JP2022147773A - Surface-coated cutting tool - Google Patents

Surface-coated cutting tool Download PDF

Info

Publication number
JP2022147773A
JP2022147773A JP2021049161A JP2021049161A JP2022147773A JP 2022147773 A JP2022147773 A JP 2022147773A JP 2021049161 A JP2021049161 A JP 2021049161A JP 2021049161 A JP2021049161 A JP 2021049161A JP 2022147773 A JP2022147773 A JP 2022147773A
Authority
JP
Japan
Prior art keywords
layer
average
crystal grains
coated cutting
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021049161A
Other languages
Japanese (ja)
Inventor
光亮 柳澤
Mitsuaki Yanagisawa
尚志 本間
Hisashi Honma
俊介 東城
Shunsuke Tojo
翔 龍岡
Sho Tatsuoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2021049161A priority Critical patent/JP2022147773A/en
Publication of JP2022147773A publication Critical patent/JP2022147773A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

To provide a surface-coated cutting tool having more improved defect resistance.SOLUTION: A coating layer of a surface-coated cutting tool has an average thickness in a range of 1.0 to 20.0 μm and has a layer of composite nitride or composite carbonitride of V and Al in which the average content ratio xavg of x is in a range of 0.76 to 0.95 and that ratio yavg of y is in the range of 0.000 to 0.015 when representing a composition by a composition formula: (V1-xAlx)(CyN1-y). The coating layer has crystal grains of composite nitride or composite carbonitride having an NaCl type face-centered cubic structure. In a frequency distribution in each partition of the inclination angle distribution partitioning every 0.25 degree, the inclination angles in the range of 0 to 45 degrees among those angles in which the normal direction of a {100} plane of the crystal grains forms to the normal direction of the surface of a tool base material, a highest frequency exists in any of partitions of 0 to 10 degrees. The sum of the frequency distributions of the 0-10 degrees partitions occupies 45% or more of the sum of the whole frequency of the inclination angle distribution.SELECTED DRAWING: Figure 1

Description

本発明は、表面被覆切削工具(以下、被覆工具ということがある)に関するものである。 TECHNICAL FIELD The present invention relates to a surface-coated cutting tool (hereinafter sometimes referred to as a coated tool).

従来、炭化タングステン(以下、WCで示す)基超硬合金等の工具基体の表面に、被覆層を形成した被覆工具が知られており、優れた耐摩耗性を発揮することが知られている。
そして、被覆工具の耐久性を向上させるべく、被覆層の改善についての種々の提案がなされている。
Conventionally, coated tools are known in which a coating layer is formed on the surface of a tool substrate such as a tungsten carbide (hereinafter referred to as WC)-based cemented carbide, and are known to exhibit excellent wear resistance. .
Various proposals have been made for improving the coating layer in order to improve the durability of the coated tool.

例えば、特許文献1には、工具基体の表面上に(Al1-x)の窒化物、炭窒化物、窒酸化物および炭窒化酸化物のいずれか(xは0.24~0.45)を被覆した被覆工具が記載され、該被覆工具は刃先の欠けやチッピング、被覆層の剥離を防止し、良好な湿潤性を有するとされている。 For example, in Patent Document 1, any of nitrides, carbonitrides, nitroxides and carbonitride oxides of (Al 1-x V x ) (where x is 0.24 to 0.24 to 0.24 to 0.24) is formed on the surface of a tool substrate. 45) is described, and the coated tool is said to prevent chipping and chipping of the cutting edge and peeling of the coating layer, and to have good wettability.

特開2005-271106号公報JP 2005-271106 A

本発明は、前記事情や前記提案を鑑みてなされたものであって、耐欠損性をより向上させた被覆工具を提供することを目的する。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a coated tool with improved chipping resistance.

本発明の実施形態に係る表面被覆切削工具は、
工具基体と該工具基体の表面に被覆層を有し、
1)前記被覆層は、その平均層厚が1.0~20.0μmであって、その組成を組成式:(V1-xAl)(C1-y)で表したとき、xの平均含有割合xavgが0.76~0.95、yの平均含有割合yavgが0.000~0.015であるVとAlの複合窒化物層または複合炭窒化物層を有し、
2)前記複合窒化物層または複合炭窒化物層は、NaCl型面心立方構造を有する複合窒化物または複合炭窒化物の結晶粒を有し、
3)前記工具基体の表面の法線方向に対する前記結晶粒のそれぞれの{100}面の法線方向のなす傾斜角のうち、0~45度の範囲内にある傾斜角を0.25度毎に区分した傾斜角度分布の各区分における度数分布において、0~10度の前記区分のいずれかに最高度数が存在し、かつ、前記0~10度の前記区分の度数分布の和が、前記傾斜角度分布の度数全体の和の45%以上を占めること。
A surface-coated cutting tool according to an embodiment of the present invention is
A tool base and a coating layer on the surface of the tool base,
1) The coating layer has an average layer thickness of 1.0 to 20.0 μm, and its composition is represented by the composition formula: (V 1-x Al x )(C y N 1-y ), It has a composite nitride layer or composite carbonitride layer of V and Al in which the average x content x avg is 0.76 to 0.95 and the average y content y avg is 0.000 to 0.015 ,
2) the composite nitride layer or composite carbonitride layer has crystal grains of a composite nitride or composite carbonitride having a NaCl-type face-centered cubic structure;
3) Among the inclination angles formed by the normal direction of the {100} plane of each of the crystal grains with respect to the normal direction of the surface of the tool base, the inclination angle within the range of 0 to 45 degrees is set every 0.25 degrees. In the frequency distribution in each segment of the tilt angle distribution divided into , the highest frequency exists in one of the segments of 0 to 10 degrees, and the sum of the frequency distributions of the segments of 0 to 10 degrees is the slope Occupy 45% or more of the sum of all frequencies of the angular distribution.

さらに、前記実施形態に係る表面被覆切削工具は、以下の(1)~(7)の各事項の1または2以上を満足してもよい。ただし、(4)と(5)を同時に満足しない。 Furthermore, the surface-coated cutting tool according to the embodiment may satisfy one or more of the following items (1) to (7). However, (4) and (5) are not satisfied at the same time.

(1)前記結晶粒は、平均結晶粒子幅が0.1~2.0μm、平均アスペクト比が2.0~10.0の柱状晶であり、<001>で表される等価な結晶方位のいずれか一つの方位に沿って、その粒内にAlの含有割合が極大値と極小値をとる繰返し変化を有し、前記xの前記極大値の平均値と前記極小値と平均値との差Δxが0.03~0.10であるものを含む。 (1) The crystal grains are columnar crystals with an average crystal grain width of 0.1 to 2.0 μm and an average aspect ratio of 2.0 to 10.0, and have an equivalent crystal orientation represented by <001>. Along any one orientation, the content of Al in the grain has a repetitive change that takes a maximum value and a minimum value, and the difference between the average value of the maximum value and the minimum value of x Including those where Δx is 0.03 to 0.10.

(2)前記結晶粒は、平均結晶粒子幅が0.1~2.0μm、平均アスペクト比が2.0~10.0の柱状晶であり、<001>で表される等価な結晶方位のいずれか一つの方位に沿って、その粒内にAlの含有割合が極大値と極小値をとる繰返し変化を有し、前記繰返し変化の平均間隔が3~100nmであって、前記方位に対して直交する面内での前記xの変化幅x0が0.01以下であること。 (2) The crystal grains are columnar crystals having an average crystal grain width of 0.1 to 2.0 μm and an average aspect ratio of 2.0 to 10.0, and have an equivalent crystal orientation represented by <001>. Along any one orientation, the content of Al in the grain has a repetitive change that takes a maximum value and a minimum value, and the average interval of the repetitive change is 3 to 100 nm, and The change width x0 of x in the orthogonal plane is 0.01 or less.

(3)前記結晶粒の格子定数aは、立方晶VNの格子定数aVNと立方晶AlNの格子定数aAlNに対して、0.05aVN+0.95aAlN≦a≦0.24aVN+0.76aAlNの関係を満たすこと。 (3) The lattice constant a of the crystal grain is 0.05a VN +0.95a AlN ≤ a ≤ 0.24a VN +0.05a VN +0.95a AlN ≤ a ≤ 0.24a VN +0.05a VN +0.95a AlN ≤ a ≤ 0.24a VN +0. 76a Satisfy the AlN relationship.

(4)前記複合窒化物または複合炭窒化物層は、前記結晶粒のみからなること。 (4) The composite nitride or composite carbonitride layer is composed only of the crystal grains.

(5)前記複合窒化物または複合炭窒化物層は、六方晶構造を有する微結晶粒が存在し、該微結晶粒の占める面積割合が30%以下であって、かつ、その平均粒径が0.01~0.30μmであること。 (5) The composite nitride or composite carbonitride layer has fine crystal grains having a hexagonal crystal structure, the area ratio of the fine crystal grains is 30% or less, and the average grain size is 0.01 to 0.30 μm.

