JP2022135247A - 硬化性組成物ならびにその硬化体 - Google Patents

硬化性組成物ならびにその硬化体 Download PDF

Info

Publication number
JP2022135247A
JP2022135247A JP2021034931A JP2021034931A JP2022135247A JP 2022135247 A JP2022135247 A JP 2022135247A JP 2021034931 A JP2021034931 A JP 2021034931A JP 2021034931 A JP2021034931 A JP 2021034931A JP 2022135247 A JP2022135247 A JP 2022135247A
Authority
JP
Japan
Prior art keywords
optical
optical waveguide
ether
ethyl
curable composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021034931A
Other languages
English (en)
Inventor
篤志 白石
Atsushi Shiraishi
祝也 福長
Noriya FUKUNAGA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
San Apro KK
Original Assignee
San Apro KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by San Apro KK filed Critical San Apro KK
Priority to JP2021034931A priority Critical patent/JP2022135247A/ja
Publication of JP2022135247A publication Critical patent/JP2022135247A/ja
Pending legal-status Critical Current

Links

Abstract

【課題】カチオン重合開始剤として光反応性及び熱安定性に優れた酸発生剤を含み、それによって硬化性および熱安定性に優れた硬化性組成物;並びに該硬化性組成物を利用した硬化性、接着性、透明性、耐熱接着性及び耐熱透明性に優れた硬化物;光学素子用硬化体;立体造形物;光導波路用硬化体を提供する。
【解決手段】本発明は、下記一般式(1)で表されるオニウム塩を含有する酸発生剤とカチオン重合性化合物とを含有する硬化性組成物である。
【化1】

