JP2022125447A - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
JP2022125447A
JP2022125447A JP2021023032A JP2021023032A JP2022125447A JP 2022125447 A JP2022125447 A JP 2022125447A JP 2021023032 A JP2021023032 A JP 2021023032A JP 2021023032 A JP2021023032 A JP 2021023032A JP 2022125447 A JP2022125447 A JP 2022125447A
Authority
JP
Japan
Prior art keywords
refrigerant
condenser
temperature
refrigerator
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021023032A
Other languages
Japanese (ja)
Inventor
智裕 中村
Tomohiro Nakamura
好正 堀尾
Yoshimasa Horio
健一 柿田
Kenichi Kakita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2021023032A priority Critical patent/JP2022125447A/en
Priority to CN202210146623.4A priority patent/CN114941911A/en
Publication of JP2022125447A publication Critical patent/JP2022125447A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/005Compression machines, plants or systems with non-reversible cycle of the single unit type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/042Air treating means within refrigerated spaces
    • F25D17/045Air flow control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • F25D17/065Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators with compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

To provide a refrigeration cycle device of a refrigerator or the like, which can maximize refrigeration capacity by controlling a refrigerant circulation amount from a refrigerant temperature difference.SOLUTION: A refrigeration cycle device includes a compressor 11, a condenser 12, throttle means 15, an evaporator 16, and a plurality of temperature sensors including an upstream temperature sensor 21 and a downstream temperature sensor 22 detecting a temperature of a refrigerant pipe between the condenser 12 and the throttle means 15. A refrigerant circulation amount, for example, rotation speed of a cooling fan 45 is controlled so that a difference in temperatures detected by the upstream temperature sensor 21 and the downstream temperature sensor 22 comes closer to a set temperature difference. Thereby, refrigeration capacity is maximized and energy saving performance is enhanced.SELECTED DRAWING: Figure 3

Description

本発明は、冷媒配管の2点間の温度差を用いて冷凍サイクルを制御する、冷蔵庫等の冷凍サイクル装置に関するものである。 TECHNICAL FIELD The present invention relates to a refrigerating cycle device such as a refrigerator that controls a refrigerating cycle using a temperature difference between two points in refrigerant piping.

従来、冷凍サイクル装置の一つである冷蔵庫では、貯蔵室の庫内温度と設定温度の差に基づいて、圧縮機の回転数及び冷却ファンの回転数を制御している(例えば、特許文献1参照)。 Conventionally, in a refrigerator, which is one of refrigeration cycle devices, the rotation speed of a compressor and the rotation speed of a cooling fan are controlled based on the difference between the internal temperature of a storeroom and the set temperature (for example, Patent Document 1 reference).

図6は、特許文献1に記載された従来の冷凍サイクルの圧縮機及び冷却ファンの制御方法を示した図である。 FIG. 6 is a diagram showing a control method for a compressor and a cooling fan of a conventional refrigeration cycle disclosed in Patent Document 1. As shown in FIG.

図6に示すように、庫内温度検出回路151は、貯蔵室内に設置された庫内温度センサ150により、貯蔵室内の庫内温度を検出し、制御手段152にその温度データを出力するものである。制御手段152では、貯蔵室の温度データと設定温度の差に基づいて、圧縮機141の回転数及び冷却ファン142の回転数を決定し、これに対応した制御指令信号を圧縮機駆動回路153及び冷却ファン駆動回路154に出力して、圧縮機141の回転数及び冷却ファン142の回転数を制御している。 As shown in FIG. 6, the internal temperature detection circuit 151 detects the internal temperature of the storage compartment by means of an internal temperature sensor 150 installed in the storage compartment, and outputs the temperature data to the control means 152 . be. The control means 152 determines the number of revolutions of the compressor 141 and the number of revolutions of the cooling fan 142 based on the difference between the temperature data of the storage room and the set temperature, and outputs a corresponding control command signal to the compressor drive circuit 153 and the It outputs to the cooling fan drive circuit 154 to control the rotation speed of the compressor 141 and the rotation speed of the cooling fan 142 .

特開平1-33485号公報JP-A-1-33485

しかしながら、前記従来の構成では、庫内の空気温度と設定温度の差に基づいて圧縮機や冷却ファンの回転数を制御しているため、冷媒側の冷却効率などが考慮できておらず、冷蔵庫の周囲温度や庫内の収納量の変動、扉開閉に伴う庫外空気の侵入など、使用環境や使い方によっては、冷媒の冷却効率が低下してしまうという課題を有していた。 However, in the above-described conventional configuration, the number of rotations of the compressor and the cooling fan is controlled based on the difference between the air temperature inside the refrigerator and the set temperature. Depending on the usage environment and usage, such as fluctuations in the ambient temperature and the amount of storage inside the refrigerator, and the intrusion of air outside the refrigerator due to the opening and closing of the door, there was a problem that the cooling efficiency of the refrigerant decreased.

本発明は、前記従来の課題を解決するもので、冷媒の冷却効率を向上させる冷凍サイクル装置を提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a refrigeration cycle apparatus capable of improving the cooling efficiency of a refrigerant.

