JP2022125500A - 電力変換システム - Google Patents

電力変換システム Download PDF

Info

Publication number
JP2022125500A
JP2022125500A JP2021023112A JP2021023112A JP2022125500A JP 2022125500 A JP2022125500 A JP 2022125500A JP 2021023112 A JP2021023112 A JP 2021023112A JP 2021023112 A JP2021023112 A JP 2021023112A JP 2022125500 A JP2022125500 A JP 2022125500A
Authority
JP
Japan
Prior art keywords
converter
power conversion
inverter
conversion system
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021023112A
Other languages
English (en)
Inventor
章夫 鳥羽
Akio Toba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2021023112A priority Critical patent/JP2022125500A/ja
Priority to PCT/JP2022/004110 priority patent/WO2022176624A1/ja
Priority to EP22755945.7A priority patent/EP4175152A4/en
Priority to CN202280006187.9A priority patent/CN116235400A/zh
Publication of JP2022125500A publication Critical patent/JP2022125500A/ja
Priority to US18/158,629 priority patent/US20230170818A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0043Converters switched with a phase shift, i.e. interleaved
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4815Resonant converters
    • H02M7/4818Resonant converters with means for adaptation of resonance frequency, e.g. by modification of capacitance or inductance of resonance circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/10Air crafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/20AC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • H02M1/15Arrangements for reducing ripples from dc input or output using active elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)
  • Power Conversion In General (AREA)

Abstract

【課題】コンバータ及びインバータの直流電圧部にコンデンサがそれぞれ接続され、これらのコンデンサと直流結合手段とによって共振回路が構成される電力変換システムにおいて、新たな素子を追加することなく直流結合手段の電流脈動を抑制する。【解決手段】コンバータ10とインバータ20とがインダクタンス成分を有する直流結合手段30により接続された電力変換システムにおいて、PWM制御されるコンバータ10及びインバータ20のスイッチング周波数を等しくすると共に、そのスイッチング周波数を、第1のコンデンサCcと第2のコンデンサCiとケーブル等の直流結合手段30とからなる共振回路の共振周波数よりも高くし、コンバータ10及びインバータ20のスイッチング動作に起因するコンデンサCc,Ciの電圧脈動の所定成分の位相が概ね同相となるように、コンバータ10及びインバータ20の少なくとも一方のスイッチング動作を制御する。【選択図】図1

