JP2022134200A - 検査装置および検査方法 - Google Patents

検査装置および検査方法 Download PDF

Info

Publication number
JP2022134200A
JP2022134200A JP2021033178A JP2021033178A JP2022134200A JP 2022134200 A JP2022134200 A JP 2022134200A JP 2021033178 A JP2021033178 A JP 2021033178A JP 2021033178 A JP2021033178 A JP 2021033178A JP 2022134200 A JP2022134200 A JP 2022134200A
Authority
JP
Japan
Prior art keywords
workpiece
light
captured image
work
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021033178A
Other languages
English (en)
Inventor
努 作山
Tsutomu Sakuyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Original Assignee
Screen Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd filed Critical Screen Holdings Co Ltd
Priority to JP2021033178A priority Critical patent/JP2022134200A/ja
Publication of JP2022134200A publication Critical patent/JP2022134200A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

【課題】ワークに存在する欠陥と当該欠陥の周囲とのコントラストを十分に確保して、ワークにおける欠陥の有無の的確な判断を可能とする。【解決手段】ワークWで反射されてから個体撮像素子31(撮像素子)に入射することで出力レンジの最大値の信号を個体撮像素子31に出力させる光が、ワークWに照射される。そして、撮像画像Miにおける、出力レンジの最大値(255)を示す白飛びと、出力レンジの最大値未満の値を示す暗領域とを含む撮像画像に基づき、欠陥の有無が判断される。つまり、白飛び(255)と暗領域との間のコントラストでもってワークWにおける欠陥Dの有無が判断される。こうして、ワークWに存在する欠陥Dと当該欠陥Dの周囲とのコントラストを十分に確保して、ワークWにおける欠陥Dの有無の的確な判断が可能となっている。【選択図】図6