(6)前記工具基体と前記VとAlの複合窒化物層または複合炭窒化物層の間に、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなり、0.1~20.0μmの合計平均層厚を有する下部層が存在すること。 (6) Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride layer between the tool substrate and the composite nitride layer or composite carbonitride layer of V and Al There is a lower layer consisting of one or more Ti compound layers and having a total average layer thickness of 0.1 to 20.0 μm.

(7)前記複合窒化物層または複合炭窒化物層の上部に、少なくとも酸化アルミニウム層を含む上部層が1.0~25.0μmの合計平均層厚で存在すること。 (7) An upper layer containing at least an aluminum oxide layer is present on the composite nitride layer or the composite carbonitride layer with a total average layer thickness of 1.0 to 25.0 μm.

前記によれば、耐欠損性の向上した表面被覆切削工具を得ることができる。 According to the above, it is possible to obtain a surface-coated cutting tool with improved chipping resistance.

本発明の実施形態に係る表面被覆切削工具の被覆層の縦断面を模式的に示した図である。It is a figure which showed typically the vertical cross section of the coating layer of the surface-coated cutting tool which concerns on embodiment of this invention. Alの含有割合の繰返し変化を有するNaCl型面心立方構造の結晶粒において、含有割合の変化を模式的に示す図である。FIG. 3 is a diagram schematically showing changes in the Al content in crystal grains having a NaCl-type face-centered cubic structure with repeated changes in the Al content. Alの含有割合の繰返し変化を示す模式図である。It is a schematic diagram which shows the repetition change of the content rate of Al. 本実施形態に係る表面被覆切削工具を製造するための装置の一例のガス供給管の一部分の斜視模式図である。1 is a schematic perspective view of part of a gas supply pipe of an example of an apparatus for manufacturing a surface-coated cutting tool according to this embodiment; FIG. 図4のガス供給管の断面模式図である。5 is a schematic cross-sectional view of the gas supply pipe of FIG. 4; FIG. 図4のガス供給管のガス噴出口を示す断面模式図である。5 is a schematic cross-sectional view showing a gas ejection port of the gas supply pipe of FIG. 4; FIG. 実施例5における工具基体の表面の法線方向に対して、NaCl型面心立方構造の結晶粒の{100}面の法線方向のなす傾斜角の度数分布を示す図である。FIG. 10 is a diagram showing the frequency distribution of the inclination angle formed by the normal direction of {100} planes of NaCl-type face-centered cubic structure crystal grains with respect to the normal direction of the surface of the tool substrate in Example 5;

本発明者は、VとAlの複合窒化物層または複合炭窒化物層(以下、(VAl)(CN)層ということがある)を被覆した被覆工具について、検討を行ったところ、VとAlの複合窒化物層または複合炭窒化物層を単に被覆しただけでは耐欠損性が十分ではないことを知見した。 The present inventors have studied a coated tool coated with a composite nitride layer or a composite carbonitride layer of V and Al (hereinafter sometimes referred to as a (VAl) (CN) layer), and found that V and Al It has been found that simply coating the composite nitride layer or composite carbonitride layer of No. 1 does not provide sufficient fracture resistance.

そこで、検討を重ねた結果、(VAl)(CN)層の{100}面の法線方向を工具基体の表面に垂直な方向(工具基体の表面の法線方向)に特定の態様で配向するようにすると、耐欠損性が向上することを見出した。 Therefore, as a result of repeated studies, the normal direction of the {100} plane of the (VAl) (CN) layer is oriented in a specific manner in a direction perpendicular to the surface of the tool substrate (normal direction of the surface of the tool substrate). It has been found that the chipping resistance is improved by doing so.

以下では、本発明の実施形態に係る表面被覆切削工具について説明する。
なお、本明細書および特許請求の範囲において、数値範囲を「L~M」(L、Mは共に数値)で表現するときは、その範囲は上限値(M)および下限値(L)を含んでおり、上限値(M)と下限値(L)の単位は同じである。
Below, the surface coated cutting tool which concerns on embodiment of this invention is demonstrated.
In the present specification and claims, when a numerical range is expressed as "L to M" (L and M are both numerical values), the range includes an upper limit (M) and a lower limit (L). , and the units of the upper limit (M) and the lower limit (L) are the same.

I.被覆層
本実施形態の被覆層(2)は、図1に示すように、工具基体(1)の表面上に存在し、(VAl)(CN)層(3)を含む。工具基体(1)と(VAl)(CN)層(3)との間には、下部層(4)を有してもよく、(VAl)(CN)層の表面には上部層(5)を有してもよい。
以下、(VAl)(CN)層を中心に説明する。
I. Coating Layer The coating layer (2) of this embodiment, as shown in FIG. 1, is present on the surface of the tool substrate (1) and comprises a (VAl)(CN) layer (3). Between the tool substrate (1) and the (VAl)(CN) layer (3) there may be a lower layer (4) and on the surface of the (VAl)(CN) layer an upper layer (5) may have
The (VAl) (CN) layer will be mainly described below.

1.(VAl)(CN)層
(1)平均層厚
(VAl)(CN)層の平均層厚は、1.0~20.0μmであることが好ましい。その理由は、平均層厚が1.0μm未満では、平均層厚が薄いため長期の使用にわたって耐摩耗性を十分確保することができず、一方、平均層厚が20.0μmを超えると、(VAl)(CN)層の結晶粒が粗大化し易くなり、チッピングを発生しやすくなるためである。
1. (VAl)(CN) Layer (1) Average Layer Thickness The average layer thickness of the (VAl)(CN) layer is preferably 1.0 to 20.0 μm. The reason for this is that if the average layer thickness is less than 1.0 μm, the average layer thickness is too thin to ensure sufficient wear resistance over long-term use, while if the average layer thickness exceeds 20.0 μm, ( This is because the crystal grains of the VAl) (CN) layer tend to coarsen and chipping tends to occur.

(2)組成
(VAl)(CN)層の組成は、組成を組成式:(V1-xAl)(C1-y)で表したとき、xの平均含有割合xavgが0.76~0.95、yの平均含有割合yavgが0.000~0.015であることが好ましい。
(2) Composition The composition of the (VAl) (CN) layer is expressed by the composition formula: (V 1-x Al x ) (C y N 1-y ), the average content ratio x avg of x is 0 .76 to 0.95, and the average content y avg of y is preferably 0.000 to 0.015.

その理由は、以下のとおりである。xavgが0.76未満では、(VAl)(CN)層の耐摩耗性が十分ではなく、一方、0.95を超えると、(VAl)(CN)層の脆化が生じやすく耐欠損性が低下するためである。また、yavgは前記範囲にあるとき、(VAl)(CN)層と工具基体または後述する下部層との密着性が向上し、切削加工時の衝撃を緩和して、被覆層の耐欠損性が確実に向上するためである。 The reason is as follows. When x avg is less than 0.76, the wear resistance of the (VAl)(CN) layer is not sufficient. This is because the Further, when y avg is in the above range, the adhesion between the (VAl) (CN) layer and the tool substrate or the lower layer described later is improved, the impact during cutting is reduced, and the chipping resistance of the coating layer is improved. This is because the

なお、(V1-xAl)と(C1-y)との比は特に限定されるものではないが、(V1-xAl)を1とするとき、(C1-y)との比は0.8~1.2とすることが好ましい。その理由は、(V1-xAl)に対する(C1-y)の比が前記範囲内であれば、より確実に本発明の目的が達成できるためである。 The ratio of (V 1-x Al x ) and (C y N 1-y ) is not particularly limited, but when (V 1-x Al x ) is 1, (C y N 1-y ) is preferably 0.8 to 1.2. The reason for this is that if the ratio of (C y N 1-y ) to (V 1-x Al x ) is within the above range, the object of the present invention can be achieved more reliably.

(3)NaCl型面心立方構造
(VAl)(CN)層には、NaCl型面心立方構造を有する結晶粒が含まれていることが好ましい。すなわち、縦断面(工具基体の表面の微小な凹凸を無視して、平らな面として扱ったとき、工具基体の表面に垂直な断面)において、NaCl型の面心立方構造の結晶粒の占める面積割合が60%以上、より好ましくは80%以上、全ての結晶粒(面積割合が100%)がNaCl型の面心立方構造であってもよい。
(3) NaCl-type face-centered cubic structure The (VAl) (CN) layer preferably contains crystal grains having a NaCl-type face-centered cubic structure. That is, the area occupied by the crystal grains of the NaCl-type face-centered cubic structure in the longitudinal section (the section perpendicular to the surface of the tool substrate when treated as a flat surface, ignoring minute irregularities on the surface of the tool substrate) The ratio may be 60% or more, more preferably 80% or more, and all crystal grains (area ratio of 100%) may be NaCl-type face-centered cubic structures.