Description

本発明は、PWM(パルス幅変調)制御されるコンバータ及びインバータにより交流/直流/交流変換を行って交流モータを駆動する電力変換システムに関し、詳しくは、コンバータとインバータとの間の直流回路に流れる電流の脈動を低減するための技術に関するものである。
この種の電力変換システムは従来から種々提供されているが、コンバータ及びインバータをそれぞれPWM制御するためのキャリア波の周波数が異なると、コンバータ-インバータ間の直流回路のコンデンサ(電圧型システムの場合)やリアクトル(電流型システムの場合)を流れる電流の脈動が大きくなって制御が不安定化し、コンデンサやリアクトルに要求される容量が大きくなることが知られている。
そこで、例えば特許文献1には、コンバータ側のキャリア波とインバータ側のキャリア波とを、同一の波形または反転させた波形とし、あるいは、同一周波数で所定の位相差を持たせた波形として、直流回路の電流の脈動を低減することが記載されている。
また、特許文献2には、コンバータ-インバータ間の直流回路に流れる共振電流を抑制するために、コンバータ及びインバータのキャリア波の周波数及び位相を同期させ、上記直流回路には、二つのキャリア波の位相差がゼロの時に共振電流が少なくなるように直流コンデンサ等を付加することが記載されている。
なお、特許文献3には、直流送電線を介して接続されるコンバータ及びインバータの直流電圧部に電圧平滑用のコンデンサをそれぞれ備えた直流送電システムが開示されている。ここで、前記コンデンサは、コンバータ及びインバータのスイッチングに起因する直流電圧のサージを抑制して素子の過電圧破壊を防止すると共に、交流電源や負荷電力の変動時に直流電圧を安定化させる作用を果たしている。
特開平4-121065号公報(第5頁左上欄第20行~第6頁左上欄第1行、図1,図8等) 特開2017-204976号公報([0017],[0018]、図1~図3等) 特許第4373040号公報([0013]、図1等)
特許文献1には、特許文献3のように直流電圧部にコンデンサを備えたコンバータ及びインバータが直流回路によって接続されるシステムが開示されていない。
また、特許文献2に係る従来技術では、直流回路のインピーダンスや二つの電力系統の条件、コンバータ及びインバータの電圧、電流等によって決まる共振電流が少なくなるようにシミュレーションを行って直流回路を構成しているが、この直流回路の共振電流を抑制する原理が具体的に示されておらず、直流回路に接続されるコンデンサやリアクトル等の接続構成や作用も明確には開示されていない。
更に、特許文献3に係る従来技術は、コンバータ及びインバータの制御回路にアクティブフィルタ機能を持たせることで交流電源系統に流出する低次高調波を抑制する発明であり、直流回路の電流の脈動を低減することを課題とするものではない。
そこで、本発明の解決課題は、コンバータとインバータとの間の直流回路(直流結合手段)と、コンバータ及びインバータの直流電圧部にそれぞれ接続されたコンデンサとによって共振回路が構成されるような電力変換システムにおいて、新たな素子や部品を追加することなく直流結合手段を流れる電流の脈動を低減可能とした電力変換システムを提供することにある。
上記課題を解決するため、請求項1に係る発明は、交流電源と、前記交流電源の交流電力をPWM制御により直流電力に変換するコンバータと、前記コンバータから出力される直流電力をPWM制御により交流電力に変換して交流モータに供給するインバータと、を備えた電力変換システムにおいて、
前記コンバータの直流電圧部に接続された第1のコンデンサと、前記インバータの直流電圧部に接続された第2のコンデンサと、前記第1のコンデンサと前記第2のコンデンサとを接続する手段であってインダクタンス成分を有する直流結合手段と、を備え、
前記コンバータ及び前記インバータのスイッチング周波数を等しくすると共に、当該スイッチング周波数を、前記第1のコンデンサと前記第2のコンデンサと前記直流結合手段とからなる共振回路の共振周波数よりも高くし、
前記コンバータ及び前記インバータのスイッチング動作によって生じる前記第1のコンデンサ及び前記第2のコンデンサの電圧脈動の所定成分の位相が概ね同相となるように、前記コンバータ及び前記インバータの少なくとも一方のスイッチング動作を制御することを特徴とする。
請求項2に係る発明は、請求項1に記載した電力変換システムにおいて、前記コンバータ及び前記インバータにそれぞれ与えるPWMパルスを電圧指令値とキャリア波との比較により生成し、前記コンバータ側及び前記インバータ側のキャリア波を同一周波数とし、かつ両キャリア波の間に所定の位相関係を持たせることを特徴とする。
請求項3に係る発明は、請求項2に記載した電力変換システムにおいて、前記交流電源及び前記交流モータの相数を等しくし、前記交流電源及び前記交流モータにおける一相の電圧の基本波が同一周波数であって概ね同相となるように前記コンバータ及び前記インバータの少なくとも一方を制御すると共に、前記コンバータ側及び前記インバータ側のキャリア波の位相を互いに反転させたことを特徴とする。
請求項4に係る発明は、請求項2に記載した電力変換システムにおいて、前記交流電源及び前記交流モータの相数を等しくし、前記交流電源及び前記交流モータにおける一相の電圧の基本波が同一周波数であって概ね逆相となるように前記コンバータ及び前記インバータの少なくとも一方を制御すると共に、前記コンバータ側及び前記インバータ側のキャリア波の位相を同相としたことを特徴とする。
請求項5に係る発明は、請求項1~4の何れか1項に記載した電力変換システムにおいて、前記コンバータ及び前記インバータの少なくとも一方が、直流電圧部が並列接続された複数の電力変換部を有することを特徴とする。
請求項6に係る発明は、請求項5に記載した電力変換システムにおいて、前記複数の電力変換部のスイッチング周波数を同一にし、かつ、前記コンバータまたは前記インバータを構成する前記複数の電力変換部の直流母線電流のパルス発生のタイミングをずらしたことを特徴とする。
請求項7に係る発明は、請求項6に記載した電力変換システムにおいて、前記複数の電力変換部の直流母線電流のパルス発生のタイミングを概ね均等に散在させることを特徴とする。
請求項8に係る発明は、請求項6に記載した電力変換システムにおいて、前記第1のコンデンサまたは前記第2のコンデンサの電圧脈動のうち、スイッチング周波数成分については、前記コンバータ及び前記インバータにおいて概ね同相とし、スイッチング周波数の高調波成分については、前記複数の電力変換部の直流母線電流のパルス発生のタイミングをずらすことにより、それぞれ相殺することを特徴とする。
請求項9に係る発明は、請求項6に記載した電力変換システムにおいて、前記第1のコンデンサまたは前記第2のコンデンサの電圧脈動のうち、スイッチング周波数成分については、前記複数の電力変換部の直流母線電流のパルス発生のタイミングをずらし、スイッチング周波数の高調波成分については、前記コンバータ及び前記インバータにおいて概ね同相とすることにより、それぞれ相殺することを特徴とする。
請求項10に係る発明は、請求項6~9の何れか1項に記載した電力変換システムにおいて、前記複数の電力変換部にそれぞれ与えるPWMパルスを電圧指令値とキャリア波との比較により生成し、これらのキャリア波を同一周波数として各キャリア波の間に所定の位相関係を持たせると共に、前記コンバータ及び前記インバータに用いるキャリア波を同一周波数とし、かつこれらのキャリア波の間に所定の位相関係を持たせたことを特徴とする。
請求項11に係る発明は、請求項10に記載した電力変換システムにおいて、前記交流電源及び前記交流モータの相数を等しくすると共に交流側電圧の基本波の周波数を同一にし、前記コンバータ及び前記インバータにおいて、前記複数の電力変換部の交流側電圧及び交流側電流の基本波の振幅を概ね等しくすることを特徴とする。
請求項12に係る発明は、請求項5~11の何れか1項に記載した電力変換システムにおいて、前記複数の電力変換部の一部を停止させるときには、スイッチングに起因する前記第1のコンデンサまたは前記第2のコンデンサの電圧脈動の所定成分の位相が前記コンバータ及び前記インバータにおいて概ね同相になるように制御することを特徴とする。
請求項13に係る発明は、請求項1~12の何れか1項に記載した電力変換システムにおいて、前記交流電源が外力によって駆動される交流発電機であり、前記コンバータまたは前記インバータの直流電圧平均値が所定値となるように、前記交流発電機の電流を前記コンバータにより制御し、前記交流発電機の電流の周波数を前記交流モータの周波数指令に相当する量として前記インバータに与えることを特徴とする。
請求項14に係る発明は、請求項1~12の何れか1項に記載した電力変換システムにおいて、前記交流電源が外力によって駆動される交流発電機であり、前記コンバータまたは前記インバータの直流電圧平均値が所定値となるように、前記交流発電機の電流を前記コンバータにより制御し、前記交流モータの電流の周波数を前記交流発電機の周波数指令に相当する量として前記外力の制御装置に与えることを特徴とする。
請求項15に係る発明は、請求項13または14に記載した電力変換システムにおいて、前記インバータの出力電力に相当する量を、前記コンバータの入力電力指令値に相当する量に加算することを特徴とする。
請求項16に係る発明は、請求項1~15の何れか1項に記載した電力変換システムにおいて、前記直流結合手段に流れる電流脈動を低減するように、前記コンバータ及び前記インバータをそれぞれPWM制御するためのキャリア波相互の位相関係、または、前記コンバータ及び前記インバータの交流側電圧基本波相互の位相関係もしくは交流側電流基本波相互の位相関係のうち、少なくとも一つを調整することを特徴とする。
請求項17に係る発明は、請求項1~16の何れか1項に記載した電力変換システムが、航空機を推進させる電動ファンの前記交流モータを駆動するシステムであることを特徴とする。
本発明によれば、新たな素子や部品を追加せずに、コンバータとインバータとの間の直流結合手段を流れる電流の脈動を低減し、脈動電流による発生損失を減少させると共に制御を安定化することができる。また、直流電圧部のコンデンサが脈動電流を低減する責務を軽減することにより、コンデンサの静電容量を低減して装置の小型化、低コスト化も可能になる。
本発明の一実施形態に係る電力変換システムの主回路構成図(図1(a))及びその制御回路のブロック図である(図1(b))。 図1(a)を簡略化した回路図である。 図2におけるインピーダンスの絶対値の周波数特性を示す図である。 コンバータ側及びインバータ側のコンデンサの電圧、及び、直流結合手段の電流を示す波形図である。 図2に示した電力変換システムのコンバータ側の動作波形の一例を示す図である。 コンバータ側及びインバータ側のキャリア波を同相及び逆相にした場合の、交流側電流、交流側電圧基本波、キャリア波、コンデンサの電圧、及び、直流結合手段の電流を示す波形図である。 コンバータ側及びインバータ側の力率を変化させた場合の、交流側電流、交流側電圧基本波、キャリア波、裁断電流、コンデンサの電圧、及び、直流結合手段の電流を示す波形図である。 本発明の他の実施形態に係る電力変換システムの主回路構成図である。 コンバータ及びインバータが、何れも単一の電力変換部からなる場合(図9(a))、及び、並列接続された複数の電力変換部からなる場合(図9(b))の、交流側電流、交流側電圧基本波、キャリア波、裁断電流、コンデンサの電圧、及び、直流結合手段の電流を示す波形図である。 コンバータ及びインバータが、何れも並列接続された複数の電力変換部からなる場合の、交流側電流、交流側電圧基本波、キャリア波、裁断電流、コンデンサの電圧、及び、直流結合手段の電流を示す波形図である。 図1(b)の制御回路の変形例を示すブロック図である。 本発明を航空機推進システムに適用した場合の構成図である。