Description

この発明は、ワークに対して光を照射しつつワークを撮像した結果に基づき、ワークにおける欠陥の有無を判断する検査技術に関する。
特許文献1、2に示されるように、ワークの外観を撮像した結果に基づき、ワークにおける欠陥の有無を検査する検査装置が知られている。特に、特許文献1では、ワークの下側に配置された光源部と、ワークに上方から対向するドーム状の反射体とが設けられており、光源部から射出されて反射体で反射された光をワークに照射しつつ、ワークが撮像される。
特開2020-41800号公報 特開2019-82333号公報
このような検査技術により欠陥の有無を的確に判断するためには、ワークに存在する欠陥と、当該欠陥の周囲とのコントラストを十分に確保する必要がある。そこで、このようなコントラストを十分に確保する技術が求められていた。
この発明は上記課題に鑑みなされたものであり、ワークに存在する欠陥と当該欠陥の周囲とのコントラストを十分に確保して、ワークにおける欠陥の有無の的確な判断を可能とすることを目的とする。
本発明に係る検査装置は、ワークを保持するワーク保持部材と、ワーク保持部材に保持されたワークに光を照射する照明部と、ワークのうち照明部から光が照射された範囲を撮像して、撮像画像を取得する撮像部と、撮像画像に基づきワークにおける欠陥の有無を判断する制御部とを備え、撮像部は、入射してきた光のエネルギーに応じた大きさの信号を所定の出力レンジの範囲内で出力する撮像素子を有し、照明部は、ワークで反射されてから撮像素子に入射することで出力レンジの最大値の信号を撮像素子に出力させる光を、ワークに照射し、撮像部は、撮像画像として、出力レンジの最大値を示す白飛びを表示する画素からなる白飛び領域と、出力レンジの最大値未満の値を示す画素からなる暗領域とを含む画像を取得する。
本発明に係る検査方法は、ワークに光を照射する工程と、入射してきた光のエネルギーに応じた大きさの信号を所定の出力レンジの範囲内で出力する撮像素子を用いて、ワークのうち光が照射された範囲を撮像することで、撮像画像を取得する工程と、撮像画像に基づきワークにおける欠陥の有無を判断する工程とを備え、ワークで反射されてから撮像素子に入射することで出力レンジの最大値の信号を撮像素子に出力させる光が、ワークに照射され、撮像画像として、出力レンジの最大値を示す白飛びを表示する画素からなる白飛び領域と、出力レンジの最大値未満の値を示す画素からなる暗領域とを含む画像が取得される。
このように構成された本発明(検査装置、検査方法)では、ワークで反射されてから撮像素子に入射することで出力レンジの最大値の信号を撮像素子に出力させる光が、ワークに照射される。そして、撮像画像における、出力レンジの最大値を示す白飛びを示す画素からなる白飛び領域を含む画像を用いて、欠陥の有無が判断される。つまり、白飛びの領域を生じる程度の大きな光量を受光して得られた画像を用いてワークにおける欠陥の有無が判断される。こうして、ワークに存在する欠陥と当該欠陥の周囲とのコントラストを十分に確保して、ワークにおける欠陥の有無の的確な判断が可能となっている。
また、制御部は、所定の基準画像を記憶し、基準画像と撮像画像との間における、白飛び領域の範囲の違いに基づき、欠陥の有無を判断するように、検査装置を構成してもよい。かかる構成では、基準画像と撮像画像との比較に基づく欠陥の有無が、白飛びと白飛びを生じていない画素との間のコントラストでもって的確に判断することができる。
ところで、ワークに対する光の照射範囲のうち、入射してきた光の正反射光が撮像部に向かわない部分は、撮像画像において暗領域として表れる。ただし、該当部分に欠陥が存在する場合には、この欠陥で反射された正反射光が撮像部に入射して、撮像画像において白飛びとして表れる場合がある。そこで、制御部は、基準画像および撮像画像のうち撮像画像にのみ白飛びが存在する部分に欠陥が存在すると判断するように、検査装置を構成してもよい。これによって、撮像画像において、暗領域に隣接して表れる微小な白飛びを、欠陥として的確に検出することができる。
あるいは、ワークに所定以上の強度の光を照射した場合、ワークに対する光の照射範囲のうち、入射してきた光の正反射光が撮像部に向かう部分は、撮像画像において白飛びとして表れる。ただし、該当部分に欠陥が存在する場合には、この欠陥で反射された正反射光が撮像部に入射せず、撮像画像において暗領域として表れる場合がある。そこで、制御部は、基準画像および撮像画像のうち撮像画像にのみ暗領域が存在する部分に欠陥が存在すると判断するように、検査装置を構成してもよい。これによって、撮像画像において、白飛びに隣接して表れる微小な暗領域を、欠陥として的確に検出することができる。
なお、基準画像の態様は種々想定される。例えば、制御部は、良品のワーク(すなわち、欠陥を有さないワーク)を示す画像を、基準画像として記憶してもよいし、撮像画像に対して平滑化を実行することで作成した基準画像を記憶してもよい。
また、平滑化の実行により基準画像を作成する場合には、制御部は、オープニングおよびクロージングによって平滑化を実行してもよいし、メディアンフィルタによって平滑化を実行してもよい。前者の場合には、オープニングおよびクロージングの2通りの画像処理を必要とするのに比較して、後者の場合には、メディアンフィルタによる画像処理のみを行えばよく、平滑化に要する時間の短縮を図ることができる。