(4){100}面の法線方向の傾斜分布
(VAl)(CN)層に対して、電子線後方散乱解析法(EBSD:Electron Backscatter Diffraction)を用いて、NaCl型面心立方構造を有する結晶粒に対して、
[1]工具基体の表面の法線方向に対して、この結晶粒の{100}面の法線方向(図2で(7)で表される方向)がなす傾斜角を測定し、
[2]その傾斜角のうち0~45度の範囲内にある傾斜角を0.25度毎に区分し、
[3」各区分に存在する度数を集計して傾斜角度度数分布を求めたとき、
この求めた傾斜角度度数分布において、0~10度の範囲にある区分のいずれかに最高ピーク(度数の最大値)があり、かつ、この0~10度の範囲にある度数の和が、0~45度の範囲に存在する度数の和に対して45%以上の割合で存在することが好ましい。
この割合は、50%以上がより好ましく、55%以上がより一層好ましい。
このような傾斜角度数分布を有することにより、靱性を維持しつつ耐摩耗性が向上し、摩耗進行の抑制により切削抵抗上昇が抑えられるため、被覆層の耐欠損性が確実に向上する。
(4) Tilt distribution in the normal direction of the {100} plane The (VAl) (CN) layer has a NaCl-type face-centered cubic structure using electron backscatter analysis (EBSD: Electron Backscatter Diffraction). for grains,
[1] Measure the angle of inclination formed by the normal direction of the {100} plane of the crystal grain (the direction represented by (7) in FIG. 2) with respect to the normal direction of the surface of the tool substrate,
[2] of the tilt angles, dividing the tilt angles within the range of 0 to 45 degrees by 0.25 degrees;
[3] When calculating the tilt angle frequency distribution by aggregating the frequencies present in each section,
In the obtained tilt angle frequency distribution, there is a highest peak (maximum value of frequency) in any of the divisions in the range of 0 to 10 degrees, and the sum of the frequencies in the range of 0 to 10 degrees is 0 It is preferable that it exists at a rate of 45% or more with respect to the sum of frequencies existing in the range of to 45 degrees.
This ratio is more preferably 50% or more, and even more preferably 55% or more.
By having such an inclination angle number distribution, wear resistance is improved while toughness is maintained, and an increase in cutting resistance is suppressed by suppressing progress of wear, so chipping resistance of the coating layer is reliably improved.

なお、傾斜角度数分布を求めるに当たり、理想的なランダム配向の場合、傾斜角度数は工具基体の表面の法線方向に対するある結晶面の法線方向がなす傾斜角によらず一定の値になるように規格化を行う。 In determining the distribution of the number of tilt angles, in the case of ideal random orientation, the number of tilt angles is a constant value regardless of the tilt angle formed by the normal direction of a certain crystal plane with respect to the normal direction of the surface of the tool substrate. We standardize as follows.

ここで、工具基体の表面とは、縦断面の観察像における、工具基体と被覆層の界面粗さの平均線とする。すなわち、工具基体がインサートのような平面の表面を有するときは、前記縦断面においてエネルギー分散型X線分析法(EDS:Energy dispersive X-ray spectroscopy)を用いた元素マッピングを実施し、得られた元素マップに対して公知の画像処理を行うことで被覆層(後述する下部層が存在すれば、被覆層の代わりに下部層を用いる)と工具基体の界面を定め、こうして得られた被覆層と工具基体との界面の粗さ曲線について、平均線を算術的に求め、これを工具基体の表面とする。そして、この平均線に対して、垂直な方向を工具基体に垂直な方向(層厚方向)とする。 Here, the surface of the tool base means the average line of interface roughness between the tool base and the coating layer in the observed image of the longitudinal section. That is, when the tool substrate has a flat surface like an insert, elemental mapping using energy dispersive X-ray spectroscopy (EDS) is performed on the longitudinal section, and the obtained By performing known image processing on the elemental map, the interface between the coating layer (if there is a lower layer described later, the lower layer is used instead of the coating layer) and the tool substrate is defined, and the thus obtained coating layer and An average line is arithmetically determined for the roughness curve of the interface with the tool substrate, and this is taken as the surface of the tool substrate. The direction perpendicular to the average line is defined as the direction perpendicular to the tool substrate (layer thickness direction).

また、工具基体がドリルのように曲面の表面を有する場合であっても、被覆層の層厚に対して工具径が十分に大きければ、測定領域における被覆層と工具基体との間の界面は略平面となることから、同様の手法により工具基体の表面を決定することができる。すなわち、例えばドリルであれば、軸方向に垂直な断面の被覆層の縦断面においてEDSを用いた元素マッピングを実施し、得られた元素マップに対して公知の画像処理を行うことで被覆層と工具基体の界面を定め、こうして得られた被覆層と工具基体との界面の粗さ曲線について、平均線を算術的に求め、これを工具基体の表面とする。そして、この平均線に対して、垂直な方向を工具基体に垂直な方向(層厚方向)とする。 Also, even if the tool base has a curved surface like a drill, if the diameter of the tool is sufficiently large relative to the thickness of the coating layer, the interface between the coating layer and the tool base in the measurement area is Since it is substantially flat, the surface of the tool base can be determined by a similar method. That is, for example, in the case of a drill, elemental mapping using EDS is performed on a vertical cross section of the coating layer perpendicular to the axial direction, and the obtained elemental map is subjected to known image processing. The interface of the tool substrate is determined, and the mean line is arithmetically determined for the roughness curve of the interface between the coating layer and the tool substrate thus obtained, and this is used as the surface of the tool substrate. The direction perpendicular to the average line is defined as the direction perpendicular to the tool substrate (layer thickness direction).

(5)平均粒子幅とアスペクト比
(VAl)(CN)層のNaCl型面心立方構造を有する結晶粒は、平均結晶粒子幅が0.1~2.0μm、平均アスペクト比が2.0~10.0の柱状晶であることがより好ましい。
(5) Average grain width and aspect ratio The crystal grains having a NaCl-type face-centered cubic structure in the (VAl) (CN) layer have an average crystal grain width of 0.1 to 2.0 μm and an average aspect ratio of 2.0 to 2.0 μm. Columnar crystals of 10.0 are more preferable.

その理由は、平均粒子幅が0.1μmよりも小さい微粒になると粒界の増加による耐塑性変形性の低下、耐酸化性の低下により異常損傷に至りやすくなり、一方、平均粒子幅Wが3.00μmよりも大きくなると粗大に成長した粒子の存在により、靱性が低下しやすくなるためである。 The reason for this is that when the average grain width is smaller than 0.1 μm, the grain boundary increases, resulting in a decrease in plastic deformation resistance and a decrease in oxidation resistance, which easily leads to abnormal damage. This is because if the grain size is larger than 0.00 μm, the presence of coarsely grown grains tends to lower the toughness.

また、平均アスペクト比が2.0よりも小さい粒状結晶になると切削時に被覆層表面に生じるせん断応力に対してその界面(結晶粒界)が破壊起点となりやすくなってしまいチッピングの原因となり、一方、平均アスペクト比が10.0を超えると、切削時に刃先に微小なチッピングが生じ、隣り合う柱状組織に欠けが生じた場合に、被覆層の表面に生じるせん断応力に対しての抗力が小さくなりやすく、柱状組織が破断することによって一気に損傷が進行し、大きなチッピングを生じるためである。 In addition, when the average aspect ratio of granular crystals is less than 2.0, the interfaces (grain boundaries) tend to act as fracture initiation points against the shear stress generated on the surface of the coating layer during cutting, resulting in chipping. If the average aspect ratio exceeds 10.0, fine chipping occurs on the cutting edge during cutting, and when adjacent columnar structures are chipped, the resistance to shear stress generated on the surface of the coating layer tends to decrease. This is because when the columnar structure breaks, the damage progresses at once, resulting in large chipping.

ここで、平均均粒子幅と平均アスペクト比の算出方法について説明する。
まず、被覆層の工具基体に平行な方向の50μmの観察視野(縦断面)において結晶粒界を判定する。結晶粒界の判定方法としては、電子線後方散乱回折装置を用いてこの観察視野面内を二次元的に0.01μm間隔で解析し、観察視野面内のNaCl型面心立方構造の結晶格子を有する測定点を求める。このNaCl型面心立方構造の結晶格子を有する測定点の中で、隣接する測定点(以下、ピクセルという)の間で5度以上の方位差がある場合、または隣接するピクセルがNaCl型面心立方構造の結晶格子を有しない場合、そのピクセル同士の境界を粒界と定義する。
Here, a method for calculating the average grain width and the average aspect ratio will be described.
First, the grain boundaries are determined in a 50 μm observation field (longitudinal section) in the direction parallel to the tool substrate of the coating layer. As a method for determining the crystal grain boundary, the inside of the observation field plane is analyzed two-dimensionally at intervals of 0.01 μm using an electron beam backscatter diffraction apparatus, and the crystal lattice of the NaCl type face-centered cubic structure in the observation field plane Find a measurement point with If there is an orientation difference of 5 degrees or more between adjacent measurement points (hereinafter referred to as pixels) among the measurement points having the crystal lattice of the NaCl-type face-centered cubic structure, or if the adjacent pixels are NaCl-type face-centered If the crystal lattice does not have a cubic structure, the boundaries between the pixels are defined as grain boundaries.