前記従来の課題を解決するために、本発明の冷凍サイクル装置は、少なくとも、圧縮機と、凝縮器と、絞り手段と、蒸発器とを有する冷凍サイクル装置で、前記凝縮器と前記絞り手段との間の冷媒の温度を検知する複数の温度センサを備え、前記温度センサの検知温度差に応じて、冷媒循環量を制御する冷媒循環量制御手段を備えたことを特徴としたものである。 In order to solve the conventional problem, the refrigerating cycle apparatus of the present invention includes at least a compressor, a condenser, a throttle means, and an evaporator, wherein the condenser and the throttle means It is characterized by comprising a plurality of temperature sensors for detecting the temperature of the refrigerant between and a refrigerant circulation amount control means for controlling the refrigerant circulation amount in accordance with the temperature difference detected by the temperature sensors.

本発明の冷凍サイクル装置は、冷媒の冷却効率を高め、省エネルギー性を向上させることができる。 The refrigerating cycle device of the present invention can improve the cooling efficiency of refrigerant and improve energy saving.

実施の形態1における冷凍サイクル装置としての冷蔵庫の正面図1 is a front view of a refrigerator as a refrigerating cycle device according to Embodiment 1 実施の形態1における冷蔵庫の縦断面図Longitudinal sectional view of the refrigerator in Embodiment 1 実施の形態1における冷蔵庫のサイクル構成図Cycle configuration diagram of refrigerator in Embodiment 1 実施の形態1における冷凍サイクルの冷却ファンの制御方法を示した図FIG. 2 shows a method of controlling the cooling fan of the refrigeration cycle according to Embodiment 1. FIG. 実施の形態1における冷凍サイクルの冷媒制御センサの出力と冷媒循環量との相関を示した図FIG. 4 is a diagram showing the correlation between the output of the refrigerant control sensor of the refrigeration cycle and the amount of refrigerant circulation in Embodiment 1. FIG. 従来の冷凍サイクルの冷却ファンの制御方法を示した図Diagram showing the control method of the cooling fan of the conventional refrigeration cycle

第1の発明は、少なくとも、圧縮機と、凝縮器と、絞り手段と、蒸発器とを有する冷凍サイクル装置で、前記凝縮器と前記絞り手段との間の冷媒の温度を検知する複数の温度センサを備え、前記温度センサの検知温度差に応じて、冷媒循環量を制御する冷媒循環量制御手段を備えたことを特徴とする冷凍サイクル装置である。 A first invention is a refrigeration cycle apparatus having at least a compressor, a condenser, a throttle means, and an evaporator, and a plurality of temperature sensors for detecting the temperature of the refrigerant between the condenser and the throttle means. A refrigerating cycle apparatus comprising a sensor and refrigerant circulation amount control means for controlling a refrigerant circulation amount in accordance with a temperature difference detected by the temperature sensor.

これによって、凝縮器出口の冷媒配管の検知温度差から凝縮器出口の冷媒の乾き度を推定することができ、検知温度差を設定温度差に近づけるように冷媒循環量を制御して、凝縮器出口の冷媒の乾き度をゼロに近づけることができる。これにより、冷凍システムの冷却効率が増加するため、冷凍能力を最大化することができ、省エネルギー性を高めることができる。 As a result, the dryness of the refrigerant at the condenser outlet can be estimated from the detected temperature difference in the refrigerant piping at the condenser outlet. The dryness of the outlet refrigerant can be brought close to zero. As a result, the cooling efficiency of the refrigeration system is increased, so that the refrigeration capacity can be maximized and energy saving can be enhanced.

第2の発明は、前記冷媒循環量制御手段は、前記蒸発器で生成された冷気を庫内に循環させる冷却ファンの回転数を制御することであることを特徴とする第1の発明に記載の冷凍サイクル装置である。 A second invention is characterized in that the refrigerant circulation amount control means controls the number of rotations of a cooling fan that circulates the cool air generated by the evaporator in the refrigerator. refrigeration cycle equipment.

これによって、凝縮器出口の冷媒の乾き度をゼロに近づけるように前記冷却ファンの回転数を制御することができる。これにより、冷凍システムの冷却効率が増加するため、冷凍能力を最大化することができ、省エネルギー性を高めることができる。 As a result, the rotation speed of the cooling fan can be controlled so that the dryness of the refrigerant at the outlet of the condenser approaches zero. As a result, the cooling efficiency of the refrigeration system is increased, so that the refrigeration capacity can be maximized and energy saving can be enhanced.

第3の発明は、前記冷媒循環量制御手段は、前記凝縮器にて冷媒の凝縮を促進させるために備えられる凝縮器ファンの回転数を制御することであることを特徴とする第1の発明に記載の冷凍サイクル装置である。 A third aspect of the invention is characterized in that the refrigerant circulation amount control means controls the number of revolutions of a condenser fan provided for promoting condensation of the refrigerant in the condenser. The refrigeration cycle device according to .

これによって、凝縮器出口の冷媒の乾き度をゼロに近づけるように前記凝縮器ファンの回転数を制御することができる。これにより、冷凍システムの冷却効率が増加するため、冷凍能力を最大化することができ、省エネルギー性を高めることができる。 As a result, the rotation speed of the condenser fan can be controlled so that the dryness of the refrigerant at the outlet of the condenser approaches zero. As a result, the cooling efficiency of the refrigeration system is increased, so that the refrigeration capacity can be maximized and energy saving can be enhanced.

第4の発明は、前記冷媒循環量制御手段は、前記圧縮機の回転数制御であることを特徴とする第1の発明に記載の冷凍サイクル装置である。 A fourth invention is the refrigeration cycle apparatus according to the first invention, wherein the refrigerant circulation amount control means controls the rotational speed of the compressor.