以下、図に沿って本発明の実施形態を説明する。
図1(a)は、本発明の一実施形態に係る電力変換システムの主回路構成図であり、図1(b)はその制御回路の一例を示すブロック図である。
図1(a)において、交流電源Gは、例えばエンジン等の外力によって回転力を得る三相の交流発電機からなる。交流電源Gには、三相の電圧型コンバータ(以下、単にコンバータともいう)10が接続され、コンバータ10の直流側には、ケーブル等の直流結合手段30を介して三相の電圧型インバータ(以下、単にインバータともいう)20が接続されている。インバータ20は、直流結合手段30を介して入力された直流電力を交流電力に変換して三相同期モータや誘導モータ等の交流モータMに出力し、交流モータMは所定のトルクを発生して負荷(図示せず)を駆動する。
コンバータ10は、IGBTやFET等の半導体スイッチング素子(以下、単にスイッチング素子ともいう)S~Sを三相ブリッジ接続してなる電力変換部11と、その直流出力端子間に接続された第1のコンデンサとしての電圧平滑用のコンデンサCとを備え、インバータ20は、前記コンデンサCに直流結合手段30を介して接続された第2のコンデンサとしての電圧平滑用のコンデンサCと、その両端に三相ブリッジ接続されたスイッチング素子S21~S26からなる電力変換部21とを備えている。
上記構成において、コンバータ10は交流電圧をスイッチング素子S~Sのオン・オフ動作により直流電圧に変換してコンデンサCにより平滑し、直流結合手段30を介してインバータ20に供給する。インバータ20では、入力された直流電圧をコンデンサCにより平滑し、スイッチング素子S21~S26のオン・オフ動作により交流電圧に変換して交流モータMに供給する。
以下では、符号C,Cをコンデンサ及びキャパシタンスの両方の意味で使用する。また、直流結合手段30が有するインダクタンスをLciにより表すものとする。なお、このインダクタンスLciは、直流結合手段30としてのケーブル自体のインダクタンスや、ケーブルの途中に部品としての直流リアクトルが接続されている場合の、直流リアクトル及びケーブルのインダクタンスを含む。
(1)請求項1に係る実施例
この実施例の特徴は、図1(a)のように、コンバータ10とインバータ20との間の直流回路にコンデンサC,CとインダクタンスLciとからなる共振回路(以下、CLC共振回路ともいう)を有する電力変換システムにおいて、コンバータ10及びインバータ20のスイッチング周波数を等しくし、かつ、このスイッチング周波数をCLC共振回路の共振周波数よりも高く設定することにある。更に、この実施例の特徴は、コンバータ10及びインバータ20のスイッチングにより発生するコンデンサC,Cの電圧脈動の所定成分の位相が概ね同相となるように、コンバータ10及びインバータ20の少なくとも一方のスイッチング動作を制御し、これによって前記電圧脈動の差分に起因する直流結合手段30の電流Iciの脈動を低減することにある。
始めに、CLC共振回路の共振周波数と、コンバータ10及びインバータ20のスイッチング周波数との関係について考察する。
上記スイッチング周波数またはその高調波の周波数が共振周波数に一致すると、C,C,Lciからなるループにおける振動電流が制限なく増大し、コンデンサC,Cの過電圧、あるいは上記ループの過電流によって装置の破壊に至る。仮にこのような事態を回避できたとしても、スイッチング周波数が共振周波数より低い場合には、コンバータ10の電力変換部11またはインバータ20の電力変換部21から見て、これらの直流電圧部に設けられたコンデンサCやコンデンサCよりもインダクタンスLciの方が、スイッチング周波数におけるインピーダンスが低いことになる。このため、スイッチング動作により発生する電流の脈動成分の多くがコンデンサC,Cによって吸収されずにインダクタンスLciに流れることになり、コンデンサC,Cが本来担うべき電圧平滑要素としての機能が損なわれてしまう。
以上のことから、コンバータ10及びインバータ20(電力変換部11,21)のスイッチング周波数をCLC共振回路の共振周波数よりも高くすることが、システムを安定的に動作させるための要件となる。
上記の点を、図2,図3を用いて更に説明する。
図2は、図1(a)を簡略化したものである。この図2において、コンバータ10側から見たインピーダンスZの絶対値|Z|の周波数特性は、例えば図3のようになり、これを定式化すると数式1が得られる。なお、インバータ20側から見たインピーダンスも同様であり、数式1の右辺において第二分数項の分子のCがCになる。
Figure 2022125500000002
数式1から、インピーダンスZには2つの特異点がある。各特異点の周波数は、|Z|がゼロとなる周波数fr1(ω=ωr1=2πfr1)と、|Z|が無限大となる周波数fr2(ω=ωr2=2πfr2)であり、それぞれ数式2、数式3によって与えられる。
Figure 2022125500000003
Figure 2022125500000004
ここで、図3では、特異点において|Z|が有限値となっているが、これは実際の回路における抵抗成分を考慮したものであって本質的な問題ではなく、また、この抵抗成分は一般にLci,C,Cに対してその影響が小さいので、定式化においては無視している。
数式2,数式3によれば必ずfr1<fr2の関係があるため、コンバータ10及びインバータ20のスイッチング周波数は、図3のfr2よりも高くする必要がある。つまり、スイッチング周波数がfr1またはfr2に一致すると共振状態となって過電圧や過電流となり、fr2より低いと、インダクタンスLciにはスイッチング動作に起因する電流成分の多くが流れてしまう。なお、システムを安定的に動作させるためには、コンバータ10及びインバータ20のスイッチング周波数がfr2に近いと共振に近い状態になるため、実用的には、スイッチング周波数をfr2の概ね2倍以上とすることが望ましい。
次に、図2から明らかなように、コンバータ10及びインバータ20のスイッチングによるコンデンサC,Cの電圧脈動の差分はリアクタンスLciに印加されるため、この差分を抑制することで、リアクタンスLciに流れる電流の脈動を低減することができる。
前述した図2において、コンバータ10及びインバータ20の電力変換部11,21は、それぞれ交流電源G及び交流モータMにPWM制御された電圧を印加して電流を直接または間接的に制御している。交流電源Gや交流モータM自体は、通常、基本波とその高調波の電圧を有しており、これらの電圧にPWM制御による矩形波状の電圧が重畳されるので、交流電源Gと交流モータMとの間には、一般にリアクトル等を接続して両者の電圧の差分がこのリアクトル等に印加されることで電流が平滑化される。但し、上記リアクトル等は、交流電源Gや交流モータMが有するインダクタンス成分によって代用されることが多いため、図2では、その前提でリアクトル等の記載を省略し、直流結合手段30が有するインダクタンスLciのみを表記してある。
上記のように、交流電源Gからコンバータ10に流れる電流や交流モータMからインバータ20に流れる電流は連続的であり、これらの連続的な電流を電力変換部11,21のスイッチングにより裁断したパルス状の電流(以下、裁断電流という)が直流回路側に流れ、コンデンサC,C及びインダクタンスLciからなるCLC共振回路の入力になる。この裁断電流の波形は、実質的には交流電源Gの電流と電力変換部11のスイッチングとにより、並びに、交流モータMの電流と電力変換部21のスイッチングとによって決まるため、CLC共振回路に対しては電流源的な振る舞いをする。
更に、電力変換部11,21のスイッチング周波数を、それぞれから見たCLC共振回路の共振周波数fr2よりも高くした場合、裁断電流の大部分は、電力変換部11からはコンデンサCに流入し、電力変換部21からはコンデンサCに流入するので、結果として、コンデンサC,Cには、所定の直流電圧に脈動電圧が重畳されることになる。また、裁断電流が有する直流成分はコンデンサC,Cを通らないため、直流結合手段30のインダクタンスLciを通ってコンバータ10とインバータ20との間でやりとりされ、これによって交流モータMが必要とする電力を交流電源Gから供給し、逆に、回生動作によって交流モータMから交流電源Gに向けて電力が供給されることになる。
電力変換部11,21のスイッチング動作によって生じるコンデンサC,Cの電圧脈動について、更に説明する。
ここまでの説明から明らかなように、コンデンサC,Cの電圧脈動の差分がインダクタンスLciに印加される結果、電流脈動が発生するため、コンデンサC,Cの電圧脈動の差分を小さく抑えれば、インダクタンスLciにおける電流脈動を低減することができる。
その具体的手段としては、電力変換部11,21のスイッチングに起因するコンデンサC,Cの電圧脈動は、スイッチング周波数に関わる成分を有しているため、この成分のうち「所定成分」について、コンデンサCとコンデンサCとにおいて概ね同相となるように電力変換部11,21のスイッチング動作を制御すればよい。この場合の「所定成分」とは、コンデンサC,Cの電圧脈動が有する周波数成分のうち「主要な周波数成分」や「特に低減したい周波数成分」、あるいは、電圧脈動の時間波形において電圧振幅が大きい期間の「時間成分」を言う。
上記の点を具体的に示したのが図4である。
図4(a),(b)は、コンバータ10側及びインバータ20側のコンデンサC,Cの電圧E,E、並びに、直流結合手段30の電流Iciの波形を示しており、図4(a)はE(実線にて示す),E(破線にて示す)が概ね逆相の場合、図4(b)はE,Eが概ね同相の場合である。何れの場合も電圧E,Eは脈動しており、これらの電圧脈動の差分が直流結合手段30のインダクタンスLciに印加されて電流Iciが流れる。
図4(a)において、概ね逆相であるE,Eの電圧脈動は、各電圧の振幅が大きいほど差電圧も大きくなるため、この期間にインダクタンスLciを流れるIciには大きな電流脈動が含まれている。一方、図4(b)では、E,Eの電圧脈動は概ね同相であるため、これによってインダクタンスLciに印加される差電圧の脈動が小さくなり、Iciの電流脈動も小さくなる。
従って、図4(b)のようにE,Eの電圧脈動が概ね同相となるようにコンバータ10及びインバータ20のスイッチング動作を制御すれば、直流結合手段30を流れる電流Iciの脈動を抑制することができる。
(2)請求項2に係る実施例
図5は、図2に示した電力変換システムの動作波形の一例であり、上からキャリア波(三角波)及び電圧指令値、裁断電流、コンバータ10側のコンデンサCの電圧E、直流結合手段30の電流Iciを示している。
図5の裁断電流については、キャリア波が極大値となるタイミングを補助線で示してあり、ここから、裁断電流によるコンデンサCの電圧脈動の周波数はキャリア波の周波数に支配されることが分かる。また、コンデンサCの電圧脈動を詳しく見ると、裁断電流のパルスが存在する期間に増加し、裁断電流のパルスが存在しない期間(裁断電流がゼロの期間)には減少していることが分かり、これは、裁断電流がコンデンサCに流入していることから理解できる。なお、図示されていないインバータ20側において、コンデンサCの電圧Eは裁断電流のパルスが存在する期間に減少し、パルスが存在しない期間では増加する。