また、照明部は、ワーク保持部材に保持されたワークに対して、互いに異なる方向から光を照射する複数の照明部材を有し、ワークで正反射されてから撮像素子に入射することで出力レンジの最大値の信号を撮像素子に出力させる光を、複数の照明部材のうちの一部の照明部材からワークに照射するように、検査装置を構成してもよい。かかる構成では、白飛びと暗領域との間のコントラストに基づき欠陥の有無を検査する場合には、一部の照明部材から該当の光を照射すればよい。また、例えば、撮像素子の出力レンジに収まる出力を与える光を複数の照明部材のそれぞれからワークに照射することで、ワークの全体に光を照射しつつワークを撮像するといった他の態様での検査を実行することも可能となる。
また、所定の回転軸を中心にワーク保持部材を回転させる回転駆動部をさらに備え、制御部は、回転駆動部の駆動によってワークを回転させつつ、撮像画像を複数回取得するように、検査装置を構成してもよい。かかる構成では、撮像部が1回に撮像できる範囲よりも広い範囲(例えば、ワークの側面の全範囲)に対して、欠陥の有無を検査することができる。
また、出力レンジの最大値の信号を撮像素子に出力させる光は、照明部から射出されてワークで正反射された光であるように、検査装置を構成してもよい。かかる正反射光によって、撮像画像において白飛びを生じさせることができる。
以上のように、本発明によれば、ワークに存在する欠陥と当該欠陥の周囲とのコントラストを十分に確保して、ワークにおける欠陥の有無の的確な判断が可能となっている。
本発明に係る検査装置の一例を模式的に示す部分断面図。 図1の検査装置が備える照明を模式的に示す底面図。 図1の検査装置が備える電気的構成を示すブロック図。 検査装置で実行される外観検査の一例を示すフローチャート。 図4の外観検査で実行される動作を模式的に示す斜視図。 図5の外観検査で取得・作成される画像を模式的に示す図。
図1は本発明に係る検査装置の一例を模式的に示す部分断面図である。同図および以下の図では、鉛直方向Zと、鉛直方向Zに平行な回転軸を中心とする回転方向θとを適宜示す。図1の検査装置1はワークWの外観を検査し、特にワークWの側面Wsにおいて傷等の形状欠陥(後述する図6の欠陥D)が存在するか否かを検査することができる。
検査装置1は、ワークWを保持するテーブル11を備える。テーブル11の上面111は、鉛直方向Zに垂直な(すなわち水平な)平面であり、テーブル11は上面111に載置されたワークWを保持する。さらに、検査装置1は、テーブル11を回転方向θに回転させるθ軸モータ12を有し、θ軸モータ12がテーブル11を回転方向θに駆動すると、テーブル11によって保持されるワークWが回転方向θに回転する。
また、検査装置1は、テーブル11に支持されるワークWに光を照射する照明2を備える。照明2はドーム形状を有し、円筒形の断面を有する半球体である。かかる照明2は、鉛直方向Zからの平面視においてテーブル11に保持されるワークWに重複し、照明2の内壁は、当該ワークWに上方おより側方から対向する。
図2は図1の検査装置が備える照明を模式的に示す底面図である。照明2は、回転方向θに配列された複数(15個)の側方照明パネル21a~21oと、複数の側方照明パネル21a~21oの内側で回転方向θに配列された複数(15個)の上方照明パネル23a~23oとを有し、複数の側方照明パネル21a~21oのそれぞれは、テーブル11に保持されたワークWに側方から対向し、上方照明パネル23a~23oのそれぞれは、テーブル11に保持されたワークWに斜め上方から対向する。
側方照明パネル21a~21oのそれぞれは、複数の発光素子が二次元的に配列された発光素子アレイと、それを通過する光を拡散させる光拡散板とを有し、発光素子アレイの各発光素子から射出された光は光拡散板を通過してからワークWに照射される。発光素子は、例えばLED(Light Emitting Diode)である。また、上方照明パネル23a~23oのそれぞれも、同様の構成を備える。
さらに、検査装置1は、互いに異なる方向からワークWを撮像する複数(3台)のカメラ3a~3cを備える。カメラ3a~3cのそれぞれは個体撮像素子31を有し、照明2から射出されてワークWで反射された光が個体撮像素子31に入射する。個体撮像素子31は、それに入射してきた光を電気信号(例えば、電流信号)に変換することで、ワークWの画像を撮像する。この個体撮像素子31は、二次元的に配列された複数の画素を有し、各画素はそれに入射してきた光のエネルギーに応じた大きさの電気信号を出力する。個体撮像素子31の画素は、出力する信号の大きさを256段階で変更でき、すなわち「0」から「255」までの出力レンジを有する。ただし、個体撮像素子31の出力レンジの分解能は「255」に限られず、「255」より小さくても大きくても構わない。このような個体撮像素子31としては、CCDイメージセンサあるいはCMOSイメージセンサ等のイメージセンサを用いることができる。また、ここの例では、個体撮像素子31は、鉛直方向Zおよび回転方向θのそれぞれに複数の画素数を有するエリアセンサであるとする。
複数のカメラ3a~3cのうち、カメラ3aは最も低い位置に配置され、カメラ3bはカメラ3aより高くてカメラ3cより低い位置に配置され、カメラ3cは最も高い位置に配置される。カメラ3aは、テーブル11に保持されたワークWに対して側方から対向し、カメラ3bは、当該ワークWに対して斜め上方から対向し、カメラ3cは、当該ワークWに対して上方から対向する。なお、上述の照明2には複数のカメラ3a~3cのそれぞれに対応して開口が設けられており、カメラ3a~3cは、それぞれ対向する開口を介してワークWに対向する。特に、カメラ3aに対する開口は、側方照明パネル21aを貫通するように設けられており、カメラ3bに対する開口は、上方照明パネル23aを貫通するように設けられている。