これによって、凝縮器出口の冷媒の乾き度をゼロに近づけるように前記圧縮機の回転数を制御することができる。これにより、冷凍システムの冷却効率が増加するため、冷凍能力を最大化することができ、省エネルギー性を高めることができる。 As a result, the rotation speed of the compressor can be controlled so that the dryness of the refrigerant at the outlet of the condenser approaches zero. As a result, the cooling efficiency of the refrigeration system is increased, so that the refrigeration capacity can be maximized and energy saving can be enhanced.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって、本発明が限定されるものではない。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that the present invention is not limited by this embodiment.

(実施の形態1)
以下、冷凍サイクル装置の実施の形態として冷蔵庫を例にして図1~図5を用いて説明する。
(Embodiment 1)
An embodiment of a refrigeration cycle apparatus will be described below with reference to FIGS. 1 to 5, taking a refrigerator as an example.

図1は本発明の実施の形態による冷凍サイクル装置としての冷蔵庫の正面図、図2は同実施の形態1による冷蔵庫の縦断面図、図3は同実施の形態1による冷蔵庫のサイクル構成図である。図4は冷凍サイクルの冷却ファンの制御方法を示した図、図5は冷凍サイクルの冷媒制御センサの出力と冷媒循環量との相関を示した図である。 FIG. 1 is a front view of a refrigerator as a refrigerating cycle device according to an embodiment of the present invention, FIG. 2 is a longitudinal sectional view of the refrigerator according to the first embodiment, and FIG. 3 is a cycle configuration diagram of the refrigerator according to the first embodiment. be. FIG. 4 is a diagram showing a method of controlling the cooling fan of the refrigerating cycle, and FIG. 5 is a diagram showing the correlation between the output of the refrigerant control sensor of the refrigerating cycle and the amount of refrigerant circulation.

図1から図3に示すように、この冷蔵庫は、前方に開口する金属製(例えば鉄板)の外箱と、硬質樹脂製(例えばABS)の内箱と、前記外箱と内箱との間に発泡充填した硬質ウレタンフォーム等の断熱材とからなる断熱性の冷蔵庫本体30を備えている。冷蔵庫本体30内には、冷蔵室31、冷蔵室31の下に上段冷凍室32及びその横に並設した製氷室33と、並設した上段冷凍室32及び製氷室33の下方に下段冷凍室34、下段冷凍室34の下方に野菜室35が設けてある。そして、冷蔵室31の前面は、例えば観音開き式の扉により開閉自由に閉塞されるとともに、上段冷凍室32と製氷室33と下段冷凍室34と野菜室35の前面部は引き出し式の扉により開閉自由に閉塞される。 As shown in FIGS. 1 to 3, this refrigerator includes an outer box made of metal (e.g., steel plate) opening forward, an inner box made of hard resin (e.g., ABS), and a space between the outer and inner boxes. A heat-insulating refrigerator main body 30 made of a heat-insulating material such as rigid urethane foam filled with foam is provided. Inside the refrigerator main body 30, there are a refrigerating chamber 31, an upper freezing chamber 32 below the refrigerating chamber 31, an ice making chamber 33 arranged side by side, an upper freezing chamber 32 arranged side by side, and a lower freezing chamber below the ice making chamber 33. 34 , a vegetable compartment 35 is provided below the lower freezer compartment 34 . The front of the refrigerating compartment 31 is closed by, for example, a double door so that it can be opened and closed freely. freely blocked.

冷蔵室31は冷蔵保存のために凍らない温度を下限に通常1~5℃で設定されている。野菜室35は冷蔵室31と同等もしくは若干高い温度設定の2℃~7℃に設定されており、低温にすれば葉野菜の鮮度を長期間維持することが可能である。上段冷凍室32と下段冷凍室35は冷凍保存のために通常-22から-18℃で設定されているが、冷凍保存状態の向上のために、例えば-30から-25℃の低温で設定されることもある。 The refrigerating compartment 31 is normally set at 1 to 5° C. with the lower limit of the non-freezing temperature for cold storage. The temperature of the vegetable compartment 35 is set to 2° C. to 7° C., which is the same as or slightly higher than that of the refrigerator compartment 31. If the temperature is set to a low temperature, the freshness of leaf vegetables can be maintained for a long period of time. The upper freezer compartment 32 and the lower freezer compartment 35 are normally set at −22 to −18° C. for frozen storage, but are set at a low temperature of −30 to −25° C., for example, to improve frozen storage conditions. sometimes

また、上段冷凍室32は切替室として、ダンパ機構等を用いることで、冷蔵温度帯から冷凍温度帯まで選択可能な部屋とすることもある。 Also, the upper freezer compartment 32 may be a switchable compartment that can be selected from a refrigerating temperature range to a freezing temperature range by using a damper mechanism or the like.

冷蔵庫本体30には、前記冷蔵室31、上段冷凍室32、製氷室33、下段冷凍室34
、野菜室35を冷却する冷凍システム10が設けてあり、その冷凍システム10の冷媒を圧縮する能力可変型の圧縮機11が天面後部の機械室47に設けられ、冷却器となる蒸発器16が背面部の冷却室48に設けてある。
The refrigerator main body 30 includes the refrigerating chamber 31 , upper freezing chamber 32 , ice making chamber 33 , and lower freezing chamber 34 .
, a refrigerating system 10 for cooling the vegetable compartment 35 is provided, and a variable capacity compressor 11 for compressing the refrigerant of the refrigerating system 10 is provided in a machine room 47 at the rear of the top panel, and an evaporator 16 serving as a cooler. are provided in the rear cooling chamber 48 .