PWMコンバータやPWMインバータにおいては、三角波に代表されるキャリア波と電圧指令値との比較によってPWMパルスを生成することが一般的である。その場合、周知のように、コンバータやインバータの電力変換部と直流電圧部のコンデンサとの間の電流はパルス状の裁断電流となり、この裁断電流の主要な周波数成分はキャリア波の周波数の整数倍の成分となる。これに伴い、コンデンサの電圧脈動の周波数成分は、キャリア波の基本周波数成分とその高調波成分、及び、それらの側帯波の成分のうち複数の成分を含む。
よって、前述したように、コンデンサC,Cの電圧脈動の差分によって直流結合手段30の電流脈動が決まり、この電流脈動を低減するためには両コンデンサC,Cの電圧脈動を概ね同相にすることが有効であるから、コンバータ10及びインバータ20に与えるPWMパルスを電圧指令値とキャリア波との比較によって生成する場合には、コンバータ10及びインバータ20に用いるキャリア波の周波数を等しくし、かつ、両コンデンサC,Cの電圧脈動が概ね同相になるように両キャリア波の位相関係を調整することが望ましい。
仮に両キャリア波の周波数が等しくない場合には、コンデンサC,Cの電圧脈動は時間と共に位相がずれてしまい、また、両キャリア波の間に所定の位相関係を維持できない場合にも直流結合手段30の電流脈動を抑制することができなくなる。
(3)請求項3,4に係る実施例
次に、請求項3,4に係る実施例として、直流結合手段30の電流脈動を低減する具体的な方法について説明する。
一般に、PWMコンバータ及びPWMインバータにおいて、定常状態におけるコンデンサC,Cの電圧脈動の振幅は、交流側の基本波の相数の2倍で周期的に変動する。従って、コンデンサC,Cの電圧脈動が大きくなるタイミングをコンバータ10側とインバータ20側とで合わせるには、まず、コンバータ10及びインバータ20の相数、言い換えれば交流電源Gと交流モータMとの相数を等しくすることが必要である。
以下では、最も代表的な三相の場合について説明する。
まず、コンデンサC,Cの電圧脈動の振幅と、コンバータ10及びインバータ20の交流側の電圧基本波の位相との関係について説明する。
前述の図5に示された電圧指令値は、交流側の一相の電圧基本波に相当する。この電圧指令値がキャリア波と比較されて、コンバータ10及びインバータ20の交流側に出力するべき電圧を生じさせるためのPWMパルスが生成される。これにより、裁断電流は、三相全ての上アームまたは下アームのスイッチング素子がオンとなる期間(零相期間と呼ぶ)にはゼロ、それ以外の期間には、交流側の何れかの相の電流と等しいパルス状の波形となる。
図5によれば、裁断電流において、電圧指令値(基本波)の振幅がキャリア波の振幅よりも小さい期間では、キャリア波の1周期当たり2パルスの裁断電流が存在する。ここで、裁断電流のパルスの時間間隔に着目すると、電圧指令値が振幅相当すなわち最大値あるいは最小値付近であるタイミングでは、裁断電流の隣り合うパルスが近接、離散を繰り返すことが観測され、これらの近接、離散を繰り返す期間(期間A)は、電圧指令値の半周期で相数回、つまりこの場合には3回存在し、ある期間Aと次の期間Aとの間には、裁断電流の隣り合うパルスが概ね均等に配置される期間(期間B)が同じ回数だけ存在することが分かる。
その理由を、以下に簡単に説明する。
電圧指令値(基本波)が三相平衡正弦波である場合、そのうちの一相の振幅が最大となる時点における他の二相の電圧指令値(図5には図示していない)の振幅は、前記一相の振幅の1/2で符号が反転した値となる。この時点の三相の電圧指令値を共通のキャリア波とそれぞれ比較する場合、零相期間はキャリア波が山となる時点付近では短く、谷となる時点付近では長くなる。つまり、キャリア波が山となる時点付近では裁断電流の隣り合うパルスが近接し、キャリア波が谷となる時点付近では裁断電流の隣り合うパルスが離散することになる。
このような現象は、三相の電圧指令値(電圧基本波)が正負交互に極大値、極小値となるたびに繰り返す。
また、コンデンサC,Cの電圧脈動の大きさには、裁断電流のパルスの位置が直接的に影響する。すなわち、コンバータ10において裁断電流の隣り合うパルスが近接していれば、コンデンサCに電流が高頻度で流入するためコンデンサCの電圧は大きく増加する一方、裁断電流の隣り合うパルスが離散していれば、零相期間にコンデンサCには電流が流入しないためインバータ20側への電流流出によってコンデンサCの電圧は大きく減少する。インバータ20側では逆に、コンデンサCの電圧は裁断電流の隣り合うパルスが近接していると大きく減少し、離散していると大きく増加する。
以上に述べたことは図5によって確認することができる。すなわち、既に説明したことと一部重複するが、
・裁断電流のパルスが近接、離散を繰り返す期間Aは、三相の電圧指令値(電圧基本波)の半周期で3回あり、期間A同士の間には、裁断電流のパルスが概ね均等に配置される期間Bがある。
・期間Aにおいて、コンデンサCの電圧脈動の振幅が大きくなっている。
・コンバータ10側のコンデンサCの電圧は裁断電流のパルスが近接する期間に大きく増加し、パルスが離散する期間に大きく減少する。
前述したように、コンバータ10及びインバータ20においてコンデンサC,Cの電圧脈動が大きい期間で両者の電圧脈動を同相にすることが、直流結合手段30における脈動電流の低減に有効である。そこで、まず、コンデンサC,Cの電圧脈動が大きい期間をコンバータ10とインバータ20との間で合わせるため、コンバータ10及びインバータ20のそれぞれについて、交流側の任意の一相の電圧指令値、すなわち電圧基本波の周波数を同一とし、かつ同相とする。これは、コンデンサC,Cの電圧脈動の大きさは裁断電流のパルスの近接と離散との影響を直接的に受けると共に、裁断電流のパルスの近接と離散は、キャリア比較によるPWM制御では電圧指令値の位相によって決まるためである。
そして、コンデンサC,Cの電圧脈動が大きい期間で両者の電圧脈動を同相とするためには、コンバータ10及びインバータ20が用いるキャリア波の周波数を同一とし、かつ逆相とすればよい。つまり、前述したように裁断電流のパルスの近接と離散に対するコンデンサC,Cの電圧の増減が、コンバータ10とインバータ20とでは逆になっているため、コンデンサC,Cの電圧の増減を合わせるためには裁断電流のパルスの近接と離散とを反転させればよい。
このことを示したのが図6である。図6(a)はコンバータ10及びインバータ20のキャリア波が同相の場合、図6(b)は逆相の場合であり、各図の上からコンバータ10及びインバータ20の交流側電流、交流側電圧基本波、キャリア波、コンデンサC,Cの電圧E,E、及び直流結合手段30の電流Iciを示している。なお、グラフのスケールは図6(a),(b)で共通である。
図6(a),(b)において、交流側電圧基本波はコンバータ10及びインバータ20で同期しているため波形が重なっており、また、インバータ20の交流側電流は電圧基本波と同相つまり力率1の例を示している。これらの図から明らかなように、コンデンサの電圧脈動の振幅が大きい期間はコンバータ10及びインバータ20において同時になっているものの、図6(a)に示すキャリア波同相の場合には電圧E,Eが概ね逆相となっているのに対し、図6(b)に示すキャリア波逆相の場合には電圧E,Eが概ね同相となっているため、図6(a)に比べて電流Iciの脈動を抑制できることが明らかである。
なお、上記の説明からの類推として、コンバータ10及びインバータ20の交流側の任意の一相の電圧基本波を同一周波数かつ逆相とし、コンバータ10及びインバータ20のキャリア波を同一周波数かつ同相とした場合にも、同様な効果を得ることができる。
ここで、図7(a)は、コンバータ10側の力率角φをほぼ0°(力率がほぼ1)、インバータ20側の力率角φを-10°(電流遅れ位相)とした場合、図7(b)は、コンバータ10側の力率角φをほぼ0°(力率がほぼ1)、インバータ20側の力率角φを-30°(電流遅れ位相)とした場合の、交流側電流、交流側電圧基本波、キャリア波、裁断電流、コンデンサの電圧、及び、直流結合手段の電流を示す波形図である。なお、コンバータ10及びインバータ20の電圧基本波は同相、キャリア波は逆相である。また、裁断電流の波形において、実線はコンバータ10側、破線はインバータ20側の電流を示す。
このように、コンバータ10及びインバータ20の電流位相が異なる場合でも、前述した如く裁断電流のパルスの近接と離散が力率に依存せずに電圧基本波の位相のみで決まるため、コンデンサC,Cの電圧脈動の振幅の大小の繰り返しはコンバータ10及びインバータ20の両方で概ね一致しており、同様な作用効果が得られることが分かる。
(4)請求項5に係る実施例
本発明は、コンバータ及びインバータの少なくとも一方を、直流電圧部が並列接続された複数の電力変換部により構成する場合にも適用可能であり、その一例を本発明の他の実施形態として図8に示す。
この図8は、コンバータ10Aが2台の電力変換部11,12を並列接続して構成され、インバータ20Aが2台の電力変換部21,22を並列接続して構成されている場合であり、コンバータ10Aには1台の交流電源Gが接続され、インバータ20Aには1台の交流モータMが接続されている。なお、電力変換部11,12及び電力変換部21,22のスイッチング周波数は全て同一である。
本実施例でも、これまでに説明した各実施例と同様に、コンデンサC,Cの電圧脈動の所定の成分が概ね同相になるように電力変換部11,12及び電力変換部21,22をそれぞれ制御することにより、直流結合手段30の電流脈動を抑制することができる。
(5)請求項6,7に係る実施例
図8の構成において、コンバータ10AのコンデンサC及びインバータ20AのコンデンサCの電圧脈動は、並列接続される複数の電力変換部11,12の相互作用及び電力変換部21,22の相互作用によってそれぞれ生じる。
これに対しては、コンバータ10A内の電力変換部11,12に与えるPWMパルスをずらして直流母線電流(裁断電流)のパルス発生のタイミングをずらし、同様に、インバータ20A内の電力変換部21,22に与えるPWMパルスをずらして直流母線電流のパルス発生のタイミングをずらすことにより、コンデンサCやコンデンサCの電圧脈動をそれぞれ抑制することができる。
例えばコンバータ10A内の電力変換部11,12のPWMパルスを概ね均等になるようにずらせば、各電力変換部11,12から流れる直流母線電流のパルス発生のタイミングを概ね均等にずらすことができ、結果としてコンデンサCに流入する電流の総和が平滑化されてコンデンサCの電圧脈動を好適に抑制することができる。並列接続される電力変換部が2台の場合には、それぞれのPWMパルスが概ね交互になるようにすればよい。電力変換部のPWMパルスのずらし方は、インバータ20Aの電力変換部21,22についても同様である。
なお、本実施例によれば、前記各実施例と同様に直流結合手段30の電流脈動の低減にも寄与できることは言うまでもない。
(6)請求項8に係る実施例
図8の構成において、コンデンサC,Cの電圧脈動のうち、スイッチング周波数成分については、コンバータ10A及びインバータ20Aにおいて概ね同期させ、また、スイッチング周波数の高調波成分については、複数の電力変換部11,12及び電力変換部21,22の直流母線電流のパルス発生のタイミングを互いにずらして相殺することが望ましい。