図3は図1の検査装置が備える電気的構成を示すブロック図である。検査装置1は、制御部9を備え、制御部9は、上述のθ軸モータ12、照明2およびカメラ3a~3cを制御する。この制御部9は、CPU(Central Processing Unit)等のプロセッサで構成された演算部91と、HDD(Hard Disk Drive)あるいはSSD(Solid State Drive)等の記憶装置である記憶部92とを有する。
演算部91は、θ軸モータ12によるテーブル11の回転位置を制御することで、カメラ3a~3cに対向させるワークWの部分を変更する。これによって、ワークWのうち、カメラ3a~3cによって撮像する部分を選択することができる。
また、演算部91は、照明2を制御することで、側方照明パネル21a~21oのうちの一部の側方照明パネル21を選択的に点灯させたり、上方照明パネル23a~23oのうちの一部の上方照明パネル23を選択的に点灯させたりする。これによって、ワークWのうち、照明2からの光を照射する範囲を選択することができる。
なお、記憶部92は、側方照明パネル21a~21oあるいは上方照明パネル23a~23oの発光素子に供給する電流値を示す2通りの電流値I1、I2を記憶する。白飛び電流値I2は通常電流値I1より大きく、白飛び電流値I2の電流を発光素子に供給することで発光素子から射出される光のエネルギーは、通常電流値I1の電流を発光素子に供給することで発光素子から射出される光のエネルギーより大きい。具体的には、通常電流値I1の電流の供給を受けた発光素子から射出される光が、ワークWで正反射した後に個体撮像素子31に入射すると、出力レンジの最小値(0)より大きく最大値(255)より小さい大きさの電気信号が個体撮像素子31から出力される。一方、白飛び電流値I2の電流の供給を受けた発光素子から射出される光が、ワークWで正反射した後に個体撮像素子31に入射すると、出力レンジの最大値(255)の大きさの電気信号が個体撮像素子31から出力される。このような電流値I1、I2は、あらかじめワークWを照明2によって照明しつつカメラ3a~3cによって撮像した画像を確認することにより実験的に求めてもよい。この際、ワークWで正反射した後に個体撮像素子31に入射すると出力レンジの最大値の大きさの電気信号が個体撮像素子31から出力される電流値のうち、設定可能な最小の電流値を白飛び電流値I2として定めてもよい。
したがって、演算部91は、通常電流値I1の電流を発光素子に供給する指令(通常照明指令)を照明2の照明パネル21a~21o、23a~23oの全部あるいは一部に与えつつ、カメラ3a~3cの全部あるいは一部によって白飛びを抑えた画像を撮像することができる(通常撮像動作)。また、演算部91は、白飛び電流値I2の電流を発光素子に供給する指令(白飛び照明指令)を照明2の照明パネル21a~21o、23a~23oの全部あるいは一部に与えつつ、カメラ3a~3cの全部あるいは一部によって白飛びが発生した画像を撮像することができる(白飛び撮像動作)。つまり、演算部91は通常撮像動作と白飛び撮像動作を選択的に実行することができる。後者の白飛び撮像動作の詳細については後述する。
また、演算部91は、カメラ3a~3cによってワークWを撮像することで取得した撮像画像Miを記憶部92に記憶する。さらに、演算部91は、記憶部92に記憶された基準画像Mrと撮像画像Miとを比較することで、ワークWにおける欠陥の有無を判断する外観検査を実行する。続いては、この外観検査について説明する。
図4は検査装置で実行される外観検査の一例を示すフローチャートであり、図5は図4の外観検査で実行される動作を模式的に示す斜視図であり、図6は図5の外観検査で取得・作成される画像を模式的に示す図である。この外観検査は、上述の白飛び撮像動作によってワークWの側面Wsの外観を検査する。ワークWは、例えば自動車のエンジン等で使用される金属製の部品であり、図5の例では略円筒形を有し、ワークWの側面Wsは鏡面仕上げされた滑らかな曲面である。ステップS101では、作業者あるいは作業ロボットによって、ワークWがテーブル11に載置され、テーブル11が当該ワークWを保持する。テーブル11に保持されたワークWの側面Wsは、カメラ3aの視野Vに部分的に重複し、演算部91は、視野V内に存在する側面Wsの一部をカメラ3aにより撮像することができる。
ステップS102では、演算部91は、上述の白飛び照明指令を側方照明パネル21に出力する。この際、演算部91は、側方照明パネル21a~21oのうち、カメラ3aの視野Vに光を照射する側方照明パネル21a、21b、21o(換言すれば、カメラ3aに隣接する側方照明パネル21a、21b、21o)に対して選択的に白飛び照明指令を出力する。つまり、側方照明パネル21a~21oのうち、側方照明パネル21a、21b、21oのみがワークWの側面Wsに光を照射し、側方照明パネル21b~21nは消灯している。また、上方照明パネル23a~23oはいずれも消灯している。
こうして、演算部91は、側方照明パネル21a、21b、21oから、白飛び電流値I2に対応するエネルギーの光をカメラ3aの視野Vに照射しつつ、ワークWの側面Wsのうち視野Vに重複する範囲をカメラ3aにより撮像することで、図6に示す撮像画像Miを取得することができる(ステップS103)。図6の撮像画像Miに示すように、視野Vのうち中央の領域Rcに入射してワークWの側面Wsで正反射された光は、カメラ3aの個体撮像素子31に入射して、撮像画像Miにおいて白飛びを生じさせる。また、視野Vのうち、領域Rcの両側で隣接する領域Rr、Rlに入射してワークWの側面Wsで正反射された光は、カメラ3aの個体撮像素子31に入射しない。その結果、撮像画像Miにおいて領域Rr、Rlに対応する領域は、暗領域となる。ここで、撮像画像Miにおいて、白飛びが生じた画素は、出力レンジの最大値(255)を出力する画素である。暗領域の画素は、出力レンジの最大値(255)未満から出力レンジの最小値(0)までの値を出力する画素である。
