工具基体の界面を定め、こうして得られた被覆層と工具基体との界面の粗さ曲線について、平均線を算術的に求め、これを工具基体の表面とする。そして、この平均線に対して、垂直な方向を工具基体に垂直な方向(層厚方向)とする。 That is, for example, in the case of drills and end mills, elemental mapping is performed using EDS in a longitudinal section of the coating layer perpendicular to the axial direction, and the obtained elemental map is subjected to known image processing. The interface between the layer and the tool substrate is defined, and the mean line is arithmetically obtained for the roughness curve of the interface between the coating layer and the tool substrate thus obtained, and this is used as the surface of the tool substrate. The direction perpendicular to the average line is defined as the direction perpendicular to the tool substrate (layer thickness direction).

1.被覆層
(1)平均層厚
被覆層の平均層厚は、0.5~5.0μmであることが好ましい。その理由は、平均層厚が、0.5μm未満であると、長期にわたって耐摩耗性、耐欠損性を発揮することが難しく、一方、5.0μmを超えると、被覆層が有する残留応力によって被覆層の工具基体からの剥離が生じやすくなり、チッピングが発生しやすくなるためである。
被覆層の平均層厚は、0.5~3.0μmであることがより好ましい。
1. Coating Layer (1) Average Layer Thickness The average layer thickness of the coating layer is preferably 0.5 to 5.0 μm. The reason for this is that if the average layer thickness is less than 0.5 μm, it is difficult to exhibit wear resistance and chipping resistance over a long period of time. This is because the layer tends to peel off from the tool substrate, and chipping tends to occur.
More preferably, the average layer thickness of the coating layer is 0.5 to 3.0 μm.

なお、被覆層の平均層厚は、例えば、集束イオンビーム装置(FIB:Focused Ion Beam system)、クロスセクションポリッシャー装置(CP:Cross section Polisher)等を用いて、硬質被覆層を任意の位置の縦断面で切断して観察用の試料を作製し、その縦断面を走査型電子顕微鏡(Scanning Electron Microscope:SEM)を用いた観察により複数箇所(例えば、5箇所)の層厚の測定結果を平均したものである。 In addition, the average layer thickness of the coating layer can be obtained by, for example, using a focused ion beam system (FIB), a cross section polisher (CP), or the like, for the hard coating layer at any position. A sample for observation was prepared by cutting along the plane, and the longitudinal section was observed using a scanning electron microscope (SEM), and the layer thickness measurement results at multiple locations (e.g., 5 locations) were averaged. It is a thing.

(2)平均組成
被覆層の平均組成は、組成式::Ti1-xCrで表したとき、xは0.05~0.50、yは1.5~3.0を満足することが好ましい。
その理由は、次のとおりである。
(2) Average composition The average composition of the coating layer is represented by the composition formula: Ti 1-x Cr x B y , where x is 0.05 to 0.50 and y is 1.5 to 3.0. preferably.
The reason is as follows.

xが、0.05未満であると被覆層の十分な耐溶着性が発揮できず、一方、0.50を超えると、被覆層の硬さが不十分となる。
yが、1.5未満であると被覆層の十分な耐溶着性が発揮できず、一方、3.0を超えると六方晶構造とはならず、被覆層の硬さが不十分となり、耐チッピング性が低下する。
xは、0.10~0.35、yは1.7~2.5であることがより好ましい。
When x is less than 0.05, the coating layer cannot exhibit sufficient adhesion resistance, while when it exceeds 0.50, the hardness of the coating layer becomes insufficient.
If y is less than 1.5, the coating layer cannot exhibit sufficient adhesion resistance, while if it exceeds 3.0, the hexagonal crystal structure will not be formed, and the hardness of the coating layer will be insufficient, resulting in poor resistance. Chipping resistance is reduced.
More preferably, x is 0.10 to 0.35 and y is 1.7 to 2.5.