上記冷凍システム10の冷媒としては、地球環境保全の観点から地球温暖化係数が小さい可燃性冷媒であるイソブタンを使用している。この炭化水素であるイソブタンは空気と比較して常温、大気圧下で約2倍の比重である(2.04、300Kにおいて)。これにより従来に比して冷媒充填量を低減でき、低コストであると共に、可燃性冷媒が万が一に漏洩した場合の漏洩量が少なくなり安全性をより向上できる。 As the refrigerant for the refrigeration system 10, isobutane, which is a flammable refrigerant with a small global warming potential, is used from the viewpoint of global environment conservation. Isobutane, which is a hydrocarbon, has a specific gravity about twice that of air at room temperature and atmospheric pressure (at 2.04, 300K). As a result, the amount of refrigerant to be charged can be reduced compared with the conventional one, the cost is low, and the amount of leakage in the unlikely event that the flammable refrigerant leaks is reduced, so that the safety can be further improved.

次に、上記冷凍システム10の構成を、図3を用いて説明する。 Next, the configuration of the refrigeration system 10 will be described with reference to FIG.

冷凍システム10は、圧縮機11、凝縮器12、ドライヤ13、絞り手段となる、キャピラリーチューブ15、蒸発器16、アキュームレータ17、吸入管18、内部熱交換部19を接続して構成してある。また、この冷凍システム10には、微小抵抗20、上流温度センサ21及び下流温度センサ22からなる冷媒制御センサ23が設けてある。 The refrigeration system 10 is configured by connecting a compressor 11, a condenser 12, a dryer 13, a capillary tube 15 serving as throttle means, an evaporator 16, an accumulator 17, a suction pipe 18, and an internal heat exchange section 19. The refrigeration system 10 is also provided with a refrigerant control sensor 23 consisting of a minute resistance 20, an upstream temperature sensor 21 and a downstream temperature sensor 22. As shown in FIG.

上記冷媒制御センサ23を構成する微小抵抗20は、長さ250mmの細径管からなり、直列配置された微小抵抗20とキャピラリーチューブ15の全抵抗の約5%に相当する抵抗を有する。全抵抗に対する微小抵抗20の比率は、1~20%が望ましい。1%未満では内部を流れる冷媒の状態変化を測定することが困難となる。20%超では内部熱交換部19の熱交換が不十分となり、冷凍システムの効率が低下する。なお、上記全抵抗に対する微小抵抗20の比率は、それぞれの抵抗を同じ内径のキャピラリーチューブ15で代替した時の長さの比率で示したものである。 The micro-resistor 20 constituting the refrigerant control sensor 23 is made of a thin tube with a length of 250 mm and has a resistance equivalent to about 5% of the total resistance of the micro-resistor 20 and the capillary tube 15 arranged in series. The ratio of the minute resistance 20 to the total resistance is preferably 1-20%. If it is less than 1%, it becomes difficult to measure the state change of the refrigerant flowing inside. If it exceeds 20%, the heat exchange in the internal heat exchange section 19 becomes insufficient, and the efficiency of the refrigeration system decreases. The ratio of the minute resistance 20 to the total resistance is indicated by the length ratio when each resistance is replaced by the capillary tube 15 having the same inner diameter.

ここで、上記冷媒制御センサ23を構成する上流温度センサ21及び下流温度センサ22は、微小抵抗20の内部を流れる冷媒の状態変化に応じて変化する微小抵抗20の上流側と下流側の温度を測定し、その温度差が設定温度差に近づくように冷媒循環量を可変し、冷凍システム10を所定の状態に制御する構成となっている。 Here, the upstream temperature sensor 21 and the downstream temperature sensor 22, which constitute the refrigerant control sensor 23, detect the temperature on the upstream side and the downstream side of the micro resistance 20, which changes according to the state change of the refrigerant flowing inside the micro resistance 20. The temperature difference is measured, the refrigerant circulation rate is varied so that the temperature difference approaches the set temperature difference, and the refrigeration system 10 is controlled to a predetermined state.

なお、上記冷凍システム10において、ドライヤ13は、冷凍システム10内を循環する冷媒を乾燥するものであり、液冷媒と効率よく接触するために凝縮器12の下流に配置している。 In the refrigeration system 10, the dryer 13 dries the refrigerant circulating in the refrigeration system 10, and is arranged downstream of the condenser 12 in order to efficiently contact the liquid refrigerant.

また、アキュームレータ17は、安定状態における余剰冷媒を貯留するものであり、蒸発器16と略同一の温度に保持するために蒸発器16の下流に配置してある。冷凍システム10を用いて冷却する対象物(図示せず)の温度が上昇すると、アキュームレータ17に貯留される余剰冷媒量が減少して冷凍システム10内の冷媒循環量が増大することで冷凍能力を増加させる。 The accumulator 17 stores surplus refrigerant in a stable state, and is arranged downstream of the evaporator 16 in order to keep the temperature substantially the same as that of the evaporator 16 . When the temperature of an object (not shown) to be cooled using the refrigeration system 10 rises, the amount of surplus refrigerant stored in the accumulator 17 decreases and the amount of refrigerant circulating in the refrigeration system 10 increases, thereby increasing the refrigeration capacity. increase.