そして、粒界で囲まれた領域を1つの結晶粒と定義する。ただし、隣接するピクセル全てと5度以上の方位差がある単独に存在するピクセルは結晶粒とせず、2ピクセル以上が連結しているものを結晶粒として取り扱う。このようにして、粒界判定を行い、結晶粒を特定する。 A region surrounded by grain boundaries is defined as one crystal grain. However, a single pixel that has an orientation difference of 5 degrees or more with respect to all adjacent pixels is not treated as a crystal grain, but a crystal grain in which two or more pixels are connected is treated as a crystal grain. In this manner, grain boundary determination is performed to specify crystal grains.

次に、ある結晶粒iに対して工具基体の表面と垂直方向(層厚方向)の最大長さH、工具基体の表面と平行方向の最大長さである粒子幅W、および面積Sを求める。結晶粒iのアスペクト比AはA=H/Wとして算出する。このようにして、観察視野内の少なくとも20以上(i=1~20以上)の結晶粒の粒子幅W~W(n≧20)を[数1]により面積加重平均し、前記結晶粒の平均粒子幅Wとする。また、同様にして前記結晶粒のアスペクト比A~A(n≧20)を求め、[数2]により面積加重平均して、前記結晶粒の平均アスペクト比Aとする。 Next, for a certain crystal grain i, the maximum length H i in the direction perpendicular to the surface of the tool substrate (layer thickness direction), the grain width W i that is the maximum length in the direction parallel to the surface of the tool substrate, and the area S Find i . The aspect ratio A i of the crystal grain i is calculated as A i =H i /W i . In this way, the grain widths W 1 to W n (n ≥ 20) of at least 20 or more (i = 1 to 20 or more) crystal grains in the observation field are averaged by weighted area according to [Equation 1]. is the average grain width W of Similarly, the aspect ratios A 1 to A n (n≧20) of the crystal grains are obtained, and the average aspect ratio A of the crystal grains is obtained by taking an area-weighted average according to [Equation 2].

Figure 2022147773000002
Figure 2022147773000002

Figure 2022147773000003
Figure 2022147773000003

(6)Alの含有割合の繰返し変化
[1]極大値と極小値
図2に模式的に示すように、(VAl)(CN)層のNaCl型面心立方構造を有する結晶粒(6)は、<001>で表される等価な結晶方位のうちの一つの方位(10)に沿って、Alの含有割合(すなわち、Vの含有割合でもある)について、Al含有量が相対的に多い領域(8)に極大値と、Al含有量が相対的に少ない領域(9)に極小値を繰り返す、繰返し変化を有することがより好ましい。
(6) Repetitive change in Al content [1] Maximum value and minimum value As schematically shown in FIG. , along one orientation (10) of the equivalent crystal orientations represented by <001>, with respect to the Al content (that is, also the V content), a region with a relatively high Al content It is more preferable to have a repeating change in which the maximum value is repeated at (8) and the minimum value is repeated at the region (9) where the Al content is relatively low.

ここで、Alの含有割合(すなわち、Vの含有割合でもある)とは、例えば、図3に模式的に示す変化をいう。図3では、極大値、極小値のそれぞれが同じ値であり、隣接する極大値と極小値の間隔も同じであるが、本明細書および特許請求の範囲でいうAl含有割合の繰返し変化とは、Al含有割合が極大値と極小値を交互にとるように変化すればよく、極大値および極小値が、それぞれ、同じ値であっても同じ値でなくてもよく、隣接する極大値と極小値の間隔も同じであっても、同じでなくてもよい。 Here, the content ratio of Al (that is, the content ratio of V) means, for example, the change schematically shown in FIG. In FIG. 3, each of the maximum and minimum values is the same value, and the intervals between adjacent maximum and minimum values are also the same. , the Al content ratio may alternate between maximum and minimum values, and the maximum and minimum values may or may not be the same value, and adjacent maximum and minimum values The value intervals may or may not be the same.

Alの含有割合における極大値の平均値と極小値の平均値との差は、前述の組成式:(V1-xAl)(C1-y)におけるxの差(Δx)が、0.03~0.10であることがより好ましい。これにより、NaCl型面心立方構造を有する結晶粒内に適正な歪が生じ、被覆層の硬さが確実に向上する。 The difference between the average value of the maximum value and the average value of the minimum value in the Al content ratio is the difference in x (Δx) in the above-mentioned composition formula: (V 1-x Al x ) (C y N 1-y ) , 0.03 to 0.10. As a result, proper strain is generated in the crystal grains having the NaCl-type face-centered cubic structure, and the hardness of the coating layer is reliably improved.

すなわち、Δxが0.03未満であると、前述の歪が小さく、被覆層が十分な硬さを有しないことがあり、一方、0.10を超えるとこの歪が大きくなりすぎて、格子欠陥が増え、被覆層の硬さが低下してしまうことがある。 That is, when Δx is less than 0.03, the aforementioned strain is small and the coating layer may not have sufficient hardness. increases, and the hardness of the coating layer may decrease.

[2]繰返し変化の間隔
極大値と極小値の繰返しの間隔の平均値は、3~100nmであることがより好ましい。その理由は、3nm未満であると、被覆層の靭性が低下することがあり、一方、100nmを超えると、被覆層の硬さの向上が期待できないことがあるためである。
[2] Repetition Interval It is more preferable that the average value of the repetition interval between the maximum value and the minimum value is 3 to 100 nm. The reason for this is that if the thickness is less than 3 nm, the toughness of the coating layer may decrease, while if it exceeds 100 nm, improvement in hardness of the coating layer may not be expected.

極大値と極小値の繰返しの間隔は、結晶粒の<001>で表される等価の結晶方位のうちの一つの方位に沿って、ライン分析を行い、Alの含有割合を測定し、グラフ化することにより求められる。なお、グラフ化して解析するに当たり公知のノイズ除去方法(例えば、移動平均法)を用いる。 The interval between the repetition of the maximum value and the minimum value is obtained by line analysis along one of the equivalent crystal orientations represented by <001> of the crystal grain, measuring the Al content, and graphing it. It is obtained by Note that a known noise removal method (for example, moving average method) is used for graphing and analyzing.

すなわち、図3に示すようにAl含有割合の繰返し変化を示す曲線に対して、この曲線を横切る直線mを引く。この直線mは、前記曲線に囲まれた領域の面積が直線mの上側と下側とで等しくなるように引いたものである。そして、この直線mがAlの含有割合の繰返し変化を示す曲線を横切る領域毎に、Alの含有割合の極大値または極小値を求めるとともに、両者の間隔を測定し、複数箇所におけるこの測定値を平均することによって、(VAl)(CN)におけるAlの含有割合の繰返し変化の平均間隔を求める。 That is, as shown in FIG. 3, a straight line m is drawn across a curve showing repeated changes in the Al content. This straight line m is drawn so that the area of the region surrounded by the curve is equal above and below the straight line m. Then, the maximum value or the minimum value of the Al content ratio is obtained for each region where the straight line m intersects the curve showing the repeated change in the Al content ratio, the interval between the two is measured, and the measured values at multiple points are calculated. By averaging, the average interval of repeated changes in the content of Al in (VAl) (CN) is obtained.

[3]繰返し変化のある方向と直交する面
さらに、Al含有割合の極大値と極小値の繰返し変化のある方向に直交する面(繰返し変化のある方向を法線とする面。図2では、番号(10)の方向を法線とする面)内では、前記組成式:(V1-xAl)(C1-y)におけるxの変化幅(すなわち、最大値と最小値の差)x0は、0.01以下であることがより好ましい。
このx0がこの範囲にあるとき、より確実に、被覆層の硬度と耐欠損性の向上がなされる。
[3] A plane perpendicular to the direction of repetitive change Further, a plane perpendicular to the direction of repetitive change in the maximum and minimum values of the Al content ratio (a plane whose normal is the direction of repetitive change. In FIG. 2, In the plane whose normal is the direction of number (10), the variation width of x in the composition formula: (V 1-x Al x ) (C y N 1-y ) (that is, the maximum and minimum values Difference) x0 is more preferably 0.01 or less.
When this x0 is within this range, the hardness and fracture resistance of the coating layer are more reliably improved.