平均組成は、電子線マイクロアナライザ(EPMA:Electron Probe Micro Analyzer)を用い、電子線を被覆層の表面、もしくは、被覆層の任意の位置の縦断面の5箇所に照射し、それぞれの箇所から得られた被覆層を構成する元素に対応する特性X線を解析することで各元素の含有量の定量化を行いし、その結果を算術平均して求める。 The average composition is obtained by irradiating the surface of the coating layer with an electron probe microanalyzer (EPMA) or 5 points in the longitudinal section of the coating layer at any position, and obtaining from each point. The content of each element is quantified by analyzing characteristic X-rays corresponding to the elements forming the coated layer, and the result is calculated by arithmetic mean.

(3)六方晶の柱状結晶粒
(3-1)面積率
被覆層の縦断面において、六方晶構造の柱状晶粒(六方晶柱状晶粒ということがある)が40%以上の面積割合を有することが好ましい。面積割合が40%未満であると、被覆層が前述の目的を達成するために必要な耐摩耗性、耐チッピング性を有しない。面積割合は高い方が好ましく、上限は制約がなく100%、すなわち、すべての結晶粒が六方晶構造の柱状晶粒であってもよい。
ここで、六方晶構造の柱状晶粒とは、後述するアスペクト比が1を超えるものをいう。
(3) Hexagonal columnar crystal grains (3-1) Area ratio Columnar crystal grains with a hexagonal crystal structure (sometimes referred to as hexagonal columnar crystal grains) have an area ratio of 40% or more in the longitudinal section of the coating layer. is preferred. If the area ratio is less than 40%, the coating layer does not have the wear resistance and chipping resistance necessary to achieve the aforementioned objectives. A higher area ratio is preferable, and the upper limit is not limited and may be 100%, that is, all crystal grains may be columnar crystal grains having a hexagonal crystal structure.
Here, the columnar crystal grains having a hexagonal crystal structure refer to those having an aspect ratio exceeding 1, which will be described later.

(3-2)結晶幅とアスペクト比
六方晶柱状晶粒の平均結晶幅は、0.02~0.10μmであることが好ましい。その理由は、0.02μm未満であると粒径が小さく、切削中に脱落しやすく、耐摩耗性に劣り、一方、0.10μmを超えると切削中に結晶粒の亀裂やクラック等の破壊が発生したときの破壊サイズが大きくなり、耐摩耗性が劣るためである。
(3-2) Crystal Width and Aspect Ratio The average crystal width of hexagonal columnar crystal grains is preferably 0.02 to 0.10 μm. The reason for this is that if the grain size is less than 0.02 μm, the grain size is small, the grain tends to come off during cutting, and wear resistance is poor. This is because the fracture size becomes large when it occurs, resulting in poor wear resistance.

また、平均アスペクト比は、2.0~5.0であることが好ましい。その理由は、2.0未満であると、柱状の結晶粒よりも粒状の結晶粒が多くなって耐摩耗性が劣り、一方、5.0を超えると切削中に結晶粒の亀裂やクラック等の破壊が発生した場合の破壊サイズが大きくなり、耐摩耗性が劣るためである。 Also, the average aspect ratio is preferably 2.0 to 5.0. The reason for this is that if it is less than 2.0, the number of granular crystal grains is larger than that of columnar crystal grains, resulting in poor wear resistance. This is because the size of the fracture becomes large when the fracture occurs, resulting in poor wear resistance.

(3-3)工具基体の表面の垂線となす角度
六方晶構造の柱状結晶粒が工具基体の表面の垂線となす角度の平均値θが5~30度であることが好ましい。その理由は、角度の平均値θがこの範囲にあると、切削中に結晶粒が脱落しづらく、損耗が抑制され、優れた耐摩耗性を発揮するためである。
(3-3) Angle Formed with Normal to Surface of Tool Substrate It is preferable that the average angle θ formed by the columnar crystal grains of the hexagonal crystal structure and the normal to the surface of the tool substrate is 5 to 30 degrees. The reason for this is that when the average value θ of the angles is within this range, crystal grains are less likely to drop off during cutting, wear is suppressed, and excellent wear resistance is exhibited.

(3-4)測定方法
面積割合、結晶幅とアスペクト比、および、工具基体の表面の垂線となす角度の測定は、結晶粒界の画定を行って、次のように測定する。
(3-4) Measurement method The area ratio, crystal width and aspect ratio, and the angle formed with the normal to the surface of the tool substrate are measured as follows after defining the grain boundaries.