撮像画像Miにおいて領域Rr、Rlに対応する部分の画素に関して詳細に説明する。カメラ3aの個体撮像素子31は、領域Rr、Rlに入射した光の拡散反射光を受光する。鏡面仕上げされた金属面では反射光における拡散反射光の成分は正反射光の成分に比べて非常に小さいため、撮像画像Miにおいて領域Rr、Rlに相当する部分の画素に対応する出力レンジの値は、出力レンジの最大値(255)に比べ非常に小さくなる。そのため、白飛びが生じた領域と暗領域との間で大きなコントラストが生じる。
図6の撮像画像においては、領域Rcにおいても、局所的に暗領域が発生している。これは、領域Rcに存在する欠陥Dで正反射された光が、カメラ3aの個体撮像素子31に入射せず、撮像画像Miにおいて欠陥Dに相当する部分が暗領域となって表れたことによる。具体的には、欠陥Dにおいて局所的にワークWの表面の状態が変化し、正反射率が低下している、もしくは欠陥Dにおいて凹凸が生じていることにより、正反射光の方向がカメラ3aの個体撮像素子31のある方向から逸れている等の場合がある。欠陥Dが領域Rcに存在する場合には、白飛び領域に隣接して当該白飛び領域よりも狭い暗領域が表れ、この暗領域が領域Rcにおける欠陥Dの存在位置を示す。
また、領域Rr、Rlにおいても、局所的に白飛びが発生している。これは、領域Rr、Rlに存在する欠陥Dで正反射された光が、カメラ3aの個体撮像素子31に入射して、撮像画像Miにおいて欠陥Dに相当する部分が白飛びとなって表れたことによる、つまり、欠陥Dが領域Rr、Rlに存在する場合には、暗領域に隣接して当該暗領域よりも狭い白飛び領域が表れ、この白飛び領域が領域Rr、Rlにおける欠陥Dの存在位置を示す。
こうして取得された撮像画像Miは、記憶部92に保存される。さらに、演算部91は、撮像画像Miに対して平滑化を実行して基準画像Mrを作成する。具体的には、オープニングとクロージングとが撮像画像Miに実行される。これによって、領域Rcから暗領域が除去されるとともに、領域Rr、Rlから白飛びが除去されて、図6に示す基準画像Mrが生成される。そして、演算部91は、撮像画像Miと基準画像Mrとの差を取ることで、撮像画像Miに存在する欠陥Dを抽出する。こうして、欠陥Dが抽出された場合には、ワークWの側面Wsに欠陥Dが存在し、ワークWは不良品であると演算部91により判断され、欠陥Dが抽出されない場合には、ワークWの側面Wsに欠陥Dが存在せず、ワークWは良品であると演算部91により判断される(ステップS104)。
ステップS105では、演算部91は、ワークWの側面Wsの全ての撮像を完了したかを判断する。撮像が完了していない場合(ステップS105で「NO」の場合)には、演算部91は、θ軸モータ12によってワークWを回転方向θに回転させることで、側面Wsのうち視野Vに重複する部分を変更して(ステップS106)、ステップS101~S103を実行する。こうして、ワークWの回転によって視野Vに重複する側面Wsの範囲を変更しつつ、ステップS101~S103を繰り返すことで、全ての側面Wsについて撮像を完了すると(ステップS105で「YES」)、図4の外観検査が終了する。
以上に説明する実施形態では、ワークWで正反射されてから個体撮像素子31(撮像素子)に入射することで出力レンジの最大値の信号を個体撮像素子31に出力させる光量の光が、ワークWに照射される(ステップS102)。そして、撮像画像Miにおける、出力レンジの最大値(255)を示す白飛びの画素領域を含む画像に基づき、欠陥Dの有無が判断される(ステップS104)。つまり、白飛び(255)と、暗領域(拡散反射光の受光による出力レンジの値を示す画素)との間のコントラストでもってワークWにおける欠陥Dの有無が判断される。上述の様に、ワークWが金属加工品である場合、反射光における拡散反射光成分は、正反射光成分に比べて非常に小さい。そのため、ワークWに存在する欠陥Dと当該欠陥Dの周囲とのコントラストを十分に確保して、ワークWにおける欠陥Dの有無の的確な判断が可能となっている。
また、制御部9は、所定の基準画像Mrを記憶部92に記憶し、基準画像Mrと撮像画像Miとの間における、白飛びおよび暗領域が存在する範囲の違いに基づき、欠陥Dの有無を判断する(ステップS104)。かかる構成では、基準画像Mrと撮像画像Miとの比較に基づく欠陥Dの有無が、白飛びと暗領域との間のコントラストでもって的確に判断することができる。
ところで、ワークWに対する光の照射範囲(すなわち、視野V)のうち、入射してきた光をカメラ3aに向けて正反射しない領域Rr、Rlは、撮像画像Miにおいて暗領域として表れる。ただし、該当領域Rr、Rlに欠陥Dが存在する場合には、この欠陥Dで反射された正反射光がカメラ3aに入射して、撮像画像Miにおいて白飛びとして表れる場合がある(図5の撮像画像Mi)。そこで、制御部9は、基準画像Mrおよび撮像画像Miのうち撮像画像Miにのみ白飛びが存在する部分に欠陥Dが存在すると判断する(ステップS104)。これによって、撮像画像Miにおいて、暗領域に隣接して表れる微小な白飛びを、欠陥Dとして的確に検出することができる。