(7)NaCl型面心立方構造を有する結晶粒の格子定数
(VAl)(CN)層について、X線回折装置を用い、Cu-Kα線を線源としてX線回折試験を実施し、NaCl型の面心立方構造の結晶粒の格子定数aを求めたとき、格子定数aが、立方晶VN(JCPDS00-035-0768)の格子定数aVN:4.1392Åと立方晶AlN(JCPDS00-046-1200)の格子定数aAlN:4.0450Åに対して、0.05aVN+0.95aAlN=4.050≦a≦0.24aVN+0.76aAlN=4.068の関係を満たすことがより好ましい。この関係を満たすとき、より高い硬さを示すことにより、(VAl)(CN)層はより優れた耐摩耗性に加えて、より優れた耐衝撃性を備える。
(7) Lattice constant of crystal grains having a NaCl-type face-centered cubic structure (VAl) (CN) layer was subjected to an X-ray diffraction test using an X-ray diffractometer using a Cu-Kα ray as a radiation source. When the lattice constant a of the crystal grain of the face-centered cubic structure of 1200) with respect to the lattice constant aAlN : 4.0450 Å, it is more preferable to satisfy the relationship of 0.05a VN +0.95a AlN = 4.050 ≤ a ≤ 0.24a VN + 0.76a AlN = 4.068 . When this relationship is satisfied, the (VAl)(CN) layer has better impact resistance in addition to better wear resistance by exhibiting higher hardness.

(8)六方晶構造を有する微結晶粒
(VAl)(CN)層を縦断面で観察したとき、NaCl型面心立方構造を有する結晶粒のそれぞれは、柱状晶であって、その粒界部に六方晶構造の微結晶粒が30%以下の面積割合で存在してもよい。
(8) Fine crystal grains having a hexagonal structure When the (VAl) (CN) layer is observed in a longitudinal section, each of the crystal grains having a NaCl-type face-centered cubic structure is a columnar crystal, and the grain boundary portion Fine crystal grains having a hexagonal crystal structure may be present in an area ratio of 30% or less.

この30%以下の面積割合で、六方晶構造を有する微結晶粒が存在すると、NaCl型面心立方構造を有する結晶粒の粒界での滑りが抑制され、被覆層の靭性が確実に向上する。しかし、面積割合が30%を超えると、NaCl型面心立方構造を有する結晶粒が少なくなって、被覆層硬さが低下してしまうことがある。 If fine crystal grains having a hexagonal crystal structure are present in this area ratio of 30% or less, the sliding at the grain boundaries of the crystal grains having a NaCl-type face-centered cubic structure is suppressed, and the toughness of the coating layer is reliably improved. . However, when the area ratio exceeds 30%, the number of crystal grains having a NaCl-type face-centered cubic structure decreases, and the hardness of the coating layer may decrease.

また、六方晶構造を有する微結晶粒の平均粒径は、0.01~0.30μmであることがより好ましい。その理由は平均粒径が0.01μm未満であると、前述の粒界すべりの抑制が不十分であることがあり、一方、0.30μmを超えると、被覆層内と歪が大きくなってしまい被覆層の硬さが低下することがあるためである。 Further, the average grain size of fine crystal grains having a hexagonal crystal structure is more preferably 0.01 to 0.30 μm. The reason for this is that if the average grain size is less than 0.01 μm, the suppression of grain boundary sliding described above may be insufficient, while if it exceeds 0.30 μm, strain in the coating layer increases. This is because the hardness of the coating layer may decrease.

ここで、平均粒径は、微結晶粒の面積を求め、それに相当する円の径とする。 Here, the average grain size is the diameter of a circle corresponding to the area of microcrystalline grains.

2.下部層
本実施形態の(VAl)(CN)層を含む被覆層は、それだけでも十分に前記目的を達成するが、Tiの炭化物層、窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなり、0.1~20.0μmの合計平均層厚を有する下部層を設けた場合には、この層が奏する効果と相俟って、被覆工具としてより優れた特性が発揮される。ただし、Tiの炭化物層、窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなる下部層を設ける場合、下部層の合計平均層厚が0.1μm未満では、下部層の働きが十分に発揮されず、一方、20.0μmを超えると結晶粒が粗大化し易くなり、チッピングを発生しやすくなる。
2. Lower layer The coating layer including the (VAl) (CN) layer of the present embodiment satisfactorily achieves the above object by itself. When a lower layer consisting of one or more Ti compound layers and having a total average layer thickness of 0.1 to 20.0 μm is provided, combined with the effect of this layer, the coated tool As a result, more excellent characteristics are exhibited. However, when providing a lower layer composed of one or more Ti compound layers selected from Ti carbide layer, nitride layer, carbonate layer and carbonitride layer, the total average layer thickness of the lower layer is 0. If it is less than 0.1 μm, the function of the lower layer is not sufficiently exhibited, while if it exceeds 20.0 μm, the crystal grains tend to coarsen and chipping tends to occur.

3.上部層
また、本実施形態の(VAl)(CN)層を含む被覆層に、酸化アルミニウム層を含む合計の平均層厚が1.0~25.0μmとなる上部層を設けると、被覆工具として優れた特性がより一層発揮されて好ましい。ここで、合計平均層厚が1.0μm未満であると、上部層の働きが十分に発揮されず、一方、25.0μmを超えると、チッピングが発生しやすくなる。
3. Upper layer In addition, when the coating layer including the (VAl) (CN) layer of the present embodiment is provided with an upper layer having a total average layer thickness of 1.0 to 25.0 μm including the aluminum oxide layer, the coated tool can be It is preferable because excellent properties are further exhibited. Here, when the total average layer thickness is less than 1.0 μm, the function of the upper layer is not sufficiently exhibited, while when it exceeds 25.0 μm, chipping tends to occur.

II.工具基体
(1)材質
材質は、従来公知の工具基体の材質であれば、本発明の目的を達成することを阻害するものでない限り、いずれのものも使用可能である。一例をあげるならば、超硬合金(WC基超硬合金、WCの他、Coを含み、さらに、Ti、Ta、Nb等の炭窒化物を添加したものも含むもの等)、サーメット(TiC、TiN、TiCN等を主成分とするもの等)、セラミックス(炭化チタン、炭化珪素、窒化珪素、窒化アルミニウム、酸化アルミニウムなど)、cBN焼結体のいずれかであることが好ましい。
II. Tool Substrate (1) Material Any material can be used as long as it is a conventionally known material for tool substrates, as long as it does not hinder the achievement of the object of the present invention. For example, cemented carbide (WC-based cemented carbide, containing Co in addition to WC, and further containing carbonitrides such as Ti, Ta, Nb, etc.), cermet (TiC, TiN, TiCN, etc. as a main component), ceramics (titanium carbide, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, etc.), or cBN sintered body.

(2)形状
工具基体の形状は、切削工具として用いられる形状であれば特段の制約はなく、インサートの形状、ドリルの形状が例示できる。
(2) Shape The shape of the tool base is not particularly limited as long as it is a shape used as a cutting tool, examples of which include the shape of an insert and the shape of a drill.

III.製造方法
本実施形態の(VAl)(CN)層の製造方法は、例えば、NHガスとHガスからなるガス群Aと、VCl、AlCl、N、Hからなるガス群Bを用いて、CVD法により行うことができる。
III. Manufacturing Method The manufacturing method of the (VAl)(CN) layer of the present embodiment includes, for example, gas group A consisting of NH 3 gas and H 2 gas and gas group B consisting of VCl 4 , AlCl 3 , N 2 and H 2 . can be performed by a CVD method.

ここで、ガス群Aとガス群Bとは、熱CVD装置の反応容器内の空間で被成膜物の直前までガスを分離して供給し、被成膜物の直前でガス群Aとガス群Bが混合し、反応させるようにする。これは、互いに反応活性の高いガス種を成膜領域にわたって均一に供給して、皮膜を均一に成膜するために有効である。詳細な技術内容は、例えば特許6511798号公報に開示されている。 Here, the gas group A and the gas group B are separated and supplied to immediately before the object to be deposited in the space in the reaction vessel of the thermal CVD apparatus. Allow group B to mix and react. This is effective for uniformly supplying gas species having high reactivity with each other over the film forming region to uniformly form a film. Detailed technical content is disclosed, for example, in Japanese Patent No. 6511798.

同公報に記載されている成膜装置は、図4~6に示すガス供給管を有しており、その構造を説明する。
図4、5に示すように、その中心(13)を中心に所定の回転速度で回転する円筒管であるガス供給管(11)は、その軸心方向に沿って延びる仕切部材(12)により、内部をほぼ二等分され、ガス群A流通部(14)とガス群B流通部(15)を有している。
The film forming apparatus described in the publication has gas supply pipes shown in FIGS. 4 to 6, and the structure thereof will be explained.
As shown in FIGS. 4 and 5, a gas supply pipe (11), which is a cylindrical pipe that rotates about its center (13) at a predetermined rotational speed, is separated by a partition member (12) extending along its axial direction. , the inside of which is divided into two halves, and has a gas group A distribution section (14) and a gas group B distribution section (15).

ガス供給管(11)には、図4に示すようにほぼ同じ高さの位置にある噴出口対(20)を構成するガス群A噴出口(16)とガス群B噴出口(17)が高さ方向に沿って複数設けられている。 As shown in FIG. 4, the gas supply pipe (11) has a gas group A jet port (16) and a gas group B jet port (17) that constitute a jet port pair (20) positioned at approximately the same height. A plurality of them are provided along the height direction.