[1]結晶粒界の画定
透過型電子顕微鏡(TEM:Transmission Electron Microscope)による、自動結晶方位マッピング(ACOM:Automated Crystal Orientation Mapping)-TEMを用いた解析を行い、六方晶柱状粒iの結晶粒界を画定する。
ここで、iは六方晶柱状晶粒を区別する番号で、i=1~nであり、nは測定対象となる六方晶柱状晶粒の総数であって、その値が20以上となるように選ぶ。
[1] Defining grain boundaries Automatic crystal orientation mapping (ACOM) using a transmission electron microscope (TEM)-Analysis using TEM was performed to determine the crystal grains of the hexagonal columnar grains i. define boundaries.
Here, i is a number for distinguishing hexagonal columnar crystal grains, i = 1 to n, n is the total number of hexagonal columnar crystal grains to be measured, and the value is 20 or more. Choose.

[2]六方晶柱状粒iの大きさの測定
結晶粒界を画定し六方晶柱状晶粒iを特定したら、その六方晶柱状晶粒の大きさを測定する。
すなわち、図1に示すように、六方晶柱状粒iについて、
1)最大垂直投影長さVi
2)最大水平投影長さLi
3)最大水平横断長さTi
を測定する。
[2] Measurement of Size of Hexagonal Columnar Grain i After defining the grain boundary and identifying the hexagonal columnar grain i, the size of the hexagonal columnar grain is measured.
That is, as shown in FIG. 1, for hexagonal columnar grains i,
1) maximum vertical projection length Vi
2) maximum horizontal projection length Li
3) Maximum horizontal transverse length Ti
to measure.

ここで、
前記1)の最大垂直投影長さViとは、六方晶柱状粒iに対して、工具基体の表面に平行な方向から平行光線をあて、この平行な方向へ投影される長さであり、換言すると、工具基体の表面に対して複数の垂直な直線が六方晶柱状粒iを、それぞれ、工具基体に近い点と遠い点の2点で横断するとき、この工具基体に近い点の中の最も工具基体に近い点と、この工具基体に遠い点の中の最も工具基体に遠い点との工具基体の表面に垂直方向の長さであり、
前記2)の最大水平投影長さLiとは、六方晶柱状粒iに対して、工具基体の表面に垂直な方向から平行光線をあて、この垂直な方向へ投影される長さであり、換言すると、工具基体の表面に対して複数の平行な直線が六方晶柱状粒iを、それぞれ、工具基体の左側の点と右側の点の2点で横断するとき、この左側の点の中の最も左にある点と、この右側の点の中の最も右側の点との工具基体の表面に平行な方向の長さであり、
前記3)の最大水平横断長さTiとは、工具基体の表面に平行な直線が六方晶柱状粒iを横断するとき、その横断する長さの最大長さである。
here,
The maximum vertical projection length Vi in 1) above is the length projected in the direction parallel to the surface of the tool base when a parallel light beam is applied to the hexagonal columnar grains i from a direction parallel to the surface of the tool substrate. Then, when a plurality of straight lines perpendicular to the surface of the tool substrate intersect the hexagonal columnar grains i at two points, one close to the tool substrate and one far from the tool substrate, The length in the direction perpendicular to the surface of the tool base between the point closest to the tool base and the point furthest from the tool base among the points farthest from the tool base,
The maximum horizontal projection length Li in 2) above is the length projected in the direction perpendicular to the hexagonal columnar grains i when parallel rays are applied from the direction perpendicular to the surface of the tool substrate. Then, when a plurality of straight lines parallel to the surface of the tool base intersect the hexagonal columnar grains i at two points on the left side and right side of the tool base, the most is the length in the direction parallel to the surface of the tool base between the point on the left and the point on the rightmost of the points on the right,
The maximum horizontal transverse length Ti in 3) above is the maximum length of a straight line parallel to the surface of the tool substrate that traverses the hexagonal columnar grains i.