Description

本発明は、特定の構造を有する酸発生剤とカチオン重合性化合物とを含有する、硬化性および熱安定性に優れた硬化性組成物、ならびにその硬化体に関するものである。
硬化性組成物は、カチオン重合性樹脂組成物、ラジカル重合性樹脂組成物およびカチオン重合性組成物とラジカル重合性組成物を併用した樹脂組成物など種々の組成物が従来から提案されている。
そのうち、カチオン重合性樹脂組成物では、系内に存在するカチオン重合開始剤が熱、光(紫外線、可視光線、電子線あるいは活性エネルギー線など)を作用させることによりカチオン種(H)を生成し、それが連鎖的にエポキシ化合物などのカチオン重合性有機化合物に関与してカチオン重合性有機化合物が開環して反応が進む。Hを生成するカチオン重合開始剤は酸発生剤とも呼ばれる。カチオン重合性有機化合物をベースとする硬化性樹脂組成物を用いると、一般に、ラジカル重合性有機化合物をベースとする硬化性樹脂組成物を用いた場合に比べて、得られる硬化物の収縮率が小さく、寸法精度の良い造形物が得られる。例えば携帯電話、スマートフォン等の携帯型電子機器のような電子機器には小型で薄型の撮像ユニットが搭載されており、前記撮像ユニットは、一般に、固体撮像素子(CCD型イメージセンサやCMOS型イメージセンサ等)とレンズ等の光学素子より構成されている。レンズ等の光学素子の材料としては、酸素による硬化阻害が起こらない点、及び硬化時の収縮が小さい点から、ラジカル硬化性組成物に比べカチオン硬化性組成物が好ましく使用される。また、ディスプレイや上記電子機器などにおける小型構成部品間の接着剤や、および微細な立体造形物などの微細加工分野にも好適に利用されている。これらの用途では微細な加工工程に適した光照射を用いるプロセスが多く適用されている。
また、カチオン重合性有機化合物の重合反応は、一般にラジカル重合性有機化合物の重合反応に比べて遅く、したがって硬化性に優れたカチオン重合性樹脂組成物が望まれている。光照射を用いる場合、光反応性を高める目的で種々の光酸発生剤が提案されている(特許文献1~4)。
一方、電子部品を配線基板に実装する際、接合部に光照射できない場合も数多く存在する。このため、特定のスルホニウム塩を適用し、熱を作用させて硬化することが開示されている(特許文献5~8)。この場合においてカチオン重合時にフッ素イオンの生成量を減じて熱カチオン重合性接着剤の耐腐食性を向上することだけでなく、カチオン重合性有機化合物の重合反応は、一般にラジカル重合性有機化合物の重合反応に比べて遅いため、生産性向上のためにより低温での硬化性等、硬化性に優れたカチオン重合性樹脂組成物が望まれている。
さらに、電子機器に搭載される光学素子には、製造の効率化を図る目的から、リフロー方式による半田付けにより実装可能な耐熱性及び耐熱黄変性を有することが求められる。さらに近年、環境への配慮から鉛の使用が制限され、鉛フリー半田を使用して半田付けが行われるようになったため、更に高い耐熱性(約270℃)及び耐熱黄変性が求められるようになった。
カチオン重合性化合物の硬化性能や酸触媒による架橋反応性能はアニオンの種類で異なり、一般的にはBF <PF <SbF の順に良くなる。しかし、重合や架橋性能の良いSbF を含有するカチオン重合開始剤(酸発生剤)は、Sbの毒性の問題から使用用途が限定されるため、毒性金属を含まず、SbF のような高いカチオン重合開始能を有するカチオン重合開始剤が求められている。
毒性金属を含まず、SbF 塩のような高いカチオン重合性能や架橋反応性能を有するカチオン重合開始剤(酸発生剤)として、アルミニウムを中心元素とする、特定の構造を有するアニオンからなる酸発生剤が提案されている(特許文献9および特許文献10)。しかしながら硬化性に優れるものの、硬化物の耐熱試験後には透明性が低下する問題があり、上記の光学特性が必要な部材への適用が進んでいなかった。
特公昭52-14277号公報 特公昭52-14278号公報 特開平10-287643号公報 特許5313873号公報 特開2006-96742号公報 特開2006-282633号公報 特開2008-303167号公報 特開2010-132614号公報 特開2018-532866号公報 特開2019-85358号公報
上記の背景において、本発明の目的は、カチオン重合開始剤として光反応性及び熱安定性に優れた酸発生剤を含み、それによって硬化性および熱安定性に優れた硬化性組成物を提供することである。
本発明の第2の目的は、上記硬化性組成物を利用した硬化性、接着性、透明性、耐熱接着性および耐熱透明性に優れた硬化物を提供することである。
本発明の第3の目的は、上記硬化性組成物を利用した硬化性、透明性および耐熱透明性に優れた光学素子用硬化体を提供することである。
本発明の第4の目的は、上記硬化性組成物を利用した硬化性、寸法安定性、耐光性、および耐熱黄変性に優れた立体造形物を提供することである。
本発明の第5の目的は、上記硬化性組成物を利用したパターン硬化性、耐熱着色性および熱安定性に優れた光導波路用硬化体を提供することである。
本発明者らは、上記の目的を達成すべく種々研究を重ねた結果、酸発生剤として下記一般式(1)で表されるオニウム塩を用いることで優れた硬化性と熱安定性を有する硬化性組成物が得られることを見出した。すなわち、本発明は、下記一般式(1)で表されるオニウム塩を含有する酸発生剤とカチオン重合性化合物とを含有する硬化性組成物である。
Figure 2022135247000001
[式中、R~Rは、互いに独立して、炭素数1~8のアルキル基、炭素数2~8のアルケニル基または置換基を有していてもよいフェニル基であり、R~Rのうち少なくとも一つの基に結合する水素原子の一部または全部がフッ素原子で置換されており、かつR~Rの基に結合する全水素原子のうち30%~70%がフッ素原子で置換されており;EはS、I、NまたはPから選ばれる原子価nの元素を表し、nは1~3の整数であり、RはEに結合している有機基であり、Rの個数はn+1であり、(n+1)個のRはそれぞれ互いに同一であっても異なっても良く、2個以上のRが互いに直接または-O-、-S-、-SO-、-SO-、-NH-、-CO-、-COO-、-CONH-、アルキレン基もしくはフェニレン基を介して元素Eを含む環構造を形成しても良い。]
また本発明は、前記に記載の硬化性組成物を含む接着剤を提供する。
また本発明は、前記に記載の硬化性組成物を硬化した硬化物を提供する。
また本発明は、前記に記載の硬化物を構成要素として含有する光学素子を提供する。
また本発明は、前記に記載の光学素子を備えた光学装置を提供する。
また本発明は、前記に記載の硬化性組成物に、さらにラジカル重合性化合物及びラジカル重合開始剤を含んでなる光学的立体造形用樹脂組成物を提供する。
また本発明は、前記に記載の光学的立体造形用樹脂組成物を用いて光学的立体造形された立体造形物を提供する。
また本発明は、前記に記載の硬化性組成物を含んでなる光導波路用樹脂組成物を提供する。
また本発明は、光導波路用樹脂組成物をフィルム状に形成してなる光導波路コア層形成用硬化性フィルムを提供する。
また本発明は、基材とその基材上にクラッド層が形成され、さらに上記クラッド層中に所定パターンで、光信号を伝搬するコア層が形成されてなる光導波路であって、上記コア層が、前期に記載の光導波路用樹脂組成物、または光導波路コア層形成用硬化性フィルムを硬化させることにより形成されてなる光導波路を提供する。
また本発明は、光導波路を備えることを特徴とする光・電気伝送用混載フレキシブルプリント配線板を提供する。
本発明の組成物は硬化性及び熱安定性に優れ、またその硬化物は接着性、透明性、パターニング性および耐マイグレーション性等の電気信頼性に優れるため、電子部品等の接着剤用途、立体造形物、光学素子、光導波路等に好適に用いることが出来る。
以下、本発明の実施形態について詳細に説明する。
本発明の酸発生剤は下記一般式(1)で表されるオニウム塩を含有する。
Figure 2022135247000002
[式中、R~Rは、互いに独立して、炭素数1~8のアルキル基、炭素数2~8のアルケニル基または置換基を有していてもよいフェニル基であり、R~Rのうち少なくとも一つの基に結合する水素原子の一部または全部がフッ素原子で置換されており、かつR~Rの基に結合する全水素原子のうち30%~70%がフッ素原子で置換されており;EはS、I、NまたはPから選ばれる原子価nの元素を表し、nは1~3の整数であり、RはEに結合している有機基であり、Rの個数はn+1であり、(n+1)個のRはそれぞれ互いに同一であっても異なっても良く、2個以上のRが互いに直接または-O-、-S-、-SO-、-SO-、-NH-、-CO-、-COO-、-CONH-、アルキレン基もしくはフェニレン基を介して元素Eを含む環構造を形成しても良い。]
一般式(1)中、R~Rにおける、炭素数1~8のアルキル基としては、直鎖アルキル基(メチル、エチル、n-プロピル、n-ブチル、n-ペンチル及びn-オクチル等)、分岐アルキル基(イソプロピル、イソブチル、sec-ブチル、tert-ブチル、イソペンチル、ネオペンチル、tert-ペンチル、イソヘキシル、2-エチルヘキシル及び1,1,3,3-テトラメチルブチル等)及びシクロアルキル基(シクロプロピル、シクロブチル、シクロペンチルが挙げられる。
一般式(1)中、R~Rにおける、炭素数2~8のアルケニル基としては、直鎖又は分岐のアルケニル基(ビニル、アリル、1-プロペニル、2-プロペニル、1-ブテニル、2-ブテニル、3-ブテニル、1-メチル-1-プロペニル、1-メチル-2-プロペニル、2-メチル-1-プロペニル及び2-メチル-2-プロペニル等)、及びシクロアルケニル基(2-シクロヘキセニル及び3-シクロヘキセニル等)が挙げられる。
一般式(1)中、R~Rにおける、置換基を有していてもよいフェニル基とは、フェニル基のほか、フェニル基中の水素原子の一部が炭素数1~8のアルキル基、炭素数2~8のアルケニル基、ニトロ基、-ORで表されるアルコキシ基、-SRで表されるアルキルチオ基、塩素原子、又は臭素原子で置換されているものを表す。
上記置換基において炭素数1~8のアルキル基および炭素数2~8のアルケニル基としては上記一般式(1)のR~Rで説明したものと同じものが挙げられる。
上記置換基において、-ORで表されるアルコキシ基、-SRで表されるアルキルチオ基の、R~Rとしては炭素数1~8のアルキル基が挙げられ、具体的には上記のアルキル基のうち炭素数1~8のアルキル基が挙げられる。
-ORで表されるアルコキシ基としては、メトキシ、エトキシ、n-プロポキシ、iso-プロポキシ、n-ブトキシ、sec-ブトキシ、tert-ブトキシ、n-ペントキシ、iso-ペントキシ、neo-ペントキシ及び2-メチルブトキシ等が挙げられる。
-SRで表されるアルキルチオ基としては、メチルチオ、エチルチオ、ブチルチオ、ヘキシルチオ及びシクロヘキシルチオ等が挙げられる。
これら置換基において、原料の入手しやすさの観点から、好ましくは炭素数1~8のアルキル基、炭素数2~8のアルケニル基、-ORで表されるアルコキシ基、塩素原子、又は臭素原子であり、さらに好ましくは炭素数1~4のアルキル基、炭素数2~4のアルケニル基又は塩素原子である。
式(1)中R~Rにおける基の中で、原料の入手しやすさの観点から、好ましくは炭素数1~4のアルキル基、炭素数2~4のアルケニル基、フェニル基、及び炭素数1~4のアルキル基、炭素数2~4のアルケニル基又は塩素原子が置換したフェニル基である。また、R~Rにおける合計炭素数が4~9であるものがより好ましい。
さらに式(1)中R~Rにおける基は、同一でも異なっていてもよく、少なくとも一つの基に結合する水素原子の一部または全部がフッ素原子で置換されており、かつR~Rの基に結合する全水素原子のうち30%~70%がフッ素原子で置換されているものである。これをフッ素置換率という。
硬化物の耐熱性および耐熱黄変性、特に耐熱黄変性の観点から、フッ素置換率が30%~70%である必要がある。フッ素置換率が30%未満の場合、形成するアニオンが不安定となり酸発生剤としての使用が困難となり不適である。
一般式(1)で表される酸発生剤のアニオン構造としては、たとえば、以下化学式(A-1)~(A-14)で表されるものが好ましく例示できる。
Figure 2022135247000003
式(1)中のRはEに結合している有機基を表し、同一であっても異なってもよい。Rとしては、炭素数1~18のアルキル基、炭素数2~18のアルケニル基、および炭素数6~14のアリール基が挙げられ、アリール基はさらに炭素数1~18のアルキル基、炭素数2~18のアルケニル基、炭素数6~14のアリール基、ニトロ基、水酸基、シアノ基、-ORで表されるアルコキシ基若しくはアリールオキシ基、-SRで表されるアルキルチオ基若しくはアリールチオ基、RCO-で表されるアシル基、RCOO-で表されるアシロキシ基、-NR10で表されるアミノ基、又はハロゲン原子で置換されていてもよい。
上記Rにおける炭素数1~18のアルキル基としては、直鎖アルキル基(メチル、エチル、n-プロピル、n-ブチル、n-ペンチル、n-オクチル、n-デシル、n-ドデシル、n-テトラデシル、n-ヘキサデシル及びn-オクタデシル等)、分岐アルキル基(イソプロピル、イソブチル、sec-ブチル、tert-ブチル、イソペンチル、ネオペンチル、tert-ペンチル、イソヘキシル、2-エチルヘキシル及び1,1,3,3-テトラメチルブチル等)、シクロアルキル基(シクロプロピル、シクロブチル、シクロペンチル及びシクロヘキシル等)、架橋環式アルキル基(ノルボルニル、アダマンチル及びピナニル等)及びアリールアルキル基(ベンジル、ナフチルメチル、フェネチル、ベンズヒドリル及びフェナシル等)が挙げられる。
上記Rにおける炭素数2~18のアルケニル基としては、直鎖又は分岐のアルケニル基(ビニル、アリル、1-プロペニル、2-プロペニル、1-ブテニル、2-ブテニル、3-ブテニル、1-メチル-1-プロペニル、1-メチル-2-プロペニル、2-メチル-1-プロペニル及び2-メチル-2-プロぺニル等)、シクロアルケニル基(2-シクロヘキセニル及び3-シクロヘキセニル等)及びアリールアルケニル基(スチリル及びシンナミル等)が挙げられる。
上記Rにおける炭素数6~14(以下の置換基の炭素数は含まない)のアリール基としては、単環式アリール基(フェニル等)、縮合多環式アリール基(ナフチル、アントラセニル、フェナンスレニル、アントラキノリル、フルオレニル及びナフトキノリル等)及び芳香族複素環炭化水素基(チエニル、フラニル、ピラニル、ピロリル、オキサゾリル、チアゾリル、ピリジル、ピリミジル、ピラジニル等単環式複素環;及びインドリル、ベンゾフラニル、イソベンゾフラニル、ベンゾチエニル、イソベンゾチエニル、キノリル、イソキノリル、キノキサリニル、キナゾリニル、カルバゾリル、アクリジニル、フェノチアジニル、フェナジニル、キサンテニル、チアントレニル、フェノキサジニル、フェノキサチイニル、クロマニル、イソクロマニル、クマリニル、ジベンゾチエニル、キサントニル、チオキサントニル、ジベンゾフラニル等縮合多環式複素環)が挙げられる。
アリール基としては、以上の他に、アリール基中の水素原子の一部が炭素数1~18のアルキル基、炭素数2~18のアルケニル基、炭素数6~14のアリール基、ニトロ基、水酸基、シアノ基、-ORで表されるアルコキシ基若しくはアリールオキシ基、-SRで表されるアルキルチオ基若しくはアリールチオ基、RCO-で表されるアシル基、RCOO-で表されるアシロキシ基、-NR10で表されるアミノ基、又はハロゲン原子で置換されていてもよい。
上記置換基において、-ORで表されるアルコキシ基、-SRで表されるアルキルチオ基、RCO-で表されるアシル基、RCOO-で表されるアシロキシ基、-NR10で表されるアミノ基の、R~R10としては炭素数1~8のアルキル基が挙げられ、具体的には上記のアルキル基のうち炭素数1~8のアルキル基が挙げられる。
上記置換基において、-ORで表されるアリールオキシ基、-SRで表されるアリールチオ基、RCO-で表されるアシル基、RCOO-で表されるアシロキシ基、-NR10で表されるアミノ基の、R~R10としては炭素数6~14のアリール基が挙げられ、具体的には上記の炭素数6~14のアリール基が挙げられる。
-ORで表されるアルコキシ基としては、メトキシ、エトキシ、n-プロポキシ、iso-プロポキシ、n-ブトキシ、sec-ブトキシ、tert-ブトキシ、n-ペントキシ、iso-ペントキシ、neo-ペントキシ及び2-メチルブトキシ等が挙げられる。
-ORで表されるアリールオキシ基としては、フェノキシ、ナフトキシ等が挙げられる。
-SRで表されるアルキルチオ基としては、メチルチオ、エチルチオ、ブチルチオ、ヘキシルチオ及びシクロヘキシルチオ等が挙げられる。
-SRで表されるアリールチオ基としては、フェニルチオ、ナフチルチオ、ビフェニルチオ、2-チオキサントニルチオ等が挙げられる。
CO-で表されるアシル基としては、アセチル、プロパノイル、ブタノイル、ピバロイル及びベンゾイル等が挙げられる。
COO-で表されるアシロキシ基としては、アセトキシ、ブタノイルオキシ及びベンゾイルオキシ等が挙げられる。
-NR10で表されるアミノ基としては、メチルアミノ、エチルアミノ、プロピルアミノ、ジメチルアミノ、ジエチルアミノ、メチルエチルアミノ、ジプロピルアミノ、ジプロピルアミノ及びピペリジノ等が挙げられる。
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子等が挙げられる。
上記Rのうち、カチオン重合開始能の観点で好ましいのは炭素数1~18のアルキル基、炭素数6~14のアリール基及びニトロ基、水酸基、炭素数1~18のアルキル基、-ORで表されるアルコキシ基、-SRで表されるアリールチオ基、RCO-で表されるアシル基、RCOO-で表されるアシロキシ基又は塩素原子で置換された炭素数6~14のアリール基である。
さらに好ましいのは、炭素数1~18のアルキル基、フェニル基及び水酸基、炭素数1~18のアルキル基、-ORで表されるアルコキシ基、-SRで表されるアリールチオ基、アセチル基、ベンゾイル基、アセトキシ基で置換されたフェニル基である。
また2個以上のRが互いに直接または-O-、-S-、-SO-、-SO-、-NH-、-CO-、-COO-、-CONH-、アルキレン基もしくはフェニレン基を介して元素Eを含む環構造を形成しても良い。
式(1)中のEは、S(硫黄)、I(ヨウ素)、N(窒素)またはP(リン)から選ばれる、原子価nの元素を表し、有機基Rと結合してオニウムイオン[E]を形成する。nは元素Eの原子価を表し、1~3の整数である。
対応するオニウムイオンとしてはアンモニウム、ホスホニウム、スルホニウム、ヨードニウムである。中でも、安定で取り扱いが容易な、アンモニウム、ホスホニウム、スルホニウム、ヨードニウムが好ましく、カチオン重合性能や架橋反応性能に優れるスルホニウム、ヨードニウムがさらに好ましい。
アンモニウムイオンの具体例としては、テトラメチルアンモニウム、エチルトリメチルアンモニウム、ジエチルジメチルアンモニウム、トリエチルメチルアンモニウム、テトラエチルアンモニウムなどのテトラアルキルアンモニウム;N,N-ジメチルピロリジニウム、N-エチル-N-メチルピロリジニウム、N,N-ジエチルピロリジニウムなどのピロリジニウム;N,N'-ジメチルイミダゾリニウム、N,N'-ジエチルイミダゾリニウム、N-エチル-N'-メチルイミダゾリニウム、1,3,4-トリメチルイミダゾリニウム、1,2,3,4-テトラメチルイミダゾリニウムなどのイミダゾリニウム;N,N'-ジメチルテトラヒドロピリミジニウムなどのテトラヒドロピリミジニウム;N,N'-ジメチルモルホリニウムなどのモルホリニウム;N,N'-ジエチルピペリジニウムなどのピペリジニウム;N-メチルピリジニウム、N-ベンジルピリジニウム、N-フェナシルピリジウムなどのピリジニウム;N,N'-ジメチルイミダゾリウム、などのイミダゾリウム;N-メチルキノリウム、N-ベンジルキノリウム、N-フェナシルキノリウムなどのキノリウム;N-メチルイソキノリウムなどのイソキノリウム;ベンジルベンゾチアゾニウム、フェナシルベンゾチアゾニウムなどのチアゾニウム;ベンジルアクリジウム、フェナシルアクリジウムなどのアクリジウムが挙げられる。
ホスホニウムイオンの具体例としては、テトラフェニルホスホニウム、テトラ-p-トリルホスホニウム、テトラキス(2-メトキシフェニル)ホスホニウム、テトラキス(3-メトキシフェニル)ホスホニウム、テトラキス(4-メトキシフェニル)ホスホニウムなどのテトラアリールホスホニウム;トリフェニルベンジルホスホニウム、トリフェニルフェナシルホスホニウム、トリフェニルメチルホスホニウム、トリフェニルブチルホスホニウムなどのトリアリールホスホニウム;トリエチルベンジルホスホニウム、トリブチルベンジルホスホニウム、テトラエチルホスホニウム、テトラブチルホスホニウム、テトラヘキシルホスホニウム、トリエチルフェナシルホスホニウム、トリブチルフェナシルホスホニウムなどのテトラアルキルホスホニウムなどが挙げられる。
スルホニウムイオンの具体例としては、トリフェニルスルホニウム、トリ-p-トリルスルホニウム、トリ-o-トリルスルホニウム、トリス(4-メトキシフェニル)スルホニウム、1-ナフチルジフェニルスルホニウム、2-ナフチルジフェニルスルホニウム、トリス(4-フルオロフェニル)スルホニウム、トリ-1-ナフチルスルホニウム、トリ-2-ナフチルスルホニウム、トリス(4-ヒドロキシフェニル)スルホニウム、4-(フェニルチオ)フェニルジフェニルスルホニウム、4-(p-トリルチオ)フェニルジ-p-トリルスルホニウム、4-(4-メトキシフェニルチオ)フェニルビス(4-メトキシフェニル)スルホニウム、4-(フェニルチオ)フェニルビス(4-フルオロフェニル)スルホニウム、4-(フェニルチオ)フェニルビス(4-メトキシフェニル)スルホニウム、4-(フェニルチオ)フェニルジ-p-トリルスルホニウム、[4-(4-ビフェニリルチオ)フェニル]-4-ビフェニリルフェニルスルホニウム、[4-(9,9-ジフェニルフルオレニル-2-チオ)フェニル]-2-(9,9-ジフェニル)フルオレニルフェニルスルホニウム、[4-(9,9-ジメチルフルオレニル-2-チオ)フェニル]-2-(9,9-ジメチル)フルオレニルフェニルスルホニウム、[4-(2-チオキサントニルチオ)フェニル]ジフェニルスルホニウム、ビス[4-(ジフェニルスルホニオ)フェニル]スルフィド、ビス〔4-{ビス[4-(2-ヒドロキシエトキシ)フェニル]スルホニオ}フェニル〕スルフィド、ビス{4-[ビス(4-フルオロフェニル)スルホニオ]フェニル}スルフィド、ビス{4-[ビス(4-メチルフェニル)スルホニオ]フェニル}スルフィド、ビス{4-[ビス(4-メトキシフェニル)スルホニオ]フェニル}スルフィド、4-(4-ベンゾイル-2-クロロフェニルチオ)フェニルビス(4-フルオロフェニル)スルホニウム、4-(4-ベンゾイル-2-クロロフェニルチオ)フェニルジフェニルスルホニウム、4-(4-ベンゾイルフェニルチオ)フェニルビス(4-フルオロフェニル)スルホニウム、4-(4-ベンゾイルフェニルチオ)フェニルジフェニルスルホニウム、7-イソプロピル-9-オキソ-10-チア-9,10-ジヒドロアントラセン-2-イルジ-p-トリルスルホニウム、7-イソプロピル-9-オキソ-10-チア-9,10-ジヒドロアントラセン-2-イルジフェニルスルホニウム、2-[(ジ-p-トリル)スルホニオ]チオキサントン、2-[(ジフェニル)スルホニオ]チオキサントン、4-(9-オキソ-9H-チオキサンテン-2-イル)チオフェニル-9-オキソ-9H-チオキサンテン-2-イルフェニルスルホニウム、2-[(ジフェニル)スルホニオ]チオキサントン、[4-(9-オキソ-9H-チオキサンテン-2-イル)チオ-2-tert-ブチル-5-メチルフェニル]-9-オキソ-9H-チオキサンテン-2-イル-(3-ブチル-5-メチルフェニル)スルホニウム、4-[4-(4-tert-ブチルベンゾイル)フェニルチオ]フェニルジ-p-トリルスルホニウム、4-[4-(4-tert-ブチルベンゾイル)フェニルチオ]フェニルジフェニルスルホニウム、4-[4-(ベンゾイルフェニルチオ)]フェニルジ-p-トリルスルホニウム、4-[4-(ベンゾイルフェニルチオ)]フェニルジフェニルスルホニウム、5-(4-メトキシフェニル)チアントレニウム、5-フェニルチアントレニウム、5-トリルチアントレニウム、5-(4-エトキシフェニル) チアントレニウム、5-(2,4,6-トリメチルフェニル) チアントレニウムなどのトリアリールスルホニウム;ジフェニルフェナシルスルホニウム、ジフェニル4-ニトロフェナシルスルホニウム、ジフェニルベンジルスルホニウム、ジフェニルメチルスルホニウムなどのジアリールスルホニウム;フェニルメチルベンジルスルホニウム、4-ヒドロキシフェニルメチルベンジルスルホニウム、4-メトキシフェニルメチルベンジルスルホニウム、4-アセトキシフェニルメチルベンジルスルホニウム、4-アセトキシフェニルジメチルスルホニウム、4-ヒドロキシフェニル(1-ナフチルメチル)メチルスルホニウム、2-ナフチルメチルベンジルスルホニウム、4-ヒドロキシフェニル(4-ニトロベンジル)メチルスルホニウム、2-ナフチルメチル(1-エトキシカルボニル)エチルスルホニウム、フェニルメチルフェナシルスルホニウム、4-ヒドロキシフェニルメチルフェナシルスルホニウム、4-メトキシフェニルメチルフェナシルスルホニウム、4-アセトキシフェニルメチルフェナシルスルホニウム、2-ナフチルメチルフェナシルスルホニウム、2-ナフチルオクタデシルフェナシルスルホニウム、9-アントラセニルメチルフェナシルスルホニウムなどのモノアリールスルホニウム;ジメチルフェナシルスルホニウム、フェナシルテトラヒドロチオフェニウム、ジメチルベンジルスルホニウム、ベンジルテトラヒドロチオフェニウム、オクタデシルメチルフェナシルスルホニウムなどのトリアルキルスルホニウムなどが挙げられる。
ヨードニウムイオンの具体例としては、ジフェニルヨードニウム、ジ-p-トリルヨードニウム、ジ(4-tert-ブチルフェニル)ヨードニウム、ジ(4-ドデシルフェニル)ヨードニウム、ジ(4-メトキシフェニル)ヨードニウム、(4-オクチルオキシフェニル)フェニルヨードニウム、ジ(4-デシルオキシフェニル)ヨードニウム、4-(2-ヒドロキシテトラデシルオキシ)フェニルフェニルヨードニウム、4-イソプロピルフェニル(p-トリル)ヨードニウム、フェニル(2,4,6-トリメトキシフェニル)ヨードニウムおよび4-イソブチルフェニル(p-トリル)ヨードニウムなどのヨードニウムイオンが挙げられる。
本発明の式(1)で表されるオニウム塩は、複分解法によって製造できる。複分解法は例えば、新実験化学講座14-I巻(1978年、丸善)p-448;Advance in Polymer Science、62、1-48(1984);新実験化学講座14-III巻(1978年、丸善)pp1838-1846;有機硫黄化学(合成反応編、1982年、化学同人)、第8章、pp237-280;日本化学雑誌、87、(5)、74(1966);特開昭64-45357号、特開昭61-212554号、特開昭61-100557号、特開平5-4996号、特開平7-82244号、特開平7-82245号、特開昭58-210904号、特開平6-184170号などに記載されているが、まずオニウムカチオンのF、Cl、Br、Iなどのハロゲンイオン塩;OH塩;ClO 塩;FSO 、ClSO 、CHSO 、CSO 、CFSO などのスルホン酸イオン類との塩;HSO 、SO 2-などの硫酸イオン類との塩;HCO 、CO 2-、などの炭酸イオン類との塩;HPO 、HPO 2-、PO 3-などのリン酸イオン類との塩などを製造し、これを式(1)で表されるオニウム塩を構成するアニオンのアルカリ金属塩、アルカリ土類金属塩または4級アンモニウム塩と、必要により、KPF、KBF、LiB(Cなどの他のアニオン成分とを理論量以上含む溶媒および水溶液中に加えて複分解させる。溶媒としては、水や有機溶剤を使用できる。有機溶剤としては、炭化水素(ヘキサン、ヘプタン、トルエン、キシレン等)、環状エーテル(テトラヒドロフラン及びジオキサン等)、塩素系溶剤(クロロホルム及びジクロロメタン等)、アルコール(メタノール、エタノール及びイソプロピルアルコール等)、ケトン(アセトン、メチルエチルケトン及びメチルイソブチルケトン等)、ニトリル(アセトニトリル等)及び極性有機溶剤(ジメチルスルホキシド、ジメチルホルムアミド及びN-メチルピロリドン等)が含まれる。これらの溶剤は、単独で使用してもよく、また2種以上を併用してもよい。