一般に、冷蔵庫本体30等の筐体の外郭から自然対流で放熱する家庭用冷蔵庫など環境条件によって放熱能力が大きく変化する冷凍システムでは、レシーバを用いて冷凍システムの高圧側に余剰冷媒を貯留することができないので、本実施の形態1のように、アキュームレータ17を用いて冷凍システムの低圧側に余剰冷媒を貯留する。また、アキュームレータ17に貯留する余剰冷媒量は冷凍システム内の全冷媒量の10~30%程度としてあり、比較的少量で冷凍能力を調整する機能が得られるので、全冷媒量を抑制するために有効である。 In general, in a refrigeration system such as a home-use refrigerator that dissipates heat from the outer shell of a housing such as the refrigerator body 30 by natural convection, the heat dissipation capacity changes greatly depending on environmental conditions, and a receiver is used to store surplus refrigerant on the high pressure side of the refrigeration system. Therefore, as in the first embodiment, the accumulator 17 is used to store excess refrigerant on the low-pressure side of the refrigeration system. In addition, the amount of surplus refrigerant stored in the accumulator 17 is about 10 to 30% of the total amount of refrigerant in the refrigeration system. It is valid.

また、キャピラリーチューブ15を用いて、冷凍システム10の絞りを構成することにより、キャピラリーチューブ15と吸入管18との間で熱交換する内部熱交換部19を実現することができ、吸入管18内を還流する低温冷媒のエンタルピーを回収して冷凍システム10の効率を向上することができる。 In addition, by configuring the aperture of the refrigeration system 10 using the capillary tube 15, it is possible to realize an internal heat exchange section 19 that exchanges heat between the capillary tube 15 and the suction pipe 18. can recover the enthalpy of the refluxing low temperature refrigerant to improve the efficiency of the refrigeration system 10 .

以上のように構成された冷蔵庫について、以下その作用、動作について、図3から図5を用いて説明する。 The action and operation of the refrigerator configured as described above will be described below with reference to FIGS. 3 to 5. FIG.

本冷蔵庫は、冷却運転を行う際には、圧縮機11で圧縮された冷媒は凝縮器12で放熱して凝縮した後、ドライヤ13で乾燥される。そして、冷媒制御センサ23を通過した後、キャピラリーチューブ15で減圧され、その後、蒸発器16に供給されて蒸発し、吸入管18を介して圧縮機11へ還流する。このとき、蒸発器16で発生する冷熱を利用して冷却が行われる。 When this refrigerator performs a cooling operation, the refrigerant compressed by the compressor 11 is condensed by releasing heat in the condenser 12 and then dried by the dryer 13 . After passing through the refrigerant control sensor 23 , the pressure is reduced by the capillary tube 15 , then supplied to the evaporator 16 where it evaporates, and returns to the compressor 11 through the suction pipe 18 . At this time, cooling is performed using cold heat generated by the evaporator 16 .

ここで、圧縮機11を運転した状態で、対象物(図示せず)の温度が低下して安定状態に近づくと、凝縮器12の出口冷媒は2相状態(望ましくは、乾き度3~10重量%)となる。これは、冷却する対象物(図示せず)の温度が上昇して、アキュームレータ17に貯留される余剰冷媒量が減少し冷凍システム10内の冷媒循環量が増大した場合でも、凝縮器12の出口冷媒が過冷却とならないように、直列配置された微小抵抗20とキャピラリーチューブ15の全抵抗と冷凍システム10内の全冷媒量を設計しているためである。 Here, when the temperature of the object (not shown) drops and approaches a stable state while the compressor 11 is in operation, the refrigerant at the outlet of the condenser 12 is in a two-phase state (preferably, dryness of 3 to 10 % by weight). Even if the temperature of the object to be cooled (not shown) rises and the amount of surplus refrigerant stored in the accumulator 17 decreases and the amount of refrigerant circulating in the refrigeration system 10 increases, the outlet of the condenser 12 This is because the total resistance of the micro resistance 20 and the capillary tube 15 arranged in series and the total amount of refrigerant in the refrigeration system 10 are designed so that the refrigerant does not become supercooled.

一般に、筐体の外郭から自然対流で放熱する家庭用冷蔵庫など環境条件によって放熱能力が大きく変化する冷凍システムにおいて、凝縮器の出口冷媒が過冷却になるように設計すると、環境条件によって放熱能力が増大した際に冷凍システム内のほぼすべての冷媒が凝縮器に滞留して、冷媒循環量が異常に低下する懸念が生じる。 In general, in a refrigeration system whose heat dissipation capacity varies greatly depending on environmental conditions, such as a home refrigerator that dissipates heat from the outer shell of the housing by natural convection, if the refrigerant at the condenser outlet is designed to be supercooled, the heat dissipation capacity will be affected by the environmental conditions. When it increases, almost all the refrigerant in the refrigeration system stays in the condenser, and there is a concern that the refrigerant circulation amount will drop abnormally.

また、環境条件によって放熱能力が減少した際に凝縮器で凝縮できなかった余剰冷媒がアキュームレータ17に貯留しきれなくなって吸入管18から圧縮機11へ還流することで、圧縮機11の耐久性が低下する懸念が生じる。 In addition, when the heat dissipation capacity decreases due to environmental conditions, the surplus refrigerant that could not be condensed in the condenser cannot be stored in the accumulator 17 and flows back to the compressor 11 from the suction pipe 18, thereby improving the durability of the compressor 11. There is concern that it will decline.

そのため、本発明の冷凍システム10では前記したように、凝縮器12の出口冷媒が過冷却とならないよう、直列配置された微小抵抗20とキャピラリーチューブ15の全抵抗と冷凍システム10内の全冷媒量を設計しているのである。 Therefore, in the refrigeration system 10 of the present invention, as described above, the total resistance of the micro resistance 20 and the capillary tube 15 arranged in series and the total amount of refrigerant in the refrigeration system 10 are is designed.