あるいは、ワークWに対する光の照射範囲(すなわち、視野V)のうち、入射してきた光をカメラ3aに向けて反射する領域Rcは、撮像画像Miにおいて白飛びとして表れる。ただし、該当領域Rcに欠陥Dが存在する場合には、この欠陥Dで反射された光がカメラ3aに入射せず、撮像画像Miにおいて暗領域として表れる場合がある。そこで、制御部9は、基準画像Mrおよび撮像画像Miのうち撮像画像Miにのみ暗領域が存在する部分に欠陥Dが存在すると判断する(ステップS104)。これによって、撮像画像Miにおいて、白飛びに隣接して表れる微小な暗領域を、欠陥Dとして的確に検出することができる。
また、照明2(照明部)は、テーブル11(ワーク保持部材)に保持されたワークWに対して、互いに異なる方向から光を照射する複数の照明パネル21a~21o、23a~23o(照明部材)を有する。そして、照明2は、ワークWで反射されてから個体撮像素子31に入射することで出力レンジの最大値(256)の電気信号を個体撮像素子31に出力させる光を、複数の照明パネル21a~21o、23a~23oのうちの一部の照明パネル21a、21b、21oからワークWに照射する。かかる構成では、白飛びと暗領域との間のコントラストに基づき欠陥Dの有無を検査する場合には、一部の照明パネル21a、21b、21oから該当の光を照射すればよい。また、例えば、個体撮像素子31の出力レンジに収まる出力を与える光を複数の照明パネル21a~21o、23a~23oのそれぞれからワークWに照射することで、ワークWの全体に光を照射しつつワークWを撮像するといった他の態様での検査を実行することも可能となる。
また、鉛直方向Zに平行な回転軸を中心にテーブル11を回転させるθ軸モータ12(回転駆動部)が設けられており、制御部9は、θ軸モータ12の駆動によってワークWを回転させつつ、撮像画像Miを複数回取得する(ステップS105、S106)。かかる構成では、カメラ3aが1回に撮像できる範囲(視野V)よりも広い範囲(例えば、ワークWの側面Wsの全範囲)に対して、欠陥Dの有無を検査することができる。
また、出力レンジの最大値(255)の信号を個体撮像素子31に出力させる光は、照明2から射出されてワークWで正反射された光である。かかる正反射光によって、撮像画像Miにおいて白飛びを生じさせることができる。
以上に説明した実施形態では、検査装置1が本発明の「検査装置」の一例に相当し、テーブル11が本発明の「ワーク保持部材」の一例に相当し、θ軸モータ12が本発明の「回転駆動部」の一例に相当し、照明2が本発明の「照明部」の一例に相当し、側方照明パネル21a~21oおよび上方照明パネル23a~23oが本発明の「複数の照明部材」の一例に相当し、カメラ3aが本発明の「撮像部」の一例に相当し、個体撮像素子31が本発明の「撮像素子」の一例に相当し、制御部9が本発明の「制御部」の一例に相当し、
欠陥Dが本発明の「欠陥」の一例に相当し、撮像画像Miが本発明の「撮像画像」の一例に相当し、基準画像Mrが本発明の「基準画像」の一例に相当し、ワークWが本発明の「ワーク」の一例に相当する。
なお、本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば、基準画像Mrの作成のために撮像画像Miに対して平滑化を実行する具体的手法は、上述のオープニングおよびクロージングの組み合わせに限られない。したがって、演算部91は、メディアンフィルタによって撮像画像Miに平滑化を実行して、基準画像Mrを作成してもよい。メディアンフィルタを用いた方法によれば、演算部91はメディアンフィルタによる画像処理のみを実行すればよく、オープニングおよびクロージングの2通りの画像処理を実行する方法と比較して平滑化に要する時間の短縮を図ることができる。
あるいは、基準画像Mrを撮像画像Miから作成する必要は必ずしもない。つまり、良品のワークWをカメラ3aによって予め撮像した画像を基準画像Mrとして記憶部92に記憶しておいてもよい。
また、個体撮像素子31として、エリアセンサではなく、鉛直方向Zに平行に配置されたラインセンサを用いてもよい。この場合、演算部91は、1ラインに相当する角度ずつθ軸モータ12によってワークWを回転しつつ、ラインセンサである個体撮像素子31によって撮像を行うことで、ワークWの側面Wsの全体について撮像画像Miを取得できる。かかる手法によれば、白飛び範囲に局所的に表れる暗領域の範囲を欠陥Dとして抽出することができる。
また、カメラ3a~3cの個数や配置は、上記の例に限られない。さらに、照明2として、上記のドーム型照明とは異なる照明を使用してもよい。
また、ワークWの形状は、上記の例に限られず、平板形状のワークWの外観を検査することもできる。この場合、カメラ3aおよび当該カメラ3aに隣接して設けられた棒状の照明2を、ワークWの長尺方向に移動させることで、ワークWの全体を撮像するように構成してもよい。
また、ワークWの表面は、正反射光成分に対して拡散反射成分が十分に小さい面であれば、鏡面仕上げされていない面であってもよく、また、金属面でなくてもよい。例えば、ワークWの表面が光沢をもった樹脂からなる面であってもよい。
また、検査装置1は、上記の通常撮像動作と白飛び撮像動作の両方を実行できる必要はなく、白飛び撮像動作のみを実行してもよい。
本発明は、ワークに対して光を照射しつつワークを撮像した結果に基づき、ワークにおける欠陥の有無を判断する検査技術の全般に適用可能である。
1…検査装置
11…テーブル(ワーク保持部材)
12…θ軸モータ(回転駆動部)
2…照明(照明部)
21a~21o…側方照明パネル(照明部材)
23a~23o…上方照明パネル(照明部材)
3a…カメラ(撮像部)
31…個体撮像素子(撮像素子)
9…制御部
D…欠陥
Mi…撮像画像
Mr…基準画像
W…ワーク