[3]測定長さの換算
前記「2」で測定した1)最大垂直投影長さVi、2)最大水平投影長さLi、および、3)最大水平横断長さTiから、
4)六方晶柱状粒iの長さHi
5)六方晶柱状粒iの幅Wi
に換算する。
[3] Conversion of measured length From 1) maximum vertical projection length Vi, 2) maximum horizontal projection length Li, and 3) maximum horizontal transverse length Ti measured in "2" above,
4) Length Hi of hexagonal columnar grains i
5) Width Wi of hexagonal columnar grain i
Convert to

すなわち、図2に示すように、辺の長さが、最大垂直投影長さViと最大水平投影長さLiとなる四角形を作図し、その対角線と最大垂直投影長さを与える辺となす角度θiを求め、
前記4)六方晶柱状粒の長さHiを、
六方晶柱状粒の長さHi=Vi/cosθi
により算出する。
That is, as shown in FIG. 2, a quadrangle whose side lengths are the maximum vertical projection length Vi and the maximum horizontal projection length Li is drawn, and the angle θi between the diagonal and the side giving the maximum vertical projection length is seeking
4) The length Hi of the hexagonal columnar grains is
Hexagonal columnar grain length Hi = Vi/cos θi
Calculated by

また、図3に示すように、斜辺の長さが最大水平横断長さTiであり、前記θiの角度を有する直角三角形を作図し、
前記5)六方晶柱状粒iの幅Wiを、
六方晶柱状粒iの幅Wi=Ti×cosθi
として、それぞれ、算出する。
Also, as shown in FIG. 3, the length of the hypotenuse is the maximum horizontal transverse length Ti, and a right-angled triangle having the angle θi is drawn,
5) The width Wi of the hexagonal columnar grains i is
Width Wi of hexagonal columnar grain i = Ti x cos θi
, respectively.

[4]平均結晶幅と平均アスペクト比 [4] Average crystal width and average aspect ratio

そして、六方晶柱状晶粒iのアスペクト比(Ai)をAi=Hi/Wiとし、アスペクト比が1を超える六方晶柱状晶粒iに対して、以下のようにして平均結晶幅(W)、平均アスペクト比(A)、θi平均値(θ)を求める。 Then, the aspect ratio (Ai) of the hexagonal columnar crystal grain i is defined as Ai=Hi/Wi, and the average crystal width (W), Calculate the average aspect ratio (A) and the θi average value (θ).

平均結晶幅(W)は、[数1]によって、求める。 The average crystal width (W) is obtained by [Equation 1].

Figure 2022150860000002
Figure 2022150860000002

また、アスペクト比(Ai=Hi/Wi)と面積(Si=Hi×Wi)により、平均アスペクト比Aを[数2]により求める。 Also, the average aspect ratio A is obtained by [Equation 2] from the aspect ratio (Ai=Hi/Wi) and the area (Si=Hi×Wi).

Figure 2022150860000003
Figure 2022150860000003

さらに、工具基体の表面の垂線となす角度θiの平均値(θ)を[数3]により求める。 Furthermore, the average value (θ) of the angle θi formed with the normal to the surface of the tool base is obtained from [Equation 3].

Figure 2022150860000004
Figure 2022150860000004

2.その他の層(下部層)
硬質被覆層として、本実施形態のTiとCrの複合硼化物層を含む硬質被覆層はTi基合金のような切削工具との溶着性の高い材料を切削により加工する場合においても、十分に優れた耐クラック性、耐摩耗性を長期間の使用にわたって発揮するが、前記硬質被覆層とは別に、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、0.1~2.0μmの合計平均層厚を有するTi化合物(化学量論的な化合物に限定されない)層を含む下部層を工具基体に隣接して設けた場合には、この層が被覆層と工具基体の密着性を高め、より一層優れた耐チッピング性、および、耐熱亀裂性を発揮することができる。
2. Other layer (lower layer)
As a hard coating layer, the hard coating layer containing the composite boride layer of Ti and Cr of the present embodiment is sufficiently excellent even when cutting a material having high adhesion to a cutting tool such as a Ti-based alloy. In addition to the hard coating layer, Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride oxide layer are provided. Adjacent to the tool substrate, a lower layer consisting of one or more layers of which contains a Ti compound (not limited to a stoichiometric compound) layer having a total average layer thickness of 0.1 to 2.0 μm When provided, this layer enhances the adhesion between the coating layer and the tool substrate, and can exhibit even better chipping resistance and thermal crack resistance.