図5に示すガス群A噴出口(16)とガス群B噴出口(17)は、同じ噴出口対(20)に属しており、ガス群A噴出口(16)の外周側開口端の中心(18)とガス群B噴出口(17)の外周側開口端の中心(19)のなす角度がαである。 The gas group A ejection port (16) and the gas group B ejection port (17) shown in FIG. 5 belong to the same ejection port pair (20). The angle between (18) and the center (19) of the opening end on the outer peripheral side of the gas group B ejection port (17) is α.

また、図6に示すように、高さ方向(軸方向)に隣り合う2つの噴出口対(20)における原料ガス群A噴出口16同士の軸周りの相対角度がβ1、高さ方向(軸方向)に隣り合う2つの噴出口対(20)における原料ガス群B噴出口17同士の軸周りの相対角度のβ2である。そして、高さ方向(軸方向)に隣り合うガス群A噴出口(16)とガス群B噴出口(17)の軸周りの相対角度は、それぞれ、γ1、γ2である。 Further, as shown in FIG. 6, the relative angle around the axis between the source gas group A jet ports 16 in two jet port pairs (20) adjacent in the height direction (axial direction) is β1, and the height direction (axis direction) is β1. β2 of the relative angle around the axis between the source gas group B ejection ports 17 in the two ejection port pairs (20) adjacent to each other in the direction ). The relative angles around the axis of the gas group A ejection port (16) and the gas group B ejection port (17) adjacent to each other in the height direction (axial direction) are γ1 and γ2, respectively.

IV.測定方法
(1)平均層厚
前述のとおり工具基体の表面を決定した後、工具基体の表面に対して垂直な方向に沿って複数の分析ライン(例えば5本)で測定を行う。(VAl)(CN)層の平均層厚は、Al原子が出現し、その含有割合が1原子%となったところを隣接層との境界と定め、分析ライン毎の層厚を求め、平均をとって平均層厚とする。
IV. Measurement Method (1) Average Layer Thickness After determining the surface of the tool substrate as described above, measurements are taken on a plurality of analytical lines (eg, 5 lines) along a direction perpendicular to the surface of the tool substrate. The average layer thickness of the (VAl) (CN) layer is defined as the boundary with the adjacent layer when Al atoms appear and the content ratio is 1 atomic %, the layer thickness is obtained for each analysis line, and the average is calculated. average layer thickness.

(2)組成
(VAl)(CN)層の組成は、以下のようにして求める。
Alの平均含有割合xavgについては、電子線マイクロアナライザ(EPMA:Electron Probe Micro Analyser)を用い、表面を研磨した試料において、電子線を試料表面側から照射し、得られた特性X線の解析結果の10点平均からAlの平均含有割合xavgを求める。
(2) Composition The composition of the (VAl) (CN) layer is obtained as follows.
For the average Al content x avg , an electron beam microanalyzer (EPMA: Electron Probe Micro Analyser) is used to irradiate an electron beam from the sample surface side on a sample whose surface has been polished, and analysis of the obtained characteristic X-rays. The average Al content x avg is obtained from the 10-point average of the results.

Cの平均含有割合yavgについては、二次イオン質量分析(SIMS:Secondary Ion Mass Spectroscopy)により求めた。イオンビームを試料表面側から70μm×70μmの範囲に照射し、スパッタリング作用によって放出された成分について深さ方向の濃度測定を行う。 The average C content y avg was determined by secondary ion mass spectroscopy (SIMS). An ion beam is irradiated in a range of 70 μm×70 μm from the sample surface side, and the concentration in the depth direction is measured for the components emitted by the sputtering action.

(3)NaCl型面心立方構造を有する結晶粒
透過型電子顕微鏡(TEM)による電子線回折により、(VAl)(CN)層の結晶構造を同定し、NaCl型面心立方構造であることを確認し、その面積割合を求める。
(3) Crystal grains having a NaCl-type face-centered cubic structure By electron beam diffraction using a transmission electron microscope (TEM), the crystal structure of the (VAl) (CN) layer was identified and confirmed to be a NaCl-type face-centered cubic structure. Check and find the area ratio.

(4)傾斜角度数分布
(VAl)(CN)層の傾斜角度数分布については、縦断面を研磨面とした状態で、電界放出型走査電子顕微鏡(FE-SEM:Field-Emission Scanning Electron Microscope)の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記断面研磨面の測定範囲内に存在するNaCl型面心立方構造を有する結晶粒の個々に照射する。
(4) Tilt angle number distribution For the tilt angle number distribution of the (VAl) and (CN) layers, a field-emission scanning electron microscope (FE-SEM) was observed with the vertical cross section as a polished surface. and an electron beam with an acceleration voltage of 15 kV at an incident angle of 70 degrees on the polished surface with an irradiation current of 1 nA, and a NaCl-type face-centered cubic structure existing within the measurement range of the cross-sectional polished surface. The crystal grains are individually irradiated.

EBSD法を用いて、工具基体の表面と水平方向に長さ50μm、工具基体の表面と垂直な方向の断面に沿って層厚の距離までの測定範囲内の被覆層について0.01μm/stepの間隔で、工具基体の表面の法線(前記研磨面における工具基体の表面と垂直な方向)に対して、(VAl)(CN)層の結晶面である{100}面の法線がなす傾斜角を測定する。 Using the EBSD method, 0.01 μm/step of the coating layer within a measurement range of 50 μm in length in the horizontal direction to the surface of the tool substrate and to the distance of the layer thickness along the cross section in the direction perpendicular to the surface of the tool substrate. In the interval, the inclination formed by the normal of the {100} plane, which is the crystal plane of the (VAl) (CN) layer, with respect to the normal of the surface of the tool substrate (the direction perpendicular to the surface of the tool substrate in the polishing surface) Measure angles.

そして、この測定結果に基づいて、前記測定傾斜角のうち、0~45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより、0~10度の範囲内に存在する度数のピークの存在(最高度数)を確認し、かつ0~10度の範囲内に存在する度数の割合を求める。 Then, based on the measurement results, the measured tilt angles within the range of 0 to 45 degrees are divided into intervals of 0.25 degrees, and the frequencies present in each division are counted. By doing so, the existence of a frequency peak existing within the range of 0 to 10 degrees (maximum frequency) is confirmed, and the ratio of frequencies existing within the range of 0 to 10 degrees is obtained.

以下、実施例をあげて本発明を説明するが、本発明は実施例に限定されるものではない。すなわち、工具基体としてWC基超硬合金を用いたインサート切削工具をあげるが、工具基体の材質は前述のものであればよく、その形状は前述のとおりドリル等の形状であってもよい。 EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to the examples. That is, an insert cutting tool using a WC-based cemented carbide as the tool base is given as an example, but the material of the tool base may be the one described above, and the shape thereof may be the shape of a drill or the like as described above.

1.工具基体の製造
原料粉末として、いずれも1~3μmの平均粒径を有するWC粉末、TiC粉末、TaC粉末、NbC粉末、Cr粉末およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形した。
1. Manufacture of Tool Substrate As raw material powders, WC powder, TiC powder, TaC powder, NbC powder, Cr 3 C 2 powder, and Co powder, each having an average particle size of 1 to 3 μm, were prepared. Further, wax was added and mixed in a ball mill in acetone for 24 hours, dried under reduced pressure, and then press-molded into a compact having a predetermined shape at a pressure of 98 MPa.

その後、この圧粉体を5Paの真空中、1370~1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、三菱マテリアル社製LOGU1207040PNER-Mのインサート形状をもったWC基超硬合金製の工具基体A~Cをそれぞれ製造した。 After that, this green compact is vacuum sintered under the condition of holding for 1 hour at a predetermined temperature in the range of 1370 to 1470° C. in a vacuum of 5 Pa, and after sintering, the insert shape of Mitsubishi Materials Corporation LOGU1207040PNER-M is made. Tool substrates A to C each made of WC-based cemented carbide were produced.

2.成膜
工具基体A~Cの表面に、CVD装置を用いて、(VAl)(CN)層を成膜し、表5、6に示す実施例1~10を得た。成膜条件は、表2に示すとおりであったが、概ね、次のとおりであった。
2. Film formation A (VAl) (CN) layer was formed on the surfaces of tool substrates A to C using a CVD apparatus to obtain Examples 1 to 10 shown in Tables 5 and 6. The film formation conditions were as shown in Table 2, and were generally as follows.