Claims (12)

  1. ワークを保持するワーク保持部材と、
    前記ワーク保持部材に保持された前記ワークに光を照射する照明部と、
    前記ワークのうち前記照明部から光が照射された範囲を撮像して、撮像画像を取得する撮像部と、
    前記撮像画像に基づき前記ワークにおける欠陥の有無を判断する制御部と
    を備え、
    前記撮像部は、入射してきた光のエネルギーに応じた大きさの信号を所定の出力レンジの範囲内で出力する撮像素子を有し、
    前記照明部は、前記ワークで反射されてから前記撮像素子に入射することで前記出力レンジの最大値の信号を前記撮像素子に出力させる光を、前記ワークに照射し、
    前記撮像部は、前記撮像画像として、前記出力レンジの最大値を示す白飛びを表示する画素の集合からなる白飛び領域と、前記出力レンジの最大値未満の値を示す画素からなる暗領域とを含む画像を取得する検査装置。
  2. 前記制御部は、所定の基準画像を記憶し、前記基準画像と前記撮像画像との間における、前記白飛び領域の範囲の違いに基づき、前記欠陥の有無を判断する請求項1に記載の検査装置。
  3. 前記制御部は、前記基準画像および前記撮像画像のうち前記撮像画像にのみ前記白飛びが存在する部分に前記欠陥が存在すると判断する請求項2に記載の検査装置。
  4. 前記制御部は、前記基準画像および前記撮像画像のうち前記撮像画像にのみ前記暗領域が存在する部分に前記欠陥が存在すると判断する請求項2または3に記載の検査装置。
  5. 前記制御部は、良品の前記ワークを示す画像を、前記基準画像として記憶する請求項2ないし4のいずれか一項に記載の検査装置。
  6. 前記制御部は、前記撮像画像に対して平滑化を実行することで作成した前記基準画像を記憶する請求項2ないし4のいずれか一項に記載の検査装置。
  7. 前記制御部は、オープニングおよびクロージングによって前記平滑化を実行する請求項6に記載の検査装置。
  8. 前記制御部は、メディアンフィルタによって前記平滑化を実行する請求項6に記載の検査装置。
  9. 前記照明部は、前記ワーク保持部材に保持された前記ワークに対して、互いに異なる方向から光を照射する複数の照明部材を有し、前記ワークにおける正反射光が前記撮像素子に入射することで前記出力レンジの最大値の信号を前記撮像素子に出力させる光を、前記複数の照明部材のうちの一部の照明部材から前記ワークに照射する請求項1ないし8のいずれか一項に記載の検査装置。
  10. 所定の回転軸を中心に前記ワーク保持部材を回転させる回転駆動部をさらに備え、
    前記制御部は、前記回転駆動部の駆動によって前記ワークを回転させつつ、前記撮像画像を複数回取得する請求項1ないし9のいずれか一項に記載の検査装置。
  11. 前記出力レンジの最大値の信号を前記撮像素子に出力させる光は、前記照明部から射出されて前記ワークで正反射された光である請求項1ないし8のいずれか一項に記載の検査装置。
  12. ワークに光を照射する工程と、
    入射してきた光のエネルギーに応じた大きさの信号を所定の出力レンジの範囲内で出力する撮像素子を用いて、前記ワークのうち光が照射された範囲を撮像することで、撮像画像を取得する工程と、
    前記撮像画像に基づきワークにおける欠陥の有無を判断する工程と
    を備え、
    前記ワークに光を照射する工程では、前記ワークで反射されてから前記撮像素子に入射することで前記出力レンジの最大値の信号を前記撮像素子に出力させる光が、前記ワークに照射され、
    前記撮像画像を取得する工程では、前記撮像画像として、前記出力レンジの最大値を示す白飛びを表示する画素からなる白飛び領域と、前記出力レンジの最大値未満を表示する画素からなる暗領域を含む撮像画像を取得する検査方法。