3.工具基体
(1)材質
材質は、従来公知の工具基体の材質であれば、前述の目的を達成することを阻害するものでない限り、いずれのものも使用可能である。一例をあげるならば、超硬合金(WC基超硬合金、WCの他、Coを含み、さらに、Ti、Ta、Nb等の炭窒化物を添加したものも含むもの等)、サーメット(TiC、TiN、TiCN等を主成分とするもの等)、セラミックス(炭化チタン、炭化珪素、窒化珪素、窒化アルミニウム、酸化アルミニウムなど)、cBN焼結体、またはダイヤモンド焼結体のいずれかであることが好ましい。
3. Tool Substrate (1) Material Any material can be used as long as it is a conventionally known material for a tool substrate, as long as it does not interfere with the achievement of the above-mentioned object. For example, cemented carbide (WC-based cemented carbide, containing Co in addition to WC, and further containing carbonitrides such as Ti, Ta, Nb, etc.), cermet (TiC, TiN, TiCN, etc. as a main component, etc.), ceramics (titanium carbide, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, etc.), cBN sintered body, or diamond sintered body. .

(2)形状
工具基体の形状は、切削工具として用いられる形状であれば特段の制約はなく、インサートの形状、ドリル、エンドミルの形状が例示できる。
(2) Shape The shape of the tool base is not particularly limited as long as it is a shape used as a cutting tool, examples of which include the shape of an insert, the shape of a drill, and the shape of an end mill.

4.製造方法
スパッタンリング法または混入液滴の抑制が容易な大電力パルススパッタリング(High Power Impulse Magnetron Sputtering:HiPIMS)法を用いることができる。
4. Manufacturing Method A sputtering method or a High Power Impulse Magnetron Sputtering (HiPIMS) method, which facilitates suppression of mixed droplets, can be used.

次に、実施例について説明するが、本発明はこれら実施例に限定されるものではない。 EXAMPLES Next, examples will be described, but the present invention is not limited to these examples.

原料粉末として、いずれも1~3μmの平均粒径を有するWC粉末、VC粉末、TaC粉末、NbC粉末、Cr粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、直径が4mmの超硬基体形成用丸棒焼結体を作製し、さらに前記の丸棒焼結体から、研削加工にて、切刃部の直径×長さがそれぞれ2mm×4mm、ねじれ角40度の4枚刃スクエア形状を持ったWC基超硬合金製の工具基体(エンドミル)1および2を製造した。 As raw material powders, WC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, and Co powder, all having an average particle size of 1 to 3 μm, were prepared. After blending in the formulation composition, wet-mixing in a ball mill for 72 hours, drying, press molding into a compact at a pressure of 100 MPa, and holding the compact at a temperature of 1400 ° C. in a vacuum of 6 Pa for 1 hour. to prepare a round bar sintered body for forming a carbide substrate with a diameter of 4 mm, and further from the round bar sintered body, by grinding, the diameter of the cutting edge × length is 2 mm × Tool substrates (end mills) 1 and 2 made of WC-based cemented carbide and having a 4-flute square shape with a helix angle of 40 degrees and 4 mm were manufactured.

(a)前記工具基体1、2のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、高出力パルススパッタリング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部に沿って装着し、一方、高出力パルススパッタリング装置内には、回転テーブルを挟んで対向する4か所に板状のターゲットを設置した。すなわち、対向しあう2個のTiとCrと硼素の焼結体ターゲット、および、対向しあう2個のTi金属ターゲットを配置した。 (a) Each of the tool substrates 1 and 2 is ultrasonically cleaned in acetone, dried, and placed radially at a predetermined distance from the central axis on a rotary table in a high-power pulse sputtering apparatus. On the other hand, in the high-power pulse sputtering apparatus, plate-shaped targets were installed at four locations facing each other across the rotary table. That is, two sintered targets of Ti, Cr, and boron facing each other and two Ti metal targets facing each other were arranged.