コンバータ10Aとインバータ20Aとが物理的にある程度離れている場合を考慮すると、これらのキャリア波の位相の管理には当然誤差があり、その影響は高周波成分になるほど大きくなる。従って、コンバータ10A及びインバータ20Aのスイッチング動作に起因する直流結合手段30の電流脈動成分のうち最も低周波であるスイッチング周波数成分を、コンバータ10A及びインバータ20Aのキャリア波の位相を管理して抑制することで管理誤差の影響を小さくする。
これに対し、並列接続される複数の電力変換部11,12同士や電力変換部21,22同士は、それぞれ物理的に近い位置(例えば同じ筐体内)に配置されることが想定されるため、キャリア波の位相はコンバータ10Aとインバータ20Aとの間よりも高精度に管理することができる。よって、スイッチング周波数の高調波成分については、並列接続される複数の電力変換部の相互作用により抑制すればよい。
ここで、直流結合手段30を構成するケーブル等は分布定数的な振る舞いをすることが考えられる。この振る舞いは、例えばケーブル長が長いほど、または正負の導線が近接しているほど顕著になる。
分布定数的な振る舞いは、一般に周波数が高いほど強く現れる。従って、ケーブル等の両端に高周波の電圧変動が印加された場合、これをケーブル両端における位相の管理によって相殺しようとしても、ケーブル等の分布定数的な要素、具体的には正負の導線間のキャパシタンス成分を通って高周波電流が通流してしまうことが考えられる。従って、ケーブル両端のスイッチング周波数の高調波成分は、複数の電力変換部11,12や電力変換部21,22の相互作用によってそれぞれ相殺しておき、相対的に周波数が低いスイッチング周波数成分については、ケーブル両端の位相の管理によって抑制することで、ケーブルの分布定数的な振る舞いの影響を受け難くして電流脈動を好適に抑制することができる。
(7)請求項9に係る実施例
上述した請求項8に係る実施例とは逆に、コンバータ10A及びインバータ20AのコンデンサC,Cの電圧脈動のうち、スイッチング周波数成分については、複数の電力変換部11,12及び電力変換部21,22の直流母線電流のパルス発生のタイミングを互いにずらして相殺し、スイッチング周波数の高調波成分については、コンバータ10A及びインバータ20Aにおいて概ね同相となるようにしてもよい。
すなわち、ケーブル等の直流結合手段30に生じる電流脈動のうち、通常は最も成分比率が高いスイッチング周波数成分については、直流結合手段30の両端、つまり、コンバータ10A及びインバータ20Aのそれぞれの内部において、電力変換部11,12の直流母線電流のパルス発生のタイミングをずらし、かつ、電力変換部21,22の直流母線電流のパルス発生のタイミングをずらすことにより、脈動成分を根源的に低減させる。また、直流結合手段30に生じる電流脈動のうち残存するスイッチング周波数の高調波成分については、コンバータ10Aとインバータ20Aとの相互作用、つまり、コンデンサC,Cの電圧脈動の所定成分を同相にして相殺するものである。
(8)請求項10に係る実施例
この実施例は、コンバータ10A及びインバータ20Aが、並列接続される複数の電力変換部により構成される場合を更に具体化したものである。
電力変換部が単一である場合と同様に、PWMパルスを電圧指令値とキャリア波との比較によって生成する場合、並列接続される複数の電力変換部について、各電力変換部に対するキャリア波を同一周波数とし、かつ、各キャリア波の間に所定の位相差を持たせることにより、各電力変換部から出力される裁断電流のパルスの発生タイミングを簡便にずらすことができる。これは、図5を用いた説明等により容易に理解可能である。
一例として、並列接続される電力変換部が2台の場合には、各電力変換部に与えるキャリア波を反転させること、また、3台の場合にはキャリア波の位相差を120°として均等にずらすことが考えられ、何れの場合も複数の電力変換部の発生する裁断電流のパルスの発生タイミングが均等にずれるため、コンデンサC,Cの電圧脈動ひいては直流結合手段30の電流脈動を低減させることができる。または、スイッチング周波数の高調波成分を相殺するようにキャリア波の位相をずらすことも有効である。
そして、電力変換部が単数の場合と同様に、電力変換部が複数である場合も、コンバータ10A及びインバータ20Aのキャリア波の周波数を同一にし、コンバータ10A側のキャリア波とインバータ20Aの側のキャリア波との位相関係を調整することにより、コンデンサC,Cの電圧脈動の主成分を概ね同相にして直流結合手段30の電流脈動を抑制することができる。
(9)請求項11に係る実施例
図8のように、コンバータ10A及びインバータ20Aが、並列接続される複数の電力変換部を有する場合も、コンバータ10A及びインバータ20Aの交流側電圧基本波の周波数を同一にすれば、コンデンサC,Cの電圧脈動の振幅が変動するタイミングを合わせることができる。そして、並列接続される複数の電力変換部の交流側電圧及び交流側電流の基本波の振幅をほぼ等しくすることで、各電力変換部が発生する裁断電流も相似波形となり、これらの裁断電流に位相差を設けることによって脈動電流を好適に相殺することができる。
図9は、本実施例のシミュレーション結果を示す波形図である。
図9(a)は、比較のために、コンバータ10及びインバータ20が何れも単一の電力変換部を有する場合の、交流側電流、交流側電圧基本波、キャリア波、裁断電流、コンデンサの電圧、及び、直流結合手段の電流を示す波形図である。この図9(a)では、コンバータ10側及びインバータ20側のキャリア波が逆相となっており、前述した図6(b)の例に相当する。
一方、図9(b)は、図8のように、コンバータ10A及びインバータ20Aがそれぞれ並列接続された電力変換部11,12、及び電力変換部21,22を有する場合の各部の波形図であり、コンバータ10A及びインバータ20Aの交流側電圧基本波を同期させ、電力変換部11,21、電力変換部12,22の各組について交流側電流及び交流側電圧基本波の振幅をほぼ等しくすると共に、4台の電力変換部11,12,21,22のキャリア波の周波数を同一にしてそれぞれの位相を順に0°,90°,180°,270°とした場合のものである。つまり、コンバータ10Aでは電力変換部11,12に対するキャリア波の位相が互いに90°ずれ、インバータ20Aでは電力変換部21,22に対するキャリア波の位相が互いに90°ずれている。そして、コンバータ10Aとインバータ20Aとの間ではキャリア波の位相が全体として180°ずれている。図9(b)では、コンバータ10A内の電力変換部11に対するキャリア波とインバータ20A内の電力変換部21に対するキャリア波(互いの位相差は180°)のみを示しており、他の電力変換部12,22に対するキャリア波は図示を省略してある。
また、図9(b)における裁断電流は、実線がコンバータ10A内の電力変換部11側、破線がインバータ20A内の電力変換部21側を示し、コンデンサC,Cの電圧は、実線がコンデンサCの電圧E、破線がコンデンサCの電圧Eを示している。
なお、図9(a),(b)において、対応する各波形のスケールは同一である。
本実施例(図9(b))によれば、コンバータ10Aとインバータ20Aとの間で、直流結合手段30の電流脈動の主要成分であるキャリア波の周波数成分が互いに同相になって相殺されると共に、コンバータ10A内の電力変換部11,12の間、コンバータ20A内の電力変換部21,22の間で、キャリア波の2倍周波数成分が互いに同相になって相殺される結果、直流結合手段30の電流脈動が図9(a)よりも一層低減されていることが分かる。
更に、図10は、図9(b)とは逆に、コンバータ10Aとインバータ20Aとの間で、キャリア波の2倍周波数成分を相殺し、コンバータ10A内の電力変換部11,12の間、コンバータ20A内の電力変換部21,22の間で、キャリア波の周波数成分を相殺するようにした場合の波形図である。
この例では、4台の電力変換部11,12,21,22のキャリア波の周波数を同一にしてそれぞれの位相を順に0°,180°,90°,270°としている。図10では、コンバータ10A内の電力変換部11に対するキャリア波とインバータ20A内の電力変換部21に対するキャリア波(互いの位相差は90°)のみを示しており、他の電力変換部12,22に対するキャリア波は図示を省略してある。また、裁断電流については、実線がコンバータ10A内の電力変換部11側、破線がインバータ20A内の電力変換部21側を示し、コンデンサC,Cの電圧は、実線がコンデンサCの電圧E、破線がコンデンサCの電圧Eを示している。
この図10においても、図9(b)と同様に、直流結合手段30の電流脈動が顕著に低減されていることが分かる。
なお、図9(b)と図10とを比較すると、コンデンサC,Cの電圧脈動の周波数成分が異なっていることが見て取れる。これは、コンバータ10A側のコンデンサCとインバータ20A側のコンデンサCとのそれぞれの電圧脈動を概ね同相にして相殺し、直流結合手段30の電流脈動を低減するという本発明の課題を解決するために、相殺するべきコンデンサ電圧の周波数成分が異なっていること(図9(b)ではキャリア波の周波数成分であるのに対し、図10ではその2倍周波数成分であること)に起因している。
(10)請求項12に係る実施例
複数の電力変換部を並列接続してコンバータ10A及びインバータ20Aを構成する場合には、単一の電力変換部が故障などによって停止したとしても残りの電力変換部によってシステムの動作を継続することが可能である。
その場合、残りの電力変換部が、全ての電力変換部が動作している時と同様に動作すると、個々の電力変換部の相互作用によって直流結合手段30の電流脈動を抑制していたことのバランスが崩れ、電流脈動が大きくなってしまうという問題が生じる。
そこで、残りの電力変換部の動作状態を修正することにより上記問題を緩和することが本実施例の要点である。
例えば、図8に示したように、コンバータ10A及びインバータ20Aが、並列接続された2台の電力変換部11,12及び電力変換部21,22をそれぞれ有する構成において、コンバータ10A側の1台の電力変換部が停止した場合に、次のような動作状態の修正が考えられる。
(a)インバータ20A側の2台の電力変換部21,22のうちの1台の運転を停止してコンバータ10A及びインバータ20Aとも1台の電力変換部が動作する状態とし、これまでに説明した動作によって直流結合手段30の電流脈動を抑制する。
(b)インバータ20A側の2台の電力変換部21,22を、あたかも1台の電力変換部であるように同じ動作をさせる、すなわち、交流側電圧と交流側電流及びキャリア波を共通化して直流結合手段30の電流脈動を抑制する。
(11)請求項13~15に係る実施例
この実施例は、電力変換システムの制御回路についてのものであり、前述した図1(b)の制御回路の構成及び作用に関する。以下では、図1(a)のコンバータ10及びインバータ20を制御する場合について説明するが、図8に示したように複数の電力変換部が並列接続されたコンバータ10A及びインバータ20Aを制御する場合も、基本的には同様の制御回路を適用することができる。
なお、本発明における制御回路の構成は、後述するように、図1(b)の例に何ら限定されるものではない。
図1(b)において、インバータ20が交流電動機Mを介して負荷(図示せず)に与えるトルクに角速度を乗じた軸出力と損失分とを加えた電力が、コンバータ10によって直流結合手段30に送るべき電力である。この関係を成り立たせるためには、コンバータ10のコンデンサCを含む直流電圧部の直流成分を一定に保てばよい。従って、コンバータ10の制御系は、上記直流電圧部の直流電圧が所定値となるようにフィードバック制御し、その操作量が交流電源Gの発電量Pとなる。そして、この発電量Pは、交流電源Gの電圧に同期した電流を通流させることで制御される。