これにより生成した目的のオニウム塩は、結晶または油状で分離してくる。油状物の場合、析出した油状物を有機溶剤溶液から分離し、さらに油状物に含有する有機溶剤を留去することにより得られる。結晶の場合、析出した固体を有機溶剤溶液から分離し、さらに、固体に含有する有機溶剤を留去することにより得られる。このようにして得られた目的のオニウムの塩を必要により再結晶または水や溶媒による洗浄等の方法で精製することができる。
再結晶による精製は、目的のオニウム塩を少量の有機溶剤で溶解し、その有機溶剤からの分離は、目的のオニウム塩を含む有機溶剤溶液に対して直接(又は濃縮した後)、貧溶剤を加えて目的のオニウム塩を析出させることにより行うことができる。ここで用いる貧溶剤としては、鎖状エーテル(ジエチルエーテル及びジプロピルエーテル等)、エステル(酢酸エチル及び酢酸ブチル等)、脂肪族炭化水素(へキサン及びシクロヘキサン等)及び芳香族炭化水素(トルエン及びキシレン等)が含まれる。また、温度による溶解度差を利用して、精製を行うこともできる。 精製は、再結晶(冷却による溶解度の差を利用する方法、貧溶剤を加えて析出させる方法及びこれらの併用)によって精製することができる。また、目的物が油状物である場合(結晶化しない場合)、油状物を水又は貧溶媒で洗浄する方法により精製できる。
このようにして得られたオニウム塩の構造は、一般的な分析手法、例えば、H、13C、19F、などの各核磁気共鳴スペクトル、赤外吸収スペクトル、質量分析あるいは元素分析などによって同定することができる。
本発明の硬化性組成物は、酸発生剤として一般式(1)で表されるオニウム塩を含有することを特徴とするが、本発明の酸発生剤は単独で使用してもよいし、2種以上併用して使用してもよい。また、これ以外にも従来公知の他の酸発生剤を含有させて使用してもよい。
他の酸発生剤としては、オニウム塩(スルホニウム、ヨードニウム、セレニウム、アンモニウム及びホスホニウム等)並びに遷移金属錯体イオンと、アニオンとの塩等の従来公知のものが含まれる。
他の酸発生剤を含有する場合、他の酸発生剤の含有量(モル%)は、本発明の一般式(1)で表されるオニウム塩の総モル数に対して、0.1~100が好ましく、さらに好ましくは0.5~50である。
式(1)で表されるオニウム塩(酸発生剤)は、カチオン重合性化合物への溶解を容易にするため、あらかじめ重合や架橋反応を阻害しない溶剤に溶かしておいてもよい。
溶剤としては、プロピレンカーボネート、エチレンカーボネート、1,2-ブチレンカーボネート、ジメチルカーボネート及びジエチルカーボネートなどのカーボネート類;アセトン、メチルエチルケトン、シクロヘキサノン、メチルイソアミルケトン、2-ヘプタノンなどのケトン類;エチレングリコール、エチレングリコールモノアセテート、ジエチレングリコール、ジエチレングリコールモノアセテート、プロピレングリコール、プロピレングリコールモノアセテート、ジプロピレングリコール及びジプロピレングリコールモノアセテートのモノメチルエーテル、モノエチルエーテル、モノプロピルエーテル、モノブチルエーテル又はモノフェニルエーテルなどの多価アルコール類及びその誘導体;ジオキサンのような環式エーテル類;蟻酸エチル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸ブチル、ピルビン酸メチル、アセト酢酸メチル、アセト酢酸エチル、ピルビン酸エチル、エトキシ酢酸エチル、メトキシプロピオン酸メチル、エトキシプロピオン酸エチル、2-ヒドロキシプロピオン酸メチル、2-ヒドロキシプロピオン酸エチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、2-ヒドロキシ-3-メチルブタン酸メチル、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、β-プロピオラクトン、β―ブチロラクトン、γ-ブチロラクトン、δ-バレロラクトン及びε-カプロラクトンなどのエステル類;トルエン、キシレンなどの芳香族炭化水素類等が挙げられる。
溶剤を使用する場合、溶剤の使用割合は、本発明の式(1)で表されるオニウム塩(酸発生剤)100重量部に対して、15~1000重量部が好ましく、さらに好ましくは30~500重量部である。使用する溶媒は、単独で使用してもよく、または2種以上を併用してもよい。
本発明の硬化性組成物は、上記酸発生剤とカチオン重合性化合物とを含んでなる。
硬化性組成物の構成成分であるカチオン重合性化合物としては、環状エーテル(エポキシド及びオキセタン等)、エチレン性不飽和化合物(ビニルエーテル及びスチレン等)、ビシクロオルトエステル、スピロオルトカーボネート及びスピロオルトエステル等が挙げられる{(たとえば、活性エネルギー線硬化性組成物中のカチオン重合性化合物成分として、特開平11-060996号、特開平09-302269号、特開2003-026993号、特開2002-206017号、特開平11-349895号、特開平10-212343号、特開2000-119306号、特開平10-67812号、特開2000-186071号、特開平08-85775号、特開平08-134405号、特開2008-20838、特開2008-20839、特開2008-20841、特開2008-26660、特開2008-26644、特開2007-277327、フォトポリマー懇話会編「フォトポリマーハンドブック」(1989年、工業調査会)、総合技術センター編「UV・EB硬化技術」(1982年、総合技術センター)、ラドテック研究会編「UV・EB硬化材料」(1992年、シーエムシー)、技術情報協会編「UV硬化における硬化不良・阻害原因とその対策」(2003年、技術情報協会)、色材、68、(5)、286-293(1995)、ファインケミカル、29、(19)、5-14(2000)等が挙げられる。これらは熱硬化性組成物中のカチオン重合性化合物成分として使用しても差し支えない。}。
エポキシドとしては、公知のもの等が使用でき、芳香族エポキシド、脂環式エポキシド及び脂肪族エポキシドが含まれる。
芳香族エポキシドとしては、多価フェノールまたはそのアルキレンオキサイド付加物のポリグリシジルエーテル、ポリグリシジルエステルなどを挙げることができ、具体的には、例えば、ビスフェノールA、ビスフェノールE、ビスフェノールF、ビスフェノールAD、ビスフェノールS、ビスフェノールZまたはこれらに更にエチレンオキサイドやプロピレンオキサイドなどのアルキレンオキサイドを付加した化合物のグリシジルエーテル、フェニルグリシジルエーテル、tert-ブチルフェニルグリシジルエーテル、レゾルシノールジグリシジルエーテル、テトラフェノールエタンのテトラグリシジルエーテル、トリフェノールメタンのトリグリシジルエーテル、フェノール類またはナフトール類とアルデヒド類との縮合物(例えばフェノール樹脂やノボラック樹脂)のグリシジル化物、フェノール類とイソプロペニルアセトフェノンとの縮合物のグリシジル化物、フェノール類とジシクロペンタジエンの反応物ノグリシジル化物、テレフタル酸のジグリシジルエステル、イソフタル酸のジグリシジルエステル、o-フタル酸のジグリシジルエステルなどを挙げることができる。
脂環式エポキシドとしては、少なくとも1個の脂環族環を有する多価アルコールのポリグリシジルエーテル、或いはシクロヘキセン環含有化合物またはシクロペンテン環含有化合物を過酸化水素、過酸等の適当な酸化剤でエポキシ化して得られるシクロヘキセンオキサイド構造含有化合物またはシクロペンテンオキサイド構造含有化合物などを挙げることができる。
より具体的には、脂環族エポキシ化合物として、例えば、脂環式ジグリシジルエーテル化合物としては、水素添加ビスフェノールAジグリシジルエーテル、水素添加ビスフェノールFジグリシジルエーテル、水素添加ビスフェノールADジグリシジルエーテル、水素添加ビスフェノールZジグリシジルエーテル、シクロヘキサンジメタノールジグリシジルエーテル、トリシクロデカンジメタノールジグリシジルエーテル)を挙げることができる。
また、シクロヘキセンオキサイド構造含有化合物またはシクロペンテンオキサイド構造含有化合物としては、例えば3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレート、3,4-エポキシ-1-メチルシクロヘキシル-3,4-エポキシ-1-メチルシクロヘキサンカルボキシレート、6-メチル-3,4-エポキシシクロヘキシルメチル-6-メチル-3,4-エポキシシクロヘキサンカルボキシレート、3,4-エポキシ-3-メチルシクロヘキシルメチル-3,4-エポキシ-3-メチルシクロヘキサンカルボキシレート、3,4-エポキシ-5-メチルシクロヘキシルメチル-3,4-エポキシ-5-メチルシクロヘキサンカルボキシレート、2-(3,4-エポキシシクロヘキシル-5,5-スピロ-3,4-エポキシ)シクロヘキサン-メタジオキサン、ビス(3,4-エポキシシクロヘキシルメチル)アジペート、3,4-エポキシ-6-メチルシクロヘキシルカルボキシレート、ジシクロペンタジエンジエポキサイド、エチレンビス(3,4-エポキシシクロヘキサンカルボキシレート)、エポキシヘキサヒドロフタル酸ジオクチル、エポキシヘキサヒドロフタル酸ジ-2-エチルヘキシルなどが挙げられる。
また、株式会社ダイセルから販売されている、ε-カプロラクトン変性3’,4’-エポキシシクロヘキシルメチル3,4-エポキシシクロヘキサンカルボキシレート、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシー4-(2-オキシラニル)シクロヘキサン付加物も挙げることができる。
さらに、ビス(3,4-エポキシシクロヘキシル)メタン、2,2-ビス(3,4-エポキシシクロヘキシル)プロパン、1,1-ビス(3,4-エポキシシクロヘキシル)エタン、アルファピネンオキサイド、カンファレンアルデヒド、リモネンモノオキサイド、リモネンジオキサイド、4-ビニルシクロヘキセンモノオキサイド、4-ビニルシクロヘキセンジオキサイドなども挙げることができる。
脂肪族エポキシドとしては、脂肪族多価アルコールまたはそのアルキレンオキサイド付加物のポリグリシジルエーテル、脂肪族長鎖多塩基酸のポリグリシジルエステル、グリシジルアクリレートまたはグリシジルメタクリレートのビニル重合により合成したホモポリマー、グリシジルアクリレートおよび/またはグリシジルメタクリレートとその他のビニルモノマーとのビニル重合により合成したコポリマーなどを挙げることができる。
代表的な化合物としては、例えば、ブチルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、高級アルコールのグリシジルエーテル、アルキレンジオールのジグリシジルエーテル(例えば、1,4-ブタンジオールのジグリシジルエーテル、1,6-ヘキサンジオールのジグリシジルエーテル、ネオペンチルグリコールのジグリシジルエーテルなど)、グリセリンのトリグリシジルエーテル、トリメチロールプロパンのジグリシジルエーテル、トリメチロールプロパンのトリグリシジルエーテル、ソルビトールのテトラグリシジルエーテル、ジペンタエリスリトールのヘキサグリシジルエーテル、ポリエチレングリコールのジグリシジルエーテル、ポリプロピレングリコールのジグリシジルエーテル、ポリテトラメチレングリコールのジグリシジルエーテルなどの多価アルコールのグリシジルエーテルを挙げることができる。
さらに、プロピレン、トリメチロールプロパン、グリセリンなどの脂肪族多価アルコールに1種または2種以上のアルキレンオキサイドを付加することにより得られるポリエーテルポリオールのポリグリシジルエーテル、脂肪族長鎖二塩基酸のジグリシジルエステルなどが挙げられる。
さらに、脂肪族高級アルコールのモノグリシジルエーテル、フェノール、クレゾール、ブチルフェノールまたはこれらにアルキレンオキサイドを付加することによって得られるポリエーテルアルコールのモノグリシジルエーテル、高級脂肪酸のグリシジルエステル、エポキシ化大豆油、エポキシステアリン酸ブチル、エポキシ化ポリブタジエン、グリシジル化ポリブタジエンなどを挙げることができる。
また、エポキシアルカンとしては、1,2-エポキシデカン、1,2-エポキシドデカン、1,2-エポキシテトラデカン、1,2-エポキシセタン、1,2-エポキシオクタデカン、1,2-エポキシイコサンを挙げることができる。
オキセタンとしては、3-エチル-3 -ヒドロキシメチルオキセタン、3-(メタ)アリルオキシメチル-3-エチルオキセタン、(3-エチル-3-オキセタニルメトキシ)メチルベンゼン、4-フルオロ-[1-(3-エチル-3-オキセタニルメトキシ)メチル]ベンゼン、4-メトキシ-[1-(3-エチル-3-オキセタニルメトキシ)メチル]ベンゼン、[1-(3-エチル-3-オキセタニルメトキシ)エチル]フェニルエーテル、イソブトキシメチル(3-エチル-3-オキセタニルメチル)エーテル、イソボルニルオキシエチル(3-エチル-3- オキセタニルメチル)エーテル、イソボルニル(3-エチル-3-オキセタニルメチル)エーテル、2-エチルヘキシル(3-エチル-3-オキセタニルメチル)エーテル、エチルジエチレングリコール(3-エチル-3-オキセタニルメチル)エーテル、ジシクロペンタジエン(3-エチル-3-オキセタニルメチル)エーテル、ジシクロペンテニルオキシエチル(3-エチル-3-オキセタニルメチル)エーテル、ジシクロペンテニル(3- エチル-3-オキセタニルメチル エーテル、テトラヒドロフルフリル(3-エチル-3 -オキセタニルメチル)エーテル、テトラブロモフェニル(3-エチル-3-オキセタニルメチル)エーテル、2-テトラブロモフェノキシエチル(3-エチル-3-オキセタニルメチル)エーテル、トリブロモフェニル(3-エチル-3-オキセタニルメチル)エーテル、2-トリブロモフェノキシエチル(3-エチル-3-オキセタニルメチル)エーテル、2-ヒドロキシエチル(3-エチル-3-オキセタニルメチル)エーテル、2-ヒドロキシプロピル(3-エチル-3-オキセタニルメチル)エーテル、ブトキシエチル(3 -エチル-3-オキセタニルメチル)エーテル、ペンタクロロフェニル(3-エチル- 3-オキセタニルメチル)エーテル、ペンタブロモフェニル(3-エチル-3-オキセタニルメチル)エーテル及びボルニル(3-エチル-3-オキセタニルメチル)エーテル等の一官能オキセタン化合物、3,7-ビス(3-オキセタニル)-5-オキサ-ノナン、3,3’-(1,3-(2-メチレニル)プロパンジイルビス(オキシメチレン))ビス-(3-エチルオキセタン)、1,4-ビス[(3-エチル-3-オキセタニルメトキシ) メチル]ベンゼン、1,2-ビス[(3-エチル-3-オキセタニルメトキシ)メチル] エタン、1,3-ビス[(3-エチル-3- オキセタニルメトキシ)メチル] プロパン、エチレングリコールビス(3-エチル-3-オキセタニルメチル)エーテル、ジシクロペンテニルビス(3-エチル-3-オキセタニルメチル)エーテル、トリエチレングリコールビス(3-エチル-3-オキセタニルメチル)エーテル、テトラエチレングリコールビス(3-エチル-3-オキセタニルメチル)エーテル、トリシクロデカンジイルジメチレン(3-エチル-3-オキセタニルメチル)エーテル、トリメチロールプロパントリス(3-エチル-3-オキセタニルメチル)エーテル、1,4-ビス(3-エチル-3 -オキセタニルメトキシ)ブタン、1,6-ビス(3-エチル-3-オキセタニルメトキシ)ヘキサン、ペンタエリスリトールトリス(3-エチル-3-オキセタニルメチル) エーテル、ペンタエリスリトールテトラキス(3-エチル-3- オキセタニルメチル)エーテル、ポリエチレングリコールビス(3-エチル-3-オキセタニルメチル)エーテル、ジペンタエリスリトールヘキサキス(3-エチル-3-オキセタニルメチル)エーテル、ジペンタエリスリトールペンタキス(3-エチル-3-オキセタニルメチル)エーテル、ジペンタエリスリトールテトラキス(3-エチル-3- オキセタニルメチル)エーテル、カプロラクトン変性ジペンタエリスリトールヘキサキス(3-エチル-3-オキセタニルメチル)エーテル、カプロラクトン変性ジペンタエリスリトールペンタキス(3 -エチル-3-オキセタニルメチル)エーテル、ジトリメチロールプロパンテトラキス(3-エチル-3-オキセタニルメチル)エーテル、EO変性ビスフェノールAビス(3 -エチル-3-オキセタニルメチル)エーテル、PO変性ビスフェノールAビス(3-エチル-3-オキセタニルメチル)エーテル、EO変性水添ビスフェノールAビス(3-エチル-3-オキセタニルメチル) エーテル、PO変性水添ビスフェノールAビス(3-エチル-3-オキセタニルメチル)エーテル及びEO変性ビスフェノールF(3-エチル-3-オキセタニルメチル)エーテル等の多官能オキセタン化合物が挙げられる。
これらオキセタンの中でも硬化速度の観点からオキセタン環を1又は2個有する化合物が好ましく、その具体例としては、3,7-ビス(3-オキセタニル) -5-オキサ-ノナン、3,3’-(1,3-(2-メチレニル)プロパンジイルビス(オキシメチレン))ビス-(3-エチルオキセタン)、1,4-ビス[(3-エチル- 3-オキセタニルメトキシ)メチル]ベンゼン、1,2-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]エタン、1,3-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]プロパン、エチレングリコールビス(3-エチル-3-オキセタニルメチル)エーテル、ジシクロペンテニルビス(3-エチル-3-オキセタニルメチル)エーテル、トリエチレングリコールビス(3-エチル-3-オキセタニルメチル)エーテル、テトラエチレングリコールビス(3-エチル-3-オキセタニルメチル)エーテル、トリシクロデカンジイルジメチレン(3-エチル-3-オキセタニルメチル)エーテル、トリメチロールプロパントリス(3-エチル-3-オキセタニルメチル)エーテル、1,4 -ビス(3-エチル-3-オキセタニルメトキシ)ブタン、1,6-ビス(3-エチル-3-オキセタニルメトキシ)ヘキサン等が挙げられる。
エチレン性不飽和化合物としては、公知のカチオン重合性単量体等が使用でき、脂肪族モノビニルエーテル、芳香族モノビニルエーテル、多官能ビニルエーテル、スチレン類及びカチオン重合性窒素含有モノマーが含まれる。
脂肪族モノビニルエーテルとしては、メチルビニルエーテル、エチルビニルエーテル、ブチルビニルエーテル及びシクロヘキシルビニルエーテル等が挙げられる。
芳香族モノビニルエーテルとしては、2-フェノキシエチルビニルエーテル、フェニルビニルエーテル及びp-メトキシフェニルビニルエーテル等が挙げられる。
多官能ビニルエーテルとしては、ブタンジオール-1,4-ジビニルエーテル及びトリエチレングリコールジビニルエーテル等が挙げられる。
スチレン類としては、スチレン、α-メチルスチレン、p-メトキシスチレン及びp-tert-ブトキシスチレン等が挙げられる。
カチオン重合性窒素含有モノマーとしては、N-ビニルカルバゾール及びN-ビニルピロリドン等が挙げられる。
ビシクロオルトエステルとしては、1-フェニル-4-エチル-2,6,7-トリオキサビシクロ[2.2.2]オクタン及び1-エチル-4-ヒドロキシメチル-2,6,7-トリオキサビシクロ-[2.2.2]オクタン等が挙げられる。
スピロオルトカーボネートとしては、1,5,7,11-テトラオキサスピロ[5.5]ウンデカン及び3,9-ジベンジル-1,5,7,11-テトラオキサスピロ[5.5]ウンデカン等が挙げられる。
スピロオルトエステルとしては、1,4,6-トリオキサスピロ[4.4]ノナン、2-メチル-1,4,6-トリオキサスピロ[4.4]ノナン及び1,4,6-トリオキサスピロ[4.5]デカン等が挙げられる。
さらに、1分子中に少なくとも1個のカチオン重合性基を有するポリオルガノシロキサンを使用することができる(特開2001-348482号公報、Journal of Polym. Sci.、Part A、Polym.Chem.、Vol.28、497(1990)等に記載)。
これらのポリオルガノシロキサンは、直鎖状、分岐鎖状、環状のいずれでもよく、これらの混合物であってもよい。
これらのカチオン重合性化合物のうち、エポキシド、オキセタン及びビニルエーテルが好ましく、さらに好ましくはエポキシド及びオキセタン、特に好ましくは脂環式エポキシド及びオキセタンである。また、これらのカチオン重合性化合物は単独で使用してもよく、又は2種以上を併用してもよい。
硬化性組成物中の本発明の式(1)で表されるオニウム塩(酸発生剤)の含有量は、カチオン重合性化合物100重量部に対し、0.05~20重量部が好ましく、さらに好ましくは0.1~10重量部である。この範囲であると、カチオン重合性化合物の重合がさらに十分となり、硬化体の物性がさらに良好となる。なお、この含有量は、カチオン重合性化合物の性質や、光を使用する場合光の種類(光源や波長など)と光の照射量、加熱温度、硬化時間、湿度、塗膜の厚み等のさまざまな要因を考慮することによって決定され、上記範囲に限定されない。
本発明の硬化性組成物には、必要に応じて、公知の添加剤(増感剤、顔料、充填剤、帯電防止剤、難燃剤、消泡剤、流動調整剤、光安定剤、酸化防止剤、密着性付与剤、イオン補足剤、着色防止剤、溶剤、非反応性の樹脂及びラジカル重合性化合物等)を含有させることができる。
増感剤としては、公知(特開平11-279212号公報及び特開平09-183960号公報等)の増感剤等が使用でき、アントラセン{アントラセン、9,10-ジブトキシアントラセン、9,10-ジメトキシアントラセン、9,10-ジエトキシアントラセン、2-エチル-9,10-ジメトキシアントラセン、9,10-ジプロポキシアントラセン等};ピレン;1,2-ベンズアントラセン;ペリレン;テトラセン;コロネン;チオキサントン{チオキサントン、2-メチルチオキサントン、2-エチルチオキサントン、2-クロロチオキサントン、2-イソプロピルチオキサントン及び2,4-ジエチルチオキサントン等};フェノチアジン{フェノチアジン、N-メチルフェノチアジン、N-エチルフェノチアジン、N-フェニルフェノチアジン等};キサントン;ナフタレン{1-ナフトール、2-ナフトール、1-メトキシナフタレン、2-メトキシナフタレン、1,4-ジヒドロキシナフタレン、及び4-メトキシ-1-ナフトール等};ケトン{ジメトキシアセトフェノン、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、4’-イソプロピル-2-ヒドロキシ-2-メチルプロピオフェノン及び4-ベンゾイル-4’-メチルジフェニルスルフィド等};カルバゾール{N-フェニルカルバゾール、N-エチルカルバゾール、ポリ-N-ビニルカルバゾール及びN-グリシジルカルバゾール等};クリセン{1,4-ジメトキシクリセン及び1,4-ジ-α-メチルベンジルオキシクリセン等};フェナントレン{9-ヒドロキシフェナントレン、9-メトキシフェナントレン、9-ヒドロキシ-10-メトキシフェナントレン及び9-ヒドロキシ-10-エトキシフェナントレン等}等が挙げられる。
増感剤を含有する場合、増感剤の含有量は、酸発生剤100部に対して、1~300重量部が好ましく、さらに好ましくは5~200重量部である。
顔料としては、公知の顔料等が使用でき、無機顔料(酸化チタン、酸化鉄及びカーボンブラック等)及び有機顔料(アゾ顔料、シアニン顔料、フタロシアニン顔料及びキナクリドン顔料等)等が挙げられる。
顔料を含有する場合、顔料の含有量は、酸発生剤100部に対して、0.5~400000重量部が好ましく、さらに好ましくは10~150000重量部である。
充填剤としては、公知の充填剤等が使用でき、溶融シリカ、結晶シリカ、炭酸カルシウム、酸化アルミニウム、水酸化アルミニウム、酸化ジルコニウム、炭酸マグネシウム、マイカ、タルク、ケイ酸カルシウム及びケイ酸リチウムアルミニウム等が挙げられる。
充填剤を含有する場合、充填剤の含有量は、酸発生剤100部に対して、50~600000重量部が好ましく、さらに好ましくは300~200000重量部である。
帯電防止剤としては、公知の帯電防止剤等が使用でき、非イオン型帯電防止剤、アニオン型帯電防止剤、カチオン型帯電防止剤、両性型帯電防止剤及び高分子型帯電防止剤が挙げられる。
帯電防止剤を含有する場合、帯電防止剤の含有量は、酸発生剤100部に対して、0.1~20000重量部が好ましく、さらに好ましくは0.6~5000重量部である。
難燃剤としては、公知の難燃剤等が使用でき、無機難燃剤{三酸化アンチモン、五酸化アンチモン、酸化錫、水酸化錫、酸化モリブデン、ホウ酸亜鉛、メタホウ酸バリウム、赤燐、水酸化アルミニウム、水酸化マグネシウム及びアルミン酸カルシウム等};臭素難燃剤{テトラブロモ無水フタル酸、ヘキサブロモベンゼン及びデカブロモビフェニルエーテル等};及びリン酸エステル難燃剤{トリス(トリブロモフェニル)ホスフェート等}等が挙げられる。
難燃剤を含有する場合、難燃剤の含有量は、酸発生剤100部に対して、0.5~40000重量部が好ましく、さらに好ましくは5~10000重量部である。
消泡剤としては、公知の消泡剤等が使用でき、アルコール消泡剤、金属石鹸消泡剤、リン酸エステル消泡剤、脂肪酸エステル消泡剤、ポリエーテル消泡剤、シリコーン消泡剤及び鉱物油消泡剤等が挙げられる。
流動調整剤としては、公知の流動性調整剤等が使用でき、水素添加ヒマシ油、酸化ポリエチレン、有機ベントナイト、コロイド状シリカ、アマイドワックス、金属石鹸及びアクリル酸エステルポリマー等が挙げられる。
光安定剤としては、公知の光安定剤等が使用でき、紫外線吸収型安定剤{ベンゾトリアゾール、ベンゾフェノン、サリチレート、シアノアクリレート及びこれらの誘導体等};ラジカル補足型安定剤{ヒンダードアミン等};及び消光型安定剤{ニッケル錯体等}等が挙げられる。
酸化防止剤としては、公知の酸化防止剤等が使用でき、フェノール系酸化防止剤(モノフェノール系、ビスフェノール系及び高分子フェノール系等)、硫黄系酸化防止剤及びリン系酸化防止剤等が挙げられる。
密着性付与剤としては、公知の密着性付与剤等が使用でき、カップリング剤、シランカップリング剤及びチタンカップリング剤等が挙げられる。
イオン補足剤としては、公知のイオン補足剤等が使用でき、有機アルミニウム(アルコキシアルミニウム及びフェノキシアルミニウム等)等が挙げられる。
着色防止剤としては、公知の着色防止剤が使用でき、一般的には酸化防止剤が有効であり、フェノール系酸化防止剤(モノフェノール系、ビスフェノール系及び高分子フェノール系等)、硫黄系酸化防止剤及びリン系酸化防止剤等が挙げられるが、高温時の耐熱試験時の着色防止にはほとんど効力がない。
消泡剤、流動調整剤、光安定剤、酸化防止剤、密着性付与剤、イオン補足剤又は、着色防止剤を含有する場合、各々の含有量は、酸発生剤100部に対して、0.1~20000重量部が好ましく、さらに好ましくは0.5~5000重量部である。
溶剤としては、カチオン重合性化合物の溶解や光および熱硬化性組成物の粘度調整のために使用できれば制限はなく、上記酸発生剤の溶剤として挙げたものが使用できる。