反応ガス組成(ガス成分の含有割合は、ガス群Aとガス群Bの合計を100容量%とする容量%である):
ガス群A NH:3.5~4.0%、H:55~60%
ガス群B:AlCl:0.6~0.9%、VCl:0.2~0.3%、
Al(CH:0.0~0.5%、N:0.0~12.0%、
:残
反応雰囲気圧力:4.5~5.0kPa
反応雰囲気温度:700~850℃
Reaction gas composition (content ratio of gas components is volume %, with the total of gas group A and gas group B being 100 volume %):
Gas Group A NH 3 : 3.5-4.0%, H 2 : 55-60%
Gas group B: AlCl 3 : 0.6 to 0.9%, VCl 4 : 0.2 to 0.3%,
Al(CH 3 ) 3 : 0.0 to 0.5%, N 2 : 0.0 to 12.0%,
H 2 : Residual reaction atmosphere pressure: 4.5 to 5.0 kPa
Reaction atmosphere temperature: 700-850°C

ここで、ガス群Aとガス群Bは、それぞれ、前記特許6511798号公報に記載されたCVD装置の、原料ガスA、原料ガスBとして供給された。ガス供給管の回転速度、ガス供給管の噴出孔角度は以下のとおりであった。
ガス供給管の回転速度:5~20rpm
ガス供給管の噴出孔角度:
α:180°
β1およびβ2:155°
γ1およびγ2:25°
Here, gas group A and gas group B were respectively supplied as source gas A and source gas B of the CVD apparatus described in Japanese Patent No. 6,511,798. The rotation speed of the gas supply pipe and the ejection hole angle of the gas supply pipe were as follows.
Rotation speed of gas supply pipe: 5 to 20 rpm
Jet hole angle of gas supply pipe:
α: 180°
β1 and β2: 155°
γ1 and γ2: 25°

なお、実施例4~10については、表3に示す条件により表4に示す下部層および/または上部層を成膜した。 For Examples 4 to 10, the lower layer and/or the upper layer shown in Table 4 were formed under the conditions shown in Table 3.

比較のために、工具基体A~Cの表面に表2に示す成膜条件によって、(VAl)(CN)層を成膜し、表5、6に示す比較例1~10を得た。
比較例工程については原料ガスを2系統に分離せずに1本のガス供給管から熱CVD装置の反応容器内に供給した。そのため、ガス群A噴出口(16)とガス群B噴出口(17)の区別はなく噴出口対(20)は存在しないガス供給管を用いた。
なお、比較例4~10については、表3に示す条件により表4に示す下部層および/または上部層を成膜した。
For comparison, a (VAl) (CN) layer was formed on the surfaces of the tool substrates A to C under the film formation conditions shown in Table 2, and Comparative Examples 1 to 10 shown in Tables 5 and 6 were obtained.
In the comparative example process, the raw material gas was not separated into two systems and was supplied from one gas supply pipe into the reaction vessel of the thermal CVD apparatus. Therefore, a gas supply pipe was used in which there was no distinction between the gas group A ejection port (16) and the gas group B ejection port (17) and the ejection port pair (20) did not exist.
For Comparative Examples 4 to 10, the lower layer and/or the upper layer shown in Table 4 were formed under the conditions shown in Table 3.

前記実施例1~10、比較例1~10について、前述した方法を用いて、平均Al含有割合xavgと平均C含有割合yavgを算出した。また、工具基体の表面の法線方向に対して{100}面の法線がなすそれぞれの傾斜角度数分布において、傾斜角度数の最高度数が0~10度内の区分に存在するかを確認すると共に、傾斜角が0~10度の範囲内に存在する度数の割合を求めた。さらに、Alの組成変化の<001>で表される等価の方位に沿ったAl含有割合の繰返し変化の有無とAl含有割合の極大値の平均と極小値の平均との差、その平均の繰返し間隔、さらには、その方位に直交する面内のAl含有割合の変化についても測定した。 For Examples 1 to 10 and Comparative Examples 1 to 10, the average Al content x avg and the average C content y avg were calculated using the method described above. In addition, in each tilt angle number distribution formed by the normal of the {100} plane with respect to the normal direction of the surface of the tool base, confirm whether the maximum number of tilt angles exists in the division within 0 to 10 degrees. At the same time, the ratio of the angles of tilt existing within the range of 0 to 10 degrees was obtained. Furthermore, the presence or absence of repeated changes in the Al content ratio along the equivalent orientation represented by <001> of the Al composition change, the difference between the average of the maximum value and the average of the minimum values of the Al content ratio, and the repetition of the average Measurements were also made on the spacing and further on the change in the Al content in the plane perpendicular to the orientation.

加えて、NaCl型の面心立方構造を有する結晶粒の割合、NaCl型の面心立方構造を有するTiNおよびAlNの格子定数、NaCl型の面心立方構造を有する柱状晶の粒界部に存在する微粒径の結晶粒の面積割合を測定した。
また、平均層厚は、各構成層の縦断面に対して、走査型電子顕微鏡(倍率5000倍)を用いて観察し、観察視野内の5点の層厚を測定して平均して求めた。
In addition, the proportion of crystal grains having a NaCl-type face-centered cubic structure, the lattice constants of TiN and AlN having a NaCl-type face-centered cubic structure, and the grain boundaries of columnar crystals having a NaCl-type face-centered cubic structure The area ratio of crystal grains with fine grain sizes was measured.
In addition, the average layer thickness was obtained by observing the longitudinal section of each constituent layer using a scanning electron microscope (magnification of 5000 times), measuring the layer thickness at five points within the observation field, and averaging them. .

これらの結果を表5、6にまとめた。また、図7に実施例5における工具基体の表面の法線方向に対して、NaCl型面心立方構造の結晶粒の{100}面の法線方向のなす傾斜角の度数分布を示した。 These results are summarized in Tables 5 and 6. 7 shows the frequency distribution of the tilt angles formed by the normal direction of the {100} planes of the crystal grains of the NaCl-type face-centered cubic structure with respect to the normal direction of the surface of the tool substrate in Example 5. As shown in FIG.

Figure 2022147773000004
Figure 2022147773000004

Figure 2022147773000005
Figure 2022147773000005

Figure 2022147773000006
Figure 2022147773000006

Figure 2022147773000007
Figure 2022147773000007

Figure 2022147773000008
Figure 2022147773000008

Figure 2022147773000009
Figure 2022147773000009

続いて、実施例1~10および比較例1~10について、いずれもカッタ径32mmの工具鋼製カッタ先端部に固定治具にてクランプした状態で、合金鋼SCM440の湿式正面フライス加工試験を実施し、切刃の逃げ面摩耗幅を測定した。 Subsequently, in each of Examples 1 to 10 and Comparative Examples 1 to 10, a wet face milling test of alloy steel SCM440 was performed in a state where the tip of a tool steel cutter with a cutter diameter of 32 mm was clamped with a fixture. Then, the flank wear width of the cutting edge was measured.

切削試験:湿式正面フライス切削加工
被削材:JIS・SCM440幅
切削速度:200m/min
切り込みap:6.0mm
切り込みae:20mm
一刃送り量:0.1mm/刃
切削時間:80分
Cutting test: Wet face milling Work material: JIS SCM440 width Cutting speed: 200 m/min
Notch ap: 6.0mm
Notch ae: 20mm
Feed amount per blade: 0.1 mm/blade cutting time: 80 minutes

表7に、切削試験の結果を示す。なお、比較例1~10については、刃先欠損が原因で寿命に至ったため、寿命に至るまでの時間を示す。 Table 7 shows the results of the cutting test. In Comparative Examples 1 to 10, since the end of life was reached due to chipping of the cutting edge, the time until the end of life is shown.

Figure 2022147773000010
Figure 2022147773000010

表7に示す結果から明らかなように、実施例はいずれも刃先欠損の発生がなく、耐欠損生が向上しており、長期にわたって優れた切削性能を発揮する。
これに対して、比較被例1~10は、いずれも刃先欠損が発生し、短時間で使用寿命に至っている。
As is clear from the results shown in Table 7, none of the examples had chipping at the cutting edge, improved chipping resistance, and exhibited excellent cutting performance over a long period of time.
On the other hand, in Comparative Examples 1 to 10, chipping of the cutting edge occurred and the service life was reached in a short time.