(b)前記装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら公転する工具基体に-200Vの直流バイアス電圧を印加した後、前記装置内へ放電・スパッタ用ガスとしてアルゴン(以下Arと表記する)ガスを導入し、2.0Paの雰囲気とする。さらに前記装置内に具備されるタングステンフィラメントへ40Aの電流を流すことによりArイオンを励起させ、前記工具基体を1時間、Arボンバード処理した。 (b) While the inside of the device is evacuated and maintained at a vacuum of 0.1 Pa or less, the inside of the device is heated with a heater to 500 ° C., and then a direct current of −200 V is applied to the tool base that revolves while rotating on the rotary table. After applying a bias voltage, an argon (hereinafter referred to as Ar) gas is introduced into the apparatus as a discharge/sputtering gas to create an atmosphere of 2.0 Pa. Furthermore, Ar ions were excited by passing a current of 40 A through a tungsten filament provided in the apparatus, and the tool substrate was subjected to Ar bombardment treatment for 1 hour.

(c)前記装置内にスパッタ用ガスとしてArガスと反応ガスとして窒素ガスを導入して0.6Paの反応雰囲気とすると共に、前記Tiターゲットに表2に示される所定のパルススパッタ条件で高出力パルススパッタを行い、もって前記工具基体の表面に、表2に示される平均層厚のTiN層を硬質被覆層の下部層として成膜した。ただし、すべての工具基体に下部層を形成したわけではない。 (c) Ar gas as a sputtering gas and nitrogen gas as a reaction gas are introduced into the apparatus to create a reaction atmosphere of 0.6 Pa, and a high power is applied to the Ti target under predetermined pulse sputtering conditions shown in Table 2. Pulse sputtering was performed to form a TiN layer having an average layer thickness shown in Table 2 on the surface of the tool base as a lower layer of the hard coating layer. However, not all tool substrates were formed with a bottom layer.

(d)引き続き、装置内に導入するガスのうち窒素ガスを閉じると共に、装置内雰囲気を0.5Paとし、十分に窒素ガスの排出がなされ、Arガスのみの装置内雰囲気となった後、TiとCrと硼素からなる焼結体ターゲットに表2に示される所定のパルススパッタ条件で、層厚に対応した時間で高出力パルススパッタを行い、表3に示す本発明被覆エンドミル(以下、実施例という)1~10を製造した。 (d) Subsequently, nitrogen gas among the gases to be introduced into the device is closed, the atmosphere in the device is set to 0.5 Pa, nitrogen gas is sufficiently discharged, and after the atmosphere in the device becomes Ar gas only, Ti A sintered body target composed of , Cr, and boron is subjected to high-power pulse sputtering under the predetermined pulse sputtering conditions shown in Table 2 for a time corresponding to the layer thickness, and the coated end mill of the present invention shown in Table 3 (hereinafter referred to as an example ) 1 to 10 were manufactured.

また、比較の目的で、これら工具基体1~2に対して、表4に示す条件で前記(a)~(d)の手順により下部層と硬質被覆層を形成し、表5に示す比較被覆エンドミル(以下、比較例という)1~6を製造した。ただし、すべての工具基体に下部層を形成したわけではない。 For the purpose of comparison, a lower layer and a hard coating layer were formed on these tool substrates 1 and 2 under the conditions shown in Table 4 by the procedures (a) to (d) above, and the comparative coating shown in Table 5 was obtained. End mills (hereinafter referred to as comparative examples) 1 to 6 were manufactured. However, not all tool substrates were formed with a bottom layer.

Figure 2022150860000005
Figure 2022150860000005

Figure 2022150860000006
Figure 2022150860000006

Figure 2022150860000007
Figure 2022150860000007

Figure 2022150860000008
Figure 2022150860000008

Figure 2022150860000009
Figure 2022150860000009

次に、実施例1~10、比較例1~6に対して、以下の切削試験を行い、その結果を表6に示す。 Next, the following cutting tests were performed on Examples 1 to 10 and Comparative Examples 1 to 6, and the results are shown in Table 6.