溶剤を含有する場合、溶剤の含有量は、酸発生剤100部に対して、50~2000000重量部が好ましく、さらに好ましくは200~500000重量部である。
非反応性の樹脂としては、ポリエステル、ポリ酢酸ビニル、ポリ塩化ビニル、ポリブタジエン、ポリカーボナート、ポリスチレン、ポリビニルエーテル、ポリビニルブチラール、ポリブテン、スチレンブタジエンブロックコポリマー水添物、(メタ)アクリル酸エステルの共重合体及びポリウレタン等が挙げられる。これらの樹脂の数平均分子量は、1000~500000が好ましく、さらに好ましくは5000~100000である(数平均分子量はGPC等の一般的な方法によって測定された値である。)。
非反応性の樹脂を含有する場合、非反応性の樹脂の含有量は、酸発生剤100部に対して、5~400000重量部が好ましく、さらに好ましくは50~150000重量部である。
非反応性の樹脂を含有させる場合、非反応性の樹脂をカチオン重合性化合物等と溶解しやすくするため、あらかじめ溶剤に溶かしておくことが望ましい。
ラジカル重合性化合物としては、公知{フォトポリマー懇話会編「フォトポリマーハンドブック」(1989年、工業調査会)、総合技術センター編「UV・EB硬化技術」(1982年、総合技術センター)、ラドテック研究会編「UV・EB硬化材料」(1992年、シーエムシー)等}のラジカル重合性化合物等が使用でき、単官能モノマー、2官能モノマー、多官能モノマー、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート及びウレタン(メタ)アクリレートが含まれる。
ラジカル重合性化合物を含有する場合、ラジカル重合性化合物の含有量は、本発明の酸発生剤100部に対して、5~400000重量部が好ましく、さらに好ましくは50~150000重量部である。
ラジカル重合性化合物を含有する場合、これらをラジカル重合によって高分子量化するために、光および熱によって重合を開始するラジカル重合開始剤を使用することが好ましい。
ラジカル重合開始剤としては、公知のラジカル重合開始剤等が使用でき、熱ラジカル重合開始剤(有機過酸化物、アゾ化合物等)および光ラジカル重合開始剤(アセトフェノン系開始剤、ベンゾフェノン系開始剤、ミヒラーケトン系開始剤、ベンゾイン系開始剤、チオキサントン系開始剤、アシルホスフィン系開始剤等)が含まれる。
ラジカル重合開始剤を含有する場合、ラジカル重合開始剤の含有量は、ラジカル重合性化合物100部に対して、0.01~20重量部が好ましく、さらに好ましくは0.1~10重量部である。
本発明の硬化性組成物は、カチオン重合性化合物、酸発生剤及び必要により添加剤を、室温(20~30℃程度)又は必要により加熱(40~90℃程度)下で、均一に混合溶解するか、又はさらに、3本ロール等で混練して調製することができる。
本発明の硬化性組成物は、光を照射することにより硬化させて、硬化体を得ることができる。
照射する光としては、酸発生剤の分解を誘発するエネルギーを有する限りいかなるものでもよいが、低圧、中圧、高圧若しくは超高圧の水銀灯、メタルハライドランプ、LEDランプ、キセノンランプ、カーボンアークランプ、蛍光灯、半導体固体レーザー、アルゴンレーザー、He-Cdレーザー、KrFエキシマレーザー、ArFエキシマレーザー又はFレーザー等から得られる紫外~可視光領域(波長:約100~約800nm)のエネルギー線が好ましい。なお、該エネルギー線には、電子線又はX線等の高エネルギーを有する放射線を用いることもできる。
光の照射時間は、光の強度や硬化性組成物に対する光の透過性に影響を受けるが、常温(20~30℃程度)で、0.1秒~10秒程度で十分である。しかし光の透過性が低い場合や硬化性組成物の膜厚が厚い場合等にはそれ以上の時間をかけるのが好ましいことがある。光照射後0.1秒~数分後には、ほとんどの硬化性組成物はカチオン重合により硬化するが、必要であれば光の照射後、室温(20~30℃程度)~200℃で数秒~数時間加熱しアフターキュアーすることも可能である。
本発明の硬化性組成物は、加熱することにより硬化させて、硬化体を得ることができる。
硬化させるための加熱方法としては、例えば、熱循環式加熱、赤外線加熱、高周波加熱等従来公知の方法を用いることができる。
硬化に必要な加熱温度は、硬化が十分に進行し、基材を劣化させない範囲であれば特に限定されるものではないが、好ましくは50~250℃、より好ましくは80~200℃の範囲であり、加熱時間は加熱温度に依存するものの、生産性の面から数分から数時間が好ましい。
本発明の硬化性組成物の具体的な用途としては、塗料、コーティング剤、各種被覆材料(ハードコート、耐汚染被覆材、防曇被覆材、耐触被覆材、光ファイバー等)、粘着テープの背面処理剤、粘着ラベル用剥離シート(剥離紙、剥離プラスチックフィルム、剥離金属箔等)の剥離コーティング材、印刷板、歯科用材料(歯科用配合物、歯科用コンポジット)インキ、インクジェットインキ、ポジ型レジスト(回路基板、CSP、MEMS素子等の電子部品製造の接続端子や配線パターン形成等)、レジストフィルム、液状レジスト、MEMS用レジスト、ポジ型感光性材料、ネガ型感光性材料、各種接着剤(各種電子部品用仮固定剤、HDD用接着剤、ピックアップレンズ用接着剤、FPD用機能性フィルム(偏向板、反射防止膜等)用接着剤等)、ホログラフ用樹脂、FPD材料(カラーフィルター、ブラックマトリックス、隔壁材料、ホトスペーサー、リブ、液晶用配向膜、FPD用シール剤等)、光学部材、成形材料(建築材料用、光学部品、レンズ)、注型材料、パテ、ガラス繊維含浸剤、目止め材、シーリング材、封止材、光半導体(LED)封止材、光導波路材料、ナノインプリント材料、光造形用、及びマイクロ光造形用材料等が挙げられる。
<接着剤>
より詳しくは本発明の硬化性組成物は、基材の表面に塗布してコーティング剤や接着剤として使用することが出来る。使用し得る基材としては、ポリカーボネート類及びポリカーボネートブレンド、ポリ(メタクリル酸メチル)を始めとするアクリル系樹脂類、ポリ(エチレンテレフタレート)やポリ(ブチレンテレフタレート)のようなポリエステル類、ポリアミド類、ポリイミド類、アクリロニトリル-スチレン共重合体、スチレン-アクリロニトリル-ブタジエン共重合体、ポリ塩化ビニル、ポリスチレン、ポリスチレンとポリフェニレンエーテルのブレンド、セルロースアセテートブチレート、ポリエチレン等のポリマー基材、更に、金属基材、塗料塗布面、ガラス、セラミック、コンクリート、スレート板及び布地等が挙げられる。
本発明の硬化性組成物からなる接着剤を基材に塗布する方法は特に限定されず、例えばバーコート、スプレーコート、カーテンコート、ロールコート、スクリーン印刷、オフセット印刷、グラビア印刷等の従来公知の方法が用いられる。また、適当な粘度になるよう各種溶媒で希釈し、スピンコーター、ダイコーター等用いて塗布した後に加熱により溶媒を除去しても良い。基材上に設けられる本発明の組成物層の厚さは特に限定されないが、例えば1~500μmとすることができ、10~200μmが好ましい。
基材上に設けられた本発明の組成物からなる接着剤にエネルギー光を照射した後、該組 成物層上に基材を設置し、次いで加熱することにより基材同士の接着体を得ることが出来 る。貼り合わせる際は適当な圧力をかけてもよく、加温しながら貼り合わせてもよい。
加熱温度及び加熱時間は、組成物が熱硬化し、基材同士が接着する温度及び時間であれ ば特に限定されないが、好ましくは80℃ 以上で30分間以上である。加熱温度及び加熱時間は、基材の耐熱温度を考慮して選択することが好ましい。
<光学素子材料>
また、本発明の硬化性組成物を硬化して得られる硬化物は耐熱性に優れ、5%重量減少温度は、例えば260℃以上、好ましくは280℃以上、特に好ましくは300℃以上である。尚、5%重量減少温度は示差熱-熱重量同時測定(TG-DTA)により求められる。そのため、リフロー方式による半田付け等の高温条件下においても形状を保持することができる。
更に、透明性にも優れ、耐熱試験に付す前の硬化物の黄色度(YI)は、例えば1.5以下である。また、本発明の硬化性組成物を硬化して得られる硬化物はリフロー方式による半田付け等の高温条件下においても黄変を抑制して透明性を保持することができ、耐熱試験に付した後の硬化物の黄色度(YI)は、例えば1.5以下である。
本発明の硬化性組成物を硬化して得られる硬化物を、構成要素として含有する光学素子は優れた耐熱性と耐熱黄変性を兼ね備える。例えば、レンズ、プリズム、LED、有機EL素子、半導体レーザー、トランジスタ、太陽電池、CCDイメージセンサ、光導波路、光ファイバー、代替ガラス(例えば、ディスプレイ用基板、ハードディスク基板、偏光フィルム)等に用いられる光学素子として好適に用いられる。
また本発明の硬化性組成物を硬化して得られる硬化物を、構成要素として含有する光学素子は耐熱性に優れるので、基板実装の際にリフロー処理により他の部品と共に一括して実装が可能である。また、耐熱性が求められる車載用電子機器にも使用することができる。
上記光学素子を備えた光学装置としては、例えば、携帯電話、スマートフォン、タブレットPC等の携帯型電子機器;近赤外センサ、ミリ波レーダー、LEDスポット照明装置、近赤外LED照明装置、ミラーモニター、メーターパネル、ヘッドマウントディスプレイ(投影型)用コンバイナ、ヘッドアップディスプレイ用コンバイナ等の車載用電子機器等を挙げることができる。
<光学的立体造形用樹脂組成物>
また、本発明の硬化性組成物は、さらにラジカル重合性化合物及びラジカル重合開始剤を含有する光学的立体造形用樹脂組成物として利用することが出来る。
本発明の光学的立体造形用樹脂組成物における、カチオン重合性化合物としては、前記したエポキシ化合物の1種または2種以上を用いることができ、カチオン重合性化合物の全重量に基づいて、1分子中に2個以上のエポキシ基を有するポリエポキシ化合物を30重量%以上の割合で含むことが好ましい。
本発明の光学的立体造形用樹脂組成物中に、カチオン重合性化合物の一部として前記の脂環式ジグリシジルエーテル化合物を含有させると、一般に光造形して得られる立体造形物の透明性が一層向上し、黄色度が一層低下し、経時寸法安定性、耐水性、耐湿性、耐熱性などが優れたものとなる。
また、本発明の光学的立体造形用樹脂組成物中に、カチオン重合性化合物の一部として、グリシジルエーテル化フェノール基を3個以上有する芳香族化合物を含有させると、熱変形温度が高く、耐熱性に優れる立体造形物を与える光学的立体造形用樹脂組成物を得ることができる。
光造形して得られる立体造形物の耐熱性を向上させるためにカチオン重合性化合物の一部としてグリシジルエーテル化フェノール基を3個以上有する芳香族化合物を含有させる場合、その含有量は、カチオン重合性化合物の全重量に基づいて、5~80重量%であることが好ましく、10~50重量%であることがより好ましく、20~40重量%であることが更に好ましい。
グリシジルエーテル化フェノール基を3個以上有する芳香族化合物としては、当該芳香族化合物を含有しても光学的立体造形用樹脂組成物の粘度を光学的立体造形に適する粘度に維持し得るものであればいずれでも使用でき、例えば、ノボラック樹脂やレゾール樹脂などのフェノール樹脂のポリグリシジルエーテル、テトラフェノールエタンのテトラグリシジルエーテル、トリフェノールメタンおよびトリフェノールエタンの各トリグリシジルエーテル、あるいは、2-[4-(2,3-エポキシプロポキシ)フェニル]-2-[4-[1,1-ビス[4-(2,3-エポキシプロポキシ)フェニル]エチル]フェニル]プロパン(株式会社プリンテック製、商品名:VG3101L)などを挙げることができる。
上記VG3101Lをカチオン重合性化合物の一部として光学的立体造形用樹脂組成物に含有させると、光造形して得られる立体造形物の熱変形温度が高くなり耐熱性が向上する。光造形して得られる立体造形物の耐熱性を向上させるためにカチオン重合性化合物の一部としてVG3101Lを含有させる場合は、VG3101Lの含有量は、カチオン重合性化合物の全重量に基づいて、1.5~80重量%が好ましく、5~50重量%がより好ましく、20~40重量%がより好ましい。
本発明の光学的立体造形用樹脂組成物は、その光硬化性能や、低粘度化による造形性の向上などの点から、光学的立体造形用樹脂組成物に含まれるカチオン重合性化合物の全重量に基づいて、オキセタン化合物を1~35重量%の割合で含有することが好ましく、5~20重量%の割合で含有することがより好ましい。
オキセタン化合物として、好ましくは3-ヒドロキシメチル-3-メチルオキセタン、3-ヒドロキシメチル-3-エチルオキセタン、3-ヒドロキシメチル-3-プロピルオキセタン、3-ヒドロキシメチル-3-ノルマルブチルオキセタン又は3-ヒドロキシメチル-3-プロピルオキセタンなどのモノオキセタンモノアルコール、及びビス(3-メチル-3-オキセタニルメチル)エーテル、ビス(3-エチル-3-オキセタニルメチル)エーテル、ビス(3-プロピル-3-オキセタニルメチル)エーテル又はビス(3-ブチル-3-オキセタニルメチル)エーテルなどのジオキセタン化合物が挙げられる。
中でも、入手の容易さ、反応性などの観点から、3-ヒドロキシメチル-3-メチルオキセタン、3-ヒドロキシメチル-3-エチルオキセタン、ビス(3-メチル-3-オキセタニルメチル)エーテル及びビス(3-エチル-3-オキセタニルメチル)エーテルがより好ましい。
また、本発明の光学的立体造形用樹脂組成物中にアルキレンジオールのジグリシジルエーテルを含有させると、光造形して得られる立体造形物の靭性が向上する。アルキレンジオールのジグリシジルエーテルとしては、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ブタンジオールジグリシジルエーテル、ペンタンジオールジグリシジルエーテル、ヘキサンジオールジグリシジルエーテル、へプタンジオールジグリシジルエーテル、オクタンジオールジグリシジルエーテル、ノナンジオールジグリシジルエーテル、デカンジオールジグリシジルエーテルなどの炭素数2~10のアルキレンジオールのジグリシジルエーテルが好ましく、これらの1種または2種以上を用いることができる。そのうちでも、1,6-ヘキサンジオールジグリシジルエーテルが硬化性能の点からより好ましく用いられる。
光造形して得られる立体造形物の靭性を向上させるために、本発明の光学的立体造形用樹脂組成物中にアルキレンジオールのジグリシジルエーテルを含有させる場合は、アルキレンジオールのジグリシジルエーテルの含有量は、光学的立体造形用樹脂組成物に含まれるカチオン重合性化合物の全重量に基づいて、0.1~20重量%であることが好ましく、0.5~10重量%であることがより好ましく、1~5重量%であることが更に好ましい。
本発明の光学的立体造形用樹脂組成物中に芳香族チオール化合物を含有させることで黄色度が低く、無色透明またはそれに近い優れた色調および外観を有する立体造形物を得ることができる。芳香族チオール化合物としては特に制限はなく、1種類の芳香族チオール化合物を使用してもよく、2種類以上を使用してもよい。入手しやすさ、臭気、溶解性、硬化反応への影響が少なく、光造形して得られる立体造形物の黄色度の低下効果の観点から、ナフタレンチオール、ジメルカプトナフタレン、ジメルカプトジフェニルスルフィドが好ましい。
本発明の光学的立体造形用樹脂組成物中に芳香族チオール化合物を含有させる場合、該芳香族チオール化合物の含有量は、光学的立体造形用樹脂組成物中の光酸発生剤の重量に基づいて0.1~5重量%であることが好ましく、0.2~2重量%がより好ましい。
ラジカル重合性化合物の代表例としては、(メタ)アクリレート基を有する化合物、不飽和ポリエステル化合物、アリルウレタン系化合物、ポリチオール化合物などを挙げることができ、前記したラジカル重合性化合物の1種または2種以上を用いることができる。そのうちでも、1分子中に少なくとも1個の(メタ)アクリロイルオキシ基を有する化合物が好ましく用いられ、具体例としては、エポキシ化合物と(メタ)アクリル酸との反応生成物、アルコール類の(メタ)アクリル酸エステル、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレートなどを挙げることができる。
上記したエポキシ化合物と(メタ)アクリル酸との反応生成物としては、芳香族エポキシ化合物、脂環族エポキシ化合物および/または脂肪族エポキシ化合物と、(メタ)アクリル酸との反応により得られる(メタ)アクリレート系反応生成物を挙げることができ、具体例としては、ビスフェノールAやビスフェノールSなどのビスフェノール化合物またはベンゼン環がアルコキシ基などによって置換されているビスフェノールAやビスフェノールSなどのビスフェノール化合物或いは前記したビスフェノール化合物または置換ビスフェノール化合物のアルキレンオキサイド付加物とエピクロルヒドリンなどのエポキシ化剤との反応によって得られるグリシジルエーテルを(メタ)アクリル酸と反応させて得られる(メタ)アクリレート、エポキシノボラック樹脂と(メタ)アクリル酸を反応させて得られる(メタ)アクリレート系反応生成物などを挙げることができる。
また、上記したアルコール類の(メタ)アクリル酸エステルとしては、分子中に少なくとも1個の水酸基をもつ芳香族アルコール、脂肪族アルコール、脂環族アルコールおよび/またはそれらのアルキレンオキサイド付加体と、(メタ)アクリル酸との反応により得られる(メタ)アクリレートを挙げることができる。
より具体的には、例えば、ビスフェノールAやビスフェノールSなどのビスフェノール化合物またはベンゼン環がアルコキシ基などによって置換されているビスフェノールAやビスフェノールSなどのビスフェノール化合物のジ(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソオクチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ベンジル(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ポリアルキレングリコールジ(メタ)アクリレート[例えば、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレートなど]、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートなどの3個以上の水酸基を有する多価アルコールのポリ(メタ)アクリレート、前記したジオール、トリオール、テトラオール、ヘキサオールなどの多価アルコールのアルキレンオキシド付加物の(メタ)アクリレートなどを挙げることができる。
また、上記したウレタン(メタ)アクリレートとしては、例えば、水酸基含有(メタ)アクリル酸エステルとイソシアネート化合物を反応させて得られる(メタ)アクリレートを挙げることができる。前記水酸基含有(メタ)アクリル酸エステルとしては、脂肪族2価アルコールと(メタ)アクリル酸とのエステル化反応によって得られる水酸基含有(メタ)アクリル酸エステルが好ましく、具体例としては、2-ヒドロキシエチル(メタ)アクリレートなどを挙げることができる。また、前記イソシアネート化合物としては、トリレンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネートなどのような1分子中に2個以上のイソシアネート基を有するポリイソシアネート化合物が好ましい。
さらに、上記したポリエステル(メタ)アクリレートとしては、水酸基含有ポリエステルと(メタ)アクリル酸との反応により得られるポリエステル(メタ)アクリレートを挙げることができる。 また、上記したポリエーテル(メタ)アクリレートとしては、水酸基含有ポリエーテルとアクリル酸との反応により得られるポリエーテルアクリレートを挙げることができる。
光学的立体造形用樹脂組成物中に、ラジカル重合性化合物の一部として、ラジカル重合性化合物の重量に基づいて、ポリテトラメチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレートなどのポリアルキレングリコールジ(メタ)アクリレートを1~40重量%、特に5~20重量%の量で含有させると、光学的立体造形用樹脂組成物から得られる立体造形物の靭性が向上する。但し、ポリアルキレングリコールジ(メタ)アクリレートの含有量が多すぎると、得られる立体造形物の熱変形温度が低くなり、耐熱性が低下する。
ラジカル重合開始剤としては、光などの活性エネルギー線を照射したときにラジカル重合性化合物のラジカル重合を開始させ得る重合開始剤のいずれもが使用でき、例えば、ベンジルまたはそのジアルキルアセタール系化合物、フェニルケトン系化合物、アセトフェノン系化合物、ベンゾインまたはそのアルキルエーテル系化合物、ベンゾフェノン系化合物、チオキサントン系化合物などを挙げることができる。
具体的には、ベンジルまたはそのジアルキルアセタール系化合物としては、例えば、ベンジルジメチルケタール、ベンジル-β-メトキシエチルアセタールなどを挙げることができる。
フェニルケトン系化合物としては、例えば、1-ヒドロキシ-シクロヘキシルフェニルケトンなどを挙げることができる。
また、アセトフェノン系化合物としては、例えば、ジエトキシアセトフェノン、2-ヒドロキシメチル-1-フェニルプロパン-1-オン、4′-イソプロピル-2-ヒドロキシ-2-メチル-プロピオフェノン、2-ヒドロキシ-2-メチル-プロピオフェノン、p-ジメチルアミノアセトフェノン、p-tert-ブチルジクロロアセトフェノン、p-tert-ブチルトリクロロアセトフェノン、p-アジドベンザルアセトフェノンなどを挙げることができる。
そして、ベンゾイン系化合物としては、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインノルマルブチルエーテル、ベンゾインイソブチルエーテルなどを挙げることができる。
また、ベンゾフェノン系化合物としては、例えば、ベンゾフェノン、o-ベンゾイル安息香酸メチル、ミヒラースケトン、4,4′-ビスジエチルアミノベンゾフェノン、4,4’-ジクロロベンゾフェノンなどを挙げることができる。
そして、チオキサントン系化合物としては、例えば、チオキサントン、2-メチルチオキサントン、2-エチルチオキサントン、2-クロロチオキサントン、2-イソプロピルチオキサントンなどを挙げることができる。
本発明の光学的立体造形用樹脂組成物は、本発明の効果を損なわない限り、必要に応じて、消泡剤、レベリング剤、増粘剤、難燃剤、酸化防止剤、改質用樹脂などの1種または2種以上を適量含有していてもよい。
本発明の光学的立体造形用樹脂組成物を用いて光学的に立体造形を行うに当たっては、従来既知の光学的立体造形方法および装置のいずれもが使用できる。好ましく採用され得る光学的立体造形法の代表例としては、液状をなす本発明の光学的立体造形用樹脂組成物に所望のパターンを有する硬化層が得られるように活性エネルギー線を選択的に照射して硬化層を形成し、次いでこの硬化層に未硬化の液状光学的立体造形用樹脂組成物を供給し、同様に活性エネルギー光線を照射して前記の硬化層と連続した硬化層を新たに形成する積層操作を繰り返すことによって最終的に目的とする立体的造形物を得る方法を挙げることができる。
その際の活性エネルギー線としては、上述のように、紫外線、電子線、X線、放射線、高周波などを挙げることができる。そのうちでも、300~400nmの波長を有する紫外線が経済的な観点から好ましく用いられ、その際の光源としては、紫外線レーザー(例えば半導体励起固体レーザー、Arレーザー、He-Cdレーザーなど)、高圧水銀ランプ、超高圧水銀ランプ、低圧水銀ランプ、キセノンランプ、ハロゲンランプ、メタルハライドランプ、紫外線LED(発光ダイオード)、紫外線蛍光灯などを使用することができる。
光学的立体造形用樹脂組成物よりなる造形面に活性エネルギー線を照射して所定の形状パターンを有する各硬化樹脂層を形成するに当たっては、レーザー光などのような点状に絞られた活性エネルギー線を使用して点描または線描方式で硬化樹脂層を形成してもよいし、または液晶シャッターまたはデジタルマイクロミラーシャッター(DMD)などのような微小光シャッターを複数配列して形成した面状描画マスクを通して造形面に活性エネルギー線を面状に照射して硬化樹脂層を形成させる造形方式を採用してもよい。
本発明の光学的立体造形用樹脂組成物は、光学的立体造形分野に幅広く用いることができ、何ら限定されるものではないが、代表的な応用分野としては、設計の途中で外観デザインを検証するための形状確認モデル、部品の機能性をチェックするための機能試験モデル、鋳型を制作するためのマスターモデル、金型を製作するためのマスターモデル、試作金型用の直接型、自動車やオートバイのレンズ、美術品の復元、模造や現代アート、ガラス張りの建築物のデザインプレゼンテーションモデルのような美術工芸品分野、精密部品、電気・電子部品、家具、建築構造物、自動車用部品、各種容器類、鋳物などのモデル、母型、加工用などの用途に有効に用いることができる。
<光導波路用樹脂組成物>
また、本発明の硬化性組成物は、カチオン重合性置換基を有する樹脂と酸発生剤を含有する光導波路用樹脂組成物として利用することが出来る。
上記樹脂成分としては、コア形成材料として用いられる各種エポキシ樹脂等が挙げられ、例えば、側鎖多官能脂肪族系エポキシ樹脂が挙げられる。前記側鎖多官能脂肪族系エポキシ樹脂は、側鎖に2個以上の官能基数を有する脂肪族樹脂であり、例えば、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物等の多官能脂肪族エポキシ樹脂等が挙げられる。これらは単独でもしくは2種以上併せて用いられる。入手のしやすさ、取扱いの容易さの観点から、好ましい具体例として、EHPE3150(ダイセル社製)等が挙げられる。
そして、上記側鎖多官能脂肪族系エポキシ樹脂等のエポキシ樹脂においては、このエポキシ樹脂中に重合性置換基が存在するものであり、上記重合性置換基は好ましくはカチオン重合性置換基である。上記カチオン重合性置換基としては、例えば、エポキシ基、脂環式骨格を有するエポキシ基等が挙げられる。
さらに、上記重合性置換基を有する脂肪族系エポキシ樹脂の一例として、例えば、二官能長鎖脂肪族系エポキシ樹脂があげられる。上記二官能長鎖脂肪族系エポキシ樹脂としては、例えば、両末端に重合性官能基であるエポキシ基を有する長鎖脂肪族エポキシ樹脂等があげられる。このように、上記長鎖脂肪族エポキシ樹脂を用いることにより、カチオン重合における架橋密度を低下させることが可能となり、硬化物の柔軟性を付与することができる。このような二官能長鎖脂肪族系エポキシ樹脂としては、例えば、水添ビスフェノールA型エポキシ樹脂、水添ビスフェノールF型エポキシ樹脂等があげられる。これらは単独でもしくは2種以上併せて用いられる。具体的には、YX-8040(三菱化学社製)、ST-4000D(新日鐵化学社製)等が挙げられる。
例えば、上記側鎖多官能脂肪族系エポキシ樹脂(A)および二官能長鎖脂肪族系エポキシ樹脂(B)を併用した際の混合重量比[(A):(B)]は、好ましくは(A):(B)=4:1~1:1であり、特に好ましくは(A):(B)=3:1~1:1である。混合重量比が上記範囲を外れ、例えば、上記側鎖多官能脂肪族系エポキシ樹脂(A)が少なすぎると、光・熱硬化においてパターニング性が悪化する傾向がみられる。
また、酸発生剤の含有量は、本発明の光導波路用樹脂組成物の樹脂成分100重量部に対して0.1~3重量部に設定することが好ましく、より好ましくは0.5~3重量部、特に好ましくは0.5~1重量部である。すなわち、酸発生剤の含有量が少なすぎると、例えば光照射(紫外線照射)による硬化の場合において満足な硬化性が得られ難く、多すぎると、光感度が上がり、パターニングに際して形状異常をきたす傾向、および、初期損失の要求物性が悪化する傾向がみられる。