1 工具基体
2 被覆層
3 (VAl)(CN)層
4 下部層
5 上部層
6 (VAl)(CN)層のNaCl型面心立方構造を有する結晶粒
7 (VAl)(CN)層のNaCl型面心立方構造を有する結晶粒の{100}面の法線方向
8 Alの含有量が相対的に多い領域
9 Alの含有量が相対的に少ない領域
10 <001>で表される等価な結晶方位
11 ガス供給管
12 仕切り部材
13 ガス供給管の中心
14 ガス群A流通部
15 ガス群B流通部
16 ガス群A噴出口
17 ガス群B噴出口
18 ガス群A噴出口の外周側開口端の中心
19 ガス群B噴出口の外周側開口端の中心
20 噴出口対
α 角度
β1 角度
β2 角度
γ1 角度
γ2 角度
1 Tool substrate 2 Coating layer 3 (VAl) (CN) layer 4 Lower layer 5 Upper layer 6 (VAl) (CN) layer NaCl type Crystal grains having a face-centered cubic structure 7 (VAl) (CN) layer NaCl type Equivalent crystal represented by <001> Direction 11 Gas supply pipe 12 Partition member 13 Center of gas supply pipe 14 Gas group A circulation part 15 Gas group B circulation part 16 Gas group A ejection port 17 Gas group B ejection port 18 Gas group A ejection port at the outer peripheral side opening end Center 19 Center 20 of the opening end on the outer peripheral side of gas group B ejection port Pair α Angle β1 Angle β2 Angle γ1 Angle γ2 Angle

Claims (8)

工具基体と該工具基体の表面に被覆層を有する表面被覆切削工具であって、
1)前記被覆層は、その平均層厚が1.0~20.0μmであって、その組成を組成式:(V1-xAl)(C1-y)で表したとき、xの平均含有割合xavgが0.76~0.95、yの平均含有割合yavgが0.000~0.015であるVとAlの複合窒化物層または複合炭窒化物層を有し、
2)前記複合窒化物層または複合炭窒化物層は、NaCl型面心立方構造を有する複合窒化物または複合炭窒化物の結晶粒を有し、
3)前記工具基体の表面の法線方向に対する前記結晶粒のそれぞれの{100}面の法線方向のなす傾斜角のうち、0~45度の範囲内にある傾斜角を0.25度毎に区分した傾斜角度分布の各区分における度数分布において、0~10度の前記区分のいずれかに最高度数が存在し、かつ、前記0~10度の前記区分の度数分布の和が、前記傾斜角度分布の度数全体の和の45%以上を占めること、
を特徴とする表面被覆切削工具。
A surface-coated cutting tool having a tool substrate and a coating layer on the surface of the tool substrate,
1) The coating layer has an average layer thickness of 1.0 to 20.0 μm, and its composition is represented by the composition formula: (V 1-x Al x )(C y N 1-y ), It has a composite nitride layer or composite carbonitride layer of V and Al in which the average x content x avg is 0.76 to 0.95 and the average y content y avg is 0.000 to 0.015 ,
2) the composite nitride layer or composite carbonitride layer has crystal grains of a composite nitride or composite carbonitride having a NaCl-type face-centered cubic structure;
3) Among the inclination angles formed by the normal direction of the {100} plane of each of the crystal grains with respect to the normal direction of the surface of the tool base, the inclination angle within the range of 0 to 45 degrees is set every 0.25 degrees. In the frequency distribution in each segment of the tilt angle distribution divided into , the highest frequency exists in one of the segments of 0 to 10 degrees, and the sum of the frequency distributions of the segments of 0 to 10 degrees is the slope accounting for 45% or more of the sum of all frequencies of the angular distribution;
A surface-coated cutting tool characterized by:
前記結晶粒は、平均結晶粒子幅が0.1~2.0μm、平均アスペクト比が2.0~10.0の柱状晶であり、<001>で表される等価な結晶方位のいずれか一つの方位に沿って、その粒内にAlの含有割合が極大値と極小値をとる繰返し変化を有し、前記xの前記極大値の平均値と前記極小値と平均値との差Δxが0.03~0.10であるものを含むことを特徴とする請求項1に記載の表面被覆切削工具。 The crystal grains are columnar crystals having an average crystal grain width of 0.1 to 2.0 μm and an average aspect ratio of 2.0 to 10.0. Along one orientation, the Al content ratio in the grain has a repetitive change that takes a maximum value and a minimum value, and the difference Δx between the average value of the maximum value and the minimum value of x is 0 A surface coated cutting tool according to claim 1, comprising .03 to 0.10. 前記結晶粒は、平均結晶粒子幅が0.1~2.0μm、平均アスペクト比が2.0~10.0の柱状晶であり、<001>で表される等価な結晶方位のいずれか一つの方位に沿って、その粒内にAlの含有割合が極大値と極小値をとる繰返し変化を有し、前記繰返し変化の平均間隔が3~100nmであって、前記方位に対して直交する面内での前記xの変化幅x0が0.01以下であることを特徴とする請求項1または2に記載の表面被覆切削工具。 The crystal grains are columnar crystals having an average crystal grain width of 0.1 to 2.0 μm and an average aspect ratio of 2.0 to 10.0. A plane perpendicular to the orientation, which has a repetitive change in which the Al content ratio in the grain takes a maximum value and a minimum value along one orientation, and the average interval of the repetitive change is 3 to 100 nm. 3. The surface-coated cutting tool according to claim 1, wherein the change width x0 of said x within is 0.01 or less. 前記結晶粒の格子定数aは、、立方晶VNの格子定数aVNと立方晶AlNの格子定数aAlNに対して、0.05aVN+0.95aAlN≦a≦0.24aVN+0.76aAlNの関係を満たすことを特徴とする請求項1~3のいずれかに記載の表面被覆切削工具。 The lattice constant a of the crystal grain is 0.05a VN + 0.95a AlN ≤ a ≤ 0.24a VN + 0.76a AlN with respect to the lattice constant a VN of cubic VN and the lattice constant a AlN of cubic AlN. The surface-coated cutting tool according to any one of claims 1 to 3, which satisfies the relationship of 前記複合窒化物または複合炭窒化物層は、前記結晶粒のみからなることを特徴とする請求項1~4のいずれかに記載の表面被覆切削工具。 The surface-coated cutting tool according to any one of claims 1 to 4, wherein the composite nitride or composite carbonitride layer consists only of the crystal grains. 前記複合窒化物または複合炭窒化物層は、六方晶構造を有する微結晶粒が存在し、該微結晶粒の占める面積割合が30%以下であって、かつ、その平均粒径が0.01~0.30μmであることを特徴とする請求項1~4のいずれかに記載の表面被覆切削工具。 The composite nitride or composite carbonitride layer has fine crystal grains having a hexagonal crystal structure, the area ratio of the fine crystal grains is 30% or less, and the average grain size is 0.01. The surface-coated cutting tool according to any one of claims 1 to 4, characterized in that the thickness is up to 0.30 µm. 前記工具基体と前記VとAlの複合窒化物層または複合炭窒化物層の間に、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなり、0.1~20.0μmの合計平均層厚を有する下部層が存在することを特徴とする請求項1~6のいずれかに記載の表面被覆切削工具。 one of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride layer between the tool base and the composite nitride layer or composite carbonitride layer of V and Al The surface coated cutting according to any one of claims 1 to 6, characterized in that there is a lower layer consisting of a layer or two or more Ti compound layers and having a total average layer thickness of 0.1 to 20.0 μm. tool. 前記複合窒化物層または複合炭窒化物層の上部に、少なくとも酸化アルミニウム層を含む上部層が1.0~25.0μmの合計平均層厚で存在することを特徴とする請求項1~7のいずれかに記載の表面被覆切削工具。
An upper layer containing at least an aluminum oxide layer exists on the composite nitride layer or the composite carbonitride layer with a total average layer thickness of 1.0 to 25.0 μm. A surface-coated cutting tool according to any one of the above.
JP2021049161A 2021-03-23 2021-03-23 Surface-coated cutting tool Pending JP2022147773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021049161A JP2022147773A (en) 2021-03-23 2021-03-23 Surface-coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021049161A JP2022147773A (en) 2021-03-23 2021-03-23 Surface-coated cutting tool

Publications (1)

Publication Number Publication Date
JP2022147773A true JP2022147773A (en) 2022-10-06

Family

ID=83462481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021049161A Pending JP2022147773A (en) 2021-03-23 2021-03-23 Surface-coated cutting tool

Country Status (1)

Country Link
JP (1) JP2022147773A (en)

Similar Documents

Publication Publication Date Title
EP3103572B1 (en) Surface-coated cutting tool in which hard coating layer exhibits excellent chipping resistance
JP6478100B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6394898B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4518260B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
EP3269478B1 (en) Surface-coated cutting tool with rigid coating layers exhibiting excellent chipping resistance
JP6391045B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
KR20180135497A (en) Surface-coated cutting tool and method of producing the same
KR20180128531A (en) Surface-coated cutting tool and method of producing the same
EP2962794A1 (en) Surface-coated cutting tool
JP7231885B2 (en) A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance
JP2020131424A (en) Surface-coated cutting tool
US20180154463A1 (en) Surface-coated cutting tool in which hard coating layer exhibits excellent chipping resistance
JP2018144139A (en) Surface-coated cutting tool having hard coating layer excellent in wear resistance and chipping resistance
KR20180026656A (en) Surface-coated cutting tool
WO2022202882A1 (en) Surface-coated cutting tool
JP7325720B2 (en) surface coated cutting tools
US11998992B2 (en) Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance
JP2022147773A (en) Surface-coated cutting tool
JP2022147772A (en) Surface-coated cutting tool
JP2006116621A (en) Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting
JP7329180B2 (en) surface coated cutting tools
JP7125013B2 (en) A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance
WO2023190000A1 (en) Surface-coated cutting tool
JP7486045B2 (en) Surface-coated cutting tools
WO2021177406A1 (en) Surface-coated cutting tool