2相状態となった前記凝縮器12からの冷媒は、微小抵抗20を通過する際、上流温度センサ21と下流温度センサ22で微小抵抗20の上流側と下流側の温度が検出される。そして、検出された微小抵抗20前後の温度差が所定値になるように、冷媒循環量を制御する。その結果、凝縮器12の出口冷媒の乾き度が減少していき、冷凍効果が増大して冷凍システム10の効率を向上することができる。 When the two-phase refrigerant from the condenser 12 passes through the minute resistance 20 , the upstream temperature sensor 21 and the downstream temperature sensor 22 detect the temperatures on the upstream and downstream sides of the minute resistance 20 . Then, the refrigerant circulation amount is controlled so that the detected temperature difference before and after the minute resistance 20 becomes a predetermined value. As a result, the dryness of the refrigerant at the outlet of the condenser 12 decreases, the refrigeration effect increases, and the efficiency of the refrigeration system 10 can be improved.

次に、図4及び図5に基づいて冷媒循環量の制御方法について説明する。 Next, a method for controlling the amount of refrigerant circulation will be described with reference to FIGS. 4 and 5. FIG.

図4の横軸は蒸発器16で生成された冷気を庫内に循環させる冷却ファン45の回転数であり、縦軸は冷媒制御センサ23が測定する微小抵抗20の前後の温度差Sである。 The horizontal axis of FIG. 4 is the number of revolutions of the cooling fan 45 that circulates the cool air generated by the evaporator 16 in the refrigerator, and the vertical axis is the temperature difference S across the minute resistance 20 measured by the refrigerant control sensor 23. .

前記したように、圧縮機11を運転した状態で、冷凍システム10を用いて冷却する対象物(図示せず)の温度が低下して安定状態に近づくと、凝縮器12の出口冷媒は2相状態となる。このとき、冷媒制御センサ23の出力はS0を示す。そして、冷媒制御センサ23の出力がS2を下回るように冷却ファン45の回転数を増加させる。この結果、凝縮器12の出口冷媒の乾き度が減少していき、冷凍効果が増大して冷凍システム10の効率が向上する。 As described above, when the temperature of the object (not shown) to be cooled using the refrigeration system 10 decreases and approaches a stable state while the compressor 11 is in operation, the refrigerant at the outlet of the condenser 12 has two phases. state. At this time, the output of the refrigerant control sensor 23 indicates S0. Then, the rotation speed of cooling fan 45 is increased so that the output of refrigerant control sensor 23 falls below S2. As a result, the dryness of the refrigerant at the outlet of the condenser 12 decreases, the refrigeration effect increases, and the efficiency of the refrigeration system 10 improves.

一方、凝縮器12の出口冷媒の乾き度が減少し続け、冷媒制御センサ23の出力がS1を下回った場合、冷却ファン45の回転数を減少させる。この結果、冷媒制御センサ23の出力がS1からS2を示す状態に安定させることができる。 On the other hand, when the dryness of the refrigerant at the outlet of the condenser 12 continues to decrease and the output of the refrigerant control sensor 23 falls below S1, the rotation speed of the cooling fan 45 is reduced. As a result, the output of the refrigerant control sensor 23 can be stabilized in a state from S1 to S2.

冷媒制御センサ23の出力に下限値S1を設けたのは、冷却ファン45の回転数を増大させ過ぎると凝縮器12の出口冷媒が過冷却状態となり、冷凍システム10内のほぼすべての冷媒が凝縮器12に滞留して、冷媒循環量が異常に低下する懸念が生じるためである。このような場合、冷却能力が不足し、冷蔵庫としては鈍冷となる恐れがあるため避ける必要があるのである。 The reason why the output of the refrigerant control sensor 23 is set to the lower limit value S1 is that if the rotation speed of the cooling fan 45 is excessively increased, the refrigerant at the outlet of the condenser 12 will be in a supercooled state, and almost all the refrigerant in the refrigeration system 10 will be condensed. This is because there is a concern that the refrigerant will stay in the vessel 12 and the amount of refrigerant circulation will abnormally decrease. In such a case, the cooling capacity is insufficient, and there is a risk that the refrigerator will cool slowly, so it must be avoided.

図5の横軸は、図4の縦軸と同じ冷媒制御センサ23が測定する微小抵抗20の前後の温度差Sであり、図5の縦軸は、微小抵抗20内を通過する冷媒循環量Qである。 The horizontal axis of FIG. 5 is the temperature difference S across the minute resistance 20 measured by the refrigerant control sensor 23, which is the same as the vertical axis of FIG. is Q.

前記したように、冷媒制御センサ23の出力がS0を示した状態から冷却ファン45の回転数を増加させると、蒸発器16において、空気と冷媒の熱交換が促進され、冷媒の蒸発温度が上昇し、冷媒循環量が増加する。それに伴い、凝縮器12の出口冷媒の乾き度が減少して、冷媒制御センサ23の出力がS0からS2へ低下する。同様に、冷却ファン45の風量を調整して冷媒制御センサ23の出力がS1からS2を示す状態に安定させると、凝縮器12の出口冷媒の乾き度がゼロ近傍(望ましくは、乾き度0~1重量%)で安定する。 As described above, when the rotation speed of the cooling fan 45 is increased from the state in which the output of the refrigerant control sensor 23 indicates S0, the heat exchange between the air and the refrigerant is promoted in the evaporator 16, and the evaporation temperature of the refrigerant rises. and the amount of refrigerant circulation increases. Along with this, the dryness of the refrigerant at the outlet of the condenser 12 decreases, and the output of the refrigerant control sensor 23 decreases from S0 to S2. Similarly, when the air volume of the cooling fan 45 is adjusted to stabilize the output of the refrigerant control sensor 23 between S1 and S2, the dryness of the refrigerant at the outlet of the condenser 12 is near zero (preferably, the dryness is between 0 and 0). 1% by weight).