本発明の光導波路用樹脂組成物には、上記樹脂成分、特定の酸発生剤以外に、必要に応じて、例えば、接着性を高めるためにシラン系あるいはチタン系のカップリング剤、オレフィン系オリゴマーやノルボルネン系ポリマー等のシクロオレフィン系オリゴマーやポリマー、合成ゴム、シリコーン化合物等の密着付与剤、ヒンダードフェノール系酸化防止剤やリン系酸化防止剤等の各種酸化防止剤、レベリング剤、消泡剤等があげられる。これら添加剤は、本発明における効果を阻害しない範囲内にて適宜に配合される。これらは単独でまたは2種類以上併用して用いることができる。
本発明の光導波路用樹脂組成物は、上記樹脂成分および特定の酸発生剤、さらには必要に応じて他の添加剤を、所定の配合割合にして撹拌混合することにより調製することができる。さらに、本発明の感光性樹脂組成物を塗工用ワニスとして調製するために、加熱下(例えば、60~90℃程度)、有機溶剤に撹拌溶解させてもよい。上記有機溶剤の使用量は、適宜調整されるものであるが、例えば、硬化性樹脂組成物の樹脂成分100重量部に対して20~80重量部に設定することが好ましく、特に好ましくは30~40重量部である。すなわち、有機溶剤の使用量が少なすぎると、塗工用ワニスとして調製した際に高粘度となり塗工性が低下する傾向がみられ、有機溶剤の使用量が多すぎると、塗工用ワニスを用いて厚膜に塗工形成することが困難となる傾向がみられる。
上記塗工用ワニスを調製する際に用いられる有機溶剤としては、例えば、乳酸エチル、メチルエチルケトン、シクロヘキサノン、エチルラクテート、2-ブタノン、N,N-ジメチルアセトアミド、ジグライム、ジエチレングリコールメチルエチルエーテル、プロピレングリコールメチルアセテート、プロピレングリコールモノメチルエーテル、テトラメチルフラン、ジメトキシエタン等が挙げられる。これら有機溶剤は、単独でまたは2種類以上併用し、塗工に好適な粘度となるように、例えば、上記範囲内において所定量用いられる。
本発明により得られる光導波路は、例えば、基材と、その基材上に、所定パターンで形成されたクラッド層(アンダークラッド層)と、上記クラッド層上に、光信号を伝搬する、所定パターンで形成されたコア層と、さらに、上記コア層上に形成されたクラッド層(オーバークラッド層)の構成からなる。そして、本発明により得られる光導波路では、上記コア層が、前述の硬化性樹脂組成物によって形成されてなることが特徴である。また、上記アンダークラッド層形成材料およびオーバークラッド層形成材料に関しては、同じ成分組成からなるクラッド層形成用樹脂組成物を用いてもよいし、異なる成分組成の樹脂組成物を用いてもよい。なお、本発明により得られる光導波路において、上記クラッド層は、コア層よりも屈折率が小さくなるよう形成する必要がある。
本発明において、光導波路は、例えば、つぎのような工程を経由することにより製造することができる。すなわち、基材を準備し、その基材上に、クラッド層形成材料である硬化性樹脂組成物からなるワニスを塗工する。このワニス塗工面に対して紫外線等の光照射を行ない、さらに必要に応じて加熱処理を行なうことによりワニスを硬化させる。このようにしてアンダークラッド層(クラッド層の下方部分)を形成する。
ついで、上記アンダークラッド層上に、本発明の硬化性樹脂組成物を有機溶剤に溶解させてなるコア層形成材料(硬化性ワニス)を塗工することによりコア形成用の未硬化層を形成する。このとき、上記コア層形成材料(硬化性ワニス)を塗工した後、有機溶剤を加熱乾燥して除去することにより未硬化の光導波路コア層形成用硬化性フィルムとなるフィルム形状に形成されることとなる。そして、このコア形成用未硬化層面上に、所定パターン(光導波路パターン)を露光させるためのフォトマスクを配設し、このフォトマスクを介して紫外線等の光照射を行ない、さらに必要に応じて加熱処理を行なう。その後、上記コア形成用未硬化層の未露光部分を、現像液を用いて溶解除去することにより、所定パターンのコア層を形成する。
つぎに、上記コア層上に、上述のクラッド層形成材料である硬化性樹脂組成物からなるワニスを塗工した後、紫外線照射等の光照射を行ない、さらに必要に応じて加熱処理を行なうことにより、オーバークラッド層(クラッド層の上方部分)を形成する。このような工程を経由することにより、目的とする光導波路を製造することができる。
上記基材材料としては、例えば、シリコンウェハ、金属製基板、高分子フィルム、ガラス基板等があげられる。そして、上記金属製基板としては、SUS等のステンレス板等があげられる。また、上記高分子フィルムとしては、具体的には、ポリエチレンテレフタレート(PET)フィルム、ポリエチレンナフタレートフィルム、ポリイミドフィルム等があげられる。そして、その厚みは、通常、10μm~3mmの範囲内に設定される。
上記光照射では、具体的には紫外線照射が行なわれる。上記紫外線照射での紫外線の光源としては、例えば、低圧水銀灯,高圧水銀灯,超高圧水銀灯等があげられる。また、紫外線の照射量は、通常、10~20000mJ/cm、好ましくは100~15000mJ/cm、より好ましくは500~10000mJ/cm程度があげられる。
上記紫外線照射による露光後、光反応による硬化を完結させるためにさらに加熱処理を施してもよい。上記加熱処理条件としては、通常、80~250℃、好ましくは、100~150℃にて、10秒~2時間、好ましくは、5分~1時間の範囲内で行なわれる。
また、上記クラッド層形成材料としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、フッ素化エポキシ樹脂、エポキシ変性シリコーン樹脂等の各種液状エポキシ樹脂、固形エポキシ樹脂、さらには、前述の各種酸発生剤を適宜含有する樹脂組成物があげられ、コア層形成材料と比較して適宜、低屈折率となる配合設計が行われる。さらに、必要に応じてクラッド層形成材料をワニスとして調製し塗工するため、塗工に好適な粘度が得られるように従来公知の各種有機溶剤、また、上記コア層形成材料を用いた光導波路としての機能を低下させない程度の各種添加剤(酸化防止剤、密着付与剤、レベリング剤、紫外線(UV)吸収剤)を適量用いてもよい。
上記ワニスの調製に用いられる有機溶剤としては、前述と同様、例えば、乳酸エチル、メチルエチルケトン、シクロヘキサノン、エチルラクテート、2-ブタノン、N,N-ジメチルアセトアミド、ジグライム、ジエチレングリコールメチルエチルエーテル、プロピレングリコールメチルアセテート、プロピレングリコールモノメチルエーテル、テトラメチルフラン、ジメトキシエタン等があげられる。これら有機溶剤は、単独でまたは2種類以上併用して、塗布に好適な粘度が得られるように、適量用いられる。
なお、上記基材上における、各層の形成材料を用いての塗工方法としては、例えば、スピンコーター、コーター、円コーター、バーコーター等の塗工による方法や、スクリーン印刷、スペーサを用いてギャップを形成し、そのなかに毛細管現象により注入する方法、マルチコーター等の塗工機によりロール・トゥ・ロール(roll-to-roll:R-to-R)で連続的に塗工する方法等を用いることができる。また、上記光導波路は、上記基材を剥離除去することにより、フィルム状光導波路とすることも可能である。
このようにして得られた光導波路は、例えば、光・電気伝送用混載フレキシブルプリント配線板用の光導波路として用いることができる。
以下に本発明を実施例によって具体的に説明するが、本発明は実施例に何ら限定されるものではない。なお、以下特記しない限り、部は重量部、%は重量%を意味する。
<アニオン部の合成>
(合成例1) リチウムテトラキス(2-トリフルオロメチル-2-プロポキシ)アルミナート(A-1)の合成
窒素雰囲気下で十分に乾燥させた還流管つき200mL4つ口フラスコに水素化リチウムアルミニウム0.95g、ジメトキシエタン5.0gを仕込み、そこへさらにトルエン150mLを加え撹拌した。これを氷浴にて10℃に冷却した。2-トリフルオロメチル-2-プロパノール16.0gを滴下し、その後室温で1時間撹拌した。さらにこれを5時間加熱還流した。反応液を室温に戻し、析出した固体をろ過し、反応液をエバポレーターに移し、溶媒を留去することにより白色固体を得た(11.6g)。1H、19F-NMRにてこの白色固体が(A-1)であることを確認した(収率86%、フッ素置換率33%)。
(合成例2) リチウムテトラキス(2-ペンタフルオロエチル-2-プロポキシ)アルミナート(A-2)の合成
合成例1において、2-トリフルオロメチル-2-プロパノール16.0gを2-ペンタフルオロエチル-2-プロパノール22.3gに変更した以外、合成例1と同様にして白色固体を得た(15.6g)。1H、19F-NMRにてこの白色固体が(A-2)であることを確認した(収率84%、フッ素置換率45%)。
(合成例3) リチウムテトラキス(ヘキサフルオロ-tert-ブトキシ)アルミナート(A-4)の合成
合成例1において、2-トリフルオロメチル-2-プロパノール16.0gをヘキサフルオロ-tert-ブタノール22.8gに変更した以外、合成例1と同様にして白色固体を得た(16.0g)。1H、19F-NMRにてこの白色固体が(A-4)であることを確認した(収率84%、フッ素置換率67%)。
(合成例4) リチウムテトラキス(2-フェニル-ヘキサフルオロ-2-プロポキシ)アルミナート(A-7)の合成
合成例1において、2-トリフルオロメチル-2-プロパノール16.0gを2-フェニル-ヘキサフルオロ-2-プロパノール30.5gに変更した以外、合成例1と同様にして白色固体を得た(17.5g)。1H、19F-NMRにてこの白色固体が(A-7)であることを確認した(収率70%、フッ素置換率55%)。
(合成例5) リチウムテトラキス(2-p-クロロフェニル-ヘキサフルオロ-2-プロポキシ)アルミナート(A-10)の合成
合成例1において、2-トリフルオロメチル-2-プロパノール16.0gを2-p-クロロフェニル-ヘキサフルオロ-2-プロパノール34.8gに変更した以外、合成例1と同様にして淡黄色固体を得た(12.8g)。1H、19F-NMRにてこの淡黄色固体が(A-10)であることを確認した(収率45%、フッ素置換率60%)。
(合成例6) リチウムトリス(2-トリフルオロメチル-2-プロポキシ)(ノナフルオロ-tert-ブトキシ)アルミナート(A-13)の合成
窒素雰囲気下で十分に乾燥させた還流管つき200mL4つ口フラスコに水素化リチウムアルミニウム0.95g、ジメトキシエタン5.0gを仕込み、そこへさらにトルエン150mLを加え撹拌した。これを氷浴にて10℃に冷却した。2-トリフルオロメチル-2-プロパノール9.6gを滴下し、その後室温で1時間撹拌した。そこへノナフルオロ-tert-ブタノール11.8gを加え、さらにこれを6時間加熱還流した。反応液を室温に戻し、析出した固体をろ過し、反応液をエバポレーターに移し、溶媒を留去することにより白色固体を得た(7.1g)。1H、19F-NMRにてこの白色固体が(A-13)であることを確認した(収率44%、フッ素置換率50%)。
(比較合成例1) リチウムテトラキス(ペルフルオロ-tert-ペントキシ)アルミナート(A-21)の合成
合成例1において、2-トリフルオロメチル-2-プロパノール16.0gをペルフルオロ-tert-アミルアルコール35.8gに変更した以外、合成例1と同様にして白色固体を得た(21.2g)。1H、19F-NMRにてこの白色固体が(A-21)であることを確認した(収率74%、フッ素置換率100%)。
(比較合成例2) リチウムテトラキス(オクタフルオロ-tert-ペントキシ)アルミナート(A-24)の合成
合成例1において、2-トリフルオロメチル-2-プロパノール16.0gをオクタフルオロ-tert-アミルアルコール29.0gに変更した以外、合成例1と同様にして白色固体を得た(11.2g)。1H、19F-NMRにてこの白色固体が(A-21)であることを確認した(収率47%、フッ素置換率73%)。
<光酸発生剤の合成>
(合成例7)[4-(4-ビフェニルチオ)フェニル]-4-ビフェニルフェニルスルホニウムテトラキス(2-トリフルオロメチル-2-プロポキシ)アルミナート(AG-1)の合成
4-[(フェニル)スルフィニル]ビフェニル11g、4-(フェニルチオ)ビフェニル12g、無水酢酸22g及びメタンスルホン酸16gを均一混合し、65℃で3時間反応させた。反応溶液を室温まで冷却し、イオン交換水100mL中に投入し、ジクロロメタン100gで抽出し、水層のpHが中性になるまで水で洗浄した。ジクロロメタン層をロータリーエバポレーターにて溶媒を留去することにより、褐色固体を得た。これを酢酸エチル/ヘキサンで洗浄を行い、有機溶媒を濃縮することで[4-(4-ビフェニルチオ)フェニル]-4-ビフェニルフェニルスルホニウムメタンスルホン酸塩(中間体-1)20gを得た。
(中間体-1)6.2gをジクロロメタン60mLに溶かし、等モルのリチウム塩(A-1)水溶液70gを室温下で混合し、そのまま3時間撹拌し、ジクロロメタン層を分液操作にて水で5回洗浄した後、ロータリーエバポレーターに移して溶媒を留去することにより、酸発生剤(AG-1)を収率75%で得た。生成物は1H、19F-NMRにて同定した。
(合成例8)[4-(4-ビフェニルチオ)フェニル]-4-ビフェニルフェニルスルホニウムテトラキス(ヘキサフルオロ-tert-ブトキシ)アルミナート(AG-2)の合成
合成例7において、リチウム塩(A-1)水溶液をリチウム塩(A-4)水溶液に変更した以外、合成例7と同様にして酸発生剤(AG-2)を収率78%で得た。生成物は1H、19F-NMRにて同定した。
(合成例9)[4-(フェニルチオ)フェニル]スルホニウムテトラキス(2-p-クロロフェニル-ヘキサフルオロ-2-プロポキシ)アルミナート(AG-3)の合成
ジフェニルスルホキシド15g、ジフェニルスルフィド16g、無水酢酸25g、トリフルオロメタンスルホン酸15g及びアセトニトリル130gを均一混合し、40℃で6時間反応させた。反応溶液を室温まで冷却し、イオン交換水500g中に投入し、ジクロロメタン500gで抽出し、水層のpHが中性になるまでイオン交換水で洗浄した。ジクロロメタン層をロータリーエバポレーターに移して、溶媒を留去し、褐色液状の生成物を得た。これに酢酸エチル200gを加え、60℃の水浴中で溶解させた後、ヘキサン600gを加え撹拌した後、5℃まで冷却し30分間静置してから上澄みを除く操作を2回行い、生成物を洗浄した。これをロータリーエバポレーターに移して溶媒を留去することにより、[4-(フェニルチオ)フェニル]スルホニウムトリフルオロメタンスルホン酸塩(中間体-2)30gを得た。
(中間体-2)5.2gをジクロロメタン50mLに溶かし、等モルのリチウム塩(A-10)水溶液70gを室温下で混合し、そのまま3時間撹拌し、ジクロロメタン層を分液操作にて水で5回洗浄した後、ロータリーエバポレーターに移して溶媒を留去することにより、酸発生剤(AG-3)収率83%で得た。生成物は1H、19F-NMRにて同定した。
(合成例10)[4-(フェニルチオ)フェニル]スルホニウムテトラキス(2-フェニル-ヘキサフルオロ-2-プロポキシ)アルミナート(AG-4)の合成
合成例9において、リチウム塩(A-10)水溶液をリチウム塩(A-7)水溶液に変更した以外、合成例9と同様にして酸発生剤(AG-4)を収率80%で得た。生成物は1H、19F-NMRにて同定した。
(合成例11)[4-(9,9-ジメチルフルオレニル-2-チオ)フェニル]-2-(9,9-ジメチル)フルオレニルフェニルスルホニウムテトラキス(2-ペンタフルオロエチル-2-プロポキシ)アルミナート(AG-5)の合成
2-(フェニルスルフィニル)-9,9-ジメチルフルオレン13g、2-(フェニルチオ)-9,9-ジメチルフルオレン14g、無水酢酸22g及びメタンスルホン酸16gを均一混合し、65℃で3時間反応させた。反応溶液を室温まで冷却し、イオン交換水100mL中に投入し、ジクロロメタン100gで抽出し、水層のpHが中性になるまで水で洗浄した。ジクロロメタン層をロータリーエバポレーターに移して溶媒を留去することにより、褐色固体を得た。これを酢酸エチル/ヘキサンで洗浄を行い、有機溶媒を濃縮することで[4-(9,9-ジメチルフルオレニル-2-チオ)フェニル]-2-(9,9-ジメチル)フルオレニルフェニルスルホニウムメタンスルホン酸塩(中間体-3)25gを得た。
(中間体-3)7.0gをジクロロメタン60mLに溶かし、等モルのリチウム塩(A-2)水溶液70gを室温下で混合し、そのまま3時間撹拌し、ジクロロメタン層を分液操作にて水で5回洗浄した後、ロータリーエバポレーターに移して溶媒を留去することにより、酸発生剤(AG-5)を収率69%で得た。生成物は1H、19F-NMRにて同定した。
(合成例12)[4-(9,9-ジメチルフルオレニル-2-チオ)フェニル]-2-(9,9-ジメチル)フルオレニルフェニルスルホニウムトリス(2-トリフルオロメチル-2-プロポキシ)(ノナフルオロ-tert-ブトキシ)アルミナート(AG-6)の合成
合成例11において、リチウム塩(A-2)水溶液をリチウム塩(A-13)水溶液に変更した以外、合成例11と同様にして酸発生剤(AG-6)を収率72%で得た。生成物は1H、19F-NMRにて同定した。
(合成例13)ジ(4-tert-ブチルフェニル)ヨードニウムテトラキス(2-フェニル-ヘキサフルオロ-2-プロポキシ)アルミナート(AG-7)の合成
反応容器にジ(4-tert-ブチルフェニル)ヨードニウムヘキサフルオロホスフェート5.4gとジクロロメタン50gを加えた。攪拌しながら等モルのリチウム塩(A-7)を含む水溶液50部を加えて室温下8時間攪拌した。静置後水層を分液により除去し、さらに有機層を水50部で5回洗浄した。有機溶媒を減圧下で留去することにより酸発生剤(AG-7)を収率88%で得た。生成物は1H、19F-NMRにて同定した。
(合成例14)ジ(4-tert-ブチルフェニル)ヨードニウムテトラキス(2-p-クロロフェニル-ヘキサフルオロ-2-プロポキシ)アルミナート(AG-8)の合成
合成例13において、リチウム塩(A-7)水溶液をリチウム塩(A-10)水溶液に変更した以外、合成例13と同様にして酸発生剤(AG-8)を収率81%で得た。生成物は1H、19F-NMRにて同定した。
(合成例15)(4-イソプロピルフェニル)トリルヨードニウムテトラキス(2-トリフルオロメチル-2-プロポキシ)アルミナート(AG-9)の合成
反応容器に4-メチルヨードベンゼン20gを加え、さらに酢酸50g、硫酸10gを加えて溶解させ、氷水浴にて冷却しながら15℃以下で過硫酸カリウム10gを少しずつ加えた。20℃で4時間反応させ、そこへクメン(イソプロピルベンゼン)24.4gを20℃を超えないように滴下した。その後室温で20時間反応させた。反応液を、等モルのリチウム塩(A-1)を含む水溶液500部へ投入し、さらに3時間攪拌した。そこへジクロロメタン500部を加えた。静置後水層を分液により除去し、有機層を水100部にて5回洗浄を行った。ジクロロメタンを濃縮し、シクロヘキサンで再結晶を行い、酸発生剤(AG-9)を収率84%で得た。生成物は1H、19F-NMRにて同定した。
(合成例16)(4-イソプロピルフェニル)トリルヨードニウムトリス(2-トリフルオロメチル-2-プロポキシ)(ノナフルオロ-tert-ブトキシ)アルミナート(AG-10)の合成
合成例15において、リチウム塩(A-1)水溶液をリチウム塩(A-13)水溶液に変更した以外、合成例15と同様にして酸発生剤(AG-10)を収率76%で得た。生成物は1H、19F-NMRにて同定した。
(合成例17)フェニル(2,4,6-トリメトキシフェニル)ヨードニウムテトラキス(ヘキサフルオロ-tert-ブトキシ)アルミナート(AG-11)の合成
反応容器にフェニル(2,4,6-トリメトキシフェニル)ヨードニウムp-トルエンスルホナート5.4gとジクロロメタン50gを加えた。攪拌しながら等モルのリチウム塩(A-4)を含む水溶液50部を加えて室温下8時間攪拌した。静置後水層を分液により除去し、さらに有機層を水50部で5回洗浄した。有機溶媒を減圧下で留去することにより酸発生剤(AG-11)を収率83%で得た。生成物は1H、19F-NMRにて同定した。
(合成例18)フェニル(2,4,6-トリメトキシフェニル)ヨードニウムテトラキス(2-ペンタフルオロエチル-2-プロポキシ)アルミナート(AG-12)の合成
合成例17において、リチウム塩(A-4)水溶液をリチウム塩(A-2)水溶液に変更した以外、合成例17と同様にして酸発生剤(AG-12)を収率87%で得た。生成物は1H、19F-NMRにて同定した。
(比較合成例3)[4-(フェニルチオ)フェニル]スルホニウムテトラキス(ペルフルオロ-tert-ペントキシ)アルミナート(AG-H1)の合成
合成例9において、リチウム塩(A-10)水溶液をリチウム塩(A-21)水溶液に変更した以外、合成例9と同様にして酸発生剤(AG-H1)を収率85%で得た。生成物は1H、19F-NMRにて同定した。
(比較合成例4)[4-(フェニルチオ)フェニル]スルホニウムテトラキス(オクタフルオロ-tert-ペントキシ)アルミナート(AG-H2)の合成
合成例9において、リチウム塩(A-10)水溶液をリチウム塩(A-24)水溶液に変更した以外、合成例9と同様にして酸発生剤(AG-H2)を収率82%で得た。生成物は1H、19F-NMRにて同定した。
(比較合成例5) ジ(4-tert-ブチルフェニル)ヨードニウムテトラキス(ペルフルオロ-tert-ペントキシ)アルミナート(AG-H3)の合成
合成例13において、リチウム塩(A-7)水溶液をリチウム塩(A-21)水溶液に変更した以外、合成例13と同様にして酸発生剤(AG-H3)を収率78%で得た。生成物は1H、19F-NMRにて同定した。
(比較合成例6) ジ(4-tert-ブチルフェニル)ヨードニウムテトラキス(オクタフルオロ-tert-ペントキシ)アルミナート(AG-H4)の合成
合成例13において、リチウム塩(A-7)水溶液をリチウム塩(A-24)水溶液に変更した以外、合成例13と同様にして酸発生剤(AG-H4)を収率82%で得た。生成物は1H、19F-NMRにて同定した。
<熱酸発生剤の合成>
(合成例19)4-ヒドロキシフェニル-メチル-ベンジルスルホニウムテトラキス(2-トリフルオロメチル-2-プロポキシ)アルミナート(AG-13)の合成
4-ヒドロキシフェニル-メチル-ベンジルスルホニウムクロライド3.0gをジクロロメタン50gに分散させ、等モルのリチウム塩(A-1)を含む水溶液30gを室温下で混合し、そのまま3時間撹拌した。ジクロロメタン層を分液操作にて水で5回洗浄した後、ロータリーエバポレーターに移して溶媒を留去することにより、酸発生剤(AG-13)を収率89%で得た。生成物は1H、19F-NMRにて同定した。
(合成例20)4-ヒドロキシフェニル-メチル-ベンジルスルホニウムテトラキス(ヘキサフルオロ-tert-ブトキシ)アルミナート(AG-14)の合成
合成例19において、リチウム塩(A-1)水溶液をリチウム塩(A-4)水溶液に変更した以外、合成例19と同様にして酸発生剤(AG-14)を収率81%で得た。生成物は1H、19F-NMRにて同定した。
(合成例21)4-ヒドロキシフェニル-メチル-ベンジルスルホニウムトリス(2-トリフルオロメチル-2-プロポキシ)(ノナフルオロ-tert-ブトキシ)アルミナート(AG-15)の合成
合成例19において、リチウム塩(A-1)水溶液をリチウム塩(A-13)水溶液に変更した以外、合成例19と同様にして酸発生剤(AG-15)を収率71%で得た。生成物は1H、19F-NMRにて同定した。
(合成例22)4-ヒドロキシフェニル-メチル-1-ナフチルメチルスルホニウムテトラキス(2-ペンタフルオロエチル-2-プロポキシ)アルミナート(AG-16)の合成
4-ヒドロキシフェニル-メチル-1-ナフチルメチルスルホウムクロライド3.2gをジクロロメタン50gに分散させ、等モルのリチウム塩(A-2)を含む水溶液30gを室温下で混合し、そのまま3時間撹拌した。ジクロロメタン層を分液操作にて水で5回洗浄した後、ロータリーエバポレーターに移して溶媒を留去することにより、酸発生剤(AG-16)を収率87%で得た。生成物は1H、19F-NMRにて同定した。
(合成例23)4-ヒドロキシフェニル-メチル-ベンジルスルホニウムテトラキス(2-フェニル-ヘキサフルオロ-2-プロポキシ)アルミナート(AG-17)の合成
合成例22において、リチウム塩(A-2)水溶液をリチウム塩(A-7)水溶液に変更した以外、合成例23と同様にして酸発生剤(AG-17)を収率77%で得た。生成物は1H、19F-NMRにて同定した。
(合成例24)4-ヒドロキシフェニル-メチル-ベンジルスルホニウムテトラキス(2-p-クロロフェニル-ヘキサフルオロ-2-プロポキシ)アルミナート(AG-18)の合成
合成例22において、リチウム塩(A-2)水溶液をリチウム塩(A-10)水溶液に変更した以外、合成例23と同様にして酸発生剤(AG-18)を収率75%で得た。生成物は1H、19F-NMRにて同定した。
(比較合成例7) 4-ヒドロキシフェニル-メチル-ベンジルスルホニウムテトラキス(ペルフルオロ-tert-ペントキシ)アルミナート(AG-H5)の合成
合成例19において、リチウム塩(A-1)水溶液をリチウム塩(A-21)水溶液に変更した以外、合成例19と同様にして酸発生剤(AG-H5)を収率83%で得た。生成物は1H、19F-NMRにて同定した。
(比較合成例8) 4-ヒドロキシフェニル-メチル-ベンジルスルホニウムテトラキス(オクタフルオロ-tert-ペントキシ)アルミナート(AG-H6)の合成
合成例19において、リチウム塩(A-1)水溶液をリチウム塩(A-24)水溶液に変更した以外、合成例19と同様にして酸発生剤(AG-H6)を収率80%で得た。生成物は1H、19F-NMRにて同定した。
<接着剤用光硬化性組成物の評価>
下記表1に記載の各成分を配合組成(単位:重量部)に従って配合し、室温にて自転公転ミキサーを用いて撹拌・混合することにより、均一透明な接着剤用光硬化性組成物(以下、接着剤と記載する)を得た(実施例1~20、比較例1~8)。得られた接着剤を以下の評価方法に従って評価を行った。
[硬化性]
スライドガラスの両端に0.04mmのスペーサーを設置し、接着剤を真ん中に滴下した。スキージーを使用して0.04mmの厚みになるように接着剤を塗り広げ、高圧水銀灯を下記条件で使用して光照射を行った。光照射後、室温で60分間放置して硬化物を得た。
得られた硬化物について、その表面のタック性を触診により判断し、下記基準により硬化性を評価した。
評価基準
○ : 表面にタック性がなく、触診しても硬化物の表面形状に変化がなかった
△ : 表面のタック性はないが、触診により硬化物の表面形状が変化した
× : 表面にタック性を有した
<高圧水銀ランプ>
照射装置: ベルトコンベア式UV照射装置(アイグラフィックス株式会社製)
ランプ:1.0kW高圧水銀灯
フィルター:L-34(株式会社ケンコー光学製)
照射強度(365nm照度計で測定):100mW/cm
積算照射量:1000mJ/cm2
[接着性]
スライドガラスの両端に0.04mmのスペーサーを設置し、接着剤を真ん中に滴下した。スキージーを使用して0.03mmの厚みになるように接着剤を塗り広げ、その上にエポキシ樹脂製立方体(外径:4mm×4mm×1mm、内径:3.7mm×3.7mm×0.8mm、接着面積:2.3mm2)をセットし、上記と同様に光照射を行った。
光照射後、室温で60分以上放置して得られたサンプルについて、ダイシェアテスター(商品名「4000PXY」、DAGE社製)を下記条件で使用して、前記エポキシ樹脂製立方体が剥離した加重(kgf)から接着性を評価した。サンプルは5個用意し、その平均値をもって評価した。加重が大きいほど接着性が優れることを示す。