被削材:Ti基合金(質量%で、Ti-6%Al-4%V合金)のブロック材
(幅190mm×250mm)
切削速度:80m/min
回転速度:12732min-1
送り速度:1019mm/min
軸方向切込み量(ap):2.0mm
径方向切込み量(ae):0.2mm
エンドミル刃外径:2mm
Work material: Ti-based alloy (mass%, Ti-6%Al-4%V alloy) block material (width 190mm x 250mm)
Cutting speed: 80m/min
Rotation speed: 12732min -1
Feeding speed: 1019mm/min
Axial depth of cut (ap): 2.0mm
Radial depth of cut (ae): 0.2mm
End mill blade outer diameter: 2mm

切削長150m(切削時間として147分に相当)まで切削し、逃げ面摩耗幅を測定し、チッピング発生の有無を観察した。 After cutting to a cutting length of 150 m (corresponding to a cutting time of 147 minutes), the flank wear width was measured and the presence or absence of chipping was observed.

Figure 2022150860000010
Figure 2022150860000010

表6に示す結果から明らかなように、実施例1~10は、Ti基合金の湿式切削試験であっても優れた耐摩耗性および耐溶着性を有していることがわかる。
これに対して、比較例1~6は、チッピングが発生し短時間の工具寿命であった。

As is clear from the results shown in Table 6, Examples 1 to 10 have excellent wear resistance and adhesion resistance even in the wet cutting test of the Ti-based alloy.
On the other hand, in Comparative Examples 1 to 6, chipping occurred and the tool life was short.

Claims (1)

工具基体と該工具基体の表面に被覆層を有する表面被覆切削工具であって、
前記被覆層は、0.5~5.0μmの平均層厚を有し、その平均組成を組成式:Ti1-xCrで表したとき、xは0.05~0.50、yは1.5~3.0を満足し、
前記被覆層の縦断面において、六方晶構造の柱状晶粒が40%以上の面積割合を有し、
前記六方晶構造の柱状結晶粒は、その平均幅Wが0.02~0.10μmであり、平均アスペクト比Aが2.0~5.0であって、前記工具基体の表面の垂線とのなす角度の平均値θが5~30度である、
ことを特徴とする表面被覆切削工具。
A surface-coated cutting tool having a tool substrate and a coating layer on the surface of the tool substrate,
The coating layer has an average layer thickness of 0.5 to 5.0 μm, and its average composition is represented by the composition formula: Ti 1-x Cr x B y , where x is 0.05 to 0.50, y satisfies 1.5 to 3.0,
Columnar crystal grains with a hexagonal crystal structure have an area ratio of 40% or more in the longitudinal section of the coating layer,
The columnar crystal grains of the hexagonal crystal structure have an average width W of 0.02 to 0.10 μm and an average aspect ratio A of 2.0 to 5.0. The average value θ of the angles formed is 5 to 30 degrees,
A surface-coated cutting tool characterized by:
JP2021053649A 2021-03-26 2021-03-26 Surface-coated cutting tool Pending JP2022150860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021053649A JP2022150860A (en) 2021-03-26 2021-03-26 Surface-coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021053649A JP2022150860A (en) 2021-03-26 2021-03-26 Surface-coated cutting tool

Publications (1)

Publication Number Publication Date
JP2022150860A true JP2022150860A (en) 2022-10-07

Family

ID=83465578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021053649A Pending JP2022150860A (en) 2021-03-26 2021-03-26 Surface-coated cutting tool

Country Status (1)

Country Link
JP (1) JP2022150860A (en)

Similar Documents

Publication Publication Date Title
JP5939508B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP5946017B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6391045B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
WO2014163081A1 (en) Surface-coated cutting tool
JP5939509B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
WO2014034730A1 (en) Surface-coated cutting tool
JP5036338B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP6296298B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5035956B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP2020040175A (en) Coated cutting tool
JP5946016B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4780513B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high speed cutting
JP6296295B2 (en) Surface coated cutting tool with excellent wear resistance
JP5560513B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP2019181586A (en) Coated cutting tool
JP2022150860A (en) Surface-coated cutting tool
JP7132548B2 (en) surface coated cutting tools
JP7310340B2 (en) coated cutting tools
JP2008105107A (en) Surface coated cutting tool with hard coated layer showing excellent wear resistance in high speed cutting
WO2021193445A1 (en) Surface-coated cutting tool
JP2023105884A (en) Surface-coated cutting tool
JP6759536B2 (en) Cover cutting tool
JP4697389B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
WO2022202882A1 (en) Surface-coated cutting tool
JP2019131861A (en) Hard film, hard film-coated tool, and manufacturing method thereof