一方、インバータ20の制御系は、交流モータMのトルクを制御する場合にはその電流を操作すればよく、また、交流モータMの速度を制御する場合には、速度のフィードバック制御を行ってトルクを操作すればよい。
図1(b)においてコンバータ10側は、いわゆる電流制御マイナーループ付き直流電圧制御を行い、インバータ20側は、いわゆる電流制御マイナーループ付き(回転)速度制御を行っている。これらの実現方法は周知であり、交流量の直接制御や回転座標変換による直流制御、ベクトル制御、センサレスベクトル制御などを用いることができる。この点については説明を省略する。
各実施例により説明してきたように、本発明において直流結合手段30における電流脈動を低減するためには、交流電源Gと交流モータMの基本波の周波数を同一にすることが有効である。そこで、図1(b)の制御回路では、交流電源Gの電流の周波数を交流モータMの周波数指令値に相当する量としてインバータ20に与えている。
つまり、コンバータ10側では交流電源Gの電流制御を行っているため、交流電源Gの電流の周波数の情報を有している。一方、インバータ20側は交流モータMの速度制御を行っており、この速度制御の指令値は、交流モータMの電流の周波数と直接的な関係がある。この関係は、交流モータMの種類(同期モータ、誘導モータ等)や極数等によって決まる。従って、交流モータMの電流の周波数が交流電源Gの電流の周波数に一致するように、つまり両者が同期するように、コンバータ10側が持つ電流の周波数の情報をインバータ20側に送り、インバータ20側はこれに基づいて例えば速度の指令値等を生成している。
図1(b)における具体的な制御方法は、以下の通りである。ここでは、交流電源G、交流モータMともに同期電動機であるものとする。
すなわち、同期電動機の場合には、電流の周波数と電動機の回転周波数は、電動機の極対数(整数)倍で一致する。このため、コンバータ10、インバータ20の両者において、それぞれ位置センサSENS,SENSにより検出した同期電動機の位相角θ,θを電気角変換手段p,pにより電気角θge,θmeに変換し、これらのθge,θmeを用いて、制御系における回転座標変換手段VR及び逆変換手段VRIにそれぞれ与えている。なお、いわゆるセンサレス制御の場合には、θge,θmeとして、制御系が有する電圧や電流の情報を使って演算された推定値が用いられる。
次に、コンバータ10側及びインバータ20側の電流制御マイナーループについて説明する。コンバータ10側及びインバータ20側の何れも、回転座標変換手段VRにより、交流電源G及び交流モータMの交流電流I,Iは直流電流Igd,IgqとImd,Imqとに変換され、それぞれの電流指令値との差分が電流調節手段ACRに入力されて直流の電圧指令値が生成される。これらの電圧指令値を逆変換手段VRIによって交流電圧指令V,Vに戻し、コンパレータCOMP,COMPによりキャリア波と比較してPWMパルス(指令値)を生成し、電力変換部11,21にそれぞれ与える。ここで、コンバータ10とインバータ20とではキャリア波の周波数が同一であるが、必要に応じて、位相シフト手段Fにより両者のキャリア波に所定の位相差を持たせることができる。
始めに、コンバータ10側の直流電圧制御について説明する。
コンバータ10の直流電圧部の電圧Eを検出し、低域通過フィルタLPFを通した電圧Ec-lpfを生成する。この電圧Ec-lpfを目標値Ecrefに一致させるためのフィードバック制御系が構成されており、両者の差分が電圧調節手段AVRに入力されて電力の指令値が得られる。これに相当する発電量を交流電源Gに出力させるための電流指令値が電力指令値変換手段「P→I」によって生成され、先に述べたコンバータ10側の電流制御マイナーループに与えられる。
次いで、インバータ20側の速度制御について説明する。
交流モータMの回転周波数ωに極対数pを乗じた電気角周波数ωmeが、後述の位相同期手段43から出力される回転周波数の目標値ωmerefに一致するようにフィードバック制御を行う。電気角周波数ωmeと目標値ωmerefとの差分が速度調節手段ASRに入力されてトルク指令値が得られる。このトルク指令値に応じたトルクを交流モータMに発生させるための電流指令値がトルク指令値変換手段「T→I」によって生成され、先に述べたインバータ20側の電流制御マイナーループに与えられる。
ここで、前述したように交流電源G及び交流モータMの電流の周波数を一致させる方法について説明する。
図1(b)では、周波数を一致させるだけでなく、電流の位相角も制御可能としている。これを実現しているのが位相同期手段43である。この位相同期手段43では、交流電源Gの電流位相角θgeを基準として交流モータMの電流位相角θmeを同期させるため、フィードバック制御を行っている。すなわち、θgeとθmeとの差分に所定のオフセット角θadfを加えた値を位相調節手段PLLに入力し、その出力を交流モータMの回転周波数の目標値ωmerefとしている。つまり、θgeとθmeとが同期するように、交流モータMの回転速度に比例するωmerefを調整するように構成されている。
上述した制御回路の動作により、交流電源G及び交流モータMの基本波を同期させることができる。
なお、上記とは逆に、交流モータMの電流の周波数を交流モータMの負荷の状況に応じて決め、これに応じて交流電源Gの電流の周波数を一致させること、具体的には、交流モータMの電流の周波数に一致するように交流電源Gの駆動源となる回転動力の回転速度を調整することも可能である。
この場合の制御回路のブロック図を、図11に示す。図11において、位相同期手段43Aは、交流モータMの電気位相角θmeを基準として交流電源Gの電気位相角θgeを同期させるため、θmeとθgeとの差分に所定のオフセット角θadfを加えた値を位相調節手段PLLに入力し、その出力を交流電源Gの電気角周波数の目標値ωgerefとしている。すなわち、θmeとθgeとが同期するように交流電源Gの回転速度に比例するωgerefを調整するように構成されている。交流電源Gは、図示しない外力、例えばエンジンによって駆動されているため、ωgerefは同じく図示しない当該外力の制御系に与えられる。この制御回路を用いた場合でも、交流電源G及び交流モータMの基本波を同期させることができる。なお、この制御系において、交流モータMの電気角周波数の目標値ωmerefは、負荷の都合によって与えられるものとなる。
次に、交流電源Gから交流モータMへの電力の供給を安定化させ、交流電源Gと交流モータMの基本波の同期を高度に維持する方法について述べる。これを実現するためには、交流モータMが必要とする電力を、交流電源Gが適時、遅れなく供給することが有効である。この機能を実現しているのが、モータ電力演算手段41及び電力フィードフォワード手段(電力FF手段)42である。
すなわち、交流モータMの電力Pは、出力トルクと機械角周波数との積であり、両者の指令値は制御回路において既知であるため、これらの情報を用いて、モータ電力演算手段41が交流モータMの電力Pを演算することができる。得られた電力Pを、電力フィードフォワード手段42がコンバータ10の電力指令値に加算することにより、交流モータMが必要とする電力を遅れなく交流電源Gによって発電させることができる。厳密には、交流電源Gにはコンバータ10、インバータ20、及び交流モータMの損失分も含めて発電させる必要があるものの、これらは一般に発電量に対して小さいため制御回路における影響も小さく、かつ、これらの損失分による差異はフィードバック制御系が補償するため問題はない。
上述した交流モータMの電力Pのフィードフォワードを行わない場合、例えば交流モータMの電力が急増すると、その時の発電量を上回る電力をインバータ20がコンバータ10から得ようとするため、結果として直流電圧部の電圧が低下し、これによってコンバータ10の直流電圧制御系の作用により発電量が増える。つまり、直流電圧部の電圧の変動を前提とする動作になってしまう。
従って、電力Pのフィードフォワード制御を行うことにより、上記のような直流電圧部の電圧の変動を最小限にすることができるため、電力供給が安定し、交流電源Gと交流モータMの基本波の同期も安定して実現可能になる。
(12)請求項16に係る実施例
各実施例において説明したように、ケーブル等の直流結合手段30の電流脈動は、コンバータ10及びインバータ20の交流側の電圧基本波、電流基本波、及びキャリア波の状態によって変化する。基本的には、これらの交流側の電圧基本波、電流基本波、及びキャリア波について、コンバータ10側とインバータ20側とで周波数を一致させることが有効であり、しかもキャリア波の位相を調整して直流結合手段30の電流脈動を低減させることが可能であるから、これらを自動調整するような制御系を構成すればよい。特に、システム本来の目的である交流モータMの駆動を妨げないように、前記自動調整の時定数は交流モータMを駆動する際の応答時定数に対して大きく、例えば概ね5倍以上とすればよい。これにより、システムを安定に動作させることに加え、制御回路の計算負荷を低減することができる。
(13)請求項17に係る実施例
本発明に係る電力変換システムの適用分野は様々であるが、その一例として、図12に示すような公知の航空機推進システムに本発明を適用した場合を一つの実施例として説明する。
図12において、EN1,EN2は航空機のジェットエンジンであり、これらに発電機G1,G2が結合されている。発電機G1,G2にはコンバータCON1,CON2が接続され、更にバッテリーBAT1,BAT2を充放電させるための変換器CON1a,CON2aを経由して、モータM1,M2駆動用のインバータINV1,INV2が接続されている。前記モータM1,M2は、航空機を推進させる電動ファンを構成している。なお、バッテリーBAT1,BAT2を用いない場合には、変換器CON1a,CON2aが不要になり、コンバータCON1,CON2とインバータINV1,INV2とが直流結合手段としてのケーブルにて直結される。
この航空機推進システムの基本的な構成は、図1や図2(a)に示した本発明に係る電力変換システムを二つ備えたものと考えることができる。
ちなみに、航空機の推進用モータは数100[kW]から数[MW]の大出力が必要であるため、システムの効率の向上や発熱の低減が重要である。また、軽量化が極めて重要になることから、コンバータ及びインバータに用いられる電圧平滑用のコンデンサの静電容量を極小化する必要があるため、コンバータとインバータとの間のケーブルに流れる電流の脈動が大きくなり易い。
従って、本発明の適用により、コンバータ及びインバータの直流電圧部に小容量のコンデンサを使用しながらケーブルの電流脈動を抑制することで、発熱の低減、効率の向上を図ることができる。
なお、直流結合手段としては超電導ケーブルを用いることも考えられ、その場合には、超伝導体が高周波電流の流通によって損失を発生し、これが超電導状態の維持を妨害することから、本発明の適用が特に有効となる。
以上の説明は、主として三相の電力変換システムについて行ったが、本発明はこれに限定されず、他の相数の電力変換システムについても適用可能である。
10:コンバータ
11,12:電力変換部
20:インバータ
21,22:電力変換部
30:直流結合手段
41:モータ電力演算手段
42:電力フィードフォワード手段
43,43A:位相同期手段
~S12,S21~S32:半導体スイッチング素子
,C:コンデンサ
SENS,SENS:位置センサ