接着性測定条件
シェア高さ:0.65mm
シェアスピード:500μm/s
[耐熱接着性]
上記[接着性]評価と同様のサンプルに、卓上リフロー炉(シンアペック社製)を使用して、JEDEC規格記載のリフロー温度プロファイル(最高温度:270℃)に基づく耐熱試験を連続して3回行った後、上記と同様の方法(サンプル数:5個)で接着性を評価した。耐熱試験前後での変化が小さいほど、熱安定性が良好であることを示す。
[透明性]
縦20mm×横20mm×厚み0.1mmのテフロン(登録商標)製スペーサーを作製し、スライドガラス(商品名「S2111」、松浪硝子(株)製)で挟み込みを行った。隙間に硬化性組成物を注型し、上記と同様に光照射を行い、光照射後室温で60分間放置して硬化物を得た。得られた硬化物の透明性(YI)を分光光度計(商品名「U-3900」、(株)日立ハイテクノロジーズ製)を用いて測定することにより評価した。尚、黄色度(YI)はD65光源における2度視野の値を読み取った。
[耐熱透明性]
上記[透明性]評価と同様の方法で得られた硬化物に、卓上リフロー炉(シンアペック社製)を使用して、JEDEC規格記載のリフロー温度プロファイル(最高温度:270℃)に基づく耐熱試験を連続して3回行った後、上記と同様の方法で透明性(YI)を測定することにより耐熱透明性を評価した。
上記評価結果を表1に示す。表1からわかるように本発明の接着剤用光硬化性組成物は硬化性、接着性、耐熱接着性および硬化物の透明性、特に耐熱透明性に優れている。
Figure 2022135247000004
表1中の各成分の化合物名は、次のとおりである。
<カチオン重合性化合物>
セロキサイド2021P:3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレート、(株)ダイセル製
THI-DE:ジエポキシ化テトラヒドロインデン、JXTGエネルギー(株)製
jER 828:ビスフェノールAジグリシジルエーテル、三菱ケミカル(株)製
jER YX8000:水素化ビスフェノールAジグリシジルエーテル、三菱ケミカル(株)製
TECHMORE VG3101L:2-[4-(2,3-エポキシプロポキシ)フェニル]-2-[4-[1,1-ビス[4-(2,3-エポキシプロポキシ)フェニル]エチル]フェニル]プロパン、(株)プリンテック製
SR-NPG:ネオペンチルグリコールジグリシジルエーテル、阪本薬品工業(株)製
OXT-121:キシリレンビスオキセタン、東亜合成(株)製
OXT-221:3-エチル-3{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン、東亜合成(株)製
X-22-169:両末端脂環式エポキシ変性シリコーンオリゴマー、信越化学工業(株)製
デナコールEX-146:p-tert-ブチルフェニルグリシジルエーテル、ナガセケムテックス(株)製
<光酸発生剤>
AG-1~AG-12およびAG-H1~H4:合成例7~18および比較合成例3~6で得られた化合物
<カップリング剤>
KBM-403:3-グリシドキシプロピルトリメトキシシラン、信越化学工業(株)製
<消泡剤>
BYK-1790:ビックケミージャパン社製
<レベリング剤>
LS-460:ポリエーテル変性シリコーン、楠本化成(株)製
<接着剤用熱硬化性組成物の評価>
下記表2に記載の各成分を配合組成(単位:重量部)に従って配合し、室温にて自転公転ミキサーを用いて撹拌・混合することにより、均一透明な接着剤用熱硬化性組成物(以下、接着剤と記載する)を得た(実施例21~40、比較例9~16)。得られた接着剤を以下の評価方法に従って評価を行った。
[熱硬化性]
スライドガラス(商品名「S9112」、松浪ガラス工業(株)製)の両端に0.03mmのスペーサーを設置し、硬化性組成物を真ん中に滴下した。スキージーを使用して0.03mmの厚みになるように硬化性組成物を塗り広げ、ホットプレートにて130℃で10分間加熱し硬化物を得た。
得られた硬化物について、その表面のタック性の有無から硬化性を確認した。尚、タック性の有無は触診により判断した。
評価基準
○:表面にタック性がなく、硬化物の表面形状に変化がなかった
△:表面のタック性はないが、硬化物の表面形状が変化した
×:表面にタック性を有した
[接着性]
スライドガラスの両端に0.04mmのスペーサーを設置し、接着剤を真ん中に滴下した。スキージーを使用して0.03mmの厚みになるように接着剤を塗り広げ、その上にエポキシ樹脂製立方体(外径:4mm×4mm×1mm、内径:3.7mm×3.7mm×0.8mm、接着面積:2.3mm2)をセットし、上記と同様に加熱を行った。
加熱後、室温で60分以上放置して得られたサンプルについて、ダイシェアテスター(商品名「4000PXY」、DAGE社製)を下記条件で使用して、前記エポキシ樹脂製立方体が剥離した加重(kgf)から接着性を評価した。サンプルは5個用意し、その平均値をもって評価した。加重が大きいほど接着性が優れることを示す。
接着性測定条件
シェア高さ:0.65mm
シェアスピード:500μm/s
[耐熱接着性]
上記[接着性]評価と同様のサンプルに、卓上リフロー炉(シンアペック社製)を使用して、JEDEC規格記載のリフロー温度プロファイル(最高温度:270℃)に基づく耐熱試験を連続して3回行った後、上記と同様の方法(サンプル数:5個)で接着性を評価した。耐熱試験前後での変化が小さいほど、熱安定性が良好であることを示す。
[透明性]
縦20mm×横20mm×厚み0.1mmのテフロン(登録商標)製スペーサーを作製し、スライドガラス(商品名「S2111」、松浪硝子(株)製)で挟み込みを行った。隙間に硬化性組成物を注型し、上記と同様に加熱して硬化物を得た。得られた硬化物の透明性(YI)を分光光度計(商品名「U-3900」、(株)日立ハイテクノロジーズ製)を用いて測定することにより評価した。尚、黄色度(YI)はD65光源における2度視野の値を読み取った。
[耐熱透明性]
上記[透明性]評価と同様の方法で得られた硬化物に、卓上リフロー炉(シンアペック社製)を使用して、JEDEC規格記載のリフロー温度プロファイル(最高温度:270℃)に基づく耐熱試験を連続して3回行った後、上記と同様の方法で透明性(YI)を測定することにより耐熱透明性を評価した。
上記評価結果を表2に示す。表2からわかるように本発明の接着剤用熱硬化性組成物は硬化性、接着性、耐熱接着性および硬化物の透明性、特に耐熱透明性に優れている。
Figure 2022135247000005
表2中の各成分の化合物名は、次のとおりである。
<カチオン重合性化合物>
セロキサイド2021P:3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレート、(株)ダイセル製
THI-DE:ジエポキシ化テトラヒドロインデン、JXTGエネルギー(株)製
jER 828:ビスフェノールAジグリシジルエーテル、三菱ケミカル(株)製
jER YX8000:水素化ビスフェノールAジグリシジルエーテル、三菱ケミカル(株)製
TECHMORE VG3101L:2-[4-(2,3-エポキシプロポキシ)フェニル]-2-[4-[1,1-ビス[4-(2,3-エポキシプロポキシ)フェニル]エチル]フェニル]プロパン、(株)プリンテック製
SR-NPG:ネオペンチルグリコールジグリシジルエーテル、阪本薬品工業(株)製
OXT-121:キシリレンビスオキセタン、東亜合成(株)製
OXT-221:3-エチル-3{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン、東亜合成(株)製
X-22-169:両末端脂環式エポキシ変性シリコーンオリゴマー、信越化学工業(株)製
デナコールEX-146:p-tert-ブチルフェニルグリシジルエーテル、ナガセケムテックス(株)製
<熱酸発生剤>
AG-13~AG-18およびAG-H5~H6:合成例19~24および比較合成例7~8で得られた化合物
<カップリング剤>
KBM-403:3-グリシドキシプロピルトリメトキシシラン、信越化学工業(株)製
<消泡剤>
BYK-1790:ビックケミージャパン社製
<レベリング剤>
LS-460:ポリエーテル変性シリコーン、楠本化成(株)製
<光学材料用光硬化性組成物の評価>
下記表3に記載の各成分を配合組成(単位:重量部)に従って配合し、室温にて自転公転ミキサーを用いて撹拌・混合することにより、均一透明な光学材料用光硬化性組成物(実施例41~63、比較例17~24)を得た。得られた硬化性組成物を以下の評価方法に従って評価を行った。
[硬化性]
スライドガラスの両端に0.03mmのスペーサーを設置し、光学材料用光硬化性組成物を真ん中に滴下した。スキージーを使用して0.03mmの厚みになるように硬化性組成物を塗り広げ、高圧水銀灯を下記条件で使用して光照射を行った。光照射後、室温で60分間放置して硬化物を得た。
得られた硬化物について、その表面のタック性を触診により判断し、下記基準により硬化性を評価した。
評価基準
○ : 表面にタック性がなく、触診しても硬化物の表面形状に変化がなかった
△ : 表面のタック性はないが、触診により硬化物の表面形状が変化した
× : 表面にタック性を有した
<高圧水銀ランプ>
照射装置: ベルトコンベア式UV照射装置(アイグラフィックス株式会社製)
ランプ:1.0kW高圧水銀灯
フィルター:L-34(株式会社ケンコー光学製)
照射強度(365nm照度計で測定):100mW/cm
積算照射量:1000mJ/cm2
[透明性]
縦20mm×横20mm×厚み0.3mmのテフロン(登録商標)製スペーサーを作製し、スライドガラスで挟み込みを行った。隙間に硬化性組成物を注型し、上記と同様に光照射を行い、光照射後室温で60分間放置して硬化物を得た。得られた硬化物の黄色度(YI)を分光光度計(商品名「U-3900」、(株)日立ハイテクノロジーズ製)を用いて測定することにより透明性を評価した。尚、黄色度(YI)はD65光源における2度視野の値を読み取った。値が小さいほど透明性が高く、良好であることを示す。
[耐熱透明性]
上記[透明性]評価と同様の方法で得られた硬化物に、卓上リフロー炉(シンアペック社製)を使用して、JEDEC規格記載のリフロー温度プロファイル(最高温度:270℃)に基づく耐熱試験を連続して3回行った後、上記と同様の方法で透明性(YI)を測定することにより耐熱透明性を評価した。
上記評価結果を表3に示す。表3からわかるように本発明の光学材料用光硬化性組成物は硬化性、透明性、特に耐熱透明性に優れている。
Figure 2022135247000006
表3中の各成分の化合物名は、次のとおりである。
<カチオン重合性化合物>
セロキサイド2021P:3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレート、(株)ダイセル製
EHPE3150:2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物、(株)ダイセル製
EP-4088S:ジシクロペンタジエン型エポキシ樹脂、(株)ADEKA製
jER 828:ビスフェノールAジグリシジルエーテル、三菱ケミカル(株)製
オグソールEG-200:フルオレン骨格含有二官能エポキシ樹脂、大阪ガスケミカル(株)製
TEPIC-VL:トリグリシジルイソシアヌレート、日産化学(株)製
X-40-2670:脂環式エポキシ変性シリコーンオリゴマー、信越化学工業(株)製
OXT-101:3-エチル-3-ヒドロキシメチルオキセタン、東亜合成(株)製
OXT-221:3-エチル-3{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン、東亜合成(株)製
<光酸発生剤>
AG-1~AG-12およびAG-H1~H4:合成例7~18および比較合成例3~6で得られた化合物
<レベリング剤>
BYK-UV3510:ビックケミージャパン社製
<酸化防止剤>
Irganox 1010:(ペンタエリスリトール テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、BASF社製
<光学材料用熱硬化性組成物の評価>
下記表4に記載の各成分を配合組成(単位:重量部)に従って配合し、室温にて自転公転ミキサーを用いて撹拌・混合することにより、均一透明な光学材料用熱硬化性組成物(実施例64~86、比較例25~28)を得た。得られた硬化性組成物を以下の評価方法に従って評価を行った。
[硬化性]
スライドガラス(商品名「S9112」、松浪ガラス工業(株)製)の両端に0.03mmのスペーサーを設置し、光学材料用熱硬化性組成物を真ん中に滴下した。スキージーを使用して0.03mmの厚みになるように該硬化性組成物を塗り広げ、ホットプレートにて130℃で10分間加熱し硬化物を得た。
得られた硬化物について、その表面のタック性の有無から硬化性を確認した。尚、タック性の有無は触診により判断した。
評価基準
○:表面にタック性がなく、硬化物の表面形状に変化がなかった
△:表面のタック性はないが、硬化物の表面形状が変化した
×:表面にタック性を有した
[透明性]
縦20mm×横20mm×厚み0.3mmのテフロン(登録商標)製スペーサーを作製し、スライドガラスで挟み込みを行った。隙間に硬化性組成物を注型し、上記と同様に加熱して硬化物を得た。得られた硬化物の透明性(YI)を分光光度計(商品名「U-3900」、(株)日立ハイテクノロジーズ製)を用いて測定することにより透明性を評価した。尚、黄色度(YI)はD65光源における2度視野の値を読み取った。値が小さいほど透明性が高く、良好であることを示す。
[耐熱透明性]
上記[透明性]評価と同様の方法で得られた硬化物に、卓上リフロー炉(シンアペック社製)を使用して、JEDEC規格記載のリフロー温度プロファイル(最高温度:270℃)に基づく耐熱試験を連続して3回行った後、上記と同様の方法で透明性(YI)を測定することにより耐熱透明性を評価した。
上記評価結果を表4に示す。表4からわかるように本発明の光学材料用熱硬化性組成物は硬化性、透明性、特に耐熱透明性に優れている。
Figure 2022135247000007
表4中の各成分の化合物名は、次のとおりである。
<カチオン重合性化合物>
セロキサイド2021P:3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレート、(株)ダイセル製
EHPE3150:2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物、(株)ダイセル製
EP-4088S:ジシクロペンタジエン型エポキシ樹脂、(株)ADEKA製
jER 828:ビスフェノールAジグリシジルエーテル、三菱ケミカル(株)製
オグソールEG-200:フルオレン骨格含有二官能エポキシ樹脂、大阪ガスケミカル(株)製
TEPIC-VL:トリグリシジルイソシアヌレート、日産化学(株)製
X-40-2670:脂環式エポキシ変性シリコーンオリゴマー、信越化学工業(株)製
OXT-101:3-エチル-3-ヒドロキシメチルオキセタン、東亜合成(株)製
OXT-221:3-エチル-3{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン、東亜合成(株)製
<熱酸発生剤>
AG-13~AG-18およびAG-H5~H6:合成例19~24および比較合成例7~8で得られた化合物
<レベリング剤>
BYK-UV3510:ビックケミージャパン社製
<酸化防止剤>
Irganox 1010:(ペンタエリスリトール テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、BASF社製
<光学的立体造形用硬化性組成物の評価>
下記表5に記載の各成分を配合組成(単位:重量部)に従って配合し、光学的立体造形用硬化性組成物(実施例87~110、比較例29~36)を得た。得られた硬化性組成物を以下の評価方法に従って評価を行った。
[硬化性評価]
光学的立体造形用硬化性組成物をガラス板に膜厚が20μmになるよう塗布し、高圧水銀灯を下記条件で使用して光照射を行った。光照射後、室温で60分間放置して硬化物を得た。得られた硬化物について、その表面のタック性を触診により判断し、下記基準により硬化性を評価した。
評価基準
○ : 表面にタック性がなく、触診しても硬化物の表面形状に変化がなかった
△ : 表面のタック性はないが、触診により硬化物の表面形状が変化した
× : 表面にタック性を有した
<高圧水銀ランプ>
照射装置: ベルトコンベア式UV照射装置(アイグラフィックス株式会社製)
ランプ:1.0kW高圧水銀灯
フィルター:L-34(株式会社ケンコー光学製)
照射強度(365nm照度計で測定):100mW/cm
積算照射量:600mJ/cm2
[寸法安定性評価]
実施例及び比較例で得られた光学的立体造形用硬化性組成物を100μmのPETフィルムに100μmの厚みで塗布し、空気雰囲気下、光源として高圧水銀灯を使用して紫外線を照射して硬化物を得た。
得られた硬化物から試験片(縦×横=2cm×10cm)を作成し、試験片の一辺(2cmの辺の一方)を基板表面にテープで固定し、他辺(2cmの辺の他方)の反りの大きさから下記基準により、寸法安定性を評価した。反りが小さいほど寸法安定性に優れることを示す。
評価基準
◎ : 反りが4mm未満
○ : 反りが4mm以上、7mm未満
△ : 反りが7mm以上、10mm未満
× : 反りが10mm以上
[耐光性]
上記[寸法安定性評価]で作製した光造形物を用い、1年の光量に相当する紫外線(308MJ/m)を照射して、色相(黄変)を目視で評価した。評価基準は下記の通り。
(評価基準)
◎:無色(黄変なし)
○:淡黄色~黄色
×:褐色
[耐熱黄変性]
上記[寸法安定性評価]で作製した光造形物を用い、200℃に温調したホットプレートにて2時間加熱し、色相(黄変)を目視で評価した。評価基準は下記の通り。
(評価基準)
◎:無色(黄変なし)
○:淡黄色~黄色
×:褐色
上記評価結果を表5に示す。表5からわかるように本発明の光学的立体造形用硬化性組成物は、光硬化性に優れ、本発明の光学的立体造形用樹脂組成物を用いて光造形を行うことによって、硬化時の収縮率が小さくて寸法精度に優れ、耐光性、耐熱性に優れ、しかも黄色度が低く且つ色調および透明性に優れる立体造形物を得ることができる。
Figure 2022135247000008
表5中の各成分の化合物名は、次のとおりである。
<カチオン重合性化合物>
セロキサイド2021P:3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレート、(株)ダイセル製
EHPE3150:2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物、(株)ダイセル製
jER 828:ビスフェノールAジグリシジルエーテル、三菱ケミカル(株)製
リカレジン HBE-100:水添ビスフェノールA型エポキシ樹脂、新日本理化(株)製
jER 157S70:ノボラック型固形エポキシ樹脂、三菱ケミカル(株)製
オグソールPG-100:フルオレン骨格含有エポキシ樹脂、大阪ガスケミカル(株)製
TECHMORE VG3101L:2-[4-(2,3-エポキシプロポキシ)フェニル]-2-[4-[1,1-ビス[4-(2,3-エポキシプロポキシ)フェニル]エチル]フェニル]プロパン、(株)プリンテック製
エポゴーセーPT:ポリテトラメチレングリコールジグリシジルエーテル、四日市合成(株)製
X-22-163:側鎖エポキシ変性シリコーン、信越化学工業(株)製
4CH-DVE:シクロヘキサンジオールジビニルエーテル、(株)ダイセル製
OXT-101:3-エチル-3-ヒドロキシメチルオキセタン、東亜合成(株)製
OXT-221:3-エチル-3{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン、東亜合成(株)製
<ラジカル硬化性化合物>
A-9950W:ジペンタエリスリトールポリアクリレート、新中村化学工業(株)製
AP-150:ポリプロピレングリコールモノアクリレート、日本油脂(株)製
<光酸発生剤>
AG-1~AG-12およびAG-H1~H4:合成例7~18および比較合成例3~6で得られた化合物
<ラジカル発生剤>
Irgacure184:1-ヒドロキシシクロヘキシルフェニルケトン、BASF社製
<芳香族チオール化合物>
2-ナフタレンチオール、東京化成工業(株)製
<光導波路用樹脂組成物の評価>
まず、実施例および比較例となる光導波路の作製に先立ち、クラッド層形成材料およびコア層形成材料である各感光性ワニス(光導波路用樹脂組成物;実施例111~135、比較例37~44)を調製した。
[クラッド層形成材料・コア層形成材料の調製]
遮光条件下、下記の表6に示す各配合成分を同表に示す割合に従って配合し、110℃にて完溶した。
その後、室温(25℃)まで冷却し、直径1.0μmのメンブランフィルターを用いて加熱加圧濾過を行うことにより、感光性ワニスを作製した。このようにして、FPC基材〔SUS(ステンレス鋼)、ポリイミドの積層体〕の裏面上に、所定パターンのアンダークラッド層が形成され、このアンダークラッド層上に所定パターンのコア層が形成され、さらにこのコア層上にオーバークラッド層が形成された光導波路(光導波路総厚み75μm)を作製した。
[評価用樹脂層の作製]
シリコンウェハ上に、スピンコーターを用いて、感光性ワニスを塗工した後、ホットプレート上にて有機溶剤を乾燥させる(130℃×10分間)ことにより、未硬化フィルム状態の未硬化層を形成した。形成された未硬化層に対して、UV照射機〔超高圧水銀灯、全光線(バンドパスフィルタ無し)〕にて200mJ/cm(波長365nm積算)のガラスマスクパターン露光〔パターン幅/パターン間隔(L/S)=50μm/200μm〕を行ない、後加熱(140℃×10分間)を行なった。その後、γ-ブチロラチクトン中にて現像(室温25℃下、3分間)した後、水洗し、ホットプレート上にて水分を乾燥(120℃×5分間)させることにより、所定パターンの樹脂層(厚み50μm)を作製した。
このようにして得られた各樹脂層を用いて、各層のパターン硬化性、耐熱着色性および熱安定性に関して下記に示す方法に従って測定・評価した。これらの結果を下記の表6に併せて示す。
[パターン硬化性]
上記各層の作製条件にて得られたパターンの外観を顕微鏡にて観察した。その結果を下記の基準に基づき評価した。
○ : 矩形状でパターンが作製されていた。
△ : 一部パターンが形成されていない部分が確認された。
× :パターンが形成されず、機能上問題が発生するものであった。
[耐熱着色性]
スピンコーターを用いて、加熱乾燥(130℃×10分間)後、厚みが50μmの塗膜が形成されるように感光性ワニスを塗工し未硬化層を形成した。形成された未硬化層に対し、UV照射機[超高圧水銀灯、全光線(バンドパスフィルタ無し)]にて1000mJ/cm(波長365nm積算)の露光を行い、後加熱(140℃×10分間)を行った。形成された硬化樹脂膜を125℃オーブンへ500時間投入し、オーブン投入前後での400nmの波長の透過率変化を、分光光度計を用いて測定した。その結果を下記の基準に従い評価した。
〇:125℃オーブン投入後の400nm透過率が、投入前の透過率の90%以上
△:125℃オーブン投入後の400nm透過率が、投入前の透過率の70%以上90%未満
×:125℃オーブン投入後の400nm透過率が、投入前の透過率の70%未満
[損失評価(材料損失)]
酸化膜付きのシリコン基板(厚み500μm)上に、スピンコート法により上記実施例
および比較例にて得られた感光性ワニスを厚み5~10μm程度となるように塗工した。
ついで、ホットプレート上にてプリベーク(130℃×5分間)した後、UV照射機[超高圧水銀灯、全光線(バンドパスフィルタ無し)]にて5000mJ/cm(波長365nm積算)の露光を行ない、後加熱(段階加熱80℃、120℃、140℃×各5分間)を行なうことにより薄膜を形成した。つぎに、上記薄膜中に波長850nmの光をプリズムカップリングにより入射させ、上記薄膜中を伝搬させた。そして、伝搬長を変えて、その長さにおける光強度を光計測システム(オプティカルマルチパワーメーターQ8221、アドバンテスト社製)にて測定し、伝搬長に対する光損失をプロットし、直線近似を行ない、その直線の傾きから各感光性ワニスにおける材料損失(dB)を算出し、下記の基準に基づき評価した(プリズムカップラー法)。
○ : 材料損失が0.02dB/cm未満であった。
× : 材料損失が0.02dB/cm以上であった。
上記評価結果を表6に示す。表6からわかるように本発明の光導波路用樹脂組成物はパターン硬化性及び耐熱着色安定性に優れているので、光導波路の構成部分の形成において有用であることがわかる。
Figure 2022135247000009
表6中の各成分の化合物名は、次のとおりである。
<カチオン重合性化合物>
EHPE3150:2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物、(株)ダイセル製
jER 157S70:ノボラック型固形エポキシ樹脂、三菱ケミカル(株)製
TECHMORE VG3101L:2-[4-(2,3-エポキシプロポキシ)フェニル]-2-[4-[1,1-ビス[4-(2,3-エポキシプロポキシ)フェニル]エチル]フェニル]プロパン、(株)プリンテック製
セロキサイド2021P:3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレート、(株)ダイセル製
jER 828:ビスフェノールAジグリシジルエーテル、三菱ケミカル(株)製
オグソールPG-100:フルオレン骨格含有エポキシ樹脂、大阪ガスケミカル(株)製
エポゴーセーPT:ポリテトラメチレングリコールジグリシジルエーテル、四日市合成(株)製
OXT-221:3-エチル-3{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン、東亜合成(株)製
<光酸発生剤>
AG-1~AG-12およびAG-H1~H4:合成例7~18および比較合成例3~6で得られた化合物
<酸化防止剤>
Irganox 1010:(ペンタエリスリトール テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、BASF社製
HCA:9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド
本発明の硬化性組成物は、塗料、コーティング剤、各種被覆材料(ハードコート、耐汚染被覆材、防曇被覆材、耐触被覆材、光ファイバー等)、粘着テープの背面処理剤、粘着ラベル用剥離シート(剥離紙、剥離プラスチックフィルム、剥離金属箔等)の剥離コーティング材、印刷板、歯科用材料(歯科用配合物、歯科用コンポジット)インキ、インクジェットインキ、ポジ型レジスト(回路基板、CSP、MEMS素子等の電子部品製造の接続端子や配線パターン形成等)、レジストフィルム、液状レジスト、MEMS用レジスト、ポジ型感光性材料、ネガ型感光性材料、各種接着剤(各種電子部品用仮固定剤、HDD用接着剤、ピックアップレンズ用接着剤、FPD用機能性フィルム(偏向板、反射防止膜等)用接着剤等)、ホログラフ用樹脂、FPD材料(カラーフィルター、ブラックマトリックス、隔壁材料、ホトスペーサー、リブ、液晶用配向膜、FPD用シール剤等)、光学部材、成形材料(建築材料用、光学部品、レンズ)、注型材料、パテ、ガラス繊維含浸剤、目止め材、シーリング材、封止材、光半導体(LED)封止材、光導波路材料、ナノインプリント材料、光造形用、及びマイクロ光造形用材料等に使用される光酸発生剤として好適に用いられる。