JP2021033178A 2021-03-03 2021-03-03 検査装置および検査方法 Pending JP2022134200A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021033178A JP2022134200A (ja) 2021-03-03 2021-03-03 検査装置および検査方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021033178A JP2022134200A (ja) 2021-03-03 2021-03-03 検査装置および検査方法

Publications (1)

Publication Number Publication Date
JP2022134200A true JP2022134200A (ja) 2022-09-15

Family

ID=83231236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021033178A Pending JP2022134200A (ja) 2021-03-03 2021-03-03 検査装置および検査方法

Country Status (1)

Country Link
JP (1) JP2022134200A (ja)

Similar Documents

Publication Publication Date Title
JP6370177B2 (ja) 検査装置および検査方法
JP5014003B2 (ja) 検査装置および方法
TWI512865B (zh) 晶圓邊緣檢查技術
US8532364B2 (en) Apparatus and method for detecting defects in wafer manufacturing
US9874436B2 (en) Hole inspection method and apparatus
JP2007078404A (ja) 太陽電池パネル検査装置
JP2017120232A (ja) 検査装置
JP5481484B2 (ja) 3次元物体を2次元平面画像に光学的に変換する装置および方法
JP2006332646A (ja) ウェハーを検査するための装置と方法
JP5830229B2 (ja) ウエハ欠陥検査装置
JP2012026858A (ja) 円筒容器の内周面検査装置
JP2017207380A (ja) 表面欠陥検査装置
JP7010213B2 (ja) 円筒体表面検査装置および円筒体表面検査方法
JP2009097977A (ja) 外観検査装置
KR20160121716A (ko) 하이브리드 조명 기반 표면 검사 장치
JP2011075325A (ja) 表面検査装置
JP2022134200A (ja) 検査装置および検査方法
JP5959430B2 (ja) ボトルキャップの外観検査装置及び外観検査方法
CN109211915B (zh) 检查装置
KR101564287B1 (ko) 웨이퍼 검사장치 및 웨이퍼 검사방법
KR101575895B1 (ko) 웨이퍼 검사장치 및 웨이퍼 검사방법
JP7107008B2 (ja) 検査装置および検査方法
JP2008215875A (ja) 成形体の検査方法およびこの方法を用いた検査装置
KR101362171B1 (ko) 표시 장치의 검사 장치 및 방법
JP6402082B2 (ja) 表面撮像装置、表面検査装置、及び表面撮像方法