Claims (17)

  1. 交流電源と、前記交流電源の交流電力をPWM制御により直流電力に変換するコンバータと、前記コンバータから出力される直流電力をPWM制御により交流電力に変換して交流モータに供給するインバータと、を備えた電力変換システムにおいて、
    前記コンバータの直流電圧部に接続された第1のコンデンサと、前記インバータの直流電圧部に接続された第2のコンデンサと、前記第1のコンデンサと前記第2のコンデンサとを接続する手段であってインダクタンス成分を有する直流結合手段と、を備え、
    前記コンバータ及び前記インバータのスイッチング周波数を等しくすると共に、当該スイッチング周波数を、前記第1のコンデンサと前記第2のコンデンサと前記直流結合手段とからなる共振回路の共振周波数よりも高くし、
    前記コンバータ及び前記インバータのスイッチング動作によって生じる前記第1のコンデンサ及び前記第2のコンデンサの電圧脈動の所定成分の位相が概ね同相となるように、前記コンバータ及び前記インバータの少なくとも一方のスイッチング動作を制御することを特徴とする電力変換システム。
  2. 請求項1に記載した電力変換システムにおいて、
    前記コンバータ及び前記インバータにそれぞれ与えるPWMパルスを電圧指令値とキャリア波との比較により生成し、前記コンバータ側のキャリア波及び前記インバータ側のキャリア波を同一周波数とし、かつ両キャリア波の間に所定の位相関係を持たせることを特徴とする電力変換システム。
  3. 請求項2に記載した電力変換システムにおいて、
    前記交流電源及び前記交流モータの相数を等しくし、
    前記交流電源及び前記交流モータにおける一相の電圧の基本波が同一周波数であって概ね同相となるように前記コンバータ及び前記インバータの少なくとも一方を制御すると共に、
    前記コンバータ側及び前記インバータ側のキャリア波の位相を互いに反転させたことを特徴とする電力変換システム。
  4. 請求項2に記載した電力変換システムにおいて、
    前記交流電源及び前記交流モータの相数を等しくし、
    前記交流電源及び前記交流モータにおける一相の電圧の基本波が同一周波数であって概ね逆相となるように前記コンバータ及び前記インバータの少なくとも一方を制御すると共に、
    前記コンバータ側及び前記インバータ側のキャリア波の位相を同相としたことを特徴とする電力変換システム。
  5. 請求項1~4の何れか1項に記載した電力変換システムにおいて、
    前記コンバータ及び前記インバータの少なくとも一方が、直流電圧部が並列接続された複数の電力変換部を有することを特徴とする電力変換システム。
  6. 請求項5に記載した電力変換システムにおいて、
    前記複数の電力変換部のスイッチング周波数を同一にし、かつ、前記コンバータまたは前記インバータを構成する前記複数の電力変換部の直流母線電流のパルス発生のタイミングをずらしたことを特徴とする電力変換システム。
  7. 請求項6に記載した電力変換システムにおいて、
    前記複数の電力変換部の直流母線電流のパルス発生のタイミングを概ね均等に散在させることを特徴とする電力変換システム。
  8. 請求項6に記載した電力変換システムにおいて、
    前記第1のコンデンサまたは前記第2のコンデンサの電圧脈動のうち、スイッチング周波数成分については、前記コンバータ及び前記インバータにおいて概ね同相とし、スイッチング周波数の高調波成分については、前記複数の電力変換部の直流母線電流のパルス発生のタイミングをずらすことにより、それぞれ相殺することを特徴とする電力変換システム。
  9. 請求項6に記載した電力変換システムにおいて、
    前記第1のコンデンサまたは前記第2のコンデンサの電圧脈動のうち、スイッチング周波数成分については、前記複数の電力変換部の直流母線電流のパルス発生のタイミングをずらし、スイッチング周波数の高調波成分については、前記コンバータ及び前記インバータにおいて概ね同相とすることにより、それぞれ相殺することを特徴とする電力変換システム。
  10. 請求項6~9の何れか1項に記載した電力変換システムにおいて、
    前記複数の電力変換部にそれぞれ与えるPWMパルスを電圧指令値とキャリア波との比較により生成し、これらのキャリア波を同一周波数として各キャリア波の間に所定の位相関係を持たせると共に、
    前記コンバータ及び前記インバータに用いるキャリア波を同一周波数とし、かつこれらのキャリア波の間に所定の位相関係を持たせたことを特徴とする電力変換システム。
  11. 請求項10に記載した電力変換システムにおいて、
    前記交流電源及び前記交流モータの相数を等しくすると共に交流側電圧の基本波の周波数を同一にし、
    前記コンバータ及び前記インバータにおいて、前記複数の電力変換部の交流側電圧及び交流側電流の基本波の振幅を概ね等しくすることを特徴とする電力変換システム。
  12. 請求項5~11の何れか1項に記載した電力変換システムにおいて、
    前記複数の電力変換部の一部を停止させるときには、スイッチングに起因する前記第1のコンデンサまたは前記第2のコンデンサの電圧脈動の所定成分の位相が前記コンバータ及び前記インバータにおいて概ね同相になるように制御することを特徴とする電力変換システム。
  13. 請求項1~12の何れか1項に記載した電力変換システムにおいて、
    前記交流電源が外力によって駆動される交流発電機であり、
    前記コンバータまたは前記インバータの直流電圧平均値が所定値となるように、前記交流発電機の電流を前記コンバータにより制御し、前記交流発電機の電流の周波数を前記交流モータの周波数指令に相当する量として前記インバータに与えることを特徴とする電力変換システム。
  14. 請求項1~12の何れか1項に記載した電力変換システムにおいて、
    前記交流電源が外力によって駆動される交流発電機であり、
    前記コンバータまたは前記インバータの直流電圧平均値が所定値となるように、前記交流発電機の電流を前記コンバータにより制御し、前記交流モータの電流の周波数を前記交流発電機の周波数指令に相当する量として前記外力の制御装置に与えることを特徴とする電力変換システム。
  15. 請求項13または14に記載した電力変換システムにおいて、
    前記インバータの出力電力に相当する量を、前記コンバータの入力電力指令値に相当する量に加算することを特徴とする電力変換システム。
  16. 請求項1~15の何れか1項に記載した電力変換システムにおいて、
    前記直流結合手段に流れる電流脈動を低減するように、前記コンバータ及び前記インバータをそれぞれPWM制御するためのキャリア波相互の位相関係、または、前記コンバータ及び前記インバータの交流側電圧基本波の相互の位相関係もしくは交流側電流基本波の相互の位相関係のうち、少なくとも一つを調整することを特徴とする電力変換システム。
  17. 請求項1~16の何れか1項に記載した電力変換システムが、航空機を推進させる電動ファンの前記交流モータを駆動するシステムであることを特徴とする電力変換システム。
JP2021023112A 2021-02-17 2021-02-17 電力変換システム Pending JP2022125500A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021023112A JP2022125500A (ja) 2021-02-17 2021-02-17 電力変換システム
PCT/JP2022/004110 WO2022176624A1 (ja) 2021-02-17 2022-02-02 電力変換システム
EP22755945.7A EP4175152A4 (en) 2021-02-17 2022-02-02 POWER CONVERSION SYSTEM
CN202280006187.9A CN116235400A (zh) 2021-02-17 2022-02-02 电力转换系统
US18/158,629 US20230170818A1 (en) 2021-02-17 2023-01-24 Power conversion system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021023112A JP2022125500A (ja) 2021-02-17 2021-02-17 電力変換システム