Claims (14)

  1. 下記一般式(1)で表されるオニウム塩を含有する酸発生剤とカチオン重合性化合物とを含有する硬化性組成物。
    Figure 2022135247000010
    [式中、R~Rは、互いに独立して、炭素数1~8のアルキル基、炭素数2~8のアルケニル基または置換基を有していてもよいフェニル基であり、R~Rのうち少なくとも一つの基に結合する水素原子の一部または全部がフッ素原子で置換されており、かつR~Rの基に結合する全水素原子のうち30%~70%がフッ素原子で置換されており;EはS、I、NまたはPから選ばれる原子価nの元素を表し、nは1~3の整数であり、RはEに結合している有機基であり、Rの個数はn+1であり、(n+1)個のRはそれぞれ互いに同一であっても異なっても良く、2個以上のRが互いに直接または-O-、-S-、-SO-、-SO-、-NH-、-CO-、-COO-、-CONH-、アルキレン基もしくはフェニレン基を介して元素Eを含む環構造を形成しても良い。]
  2. 一般式(1)で表されるオニウム塩のEがS又はIである請求項1に記載の硬化性組成物。
  3. 請求項1又は2に記載の硬化性組成物を含む接着剤。
  4. 請求項1又は2に記載の硬化性組成物を硬化した硬化物。
  5. 請求項4に記載の硬化物を構成要素として含有する光学素子。
  6. 請求項5に記載の光学素子を備えた光学装置。
  7. 請求項1又は2に記載の硬化性組成物に、さらにラジカル重合性化合物及びラジカル重合開始剤を含んでなる光学的立体造形用樹脂組成物。
  8. 請求項7に記載の光学的立体造形用樹脂組成物を用いて光学的立体造形された立体造形物。
  9. 請求項1又は2に記載の硬化性組成物を含む光導波路用樹脂組成物。
  10. 基材とその基材上にクラッド層が形成され、さらに上記クラッド層中に所定パターンで、光信号を伝搬するコア層が形成されてなる光導波路におけるコア層形成材料である請求項9に記載の光導波路用樹脂組成物。
  11. 請求項9に記載の光導波路用樹脂組成物をフィルム状に形成してなる光導波路コア層形成用硬化性フィルム。
  12. 基材とその基材上にクラッド層が形成され、さらに上記クラッド層中に所定パターンで、光信号を伝搬するコア層が形成されてなる光導波路であって、上記コア層が、請求項9に記載の光導波路用樹脂組成物を硬化させることにより形成されてなることを特徴とする光導波路。
  13. 基材とその基材上にクラッド層が形成され、さらに上記クラッド層中に所定パターンで、光信号を伝搬するコア層が形成されてなる光導波路であって、上記コア層が、請求項11に記載の光導波路コア層形成用硬化性フィルムを硬化させることにより形成されてなることを特徴とする光導波路。
  14. 請求項12又は13に記載の光導波路を備えることを特徴とする光・電気伝送用混載フレキシブルプリント配線板。
JP2021034931A 2021-03-05 2021-03-05 硬化性組成物ならびにその硬化体 Pending JP2022135247A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021034931A JP2022135247A (ja) 2021-03-05 2021-03-05 硬化性組成物ならびにその硬化体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021034931A JP2022135247A (ja) 2021-03-05 2021-03-05 硬化性組成物ならびにその硬化体