前記したように、冷媒循環量が増大した場合でも凝縮器12の出口冷媒が過冷却とならないように、微小抵抗20とキャピラリーチューブ15の全抵抗を設計しているため、冷媒循環量が減少した場合は、微小抵抗20とキャピラリーチューブ15の全抵抗が不足する。不足分の抵抗を補うために、凝縮器12の出口冷媒の乾き度が増加し、それに従い冷媒の流速が増大する。 As described above, the micro resistance 20 and the total resistance of the capillary tube 15 are designed so that the refrigerant at the outlet of the condenser 12 does not become supercooled even when the refrigerant circulation amount increases, so the refrigerant circulation amount has decreased. In this case, the total resistance of the minute resistance 20 and the capillary tube 15 is insufficient. To compensate for the lack of resistance, the dryness of the outlet refrigerant of the condenser 12 is increased and the flow rate of the refrigerant is increased accordingly.

それにより、微小抵抗20とキャピラリーチューブ15内を通過する冷媒の抵抗が増大するため、不足分の抵抗を補うことができる。冷媒循環量が大きい場合は凝縮器12の出口冷媒の乾き度はゼロ近傍であり、冷媒循環量の減少に従い、凝縮器12の出口冷媒の乾き度は増加するものである。 As a result, the resistance of the coolant passing through the minute resistance 20 and the capillary tube 15 increases, so that the insufficient resistance can be compensated for. When the refrigerant circulation amount is large, the dryness of the refrigerant at the outlet of the condenser 12 is close to zero, and the dryness of the refrigerant at the outlet of the condenser 12 increases as the refrigerant circulation amount decreases.

このように冷媒制御センサ23の出力、つまり検知温度差に応じて、これが設定温度差に近づくように冷却ファン45の風量を制御することにより、凝縮器12の出口冷媒の乾き度をゼロ近傍(望ましくは、乾き度0~1重量%)で安定させ、冷凍効果を増大して冷凍システム10の効率を向上することができる。 By controlling the air volume of the cooling fan 45 according to the output of the refrigerant control sensor 23, that is, the detected temperature difference, so that the temperature difference approaches the set temperature difference, the dryness of the refrigerant at the outlet of the condenser 12 is reduced to near zero ( Desirably, the dryness is stabilized at 0-1 wt.

つまり、上述した冷蔵庫本体30は、微小抵抗20とその前後の温度差を測定する温度センサからなる冷媒制御センサ23を用いて凝縮器出口の乾き度をゼロに近づけるように冷却ファン45を制御することにより、凝縮器出口にレシーバを有しない冷凍システムにおいて冷却ファン45を用いて冷凍能力を最大化することができ、高効率な冷却運転を行うことができる。 That is, the refrigerator main body 30 described above controls the cooling fan 45 so that the dryness at the outlet of the condenser approaches zero using the refrigerant control sensor 23 consisting of the minute resistance 20 and the temperature sensor that measures the temperature difference between before and after it. As a result, the cooling fan 45 can be used to maximize the refrigeration capacity in a refrigeration system that does not have a receiver at the outlet of the condenser, and a highly efficient cooling operation can be performed.

以上のように、本発明において開示する技術の例示として、実施の形態1を説明した。しかしながら、本開示における技術は、これに限定されず、変更、置き換え、付加、省略などを行った実施の形態にも適用できる。 As described above, Embodiment 1 has been described as an example of the technology disclosed in the present invention. However, the technology in the present disclosure is not limited to this, and can also be applied to embodiments with modifications, replacements, additions, omissions, and the like.

そこで、以下、他の実施の形態を例示する。 Therefore, other embodiments will be exemplified below.

実施の形態1では、冷媒制御センサ23の出力に応じて、冷却ファン45を制御することで、冷凍能力を最大化していたが、これは、凝縮器12にて冷媒の凝縮を促進させるために備えられる凝縮器ファン46の回転数を制御する方法でもよい。 In the first embodiment, the cooling fan 45 is controlled according to the output of the refrigerant control sensor 23 to maximize the refrigerating capacity. A method of controlling the rotational speed of the provided condenser fan 46 may also be used.

凝縮器ファン46の回転数を増加させると、凝縮器12において、空気と冷媒の熱交換が促進され、冷媒の凝縮温度が低下し、圧縮機の体積効率が向上することに伴い、冷媒循環量が増加する。よって、冷却ファン45の回転数を増大させた場合と同様の効果を得られる。 When the rotation speed of the condenser fan 46 is increased, the heat exchange between the air and the refrigerant is promoted in the condenser 12, the condensation temperature of the refrigerant is lowered, and the volumetric efficiency of the compressor is improved. increases. Therefore, the same effect as when the rotation speed of the cooling fan 45 is increased can be obtained.