Publications (1)

Publication Number Publication Date
JP2022125500A true JP2022125500A (ja) 2022-08-29

Family

ID=82932038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021023112A Pending JP2022125500A (ja) 2021-02-17 2021-02-17 電力変換システム

Country Status (5)

Country Link
US (1) US20230170818A1 (ja)
EP (1) EP4175152A4 (ja)
JP (1) JP2022125500A (ja)
CN (1) CN116235400A (ja)
WO (1) WO2022176624A1 (ja)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0834695B2 (ja) 1990-09-07 1996-03-29 株式会社日立製作所 電力変換方法、電力変換装置およびその電力変換装置を用いた圧延システム
JP3298450B2 (ja) * 1997-03-19 2002-07-02 株式会社日立製作所 空気調和機及び電力変換装置
JPH1118435A (ja) * 1997-06-18 1999-01-22 Mitsubishi Electric Corp 直流リンク部の共振を抑制した高力率インバータ装置
JP4373040B2 (ja) 2001-09-19 2009-11-25 株式会社日立製作所 直流送電用自励式変換器の制御装置
JP4601044B2 (ja) * 2004-08-30 2010-12-22 日立アプライアンス株式会社 電力変換装置およびその電力変換装置を備えた空気調和機
JP2006288035A (ja) * 2005-03-31 2006-10-19 Hitachi Ltd 電力変換システム
US7202626B2 (en) * 2005-05-06 2007-04-10 York International Corporation Variable speed drive for a chiller system with a switched reluctance motor
JP4457124B2 (ja) * 2007-04-06 2010-04-28 日立アプライアンス株式会社 コンバータ・インバータ装置
JP5972635B2 (ja) * 2012-03-29 2016-08-17 東芝三菱電機産業システム株式会社 電力変換装置
JP2017204976A (ja) 2016-05-13 2017-11-16 東芝三菱電機産業システム株式会社 電力変換装置
JP6718026B2 (ja) * 2017-09-27 2020-07-08 東芝三菱電機産業システム株式会社 電源装置
CN111464001B (zh) * 2019-01-18 2021-06-11 台达电子企业管理(上海)有限公司 减少并联运行的多个非隔离模块的输入环流的方法及系统
JP2021023112A (ja) 2019-07-31 2021-02-22 株式会社クボタ 作業車

Also Published As

Publication number Publication date
CN116235400A (zh) 2023-06-06
WO2022176624A1 (ja) 2022-08-25
EP4175152A4 (en) 2024-02-21
US20230170818A1 (en) 2023-06-01
EP4175152A1 (en) 2023-05-03

Similar Documents

Publication Publication Date Title
US10523130B2 (en) Alternate grounding of inverter midpoint for three level switching control
CN112542955B (zh) 功率转换系统、控制器及计算机可读介质
KR101423054B1 (ko) 이중 인버터 제어 장치 및 그 방법
JP4717114B2 (ja) 電力変換器の制御装置
CN104124883A (zh) 电力转换系统和控制电力转换系统的方法
JP5029315B2 (ja) モータ駆動システム
JP2016208820A (ja) 三相インバータのオフセット電圧生成装置及び三相インバータ制御装置
JP2012235600A (ja) 電力変換装置
EP2690775A2 (en) Drive system for alternating current motors and electric motorized vehicles
CN112737445A (zh) 一种永磁辅助同步磁阻电机振荡抑制的控制方法
CN102647142A (zh) 高压变频器电流振动抑制控制系统
US10811990B1 (en) Multi-segment and nonlinear droop control for parallel operating active front end power converters
Sowmiya et al. Inverter Power Control Based On DC-Link Voltage Regulation for IPMSM Drives using ANN
JP5972060B2 (ja) ドライブシステムの制御装置
WO2022176624A1 (ja) 電力変換システム
CN103580575A (zh) 基于速度的动态pwm调制算法sdpwm
CN112737457B (zh) 一种永磁辅助同步磁阻电机的稳定性控制方法
Shehada et al. An improved CSI fed induction motor drive
JP2007282434A (ja) 電力変換システム
Haga et al. High power factor control for single-phase to three-phase power converter without reactor and electrolytic capacitor
JP2017192207A (ja) 回転電機システムおよび回転電機システムの制御方法
JP7436756B2 (ja) モータ駆動システム
JP2019083624A (ja) 電動機駆動装置
Al-nabi et al. Power factor compensation for CSC-fed PMSM drive using d-axis stator current control
RU2682164C1 (ru) Устройство управления высоковольтным преобразователем частоты

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20210907

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20211008

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240115