Publications (1)

Publication Number Publication Date
JP2022135247A true JP2022135247A (ja) 2022-09-15

Family

ID=83231071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021034931A Pending JP2022135247A (ja) 2021-03-05 2021-03-05 硬化性組成物ならびにその硬化体

Country Status (1)

Country Link
JP (1) JP2022135247A (ja)

Similar Documents

Publication Publication Date Title
EP3345951B1 (en) Curable composition and cured article using same
KR101545931B1 (ko) 방향족 술포늄염 화합물
EP2927216B1 (en) Novel sulfonic acid derivative compound, photoacid generator, cationic polymerization initiator, resist composition, and cationically polymerizable composition
JP2014205624A (ja) オニウムボレート塩系酸発生剤
JP2010215616A (ja) スルホニウム塩,光酸発生剤,光硬化性組成物,及びその硬化体
CN111788181B (zh) 锍盐、光酸产生剂、固化性组合物和抗蚀剂组合物
JP5699080B2 (ja) 光酸発生剤,光硬化性組成物,及びその硬化体
JPWO2007119391A1 (ja) 感活性エネルギー線ネガ型フォトレジスト組成物およびその硬化物
KR20120101326A (ko) 방향족 술포늄염 화합물
KR20190037230A (ko) 술포늄염, 열 또는 광산 발생제, 열 또는 광 경화성 조성물 및 그 경화체
WO2014061062A1 (ja) スルホニウム塩、光酸発生剤、硬化性組成物およびレジスト組成物
JP6797911B2 (ja) スルホニウム塩、光酸発生剤、硬化性組成物およびレジスト組成物
TWI782107B (zh) 光酸產生劑、硬化性組成物、硬化體、光阻組成物以及抗蝕劑圖案的製作方法
JP2022051490A (ja) 光硬化性組成物ならびにその硬化体
JP5767040B2 (ja) スルホニウム塩、光酸発生剤、硬化性組成物およびレジスト組成物
JP2014214129A (ja) 硬化性組成物及びそれを用いた硬化体
JP5828679B2 (ja) フッ素化アルキルリン酸オニウム塩系酸発生剤
JP2013227368A (ja) 感活性エネルギー線性酸発生剤
JP6046540B2 (ja) スルホニウム塩、光酸発生剤、硬化性組成物およびレジスト組成物
JP2010254654A (ja) スルホニウム塩,光酸発生剤,光硬化性組成物,及びその硬化体
JP2022135247A (ja) 硬化性組成物ならびにその硬化体
JP7177281B2 (ja) 酸発生剤、およびこれを含む硬化性組成物
JP2017222621A (ja) オニウムボレート塩、酸発生剤、硬化性樹脂組成物及びそれを用いた硬化体
CN114901638A (zh) 锍盐、光酸产生剂、固化性组合物和抗蚀剂组合物
JP2021084986A (ja) 光硬化性樹脂組成物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231106