また、冷媒制御センサ23の出力に応じて、圧縮機11の回転数を制御する方法でもよい。圧縮機11の回転数を増加させると、冷媒循環量が増加するため、冷却ファン45、凝縮器ファン46の風量を増大させた場合と同様の効果を得られる。 Alternatively, a method of controlling the rotation speed of the compressor 11 according to the output of the refrigerant control sensor 23 may be used. When the rotational speed of the compressor 11 is increased, the amount of refrigerant circulation increases, so the same effect as when the air volume of the cooling fan 45 and the condenser fan 46 is increased can be obtained.

以上のように、本発明にかかる冷凍システム装置は、冷媒の冷却効率を高め、省エネルギー性を向上させることが可能となるので、例えば、家庭用又は業務用冷蔵庫等の冷凍冷蔵応用商品はもちろん、冷凍サイクルを搭載する空調機器や厨房機器等の冷凍サイクル装置として幅広く適用できる。 INDUSTRIAL APPLICABILITY As described above, the refrigeration system device according to the present invention can improve the cooling efficiency of the refrigerant and improve the energy saving performance. It can be widely applied as a refrigerating cycle device such as an air conditioner equipped with a refrigerating cycle and kitchen equipment.

11 圧縮機
12 凝縮器
15 キャピラリーチューブ(絞り手段)
16 蒸発器
20 微小抵抗
21 上流温度センサ
22 下流温度センサ
23 冷媒制御センサ
30 冷蔵庫本体
45 冷却ファン
46 凝縮器ファン
11 compressor 12 condenser 15 capillary tube (squeezing means)
16 Evaporator 20 Micro resistance 21 Upstream temperature sensor 22 Downstream temperature sensor 23 Refrigerant control sensor 30 Refrigerator body 45 Cooling fan 46 Condenser fan

Claims (4)

少なくとも、圧縮機と、凝縮器と、絞り手段と、蒸発器とを有する冷凍サイクル装置で、前記凝縮器と前記絞り手段との間の冷媒の温度を検知する複数の温度センサを備え、前記温度センサの検知温度差に応じて、冷媒循環量を制御する冷媒循環量制御手段を備えたことを特徴とする冷凍サイクル装置。 A refrigeration cycle apparatus comprising at least a compressor, a condenser, a throttle means, and an evaporator, comprising a plurality of temperature sensors for detecting the temperature of refrigerant between the condenser and the throttle means, wherein the temperature A refrigerating cycle apparatus comprising refrigerant circulation amount control means for controlling a refrigerant circulation amount according to a temperature difference detected by a sensor. 前記冷媒循環量制御手段は、前記蒸発器で生成された冷気を庫内に循環させる冷却ファンの回転数を制御することを特徴とする請求項1に記載の冷凍サイクル装置。 2. The refrigeration cycle apparatus according to claim 1, wherein the refrigerant circulation amount control means controls the rotation speed of a cooling fan that circulates the cool air generated by the evaporator inside the refrigerator. 前記冷媒循環量制御手段は、前記凝縮器用送風機の回転数を制御することを特徴とする請求項1に記載の冷凍サイクル装置。 2. The refrigeration cycle apparatus according to claim 1, wherein the refrigerant circulation amount control means controls the rotation speed of the condenser blower. 前記冷媒循環量制御手段は、前記圧縮機の回転数を制御することを特徴とする請求項1に記載の冷凍サイクル装置。 2. The refrigeration cycle apparatus according to claim 1, wherein said refrigerant circulation amount control means controls the rotation speed of said compressor.
JP2021023032A 2021-02-17 2021-02-17 Refrigeration cycle device Pending JP2022125447A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021023032A JP2022125447A (en) 2021-02-17 2021-02-17 Refrigeration cycle device
CN202210146623.4A CN114941911A (en) 2021-02-17 2022-02-17 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021023032A JP2022125447A (en) 2021-02-17 2021-02-17 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
JP2022125447A true JP2022125447A (en) 2022-08-29

Family

ID=82905978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021023032A Pending JP2022125447A (en) 2021-02-17 2021-02-17 Refrigeration cycle device

Country Status (2)

Country Link
JP (1) JP2022125447A (en)
CN (1) CN114941911A (en)

Also Published As

Publication number Publication date
CN114941911A (en) 2022-08-26

Similar Documents

Publication Publication Date Title
US20200292224A1 (en) Refrigerator and control method thereof
JP6934603B2 (en) Refrigerator and cooling system
US10495368B2 (en) Refrigerator and operation method of the same
EP3287724B1 (en) Refrigerator
JP5506760B2 (en) refrigerator
WO2019159826A1 (en) Refrigerator
JP2008138915A (en) Refrigerating device
JP6872689B2 (en) refrigerator
KR101620178B1 (en) A refrigerator and a control method the same
KR101651328B1 (en) Refrigerator and control method the same
JP2022125447A (en) Refrigeration cycle device
JP6846599B2 (en) refrigerator
JP2022125448A (en) Refrigeration cycle device
WO2020121404A1 (en) Refrigerator
JP2017026210A (en) refrigerator
JP2021038897A (en) Refrigeration cycle device
JP4396504B2 (en) refrigerator
JP2012007781A (en) Refrigerator/freezer and cooling device
JP2013122328A (en) Refrigeration device for container
JP4286106B2 (en) Freezer refrigerator
WO2021229766A1 (en) Refrigerator
JP2021032481A (en) Refrigeration cycle device
US20220205698A1 (en) Refrigerator and control method thereof
JP3824016B2 (en) refrigerator
KR101651329B1 (en) Refrigerator and control method the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20221021

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231201